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Abstract

We consider the TASEP on Z with two blocks of particles having
different jump rates. We study the large time behavior of particles’
positions. It depends both on the jump rates and the region we focus
on, and we determine the complete process diagram. In particular, we
discover a new transition process in the region where the influence of
the random and deterministic parts of the initial condition interact.

Slow particles may create a shock, where the particle density is
discontinuous and the distribution of a particle’s position is asymp-
totically singular. We determine the diffusion coefficient of the shock
without using second class particles.

We also analyze the case where particles are effectively blocked by
a wall moving with speed equal to their intrinsic jump rate.

1 Introduction

We consider the totally asymmetric simple exclusion process (TASEP) on
Z. This is one of the basic one-dimensional interacting stochastic particle
systems that, despite its simplicity, is full of interesting features. It consists
of particles moving to the right by jumps of length one. The jumps happen
at a given rate (the clocks of different particles are independent), and the
particles are subject to the exclusion constraint — no site can be occupied by
more than one particle. This model can also be seen as a growing interface
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with gradient given by the particle density; it belongs to the KPZ (Kardar-
Parisi-Zhang) universality class of growth models. Recently the fluctuation
properties of the TASEP and related models have been studied extensively
using the techniques from random matrix theory [20, 28, 31, 32]. See also
[13,36,37] for more recent developments on the case where particles can hop
in both directions.

In previous works [4, 6, 8, 30] we analyzed the large time t behavior of
particles’ positions for some non-random initial conditions and uniform jump
rate (say equal to one). For example, if particles start from 2Z− then the
large time macroscopic density is given by

̺([ξt], t) =





1/2, if ξ < 0,

(1− ξ)/2, if ξ ∈ [0, 1],

0, if ξ > 1.

(1.1)

For large time t, the correlation length scales as t2/3 and the fluctuations
scale as t1/3. Under an appropriate scaling limit, the joint distributions of
particles’ positions are governed by a process which depends on the density
gradient: (a) for ξ < 0, it is the Airy1 process, (b) for ξ ∈ (0, 1) it is the
Airy2 process, and at ξ = 0 it is the Airy2→1 transition process, see [8].
Similarly, one can consider the joint distributions of the current at different
positions instead of the positions of different particles — the limit processes
are unchanged.

In this paper we consider a small variation of the above situation, which
however shows a number of new nontrivial phenomena. Instead of setting
the jump rate to 1 for all the particles, we modify the jump rate of the first
M particles and set it equal to α > 0.

There are a few cases to consider. For example, for 0 < α < 1/2 the
first (slow) particles generate a shock where the macroscopic particle density
changes discontinuously from 1/2 to 1 − α. The fluctuations on the left of
the shock are Airy1-distributed on the t1/3 scale, while inside the jam region
they are GUE(M)-distributed on the t1/2 (diffusion) scale, see the body of
the paper for details1. Also, the distribution of a particle’s position in the
shock region has a singularity.

When α reaches 1/2, the macroscopic density becomes constant (it is
equal to 1/2 everywhere), but the fluctuations are different. In the simplest
case of M = 1 slow particle, by Burke’s theorem [11], our initial condition is
equivalent to the deterministic one on Z− (even sites are occupied as before)
and to the product of Bernoulli measures with density 1/2 on Z+. Thus,

1Here GUE(M) stands for the Gaussian Unitary Ensemble of M×M random matrices.
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for α = 1/2 there is a transition region where the influence of the initial
randomness becomes relevant, but it can not be seen macroscopically.

On Figure 2 we present the whole process diagram2. One of the goals of
the present paper is to derive the large time fluctuations’ behavior in all of
its regions.

Another situation we consider is M = ∞ and α = 2. Under t1/2-scaling,
the speed α particles effectively act as a wall moving with speed 1. The
following n “normal” particles then become like Brownian motions with the
first one being reflected off the wall and the following ones being reflected off
each other. The large time fluctuations are then given by the antisymmetric
GUE(M) process (for fixed time it was characterized in [22], see also [14],
[15]). This is also closely related to the asymptotics of a certain Markovian
dynamics for two-dimensional interlacing particle systems with a wall, see
Section 2.3 of [38] and [9]. Using the relation between last passage directed
percolation with exp(1) random variables and TASEP, one can predict that
there should be a relation between the maximum process for the largest
eigenvalue of the Dyson’s Brownian Motion and systems of nonintersecting
paths with a wall. This relation will be made more precise in [7].

Our arguments are based on deriving suitable determinantal expressions
for the quantities of interest and analyzing the resulting (Fredholm) deter-
minants asymptotically. In most cases, a mathematically rigorous argument
of that kind would require the evaluation of the asymptotics of the kernel
under the determinant, as well as some control over the decay of the kernel
at infinity. This last part is often viewed as a technicality, and we omit tail
estimates in the present paper.

In this determinantal approach, the main difficulty typically lies in de-
riving an integral representation for the kernel before the limit transition;
evaluating the asymptotics is often quite straightforward via the standard
steepest descent analysis. However, in the shock case mentioned above, we
faced a new effect — in the large time limit the kernel diverged. We had been
puzzled by this difficulty for a while, and we view finding the modification
of the kernel that solved the problem as our main technical novelty.

Outline. The rest of the paper is organized as follows. In Section 2 we
explain the macroscopic picture and describe the process diagram. Then we
state the results for the different parts of the diagram, which are proven in
Sections 4-6. In Section 3 we obtain the determinantal correlation struc-
ture and the associated kernel with a couple of specializations. Finally, in
Section 7 we consider the reflecting wall situation.

2A bit like a phase diagram, but in our case instead of phases and phase transition we
have limit processes and transition processes.
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2 Model and Results

The continuous time TASEP on Z is a model of interacting particle systems
in which at every instant at most one particle occupy a site in Z. Particles
jump by 1 to the right with a given jump rate provided the arriving site is
empty. As a consequence, particles do not overtake each other. Hence, we
can assign labels to particles, say particle n has position at time t equal to
xn(t). We also denote by vn the jump rate of particle n. Our convention is to
consider particles labeled from right to left, i.e., xn(t) > xn+1(t) for any time
t. We denote by yn = xn(0) the starting position of particle n (non-random).

We always start with a finite number of particles, but since the interac-
tions are due only to the blocking from the right, it is effectively equivalent
to have the index n varying over N. Limiting cases when n varies over Z can
also be treated as appropriate limits of finite systems. For particle-dependent
jump rates, we derived in [4] the general formula for the joint distribution of
any subsets of particles at time t. This result is restated as Proposition 4.

In order to apply this result, we need to set the initial positions yk’s and
the jump rates vk’s. In this paper we consider the first M particles to have
jump rate α and the rest having unit jump rate:

yj = 2(M − j), vj =

{
α, 1 ≤ j ≤M,
1, j > M.

(2.1)

The choice of setting the last α-particle at the origin is due to a simplification
in the specific situation where we will take the M → ∞ limit.

Macroscopic description for 0 < α < 1

The fluctuation results will depend on the macroscopic behavior, so let us
first describe it. By macroscopic scale we mean when spatial directions are
linearly scaled with time t. On that scale, for α ∈ (0, 1), the effect of finitely
many slow particle(s) is equivalent to having a starting density of rate 1
particles on N equal to 1 − α. A particularly important case is M = 1,
for which by Burke’s Theorem [11], the initial condition is exactly equal to
alternating deterministic on Z− and Bernoulli-(1− α) on N.
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Let ̺(ξ, τ) be the macroscopic density of particles,

̺(ξ, τ) = lim
t→∞

P(there is a particle at [ξt] at time τt) (2.2)

Then, the average current from TASEP dynamics through position [ξt] at
time τt is given by ̺(1−̺), from which it follows that ̺ satisfies the Burgers’
equation [29]

∂τ̺+ ∂ξ(̺(1 − ̺)) = 0. (2.3)

To get the large-time macroscopic density one has to solve (2.3) with initial
condition

̺(ξ, 0) =

{
1/2, for ξ < 0,
1− α, for ξ ≥ 0.

(2.4)

The solution at τ = 1 is as follows. For α ∈ [0, 1/2), it has a discontinuity
at ξ = α− 1/2 (in this case, one needs to use a conservation law to obtain
this solution, see e.g. [39]),

̺(ξ, 1) =

{
1/2, if ξ < (α− 1/2),
1− α, if ξ > (α− 1/2),

(2.5)

while for α ∈ [1/2, 1]

̺(ξ, 1) =





1/2, if ξ ≤ 0,
(1− ξ)/2, if ξ ∈ [0, 2α− 1],
1− α, if ξ ≥ 2α− 1.

(2.6)

So, for large t, the density of particles in the lattice-scale,

ρ(x, t) = P(there is a particle at x at time t) ∼= ̺(x/t, 1), (2.7)

see Figure 1 for an illustration.
A consequence is that the number of particles moving with average speed

α is around (1− α)t/2 for α ≤ 1/2 and (1− α)2t for 1/2 ≤ α < 1. Also, the
macroscopic position at time t of particle n = [νt] is

xα(ν) := lim
t→∞

t−1
E(x[νt](t)) =





α− ν/(1− α), if ν ∈ (0,min{1−α
2
, (1− α)2}),

1− 2
√
ν, if ν ∈ ((1− α)2, 1

4
),

1/2− 2ν, if ν > max{1−α
2
, 1
4
},

(2.8)
where the second case occurs only for α ∈ (1/2, 1].
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Figure 1: Particles’ density for large t: (a) for 0 < α < 1/2, (b) for 1/2 <
α < 1. The big dot is the position of the right-most slow particle.

Process diagram

As we have seen, there are different types of macroscopic behavior for the
density. For example, when α ∈ (1/2, 1), there are two plateaux in the
density joined by a linearly decreasing part. The plateaux are of different
nature, since only the right one is influenced by the α-particles. So, the limit
process of particles’ position varies depending on which part of the process
diagram the parameter are in, see Figure 2.

For keeping the presentation of the results as simple as possible, the
results stated in the remainder of this section are the particularization to
fixed time. However, the results hold in greater generality and span from the
fixed time to tagged particle problem. The general statements are contained
in the following sections.

(1) Dyson’s Brownian Motion region. For fixed time t let us consider particles
with number n = [νt] with ν ∈ (0,min{1−α

2
, (1 − α)2}), i.e., we are in the

right plateau with density 1 − α. In the diffusion scaling limit, the Mth α-
particle has GUE(M) distributed fluctuations. So, to get a non-trivial limit
for the particles in the jammed region we have to look at fluctuations with
respect to the macroscopic behavior on the t1/2 scale. Therefore, we set the
rescaled process as

Xt(ν) :=
x[M+νt](t)− xα(ν)t

−σ(ν)t1/2 , σ2(ν) = α(1− ν/(1 − α)2), (2.9)
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Figure 2: Process diagram. The black thick line is the shock. On the dashed
line there is the Airy2→1 process. At the white dot there is the Airy2→1,M,κ

process. At the curved solid line the process is the AiryDBM→2.

and xα(ν) = α + ν/(1− α), see (2.8). Then

lim
t→∞

Xt(ν) = DBM(− ln σ(ν)). (2.10)

DBM is the stationary process of eigenvalues of β = 2 Dyson’s Brownian
Motion on M ×M Hermitian matrices, see Lemma 12 for a definition. The
change in time − ln σ(ν) is simply due to the non-stationarity of Xt(ν), while
DBM is stationary. The complete statement is in Proposition 13.

(2) Shock region, M = 1. Consider now α ∈ (0, 1/2), where there is a
macroscopic shock traveling to the left with speed (α − 1/2), and consider
the important case of Bernoulli-(1 − α) on Z+ as initial condition, that is
M = 1. So, if a particle is already inside the jam, then it has t1/2 fluctuations
with respect to the dashed line in Figure 3. On the other hand, particles can
not move faster than they would in absence of the α-particles, in which case
they fluctuate on a t1/3 scale around the dotted line in Figure 3. So, on
the t1/2 scale, the dotted line acts as a sharp cut-off and the result is the
following.

Proposition 1. Consider one slow particle with 0 < α < 1/2 and the scaling

n = 1−α
2
t+ ηt1/2,

x(ξ) = 1
2
t− 2n− ξt1/2.

(2.11)

For ξ > 0,

lim
t→∞

P(xn(t) ≥ x(ξ)) =
1√
2πσ2

∫ ξ+ξc

−∞
dy exp(−y2/2σ2), (2.12)
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Figure 3: Illustration of the shock. The continuous line is the position of
particles, the dashed line is the macroscopic position of particles inside the
jam, while the dotted line would be the position without the α-particle.
See [19] for an animation of the TASEP with and without a slow particle.

where

σ2 =
α(1− 2α)

2(1− α)
, ξc =

1− 2α

1− α
η. (2.13)

For ξ < 0:
lim
t→∞

P(xn(t) ≥ x(ξ)) = 0. (2.14)

Geometrically, ξ = 0 are points on the dotted line, while ξ = ξc are on
the dashed line of Figure 3. This proposition is proved in Section 4.2.

More precisely the picture is as follows: On the t1/2 scale, the random
interface given by {(xn(t), n), n ≥ 1} looks like a plot of a (non-homogeneous)
Ornstein-Uhlenbeck process with average given by the dashed line. When the
trajectory hits the dotted line, it sticks to it and does not fluctuate anymore.
We identify this hitting position as the shock. This picture is consistent with
Proposition 1. A consequence of Proposition 1 is that the shock position
has Gaussian fluctuations (for M = 1) with diffusion coefficient D = α(1−α)

1/2−α .
This is the content of Proposition 16. The main novelty in this result is that
we do not start with Bernoulli initial conditions on both Z− and Z+ with
two different densities and, more interestingly, we do not have to introduce
second class particles to define the shock position, as it was the case for
example in [12, 16, 17].

(3) Transitions and Airy processes. The last two new results related to the
process diagram are the transition point (the white dot in Figure 2) and the
transition line between DBM and the Airy2 process (along the curved line in
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Figure 2). The other remaining regions, are the ones where the influence of
the α-particles is not present, so one clearly gets the same results obtained
in [8].

The limit processes are different, but the scaling limit can be presented
in the same way for all the cases. Indeed, consider n ∼ νt with

ν > (1− α)/2, for α ∈ (0, 1/2),

ν ≥ (1− α)2, for α ∈ [1/2, 1).
(2.15)

Then, the rescaled process for fixed time t is given by

Xt(τ) :=
x[M+νt−2τt2/3](t)− xα(ν − 2τt−1/3)t

−t1/3 . (2.16)

The new transition process is at the macroscopic point given by ν = 1/4
and with α = 1

2
(1 + κt−1/3). In Theorem 19 of Section 5 we prove that

lim
t→∞

Xt(τ) = SvA2→1,M,κSv(τ/Sh) (2.17)

with Sv = 2−1/3, Sh = 2−5/3, and τ 7→ A2→1,M,κ(τ) is given in Definition 18.
The second transition process is at the line ν = (1−α)2, for α ∈ (1/2, 1).

In Theorem 22 of Section 5 we prove that

lim
t→∞

Xt(τ) = SvADBM→2(τ/Sh) (2.18)

with Sv =
(

(1−a)α
(1−α)(2−α)

)1/3
, Sh = (1−α)2

α
S2
v , and τ 7→ ADBM→2(τ) is given in

Definition 21. The process ADBM→2(τ) has appeared before, see [1, 2, 10, 23]
(with sometimes the time direction inverted).

Finally, to complete the process diagram we state what the limiting pro-
cesses are in the α-independent cases in Section 6, where one has either the
Airy1, the Airy2 or the Airy2→1 process. The fixed time t results were already
contained in [5].

TASEP with a reflecting wall

The last result of this paper is of a different nature, since we do not have
slow particles. Instead, consider the case α = 2 but with M = ∞. Then
the particle that started at the origin moves with average speed 1 and has
fluctuations of order t1/3. The other “normal” particles, have jump rate 1 and
are blocked by the last α-particle, but in contrast to the jam situation they
do not have the tendency of filling up the gap rapidly, since the “wall” moves
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with their natural speed. Let us call particle n the one starting at −2n.
Particle 1 fluctuates on a t1/2 scale, that means that from its perspective
the last α-particle is like a moving blocking wall. Viewed from the “wall”,
particle 1 does essentially a reflected random walk in continuous time, and
particle 2 does a random walk reflected on particle 1 and so on.

Consider a sequence of particle numbers ni (not rescaled with time) and
times ti = τit. Since particles at time ti are approximately at position ti
(speed one), we define the rescaled random variables

i 7→ Xt(i) =
xni

(ti)− ti
−
√
2ti

. (2.19)

We can compute the correlation functions ofXt(i)’s only if they are space-
like, property denoted by ∼ and defined by

(n1, t1) ∼ (n2, t2) ⇐⇒ (n1, t1) ≺ (n2, t2) or (n2, t2) ≺ (n1, t1) (2.20)

with

(n1, t1) ≺ (n2, t2) ⇔ n1 ≤ n2, t1 ≥ t2, and are not identical. (2.21)

Then, our result proven in Section 7 is the following.

Theorem 2. For any given m = 1, 2, . . ., let us choose m space-like couples
(ni, τi), 1 ≤ i ≤ m. Let ρ

(m)
t (ξ1, . . . , ξm) be the m-point correlation functions

of Xt(1), . . . , Xt(m). Then

lim
t→∞

ρ
(m)
t (ξ1, . . . , ξm) = det

[
KaGUE((ni, θi), ξi; (nj , θj), ξj)

]
1≤i,j≤m (2.22)

where θj = ln(τi).

The kernel KaGUE is an extension of the antisymmetric GUE minor ker-
nel [22] defined as follows (see Lemma 24 for an integral representation).

Definition 3. The extended kernel KaGUE is defined by

KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2)

=
2√
π
e−ξ

2
1

∑

ℓ∈I

sign(ℓ)e−(θ2−θ1)ℓ

2n2+1−2ℓ(n2 + 1− 2ℓ)!
Hn1+1−2ℓ(ξ1)Hn2+1−2ℓ(ξ2) (2.23)

where sign(ℓ) := 1 if ℓ ≥ 1, sign(ℓ) := −1 if l ≤ 0, and the interval of
summation I is

I = {1, 2 . . . , ⌊(n2 + 1)/2⌋}, if (n1, θ1) 6≺ (n2, θ2),

I = {−∞, . . . ,−1, 0}, if (n1, θ1) ≺ (n2, θ2).
(2.24)

The functions Hk(x) are the standard Hermite polynomials with normaliza-
tion

∫
R
dxHk(x)Hj(x)e

−x2 = δk,jk!2
k
√
π.
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In the fixed-n specialization of the KaGUE kernel, i.e., for n1 = n2 = n,
this kernel becomes the one of a system of N non-intersecting Brownian
motions (rescaled to become stationary) as follows:

(a) if n = 2N−1, the Brownian motions have the reflecting wall at the origin,

(b) if n = 2N , the Brownian motions have the absorbing wall at the origin.

These processes were introduced and studied in [25,26] but the kernels were
not explicitly provided. Also, the kernel for n = 2N was obtained in the
study of N Brownian excursions [35].

3 Determinantal structure and kernels

We start by stating the general formula and then particularize to our choice of
jump rates. Consider particles numbered by 1, 2, . . ., with particle j starting
from site yj and jumping to the right with hopping rate vj . The joint distribu-
tions of particle positions are obtained as a specialization a(t) = t, b(t) = 0
of Proposition 3.1 in [4]. To state the result, consider the set of numbers
{v1, . . . , vn} and let {u1 < u2 < . . . < uν} be their different values, with αk
being the multiplicity of uk. Then we define a space of functions in x,

Vn = span{xluxk, 1 ≤ k ≤ ν, 0 ≤ l ≤ αk − 1}. (3.1)

The next statement holds for finite sequences of (distinct) events in the (n, t)
variables which are space-like.

Proposition 4. Let us consider particles starting from y1 > y2 > . . .
and denote xj(t) the position of jth particle at time t. Take a sequence
of particles and times which are space-like, i.e., a sequence of m couples
S = {(nk, tk), k = 1, . . . , m | (nk, tk) ≺ (nk+1, tk+1)}. The joint distribution
of their positions xnk

(tk) is given by

P

( m⋂

k=1

{
xnk

(tk) ≥ ak
})

= det(1− χaKχa)ℓ2({(n1,t1),...,(nm,tm)}×Z) (3.2)

where χa((nk, tk), x) = 1(x < ak). Here K is the kernel with entries

K((n1, t1), x1; (n2, t2), x2) = −φ((n1,t1),(n2,t2))(x1, x2)+K((n1, t1), x1; (n2, t2), x2)
(3.3)
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where

K((n1, t1), x1; (n2, t2), x2) =

n2∑

k=1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2),

φ((n1,t1),(n2,t2))(x1, x2) =
1

2πi

∮

Γ0,~v

dw

w

e(t1−t2)w

wx1+n1−x2−n2

1[(n1,t1)≺(n2,t2)]

(w − vn1+1) · · · (w − vn2
)
.

(3.4)
With ~v we mean {vn1+1, . . . , vn2

}. The contour Γ0,~v is any anticlockwise
oriented loop that includes 0 and the elements of ~v. The functions Ψn,t

n−j,
j ≥ 1 are given by

Ψn,t
n−j(x) =

1

2πi

∮

Γ0,~v

dw

w

etw

wx−yj+n−j

∏n
k=1(w − vk)∏j
k=1(w − vj)

. (3.5)

The functions {Φn,tn−j}1≤j≤n are characterized by the two conditions:

〈Φn,tn−j,Ψn,t
n−k〉 :=

∑

x∈Z
Φn,tn−j(x)Ψ

n,t
n−k(x) = δj,k, 1 ≤ j, k ≤ n, (3.6)

and span{Φn,tn−j(x), 1 ≤ j ≤ n} = Vn.

The notation 1
2πi

∮
ΓK

dzf(z) here and below means that the integration

path ΓK goes around the poles of f(z) which are in the set K.
In our situation, the orthogonalization gives the following result.

Lemma 5. For n ≤M , the n orthogonal functions are

Ψn,t
n−j(x) =

1

2πi

∮

Γ0,1

dw

w

(w(w − α))n−jetw

wx+2n−2M
,

Φn,tn−j(x) =
1

2πi

∮

Γα−1

dv
(1 + v)x+2n−2M

et(v+1)((v + 1)(v + 1− α))n−j+1
(2v + 2− α),

(3.7)

where j = 1, . . . , n. For n ≥M + 1, we have two cases:
(a) for j =M + 1, . . . , n,

Ψn,t
n−j(x) =

1

2πi

∮

Γ0,1

dw

w

(w(w − 1))n−jetw

wx+2n−2M
,

Φn,tn−j(x) =
1

2πi

∮

Γ0

dv
(1 + v)x+2n−2M

et(v+1)(v(1 + v))n−j+1
(1 + 2v),

(3.8)
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(b) for j = 1, . . . ,M ,

Ψn,t
n−j(x) =

1

2πi

∮

Γ0,α

dw

w

(w(w − 1))n−M(w(w − α))M−jetw

wx+2n−2M
,

Φn,tn−j(x) =
1

(2πi)2

∮

Γα−1

dv

∮

Γ0,v

dz
(1 + 2z)(2v + 2− α)

(z − v)(z + v + 1)

× (1 + z)x+2n−2M

et(z+1)(z(1 + z))n−M
1

((v + 1)(v + 1− α))M−j+1
.

(3.9)

Our original derivation of the orthogonal functions was based on the
known orthogonal functions for the case where all the particles have the
same jump rate (see [6,30]), and then by employing Gram-Schmidt orthogo-
nalization procedure. A similar procedure could be used also for more than
one jump rate different from one, but we did not do it. However, once the
orthogonal functions are determined, it is easier to verify the orthogonality
by direct computation, and this is what we do below.

Proof of Lemma 5. The formulas for Ψn,t
n−j(x) is just a simple substitution of

(2.1) into (3.5). Notice that for x < 2M − 2n, Ψn,t
n−j(x) = 0. Therefore,

∑

x∈Z
Φn,tn−j(x)Ψ

n,t
n−k(x) =

∑

x≥2M−2n

Φn,tn−j(x)Ψ
n,t
n−k(x), (3.10)

in which x-dependent terms under the integrals are given by

∑

x≥2M−2n

(
1 + v

w

)x+2n−2M

=
w

w − (1 + v)
provided |w| > |1 + v|. (3.11)

With these preparations we can prove the orthogonal relation needed by the
theorem.

Case n ≤ M : We have

〈Φn,tn−j,Ψn,t
n−k〉

=
1

(2πi)2

∮

Γα−1

dv

∮

Γ0,1+v

dw
(w(w − α))n−ketw(2v + 2− α)

((v + 1)(v + 1− α))n−j+1et(v+1)

1

w − (v + 1)

=
1

2πi

∮

Γα−1

dv(2v + 2− α)((v + 1)(v + 1− α))j−k−1

=
1

2πi

∮

Γ0

dzzj−k−1 = δk,j,

(3.12)
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where we used the fact that after summing over x the pole at w = 0 disap-
peared (since n−j ≥ 0) and then the change of variable z = (v+1)(v+1−α)
with dz = (2v + 2− α)dv.

Case n ≥M+1: We have to do four computations, depending on whether
j, k are larger or smaller than M .

Case j, k ≥ M +1: We get 〈Φn,tn−j,Ψn,t
n−k〉 = δk,j by the same computation

as in the n ≤M case but with α replaced by 1.

Case j, k ≤M : Also in this case, after summing over x the pole at w = 0
disappears but instead there is a simple pole at w = z+1. This can be easily
integrated out and we get

〈Φn,tn−j ,Ψn,t
n−k〉

=
1

(2πi)2

∮

Γα−1

dv

∮

Γ0,v

dz
((z + 1)(z + 1− α))M−k

((v + 1)(v + 1− α))M−j+1

(1 + 2z)(2v + 2− α)

(z − v)(z + v + 1)

=
1

2πi

∮

Γα−1

dv((v + 1)(v + 1− α))j−k−1(2v + 2− α) = δj,k

(3.13)
where we used that after integrating out the w = z + 1 pole, the variable z
does not have a pole at z = 0 anymore.

Case j ≥M+1, k ≤M : In this case, the sum over x and then the residue
at w = v + 1 leads to

〈Φn,tn−j ,Ψn,t
n−k〉 =

1

2πi

∮

Γ0

dv(1+2v)(v(v+1))j−M−1((v+1)(v+1−α))M−k = 0

(3.14)
because there is no pole at v = 0 anymore.

Case j ≤ M, k ≥ M + 1: It is slightly more tricky to check the orthogonal-
ization in this case. After the sum over x and the residue at w = z + 1, we
get

〈Φn,tn−j ,Ψn,t
n−k〉

=
1

(2πi)2

∮

Γα−1

dv
2v + 2− α

((v + 1)(v + 1− α))M−j+1

∮

Γ0,v

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)
.

(3.15)
This time, both poles at z = 0 and z = v contribute. One notices that the
integrand in z has four poles in the whole complex plane: z = −1, 0,−1−v, v.
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By the change of variable z = −1− w, we have the identity
∮

Γ0,v

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)
=

∮

Γ−1,−1−v

dw
(w(w + 1))M−k(1 + 2w)

(w − v)(w + v + 1)

=
1

2

∮

Γ−1,0,−1−v,v

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)
.

(3.16)

Since M − k ≤ −1, the integrand is O(1/z3) at z → ∞, thus the integral
(3.16) is zero, which implies then 〈Φn,tn−j,Ψn,t

n−k〉 = 0.

For our analysis we will not focus on the first M − 1 particles, since it
corresponds (up to a time-change) to the cases analyzed in previous works.
Here we’ll focus only on particles’ positions of the ones with jump rate 1. This
is the reason why in what follows we write the kernel only for n1, n2 ≥ M .
With the expressions of Lemma 5 we can rewrite the kernel (3.3) in the
following way.

Proposition 6. For n1, n2 ≥ M +1, the kernel has the following expression

K((n1, t1), x1; (n2, t2), x2) = −φ̂((n1,t1),(n2,t2))(x1, x2)

+ K̂(1)((n1, t1), x1; (n2, t2), x2) + K̂(2)((n1, t1), x1; (n2, t2), x2) (3.17)

where

φ̂((n1,t1),(n2,t2)(x1, x2) =
1

2πi

∮

Γ0

dw

w

e(t1−t2)w(w(w − 1))n1−n2

wx1+2n1−x2−2n2
1[(n1,t1)≺(n2,t2)],

(3.18)
and

K̂(1)((n1, t1), x1; (n2, t2), x2) =
1

(2πi)2

∮

Γ0

dv

∮

Γ0,−v

dw

w

et1w(w(w − 1))n1−M

wx1+2n1−2M

× (1 + v)x2+2n2−2M

et2(v+1)(v(v + 1))n2−M
(1 + 2v)

(w + v)(w − v − 1)
(3.19)

and

K̂(2)((n1, t1), x1; (n2, t2), x2) =
1

(2πi)3

∮

Γα−1

dv

∮

Γ0,v

dz

∮

Γ0,α−1−v

dw

w

× et1w(w(w − 1))n1−M(w(w − α))M

wx1+2n1−2M

(1 + z)x2+2n2−2M

et2(z+1)(z(z + 1))n2−M

× 1

((v + 1)(v + 1− α))M
(1 + 2z)(2v + 2− α)

(z − v)(z + v + 1)(w − 1− v)(w + 1− α+ v)
.

(3.20)
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This proposition will be used in Section 5.

Proof of Proposition 6. For all ni ≥M , we have vni+1 = 1, thus (3.4) implies

that φ((n1,t1),(n2,t2))(x1, x2) in (3.4) equals φ̂((n1,t1),(n2,t2))(x1, x2) plus the pole
at v = 1 (we return to it shortly). For the rest, we divide the sum over k
in (3.4) into the sum over [1, . . . ,M ] and the sum over [M + 1, . . . , n2]. We
define

K(1)((n1, t1), x1; (n2, t2), x2) =

n2∑

k=M+1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2) (3.21)

and

K(2)((n1, t1), x1; (n2, t2), x2) =

M∑

k=1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2). (3.22)

Remark that Φn2,t2
n2−k(x) = 0 for k ≥ n2 + 1. Therefore we can extend

the sum in (3.21) to infinity. Then, if we take v small enough and w large
enough, satisfying |v(v + 1)| < |w(w − 1)|, we can take the sum inside the
integrals. Explicitly, we get

K(1)((n1, t1), x1; (n2, t2), x2) =
1

(2πi)2

∮

Γ0

dv

∮

Γ0,1

dw

w

(w(w − 1))n1−n2et1w

wx1+2n1−2M

× (1 + v)x2+2n2−2M(1 + 2v)

et2(v+1)

∞∑

k=M+1

(w(w − 1))n2−k

(v(v + 1))n2−k+1
, (3.23)

where the integration contours have to satisfy |v(v+1)| < |w(w− 1)|. Then,
using

∞∑

k=M+1

(w(w − 1))n2−k

(v(v + 1))n2−k+1
=

(w(w − 1))n2−M

(v(v + 1))n2−M
1

(w − (1 + v))(w + v)
(3.24)

we obtain (3.19) plus the pole coming from w = v + 1. This contribution
cancels exactly with the contribution of the pole at v = 1 of φ.

We now show thatK(2) = K̂(2). For the computation ofK(2), remark that
the formula for Φn2,t2

n2−k(x) used for k ≤ M gives exactly zero for k ≥ M + 1.
The reason is that the pole at v = α − 1 disappears. Therefore we can use
the integral representations for k ≤M and extend the sum to k = ∞. Then,
provided that |(v + 1)(v + 1 − α)| ≤ |w(w − α)|, we can exchange the sum
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and the integral, which gives

K(2)((n1, t1), x1; (n2, t2), x2) =
1

(2πi)3

∮

Γ0,α

dw

w

∮

Γα−1

dv

∮

Γ0,v

dz
(w(w − 1))n1−Met1w

wx1+2n1−2M

× (1 + z)x2+2n2−2M

et2(z+1)(z(z + 1))n2−M
(1 + 2z)(2v + 2− α)

(z − v)(z + v + 1)

×
∞∑

k=1

(w(w − α))M−k

((v + 1)(v + 1− α))M−k+1
. (3.25)

Then we substitute

∞∑

k=1

(w(w − α))M−k

((v + 1)(v + 1− α))M−k+1
=

(w(w − α))M

((v + 1)(v + 1− α))M
1

(w − 1− v)(w + v + 1− α)

(3.26)
into (3.25) to get (3.20). The condition |(v + 1)(v + 1 − α)| ≤ |w(w − α)|
is satisfied for any w ∈ Γ0,α if we choose v sufficiently close to α − 1. Both
poles w = α − 1 − v and w = 1 + v lie inside Γ0,α. Thus, K(2) is given by

K̂(2) but with the poles for w = 0, α−1−v, 1+ v. Consider the contribution
coming from the pole at w = v + 1, which is a simple residue. Computing
this residue one immediately sees that the pole at v = α − 1 is not present
anymore, thus the integral is zero.

In the applications we’ll use some special cases of the kernel too. In
particular for M = 1 and M = ∞ (with ni −M finite). Let us write the
kernel explicitly in these cases.

3.1 Special case: M = 1

Corollary 7. For M = 1, the kernel has the following expression. For any
n1, n2 ≥ 1,

K((n1, t1), x1; (n2, t2), x2) = −φ̂((n1,t1),(n2,t2))(x1, x2)

+
1

(2πi)2

∮

Γ0

dv

∮

Γ0,−v

dw

w

et1w(w − 1)n1−1

wx1+n1−1

(1 + v)x2+n2−1

et2(v+1)vn2−1

(1 + 2v)

(w + v)(w − v − 1)

+
1

2πi

∮

Γ0

dw
et1w(w − 1)n1−1

wx1+n1

1

2πi

∮

Γ0,α−1

dv
(1 + v)x2+n2−1

et2(v+1)vn2−1

1 + 2v

(v + 1− α)(v + α)
,

(3.27)

with φ̂ as in Proposition 6.
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Proof of Corollary 7. One simply substitutes for M = 1 in the expression of
Proposition 6. Then, the integral over v around α − 1 is computed easily
since it is a simple pole.

The product structure of K(2) (the last term in (3.27)) is straightforward
if one looks back at its definition (3.22). So, for M = 1 we have a rank-one
perturbation.

3.2 Special case: M = ∞
We want to get theM → ∞ limit but with ni−M finite. Therefore, consider
the kernel K((M + n1, t1), x1; (M + n2, t2), x2) and take the M → ∞ limit.
We define

K∞((n1, t1), x1; (n2, t2), x2) := lim
M→∞

K((M + n1, t1), x1; (M + n2, t2), x2),

(3.28)
and the limit kernel K∞ is given as follows.

Corollary 8. For n1, n2 ≥ 1, we have

K∞((n1, t1), x1; (n2, t2), x2) = −φ̂((n1,t1),(n2,t2))(x1, x2)

+
1

(2πi)2

∮

Γ0

dv

∮

Γ0,−v

dw
et1w(w − 1)n1

wx1+n1+1

(1 + v)x2+n2

et2(v+1)vn2

1 + 2v

(w + v)(w − v − 1)

+
−1

(2πi)2

∮

Γ0

dw

∮

Γ0,α−1−w

dv
et1w(w − 1)n1

wx1+n1+1

(1 + v)x2+n2

et2(v+1)vn2

1 + 2v

(v + w + 1− α)(w − v − α)

(3.29)

with φ̂ as in Proposition 6.

Proof of Corollary 8. The only not straightforward term is K(2). ForM → ∞
the pole at w = 0 disappears and one just integrates out the simple pole at
w = α− 1− v. The result does not depend on M anymore, namely

−1

(2πi)2

∮

Γ0

dv

∮

Γ0,v

dz
(1 + z)x2+n2

et2(z+1)zn2

et1(α−1−v)(α− 2− v)n1

(α− 1− v)x1+n1+1

1 + 2z

(z − v)(z + v + 1)
.

(3.30)
Changing the variable w = α− 1− v and then renaming z with v we get the
result of the statement.

Notice that for α = 1 the combination of the two integrals in (3.29) is just
the residue at w = −v, which is the kernel for alternating initial conditions
already obtained in [4, 6]. Moreover, for n1 = n2 = n, the kernel can also
be seen as rank-n perturbation of the kernel without the K(1) contribution.
This kernel will be used explicitly in Section 7.

18



3.3 Modified kernel useful for the shock region

For the asymptotic analysis in the case of finite M and α < 1/2, the shock
situation, there is an interval around the shock for which the kernel has a
diverging part in the t → ∞ limit. This, however, does not mean that the
system is ill-defined, because the distribution of the particles’ positions is
given by the Fredholm determinant of the kernel, not by the kernel itself. In-
deed, we obtained a new kernel Kshock such that the Fredholm determinants
agree. More importantly, in the new kernel (which is not a trivial conjuga-
tion of K) the divergence disappears. To define Kshock let us introduce the
following function. Set

Qn,t
n−j,w(x) =

1

(2πi)2

∮

Γα−1

dv

∮

Γw

dz
(1 + z)x+2n−2M

et(z+1)(z(1 + z))n−M

× 1

((v + 1)(v + 1− α))M−j+1

(1 + 2z)(2v + 2− α)

(z − v)(z + v + 1)
, (3.31)

where w is either 0,−1, v. Then, for j = 1, . . . ,M , we have

Φn,tn−j(x) = Qn,t
n−j,0(x) +Qn,t

n−j,v(x). (3.32)

Define the new kernel Kshock for n1, n2 ≥M as follows:

Kshock((n1, t1), x1; (n2, t2), x2) = −φ̂((n1,t1),(n2,t2))(x1, x2)

+ K̂(1)((n1, t1), x1; (n2, t2), x2) +K
(2)
shock((n1, t1), x1; (n2, t2), x2) (3.33)

where K
(2)
shock is defined as follows:

K
(2)
shock((n1, t1), x1; (n2, t2), x2)

=

M∑

k=1

Ψn1,t1
n1−k(x1)Q

n2,t2
n2−k,v(x2)

+
M∑

k=1

Ψn1,t1
n1−k(x1)Q

n2,t2
n2−k,−1(x2)

(
1[(n1,t1)≺(n2,t2)] + 1[(n1,t1)=(n2,t2)]

)
.

(3.34)

This means that for (n1, t1) ≺ (n2, t2) instead of the poles at z = 0, v in (3.9)
we have the poles at z = −1, v, and otherwise only the pole at z = v. The
same changes in the poles will then occur in the triple integral representa-
tion (3.20). This kernel will be useful for α < 1/2 because of the following
Proposition.
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Proposition 9. For given a1, . . . , am ∈ Z, we have

det(1−χaKχa)ℓ2({(n1,t1),...,(nm,tm)}×Z) = det(1−χaKshockχa)ℓ2({(n1,t1),...,(nm,tm)}×Z).
(3.35)

where χa((nk, tk), x) = 1(x < ak).

Thus, by (3.2) the joint distribution of particles’ positions can be com-
puted with the kernel Kshock instead of K.

To prove Proposition 9 we’ll use the following relations.

Lemma 10. For n1, n2 ≥M . Then

∑

x1

Qn1,t1
n1−j,−1(x1)K

(1)((n1, t1), x1; (n2, t2), x2) = Qn2,t2
n2−j,0(x2), (3.36)

∑

x1

Qn1,t1
n1−j,−1(x1)K

(2)((n1, t1), x1; (n2, t2), x2) = 0, (3.37)

∑

x1

Qn1,t1
n1−j,−1(x1)φ

((n1,t1),(n2,t2))(x1, x2) = Qn2,t2
n2−j,−1(x2). (3.38)

Proof of Lemma 10. Recall the definition of K(1) and K(2), see (3.21)-(3.22):

K(p)((n1, t1), x1; (n2, t2), x2) =
∑

k∈Ip

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2) (3.39)

with I1 = [M + 1, . . . , n2] and I2 = [1, . . . ,M ]. Then, we have to compute

〈Qn1,t1
n1−j,−1,Ψ

n1,t1
n1−k〉 ≡

∑

x∈Z
Qn1,t1
n1−j,−1(x)Ψ

n1,t1
n1−k(x), (3.40)

so some of the computations are very close to the ones we made for the
orthogonalization in Lemma 5.

Let us start with (3.37), i.e., 1 ≤ k ≤ M . Then, the expression of Q is
like Φ in (3.9) but with Γ0,v replaced by Γ−1. Thus, compare with (3.13), we
get

〈Qn1,t1
n1−j,−1,Ψ

n1,t1
n1−k〉

=
1

(2πi)2

∮

Γα−1

dv

∮

Γ−1

dz
((z + 1)(z + 1− α))M−k

((v + 1)(v + 1− α))M−j+1

(1 + 2z)(2v + 2− α)

(z − v)(z + v + 1)
= 0

(3.41)

because the pole at z = −1 vanishes for k ≤M . This implies (3.37).
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Next we prove (3.36), i.e., k ≥M +1. It is similar as before but with the
Ψ taken from (3.8) instead of (3.9). Then, compare with (3.15), we have

〈Qn1,t1
n1−j,−1,Ψ

n1,t1
n1−k〉

=
1

(2πi)2

∮

Γα−1

dv

∮

Γ−1

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)

2v + 2− α

((v + 1)(v + 1− α))M−j+1
.

(3.42)

Thus, LHS of (3.36) is given by

n2∑

k=M+1

〈Qn1,t1
n1−j,−1,Ψ

n1,t1
n1−k〉Φ

n2,t2
n2−k(x2). (3.43)

We use the fact that Φn,tn−k(x) = 0 if k > n to extend the sum to infinity.
Then, provided |w(w + 1)| < |z(z + 1)| we can take the sum inside the
integrals; explicitly we get

(3.43) =
1

(2πi)3

∮

Γα−1

dv

∮

Γ−1

dz

∮

Γ0

dw
(1 + 2w)(1 + w)x2+n2−M

et2(w+1)wn2−M

× (1 + 2z)

(z − v)(z + v + 1)

2v + 2− α

((v + 1)(v + 1− α))M−j+1

∑

k≥M+1

(w(w + 1))k−M−1

(z(z + 1))k−M

=
1

(2πi)2

∮

Γα−1

dv

∮

Γ0

dw
(1 + w)x2+n2−M

et2(w+1)wn2−M
1

((v + 1)(v + 1− α))M−j+1

× (1 + 2w)(2v + 2− α)

(w − v)(w + v + 1)
, (3.44)

where we integrated the pole at z = w arising from the sum over k. This is
however nothing else than Qn2,t2

n2−j,0(x2).
Finally, we need to verify (3.38). One divides the sum over x1 in [0, 1, . . .)

and (. . . ,−2,−1]. Then use

∑

x1≥0

(
1 + z

w

)x1
=

w

w − 1− z
if |1 + z| < |w|,

∑

x1<0

(
1 + z

w

)x1
= − w

w − 1− z
if |1 + z| > |w|.

(3.45)

The two sums can be taken inside the integrals provided the contours satisfy
once |w| > |1 + z| and the other time |w| < |1 + z|. The integrands are the
same up to a sign, which means that the net result of the sum is just the
residue at w = 1 + z. Then (3.38) easily follows.
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With this result we can now proceed to the proof of Proposition 9.

Proof of Proposition 9. In this proof we let n stand for a pair (n, t) for short
and write like Kn1,n2

(x1, x2) to represent ((n1, t1), (n2, t2)) block of K. Let
us define

Sn1,n2
(x1, x2) = δn1,n2

δt1,t2

M∑

k=1

Ψn1,t1
n1−k(x1)Q

n1,t1
n1−k,−1(x2). (3.46)

Since Ψn,t
n−k(x) = 0 for x ≤ 2M−n−k−1 and Qn,t

n−k,−1(y) = 0 for y ≥M−n,
it follows

∑M
k=1Ψ

n,t
n−k(x1)Q

n,t
n−k,−1(x2) = 0 if x1 ≤ M − n− 1 or x2 ≥M − n.

Hence Sn,n(x1, x2) = 0 for x2 ≥ x1, i.e., S is lower triangular with diagonal
being zero. Hence to prove the proposition, it is enough to show

(1− S)(1−K) = 1− K̃. (3.47)

Since S is block-diagonal, the n1, n2 block of (3.47) writes

(1− S)n1,n1
(1−K)n1,n2

= (1−Kshock)n1,n2
, (3.48)

which is proven using the result of Lemma 10 as follows. We use the notation
K = K(1) +K(2) below.

Case n1 = n2: Then LHS of (3.48) is

(1− Sn1,n1
)(1−Kn1,n1

) = 1− Sn1,n1
−Kn1,n1

+ Sn1,n1
Kn1,n1

. (3.49)

We have Kn1,n1
given by

Kn1,n1
= K(1)

n1,n1
+

M∑

k=1

Ψn1,t1
n1−k(Q

n1,t1
n1−k,0 +Qn1,t1

n1−k,v). (3.50)

and by Lemma 10

Sn1,n1
Kn1,n1

=

M∑

k=1

Ψn1,t1
n1−kQ

n1,t1
n1−k,0. (3.51)

Putting together these relations we obtain exactly RHS of (3.48).

Case n1 6= n2 and n1 6≺ n2: LHS of (3.48) is in this case given by

−(1− Sn2,n2
)Kn2,n1

= −Kn2,n1
+ Sn2,n2

Kn2,n1
. (3.52)

Using

Kn2,n1
= K(1)

n2,n1
+

M∑

k=1

Ψn2,t2
n2−k(Q

n1,t1
n1−k,0 +Qn1,t1

n1−k,v), (3.53)
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and

Sn2,n2
Kn2,n1

=
M∑

k=1

Ψn2,t2
n2−kQ

n1,t1
n1−k,0 (3.54)

we get

−(1− Sn2,n2
)Kn2,n1

= −K(1)
n2,n1

−
M∑

k=1

Ψn2,t2
n2−kQ

n1,t1
n1−k,v (3.55)

which is the claimed result.

Case n1 6= n2 and n1 ≺ n2: in this case, LHS of (3.48) is given by

(1−Sn1,n1
)(−Kn1,n2

+φ(n1,n2)) = −Kn1,n2
+φ(n1,n2)+Sn1,n1

Kn1,n2
−Sn1,n1

φ(n1,n2).
(3.56)

This time Lemma 10 tell us that

Kn1,n2
= K(1)

n1,n2
+

M∑

k=1

Ψn1,t1
n1−k(Q

n2,t1
n2−k,0 +Qn2,t1

n2−k,v),

Sn1,n1
Kn1,n2

=

M∑

k=1

Ψn1,t1
n1−kQ

n2,t2
n2−k,0,

Sn1,n1
φ(n1,n2) =

M∑

k=1

Ψn1,t1
n1−kQ

n2,t2
n2−k,−1.

(3.57)

These relations imply the claimed result.

3.4 Special case: M = 1

For later use we explicitly state a corollary of Proposition 9. For M = 1,
the extended kernel K is given in Corollary 7. Proposition 9 tell us that
the Fredholm determinant can be also computed using the modified kernel
Kshock, which has the same expression as (3.27) but with the last term the
integration for v is around the poles −1, α−1 instead of 0, α−1. In particular,
for (n1, t1) = (n2, t2) = (n, t), the kernel is given as follows.

Corollary 11. For M = 1, the one-point modified kernel is given by

Kshock((n, t), x; (n, t), y) = Kn,t(x, y) + f(x)g(y), (3.58)
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where

Kn,t(x, y) =
1

(2πi)2

∮

Γ0

dv

∮

Γ0,−v

dw

w

etw(w − 1)n−1

wx+n−1

(1 + v)y+n−1

et(v+1)vn−1

(1 + 2v)

(w + v)(w − v − 1)

f(x) =
1

2πi

∮

Γ0

dw
etw(w − 1)n−1

wx+n

g(y) =
1

2πi

∮

Γ−1,α−1

dv
(1 + v)y+n−1

et(v+1)vn−1

1 + 2v

(v + 1− α)(v + α)
.

(3.59)

This result, together with Proposition 9 will be employed in proving
Proposition 1.

4 Jam regime

Consider the semi-infinite system with 1 slow particle. By jam regime we
mean the following two situations in which particles with jump rate 1 are
slowed down by the slow particles:

(1) for 1/2 ≤ α < 1: at large time t, the macroscopic density is continuous
and has a plateau with density 1 − α. The plateau corresponds to the first
(1− α)2t particles moving with speed α.

(2) for 0 ≤ α < 1/2: in this case, the slow particle create a macroscopic
shock and the density has a jump from 1/2 to 1− α. Particles in the region
of higher density move with speed α. The shock has a drift velocity equal to
vs = α− 1/2 (i.e., it moves to the left).

With the results for case (2) we’ll also be able to determine the law and the
diffusion coefficient of the shock without introducing second-class particles.

4.1 Fluctuations in the speed α region

For large time t, particles with a particle number n < min{1−α
2
, (1−α)2}t will

move with the speed of the slow particles and will be very much correlated
with the first M slow particles. What happens is that the Mth particle
fluctuates according to the largest eigenvalue of DBM. Intuitively, then the
other particles have jump rate 1, which is strictly larger than α, so that they
fill the gaps more rapidly than if the jump rate would have been α. In doing
so, their fluctuation will be well correlated with the last slow particle, just
shifted in time. Therefore one might expect to see DBM.

Before stating the result, we define the limit object we’ll get in the large
time limit. The matrix-valued (stationary) Ornstein-Uhlenbeck process on
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M ×M hermitian matrices also known as Dyson’s Brownian Motion, DBM.
It is the Markov process with transition density given by

P (τ1,M1; τ2,M2) =
1

(2π(1− e−2(τ2−τ1)))M
exp

(
−Tr

(
M2 − e−(τ2−τ1)M1

)2

2(1− e−2(τ2−τ1))

)
,

(4.1)
for τ2 > τ1, and the reference measure being flat over the independent
entries of M , i.e., dM =

∏M
i=1 dMi,i

∏
1≤i<j≤M dReMi,jdImMi,j. Its finite-

dimensional distributions are given by the following Fredholm determinant.

Lemma 12. For any given τ1 < . . . < τm ∈ R, the joint distribution of the
largest eigenvalue of the stationary DBM process are given by

P

(
m⋂

k=1

DBM(τk) ≤ sk

)
= det(1− χsK

DBMχs)L2({τ1,...,τm}×R) (4.2)

where the kernel is given by

KDBM(τ1, x1; τ2, x2)

= −
exp

(
−(x2 − x1e

−(τ2−τ1))2

2(1− e−2(τ2−τ1))

)

√
2π(1− e−2(τ2−τ1))

1[τ1<τ2] +
M−1∑

k=1

ek(τ1−τ2)pk(x1)pk(x2)e
−x2

2
/2

(4.3)
where pk(x) = Hk(x/

√
2)π−1/42−k/2(k!)−1/2, and Hk(x) is the standard Her-

mite polynomial of degree k (see e.g. [27]).

This result can be found in [24] with a slightly different normalization,
an extra

√
2 in the space variable.

Proposition 13. Let π(θ) be a real-valued function on R with |π′| ≤ 1.
Define the scaling

t(θ, T ) = (π(θ) + θ) T,

n(θ, T ) =M + [(π(θ)− θ)T ],
(4.4)

where T is the large parameter. For 0 < n < min{1−α
2
, (1 − α)2}t, i.e. for

0 < π(θ) < min{2−α
1+α

, 2−2α+α2

α(2−α) }θ, we are inside the region of speed α. The
rescaled process

XT (θ) =
xn(θ,T )(t(θ, T ))− (αt− (n(θ,T )−M)

1−α )

−σ
√
T

, (4.5)
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where σ2 ≡ α(π(θ) + θ)− α(π(θ)−θ)
(1−α)2 . Then, in the large T limit XT converges

to the DBM process:

lim
T→∞

XT (θ) = DBM(τ(θ)), with τ(θ) := − ln(σ) (4.6)

in the sense of finite dimensional distributions.

Space-like paths include as particular cases: (a) fixed time with t = T is
obtained setting π(θ) = 1− θ, and (b) fixed (tagged) particle with n = T by
setting π(θ) = 1 + θ. For more explanations about space-like paths see [4].

Remark 14. In the following proof, as well as in the others on asymptotic
analysis, we present only the most important ingredients. First of all we
state explicitly the steep descent path used for the analysis and the local
series expansions around the critical points (from where the non-vanishing
term arises). These two are the building blocks for the convergence of the
kernel on bounded sets, for more details on the procedure see e.g. Lemma 6.1
in [3]. We do not however prove convergence of the Fredholm determinants,
for which bounds on moderate and large deviations are needed, for a simple
example on how to proceed, see Lemma 6.2 in [3].

Proof of Proposition 13. The result is obtained by analyzing the rescaled and
conjugated kernel

Kresc
T (θ1, ξ1; θ2, ξ2) =

Conj2
Conj1

σ1T
1/2K((n1, t1), x1; (n2, t2), x2) (4.7)

with ni := n(θi, T ), ti := t(θi, T ), and

xi := αti −
ni

1− α
− ξiσiT

1/2. (4.8)

The conjugation factor is given by Conji := eαti(α− 1)ni/αxi+ni . We use the
kernel K in Proposition 6.

Let us start with φ̂. In this proof, define the notation ai = π(θi)− θi and
ui = π(θi) + θi. Then, with the above scaling, for (n1, t1) ≺ (n2, t2),

φ̂((n1,t1),(n2,t2))(x1, x2) =
1

2πi

∮

Γ0

dweTg0(w)+T
1/2g1(w)+g2(w), (4.9)

where

g0(w) = (u1 − u2)(w − α ln(w)) + (a1 − a2)

(
ln(w − 1) +

α

1− α
ln(w)

)
,

g1(w) = (ξ1σ1 − ξ2σ2) ln(w),

g2(w) = − ln(w).
(4.10)
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Figure 4: Steep descents for the different terms in the kernel. The path w
passes either through α or at distance εT−1/2 from it.

The condition (n1, t1) ≺ (n2, t2) means that a2 − a1 ≥ 0 and u1 − u2 ≥ 0
(at least one of the two inequalities being strict). The critical point for
steep descent of g0(w) is at w = α and as steep descent path we use
Γ0 = {αeiy, y ∈ (−π, π]}. Indeed,

d

dy
Re(g0(w = αeiy)) = −

(
(u1 − u2) +

a2 − a1
|w − 1|2

)
α sin(y) (4.11)

which is negative for sin(y) > 0 and positive for sin(y) < 0, so the maximum
of Re(g0(w)) is at w = α and the path Γ0 is steep descent3. By usual
steep descent analysis, the relevant contribution of the integral comes from
a δ-neighborhood of w = α. There, we can apply Taylor series:

g0(w) = g0(α)−
y2

2
(σ2

1 − σ2
2) +O(y3),

g1(w) = g1(α) + iy(ξ1σ1 − ξ2σ2) +O(y2),

g2(w) = − ln(α) +O(y).

(4.12)

Notice that exp(Tg0(α) + T 1/2g1(α)) = Conj1/Conj2. Then, deleting the
corrections O(· · · ) accounts for an error of order O(T−1/2) times the leading

3For an integral I =
∫
γ
dzeTf(z), we say that γ is a steep descent path if (1) Re(f(z))

is maximum at some z0 ∈ γ: Re(f(z)) < Re(f(z0)) for z ∈ γ \ {z0}, and (2) Re(f(z)) is
monotone along γ except at its maximum point z0 and, if γ is closed, at a point z1 where
the minimum of Re(f) is reached.
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term. The change of variable y := zT−1/2 implies that the leading term is
given by

T−1/2

2π

∫

R

dz exp
(
−(σ2

1 − σ2
2)z

2/2 + iz(ξ1σ1 − ξ2σ2)
)

=
Conj1
Conj2

1

σ1T 1/2

1√
2π(1− σ2

2/σ
2
1)

exp

(
−(ξ1 − ξ2σ2/σ1)

2

2(1− σ2
2/σ

2
1)

)
.

(4.13)

Now consider K̂(1). With the above scaling, and after the change of
variable v = z − 1, we get

K̂(1)((n1, t1), x1; (n2, t2), x2)

=
1

(2πi)2

∫

Γ1

dz

∮

Γ0,1−z

dw
eTf0,1(w)+T

1/2f1,1(w)

eTf0,2(z)+T
1/2f1,2(z)

2z − 1

(w + z − 1)(w − z)w

(4.14)

with

f0,i(w) = ui(w − α ln(w)) + ai

(
ln(w − 1) +

α

1− α
ln(w)

)
,

f1,i(w) = ξiσi ln(w).

(4.15)

Let us look for the critical points of f0,i and the steep descent paths. We
have

d

dw
f0,i(w) = 0 ⇐⇒ (w − α)(ui(1− α)(w − 1) + ai)

w(w − 1)(1− α)
= 0, (4.16)

that is, the critical points are

ω− = α and ω+,i = 1− ai
ui(1− α)

. (4.17)

Using the relation

0 < ai < uimin{(1− α)/2, (1− α)2} (4.18)

one verifies the following relations:

0 < ω− = α < ω+,i < 1, and ω+,i > 1/2. (4.19)

As steep descent path we choose: Γ1 = {z = 1 − reiψ, r = 1 − ω+,2} and
Γ0 = {w = αeiϕ}. Let us check the steep descent property. We have

d

dϕ
Re(f0,1(w)) = −αu1 sin(ϕ)|w − 1|2

(
|w − 1|2 − a1/u1

)
(4.20)
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which is decreasing while moving away from the critical point w = α, since
by (4.18) the term in the parentheses is strictly positive. Also,

d

dψ
Re(−f0,2(z)) = −ru2 sin(ψ)|z|2

(
|z|2 − α

(
1− a2

u2(1− α)

))
(4.21)

which is decreasing while moving away from the critical point z = ω+,2.
Indeed, using (4.18) and (4.19) the term in the parentheses is strictly positive.
Hence the integral (4.14) is of order

Conj1
Conj2

exp (TRe(f0,1(ω−)− f0,1(α)))

exp (TRe(f0,2(ω+,2)− f0,2(α)))

=
Conj1
Conj2

exp (TRe(f0,2(α)− f0,2(ω+,2))) =
Conj1
Conj2

exp(−δT ), δ > 0.

(4.22)
Indeed, f0,2(ω+,2) > f0,2(α), because ω+,2 > α and d

dz
f0,2(z) > 0 on

z ∈ (α, ω+,2). Therefore in the T → ∞ limit, the contribution of K(1) (con-
jugated and rescaled) goes to zero.

Finally, we need to consider K̂(2) of Proposition 6. We change the vari-
ables v = ṽ − 1 and z = z̃ − 1 in (3.20) and get

K̂(2)((n1, t1), x1; (n2, t2), x2) =
1

(2πi)3

∮

Γα

dṽ

∮

Γ1,ṽ

dz̃

∮

Γ0,α−ṽ

dw

w

(w(w − α))M

(ṽ(ṽ − α))M

× (2z̃ − 1)(2ṽ − α)

(z̃ + ṽ − 1)(w − ṽ)(z̃ − ṽ)(w + ṽ − α)

eTf0,1(w)+T
1/2f1,1(w)

eTf0,2(z̃)+T
1/2f1,2(z̃)

. (4.23)

We have the following two contributions:
(a): z̃ around 1. From the above analysis on the steep descent paths,
we choose |ṽ − α| = ε/2 for ε small enough, {w = (α − ε)eiϕ} and
{z = 1 − reiψ, r = 1 − ω+,2}. Since f0,2(ω+,2) > f0,2(α), we can choose ε

small enough such that the overall contribution is Conj1
Conj2

exp(−δ′T ) for some

δ′ > 0. Therefore in the T → ∞ limit, this contribution of K̂(2) (conjugated
and rescaled) goes to zero.
(b): z̃ around ṽ. Integrating out the simple pole z̃ = ṽ we get a contribution
equal to

1

(2πi)2

∮

Γα

dṽ

∮

Γ0,α−ṽ

dw

w

eTf0,1(w)+T
1/2f1,1(w)

eTf0,2(ṽ)+T
1/2f1,2(ṽ)

(w(w − α))M

(ṽ(ṽ − α))M
2ṽ − α

(w − ṽ)(w + ṽ − α)
.

(4.24)
The integration paths are now chosen as Γα = {|ṽ − α| = RT−1/2} and
Γ0,α−ṽ = {w = (α − LT−1/2)eiy, L > R}. With the above computations

29



we have that Γ0,α−ṽ is a steep descent path, so that its leading contribution
comes from a T−1/2 neighborhood of y = 0. There we can use Taylor series:

f0,i(w) = f0,i(α) +
(w − α)2

2α2
σ2
i +O((w − α)3),

f1,i(w) = f1,i(α) +
ξiσi(w − α)

α
+O((w − α)2),

(w(w − α))M = αM(w − α− 1)M(1 +O((w − α))).

(4.25)

Denoting ṽ = α(1 + V σ−1
1 T−1/2) and w = α(1 +Wσ−1

1 T−1/2) we have that
the leading term of (4.24) for large T is given by

Conj1
Conj2

1

σ1T 1/2

1

(2πi)2

∮

|V |=R
dV

∫

−L+iR

dW
WM

V M

1

W − V

eW
2/2+Wξ1

eV 2(σ2/σ1)2/2+V ξ2σ2/σ1

(4.26)
with L > R. By the change of variable W → −W and V → −V we obtain
(up to factors

√
2 due to the different space-scaling) the extended Hermite

kernel, see (2.13) of [24], which can then be rewritten in terms of Hermite
polynomials.

4.2 Fluctuations around the shock

In this section we consider α < 1/2 and focus around the shock position. We
consider the case of M = 1 slow particle, since it is also physically the more
natural situation. Indeed, the system with one slow particle is equivalent to
having stationary initial condition on Z+. The shock position, which at time
t will be around position vst = (α− 1/2)t, fluctuates on the t1/2-scale. How
does it happen? The fluctuations of particles before entering the shock region
live on a t1/3 scale, thus viewed from the t1/2-scale, these particles essentially
do not fluctuate. So, one has some probability that the particle is not inside
the shock region, which will then be very well localized, and if the particle
is in the shock region, then it follows fluctuations of the slow particles. The
occurrence of these two distinct intermediate scales allows us, in particular,
to determine the diffusion coefficient of the shock. The result agrees with
the argument in [33] modified appropriately for our situation, see below.

The first result was stated in Proposition 1 and in order to prove it we
recall the following result from [8].

Lemma 15. Consider the kernel without the slow particle, i.e., Kn,t defined
in (3.59), and the rescaling

n = νt, xi =
1
2
t− 2n− ζit

1/3, with ν > 1/4. (4.27)
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Then, uniformly for ζi in a bounded set,

lim
t→∞

t1/3Kn,t(x1, x2) ≡ KA1
(ζ1, ζ2), (4.28)

where KA1
is the Airy1 kernel [6, 18,30].

With ≡ we mean equivalent, since indeed to get a well-defined limit one
has to do a conjugation of the kernel Kn,t.

It is also known [21] that

F1(2s) = det(1−KA1
)L2((s,∞),dx), (4.29)

with F1 the GOE Tracy-Widom distribution function [34].

Proof of Proposition 1. Let us start with ξ > 0. From Proposition 9 and
Corollary 11 we have

P(xn(t) ≥ x) = det(1− χxKn,tχx − χxf · gχx)
= det(1− χxKn,tχx)(1− (gχx, (1− χxKn,tχx)

−1χxf))
(4.30)

with Kn,t, f and g being defined in (3.59), and χx = 1(−∞,x). Compare the
scaling (2.11) and (4.27): ν ↔ 1−α

2
+ ηt−1/2 and ζi ↔ ξt1/6. So, for any ξ > 0

we will actually focus on the upper tail of the Airy1 kernel and of the related
distribution, i.e., Kn,t(x, y) → 0 as t→ ∞ (with conjugation), and

lim
t→∞

det(1− χxKn,tχx) = 1. (4.31)

For the second term, we use

(1− χxKn,tχx)
−1 = 1+ χxKn,tχx(1− χxKn,tχx)

−1. (4.32)

Thus

(gχx, (1− χxKn,tχx)
−1χxf) = (gχx, f) + (gχx, (1− χxKn,tχx)

−1χxKn,tχxf)
(4.33)

and the fact that Kn,t → 0 implies then that the last term goes to zero. So

lim
t→∞

P(xn(t) ≥ x) = lim
t→∞

1− (gχx, f) = lim
t→∞

(gχ̃x, f), χ̃x = 1[x,∞). (4.34)

In the last step we used the orthogonality between g and f , namely (g, f) = 1.
Under the scaling (2.11), x(ξ) + n ∼ 1

2
αt > 0, which means that the pole at

v = −1 in the function g(y) defined in (3.59) vanishes. Therefore,

g(x) =
αx+n−1

eαt(α− 1)n−1
(4.35)
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and then

(gχ̃x, f) =
1

2πi

∮

|w|>α
dwet(w−α)

(
(w − 1)α

(α− 1)w

)n−1 ∑

y≥x(ξ)
αy/wy+1

=
1

2πi

∮

|w|>α
dwet(w−α)

(
(w − 1)α

(α− 1)w

)n−1 (α
w

)x(ξ) 1

w − α

≡ 1

2πi

∮

|w|>α
dweF (w) 1

w − α
.

(4.36)

The steep descent path of F passes by the saddle point at w = α, but since
it is a pole we have just to deform locally on a t−1/2 scale to pass on its right.
The leading contribution is coming from a t−1/2-neighborhood of the w = α.
Setting w = α + iyαt−1/2, we get

F (w) = −σ2y2/2 + iy(ξ + ξc) +O(y3t−1/2). (4.37)

The O(y3t−1/2) term is controlled by the quadratic term, and in the end we
obtain

lim
t→∞

(gχ̃x, f) =
1

2πi

∫

R+iε

dy
e−σ

2y2/2+iy(ξ+ξc)

y
, ∀ε > 0

=
1√
2πσ2

∫ ξ+ξc

−∞
dz exp

(
−z2/(2σ2)

)
.

(4.38)

Now consider ξ < 0. We first use a probabilistic argument. It is quite
clear (by a simple coupling argument) that

P(xn(t) ≥ x) ≤ P̃(xn(t) ≥ x) (4.39)

where P̃ is the measure of the system without the slow particle. For the
system without slow particle we have the result of Lemma 15, which tells us
that

P̃(xn(t) ≥ x) = det(1− χxKn,tχx) → 0, t→ ∞. (4.40)

The reason is that ξ < 0 corresponds to ζi = ξt1/6 → −∞ as t → ∞. Then
(4.40) follows from the non-degeneracy of the distribution F1 (no mass is lost
at −∞).

It is a bit more natural to look at the fluctuations with respect to the
dashed line in Figure 3. Then, the result of Proposition 1 rewrites as follows.
Let

F (ξ) := lim
t→∞

P(xn=[(1−α)t/2+ηt1/2 ](t) ≥ αt− n/(1− α)− ξt1/2). (4.41)
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Then, F (ξ) has a jump at ξ = ξc, namely

F ′(ξ) =
1√
2πσ2

exp(−ξ2/2σ2)1[ξ>ξc]+ δ(ξ−ξc)
1√
2πσ2

∫ ξc

−∞
dy exp(−y2/2σ2).

(4.42)
This can be used to determine the diffusion coefficient of the shock without
having to identify it with second class particles. When α < 1/2, the macro-
scopic density has a jump from 1/2 to 1 − α. As we saw in Proposition 13,
before the shock the fluctuations becomes asymptotically F1-distributed on a
t1/3-scale, while inside the shock region are Gaussian on the t1/2-scale. Thus
the position of the shock itself is localized on the t1/2-scale, see Figure 3 for
an illustration.

The question we want to address is how to determine its law and in
particular its diffusion coefficient. Denote by xshock(t) the position of the
shock at time t.

Proposition 16. In the large time limit, the shock is Gaussian distributed
with diffusion coefficient D given by

D =
α(1− α)

1/2− α
. (4.43)

In other words,

lim
t→∞

P(xshock(t) ≥ (α−1/2)t−νt1/2) = 1√
2πD

∫ ν

−∞
dx exp(−x2/2D). (4.44)

Proof of Proposition 16. To prove the result we first have to understand what
Proposition 1 says. Consider the particle with number n and look at position
x rescaled as in (2.11). The condition ξ > ξc means that x is on the left of the
dotted line of Figure 3 by (ξ − ξc)t

1/2. Moreover, before reaching the shock,
particles fluctuate only on a t1/3-scale away from the dotted line. Thus, for
ξ > ξc, xn(t) < x implies that particle n already reached the shock. On the
other hand, if particle n did not reach the shock region yet, then (on the
t1/2 scale) it has to be on the dotted line (can not be farther to the right
because of (2.14)). Therefore, the probability that particle n has not yet
reached the shock (i.e. xshock(t) > xn(t)) is equal to the mass at ξ = ξc.
Thus, from (4.42) it follows that

lim
t→∞

P(xshock(t) ≥ (α− 1/2)t− νt1/2) (4.45)

=
1√
2πσ2

∫ (1/2−α)ν/(1−α)

−∞
dy exp(−y2/2σ2) =

1√
2πD

∫ ν

−∞
dx exp(−x2/2D)

after a change of variable.
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Remark 17. The above argument is quite flexible and one could extend to
the case of M slow particles instead of only one. We expect the following.
Proposition 1 would be similar up to the distribution in (2.12) changed from
Gaussian into the GUE(M) (the distribution of the largest eigenvalue of
M×M GUE matrices) and the shock will have a GUE(M)-distribution with
appropriate parameter, by the change of variable as in (4.45).

This result can also be explained with an heuristic argument, following
arguments in [33]. In the continuum limit the particle density ρt(x) is de-
scribed by the viscous Burgers equation with noise (see (5.37) of [33]),

∂

∂t
ρt(x) +

∂

∂x
(ρt(x)(1− ρt(x))) = ǫν

∂2

∂x2
ρt(x)−

√
ǫν

∂

∂x
Jt(x). (4.46)

Here ǫ is the lattice constant, ν is the diffusion constant and Jt(x) is the
random current. The initial condition is divided into two parts,

ρ0(x) = ρs(x) +
√
ǫξ(x). (4.47)

Here ρs is the deterministic part,

ρs(x) =

{
ρ− := 1/2, x < 0,
ρ+ := 1− α, x > 0,

(4.48)

and ξ(x) takes into account the randomness in the initial conditions for x > 0,

〈ξ(x)ξ(x′)〉 =
{

0, x < 0,
ρ+(1− ρ+)δ(x− x′), x > 0.

(4.49)

Note that in our present case there is no randomness for x < 0. The solution
to (4.46) is of the form,

ρt(x) = ρs(x− vst−
√
ǫDb(t)) +O(

√
ǫ), (4.50)

with b(t) is the standard Brownian Motion. The shock front remains sharp
but its center performs the Brownian Motion. The diffusion coefficient of the
shock D is of our interest.

Let us suppose that the initial density fluctuations move with constant
velocity towards the shock and that this is the source of randomness of the
shock location. At time t the particle density fluctuations starting from the
region [vst,−vst] have arrived at the shock so that

∫ −vst
vst

ξ(x)dx represents
the excess amount of particles comparing to the deterministic part. Since
the difference of the density to the left and the right is ρ+ − ρ−, we would
have √

Db(t) =
1

ρ+ − ρ−

∫ −vst

vst

ξ(x)dx. (4.51)
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Using (4.49) we get

D =
ρ+(1− ρ+)

ρ+ − ρ−
=
α(1− α)

1/2− α
. (4.52)

This is the same as (4.43).

5 Transition processes

In this section, we first focus around the critical parameter α = 1/2 and later
on the Airy2 to DBM(M) transition. For α = 1/2, on a macroscopic scale
the density is constant and equal to 1/2. However, the fluctuations to the
left of the origin live on the t1/3 scale, while on the right they live on the
t1/2 scale. Here we consider α − 1/2 = O(t−1/3) and n − t/4 = O(t2/3). We
keep M fixed and finite.

As before, we are not obliged to stay on a fixed time, but we can consider
a space-like path described by a function π(θ) with |π′| ≤ 1. Consider the
space-like setting as in Proposition 13,

t(τ, T ) = (π(θ − τT−1/3) + θ − τT−1/3) T,

n(τ, T ) =M + [π(θ − τT−1/3)− (θ − τT−1/3)]T,
(5.1)

with θ > 0 fixed and4 π(θ) = 5θ/3. This ensures that macroscopically we
focus at the transition region, which for α = 1/2 is around n = t/4.

Here we consider α not necessarily exactly equal to 1/2. Instead, let us
define

α = 1
2
(1 + κT−1/3). (5.2)

Then, the rescaled process of particle position is given by

XT (τ) =





xn(t)− (1
2
t− 2(n−M))

−T 1/3
, if n ≥ t/4,

xn(t)− (t− 2
√
t(n−M))

−T 1/3
, if n ≤ t/4.

(5.3)

In the large-T limit, XT will converge to a well-defined limit process,
A2→1,M,κ, which we now define.

4This does not mean that the function θ̃ 7→ π(θ̃) is identically equal to 5θ̃/3, only that

at θ̃ = θ its value is equal to 5θ/3.
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γ̃1 γ̃2−γ̃2 γ1 γ2

Γκ

κ

Figure 5: Illustration of the integration paths defining the kernel Ktrans
M,κ .

Definition 18. Let us set

s̃i =

{
si, if τi ≥ 0,
si − τ 2i , if τi ≤ 0.

(5.4)

The process A2→1,M,κ is the process with m-point distributions at τ1 < τ2 <
. . . < τm given by the Fredholm determinant,

P

(
m⋂

k=1

{A2→1,M,κ(τk) ≤ sk}
)

= det
(
1− χsK

trans
M,κ χs

)
L2({τ1,...,τm}×R)

(5.5)

where χs(τk, x) = 1(x > sk). The kernel is defined by

Ktrans
M,κ (τ1, s1; τ2, s2) = Ktrans(1)(τ1, s1; τ2, s2) +K

trans(2)
M,κ (τ1, s1; τ2, s2), (5.6)

with

Ktrans(1)(τ1, s1; τ2, s2) = − 1√
4π(τ2 − τ1)

exp

(
−(s̃2 − s̃1)

2

4(τ2 − τ1)

)
1[τ2>τ1]

+
1

(2πi)2

∫

γ̃2

dw2

∫

γ̃1

dw1
ew

3
2/3+τ2w

2
2−s̃2w2

ew
3
1
/3+τ1w2

1
−s̃1w1

2w2

(w1 − w2)(w1 + w2)
, (5.7)

and

K
trans(2)
M,κ (τ1, s1; τ2, s2) =

1

(2πi)3

∮

Γκ

du

∫

γ2

dw2

∫

γ1

dw1
ew

3
2
/3+τ2w2

2
−s̃2w2

ew
3
1
/3+τ1w2

1
−s̃1w1

× 2w2

(w2 − u)(w2 + u)(w1 − u)

(
w1 − κ

u− κ

)M
. (5.8)

Here γ̃2, γ2 : eπi/3∞ → e−πi/3∞, γ̃1, γ1 : e−2πi/3∞ → e2πi/3∞, and Γκ goes
around only the pole at u = κ anticlockwise. Moreover, −γ̃2 ⊂ γ̃1, and γ1, γ2
passes on the left of Γκ (see Figure 5 for an illustration).
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Theorem 19. The process XT defined in (5.3) converges to the process
A2→1,M,κ, more precisely

lim
T→∞

XT (τ) = SvA2→1,M,κSv(τ/Sh) (5.9)

in the sense of finite-dimensional distributions. The scaling coefficients Sh
and Sv are given by

Sv =

(
4θ

3

)1/3

, Sh =
4

5− 3π′(θ)
S2
v . (5.10)

In the fixed time case, t = T , we have π(θ) = 1 − θ and π(θ) = 5θ/3,
from which θ = 3/8, i.e., Sv = 2−1/3 and Sh = 2−5/3.

Remark 20. When M = 0 we have K
trans(2)
M,κ ≡ 0 and the transition process

is the Airy2→1, A2→1, discovered in [8]:

A2→1,0,κ(τ) ≡ A2→1(τ). (5.11)

Proof of Theorem 19. To prove the result, we have to analyze the large-T
limit of the kernel in Proposition 6 under the following scaling:

ti =
8θ

3
T − τi(π

′(θ) + 1)T 2/3,

ni =M +
2θ

3
T − τi(π

′(θ)− 1)T 2/3,

xi =
1
2
ti − 2(ni −M)− ŝiT

1/3,

(5.12)

where

ŝi =

{
si, if τi ≥ 0,
si − τ 2i SvS

−2
h , if τi ≤ 0.

(5.13)

Higher order in the development of π(θ − τiT
−1/3) are irrelevant since they

corresponds to a T−1/3 perturbation of π′(θ).
Then, we have to consider the rescaled and conjugated kernel

Kresc
T (τ1, s1; τ2, s2) :=

Conj2
Conj1

T 1/3K((n1, t1), x1; (n2, t2), x2) (5.14)

with Conji := eti/2(−1/2)ni−M(1/2)−(xi+ni−M). We need to show that

lim
T→∞

Kresc
T (τ1, s1; τ2, s2) = S−1

v Ktrans
M,κSv

(τ1/Sh, s1/Sv; τ2/Sh, s2/Sv). (5.15)

The first two terms of the kernel (3.17) are independent of α and their
sum is the kernel without slow particles. This kernel was already analyzed
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1
2

1
2 00

α

(a) (b)

ṽ

ṽ z̃ww

qq′ q′′q′′′

Figure 6: Steep descents for (a) K̂(1) and (b) K̂(2). They satisfies π/4 < q <
q′ < π/2, π/4 < q′′, q′′′ < π/2 and the local modifications around the critical
point at 1/2 are all only on the T−1/3 scale.

in great detail in [8] with the slight difference that the space-like setting
introduced in [4] was not known yet. However, at the level of asymptotic
analysis there are no relevant changes. Thus here we just indicate the key
steps.

Let us first consider K̂(1) defined in (3.19). After the change of variable
v = ṽ − 1 it writes

1

(2πi)2

∫

Γ1

dṽ

∮

Γ0,1−ṽ

dw
2ṽ − 1

w(w − ṽ)(w + ṽ − 1)

eTf0(w)+T
2/3f1,1(w)+T 1/3f2,1(w)

eTf0(ṽ)+T
2/3f1,2(ṽ)+T 1/3f2,2(ṽ)

(5.16)
with

f0(w) =
8θ

3

(
w + 1

4
ln((w − 1)/w)

)
,

f1,i(w) = −τi(π′(θ) + 1)w − τi(π
′(θ)− 1) ln(w − 1) + 1

2
(3− π′(θ)) ln(w),

f2,i(w) = ŝi ln(w).
(5.17)

From the analysis of Proposition 4 of [8] we have that the steep descent paths
in (5.16) are chosen as illustrated in Figure 6. Next, the Taylor expansion
around the double critical point of f0(w) , which is at w = 1/2, are given by

f0(w) = f0(1/2)−
32θ

3

(w − 1/2)3

3
+O((w − 1/2)4),

f1,i(w) = f1,i(1/2)− τi(5− 3π′(θ))(w − 1/2)2 +O((w − 1/2)3),

f2,i(w) = f2,i(1/2) + 2ŝi(w − 1/2) +O((w − 1/2)2).

(5.18)

The leading contribution to the kernel comes from the T−1/3-neighborhood of
the critical point. The conjugation terms are just the value of the exponential
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factor evaluated at the critical point. The O(· · · ) term accounts into an error
O(T−1/3) smaller than the leading one. Then, after change of variable

w = 1
2
+ 1

2
w1T

−1/3/Sv, ṽ = 1
2
+ 1

2
w2T

−1/3/Sv, (5.19)

we get the final result

lim
T→∞

Conj2
Conj1

T 1/3K̂
(1)
T ((n1, t1), x1; (n2, t2), x2)

=
S−1
v

(2πi)2

∫

γ̃2

dw2

∫

γ̃1

dw1
ew

3
2/3+τ2w

2
2/Sh−ŝ2w2/Sv

ew
3
1
/3+τ1w2

1
/Sh−ŝ1w1/Sv

2w2

(w1 − w2)(w1 + w2)
.

(5.20)

Consider now the α-dependent term, K̂(2) defined in (3.20). After the
change of variable v = ṽ − 1 and z = z̃ − 1, (3.20) becomes

1

(2πi)3

∮

Γα

dṽ

∮

Γ1,ṽ

dz̃

∮

Γ0,α−ṽ

dw
(2z̃ − 1)(2ṽ − α)

w(z̃ − ṽ)(z̃ + ṽ − 1)(w − ṽ)(w + ṽ − α)

×
(
w(w − α)

ṽ(ṽ − α)

)M
eTf0(w)+T

2/3f1,1(w)+T 1/3f2,1(w)

eTf0(z̃)+T 2/3f1,2(z̃)+T 1/3f2,2(z̃)
(5.21)

The leading term again comes from the T−1/3-neighborhood of 1/2. After
the change of variables

w = 1
2
+ 1

2
w1T

−1/3/Sv, z̃ = 1
2
+ 1

2
w2T

−1/3/Sv, ṽ = 1
2
+ 1

2
uT−1/3/Sv (5.22)

and controlling the error terms as usual, we get

lim
T→∞

Conj2
Conj1

T 1/3K̂
(2)
T ((n1, t1), x1; (n2, t2), x2) =

S−1
v

(2πi)3

∮

Γκ

du

∫

γ2

dw2

∫

γ1

dw1

2w2

(w2 − u)(w2 + u)(w1 − u)

(
w1 − Svκ

u− Svκ

)M
ew

3
2
/3+τ2w2

2
/Sh−ŝ2w2/Sv

ew
3
1
/3+τ1w2

1
/Sh−ŝ1w1/Sv

. (5.23)

Finally, concerning the integration paths, from the local structure around the
critical point, see Figure 4, we obtain the conditions illustrated in Figure 5.

There is still one region where the α andM dependence occurs in Figure 2.
This is the transition between the Airy2 process and DBM. This is present
for α ∈ (1/2, 1) when n ∼ (1− α)2t, or in terms of (θ, π(θ)), it occurs for

π(θ) =
2− 2α + α2

α(2− α)
θ. (5.24)
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Consider the scaling (5.1) with the condition (5.24) and define the rescaled
process as

XT (τ) =
xn(t)− (t− 2

√
t(n−M))

−T 1/3
. (5.25)

In the large-T limit XT converges to the following limit process.

Definition 21. The process ADBM→2 is the process withm-point distributions
at τ1 < τ2 < . . . < τm given by the Fredholm determinant,

P

(
m⋂

k=1

{ADBM→2(τk) ≤ sk}
)

= det (1− χsKADBM→2
χs)L2({τ1,...,τm}×R)

(5.26)
where χs(τk, x) = 1(x > sk). The kernel is defined by

KADBM→2
(τ1, s1; τ2, s2) = −

exp
(
− ((s2−τ22 )−(s1−τ21 ))2

4(τ2−τ1)

)

√
4π(τ2 − τ1)

1[τ2>τ1]

+
1

(2πi)2

∫

γ2

dw2

∫

γ1

dw1
ew

3
2
/3+τ2w2

2
−(s2−τ22 )w2

ew
3
1
/3+τ1w2

2
−(s1−τ21 )w1

(
w1

w2

)M
1

w1 − w2
(5.27)

Here γ2 : e
πi/3∞ → e−πi/3∞, γ1 : e

−2πi/3∞ → e2πi/3∞. Moreover, γ1, γ2 pass
on the left of 0 and they do not cross.

With this definition, let us state the result.

Theorem 22. The process XT defined in (5.25) converges to the process
ADBM→2, more precisely

lim
T→∞

XT (τ) = SvADBM→2(τ/Sh) (5.28)

in the sense of finite-dimensional distributions. The scaling coefficients Sh
and Sv are given by

Sv =

(
2θα

(2− α)(1− α)

)1/3

, Sh =
2α−1

1 + π′(θ) + 1−π′(θ)
(1−α)2

S2
v . (5.29)

Proof of Theorem 22. The first part of the proof is in complete analogy to
the one of Theorem 19, with the main difference being that the critical point
is at α instead of 1/2 (this explain why instead of κ we get 0). We get the
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following expression (with s̃i = si − τ 2i )

−
exp

(
− (s̃2−s̃1)2

4(τ2−τ1)

)

√
4π(τ2 − τ1)

1[τ2>τ1] +
1

(2πi)2

∫

γ2

dw2

∫

γ1

dw1
ew

3
2
/3+τ2w2

2
−s̃2w2

ew
3
1
/3+τ1w2

1
−s̃1w1

1

w1 − w2

+
1

(2πi)3

∮

Γ0

du

∫

γ2

dw2

∫

γ1

dw1
ew

3
2
/3+τ2w2

2
−s̃2w2

ew
3
1
/3+τ1w2

1
−s̃1w1

1

(w2 − u)(w1 − u)

(w1

u

)M
.

(5.30)

Using the identities

1

(w2 − u)(w1 − u)
=

1

w1 − w2

(
1

w2 − u
− 1

w1 − u

)
(5.31)

and
1

w − u
=

1

w

∑

n≥0

(u/w)n, if |u| < |w| (5.32)

we compute the integral over u, which has a simple pole when n = M − 1,
letting to (5.27).

A priori one might want to modulate the slow particle rate like in (5.2)
but around some α instead of 1/2. This is however not a relevant change,
since in a neighborhood of the curve in Figure 2, any point can be reached by
fixing α and then choosing τ to get the desired value of n/t or by choosing τ
and then modulating α.

Up to a change in the time direction, the kernel KADBM→2
appeared in the

context of sample covariance matrices [2] (for τ1 = τ2 = τ), and the extended
version in TASEP with step initial conditions [23], directed percolation with
two set of parameters [10], Brownian Motions with outliers [1].

By looking at the diagram of Figure 2 it is quite apparent that one should
have the following limits:

lim
κ→∞

A2→1,M,κ(τ) = A2→1(τ),

lim
v→∞

A2→1,M,κ(τ + v) = 21/3A1(τ/2
2/3),

lim
v→∞

lim
κ→∞

A2→1,M,κ(τ − v) = A2(τ),

lim
κ→∞

A2→1,M,κ(τ − κ) = ADBM→2(τ),

lim
v→∞

ADBM→2(τ + v) = A2(τ).

(5.33)
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6 Regions where the slow particles do not

matter

For completeness, we describe what happens in the region where the presence
of slow particle is irrelevant. In the region where the density of particles is
constant, the fluctuation of particles’ positions are described asymptotically
by the Airy1 process. If the density of particles is decreasing (linearly in our
case), then one has the Airy2 process, and in the transition region where
the density changes from constant to linearly decreasing, the process is the
Airy2→1 process. The computations are essentially the same as in [8], but
easily extended to the setting of space-like paths. The only difference is that
one has to control the new term coming from K̂(2).

Introduce the scaling on space-like paths described by a function π(θ)
with |π′| ≤ 1:

t(τ, T ) = (π(θ − τT−1/3) + θ − τT−1/3) T,

n(τ, T ) =M + [π(θ − τT−1/3)− (θ − τT−1/3)]T.
(6.1)

Case 1, n > max{1−α
2
, 1/4}t, i.e. π(θ) > max{3−α

1+α
, 5
3
}θ: The rescaled

process

XT (τ) =
xn(t)− (1

2
t− 2(n−M))

−T 1/3
(6.2)

converges in the T → ∞ limit to the Airy1 process, A1,

lim
T→∞

XT (τ) = SvA1(τ/Sh), (6.3)

where Sv and Sh are coefficients given by

Sv = (π(θ) + θ)1/3, Sh =
4

5− 3π′(θ)
S2
v . (6.4)

Case 2, α ∈ (1/2, 1] and n ∈ ((1− α)2, 1/4)t, i.e. 5
3
θ > π(θ) > 2−2α+α2

α(2−α) θ:
The rescaled process

XT (τ) =
xn(t)− (t− 2

√
t(n−M))

−T 1/3
(6.5)

converges in the large-T limit to the Airy2 process, A2,

lim
T→∞

XT (τ) = SvA2(τ/Sh), (6.6)
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where Sv and Sh are coefficients given by

Sv = (π(θ) + θ)1/3
(
π(θ)−θ
π(θ)+θ

)−1/6
(
1−

√
π(θ)−θ
π(θ)+θ

)2/3

,

Sh =
2
(
1−

√
π(θ)−θ
π(θ)+θ

)−1

(1− π′(θ))
(
π(θ)−θ
π(θ)+θ

)−1

+ (1 + π′(θ))
S2
v .

(6.7)

Case 3, α ∈ (1/2, 1] and n ∼ t/4, i.e. π(θ) = 5
3
θ: The rescaled process is

given by

XT (τ) =





xn(t)− (1
2
t− 2(n−M))

−T 1/3
, if n ≥ t/4,

xn(t)− (t− 2
√
t(n−M))

−T 1/3
, if n ≤ t/4.

(6.8)

XT converges in the large-T limit to the Airy2→1 process, A2→1,

lim
T→∞

XT (τ) = SvA2→1(τ/Sh), (6.9)

where Sv and Sh are coefficients given by

Sv = (4θ/3)1/3, Sh =
4

5− 3π′(θ)
S2
v . (6.10)

7 Blocking wall regime

In this section we study the case when M = ∞ and α = 2, so that the mean
speed of the particles starting form 2N (called α-particles) is 1, which is equal
to the jump rate of particles starting from 2Z− (called normal particles). We
want to describe the large time behavior of a finite number of normal par-
ticles. For large time t, the α-particles fluctuate on a t1/3 scale, i.e., on a
t1/2 scale their behavior is essentially deterministic. t1/2 is however the typi-
cal scale of fluctuations of the normal particles, which perform random walks
except for being blocked by their right-neighbor. Thus, one expects that for
large time, our system should be related to a set of non-intersecting Brown-
ian motions with some particular condition at the origin (like absorption or
reflection).

Theorem 2 stated in Section 2 is a direct consequence of the determi-
nantal structure together with the following convergence of K∞ (defined in
Corollary 8) to the kernel KaGUE.
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Proposition 23. Let

ti = τit, xi = ti − ξi(2ti)
1/2. (7.1)

Then,

lim
t→∞

A1

A2

(2t1)
1/2K∞((n1, t1), x1; (n2, t2), x2) = KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2)

(7.2)

where θi = ln(τi), with the conjugation factor Ai = e−ti(tτi/2)
ni/2(−2)niτ

1/2
i ,

and KaGUE given in (2.23).

Before proving the result, let us present an integral representation of the
antisymmetric GUE minor kernel, since it is in that form that we obtain the
result.

Lemma 24. The antisymmetric GUE minor kernel has the following integral
representation (after conjugation). Let τi := eθi and ε > 0. Then

KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2)
B2

B1

=− 2
√
τ1

2πi

∫

iR+ε

dwe(τ1−τ2)w
2−2(ξ1

√
τ1−ξ2

√
τ2)w

1

wn2−n1
1[(n1,θ1)≺(n2,θ2)]

− 2
√
τ1

2πi

∫

iR+ε

dwe(τ1−τ2)w
2−2(ξ1

√
τ1+ξ2

√
τ2)w

(−1)n2+1

wn2−n1
1[(n1,θ1)≺(n2,θ2)]

+
2
√
τ1

(2πi)2

∮

Γ0

dw2

∫

iR+ε

dw1
ew

2
1τ1−2ξ1

√
τ1w1

ew
2
2
τ2−2ξ2

√
τ2w2

(
1

w1 − w2

+
1

w1 + w2

)
wn1

1

wn2

2

(7.3)
with the paths non-crossing, i.e., |w2| < ε, and Bi = 2nieθi(ni+1)/2.

Proof of Lemma 24. We use the following two integral representations for the
Hermite polynomials Hn(x),

Hn(x) =
2n

i
√
π
ex

2

∫

iR+ε

dwew
2−2xwwn,

Hn(x) =
n!

2πi

∮

Γ0

dze−(z2−2xz)z−(n+1),

(7.4)

as well as the identities (with 0 < q < 1) which can be found in [24, 27]

1√
π(1− q2)

exp

(
−(x− qy)2

1− q2

)
= e−x

2

∞∑

k=0

Hk(x)Hk(y)q
k

√
π2kk!

,

∫ ∞

x

dye−y
2

Hn(y) = e−x
2

Hn−1(x),

Hn(x) = (−1)nHn(−x).

(7.5)
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Then, for (n1, θ1) 6≺ (n2, θ2), we get (extending the sum to ∞ because the
extra terms are identically zero) that KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2) is given
by

2n1

2n2

4

(2πi)2

∮

Γ0

dz

∫

iR+ε

dw
ew

2−2ξ1w

ez2−2ξ2z

wn1+1

zn2+2

∑

ℓ≥1

(
z2eθ1

w2eθ2

)ℓ
. (7.6)

Now, by the change of variables z = w2e
θ2/2 = w2

√
τ2 and w = w1e

θ1/2 =
w1

√
τ1 we obtain

(7.6) =
B1

B2

4
√
τ1

(2πi)2

∮

Γ0

dw2

∫

iR+ε

dw1
ew

2
1τ1−2ξ1

√
τ1w1

ew
2
2
τ2−2ξ2

√
τ2w2

wn1+1
1

wn2+2
2

∑

ℓ≥1

(
w2

w1

)2ℓ

. (7.7)

Performing the sum over ℓ,

∑

ℓ≥1

(
w2

w1

)2ℓ

=
w2

2

w2
1 − w2

2

for |w2| < |w1|, (7.8)

and replacing in (7.7) one obtains (7.3).
Now consider (n1, θ1) ≺ (n2, θ2). Assume the following identity (proven

below)

Fn1
(ξ1) :=

2n1τ
(n1+1)/2
1

2n2τ
(n2+1)/2
2

2
√
τ1

2πi

∫

iR+ε

dwe(τ1−τ2)w
2−2(ξ1

√
τ1−ξ2

√
τ2)w

1

wn2−n1

=
2√
π
e−ξ

2
1

n2+1∑

ℓ=−∞

e−(θ2−θ1)ℓ/2

2n2+1−ℓ(n2 + 1− ℓ)!
Hn1+1−ℓ(ξ1)Hn2+1−ℓ(ξ2). (7.9)

Then, the first two terms of (7.3) are equal to

2√
π
e−ξ

2
1

n2+1∑

ℓ=−∞

e−(θ2−θ1)ℓ/2Hn1+1−ℓ(ξ1)

2n2+1−ℓ(n2 + 1− ℓ)!

(
Hn2+1−ℓ(ξ2) + (−1)n2+1Hn2+1−ℓ(−ξ2)

)

(7.10)
and using the symmetry/antisymmetry properties of the Hermite polynomi-
als, see (7.5), we get a zero contribution for all odd ℓ. From this follows
the result. It remains to show (7.9). We prove it by iteration, starting with
n1 = n2. The Gaussian integral gives

2
√
τ1

2πi

∫

iR+ε

dwe(τ1−τ2)w
2−2(ξ1

√
τ1−ξ2

√
τ2)w =

exp

(
− (ξ1−ξ2

√
τ2/τ1)2

1−τ2/τ1

)

√
π(1− τ2/τ1)

= 2
e−ξ

2
1

√
π

n2+1∑

ℓ=−∞

Hn2+1−ℓ(ξ1)Hn2+1−ℓ(ξ2)(τ2/τ1)
n2+1−ℓ/2

2n2+1−ℓ(n2 + 1− ℓ)!
(7.11)
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Figure 7: Steep descent paths used for the different terms, with
ρ = 1− ε(t/2)−1/2. (a) is for term (1); (b) for term (2) and (3a); (c) for
term (3b) in case τ1 < τ2; (d) for term (3b) in case τ1 > τ2.

where we used (7.5) with q =
√
τ2/τ1 and replaced k by n2 + 1 − ℓ. Next,

notice that the function F in (7.9) satisfies

∫ ∞

x

dyFn1
(y) = Fn1−1(x). (7.12)

Thus, to get Fn2
we have to integrate n2 − n1 times Fn2

. This is easily made
using the integration formula in (7.5) applied to e−ξ

2
1Hn2+1−ℓ(ξ1) just n2−n1

times. This leads just to the shift in the index of the Hermite polynomials
in (7.11).

Proof of Proposition 23. We prove that under the scaling (7.1)

lim
t→∞

C1

C2

(2t1)
1/2K∞((n1, t1), x1; (n2, t2), x2) = (7.3) (7.13)

where θ(τ) = ln(τ), with the conjugation factor Ci = e−ti(t/2)ni/2(−1)ni.
The kernel K∞ is given in Corollary 8.

(1) Term coming from φ̂. We have

−φ̂((n1,t1),(n2,t2))(x1, x2) = − 1

2πi

∮

Γ0

dw

w

(
w − 1

w

)n1−n2

etg0(w)+t
1/2g1(w),

(7.14)
with

g0(w) = f0,1(w)− f0,2(w), f0,i(w) = τi(w − ln(w)),

g1(w) = f1,1(w)− f1,2(w), f1,i(w) = ξi
√
2τi ln(w).

(7.15)

Consider τ1 > τ2 (the case τ1 = τ2 and n1 < n2 is pretty easy). As steep
descent path we can use Γ0 = {w = ρeiφ, φ ∈ (−π, π]} for any ρ > 0, since
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Re(w− ln(w)) = Re(w)− ln(ρ). The critical point of g0 is at w = 1 and there
the Taylor series are

g0(w) = g0(1) +
1

2
(τ1 − τ2)(w − 1)2 +O((w − 1)3),

g1(w) = g1(1) + (ξ1
√
τ1 − ξ2

√
τ2)

√
2(w − 1) +O((w − 1)2).

(7.16)

The leading contribution comes from the t−1/2-neighborhood of w = 1, which
is however also a pole when n2 > n1. Therefore we have to remain on its left
and we choose ρ = 1− (2/t)1/2ε, ε > 0. After controlling the error terms, we
make the change of variable w = 1+ t−1/2

√
2W and take W = iR− ε for any

given ε > 0. So, the leading contribution of (7.14) is given by

(−1)n1−n2C2

C1

√
2

t

−1

2πi

∫

iR−ε
dWW n1−n2e(τ1−τ2)W

2+2(ξ1
√
τ1−ξ2

√
τ2)W . (7.17)

Finally, changing the variable W = −w and multiplication by C1

√
2t1/C2

leads to the first term in (7.3).

(2) Term coming from the second term in (3.29). After the change of variable
v = ṽ − 1 we have

1

(2πi)2

∫

Γ1

dṽ

∮

Γ0,1−ṽ

dw

(
w−1
w

)n1

(
ṽ−1
ṽ

)n2

etf0,1(w)+t
1/2f1,1(w)

etf0,2(ṽ)+t1/2f1,2(ṽ)
2ṽ − 1

w(ṽ + w − 1)(w − ṽ)

(7.18)
The steep descent path for w is chosen as above, while for ṽ we just take a
circle around 1 of radius smaller than (2/t)1/2ε. With the variables called
ṽ = 1+ t−1/2

√
2V and w = 1+ t−1/2

√
2W , the leading contribution of (7.18)

is

(−1)n1−n2C2

C1

√
2

t

1

(2πi)2

∮

|V |<ε
dV

∫

iR−ε
dW

eτ1W
2+2ξ1

√
τ1W

eτ2V
2+2ξ2

√
τ2V

W n1

V n2

1

W − V
.

(7.19)
Finally, the change of variable W = −w1, V = −w2 and multiplying by
C1

√
2t1/C2 leads to third term in (7.3) (the part with 1/(w1 − w2)).

(3) Terms coming from the third term in (3.29). Recall that we have to set
α = 2 and after the change of variable v = ṽ − 1 we obtain

1

(2πi)2

∮

Γ0

dw

∮

Γ1,2−w

dṽ
et1w

(
w−1
w

)n1

wx1
ṽx2

et2 ṽ
(
ṽ−1
ṽ

)n2

2ṽ − 1

w(w + ṽ − 2)(1 + ṽ − w)
.

(7.20)
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(3a) Term coming from the pole at ṽ = 1 of (7.20). In this case the sit-

uation is almost identical as in case (2). The only difference is in the last
factor, in particular, after the change of variables ṽ = 1 + t−1/2

√
2V and

w = 1 + t−1/2
√
2W the last factor goes to 1/(W + V ) instead of 1/(W − V ).

After the final change of variable is W = −w1, V = −w2 and multiplication
by C1

√
2t1/C2 leads to third term in (7.3) (the part with 1/(w1 + w2)).

(3a ) Term coming from the pole at ṽ = 2− w of (7.20). This term reads

1

2πi

∮

Γ0

dw
et1w+t2(w−2)(2− w)x2

wx1

(
w−1
w

)n1

(
1−w
2−w
)n2

=
1

2πi

∮

Γ0

dweth0(w)+t
1/2h1(w)

(
w−1
w

)n1

(
1−w
2−w
)n2

,

(7.21)
where

h0(w) = (τ1 + τ2)w + τ2(ln(2− w)− 2)− τ1 ln(w),

h1(w) =
√
2τ1ξ1 ln(w)−

√
2τ2ξ2 ln(2− w).

(7.22)

There are two critical point of h0, namely

ω1 = 1, ω2 =
2τ1

τ1 + τ2
, both in [0, 1]. (7.23)

The steep descent path passes by the critical point the closest to the origin.
For τ1 < τ2, we have ω2 < 1 and the steep descent analysis gives readily a
contribution of order

C2

C1
eth0(ω2)−th0(1). (7.24)

It is easy to see that, with µ := τ2/τ1,

h0(ω2)−h0(1) = τ1(1−µ)(1+ ln(2)− ln(µ+1)) < 0, for all µ > 1. (7.25)

Thus in the t→ ∞ limit, the contribution goes to zero exponentially fast for
τ1 < τ2. Finally, consider τ1 > τ2. Then, 1 < ω2. We choose the path as in
case (1), but this time the Taylor series give

h0(w) = h0(1) +
(τ2 − τ1)

2
(w − 1)2,

h1(w) = h0(1) + (ξ1
√
τ1 + ξ2

√
τ2)

√
2(w − 1) +O((w − 1)2).

(7.26)

Also, we have a different sign in the prefactor and a factor (−1)n2 in the
term (w − 1)n1−n2 . This leads to the second term in (7.3) and explains the
differences with the first term of (7.3), namely the (−1)n2+1 and the change
ξ2 → −ξ2.
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