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Abstract

The totally asymmetric simple exclusion process (TASEP) on the
one-dimensional lattice with the Bernoulli ρ measure as initial con-
ditions, 0 < ρ < 1, is stationary in space and time. Let Nt(j) be
the number of particles which have crossed the bond from j to j + 1
during the time span [0, t]. For j = (1− 2ρ)t+2w(ρ(1− ρ))1/3t2/3 we
prove that the fluctuations of Nt(j) for large t are of order t

1/3 and we
determine the limiting distribution function Fw(s), which is a gener-
alization of the GUE Tracy-Widom distribution. The family Fw(s) of
distribution functions have been obtained before by Baik and Rains in
the context of the PNG model with boundary sources, which requires
the asymptotics of a Riemann-Hilbert problem. In our work we arrive
at Fw(s) through the asymptotics of a Fredholm determinant. Fw(s)
is simply related to the scaling function for the space-time covariance
of the stationary TASEP, equivalently to the asymptotic transition
probability of a single second class particle.

1 Scaling limit and main result

The totally asymmetric simple exclusion process (TASEP) is, arguably, the
simplest non-reversible interacting stochastic particle system. The occupa-
tion variables of the TASEP are denoted by ηj, j ∈ Z, ηj = 0 means site j
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is empty and ηj = 1 means site j is occupied. Since we plan to study the
stationary space-time covariance (= two-point function), the particles move
on the entire one-dimensional lattice Z. The stochastic updating rule is ex-
tremely simple. Particles jump to the right and are allowed to do so only if
their right neighboring site is empty. Jumps are independent of each other
and are performed after an exponential waiting time with mean 1, which
starts from the time instant when the right neighbor site is empty.

More precisely, we denote by η a particle configuration, η ∈ Ω = {0, 1}Z.
Let f : Ω → R be a function depending only on a finite number of ηj ’s. Then
the backward generator of the TASEP is given by

Lf(η) =
∑

j∈Z
ηj(1− ηj+1)

(
f(ηj,j+1)− f(η)

)
. (1.1)

Here ηj,j+1 denotes the configuration η with the occupations at sites j and
j + 1 interchanged. The semigroup eLt is well-defined as acting on bounded
and continuous functions on Ω. eLt is the transition probability of the
TASEP [15].

Let µρ be the Bernoulli measure with density ρ, 0 ≤ ρ ≤ 1, i.e., under µρ

the ηj ’s are independent and µρ(ηj = 1) = ρ. From (1.1) it is easy to check
that

µρ(Lf) = 0 (1.2)

for all local functions f , which means that the Bernoulli measures are station-
ary measures for the TASEP. In fact, these are the only translation invariant
stationary measures [14]. In the sequel we fix ρ, excluding the degenerate
cases ρ = 0, ρ = 1, and start the TASEP with µρ. The corresponding space-
time stationary process is denoted by ηj(t), t ∈ R, j ∈ Z. PTA denotes the
probability measure on paths t 7→ η(t) and ETA its expectation. The depen-
dence on ρ is always understood implicitly. Note that the average current
for the stationary TASEP is j(ρ) = ρ(1− ρ).

As for any other stationary stochastic field theory the most basic quantity
is the two-point function, which for the TASEP is defined through

ETA

(
ηj(t)η0(0)

)
− ρ2 = S(j, t). (1.3)

For fixed t, S(j, t) decays exponentially in j. One has the sum rules

∑

j∈Z
S(j, t) =

∑

j∈Z

(
ETA(ηj(t)η0(0))− ρ2

)
= ρ(1− ρ) = χ(ρ), (1.4)

1

χ

∑

j∈Z
jS(j, t) = j′(ρ)t = (1− 2ρ)t. (1.5)

2



χ−1S(j, t) can be viewed as the probability for a second class particle to be
at site j at time t given it was at j = 0 initially, see e.g. [19]. Thus

S(j, t) ≥ 0, (1.6)

which would not hold on general grounds.
The next finer information is the variance

σ(t)2 = χ−1
∑

j∈Z
j2S(j, t)− ((1− 2ρ)t)2. (1.7)

Naively, one might expect that σ(t) ∼=
√
t, arguing that the second class

particle moves random walk like. As noticed in [23], in a purely perturbative
argument, σ(t) is likely to grow faster than

√
t. The proper scaling form was

firmly established in [4] with the result

σ(t) ∼= a0χ
1/3t2/3 (1.8)

for large t. χ1/3 follows on dimensional grounds, while the prefactor a0 has to
be determined numerically. In fact, a0 = 2.0209 . . . which is a consequence
of the result reported here together with [21].

Forster, Nelson and Stephen [8] consider, as a particular case of the fluc-
tuating Navier-Stokes equation, the stochastic Burgers equation

∂

∂t
u =

∂

∂x

(
− u2 + ν

∂

∂x
u+ ξ

)
(1.9)

with ν > 0 and ξ space-time white noise, which is a sort of continuum
stochastic partial differential equation version of the TASEP. They obtain
the dynamical exponent z = 3/2 which corresponds to the 2/3 of (1.8). Kar-
dar, Parisi and Zhang [12] study surface growth which for a one-dimensional
substrate reduces to (1.9) with u being the gradient of the height function.
By more refined arguments they confirm z = 3/2 in one space dimension.
Since then many approximate theories have appeared, see e.g. [19, 13] for
a more complete discussion. The only one which survives the test is the
mode-coupling theory, which is a nonlinear equation for S(j, t) [4]. A care-
ful, rather recent, numerical study [5] of this equation yields surprisingly
good agreement with the exact two-point function in the scaling limit [21].

The power law (1.8) strongly suggests the scaling form

S(j, t) ∼= χ

4
(2χ1/3t2/3)−1g′′sc

(
(j − (1− 2ρ)t)(2χ1/3t2/3)−1

)
(1.10)

for large t and for j − (1 − 2ρ)t = O(t2/3) with the scaling function g′′sc/4
independent of ρ. Our main result will be to prove a version of (1.10) with
a reasonably explicit expression for g′′sc.
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The scaling function gsc appeared already in the context of the variance
of the height differences in the polynuclear growth (PNG) model, where gsc
is somewhat indirectly determined by a set of differential equations, which
were discovered by Baik and Rains [2], see Appendix A. These differential
equations are solved numerically in [21], where also a plot of g′′sc is displayed.
Thus one important consequence of our main result is to establish that in the
scaling limit the PNG model and the TASEP have the same scaling function
for their covariance. Such a property is expected for a much larger class of
one-dimensional driven lattice gases. For example, if instead of the TASEP
we allow for partial asymmetry, to say a particle jumps with probability p to
the right and 1−p to the left, p 6= 1/2, then (1.10) should still hold provided
(1 − 2ρ)t is replaced by (2p − 1)(1 − 2ρ)t. The general formulation of the
universality hypothesis for one-dimensional driven lattice gases is explained
in [13], see also [19]. Viewed in this context our main result asserts that the
TASEP and the PNG model are in the same universality class.

The issue of universality is certainly one strong motivation for our study.
At first sight PNG and TASEP look very different, while when viewed prop-
erly they are in fact not so far apart. The interpolating family of models is
the TASEP with a discrete time updating rule. Its extreme limits are the
PNG model on one side and the continuous time TASEP on the other side,
see [19]. Given the scaling limit for the PNG, it is not surprising to have the
same result for the TASEP. However, it turns out that the method used in
proving the analogue of (1.10) for the PNG model does not generalize to the
TASEP, which for us is an even more compelling reason to investigate the
TASEP. At a certain stage the proof in [21] uses that the two-dimensional
Poisson process is invariant under linear scale changes, which is a property
special to the PNG model. For the TASEP we have to develop a novel
method which will be rather different from [2, 21] and uses non-intersecting
line ensembles. In fact, our expression for g′′sc has an appearance quite unlike
to the one discovered by Baik and Rains. It requires an argument that both
expressions are in agreement, see Appendix A.

To state our main result we have to first reformulate the TASEP as a
growth process by introducing the height function ht(j) through

ht(j) =





2Nt +
∑j

i=1(1− 2ηi(t)) for j ≥ 1,

2Nt for j = 0,

2Nt −
∑0

i=j+1(1− 2ηi(t)) for j ≤ −1,

(1.11)

t ≥ 0, where Nt counts the number of jumps from site 0 to site 1 during the
time-span [0, t]. Note that ht(j) − h0(j) = 2Nt(j), where Nt(j) counts the
number of particles which have crossed the bond from j to j + 1 during the
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time span [0, t]. By stationarity one has

ETA(ht(j)) = 2ρ(1− ρ)t + (1− 2ρ)j. (1.12)

Since ht(j + 1) − ht(j) = −2ηj+1(t), the variance of the height must be
simply related to S(j, t).

Proposition 1.1. Let ∆ be the discrete Laplacian, (∆f)(j) = f(j + 1) +
f(j − 1)− 2f(j). Then

8S(j, t) =
(
∆ETA

(
[ht(·)−ETA(ht(·))]2

))
(j). (1.13)

The proof can be found in Proposition 4.1 of [19].
We introduce the family of distribution functions1

Fw(s, t) = PTA

(
{(1− 2χ)t+ 2w(1− 2ρ)χ1/3t2/3 − 2sχ2/3t1/3

≤ ht(⌊(1− 2ρ)t+ 2wχ1/3t2/3⌋)}
)
, (1.14)

where ⌊x⌋ denotes the integer part of x. Here the height is evaluated at
(1−2ρ)t, which is determined by the propagation of a tiny density fluctuation,
plus a in comparison small off-set of order t2/3, while the distribution function
is centered at ETA(ht(j)) with j = ⌊(1 − 2ρ)t + 2wχ1/3t2/3⌋ and has an
argument, −s, which lives on the scale χ2/3t1/3.

As to be shown, the distribution function Fw(s, t) converges to a limit as
t→ ∞. The limit will be expressed in terms of a scaling function g and the
GUE Tracy-Widom distribution function FGUE(s). The latter can be written
as a Fredholm determinant in L2(R),

FGUE(s) = det(1− P0KAi,sP0) (1.15)

with P0 the projector operator on [0,∞) and KAi,s the integral operator with
the Airy kernel shifted by s, i.e.,

KAi,s(x, y) =

∫

R+

dλAi(λ+ x+ s) Ai(λ+ y + s). (1.16)

Define the functions

Φ̂w,s(x) =

∫

R−

dzewzKAi,s(z, x)e
ws,

Ψ̂w,s(y) =

∫

R−

dzewz Ai(y + z + s), (1.17)

ρs(x, y) = (1− P0KAi,sP0)
−1(x, y),

1Our Fw equals the Fw/2 in the definition in Conjecture 7.2 of [19]. The reason for
this change is that it slightly simplifies the functions below and also they match with the
choice in [9].
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and the scaling function g by

g(s, w) = e−
1

3
w3

[ ∫

R

2
−

dxdyew(x+y)Ai(x+ y + s)

+

∫

R

2
+

dxdyΦ̂w,s(x)ρs(x, y)Ψ̂w,s(y)

]
. (1.18)

Our main theorem asserts the limit of the family of distribution functions
Fw(s, t).

Theorem 1.2. Let FGUE and g defined above. Then for fixed c1 < c2 one
has

lim
t→∞

∫ c2

c1

Fw(s, t)ds = FGUE(c2+w
2)g(c2+w

2, w)−FGUE(c1+w
2)g(c1+w

2, w)

(1.19)
pointwise.

Corollary 1.3. The limiting height distribution function Fw(s) is given by

Fw(s) =
∂

∂s

(
FGUE(s+ w2)g(s+ w2, w)

)
. (1.20)

For the PNG model Baik and Rains obtain the limiting height distribution
function denoted by H(s + w2;w/2,−w/2) in Defintion 3 of [2]. It has the
same structure as Fw(s). Only the scaling function g is given as the solution
of a set of differential equations, see Appendix A.

The two-point function of the TASEP carries information on the variance
of height differences, see (1.13), while Theorem 1.2 provides the full family
of distribution functions. In this sense (1.19) is a stronger result than (1.10).
On the other hand, the limit (1.19) for the distribution function asserts only
the weak convergence of the corresponding probability measures, while from
(1.13) we infer that for the space-time covariance the convergence of second
moments would be needed. If we assume a suitable tightness condition on
Fw(s, t), then

lim
t→∞

∫
s2dFw(s, t) =

∫
s2dFw(s) = gsc(w), (1.21)

which together with Proposition 1.1 yields

lim
t→∞

2χ1/3t2/3S(⌊(1− 2ρ)t+ 2wχ1/3t2/3⌋, t) = 1

4
χg′′sc(w) (1.22)
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when integrated against an arbitrary smooth function in w, in agreement
with the claim (1.10). Tightness is also missing in the analysis of the PNG
model.

Over the recent years there has been a considerable interest in scaling
limits for the TASEP. Slightly more general than here, one considers an initial
measure which is Bernoulli ρ− in the left half lattice Z− and Bernoulli ρ+ in
the right half lattice Z+. The initial step, ρ− = 1 and ρ+ = 0, is studied by
Johansson [10] by mapping the TASEP to a last passage percolation problem.
For general ρ+ and ρ− such a map is still possible and yields a last passage
percolation problem with boundary conditions [19]. Through the Robinson-
Schensted-Knuth (RSK) correspondence one then obtains a line ensemble
with boundary sources. This line ensemble is determinantal, in fact only a
rank one perturbation of the line ensemble with tie-down at both ends. We
refer to [9], where a similar construction is carried out for the line ensemble
corresponding to the discrete time TASEP. There is also a link to the work
by Baik, Ben Arous, and Péché [1], who study rank r perturbations of the
complex Gaussian sample covariance matrices. Viewed from this perspective
the stationary TASEP is singular, which is partially overcome by the shift
argument, see also [9]. But even then, in the resulting matrix elements there
is still a delicate cancellation which tends to hide the asymptotics. The
technique of line ensembles can be used also for the investigation of multi-
point statistics [20, 9], which however will not be needed in our context.

In computer simulations mostly deterministic flat initial conditions are
adopted, which translates to the initial particle configuration . . . 010101 . . .
of the TASEP. As established by Sasamoto [22], see also [7], the single point
statistics in the limit of large times is then given by the distribution of the
largest eigenvalue of the GOE of random matrices and thus different from
the distribution obtained in this contribution. For the PNG model the cor-
responding result is proved prior by Baik and Rains [3], see also [6].

Our paper is divided into two parts. The first part is a fixed t discussion
of Fw(s, t) with the goal to obtain a manageable expression. The second part
is devoted to the asymptotic analysis. In the Appendices we establish that
our expression for Fw(s) agrees with the one of Baik and Rains, provide some
background on the determinantal fields turning up, and explain how the line
ensemble is related to the Laguerre kernel.

Acknowledgements.

This project started in the fall 2003 at the Newton Institute workshop “In-
teraction and Growth in Complex Stochastic Systems”. Michael Prähofer
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explained to HS the shift argument, which opened the route for using Fred-
holm determinants. A further important input was an early 2003 note from
J. Baik, which indicated that boundary sources generate a rank one pertur-
bation. HS is grateful for both contributions. We also greatly benefited from
illuminating discussions with T. Sasamoto. E. Carlen helped us with the
proof of Proposition 3.2.

2 Map to a directed polymer

The statistics of the height function ht(j), restricted to the cone
{j, h||j| ≤ h}, can be represented through a directed last passage percola-
tion, see [19]. For this purpose, in the initial configuration, let ζ+ + 1 be the
location of the first particle to the right of (and including) 1 and let −ζ−
be the location of the first hole to the left of (and including) 0. Therefore
ζ−, ζ+ are independent and geometrically distributed, Q(ζ− = n) = (1−ρ)ρn,
Q(ζ+ = n) = ρ(1 − ρ)n, n = 0, 1, . . .. In addition we define the family of in-
dependent exponentially distributed random variables w(i, j), i, j ≥ 0, such
that w(i, j) has mean 1 for i, j ≥ 1, w(i, 0) has mean (1 − ρ)−1 for i ≥ 1,
w(0, j) has mean ρ−1 for j ≥ 1, and w(0, 0) = 0. The joint distribution of
the random variables ζ = (ζ+, ζ−) and {w(i, j), i, j ≥ 0} is denoted by Q.
These exponentially distributed random variables are linked to the TASEP
in the following way: w(ζ++ ℓ, 0) is the ℓ-th waiting time of the first particle
to the right of 0 and w(0, ζ− + ℓ) is the ℓ-th waiting time of the first hole
to the left of 0, ℓ = 1, 2, . . .. To describe the other w(i, j)’s we label in the
initial configuration the particles from right to left such that the first particle
to the right of 0 has label 0. Then w(i, j), i, j ≥ 1, is the j-th waiting time
of particle i, where the first waiting time refers to the instant when the i-th
particle is at lattice site −i+ 1.

For given ζ let

wζ(i, j) =





0 for 1 ≤ i ≤ ζ+, j = 0,

0 for i = 0, 1 ≤ j ≤ ζ−,

w(i, j) otherwise.

(2.1)

The wζ(i, j)’s are used as local passage times in a directed last passage per-
colation. Let us consider an up/right path ω on N2 with a finite number of
steps. To it we assign the passage time

T (ω) =
∑

(i,j)∈ω
wζ(i, j). (2.2)
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Then the last passage time from point (0, 0) to point (m,n) is given by

G(m,n) = max
ω:(0,0)→(m,n)

T (ω). (2.3)

Here the maximum is over the up/right paths which start at (0, 0) and end
at (m,n).

Proposition 2.1. [19] With the above definitions

Q({G(m,n) ≤ t}) = PTA({m+ n ≤ ht(m− n)}). (2.4)

G(m,n) can also be viewed as a growth process. We introduce the corre-
sponding height function h̃(j, τ), j ∈ Z, τ ∈ N, through

h̃(j, τ) = 0, for |j| ≥ τ, (2.5)

h̃(j, τ) =

{
G((τ − 1 + j)/2, (τ − 1− j)/2), if (−1)τ+j = −1,

G((τ − 2 + j)/2, (τ − 2− j)/2), if (−1)τ+j = 1,

for |j| < τ.

By Proposition 2.1,

Q

(
{h̃(j, τ) ≤ t}

)
=

{
PTA

(
{τ − 1 ≤ ht(j)}

)
, if (−1)τ+j = −1,

PTA

(
{τ − 2 ≤ ht(j)}

)
, if (−1)τ+j = 1.

(2.6)

h̃(j, τ) is not such a convenient quantity and we modify it by allowing an
error of order 1. We display the ζ-dependence of G(m,n) explicitly through
Gζ(m,n). In particular, G0(m,n) is the random variable obtained by setting
ζ+ = 0 = ζ−.

Proposition 2.2. Uniformly in the endpoint one has

Q

(
{|Gζ(m,n)−G0(m,n)| ≥ u}|ζ

)
≤ ζ+e

−u/(1−ρ) + ζ−e
−u/ρ. (2.7)

Proof. We fix the endpoint (m,n). Let T ζ(ω) be the passage time for wζ(i, j)
and let ωζ

max be a maximizing path from (0, 0) to (m,n). Then Gζ(m,n) =
T ζ(ωζ

max), G
0(m,n) = T 0(ω0

max). One has

G0(m,n)−Gζ(m,n) = T 0(ω0
max)− T ζ(ω0

max) + T ζ(ω0
max)− T ζ(ωζ

max)

≤ T 0(ω0
max)− T ζ(ω0

max)

≤
ζ+∑

i=1

w(i, 0) +

ζ−∑

j=1

w(0, j), (2.8)
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where in the first inequality we used that ωζ
max is a maximizer of T ζ . Similarly

G0(m,n)−Gζ(m,n) = T 0(ω0
max)− T 0(ωζ

max) + T 0(ωζ
max)− T ζ(ωζ

max)

≥ T 0(ωζ
max)− T ζ(ωζ

max) ≥ 0. (2.9)

Combining (2.8), (2.9) yields

Q

(
{|Gζ(m,n)−G0(m,n)| ≥ u}|ζ

)
≤ Q

(
{

ζ+∑

i=1

w(i, 0) +

ζ−∑

j=1

w(0, j) ≥ u}|ζ
)

≤ ζ+e
−u/(1−ρ) + ζ−e

−u/ρ. (2.10)

Definition 2.3. h0(j, τ) is the height function as given in (2.5), where
G(m,n) is replaced by G0(m,n) with the corresponding passage times w0(i, j).

It follows from the identity (2.6) and Proposition 2.2 that for ε > 0,
independent of t, one can choose d(ε) such that

(1− ε)Q
(
{h0(j, τ) ≤ t− d(ε)}

)
≤ Fw(s, t) ≤ Q

(
{h0(j, τ) ≤ t+ d(ε)}

)
+ ε,
(2.11)

uniformly in j, τ . Therefore, setting

F 0
w(s, t) = Q

(
{h0(⌊(1− 2ρ)t + 2wχ1/3t2/3⌋, (2.12)

⌊(1− 2χ)t+ 2w(1− 2ρ)χ1/3t2/3 − 2sχ2/3t1/3⌋) ≤ t}
)
,

one has

(1− ε)F 0
w

(
s, t− d(ε)

)
≤ Fw(s, t) ≤ F 0

w

(
s, t+ d(ε)

)
+ ε. (2.13)

Since t→ ∞, we conclude that Theorem 1.2 is implied by Theorem 2.4 stated
below.

Theorem 2.4. For fixed c1 < c2 the following limit holds

lim
t→∞

∫ c2

c1

F 0
w(s, t)ds =

∫ c2

c1

Fw(s)ds. (2.14)

The remainder of the paper deals with the proof of Theorem 2.4.
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3 The Laguerre line ensemble with boundary

sources

Let us consider the directed polymer in the general case of independent
w(i, j)’s with exponential distribution of mean 1/aij, i, j ≥ 0. The directed
polymer is determinantal (a notion which will be explained below) provided
aij = ai + bj > 0. For the case of Theorem 2.4 one has to deal with w0(i, j)
and the obvious choice would be ai =

1
2
− (1 − ρ)δi,0, bj = 1

2
− ρδj,0. The

corresponding directed polymer fails to be determinantal on two accounts:

(i) a0 + b0 = 0 whereas it should be striclty positive,

(ii) formally w(0, 0) is uniformly distributed on R+, while in actual fact
w0(0, 0) = 0.

Our strategy is to first discuss the line ensemble for ai =
1
2
+ (a− 1

2
)δi,0,

bj =
1
2
+ (b− 1

2
)δj,0, a > 0, b > 0. This is the task of the current section. In

the following section we will show that the case w(0, 0) = 0 can be deduced
from a shift argument. The resulting expressions will then be analytically
continued to a = ρ− 1

2
, b = 1

2
− ρ. In this limit we recover w0(i, j), which is

required for Theorem 2.4.

Definition 3.1. Let wa,b(i, j), i, j ∈ N, be a family of independent exponen-
tially distributed random variables such that

E(wa,b(i, j))
−1 = 1 + (a− 1

2
)δi,0 + (b− 1

2
)δj,0 (3.1)

with 0 < a, b < 1
2
.

With wa,b(i, j) as in Definition 3.1 let T (ω) be as in (2.2) with wζ(i, j)
replaced by wa,b(i, j) and let

G(m,n) = max
ω:(0,0)→(m,n)

T (ω), (3.2)

compare with (2.3). We define the height function h(j, τ), j ∈ Z, τ ∈ N,
through (2.5). It can also be generated by the following growth process,

h(j, 0) = 0, (3.3)

h(j, τ + 1) =





max{h(j − 1, τ), h(j + 1, τ)}
+ wa,b((τ + j)/2, (τ − j)/2), if (−1)j+τ = 1,

h(j, τ), if (−1)j+τ = −1,

for |j| < τ + 1,

h(j, τ + 1) = 0, for |j| ≥ τ + 1.
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Figure 1: The growth dynamics associated with the TASEP directed last
passage percolation.

The dynamics is best visualized by extending h(j, τ) to a function over
R through h(x, τ) = h(j, τ) for j − 1

2
≤ x < j + 1

2
, see Figure 1. Then

alternately there is a stochastic and deterministic up-date. In the stochastic
up-date mass is added to the current height h(x, τ) according to wa,b(i, j), see
(3.3). In the deterministic up-date down-steps move one unit to the right and
up-steps one unit to the left. Thereby parts of the up-dated h may overlap.
The maximum rule means that the excess mass in the overlap is annihilated.

Underlying the growth process one may construct the corresponding
Robinson-Schensted-Knuth (RSK) dynamics [11], which in our case simply
means that the overlap annihilated in line ℓ is copied to the lower lying line
ℓ− 1. In formulas we set

h0(j, τ) = h(j, τ),

hℓ(j, 0) = 0, (3.4)

hℓ−1(j, τ + 1) =





hℓ−1(j, τ)− hℓ(j, τ)
+min{hℓ(j − 1, τ), hℓ(j + 1, τ)}, if (−1)τ+j = 1,

hℓ−1(j, τ), if (−1)τ+j = −1,

with the line label ℓ = 0,−1, . . ..
The purpose of the RSK construction consists in having, for fixed τ , a

manageable statistics of the collection of points {hℓ(j, τ), ℓ ∈ Z−, |j| < τ ,
hℓ(j, τ) > 0}. To describe their statistics directly without recourse to the
stochastic dynamics we first have to define admissible point configurations.
Let {xj , j = −n, . . . , 0} be points on [0,∞) ordered as 0 ≤ x−n ≤ . . . ≤ x0.
We say that {xj , j = −n, . . . , 0} ≺ {x′j, j = −n, . . . , 0} if x0 ≤ x′0, xj ≤ x′j ≤
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0

Figure 2: A non-intersecting line ensemble at τ = 5.

xj+1 for j = −n, . . . ,−1. Admissible point configurations are then

hℓ(±τ, τ) = 0, (3.5)

{hℓ(j, τ), ℓ ∈ Z−} ≺ {hℓ(j + 1, τ), ℓ ∈ Z−} if |j| < τ and (−1)j+τ = −1,

{hℓ(j, τ), ℓ ∈ Z−} ≻ {hℓ(j + 1, τ), ℓ ∈ Z−} if |j| < τ and (−1)j+τ = 1.

As with the growth dynamics, the order ≺ and ≻ can be visualized by
extending hℓ(j, τ) to R by setting hℓ(x, τ) = hℓ(j, τ) for j − 1

2
≤ x < j + 1

2
.

Then (3.5) means that the lines hℓ(x, τ) do not intersect when considered as
lines in the plane, see Figure 2.

To a given point configuration, alias line ensemble, one associates a
weight. It is the product of the weights for each single jump. Let us use
δ as the generic symbol for a height difference. Then the up-step h0(−τ, τ)
to h0(−τ+1, τ) has weight e−b|δ| and the down-step h0(τ−1, τ) to h0(τ, τ) has
weight e−a|δ|. All other jumps of the form hℓ(j, τ) to hℓ(j+1, τ) have weight
e−|δ|/2. Note that the weights are assigned by reading the vector ~a from right
to left and the vector ~b from left to right. The total weight is normalized to
become a probability. This probability measure is called the Laguerre line
ensemble with boundary values a, b. It agrees with the probability measure
at growth time τ obtained from the growth dynamics (3.4) together with the
RSK construction.

It is convenient to think of {hℓ(j, τ), ℓ ∈ Z−, j ∈ Z} as a point process on
Z×(0,∞), where j is referred to as time and hℓ as space. The corresponding
random field is then

φτ (j, y) =
∑

ℓ≤0

δ(hℓ(j, τ)− y), y > 0. (3.6)

According to our construction, at Z×{0}, i.e. at y = 0, there are an infinite
number of points. However, the point measure refers only to points with a

13



strictly positive y coordinate. In fact, φτ (j, y) is supported by

⌊(2τ−1)/4⌋∑

j=0

(2τ − 4j − 1) (3.7)

points, ⌊·⌋ denoting the integer part. The point process φτ (j, y) is determi-
nantal, in the sense that is has determinantal moments. This means that
there exists a kernel K

(τ)
a,b (j, y; j

′, y′) such that for a time-ordered sequence
j1 ≤ . . . ≤ jm and arbitrary space-points y1, . . . , ym > 0 the m-th moment of
φτ is given by

E

( m∏

k=1

φτ (jk, yk)
)
= det

(
K

(τ)
a,b (jk, yk; jk′, yk′)

)
1≤k,k′≤m

. (3.8)

For the two-point function of the TASEP we need the statistics of the
random field φτ (j, y) only at fixed time j and in the remainder of this section

we will provide an expression for K
(τ)
a,b (j, y; j, y

′), y, y′ > 0. There is no
difficulty in principle to extend the construction and our results to unequal
times.

The distinction between odd and even j + τ is slightly cumbersome and
we restrict to odd τ , even j by setting

τ = 2m+ 1, j = 2d. (3.9)

In L2(R) we define P+ as projection onto R+, P+ + P− = 1. We also
introduce the operators T+, T− with integral kernels

T+(x, y) = e−(x−y)/2Θ(x− y),

T−(x, y) = e−(y−x)/2Θ(y − x), (3.10)

where Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0. In Fourier space T+ is
multiplication by (1

2
+ ik)−1 and T− by (1

2
− ik)−1. Eigenfunctions of T+, T−

are the exponentials ψa(x) = e−ax. For a < 1
2
one has

T+ψa(x) =
1

1
2
− a

ψa(x) (3.11)

and for a > −1
2
one has

T−ψa(x) =
1

1
2
+ a

ψa(x). (3.12)
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For |d| ≤ m let, as an operator in L2(R),

Km,d = LP−R (3.13)

with
L = Tm+d

+ T
−(m−d)
− , R = T

−(m+d)
+ Tm−d

− . (3.14)

It follows that, for a ∈ (−1/2, 1/2),

(Rψ−a)(x) = Z(a)ψ−a(x), (3.15)

(L∗ψa)(x) = Z(a)−1ψa(x)

where

Z(a) =
(1
2
+ a)m+d

(1
2
− a)m−d

. (3.16)

For later use we provide a representation of the kernel ofKm,d. This kernel
has a singular part, which is concentrated on the diagonal {x = y}. In the
computations only the regular part will be used, hence only it is displayed.
Since in Fourier space T+, resp. T−, is the operator of multiplication by
(1
2
+ ik)−1, resp. (1

2
− ik)−1, with the change of variable 1

2
− ik = z + ρ we

obtain an integral expression for the regular part of L and R. Let Γp be a
path around the pole p oriented anti-clockwise. Then the regular part of the
kernels are

L(x, y) =
1

−2πi
e(1/2−ρ)(x−y)Im,d(x− y), x− y > 0, (3.17)

where

Im,d(x− y) =

∫

Γ1−ρ

dze−z(x−y) (z + ρ)m−d

(1− ρ− z)m+d
, (3.18)

and similarly

R(x, y) =
1

2πi
e(1/2−ρ)(x−y) Ĩm,d(y − x), x− y < 0, (3.19)

where

Ĩm,d(y − x) =

∫

Γ−ρ

dzez(y−x) (1− ρ− z)m+d

(ρ+ z)m−d
. (3.20)

Let Pu be the projection onto [u,∞). Then for any u > 0 one has

(
PuKm,dPu

)
(x, y) = Θ(x− u)

∫

R−

dwL(x, w)R(w, y)Θ(y− u). (3.21)
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As explained in Appendix C, the regular part of Km,d is a similarity
transformed Laguerre kernel. Hence we refer to Km,d also as Laguerre kernel.
It has the following properties, which are proved in Appendix B. One could
also arrive at an equivalent kernel by taking the exponential limit of the
geometric case studied by Okounkov in [17].

Proposition 3.2. Let u > 0. Then ‖PuKm,dPu‖ < 1. In addition, for a > 0,

Pu(1−Km,d)ψa ∈ L2(R), Pu(1−Km,d)
∗ψa ∈ L2(R) (3.22)

with a norm uniformly bounded in u.

With these preparations we state the relation between the equal time
kernel of (3.8) and the Laguerre kernel.

Proposition 3.3. Let 0 < a, b < 1
2
. Then for |d| < m, x, y > 0, one has the

identity

K
(2m+1)
a,b (2d, x; 2d, y) = Ka,b

m,d(x, y) (3.23)

= Km,d(x, y) +
1

Za,b
(1−Km,d)ψb(x)(1−Km,d)

∗ψa(y)

with

Za,b =
1

a+ b

(1− 2a

1 + 2a

)m(1− 2b

1 + 2b

)m(1
4
− a2

)−d(1
4
− b2

)−d

. (3.24)

4 Shift construction

Let us consider the Laguerre line ensemble with boundary values a, b > 0
and denote its weight by Wa,b. Under Wa,b we want to study the weight of
{h0(j, τ) ≤ u} denoted by Wa,b({h0(j, τ) ≤ u}). More general events could
be investigated, but there is no need in our context. We set wa,b(0, 0) = v
and recall that its weight is given by e−v(a+b), v ≥ 0. We display the explicit
dependence ofWa,b on v as Wa,b(·, v).

From the construction of the Laguerre line ensemble one has, for v > 0,
v + δ > 0, the shift

Wa,b({h0(j, τ) ≤ u}, v + δ) = e−(a+b)δ
Wa,b({h0(j, τ) + δ ≤ u}, v) (4.1)

and differentiating

∂

∂v
Wa,b({h0(j, τ) ≤ u}, v) = −(a + b)Wa,b({h0(j, τ) ≤ u}, v)

− ∂

∂u
Wa,b({h0(j, τ) ≤ u}, v). (4.2)
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Since Wa,b(·) =
∫∞
0

dvWa,b(·, v), by integrating in v,

Wa,b({h0(j, τ) ≤ u}, 0) =
d

du
Wa,b({h0(j, τ) ≤ u})

+(a+ b)Wa,b({h0(j, τ) ≤ u}). (4.3)

Note that the left hand side is the weight for wa,b(0, 0) = 0.
Let Za,b(v) = Wa,b({h0(j, τ) < ∞}, v) and Za,b =

∫∞
0

dvZa,b(v). Then,
taking u→ ∞ in (4.3),

Za,b(0) = (a + b)Za,b, (4.4)

Za,b given in (3.24).

Let Pa,b
0 be the probability for the Laguerre line ensemble in case

wa,b(0, 0) = 0 and Pa,b the one in case wa,b(0, 0) is exponentially distributed
with mean (a+ b)−1, as in Definition 3.1. Then, by (4.3) and (4.4),

P

a,b
0 ({h0(j, τ) ≤ u}) =

1

a + b

( d

du
Pa,b({h0(j, τ) ≤ u})

+(a+ b)Pa,b({h0(j, τ) ≤ u})
)

(4.5)

for u > 0.
For determinantal processes probabilities as on the right hand side of

(4.5) are easily computed with the result

Pa,b({h0(j, τ) ≤ u}) = det(1− PuK
a,b
m,dPu), (4.6)

where, as before, τ = 2m+1, j = 2d, and Pu projects onto the interval [u,∞).
The determinant is regarded in L2(R) and the identity (4.6) makes sense only
for u > 0. Thus we fix u > 0 throughout. Since by (3.23) PuK

a,b
m,dPu is a rank

one perturbation of PuKm,dPu and since 1−PuKm,dPu is invertible, compare
with Proposition 3.2, one arrives at

det(1− PuK
a,b
m,dPu) = det(1− PuKm,dPu)(a + b)Ga,b(u) (4.7)

with

(a+ b)Ga,b(u) = 1− 1

Za,b
〈ψa, (1−Km,d)Pu(1−PuKm,dPu)

−1Pu(1−Km,d)ψb〉
(4.8)

with 〈·, ·〉 denoting the inner product in L2(R).
We also define

F (u) = det(1− PuKm,dPu) (4.9)

and supply the m, d dependence of Ga,b(u) and of F (u) when needed. We
summarize as
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Proposition 4.1. Let wa,b(i, j) be as in Definition 3.1, except for wa,b(0, 0)
for which we set wa,b(0, 0) = 0. Let h0 be the corresponding top line as given
in (3.3), (3.4). Then for u > 0

P

a,b
0 ({h0(j, τ) ≤ u}) = d

du

(
F (u)Ga,b(u)

)
+ F (u)(a+ b)Ga,b(u), (4.10)

where F (u) is given in (4.9) and Ga,b(u) in (4.8).

5 Analytic continuation

We have to extend the validity of (4.10) from 0 < a, b < 1/2 to a + b = 0,
which will be achieved by proving that both sides of (4.10) are analytic.

Proposition 5.1. The map (a, b) 7→ P

a,b
0 ({h0(j, τ) ≤ u}) is real analytic for

a, b > −1/2.

Proof. h0(j, τ) is measurable with respect to the σ-algebra generated by
w(i, 0), w(0, j), i, j = 1, . . . , τ . Let

Vu(ξ1, . . . , ξτ , η1, . . . , ητ)

= Pa,b
0

(
{h0(j, τ) ≤ u}|w(i, 0) = ξi, w(0, j) = ηj , i, j = 1, . . . , τ

)
(5.1)

as conditional probability. Clearly Vu does not depend on a, b and 0 ≤ Vu ≤ 1.
Then

P

a,b
0 ({h0(j, τ) ≤ u}) =

∫

R

2τ
+

τ∏

k=1

(
dξk(

1
2
+ a)e−(1+2a)ξk/2

)
(5.2)

×
τ∏

k=1

(
dηk(

1
2
+ b)e−(1+2b)ηk/2

)
Vu(ξ1, . . . , ξτ , η1, . . . , ητ ),

which by inspection is real analytic for a, b > −1/2.

Proposition 5.2. Let u > 0 and let Ga,b(u) be given by (4.8). Then (a, b) 7→
Ga,b(u) extends to a real analytic function for a, b ∈ (−1/2, 1/2).

Proof. We repeat Eq. (4.8),

(a+b)Za,bG
a,b(u) = Za,b−〈ψa, (1−Km,d)Pu(1−PuKm,dPu)

−1Pu(1−Km,d)ψb〉
(5.3)

with ψa(x) = e−ax.
First remark that (a + b)Za,b is real analytic for a, b ∈ (−1/2, 1/2). On

the other hand, in (5.3) the first (thus also the second) term diverges as
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a + b → 0. Thus we have to find another representation of Ga,b such that
both terms remain finite in the a+ b→ 0 limit. From each term we subtract
the quantity 〈ψa, Pu(1−Km,d)ψb〉 and obtain

r.h.s. of (5.3) =
(
Za,b − 〈ψa, Puψb〉

)
+ 〈ψa, PuKm,dψb〉 (5.4)

−〈ψa, Qu(1−Km,d)Pu(1− PuKm,dPu)
−1Pu(1−Km,d)ψb〉

where Qu = 1−Pu. With this rearrangement one singles out the divergence
which now are in Za,b and 〈ψa, Puψb〉 only. We discuss the analytic continua-
tion from a, b ∈ (0, 1/2) to a, b ∈ (−1/2, 1/2) for the three terms separately,
where we use the properties (see proof of Proposition 3.2)

|Im,d(z)| ≤ 2πCm,de
−β1z for any 0 < β1 < 1− ρ,

|Ĩm,d(z)| ≤ 2πC̃m,de
−β2z for any 0 < β2 < ρ. (5.5)

Term Za,b − 〈ψa, Puψb〉. Using the expression for Za,b, see (3.24), we obtain

〈ψa, (1−K)ψb〉 − 〈ψa, Puψb〉

=
1

a + b

((1− 2a

1 + 2a

1− 2b

1 + 2b

)m( 1− 4b2

1− 4a2

)d

− e−(a+b)u
)
. (5.6)

(5.6) is analytic for a, b ∈ (−1/2, 1/2) because the two terms in the bracket
are 1 +O(a+ b) when b+ a→ 0.

Term 〈ψa, PuKm,dψb〉. Using (3.15) and (3.17) one obtains

〈ψa, PuKm,dψb〉 = Z(−b)
∫ ∞

u

dx

∫ 0

−∞
dy
Im,d(x− y)

−2πi
e−x(a+ρ− 1

2
)ey(ρ−

1

2
−b),

(5.7)
where the function Im,d(z) is given in (3.18). Z(−b) is analytic if b > −1/2.

Thus the integrand is bounded by Cm,de
−x(β1+a+ρ− 1

2
)ey(β1−b+ρ− 1

2
). The condi-

tion β1 < 1− ρ implies that the integrand is exponentially decaying in x− y
provided that a > −1/2 and b < 1/2. Thus r.h.s. of (5.7) is real analytic for
a, b ∈ (−1/2, 1/2).

Term 〈ψa, Qu(1−Km,d)Pu(1−PuKm,dPu)
−1Pu(1−Km,d)ψb〉. The object to

consider is ∫ ∞

u

dx

∫ ∞

u

dyfa(x)(1− PuKm,dPu)
−1(x, y)gb(y) (5.8)

with fa(x) = −(K∗
m,dQuψa)(x) and gb(y) = ((1−Km,d)ψb)(y). Explicitly,

fa(x) = e−( 1
2
−ρ)x

∫ ∞

u

dw

∫ 0

−∞
dze−w(a+ρ− 1

2
) Im,d(w − z)

−2πi

Ĩm,d(x− z)

2πi

−Z(a)−1e−( 1
2
−ρ)x

∫ 0

−∞
dze−z(a+ρ− 1

2
) Ĩm,d(x− z)

2πi
(5.9)
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and

gb(x) = e−bx − e−(ρ− 1

2
)xZ(−b)

∫ 0

−∞
dz
Im,d(x− z)

−2πi
ez(ρ−

1

2
−b). (5.10)

Using (1− PuKm,dPu)
−1 = 1+ (1− PuKm,dPu)

−1PuKm,dPu we rewrite (5.8)
as

〈fa, Pugb〉+ 〈fa, Pu(1− PuKm,dPu)
−1Pug̃b〉 (5.11)

with g̃b = Km,dPugb. Using (5.5) one deduces that, for a ∈ (−1/2, 1/2),

fa ∈ L2((0,∞), eµxdx) for all µ < 1/2 (5.12)

and, for b ∈ (−1/2, 1/2),

gb ∈ L2((0,∞), e−µxdx) for all µ < −b < 1

2
. (5.13)

This implies that

|〈fa, Pugb〉| ≤ C

∫ ∞

u

dxe−(β2+
1

2
−ρ)x(e−bx + e−(β1+ρ− 1

2
)x) (5.14)

for some finite constant C. One has β2 +
1
2
− ρ + b → 1

2
+ b > 0 as β2 → ρ

and β1 + β2 > 0, from which it follows that 〈fa, Pugb〉 is real analytic for
a, b ∈ (−1/2, 1/2).

For the other term in (5.11) we have to compute g̃b(x). We obtain

g̃b(x) = e−(ρ− 1

2
)x

∫ ∞

u

dw

∫ 0

−∞
dz
Im,d(x− z)

−2πi

Im,d(w − z)

2πi
e−w( 1

2
−ρ)gb(w).

(5.15)
Then

|g̃b(x)| ≤ Ce−(β1+ρ− 1

2
)x

∫ ∞

u

dw

∫ 0

−∞
dze(β1+β2)z(e−(b+β2+

1

2
−ρ)w + e−(β1+β2))

(5.16)
for some constant C. One has β1+ρ− 1

2
→ 1

2
as β1 → 1−ρ, β2+ 1

2
−ρ− b →

1
2
− b > 0 as β2 → ρ, and β1 + β2. It follows

g̃b ∈ L2((0,∞), eµxdx) for all µ < 1/2. (5.17)

From this one deduces that 〈fa, Pu(1−PuKm,dPu)
−1Pug̃b〉 is also real analytic

for a, b ∈ (−1/2, 1/2).
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A second representation. Another way of eliminating the divergence consists
in subtracting the quantity 〈ψa, (1−Km,d)Puψb〉 from each term. This leads
to

r.h.s. of (5.3) =
(
Za,b − 〈ψa, Puψb〉

)
+ 〈ψa, Km,dPuψb〉 (5.18)

−〈ψa, (1−Km,d)Pu(1− PuKm,dPu)
−1Pu(1−Km,d)Quψb〉.

By the same argument as above one shows that the terms in this second
representations are analytic for a, b ∈ (−1/2, 1/2).

By Propositons 5.1 and 5.2 one can take the limit b→ −a without loosing
the identity (4.10). We remark that limb→−a(a + b)Za,b = 1. In addition, by
(5.6),

lim
b→−a

〈ψa, (1−Km,d)ψb〉 − 〈ψa, Puψb〉 = u+
2ad−m
1
4
− a2

. (5.19)

Let us denote the limit

lim
b→−a

Ga,b(u) = G0(u), (5.20)

with the a-dependence understood implicitly. Then by (5.4)

G0(u) = lim
b→−a

Ga,b(u) =
(
u+

2ad−m
1
4
− a2

)
+ 〈ψa, PuKm,dψ−a〉 (5.21)

−〈ψa, Qu(1−Km,d)Pu(1− PuKm,dPu)
−1Pu(1−Km,d)ψ−a〉.

Alternatively, using (5.18) one can write

G0(u) = lim
b→−a

Ga,b(u) =
(
u+

2ad−m
1
4
− a2

)
+ 〈ψa, Km,dPuψ−a〉 (5.22)

−〈ψa, (1−Km,d)Pu(1− PuKm,dPu)
−1Pu(1−Km,d)Quψ−a〉.

With the same convention, let us denote

lim
b→−a

P

a,b
0 = P0. (5.23)

Recall that by construction P0 is the probability measure for the family
w(i, j), i, j ∈ N, of independent exponentially distributed random variables
such that w(0, 0) = 0, w(i, 0) has mean (1− ρ)−1 for i ≥ 1, w(0, j) has mean
ρ−1 for j ≥ 1, and otherwise w(i, j) has mean 1. This is precisely the w-
marginal of Q in Section 2. Also, by definition, h0(j, τ) = h0(j, τ) pathwise.
Thus one concludes
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Proposition 5.3. For 0 < c1 < c2 <∞ it holds

∫ c2

c1

duQ
(
{h0(j, τ) ≤ u}

)
=

∫ c2

c1

duP0

(
{h0(j, τ) ≤ u}

)

= F (c2)G0(c2)− F (c1)G0(c1). (5.24)

To prove Theorem 2.4 one has to investigate the asymptotics of F (u)G0(u)
under the scaling (2.12).

6 Edge scaling

Following (2.12) we set

2m = τ − 1 = ⌊(1 − 2χ)t+ 2w(1− 2ρ)χ1/3t2/3⌋,
2d = j = ⌊(1 − 2ρ)t + 2wχ1/3t2/3⌋, (6.1)

u = ⌊t + sχ−1/3t1/3⌋,

with χ = ρ(1− ρ). Then, by Proposition 5.3, the proof of the limit (2.14) in
Theorem 2.4 reduces to the large t limit of

χ−1/3t1/3G0(t+ sχ−1/3t1/3) (6.2)

where the prefactor takes into account the scaling of d
du
, as well as the large

t limit of the Fredholm determinant

det(1− PuKm,dPu) (6.3)

on L2(R+). This latter limit has been studied by Johansson, see Theorem
1.6 in [10].

Theorem 6.1. (Johansson) Let u = t + sχ−1/3t1/3 and m, d as in (6.1).
Then

lim
t→∞

det(1− PuKm,dPu) = FGUE(s+ w2), (6.4)

where FGUE is the GUE Tracy-Widom distribution function [24].

In order to state the limit of G0 we have to introduce some auxiliary
quantities. We define the functions

ϕw,s(z) = Ai(w2 + s+ z)ew(w2+s+z)e−
1

3
w3

(6.5)
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and

Sw,s = s+

∫

R

2
+

dxdyϕw,s(x+ y),

Φw,s(ξ) = ewξ

∫

R+

dyϕ−w,s(y + ξ)
(
1−

∫

R+

dxϕw,s(x+ y)
)
, (6.6)

Ψw,s(ξ) = e−wξ
(
1−

∫

R+

dxϕw,s(x+ ξ)
)
.

These functions can be written as a single integral using the identity (D.3),
i.e.,

1−
∫

R+

dxϕw,s(x+ y) =

∫

R−

dxϕw,s(x+ y) (6.7)

for w > 0 (for w = 0 the same holds but only as a improper Riemann
integral). Using a contour integral representation, in case w > 0, one rewrites
Sw,s as (see Section D.3)

Sw,s =

∫

R

2
−

dxdyϕw,s(x+ y). (6.8)

It is easy to see, using the super-exponential decay of the Airy function, that
Φw,s ∈ L2(R+) for w ≥ 0, Ψw,s ∈ L2(R+) for w > 0, and in the case w = 0,
Ψ0,s − 1 ∈ L2(R+). Finally we denote by KAi,q the operator with kernel

KAi,q(ξ1, ξ2) =

∫

R+

dzAi(q + z + ξ1) Ai(q + z + ξ2). (6.9)

KAi,q is the Airy kernel shifted by q.

Theorem 6.2.

lim
t→∞

χ1/3t−1/3G0(t + sχ−1/3t1/3) (6.10)

= S|w|,s +

∫

R+

dzΦ|w|,s(z)P0(1− P0KAi,w2+sP0)
−1P0Ψ|w|,s(z)

= g(s+ w2, w).

Theorem 6.1 and Theorem 6.2, in conjunction with Proposition 5.3, fur-
nish the proof of Theorem 2.4 and hence of our main result Theorem 1.2.
Beyond the existence of the limit, they also implies Corollary 1.3.

Proof of Theorem 6.2.
A change of variable: from t to N . We change variables with the effect
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to have N instead of t as large parameter. This is not really necessary but
simplifies our computations. Let us define N = m − d = (τ − 1 − j)/2 and
N + α = m + d. The relevant parameters for what follows are α = 2d = j
and u which, in terms of N , are given by

α =
1− 2ρ

ρ2
N + 2w

(1− ρ)4/3

ρ2
N2/3

+
(8
3
w2(1− ρ) + s(1− 2ρ)

)(1− ρ)2/3

ρ2
N1/3 +O(1), (6.11)

u =
N

ρ2
+ 2w

(1− ρ)1/3

ρ2
N2/3 +

(8
3
w2 + s

)(1− ρ)2/3

ρ2
N1/3 +O(1).

Moreover the scaling χ−1/3t1/3 writes as

χ−1/3t1/3 = κN1/3 +O(1) (6.12)

with
κ = ρ−1(1− ρ)−1/3. (6.13)

After edge scaling the terms of G0 will be expressed via the functions HN

and H̃N , defined as

HN(y) = Z(a)
κN1/3

−2πi
IN+α/2,α/2(u+ yκN1/3), (6.14)

H̃N(y) = Z(a)−1κN
1/3

2πi
ĨN+α/2,α/2(u+ yκN1/3).

Using the bounds on I and Ĩ of Section 7 we obtain, for any β > 0 fixed,

|HN(y)| ≤ Cβe
−βy, (6.15)

|H̃N(y)| ≤ Cβe
−βy

for some Cβ > 0 independent of N and y ≥ 0. Moreover we also have the
pointwise convergence

lim
N→∞

HN(y) = Ai(w2 + s+ y)ew(w2+s+y)e−
1

3
w3

= ϕw,s(y), (6.16)

lim
N→∞

H̃N(y) = Ai(w2 + s+ y)e−w(w2+s+y)e
1

3
w3

= ϕ−w,s(y).

We simplify the notations in this proof by setting K = KN+α/2,α/2.

The estimate of the terms for κ−1N−1/3G0(u+ sκN1/3).
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First term of (5.21) and (5.22). Using (6.11), 2d = α, and m − d = N , we
have

lim
N→∞

u+
2ad−m
1
4
− a2

= s. (6.17)

Second term of (5.21) for w ≥ 0. We compute the limit

lim
N→∞

κ−1N−1/3〈ψa, PuKψ−a〉. (6.18)

ψ−a is eigenfunction of R, see (3.15). Thus we have

〈ψa, PuKψ−a〉 = Z(a)〈ψa, PuLP−ψ−a〉 = κN1/3

∫ ∞

0

dx

∫ ∞

0

dyHN(x+ y).

(6.19)
Using the bound (6.15) we can apply dominated convergence. Then by the
pointwise limit (6.16) we have

lim
N→∞

κ−1N−1/3〈ψa, PuKψ−a〉 =
∫ ∞

0

dx

∫ ∞

0

dyϕw,s(x+ y). (6.20)

Second term of (5.22) for w ≤ 0. This case is analogous to the previous one.
One obtains

lim
N→∞

κ−1N−1/3〈ψa, KPuψ−a〉 =
∫ ∞

0

dx

∫ ∞

0

dyϕ−w,s(x+ y). (6.21)

The sum of (6.17) and (6.20), resp. (6.21), yields S|w|,s as the first term in
Theorem 6.2.

Third term of (5.21) for w ≥ 0. The third term of κ−1N−1/3G0(u), including
the prefactor −1, is

κ−1N−1/3〈Φ̃N , ÃNΨ̃N〉 (6.22)

with

Φ̃N (x) =
(
K∗Quψa

)
(x),

Ψ̃N(y) =
(
(1−K)ψ−a

)
(y), (6.23)

ÃN(x, y) =
(
Pu(1− PuKPu)

−1Pu

)
(x, y).

To establish the scaling limit, x = u + ξκN1/3, we define the rescaled quan-
tities

ψℓ
a(ξ) = ψa(u+ ξκN1/3)ν(ξ)−1,

ψr
−a(ξ) = ψ−a(u+ ξκN1/3)ν(ξ), (6.24)

Kr
N(ξ1, ξ2) = κN1/3K(u+ ξ1κN

1/3, u+ ξ2κN
1/3)ν(ξ1)ν(ξ2)

−1,
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where
ν(ξ) = e−a(u+ξκN1/3)e−wξ. (6.25)

Then (6.22) becomes
〈ΦN , ANΨN〉 (6.26)

with

ΦN (ξ1) =
(
Kr,∗

N Q0ψ
ℓ
a

)
(ξ1),

ΨN (ξ2) =
(
(1−Kr

N)ψ
r
−a

)
(ξ2), (6.27)

AN (ξ1, ξ2) =
(
P0(1− P0K

r
NP0)

−1P0

)
(ξ1, ξ2).

We can rewrite the ΦN , ΨN , and K
r
N by using the functions HN and H̃N ,

ΦN(ξ1) = ewξ1
(∫

R+

dyH̃N(y + ξ1)−
∫

R

2
+

dxdyHN(x+ y)H̃N(y + ξ1)
)
,

ΨN(ξ2) = e−wξ2
(
1−

∫

R+

dyHN(y + ξ2)
)
, (6.28)

Kr
N (ξ1, ξ2) = e−wξ1ewξ2

∫

R+

dxHN (x+ ξ1)H̃N(x+ ξ2).

We want to avoid to write always the projection P0. Therefore from now
on 〈·, ·〉 refers to the scalar product in L2(R+, dx), ‖ · ‖ is the corresponding
norm, and the integral operators act in L2(R+, dx). First let us consider
w > 0. Let us denote A = (1 −KAi,w2+s)

−1. Then for finite N we have the
bound

|〈ΦN , ANΨN〉 − 〈Φw,s, AΨw,s〉| ≤ ‖ΦN‖ ‖AN −A‖ ‖ΨN‖ (6.29)

+‖ΦN − Φw,s‖ ‖A‖ ‖ΨN‖+ ‖Φw,s‖ ‖A‖ ‖ΨN −Ψw,s‖.

In Lemma 6.3 we will prove that ΦN converges to Φw,s, ΨN converges to
Ψw,s, and AN converges to (1 − KAi,w2+s)

−1 in operator norm (in L2(R+)
according to our convention). This implies

lim
N→∞

〈ΦN , ANΨN〉 = 〈Φw,s, (1−KAi,w2+s)
−1Ψw,s〉 (6.30)

which is precisely the last term in (6.10).
For the case w = 0 we have to modify slightly the argument. In this case

ΨN is not in L2(R+), but ΨN(ξ) − 1 = −
∫
R+

dyHN(y + ξ) ∈ L2(R+) and

converges to −
∫
R+

dxϕ0,s(x+ ξ) in the N → ∞ limit. We write

〈ΦN , ANΨN〉 = 〈ΦN , AN(ΨN − 1)〉+ 〈ΦN , AN1〉. (6.31)
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Here 1 denotes the constant function 1(x) = 1, for all x ∈ R. By the same
argument as for w > 0, the first term in (6.31) converges as

lim
N→∞

〈ΦN , AN(ΨN − 1)〉 = 〈Φw,s, (1−KAi,w2+s)
−1(Ψw,s − 1)〉. (6.32)

The second term in (6.31) can be rewritten as

〈ΦN , AN1〉 =
∫

R

2
+

dξ1dξ2ΦN(ξ1)AN(ξ1, ξ2). (6.33)

In Lemma 6.4 we will prove the convergence

lim
N→∞

〈ΦN , AN1〉 = 〈Φw,s, (1−KAi,w2+s)
−11〉. (6.34)

Third term of (5.22) for w ≤ 0. The computations for this case are as before
and the third term of (5.22) converges to

〈Ψ−w,s, (1−KAi,w2+s)
−1Φ−w,s〉. (6.35)

Since KAi,w2+s is symmetric, this concludes the proof of Theorem 6.2.

Lemma 6.3. Let w ≥ 0. Then

lim
N→∞

‖ΦN − Φw,s‖ = 0,

lim
N→∞

‖ΨN −Ψw,s‖ = 0, (6.36)

lim
N→∞

‖AN − (1−KAi,w2+s)
−1‖ = 0,

where the functions ΦN ,ΨN , and the integral kernel AN are defined in (6.27)
and (6.28).

Proof. Convergence of ΦN . Let us consider, for any fixed ξ ≥ 0, the function
ΦN (ξ) defined in (6.28). We first show that

lim
N→∞

ΦN (ξ) = Φw,s(ξ) (6.37)

pointwise. Using the exponential decay (6.15) of HN and H̃N , we apply
dominated convergence and exchange the integrals with the N → ∞ limit.
Then using the pointwise limit of HN , see (6.16), one obtains

lim
N→∞

ΦN (ξ) = ewξ

∫

R+

dyϕ−w,s(y+ ξ)− ewξ

∫

R

2
+

dydxϕ−w,s(y+ ξ)ϕw,s(x+ y),

(6.38)
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which is precisely Φw,s(ξ). By the exponential decay (6.15) with β > w
it follows that ΦN ∈ L2(R+). Moreover, ΦN is uniformly bounded by an
integrable function since, for all β > w,

|ΦN(ξ)| ≤ C2
βe

−βxe−2βye−(β−w)ξ. (6.39)

Therefore, by dominated convergence and by pointwise convergence (6.38),
we obtain

lim
N→∞

‖ΦN − Φw,s‖2 =
∫

R+

dξ lim
N→∞

|ΦN (ξ)− Φw,s(ξ)|2 = 0. (6.40)

Convergence of ΨN . Let us consider, for ξ ≥ 0, the function ΨN(ξ) defined
in (6.28). We first show that

lim
N→∞

ΨN(ξ) = Ψw,s(ξ) (6.41)

pointwise. As before, (6.15) allows us to exchange the limit and the integral
with the result

lim
N→∞

ΨN(ξ) = e−wξ
(
1−

∫ ∞

0

dyϕw,s(y + ξ)
)
. (6.42)

Then by (6.15), with β > w, ΨN ∈ L2(R+) and ΨN is bounded by an
integrable function. Therefore

lim
N→∞

‖ΨN −Ψw,s‖2 =
∫

R+

dξ lim
N→∞

|ΨN(ξ)−Ψw,s(ξ)|2 = 0. (6.43)

Convergence of AN . Denote q = w2 + s. We want to show that

lim
N→∞

‖(1−Kr
N)

−1 − (1−KAi,q)
−1‖ = 0 (6.44)

in operator norm. Assume that we can show:

1) limN→∞ ‖Kr
N −KAi,q‖ = 0,

2) ‖(1−KAi,q)
−1‖ <∞.

Then with the notation Kε = KAi,q −Kr
N we have

‖(1−Kr
N)

−1 − (1−KAi)
−1‖

= ‖[(1 + (1−KAi,q)
−1Kε)

−1 − 1](1−KAi,q)
−1‖

≤ ‖(1−KAi,q)
−1‖

∑

n≥1

‖(1−KAi,q)
−1‖n‖Kε‖n (6.45)
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which converges to 0 as N → ∞. So we have to establish properties 1) and
2). Let us start with 1). For fixed x, y ≥ 0, using (6.15) with β > w, Kr

N(x, y)
is uniformly bounded by a function which is integrable in R2

+. Therefore, by
dominated convergence and the pointwise limit

lim
N→∞

HN(x+ z)H̃N (y + z) = Ai(q + x+ z) Ai(q + y + z), (6.46)

one obtains

lim
N→∞

|Kr
N(x, y)−KAi,q(x, y)| (6.47)

≤
∫ ∞

0

dz[ lim
N→∞

HN(x+ z)H̃N (y + z)− Ai(q + x+ z) Ai(q + y + z)] = 0.

Moreover, it is easy to see that Kr
N is a Hilbert-Schmidt operator with norm

uniformly bounded in N , and so is KAi,q. Therefore

lim
N→∞

‖Kr
N(x, y)−KAi,q(x, y)‖2 ≤ lim

N→∞
‖Kr

N(x, y)−KAi,q(x, y)‖2HS

=

∫

R

2
+

dxdy lim
N→∞

|Kr
N(x, y)−KAi,q(x, y)|2 = 0. (6.48)

Next consider point 2). 1−KAi,q is invertible as bounded operator, since for
every q ∈ R, ‖KAi,q‖ < 1. To establish the claim, let us denote by KAi the
standard Airy operator with Airy kernel KAi,0. Then

‖KAi,q‖L2(R+) = ‖KAi‖L2([q,∞)). (6.49)

KAi is an operator on L2([q,∞)) which is Hilbert-Schmidt. Therefore the
norm of KAi,q on L2([q,∞)) equals its largest eigenvalue, λ0(q). In [24] it is
shown that λ0(q) is monotonically decreasing in q and is strictly less than 1
for any q > −∞ (it converges to 1 as q → −∞).

Lemma 6.4. Let w = 0, then

lim
N→∞

〈ΦN , AN1〉 = 〈Φ0,s, (1−KAi,s)
−11〉. (6.50)

Proof. We first rewrite

〈ΦN , AN1〉 = 〈ΦN , 1〉+ 〈ΦN , (1−Kr
N)

−1Kr
N1〉. (6.51)

The first term, 〈ΦN , 1〉 =
∫
R+

dxΦN (x), converges to
∫
R+

dxΦ0,s(x) =

〈Φ0,s, 1〉 as N → ∞ because ΦN ∈ L1(R+) with norm L1(R+) uniformly

bounded in N . For the second term, define Φ̂N = (1 − Kr,∗
N )−1ΦN . From
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Lemma 6.3 it follows that, for N large enough, Φ̂N ∈ L2(R+) with uniformly
bounded norm. Then

〈ΦN , (1−Kr
N)

−1Kr
N1〉 =

∫

R+

dx

∫

R+

dyΦ̂N(y)K
r
N(y, x) ≡

∫

R+

dxDN (x).

(6.52)
DN (x) is bounded by an L1 function independent of N . In fact, using the
representation (6.28) of Kr

N , one writes

|DN(x)| ≤
∫

R+

dλ|H̃N(x+ λ)|
∫

R+

dy|HN(y + λ)| |Φ̂N(y)| (6.53)

≤
∫

R+

dλ|H̃N(x+ λ)|
(∫

R+

dy|HN(y + λ)|2
)1/2

‖Φ̂N‖2.

Since HN and H̃N decay exponentially, see (6.15), we have |DN(x)| ≤ Ce−x

for some C > 0 independent of N . Therefore by dominated convergence we
obtain

lim
N→∞

〈ΦN , (1−Kr
N )

−1Kr
N1〉 =

∫

R+

dx lim
N→∞

∫

R+

dyΦ̂N(y)K
r
N(y, x). (6.54)

This last integral can be interpreted as the L2(R+) scalar product between

Φ̂N and Kr
N(·, x). By Lemma 6.3, Φ̂N converges to (1−KAi,s)

−1Φ0,s. More-
over, Kr

N(·, x) converges to KAi,s(·, x), thus

lim
N→∞

〈ΦN , (1−Kr
N)

−1Kr
N1〉

=

∫

R+

dx

∫

R+

dy(1−KAi,s)
−1Φ0,s(y)KAi,s(y, x) (6.55)

= 〈Φ0,s, (1−KAi,s)
−1KAi,s1〉.

Adding the first and second term one obtains (6.50).

7 Asymptotics used in Section 6

In this section α and u are defined as in (6.11). First we summarize the
asymptotic results required. Let m = N + α/2 and d = α/2.

7.1 Asymptotics of Im,d(u+ yκN1/3), 0 < ρ < 1

7.1.1 For fixed y ∈ R,

Z(a)κN1/3Im,d(u+yκN
1/3) = −2πiAi(w2+s+y)ew(w2+s+y)e−

1

3
w3

+O(N−1/3).
(7.1)
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7.1.2 For 0 ≪ L ≤ y ≤ εN2/3, ε > 0 small enough, L > 0 large enough,

|Z(a)κN1/3Im,d(u+ yκN1/3)| ≤ Ce−
1

3
y3/2 (7.2)

for some C > 0.
7.1.3 For y ≥ εN2/3, ε as in (7.2),

|Z(a)κN1/3Im,d(u+ yκN1/3)| ≤ Ce−
1

2
ε1/2yN1/3

(7.3)

for some C > 0.

7.2 Asymptotics of Ĩm,d(u+ yκN1/3), 0 < ρ < 1

7.2.1 For fixed y ∈ R,

Z(a)κN1/3Ĩm,d(u+yκN
1/3) = 2πiAi(w2+s+y)e−w(w2+s+y)e

1

3
w3

+O(N−1/3).
(7.4)

7.2.2 For 0 ≪ L ≤ y ≤ εN2/3, ε > 0 small enough, L > 0 large enough,

|Z(a)κN1/3Im,d(u+ yκN1/3)| ≤ Ce−
1

3
y3/2 (7.5)

for some C > 0.
7.2.3 For y ≥ εN2/3, ε as in (7.5),

|Z(a)κN1/3Im,d(u+ yκN1/3)| ≤ Ce−
1

2
ε1/2yN1/3

(7.6)

for some C > 0.

Proof of (7.1). We have to estimate

IN+α/2,α/2(u+ yκN1/3) =

∫

Γ1−ρ

dze−z(u+yκN1/3) (z + ρ)N

(1− ρ− z)N+α
(7.7)

=

∫

Γ1−ρ

dzeNfN (z)

with

fN(z) = −z(u/N + yκN−2/3) + ln(z + ρ)− (1 + α/N) ln(1− ρ− z) (7.8)

for any fixed y ∈ R.
Let us define

f∞(z) = lim
N→∞

fN(z) = − z

ρ2
+ ln(z + ρ)− (1− ρ)2

ρ2
ln(1− ρ− z) (7.9)
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γ1

γ2
γ3

1− ρ

π/3

Figure 3: Integration path used for the asymptotics for fixed y.

and find a steep descent path for it which is close to the steepest descent one
for z close to the critical point, which is the solution of

df∞(z)

dz
= − 1

ρ2
+

1

z + ρ
+

(1− ρ)2

ρ2
1

1− ρ− z
= 0. (7.10)

There is a double solution for z = 0, thus f ′′
∞(z = 0) = 0. Moreover,

d3f∞(z)

dz3

∣∣∣
z=0

=
2

ρ3(1− ρ)
. (7.11)

Therefore we choose as integration path the one shown in Figure 3. The
chosen path is a steep descent path for f∞ as is discussed now.

The path γ2 is given by {z = te−iπ/3,t ∈ [0, 2(1 − ρ)]}. The real part of
f∞ on γ2 is then

Re(f∞) = − t

2ρ2
+

1

2
ln
(
(ρ+ 1

2
t)2 +

3

4
t2
)
− (1− ρ)2

2ρ2
ln
(
(1− ρ− 1

2
t)2 +

3

4
t2
)
.

(7.12)
Therefore

dRe(f∞)

dt
= − t2(2ρ(1− ρ) + t(1− 2ρ) + t2)

2ρ2(ρ2 + ρt + t2)((1− ρ− t)2 + t(1− ρ))
. (7.13)

The denominator is positive and it is easy to see that the numerator is always
strictly positive for t ∈ (0, 2(1 − ρ)] and for all ρ ∈ (0, 1). Therefore γ2 is a
steep descent path, and by symmetry γ1 is a steep ascent path.
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The path γ3 is given by {z = 1− ρ+
√
3(1− ρ)eiϕ, ϕ ∈ [−π/2, π/2]}. On γ3

Re(f∞) = −(1− ρ)
√
3 cosϕ

ρ2
+

1

2
ln(1 + 3(1− ρ)2 + 2

√
3(1− ρ) cosϕ)

−(1− ρ)2

ρ2
ln(

√
3(1− ρ)), (7.14)

which implies

dRe(f∞)

d cosϕ
= −(1− ρ)

√
3

ρ2
+

√
3(1− ρ)

1 + 3(1− ρ)2 + 2
√
3(1− ρ) cosϕ

= −(1− ρ)
√
3(2

√
3(1− ρ) cosϕ+ 3(1− ρ)2 + 1− ρ2)

ρ2(1 + 3(1− ρ)2 + 2
√
3(1− ρ) cosϕ)

< 0.

Thus the path of Figure 3 is a steep descent path Γ1−ρ.
The first consequence is the following. Denote by Γ1−ρ(δ) = Γ1−ρ

∣∣
|z|≤δ

the part of the path Γ1−ρ closer than δ to the origin. Then for any δ > 0 and
N large enough,

∣∣∣∣
∫

Γ1−ρ

eNfN (z)dz −
∫

Γ1−ρ(δ)

eNfN (z)dz

∣∣∣∣ ≤ eNfN (0)O(e−µN ) (7.15)

for some µ = µ(δ) ∼ δ3 > 0. Remark that

eNfN (0) = Z(a)−1. (7.16)

Consequently we need to estimate the integral close to z = 0 on Γ1−ρ(δ) only.
We use the Taylor expansion,

fN (z) = fN (0) + f ′
N (0)z +

1

2
f ′′
N(0)z

2 +
1

6
f ′′′
N (0)z3 (7.17)

+O
(
|z|4 max

0≤|z|≤δ
|f (iv)

N (z)|
)
. (7.18)

Some computations yield

f ′
N (0) = −N−2/3(y + s)κ +O(N−1),

f ′′
N (0) = N−1/32wκ2 +O(N−2/3), (7.19)

f ′′′
N (0) = 2κ3 +O(N−1/3),

and |f (iv)
N (z)| = O(1) for |z| ≤ δ. The change of variable τ = N1/3κz leads

to

NfN(z) = NfN (0)− τ(y + s) + wτ 2 +
1

3
τ 3 +O(τ, τ 4)N−1/3. (7.20)
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Consequently

e−NfN (0)

∫

Γ1−ρ(δ)

eNfN (z)dz = κ−1N−1/3

∫

κN1/3Γ1−ρ(δ)

dτe−τ(y+s)+wτ2+ 1

3
τ3

+ κ−1N−1/3

∫

κN1/3Γ1−ρ(δ)

dτe−τ(y+s)+wτ2+ 1

3
τ3
(
eO(τ,τ4)N−1/3 − 1

)
. (7.21)

The last term can be estimated using that |ex − 1| ≤ |x|e|x|, i.e., using
(
eO(τ,τ4)N−1/3 − 1

)
= eO(τ,τ4)N−1/3O(τ, τ 4)N−1/3. (7.22)

The term in the exponent is of the form −τ(y + s)χ1 + wτ 2χ2 +
1
3
τ 3χ3 for

some χ1, χ2, χ3. By taking δ small enough χ1, χ2, χ3 can be made as close to
1 as desired. Thus the second integral converges and the error term in (7.21)
is of order O(N−2/3).

Finally we estimate the leading term

κ−1N−1/3

∫

κN1/3Γ1−ρ(δ)

dτe−τ(y+s)+wτ2+ 1

3
τ3 . (7.23)

Deforming the integration path from Γ(δ)N1/3κ to Γ(δ)N1/3κ−w, one obtains

e(y+s)we
2

3
w3

κ−1N−1/3

∫

Γ(δ)N1/3κ

dτe−τ(y+s+w2)+ 1

3
τ3 (7.24)

up to an O(e−µN) error. By extending the integral to e±iπ/3∞ one picks up
an error at most O(e−µN), again. But

∫

Γ(∞)

dze
1

3
z3−xz = −2πiAi(x), (7.25)

where Γ(∞) is the path joining 0 with e±iπ/3∞ by straight lines oriented with
imaginary part decreasing. Note that in (D.2) the orientation is the opposite.
The error term O(e−µN ) can be bounded by O(N−1/3). Thus putting all the
terms together we have proved that for any fixed y

IN+α/2,α/2(u+ yκN1/3)Z(a)κN1/3 = −2πiAi(w2 + s+ y)ew(w2+s+y)e−
1

3
w3

+O(N−1/3). (7.26)

Proof of (7.2). Let us define ỹ = yκN−2/3 ∈ [LκN−2/3, κε],

fN(z) = −z(u/N + ỹ) + ln(ρ+ z)− (1 + α/N) ln(1− ρ− z), (7.27)
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γ1

γ2

1− ρ
z0

Figure 4: Integration path used for the asymptotics for large value of y. γ2
is the dashed line.

and

g(z) = −z(ρ−2 + ỹ) + ln(ρ+ z)− (1− ρ)2

ρ2
ln(1− ρ− z). (7.28)

g has a real positive critical point at

zc = ỹ1/2κ−3/2 +O(ỹ). (7.29)

Let z0 = ỹ1/2κ−3/2. Then as integration path we choose Γ1−ρ = γ1∧γ2, where
γ1 = {z|z = z0 − it, t ∈ [

√
3z0,

√
3z0]}, γ2 the path used in the case of fixed

y restricted to Re(z) > z0, see Figure 4. Since ỹ > 0, the path γ2 is steep
descent because it is for ỹ = 0 and Re(z) > 0 on γ2. Thus we only have to
check it on γ1. On γ1 we have

Re(fN (z)) = −z0
( u
N

+ỹ
)
+
1

2
ln
(
(ρ+z0)

2+t2
)
−1

2

(
1+

α

N

)
ln
(
(1−ρ−z0)2+t2

)

(7.30)
and

dRe(fN )

dt
= −t (t

2 + (ρ+ z0)
2)α/N + 2ρ− 1 + 2z0(

(ρ+ z0)2 + t2
)(
(1− ρ− z0)2 + t2

) . (7.31)

The denominator is obviously positive.
Next consider the numerator

M = (t2 + (ρ+ z0)
2)α/N + 2ρ− 1 + 2z0. (7.32)

For ρ ∈ (0, 1/2), α/N = (1− 2ρ)/ρ2 +O(N−1/3), M can be rewritten as

M = α/Nt2 + (1− 2ρ)((1 + z0/ρ)
2 − 1) + 2z0 +O(N−1/3) > 0
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for N large enough. For ρ ∈ (1/2, 1), α = (1 − 2ρ)ρ2 + O(wN−1/3) and M
can be rewritten as

M =
α

N
t2 + 2z0

1− ρ

ρ
+ z20

1− 2ρ

ρ2
+O(wN−1/3).

Since z0 = ỹ1/2κ−3/2 ≥ L1/2κ−1N−1/3, and that z0 ≤ εκ−1 ≪ 1, both the
quadratic term in z0 and the O(wN−1/3) are dominated by 2z0(1 − ρ)/ρ for
L ≫ 1, ε ≪ 1, and N large enough. Thus M(t = 0) ≥ L1/2κ−1N−1/3 > 0
for L large enough. By monotonicity of M in t we have to check that M(t =√
3z0) > 0, the maximal value which t takes in γ1. ButM(t =

√
3z0)−M(t =

0) ∼ z20 , which is dominated by the linear term in z0 again. Thus M(t) > 0
for N large enough and for all t ∈ [−

√
3z0,

√
3z0].

We have shown that for all ρ ∈ (0, 1), dRe(fN )
dt

< 0 for t > 0, dRe(fN )
dt

> 0 for
t < 0 for L≫ 1, ε≪ 1, and N large enough. Thus γ1 is a steep descent path.
Therefore, if we denote by Γ1−ρ(δ)

c the portion of Γ1−ρ with |z − z0| > δ,

∣∣∣∣
∫

Γ1−ρ(δ)c
dzeNfN (z)

∣∣∣∣ ≤ eNfN (z0)O(e−µN ) (7.33)

for some µ > 0.
Finally we have to evaluate the contribution coming from Γ1−ρ(δ), the

portion of Γ1−ρ with |z − z0| ≤ δ. The contribution of the part in γ1 is
estimated as follows. On γ1,

Re(fN (z)) = fN (z0)−
t2

2
f ′′
N(z0) +O(t4). (7.34)

Some computations leads to f ′′
N(z0) = O(wN−1/3) + (2κ3/2 +

O(wN−1/3))ỹ1/2 + O(ỹ). For L ≫ 1, ε ≪ 1, and N large enough, it fol-
lows that f ′′

N(z0) ≥ 3
2
κ3/2ỹ1/2. On the other hand, the term proportional

to t4 is much smaller than the t2 term. In fact, for 0 ≤ t ≤
√
3z0 ∼ ỹ1/2,

t2 ≤ ỹO(1) ≤ ỹ1/2O(ε1/2) ≪ f ′′
N (z0). Therefore

∣∣∣∣
∫

γ1

dzeNfN (z)

∣∣∣∣ ≤ eNfN (z0)

∫

R

dte−
1

3
t2f ′′

N (z0)N ≤ eNfN (z0)

∫

R

dte−
1

2
t2κ2y1/2N2/3

= eNfN (z0)y−1/4N−1/3O(1). (7.35)

In (7.33) and (7.35) we still have to evaluate fN(z0)− fN(0). A compu-
tation leads to

NfN(z0)−NfN (0) = −sy1/2χ1 + wyχ2 −
2

3
y3/2χ3 (7.36)
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for some χ1, χ2, χ3 which can be made as close to 1 as wanted by choosing ε
small enough. On the other hand, since we have y ≥ L, for L large enough,

NfN (z0)−NfN(0) ≤ −1

3
y3/2. (7.37)

Thus the contributions (7.33) and (7.35) can be bounded by

(7.33) ≤ Z(a)−1e−µNe−
1

3
y3/2O(1),

(7.35) ≤ Z(a)−1N−1/3e−
1

3
y3/2L−1/4O(1). (7.38)

The final step is to bound the contribution coming form γ2 ∪ Γ1−ρ(δ).
From the asymptotics of fixed y one has, using z = teiπ/3,

Re(fN(z)) = fN(0)− (ỹ + sκN−2/3)
t

2
+O(tN−1) (7.39)

+wκ2N−1/3 t
2

2
+O(t2N−2/3)− κ

3
t3 +O(t3N−1/3, t4).

In this case, the parameter t takes values in 0 < 2z0 ≤ t ≤ δ/
√
3 ≪ 1.

Moreover recall that z0 ≥ L1/2κ−1N−1/3. In the term linear in t, ỹ dominates
the others for large L. For the minimal value taken by t, the quadratic term
is ∼ LN−1, and the cubic term is ∼ L3/2N−1. Thus for large L, the cubic
term dominates the quadratic one. But since t ≤ δ/

√
3, the quartic term is

also dominated by the cubic one. Therefore,

Re(fN(z)) ≤ fN(0)−
ỹt

4
− κt3

6
≤ fN (0)−

ỹ3/2

2κ3/2
− κt3

6
. (7.40)

Thus
∣∣∣∣
∫

γ2∪Γ1−ρ(δ)

dzeNfN (z)

∣∣∣∣ ≤ 2eNfN (0)e−
1

2
y3/2

∫ ∞

0

dte−
1

6
κt3N ≤ Z(a)−1e−

1

2
y3/2

N1/3
O(1).

(7.41)
From (7.38) and (7.41) the desired bound follows.

Proof of (7.3). The proof of this bound is based on the estimate (7.2). We
use (7.2) for ỹ = εκ/2 with the result

fN (z) = fN (z)
∣∣
ỹ=εκ/2

−z(ỹ−εκ/2) ≤ fN(z)
∣∣
ỹ=εκ/2

−2−3/2
√
εyN−2/3, (7.42)

because z ≥
√
ε/2κ−1 and ỹ − εκ/2 ≥ ỹ/2. It follows that

∣∣∣IN+α/2,α/2(u+ yκN1/3)κN1/3Z(a)
∣∣∣ ≤ Ce−ε3/2N/2e−

√
εyN1/3/4 ≤ Ce−

√
εyN1/3/4.

(7.43)
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Proof of (7.4), (7.5), and (7.6). The asymptotics of Ĩ are similar to the
one of I. Instead of computing everything again, we show that, via the
transformation ρ 7→ 1 − ρ and w 7→ −w, one obtains essentially the same
integrals as already studied for I. More precisely, we have to estimate the
asymptotics of

W (N, ρ, w) = Z(a)κN1/3IN+α/2,α/2(u+ yκN1/3) (7.44)

=

∫

Γ1−ρ

dze−z(u(N,ρ,w)+yκ(ρ)N1/3)κ(ρ)N1/3

(
1 + z

ρ

)N

(
1− z

1−ρ

)N+α(N,ρ,w)

and

W̃ (N, ρ, w) = Z(a)−1κN1/3ĨN+α/2,α/2(u+ yκN1/3) (7.45)

=

∫

Γ−ρ

dzez(u(N,ρ,w)+yκ(ρ)N1/3)κ(ρ)N1/3

(
1− z

1−ρ

)N+α(N,ρ,w)

(
1 + z

ρ

)N
.

Here the dependence in N, ρ, w of u, α, κ is displayed explicitly, since it is
needed below. A simple calculation shows that

W̃ (N, 1− ρ,−w) (7.46)

= −
∫

Γ1−ρ

dze−z(u(N,1−ρ,−w)+yκ(1−ρ)N1/3)κ(1− ρ)N1/3

(
1− z

ρ

)N+α(N,1−ρ,−w)

(
1 + z

1−ρ

)N
.

Let us define M = N + α(N, 1 − ρ,−w), then with an explicit but lengthy
computations one establishes

u(N, 1− ρ,−w) = u(M, ρ, w) +O(1),

κ(1− ρ)N1/3 = κ(ρ)M1/3 +O(1), (7.47)

N = M + α(M, ρ, w) +O(1).

(7.47) implies that in the asymptotics of W̃ (N, 1 − ρ,−w) are the same as
the asymptotics of −W (M, ρ, w), since the corrections of O(1) in (7.47) are
negligible for the asymptotics (7.1), (7.2), and (7.3).
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A Scaling functions

The scaling function g(s, w) defined in (1.18) is precisely the one derived in
(6.10) except for the shift to s 7→ s − w2, since in (6.10) g(s + w2, w) is
obtained. Below we establish that g is identical to the Baik-Rains scaling
function gBR [2]. g(s, w) is continuous at w = 0 and even in w. gBR(s, w)
has the same properties. Thus it suffices to consider w > 0. We first rewrite
(6.10) in another form by moving the factor s from the integrand to the limit
of the integral, since later on we have to deal with the derivatives ∂

∂s
g(s, w).

Define the functions

Φ̃s(x) =

∫ ∞

0

dyAi(x+ y)

∫ s

−∞
dzewz Ai(y + z),

Ψ̃w(x) =

∫ 0

−∞
dyewy Ai(x+ y), (A.1)

ρ̃s(x, y) = (1− PsKAiPs)
−1(x, y).

Then by using the representation (6.8) for Sw,s, (6.10) rewrites as

g(s, w) = e−
1

3
w3

[ ∫ s

−∞
dx

∫ 0

−∞
dyAi(x+ y)ew(x+y)

+

∫ ∞

s

dx

∫ ∞

s

dyΦ̃s(x)ρ̃s(x, y)Ψ̃w(y)

]
. (A.2)

The relations with the functions of (6.10) are Φ̃s(x) = Φw,s−w2(x − s),

Ψ̃w(x) = e
1

3
w3

Ψw,s−w2(x− s), and ρ̃s(x, y) = (1− P0KAi,sP0)
−1(x− s, y − s).

Baik and Rains [2], see also [18], use the Riemann-Hilbert techniques
and arrive at a limit function, gBR, which is given as the solution of a set
of differential equations2. More precisely, with a = a(s, w), b = b(s, w),
q = q(s), one considers

∂

∂s
a = qb,

∂

∂s
b = qa− wb, (A.3)

and

∂

∂w
a = q2a− (q′ + wq)b,

∂

∂w
b = (q′ − wq)a+ (w2 − s− q2)b. (A.4)

2Comparing with the functions in Lemma 3.1 of [2], one sees that there has been
a change from 2w to w, so that for example, the function a(s, w) below equals to the
function a(s, w/2) in [2].
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Here q = q(s) is the Hastings-McLeod solution to the Painlevé II equation

q′′ = 2q3 + sq, (A.5)

which is singled out by the condition q(s) < 0 for all s ∈ R. The Hastings-
McLeod solution has the asymptotics q(s) ∼= −Ai(s) for s→ ∞ and u(s) ∼=
−(−s/2)1/2 for s → −∞. (A.3) and (A.4) have to be solved with the initial
condition

a(s, 0) = −b(s, 0) = exp
(∫ ∞

s

ds′q(s′)
)
. (A.6)

The Baik-Rains scaling function is defined through

gBR(s, w) =

∫ s

−∞
ds′a(s′, w)a(s′,−w). (A.7)

Proposition A.1. With the above definitions

g(s, w) = gBR(s, w). (A.8)

Proof. We fix w > 0. We will establish that

∂

∂s
g(s, w) = a(s, w)a(s,−w). (A.9)

Then
g(s, w) = gBR(s, w) + c. (A.10)

Now, by construction,

Fw(s) and FBR
w (s) =

∂

∂s

(
FGUE(s+ w2)gBR(s+ w2, w)

)
(A.11)

are distribution functions with mean zero. From (A.10) we infer

∫

R

sdFw(s) =

∫

R

sdFBR
w (s) + c

∫

R

ds s
d2

ds2
FGUE(w

2 + s). (A.12)

Since FGUE(s) is also a distribution function and d
ds
FGUE(s) has a fast decay

at infinity, (A.12) amounts to 0 = 0− c and thus c = 0.
To check (A.9) we will differentiate g̃ = ew

3/3g. It is convenient to follow
the scheme in [9], Section 4.2, according to which

a(s,±w) = 1−
∫ ∞

s

dx

∫ ∞

s

dyAi(x)ρ̃s(x, y)Ψ̃±w(y). (A.13)
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Remark that for w > 0 one can rewrite Ψ̃w(x) =
∫ 0

−∞ dyewy Ai(x + y) using
(D.3).

We differentiate as

∂

∂s
g̃(s, w) = ewsΨ̃w(s)− Φ̃s(s)

∫ ∞

s

dyρ̃s(s, y)Ψ̃w(y)

−Ψ̃w(s)

∫ ∞

s

dxΦ̃s(x)ρ̃s(x, s)

+

∫ ∞

s

dx

∫ ∞

s

dy
∂Φ̃s(x)

∂s
ρ̃s(x, y)Ψ̃w(y)

+

∫ ∞

s

dx

∫ ∞

s

dyΦ̃s(x)
∂ρ̃s(x, y)

∂s
Ψ̃w(y). (A.14)

The central identity for the proof is, see [9, 24],

∂

∂s
ρ̃s(x, y) = − ∂

∂x
ρ̃s(x, y)−

∂

∂y
ρ̃s(x, y)−Q(x)Q(y) (A.15)

with

Q(x) =

∫ ∞

s

dyρ̃s(x, y) Ai(y). (A.16)

We insert (A.15) in (A.14) and integrate by parts to eliminate the terms
∂
∂x
ρ̃s(x, y) and

∂
∂y
ρ̃s(x, y), which requires the derivatives

∂

∂x
Ψ̃w(x) = Ai(x)− wΨ̃w(x), (A.17)

∂

∂x
Φ̃s(x) = wΦ̃s(x)− Ai(x)

∫ s

−∞
dyAi(y)ewy − ∂

∂s
Φ̃s(x).

In the end only four terms remain, which can be assembled as

∂

∂s
g̃(s, w) =

(
1−

∫ ∞

s

dxΨ̃w(x)Q(x)
)(∫ s

−∞
dxAi(x)ewx+

∫ ∞

s

dxΦ̃s(x)Q(x)
)
.

(A.18)
The first factor in (A.18) equals a(s, w). To prove Proposition A.1 it

thus remains to establish that the second factor equals e
1

3
w3

a(s,−w). Let
ψ−w(x) = ewx. Then

Φ̃s = KAiψ−w + (1−KAi)Psψ−w − Psψ−w (A.19)

and
Q(x) = (1− PsKAiPs)

−1Ps Ai(x). (A.20)
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Thus the second factor in (A.18) writes

〈ψ−w, QsAi〉+ 〈Φ̃s, PsQ〉 = 〈ψ−w, QsAi〉+ 〈KAiψ−w, PsQ〉 − 〈ψ−w, PsQ〉
+〈ψ−w, Ps(1−KAi)Ps(1− PsKAiPs)

−1Ps Ai〉
= 〈ψ−w,Ai〉+ 〈KAiψ−w, PsQ〉

−〈ψ−w, PsQ〉, (A.21)

since the last term in the middle part equals 〈ψ−w, PsAi〉. According to
(B.14)

e
1

3
w3

a(s,−w) = e
1

3
w3 − 〈e 1

3
w3

Ψ̃−w, PsQ〉 (A.22)

and by (D.3) it follows that e
1

3
w3

= 〈ψ−w,Ai〉. Moreover,

e
1

3
w3

Ψ̃−w(x) = ψ−w(x)− e
1

3
w3

∫ ∞

0

dye−wy Ai(x+ y). (A.23)

An explicit computation shows that e
1

3
w3 ∫∞

0
dye−wy Ai(x + y) =

(KAiψ−w)(x). Thus

e
1

3
w3

Ψ̃−w = ψ−w −KAiψ−w. (A.24)

Inserting (A.24) in (A.22) one establishes that (A.21) equals e
1

3
w3

a(s,−w).

B Determinantal fields: proof of Proposi-

tions 3.2 and 3.3

B.1 No boundary sources

To prove Proposition 3.3 we find it computationally convenient to approx-
imate the exponential distribution through a geometric one. Then w(i, j),
i, j ≥ 1, are independent random variables with P({w(i, j) = n}) = (1−q)qn,
0 < q < 1. The RSK construction, as explained in the main text, can
be carried through with minor modifications, compare with [9]. The lines
j 7→ hℓ(j, τ) take values in Z and are pinned as hℓ(±τ, τ) = ℓ, ℓ = 0,−1, . . ..
The weight of a jump of size δ is (

√
q)|δ|. Let us denote the corresponding

point random field by φq
τ(j, n), |j| ≤ τ , n ∈ Z, i.e.,

φq
τ(j, n) =

{
1 if there is an ℓ such that hℓ(j, τ) = n,

0 otherwise.
(B.1)
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It is determinantal and, at equal times j = 2d, τ = 2m,

E

( M∏

k=1

φq
τ (2d, nk)

)
= det

(
Kq

m,d(nk, nk′)
)
1≤k,k′≤M

. (B.2)

We will first compute the kernel Kq
m,d and then show that in the exponential

limit, lattice spacing ε, q = 1− ε,

lim
ε→0

ε−1K1−ε
m,d

(
⌊ε−1x⌋, ⌊ε−1x′⌋

)
= Km,d(x, x

′) (B.3)

for x, x′ > 0.
We have to computeKq

m,d, for which we use the Fermion formalism of [20].
Let [−N,−N + 1, . . . , N ] = ΛN and F be the Fermionic Fock space over
ℓ2(ΛN). If A is a linear operator on ℓ2(ΛN), then Γ(A) denotes its second
quantization as an operator on F . Let PN

− be the projection onto [−N, . . . , 0]
and let ΩN be the corresponding Slater determinant. We set, as operators in
ℓ2,

(T q
+)ij =

{
(
√
q)i−j for i ≥ j,

0 for i < j,
(B.4)

and T q
− = (T q

+)
∗. T q,N

+ , T q,N
− is the restriction of T q

+, T
q
− to ℓ2(ΛN). Finally

let a(j) be the Fermion field with index j, |j| ≤ N . Then

Kq
m,d(i, j) = lim

N→∞

1

ZN
〈ΩN ,Γ(T

q,N
− T q,N

+ )m+da∗(j)a(i)Γ(T q,N
− T q,N

+ )m−dΩN〉F
(B.5)

with the normalization

ZN = 〈ΩN ,Γ(T
q,N
− T q,N

+ )2mΩN 〉F . (B.6)

Here 〈·, ·〉F denotes the inner product in Fock space. Working out the limit,
see [20], results in

Kq
m,d(i, j) =

(
(T q

+)
m+d(T q

−)
−(m−d)P−(T

q
+)

−(m+d)(T q
−)

m−d
)
(i, j), (B.7)

where P− = limN→∞ PN
− projects onto Z− = (. . . ,−1, 0].

In Fourier space T q
+ is multiplication by (1−√

qe−ik)−1 = T̂ q
+(k) and T

q
−

multiplication by (1−√
qeik)−1 = T̂ q

−(k). The rescaling in (B.3) amounts to
replacing q by 1− ε and k by εk. Then

lim
ε→0

εT̂ 1−ε
+ (εk) = (1 + 1

2
ik)−1, lim

ε→0
εT̂ 1−ε

− (εk) = (1− 1
2
ik)−1. (B.8)

By inserting the limit (B.8) in (B.7), the claim (B.3) follows.
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B.2 Boundary sources

We add boundary sources through the random variables w(0, 0), w(j, 0),
w(0, j), j ≥ 1. They are independent and geometrically distributed according
to

P({w(0, 0) = n}) = (1− αβ)(αβ)n,

P({w(j, 0) = n}) = (1− α
√
q)(α

√
q)n,

P({w(0, j) = n}) = (1− β
√
q)(β

√
q)n, (B.9)

with 0 < αβ, α
√
q, β

√
q < 1.

The corresponding random field φq
τ,αβ is again determinantal with defining

kernel K
(2m+1)
q,αβ , where we set τ = 2m+ 1 in accordance with the convention

of Section 3. K
(2m+1)
q,αβ at equal Fermionic time 2d is computed by the same

method as in Section B.1. In particular we first restrict the height lines to
the interval [−N, . . . , N ] and then take the limit N → ∞. Let

fα(j) = αj, a(fα) =
∑

j∈Z
fα(j)a(j) (B.10)

and let Ω−
N be the ground state vector with sites −N, . . . ,−1 filled and sites

0, . . . , N empty. Then a∗(fα)Ω
−
N gives the correct weight to the jump at the

right boundary, correspondingly for the left boundary. Therefore the defining
kernel is given through

K
(2m+1)
q,αβ (2d, i; 2d, j) = lim

N→∞

1

ZN
〈Ω−

N , a(fβ)Γ(T
q,N
− T q,N

+ )m+d (B.11)

a∗(i)a(j)Γ(T q,N
− T q,N

+ )m−da∗(fα)Ω
−
N〉F

with the normalization

ZN = 〈Ω−
N , a(fβ)Γ(T

q,N
− T q,N

+ )2ma∗(fα)Ω
−
N〉F . (B.12)

We note that
Γ(A)a∗(f) = a∗(Af)Γ(A) (B.13)

and

T q
+fα = (1− α−1√q)−1fα,

√
q < α,

T q
−fβ = (1− β

√
q)−1fβ , β <

1√
q
. (B.14)
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Therefore

K
(2m+1)
q,αβ (2d, i; 2d, j) = lim

N→∞

1

Z̃N,αβ

〈Ω−
N ,Γ(T

q,N
− T q,N

+ )m+d (B.15)

a(fβ)a
∗(i)a(j)a∗(fα)Γ(T

q,N
− T q,N

+ )m−dΩ−
N 〉F

with

Z̃N,αβ = 〈Ω−
N ,Γ(T

q,N
− T q,N

+ )m+da(fβ)a
∗(fα)Γ(T

q,N
− T q,N

+ )m−dΩ−
N〉F . (B.16)

Following the steps of Section B.1, one concludes that

lim
N→∞

Z̃N,αβ = Z̃αβ = (αβ)−1〈fα, (1−Kq
m,d)fβ〉ℓ2 (B.17)

= (1− αβ)−1

(
(1−√

q/β)(1−√
qβ)

(1−√
q/α)(1−√

qα)

)d((1−√
q/α)(1−√

q/β)

(1−√
qα)(1−√

qβ)

)m

.

At this stage it is of use to recall a general property of quasifree states
on CAR-algebras. Let A be a CAR algebra indexed by Z and let ω be a
quasifree linear functional (a state) on A, uniquely defined through

ω(a(j)) = ω(a∗(j)) = 0, ω(a∗(j)a(j)) = K(i, j) (B.18)

with K a positive linear operator on ℓ2, ‖K‖ ≤ 1. Let f ∈ ℓ2 and a(f) =∑
j∈Z f(j)a(j). For fℓ, fr ∈ ℓ2 we define

Z = ω(a(fℓ)a
∗(fr)) = 〈fr, (1−K)fℓ〉ℓ2 <∞ (B.19)

and a linear functional ω̃ through

ω̃(A) =
1

Z
ω(a(fℓ)Aa

∗(fr)), A ∈ A. (B.20)

Then ω̃(1) = 1 and ω̃ is again quasifree with ω̃(a(j)) = ω̃(a∗(j)) = 0 and
covariance

ω̃(a∗(i)a(j)) = K(i, j) +
1

Z
(1−K)fℓ(i)(1−K)∗fr(j). (B.21)

With the results from Section B.1, the limit state (B.15) is a quasifree
linear functional precisely of the form (B.20) with

K(i, j) = Kq
m,d(i+ 1, j + 1), (B.22)

see (B.7), and fℓ(j) = βj, fr(j) = αj,
√
q < α, β <

√
q−1.
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We take the exponential limit by choosing

q = 1− ε, α = 1− εa, β = 1− εb, −1

2
< a, b <

1

2
, a+ b > 0. (B.23)

Then
lim
ε→0

f1−εa(⌊x/ε⌋) = ψa(x) = e−ax (B.24)

and, for x, y > 0,

lim
ε→0

ε−1K
(2m+1)
1−ε,αβ

(
2d, ⌊ε−1x⌋; 2d, ⌊ε−1y⌋

)
(B.25)

= Km,d(x, y) +
1

Za,b

(1−Km,d)ψb(x)(1−Km,d)
∗ψa(y)

with Za,b given in (3.24). This completes the proof of Proposition 3.3.

B.3 Proof of Proposition 3.2

Proof of Proposition 3.2. By Proposition C.1 Km,d is a similarity transform
of the Laguerre kernel. Therefore Km,d = (Km,d)

2, ‖Km,d‖ = 1, PuKm,dPu is
trace class, and all eigenvalues of PuKm,dPu are in the interval [0, 1]. Thus
we only prove that, if u > 0, 1 is not in the spectrum of PuKm,dPu, which
is accomplished by reductio ad absurdum. Assume that ψ ∈ L2(R+) is an
eigenfunction for eigenvalue 1,

PuKm,dPuψ = ψ. (B.26)

Then ψ(x) = 0 for x ∈ [0, u). On the other hand,

‖ψ‖ ≤ ‖Km,dPuψ‖ ≤ ‖ψ‖. (B.27)

Hence ‖Km,dPuψ‖ = ‖ψ‖ and, since ‖Km,dPu‖ = 1, one concludes that

Km,dPuψ = ψ. (B.28)

Therefore ψ is of the form (finite polynomial) × e−x/2, which cannot vanish
identically on [0, u). Thus the contradiction.

To establish the second claim we use that ψa is eigenfunction of R to
obtain

(Pu(1−Km,d)ψa)(x) = Θ(x−u)
(
e−ax−Z(−a)

∫

R−

dyL(x, y)ψa(y)
)
. (B.29)
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Moreover, it is easy to see that |Im,d(z)| ≤ 2πCm,de
−βz for any 0 < β < 1−ρ,

Cm,d being a constant (take as path Γ1−ρ the circle centered in 1−ρ of radius
1− ρ− β). Let us choose any β ∈ (1/2− ρ+ a, 1− ρ). Then, for u > 0,

∣∣(Pu(1−Km,d)ψa)(x)
∣∣ ≤ Θ(x)e−ax + (B.30)

+Θ(x)Z(−a)Cm,de
−(β− 1

2
+ρ)x

∫

R−

dyey(β+ρ− 1

2
−a).

β − 1
2
+ ρ > 0, because a > 0, and β + ρ− 1

2
− a > 0, because β > 1

2
− ρ+ a.

Thus Pu(1 − Km,d)ψa ∈ L2(R) with norm uniformly bounded in u. The
second part of (3.22) is treated similarly. ψa is eigenfunction of L∗, thus

(Pu(1−Km,d)
∗ψa)(x) = Θ(x−u)

(
e−ax−Z(a)−1

∫

R−

dyR(y, x)e−ay
)
. (B.31)

|Ĩm,d(z)| ≤ 2πC̃m,de
−βz for any 0 < β < ρ. Thus, by choosing β ∈ (ρ + a −

1/2, ρ), for u > 0,
∣∣(Pu(1−Km,d)ψa)(x)

∣∣ ≤ Θ(x)e−ax + (B.32)

+Θ(x)Z(−a)C̃m,de
−(β+ 1

2
−ρ)x

∫

R−

dyey(β−ρ+ 1

2
−a),

which, by the choice of β and since a > 0, implies Pu(1−Km,d)
∗ψa ∈ L2(R)

with norm uniformly bounded in u.

C The Laguerre kernel

Let L
(α)
n be the standard n-th Laguerre polynomial of integer order α, α ≥ 0

[16], Chapter 5.3. The Laguerre polynomials are orthogonal on R+ relative
to the weight xαe−x as

∫

R+

dxxαe−x

(
n!

(n + α)!

)1/2

L(α)
n (x)

(
m!

(m+ α)!

)1/2

L(α)
m (x) = δn,m. (C.1)

The Laguerre kernel is the orthogonal projection onto the first n Laguerre
polynomials and is given by

K(α)
n (x, y) =

n−1∑

j=0

j!

(j + α)!
L
(α)
j (x)L

(α)
j (y)xα/2yα/2e−x/2e−y/2 (C.2)

for x, y ≥ 0.
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Proposition C.1. With definitions (3.13) and (C.2) one has

Km,−d(x, y) = Km,d(x, y) (C.3)

and

Km,d(x, y) = K
(2d)
m−d(x, y)

(x
y

)d

(C.4)

for 0 ≤ d < m and x, y > 0.

Proof. Let us define

ĝℓ(k) =
(
1
2
− ik

)m−d(1
2
+ ik

)−(m+d)
,

ĝr(k) =
(
1
2
− ik

)m+d(1
2
+ ik

)−(m−d)
. (C.5)

We set α = 2d, n = m− d− 1. By [16], p. 244, it follows
∫

R

dkeikxĝℓ(k) = gℓ(x) = (−1)n
n!

(n + α)!
e−x/2(1− ∂x)x

αL(α)
n (x)Θ(x) (C.6)

and ∫

R

dke−ikxĝr(k) = gr(−x), (C.7)

with

gr(x) =
(
1
2
+ ∂x

)d(1
2
− ∂x

)d+1
(−1)m+1e−x/2L

(0)
m−1(x)Θ(x). (C.8)

gℓ is supported on [0,∞) with a discontinuity at x = 0. As a distribution gr
is supported in [0,∞) with the singular part concentrated at {x = 0}.

By [16], Section 5.5.2, one has the identities

(1− ∂x)L
(α)
n = −∂xL(α)

n+1, ∂xL
(α)
n = −L(α+1)

n+1 . (C.9)

Using them repeatedly in (C.6) and (C.8) yields, for x > 0,

gℓ(x) = (−1)n+1 n!

(n+ α)!
e−x/2

(
xα∂xL

(α)
n+1(x) + αxα−1L(α)

n

)
, (C.10)

and
gr(x) = (−1)n+1e−x/2∂xL

(α)
n+1(x). (C.11)

With these notations the integral kernel from (3.13) is expressed as

(
Tm+d
+ T

−(m−d)
− P−T

−(m+d)
+ Tm−d

−
)
(x, y) (C.12)

=

∫

R−

dwgℓ(x− w)gr(−(w − y)) =

∫

R+

dwgℓ(x+ w)gr(y + w).
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Note that for x, y > 0 only the regular part of gr is used. We insert (C.10)
and (C.11) in (C.12). Then (C.4) of Proposition C.1 amounts to

n∑

j=0

j!

(j + α)!
xαL

(α)
j (x)L

(α)
j (y) =

n!

(n + α)!

∫

R+

dwe−w
(
∂wL

(α)
n+1(x+ w)

)

×
(
(x+ w)α∂wL

(α)
n+1(x+ w) + α(x+ w)α−1L(α)

n (y + w)
)
. (C.13)

We check recursively by setting the left hand side as
∑n

j=0 j!/(j + α)!Bj

and the right side as n!/(n + α)!An. Then (C.13) is equivalent to

A0 = B0,
n!

(n + α)!
An −

(n− 1)!

(n− 1 + α)!
An−1 =

n!

(n+ α)!
Bn, n = 1, 2, . . . .

(C.14)
A0 = B0 amounts to a partial integration. For the second equality we write

An −
n+ α

n
An−1 =

∫

R+

dwe−w(x+ w)α
(
L′
n+1(x+ w)L′

n+1(y + w)

−n + α

n
L′
n(x+ w)L′

n(y + w)
)
+

∫

R+

dwe−wα(x+ w)α−1

×
(
Ln(x+ w)L′

n+1(y + w)− n + α

n
Ln−1(x+ w)L′

n(y + w)
)
, (C.15)

omitting the superscript α. In the second integral we use the identities
L′
n+1 = L′

n − Ln and xL′
n = nLn − (n+ α)Ln−1. Then the terms combine as

An −
n+ α

n
An−1 =

∫

R+

dwe−w(x+ w)α
(
Ln(x+ w)Ln(y + w)

−L′
n(x+ w)Ln(y + w)− Ln(x+ w)L′

n(y + w)
)

−
∫

R+

dwe−wα(x+ w)α−1Ln(x+ w)Ln(y + w)

= −
∫

R+

dw
d

dw

(
e−w(x+ w)αLn(x+ w)Ln(y + w)

)

= Bn, (C.16)

which is the recursion relation (C.14).

D Some useful relations

D.1 Two representations of the Airy functions

For any σ < 0, define the path γσ = σ + iR. Then

Ai(z) =
1

2πi

∫

γσ

dξe−
1

3
ξ3+zξ (D.1)
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and for any µ > 0, with γµ = µ+ iR,

Ai(z) =
1

2πi

∫

γµ

dξe
1

3
ξ3−zξ. (D.2)

One can deform γσ so that it goes from ∞e−2πi/3 to ∞e2πi/3 and crosses the
real axis at σ. In this case the paths will be denoted by γℓσ. Similarly the
deformation of γµ goes from ∞e−iπ/3 to ∞eiπ/3 and is denoted by γrµ.

A formula which will be employed later is

M(w) =

∫

R

dyewy Ai(β + y) = e
1

3
w3−βw (D.3)

valid for all w ≥ 0 (for w = 0 as improper Riemann integral). To prove it
one derives the differential equation

dM(w)

dw
=M(w)(w2 − β) (D.4)

by integrating twice by parts. (D.3) follows from (D.4) and the initial value
M(w = 0) = 1.

D.2 Two integrals around a pole

Let Γw be the path enclosing z = w and anti-clockwise oriented. Then

∫

Γw

dξ
e

1

3
ξ3− 1

3
w3+(w2+s)(w−ξ)

2πi(w − ξ)2
= Res

(
e

1

3
ξ3− 1

3
w3+(w2+s)(w−ξ)

(w − ξ)2
; ξ = w

)
= −s

(D.5)
and

∫

Γw

dξ
e−

1

3
ξ3+ 1

3
w3+(w2+s)(ξ−w)

2πi(ξ − w)2
= Res

(
e−

1

3
ξ3+ 1

3
w3+(w2+s)(ξ−w)

(ξ − w)2
; ξ = w

)
= s.

(D.6)

D.3 Two equivalent expressions for Sw,s

Let us consider w > 0. The representation of the Airy function (D.2) allows
one to write

Sw,s = s+ e−
1

3
w3

∫ ∞

0

dx

∫ ∞

0

dyAi(w2 + s+ x+ y)ew(w2+s+x+y)

= s+ e−
1

3
w3

∫ ∞

0

dx

∫ ∞

0

dy
1

2πi

∫

γr
µ

dξe
1

3
ξ3e(w

2+s+x+y)(w−ξ) (D.7)
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By choosing µ = 2w, one obtains an integrand which is absolutely inte-
grable. Thus by Fubini’s Theorem we are allowed to exchange the order of
the integrals and compute first the one in (x, y) with the result

Sw,s = s+

∫

γr
2w

dξ
e

1

3
ξ3− 1

3
w3+(w2+s)(w−ξ)

2πi(w − ξ)2
. (D.8)

Let Γw be as in (D.5), then

Sw,s = s+

∫

γr
w/2

dξ
e

1

3
ξ3− 1

3
w3+(w2+s)(w−ξ)

2πi(w − ξ)2
+

∫

Γw

dξ
e

1

3
ξ3− 1

3
w3+(w2+s)(w−ξ)

2πi(w − ξ)2

=

∫

γr
w/2

dξ
e

1

3
ξ3− 1

3
w3+(w2+s)(w−ξ)

2πi(w − ξ)2
. (D.9)

On the other hand,
∫

R

2
−

dxdyΦw,s(x+ y) =

∫

R

2
−

dxdy
1

2πi

∫

w/2+iR

dξe
1

3
ξ3− 1

3
w3

e(w−ξ)(w2+s+x+y)

=

∫

w/2+iR

dξ
e

1

3
ξ3− 1

3
w3+(w2+s)(w−ξ)

2πi(w − ξ)2
= Sw,s (D.10)

by deforming the integral on w/2 + iR to γrw/2.
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