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Abstract

Motivated by the polynuclear growth model, we consider a Brown-
ian bridge b(t) with b(±T ) = 0 conditioned to stay above the semicir-
cle cT (t) =

√
T 2 − t2. In the limit of large T , the fluctuation scale of

b(t)−cT (t) is T 1/3 and its time-correlation scale is T 2/3. We prove that,
in the sense of weak convergence of path measures, the conditioned
Brownian bridge, when properly rescaled, converges to a stationary
diffusion process with a drift explicitly given in terms of Airy func-
tions. The dependence on the reference point t = τT , τ ∈ (−1, 1), is
only through the second derivative of cT (t) at t = τT . We also prove
a corresponding result where instead of the semicircle the barrier is a
parabola of height T γ , γ > 1/2. The fluctuation scale is then T (2−γ)/3.
More general conditioning shapes are briefly discussed.

MSC 2000 subject classifications: Primary–60J65, Secondary–60J60.
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1 Introduction and Main Results

We consider the Brownian bridge b(t) over the time interval [−T, T ], T > 0,
b(−T ) = b(T ) = 0, conditioned to lie above the semicircle cT (t) =

√
T 2 − t2.

Let b+(t) be the conditioned Brownian bridge and let XT (t) = b+(t) − cT (t)
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be the deviation of b+(t) away from cT (t), see Figure 1. Clearly XT (t) ≥ 0,
XT (−T ) = XT (T ) = 0, and the path measure of the process is defined on
C([−T, T ],R) = C([−T, T ]), the space of continuous functions over the inter-
val [−T, T ] equipped with the supremum norm. The issue is to understand
the statistical properties of XT (t) for large T .

A well studied special case is when cT (t) is replaced by the function zero.
The Brownian bridge is then constrained to stay positive, a stochastic process
known as Brownian excursion. In the limit of large T it converges to the 3D
Bessel process. Time-dependent barriers, like the circle, seem to be hardly
studied. An exception is the parabola gT,2(t) = T 2 − t2 for which some
properties have been established [5, 4], see below. In this paper we resolve
the fluctuation problem for
(i) the circle cT (t),
(ii) the family of parabolas gT,γ = T γ(1 − (t/T )2).
We also discuss briefly general shape functions of the form gT (t) = Tg(t/T ).

Our problem arose rather indirectly in an attempt to understand a one-
layer approximation to the multilayer polynuclear growth model, see [6].
There one has N+1 independent copies of the Brownian bridge, denoted here
as bj(t), |t| ≤ T , j = 0,−1, . . . ,−N , such that bj(±T ) = j, and conditions
them on nonintersection, with the subsequent limit N → ∞. Of interest
is the top line b0(t), |t| ≤ T . Because of conditioning, typically b0(t) has a
shape of a semicircle. Therefore the crude approximation consists in replacing
all lower lying Brownian motions, i.e., bj(t) with j = −1,−2, . . ., by the
semicircle cT . As we will prove, this approximation preserves the scaling
behaviour, in the sense that transverse fluctuations are of order T 1/3 and
longitudinal correlations decay over a time span of order T 2/3. However,

T−T

cT (t)

t

b+(t)

Figure 1: Brownian bridge b+(t) conditioned to lie above the semicircle cT (t).
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finer details are not accounted for. For example, in our problem XT (t), on
the scale T 2/3, is exponentially mixing, whereas the covariance of top line
b0(t) on the same scale has only power law decay [2, 10].

To state our main result we define the stationary diffusion process A(t)
through the stochastic differential equation

dA(t) = a(A(t)) dt+ dbt (1.1)

with bt the standard Brownian motion and drift

a(x) =
Ai′(−ω1 + x)

Ai(−ω1 + x)
, (1.2)

where −ω1 is the first zero of the Airy function Ai [1]. The relevant asymp-
totic is a(x) = x−1 for x → 0+ and a(x) = −√

x for x → ∞. Thus (1.1)
admits a unique stationary measure which is given by

d

dx
P(A(t) ≤ x) =

Ai(−ω1 + x)2

Ai′(−ω1)2
1[x>0]. (1.3)

A(t) has continuous sample paths and the small x behavior of the drift implies
that P(A(t) > 0 for all t) = 1.

Theorem 1.1. Let b+(t) be the Brownian bridge b(t) conditioned on the set
{b(t) ≥ cT (t) for all t ∈ [−T, T ]} and let XT (t) = b+(t)− cT (t), |t| ≤ T . The
rescaled process close to the reference point τT is defined through

t 7→ AT (t) = vsXT (τT + h−1
s t) (1.4)

with vs = 21/3(1 − τ 2)−1/2T 1/3, hs = v2
s . Then

lim
T→∞

AT = A, (1.5)

in the sense of weak convergence of path measures on C([−N,N ]), for any
N > 0.

For the polynuclear growth model, the same rescaling leads to the Airy
process, which has a t−2 decay of correlations as is known from the rather
intricate explicit solution given in [2, 10]. This behavior should be seen in
contrast to the exponential mixing of the diffusion process A(t).

To prove Theorem 1.1, we rely on the fact that some reasonably explicit
expressions are available in case the semicircle is replaced by a parabola of
the form

gT,γ(t) = T γ
(
1 − (t/T )2

)
. (1.6)
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Theorem 1.2. Let b+,γ(t) be the Brownian bridge b(t) conditioned on the set
{b(t) ≥ gT,γ(t) for all t ∈ [−T, T ]} and let XT,γ(t) = b+,γ(t) − gT,γ(t). The
rescaled process is defined through

t 7→ AT,γ(t) = vsXT,γ(τT + h−1
s t), (1.7)

with vs = T (γ−2)/341/3, hs = v2
s . Then, for γ > 1/2,

lim
T→∞

AT,γ = A, (1.8)

in the sense of weak convergence of path measures on C([−N,N ]), for any
N > 0.

The limit (1.7) has the, at first sight surprising, feature that the limit
process A(t) does not depend on the scaling exponent γ. For γ = 2, i.e., the
standard parabola gT,2(t) = T 2−t2, the fluctuations are of order one, whereas
for γ > 2 they actually decrease as T → ∞. The condition γ > 1/2 reflects
the fact that as γ → 1/2 the time-scaling T−2(γ−2)/3 → T . In other words,
for γ = 1/2 the interior is correlated with the end-points and no stationary
distribution is reached locally. For γ < 1/2, gT,γ(t) can be replaced by the
function zero and the limit process is the Brownian excursion.

We outline the strategy to prove Theorem 1.1. Note thatXT (t) is Markov,
in the sense that upon conditioning on XT (t0) the future and the past path
measures are independent. Let us fix then the time window [−N,N ] for the
rescaled process AT (t).
(i) The first step is to show that the entrance/exit law, i.e., the joint dis-
tribution of (AT (−N),AT (N)) is close to the corresponding entrance/exit
law of the limit diffusion process A. To achieve such a result the true shape
function cT (t) is piecewise approximated by parabolas. Parabolas are chosen
because for them reasonably explicit expressions for the transition probabil-
ity is available.
(ii) For the interval [−N,N ] we use the limit entrance/exit law and use a suit-
ably chosen parabola as conditioning shape, such that the resulting process
is identical to A(t), |t| ≤ N . Thus the claim of Theorem 1.1 follows from
the fact that inside [−N,N ] the circle and the parabola differ at most by
O(T−1/4).

Following this strategy, in Section 2 we consider the parabolic constraint
and prove Theorem 1.2. In Section 3 we establish a result needed to control
the joint entrance/exit law for the time window under consideration. With
this input we prove Theorem 1.1 in Section 4. In Section 5 we discuss other
shapes. The Appendix contains estimates on the transition probability for
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the conditioning parabolic constraint and some monotonicity results required
in Section 4.
Acknowledgments: We are grateful to Michael Prähofer for useful dis-
cussions and to the unknown referee for a critical reading of the previous
version and insisting on convergence of path measures. The work of P. L.
Ferrari is supported by the Deutsche Forschungsgemeinschaft under the re-
search project SP 181/17–1.

2 Parabolic constraint

We plan to prove Theorem 1.2 and first state a result on the transition density
for Brownian motion conditioned to remain below a parabola −1

2
gT,2(t+ T ).

This result was first obtained by Groeneboom, see (2.23) and (2.24) in [5].
In a different way it was derived by Salminen, see Proposition (3.9) of [8].
We were led to the explicit formula in Lemma 2.1 below from Frachebourg
and Martin, p. 330 of [4], where the references to [5, 8] are given. Since the
result holds for an arbitrary diffusion coefficient, by Brownian motion scaling
we can easily deduce the transition density for Brownian motion conditioned
to remain above gT,γ(t). The result is reported in Lemma 2.1 below. The
vertical and horizontal scaling depends only on the g′′T,γ(t), therefore we define

κ = −d2gT,γ(t)

dt2
= 2T γ−2. (2.1)

Let W (x2, t2|x1, t1) be the transition probability density for Brownian motion
bx1,t1(t) conditioned to start at t1 from gT,γ(t1) + x1 and ending at t2 in
gT,γ(t2) + x2,

W (x2, t2|x1, t1) =
d

dx2

P(Y (t2) ≤ x2|Y (t) ≥ 0, t ∈ [t1, t2]) (2.2)

where Y (t) = bx1,t1(t) − gT,γ(t).

Lemma 2.1. Let us define the vertical and horizontal scaling as

vs = (2κ)1/3, hs = (2κ)2/3. (2.3)

Then
W (x2, t2|x1, t1) = Ŵ (x2, t2|x1, t1) exp(F (x2, t2|x1, t1)) (2.4)

with

Ŵ (x2, t2|x1, t1) =
∑

k≥1

vse
− 1

2
ωk(t2−t1)hs

Ai (vsx1 − ωk)

Ai′(−ωk)
Ai (vsx2 − ωk)

Ai′(−ωk)
(2.5)
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and

F (x2, t2|x1, t1) = x1g
′
T,γ(t1)−x2g

′
T,γ(t2)−

1

6κ1/3

[
g′T,γ(t1)

3 − g′T,γ(t2)
3
]
. (2.6)

Here −ω1,−ω2, . . . are the zeros of the Airy function, 0 < ω1 < ω2 < . . ..

Let XT,γ(t) be the process of Theorem 1.2. Furthermore let L be the
backward generator of the diffusion process A(t),

(Lϕ)(x) =
1

2

d2ϕ(x)

dx2
+ a(x)

dϕ(x)

dx
(2.7)

as acting on smooth functions ϕ. A(t) has the invariant measure Ω(x)2 with

Ω(x) =
Ai(−ω1 + x)

Ai′(−ω1)
, x ≥ 0,

∫R+

Ω(x)2 dx = 1. (2.8)

Through the ground state transformation Hf = −Ω(LΩ−1ϕ), see e.g. Chap-
ter V.16 of [9], one obtains

(Hϕ)(x) = −1

2

d2ϕ(x)

dx2
+
x

2
ϕ(x) − Eϕ(x), x ≥ 0. (2.9)

H is understood with Dirichlet boundary condition at x = 0 and E = 1
2
ω1

implies HΩ = 0. Denote by G(x, y; t) the integral kernel of Gt = e−tH , i.e.,

(e−tHϕ)(x) =

∫R+

G(x, y; t)ϕ(y) dy. (2.10)

We remark that H has purely discrete spectrum. Its eigenvalues and
eigenfunctions are given by

Ek = 1
2
ωk+1, Ωk(x) =

Ai(−ωk+1 + x)

Ai′(−ωk+1)
, x ≥ 0, k = 0, 1, . . . . (2.11)

Note that we use the notation Ω ≡ Ω0, since Ω0 reappears frequently through-
out the paper.

Before proving Theorem 1.2 we explain how A is related to a conditioned
Brownian motion.

Proposition 2.2. Let Z(t), |t| ≤ N , be Brownian motion conditioned to
stay above s(t) = 1

4
(N2 − t2) and such that the joint probability density of

(Z(−N), Z(N)) is given by

ρZ(ξ1,−N ; ξ2, N) = Ω(ξ2)G(ξ2, ξ1; 2N)Ω(ξ1). (2.12)

Then Z
D
= A + s on C([−N,N ]).
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Proof. Denote by W (t) = Z(t) − s(t), then the transition density of W (t) is

p(y, t|x, u) =
[ ∫R2

+

dξ1 dξ2ρZ(ξ1,−N ; ξ2, N)G(ξ2, y;N − t)G(y, x; t− u)

×G(x, ξ1;u+N)G(ξ2, ξ1; 2N)−1
]
×

[ ∫R2
+

dξ1 dξ2ρZ(ξ1,−N ; ξ2, N)

×G(ξ2, x;N − u)G(x, ξ1;u+N)G(ξ2, ξ1; 2N)−1
]−1

(2.13)

for x, y > 0 and −N < u < t < N . But since ρZ(ξ1,−N ; ξ2, N) =
Ω(ξ2)G(ξ2, ξ1; 2N)Ω(ξ1), it follows that

p(y, t|x, u) = (GN−tΩ)(y)G(y, x; t− u)/(GN−uΩ)(x). (2.14)

Notice that h(x) = (GN−tΩ)(x) = Ω(x). Hence the process with transition
probability density (2.14) is the Doob h-transform, see section IV.39 of [7].
Thus it follows that the process W (t) satisfies the SDE

dW (t) = ã(W (t)) dt+ dbt (2.15)

with the drift ã(x) = ∂ lnh(x)/∂x being equal to (1.2) and bt standard
Brownian motion. Therefore W (t) and A(t) satisfy the same SDE and, since

they have the same distribution at t = −N , W (t)
D
= A(t).

We now prove Theorem 1.2 for the case of the parabolic constraint
gT,γ. The strategy consists in first controlling the joint density of
(AT,γ(−N),AT,γ(N)), and then to use the Markov property of Brownian
motion together with Proposition 2.2 so to determine the limit process of
AT,γ. This strategy will be also the basis of the proof of Theorem 1.1.

Proof of Theorem 1.2. Consider the rescaled process AT,γ = vsXT,γ(τT +
h−1
s t), |t| ≤ N , with vs = T (γ−2)/341/3 and hs = v2

s . The joint density of
(AT,γ(−N),AT,γ(N)) is given by

ρT (ξ1,−N ; ξ2, N) = lim
ε→0

G(ε, ξ2;T (1 − τ)hs −N)G(ξ2, ξ1; 2N)

×G(ξ1, ε;T (1 + τ)hs −N)/G(ε, ε; 2Ths). (2.16)

Since γ > 1/2, Ths ∼ T (2γ−1)/3 → ∞ when T → ∞. Using the estimate
from Lemma B.1, we have, for some constant a > 0,

G(ε, ε; 2Ths) = ε2(1 + O(e−aThs)) (2.17)

and

G(ε, ξ2;T (1− τ)hs−N) = ε[Ω(ξ2)+O(min{ξ2e−aThs , e−aξ2(Ths)1/3})]. (2.18)
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Therefore

lim
T→∞

ρT (ξ1,−N ; ξ2, N) = Ω(ξ2)G(ξ2, ξ1; 2N)Ω(ξ1) ≡ ρA(ξ1,−N ; ξ2, N).

(2.19)
For any bounded, continuous function f on C([−N,N ]),EAT,γ

(f)

=

∫R2
+

dξ1 dξ2ρT (ξ1,−N ; ξ2, N)EAT,γ
(f |AT,γ(−N) = ξ1,AT,γ(N) = ξ2)

=

∫R2
+

dξ1 dξ2ρA(ξ1,−N ; ξ2, N)EAT,γ
(f |AT,γ(−N) = ξ1,AT,γ(N) = ξ2)

+R1(T,N, f), (2.20)

with R1(T,N, f) bounded by

|R1(T,N, f)| ≤ ‖f‖∞
∫R2

+

dξ1 dξ2|ρT (ξ1,−N ; ξ2, N) − ρA(ξ1,−N ; ξ2, N)|

(2.21)
which converges to zero as T → ∞, because ρT converges pointwise to ρA
and ρT , ρA are densities with total mass one (Scheffé’s Theorem, see e.g.
Appendix of [3]). Finally, Proposition 2.2 implies that the non-vanishing
term in (2.20) is EA(f).

3 Joint entrance and exit law

In a piecewise parabolic approximation of the semicircle, or more generally of
a concave function, there are points with discontinuities in the slope. In order
to control the subleading terms we take a continuous, piecewise parabolic
shape such that the derivative has negative jumps at its discontinuity points.
We call these points ridges.

More precisely, let us consider a Brownian bridge bs(t) conditioned to re-
main above a continuous, concave, piecewise parabolic function s(t), starting
from s(tin) + xin at time tin and ending at s(tfin) + xfin at time tfin, tin < tfin,
where

s(t) = aj + bjt− 1
2
cjt

2 for t ∈ [uj−1, uj] (3.1)

with cj > 0, u0 = tin, and uM−1 = tfin. We want to study the process close to
t = t̃, with t̃ very far away from the contact times uj, say uK−1 ≪ t̃ ≪ uK .
Define

vs = (−2s′′(t̃))1/3, hs = v2
s , (3.2)
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the times tj = uj for j = 0, . . . , K − 1, tj = uj−1 for j = K + 1, . . . ,M , and

tK ≡ t− = t̃−Nh−1
s , tK+1 ≡ t+ = t̃+Nh−1

s . (3.3)

Denote
ν(tj) = s′(t−j ) − s′(t+j ) ≥ 0, (3.4)

in particular, ν(tK) = ν(tK+1) = 0, and

vj = (−2s′′((tj + tj−1)/2))1/3, hj = v2
j , Γj =

1

2
hj(tj − tj−1). (3.5)

Finally, let Γ̄ = minj 6=K+1 Γj, assume that Γ̄ → ∞ as T → ∞, and that

v1xin ≤ Γ
1/3
1 , vMxfin ≤ Γ

1/3
M .

Lemma 3.1. Fix N > 0 and denote t 7→ XT (t) = bs(t) − s(t). Then the
joint density of (XT (t−), XT (t+)) with t− = tK −Nh−1

s and t+ = tK +Nh−1
s

is given by

ρT (x, t−; y, t+) =
d

dx

d

dy
P(XT (t−) ≤ x,XT (t+) ≤ y) (3.6)

= v2
sΩ(vsx)G(vsx, vsy; 2N)Ω(vsy)(1 + O(e−2aΓ̄1/3

))

+ET (x, t−; y, t+),

for some constant a > 0 and where the error term ET converges pointwise to
0 and its total mass is bounded by

∫R2
+

dx dy|ET (x, t−; y, t+)| = O(e−aΓ̄
1/3

). (3.7)

Proof. Let us denote by zi the position of the Brownian bridge above s(ti)
for i = 0, . . . ,M . Then the density (3.6) is given by

ρT (x, t−; y, t+) =

∫RM−3

+

∏
i∈J dzi

∏M
j=1W (zj, tj|zj−1, tj−1)

∫RM−1
+

∏M−1
i=1 dzi

∏M
j=1W (zj, tj|zj−1, tj−1)

(3.8)

with J = {1, . . . , K − 1, K + 2, . . . ,M − 1}. Explicitly

W (zj, tj|zj−1, tj−1) = Ŵ (zj, tj|zj−1, tj−1) (3.9)

× exp
[
zj−1s

′(t+j−1) − zjs
′(t−j )

]
q(tj, tj−1)

with q a function independent of zj, zj−1. When (3.9) is substituted in (3.8),

the product of the q’s simplifies. Moreover, each Ŵ contains a prefactor
vje

−ω1Γj , see (B.1). Thus W (zj, tj|zj−1, tj−1) in (3.8) can be replaced by

v−1
j eω1ΓjŴ (zj, tj|zj−1, tj−1) exp[zj−1s

′(t+j−1) − zjs
′(t−j )] (3.10)
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and in addition s′(t+0 ) and s′(t−M+1) can be replaced by zero.
Let us first analyze the denominator of (3.8). It writes

∫RM−1

+

M−1∏

i=1

(
dzie

−ziν(ti)
) M∏

j=1

(
Ω(vjzj)Ω(vjzj−1) +RΓj

(vjzj, vjzj−1)
)
, (3.11)

where RΓj
is the one in Lemma B.1. Denote

Q = Ω(v1z0)Ω(vMzM)
∏

i∈J

∫R+

dzie
−ziν(ti)Ω(vizi)Ω(vi+1zi), (3.12)

then the expansion of (3.11) has the leading term

Q

K+1∏

i=K

∫R+

dziΩ(vszi)Ω(vszi) = Qv−2
s (3.13)

plus 2M − 1 terms containing one or more factors of R’s. The conditions
v1xin ≤ Γ

1/3
1 and vMxfin ≤ Γ

1/3
M imply the bounds

|R0
Γ1

(v1xin)| ≤ Ω(v1xin)O(e−
a
2
Γ

2/3

1 ), |R0
ΓM

(vMxfin)| ≤ Ω(vMxfin)O(e−
a
2
Γ

2/3

M ).
(3.14)

Using Lemma C.1, we can replace each R0
Γ by Ω in the integration variables

up to a multiplicative factor O(e−aΓ
1/3

). Summing up all these contributions,
the denominator is given by

denominator of (3.8) = αQv−2
s (1 + O(e−2aΓ̄1/3

)) (3.15)

where α 6= 0 is a constant coming from the replacements described before
(3.11).

The numerator is obtained similarly, but the variables x and y are not
integrated out, with the result

numerator of (3.8) = αQΩ(vsy)G(vsy, vsx; 2N)Ω(vsx) + E1(x, y) (3.16)

where the first is the term with no factor of R and E1(x, y) is the error term,
which is bounded by

|E1(x, y)| ≤ αQG(vsy, vsx; 2N)
[
Ω(vsx)R

0
Γ̄(vsy) + Ω(vsy)R

0
Γ̄(vsx)

+R0
Γ̄(vsx)R

0
Γ̄(vsy)

]
(1 + O(e−2aΓ̄1/3

)) (3.17)



4 PROOF OF THEOREM 1.1 11

with R0
Γ̄

given in (B.2). From (3.15) and (3.16) it follows that

ρT (x, t−; y, t+) = v2
sΩ(vsy)G(vsy, vsx; 2N)Ω(vsx)(1 + O(e−2aΓ̄1/3

))

+E2(x, y) (3.18)

with E2(x, y) = E1(x, y)/Qv
−2
s (1 + O(e−2aΓ̄1/3

)).

The expression of R0
Γ̄

implies that R0
Γ̄
(y) ≤ e−aΓ̄

1/3

, converges pointwise to
0, and decays exponentially in y for large y. On the other hand, G(y, x; 2N)
is uniformly bounded in x and y for any N > 0. Therefore

∫R2
+

dx dy|E2(x, y)| ≤ O(e−aΓ̄
1/3

). (3.19)

4 Proof of Theorem 1.1

In order to prove the theorem we first control the entrance/exit law for the
interval [τT−Nh−1

s , τT+Nh−1
s ], for which we use Lemma 3.1. Therefore one

has to find a lower and an upper approximation satisfying its hypotheses.

4.1 Upper and lower approximating shapes for t = −τT
The piecewise parabolic approximations s± are constructed with the parabo-
las

fi(t) = ai + bit− 1
2
cit

2 for t ∈ [ui−1, ui] (4.1)

for −T = u0 < u1 < . . . < un−1 < un = 0, where the choice of the u′js is
discussed below. We set s±(t) = s±(−t) for t ∈ [0, T ] (although this is not
required for the result). Since we want to apply Proposition 2.2, we also
determine vj = (2cj)

1/3 and Γj = 1
2
(uj−uj−1)hj with hj = v2

j . In case τ = 0,
we set bj = 0.

4.1.1 Upper approximation, τ = 0

This is the easiest case and one needs only a single parabola, i.e., n = 1,

f1(t) = T − 1
2
T−1t2. (4.2)

s+(t) = f1(t) ≥ cT (t) for all t. Since u0 = −T, u1 = 0,

v1 = 21/3T−1/3, Γ1 = 2−1/3T 1/3. (4.3)



4 PROOF OF THEOREM 1.1 12

4.1.2 Lower approximation, τ = 0

In this case one needs n = 2. We define u1 = −T 3/4. The parabola from
(−T, 0) to (u1, cT (u1)) is given by (4.1) with a1 = T (1 − T−1/2)−1/2 and
c1 = 2T−1 + O(T−3/2). The parabola from (u1, cT (u1)) to (0, T ) has a2 = T
and c2 = T−1 + O(T−3/2). Then for t ∈ [−T, T ], s−(t) ≤ cT (t), with

v1 = 22/3T−1/3 + O(T−5/6), Γ1 = 21/3T 1/3 + O(T 1/12) (4.4)

and

v2 = 21/3T−1/3 + O(T−5/6), Γ2 = 2−1/3T 1/12 + O(T−5/12). (4.5)

s−(t) has a ridge at ±u1.

4.1.3 Upper approximation, τ < 0

In this case the construction requires n = 3. For convenience we define
λτ = 1 − τ 2 and β = −τ > 0. Let u1 = −τT and let the parabola f1(t) be
defined by

f1(t) = f2(t) = cT (τT )+c′T (τT )(t−τT )+ 1
2
c′′T (τT )(1−T−1/4)(t−τT )2. (4.6)

We define u∗ to be the first intersection time after u1 of f2(t) with cT (t). We
estimate u∗ = −βT + λτβ

−1T 3/4 + O(T 1/2). Let

f ∗(t) = a∗ − 1
2
c∗t2 (4.7)

be the parabola which passes through (u1, cT (t1)) and (u∗, cT (u∗)). Some

computations lead to c∗ = λ
−1/2
τ T−1 + O(T−5/4). Since f ∗(t) ≤ cT (t) for

t ∈ [u1, u
∗] and f2(t) ≥ cT (t) for t ∈ [u1, u

∗], there is a time u2 ∈ (u1, u
∗)

such that f ′
2(u2) = f ∗′(u2). We obtain u2 = −βT + 1

2
λτβ

−1T 3/4 + O(T 1/2).
Finally one has to define the third piece of parabola. Since f ∗(t) ≥ cT (t) for
t ≥ u∗, and f2(t) ≥ cT (t) for t ∈ [u1, u

∗], we define f3(t) by

f3(t) = f ∗(t) + (f2(u2) − f ∗(u2)). (4.8)

This construction satisfies s+(t) ≥ cT (t) for t ∈ [−T, T ], has a ridge at t = 0,
and the second derivative is discontinuous at t = ±u2. Moreover one has

v1 = 21/3λ
−1/2
τ T−1/3 + O(T−7/12), Γ1 = 2−1/3(1 − |τ |)−1T 1/3 + O(T 1/12),

v2 = v1, Γ2 = 2−4/3|τ |−1T 1/12 + O(T−1/6),

v3 = 21/3λ
−1/6
τ T−1/3 + O(T−7/12), Γ3 = 2−1/3|τ |λ−1/3

τ T 1/3 + O(T 1/12).
(4.9)
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4.1.4 Lower approximation, τ < 0

In this case the construction requires n = 4. Also here let β = −τ and
λτ = 1 − τ 2. We define u2 = −τT and the parabola f2(t) by

f2(t) = f3(t) = cT (τT )+c′T (τT )(t−τT )+1
2
c′′T (τT )(1+T−1/4)(t−τT )2. (4.10)

f2(t) has an intersection with cT (t) for some time t < u2, which we define to
be u1, and remains below cT (t) for t ∈ [u2, 0]. Some computations lead to
u1 = −βT − λτβ

−1T 3/4 + O(T 1/2). Moreover let

f1(t) = a1 − 1
2
c1t

2 (4.11)

be the parabola passing through (−T, 0) and (u1, cT (u1)). It has c1 =

2λ
−1/2
τ T−1 + O(T−5/4). Finally we define u3 = −βT (1 − T−1/4) and

f4(t) = a4 − 1
2
c4t

2 (4.12)

such that f4(u3) = f3(u3) and f ′
4(u3) = f ′

3(u3). We obtain c4 = λ
−1/2
τ T−1 +

O(T−5/4).
This construction satisfies s−(t) ≤ cT (t) for t ∈ [−T, T ], has a ridge at

t = 0 and at t = ±u1, and the second derivative is discontinuous at t = ±u3.
Moreover one has

v1 = 21/3λ
−1/6
τ T−1/3 + O(T−7/12), Γ1 = 2−1/3(1 − |τ |)λ−1/2

τ T 1/3 + O(T 1/12),

v2 = 21/3λ
−1/2
τ T−1/3 + O(T−7/12), Γ2 = 2−1/3|τ |−1T 1/12 + O(T−1/6),

v3 = v2, Γ3 = 2−1/3|τ |λ−1
τ T 1/12 + O(T−1/6),

v4 = 21/3λ
−1/6
τ T−1/3 + O(T−7/12), Γ4 = 2−1/3|τ |λ−1/3

τ T 1/3 + O(T 1/12).
(4.13)

4.2 Joint densities

We compute now the joint entrance/exit law for the process of Theorem 1.1.
Let b±(t) be the Brownian bridge from (s±(−T ),−T ) to (s±(T ), T ) con-

ditioned to stay above s±. The processes we actually want to study are

AT,±(t) = vc

[
b±(τT + h−1

c t) − cT (τT + h−1
c t)

]
(4.14)

and Proposition 2.2 is concerned with the processes

YT,±(t) = vs±

[
b±(τT + h−1

s±
t) − s±(τT + h−1

s±
t)

]
. (4.15)
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Let us denote λT,± = vs±/vc, and

gT,±(t) = vc[s±(τT + h−1
c t) − cT (τT + h−1

c t)]. (4.16)

Then
AT,±(t) = λ−1

T,±YT,±(λ2
T,±t) + gT,±(t). (4.17)

We compute λT,± and bound gT,±(t) for t ∈ [−N,N ] with the result:
a) Case τ = 0,

λT,+ = 1, gT,+(t) = O(N4T−2/3),

λT,− = 1 + O(T−1/2), gT,−(t) = O(N2T−1/2).
(4.18)

b) Case τ < 0,

λT,± = 1 + O(T−1/4), gT,±(t) = O(N2T−1/4). (4.19)

Lemma 4.1. Let ρT,cT (ξ1,−N ; ξ2, N) be the joint probability density of
(AT (−N),AT (N)), where AT is defined in (1.4). Then

lim
T→∞

ρT,cT (ξ1,−N ; ξ2, N) = ρA(ξ1,−N ; ξ2, N) (4.20)

with
ρA(ξ1,−N ; ξ2, N) ≡ Ω(ξ2)G(ξ2, ξ1; 2N)Ω(ξ1). (4.21)

Proof. Let ρT,±(ξ1,−N ; ξ2, N) be the joint probability density of
(AT,±(−N),AT,±(N)). Then, since λT,± → 1 and gT,±(t) → 0 as T → ∞,

lim
T→∞

ρT,±(ξ1,−N ; ξ2, N) = ρA(ξ1,−N ; ξ2, N) ≡ Ω(ξ2)G(ξ2, ξ1; 2N)Ω(ξ1).

(4.22)
Denote FT,∗(ξ1,−N ; ξ2, N) =

∫
xi≤ξi

dx1 dx2ρT,∗(x1,−N ;x2, N), where

∗ = {+,−, cT}. From the monotonicity properties of Propositions D.3 and
D.4 it follows that

FT,+(ξ1,−N ; ξ2, N) ≤ FT,cT (ξ1,−N ; ξ2, N) ≤ FT,−(ξ1,−N ; ξ2, N). (4.23)

Taking the limit T → ∞ in (4.23) and using (4.22) we obtain

lim
T→∞

FT,cT (ξ1,−N ; ξ2, N) = FA(ξ1,−N ; ξ2, N) ≡
∫

xi≤ξi

dx1 dx2ρA(ξ1,−N ; ξ2, N),

(4.24)
thus also

lim
T→∞

ρT,cT (ξ1,−N ; ξ2, N) = ρA(ξ1,−N ; ξ2, N). (4.25)
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Finally we are in position to prove our main theorem on the circular con-
straint.

Proof of Theorem 1.1. The process we have to analyze is

AT (t) = vsXT (τT + h−1
s t) (4.26)

where XT (t) is defined in Theorem 1.1. We have to prove that AT
D−→ A on

C([−N,N ]) in the limit T → ∞, which is done through

AT + c̃T
D−→ A + s (4.27)

where s is a fixed parabola and c̃T is a (non-random) function satisfying

lim
T→∞

sup
t∈[−N,N ]

|c̃T (t) − s(t)| = 0. (4.28)

Then (4.27) implies

AT + c̃T − s
D−→ A, (4.29)

since the mapping x 7→ x − s is continuous. Finally (4.28) combined with

(4.29) implies that AT
D−→ A as T → ∞.

Now, let us prove (4.27). Define LT (t) = αT (t− τT ) + βT to be the line
intersecting the circle cT at times t = τT ± h−1

s N . Moreover, let

c̃T (t) = vs(cT (τT + h−1
s t) − LT (τT + h−1

s t)) (4.30)

and

s(t) =
1

4
(N2 − t2). (4.31)

A simple calculation shows that c̃T (t) = s(t) + O(N3T−1/3), t ∈ [−N,N ].
We now consider the process YT = AT + c̃T . Let f be a bounded, contin-

uous function on C([−N,N ]). Using the Markov property,EYT
(f) =

∫R2
+

dξ1 dξ2ρT,cT (ξ1,−N ; ξ2, N)EYT
(f |YT (−N) = ξ1, YT (N) = ξ2)

=

∫R2
+

dξ1 dξ2ρA(ξ1,−N ; ξ2, N)EYT
(f |YT (−N) = ξ1, YT (N) = ξ2)

+R1(T,N, f), (4.32)

where the remainder term R1(T,N, f) can be bounded by

|R1(T,N, f)| ≤ ‖f‖∞
∫R2

+

dξ1 dξ2|ρT,cT (ξ1,−N ; ξ2, N) − ρA(ξ1,−N ; ξ2, N)|

(4.33)
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which converges to zero as T → ∞, because ρT,cT converges by Lemma 4.1
pointwise to ρA, and ρT,cT , ρA are densities with total mass one (Scheffé’s
Theorem, see e.g. Appendix of [3]).

Let Z(t) be the process defined in Proposition 2.2 with joint density of
(Z(−N), Z(N)) given by ρZ(ξ1,−N ; ξ2, N) = ρA(ξ1,−N ; ξ2, N). For any
realization ω of Z, define χc̃T (ω) = 1 if ω(t) ≥ c̃T (t) for all t ∈ [−N,N ] and
χc̃T (ω) = 0 otherwise. Then the leading term of (4.32) isEZ(fχc̃T )/EZ(χc̃T ), (4.34)

and we have to show that it converges to EZ(fχs)/EZ(χs) as T → ∞. Notice
that the reference measure does not depend on T ; the only T -dependent
quantity is c̃T . It is easy to see thatEZ(fχs)EZ(χs)

=
EZ(fχc̃T )EZ(χc̃T )

+R2(s, c̃T , f) (4.35)

with

R2(s, c̃T , f) =
EZ(fχs(1 − χc̃T ))EZ(χs)

− EZ(f(1 − χs)χc̃T )EZ(χs)

+
EZ(fχc̃T )EZ(χc̃T )

(EZ(χc̃T ) −EZ(χs)EZ(χs)

)
. (4.36)

(4.36) can be bounded as

|R2(s, c̃T , f)| ≤ 2‖f‖∞EZ(χs)
(EZ(χc̃T (1 − χs)) +EZ(χs(1 − χc̃T )))

=
2‖f‖∞EZ(χs)

PZ({χs 6= χc̃T }). (4.37)

Let BT = {ω|χs(ω) 6= χc̃T (ω)}, then PZ({χs 6= χc̃T }) = PZ(BT ). Let
εT = supt∈[−N,N ] |c̃T (t) − s(t)| = O(T−1/3), then BT ⊂ DT = {ω|χs−εT

(ω) 6=
χs+εT

(ω)}. In the limit T → ∞, ω ∈ BT if ω touches without crossing the
parabola s. Such paths have probability zero, therefore limT→∞EYT

(f) =EZ(fχs)/EZ(χs).

We have proved that YT = AT + c̃T
D−→ Z as T → ∞. By Proposition 2.2

Z
D
= A + s, thus (4.27) holds. As discussed above, from (4.27) and the fact

that c̃T → s as T → ∞, it follows that AT
D−→ A.



5 EXTENSIONS 17

5 Extensions

While the original motivation for our study came from the circular constraint,
the proof presented extends to more general shape functions. We refrain from
stating precise theorems. Still it should be instructive to the reader to see
how the Brownian bridge responds to a general constraint.

Let us then substitute the circle cT by gT (t) = Tg(t/T ), where g :
[−1, 1] → R, g(−1) = g(1) = 0, g continuous, and g ∈ C2([−1, 1]) piece-
wise. As before we fix the reference point τT , τ ∈ (−1, 1), and study the
fluctuations away from gT for times close to τT . To first approximation the
fluctuation behavior is determined by the sign of g′′(τ). We list three “stan-
dard” cases, gc denoting the convex envelope of g.
(i) g′′(τ) < 0: assume that, for a δ > 0, g ∈ C2 and g = gc on [τ − δ, τ + δ].
If g′′(τ) < 0 the fluctuations are as specified in Theorem 1.1, where now
vs = (−2g′′(τ))1/3.
(ii) g′′(τ) = 0: let g be linear in [t1, t2] and, for a δ > 0, let g = gc, g

′′ < 0,
and g ∈ C2 on [t1 − δ, t1) ∪ (t2, t2 + δ]. Then the fluctuations at tiT are of
order T µ, µ < 1/2, and inside the interval [t1T, t2T ] of order T 1/2. Thus the
limit process will be Brownian excursion over the interval [t1, t2].
(iii) g′′(τ) > 0: let [t1, t2] be an interval such that t1 < τ < t2, g(t) < gc(t) for
t ∈ (t1, t2) and g(ti) = gc(ti), i = 1, 2. Moreover assume that for some δ > 0,
g = gc and is C2 on [t1 − δ, t1]∪ [t2, t2 + δ]. Then in (t1, t2) the constraint has
not effect on the Brownian motion and the limit process will be a Brownian
bridge over the interval [t1, t2].

Clearly there are intermediate cases to be discussed. However a really
novel phenomenon appears if in case (i) we lift the assumption that g is
continuously differentiable at τ . We denote the right (left) hand limits by
f(x+) = limt↓x f(x) and f(x−) = limt↑x f(x).
(i.a) Ridge. Assume (i) except at τ . Instead let g′′(τ+) < 0, g′′(τ−) < 0, and
ν := g′(τ−) − g′(τ+) > 0. Then the fluctuations above gT (τT ) are of order
1 and the probability density of XT (τT ) equals 1

2
ν3x2e−νx as T → ∞. As a

consequence, (ii) and (iii) holds also if there is a ridge at t1 and/or t2.
(i.b) Curvature discontinuity. Assume (i) except at τ . Instead let g′(τ−) =
g′(τ+) but g′′(τ+) 6= g′′(τ−) and g′′(τ±) < 0. In this case the fluctuations are
of order T 1/3 and the limiting probability density of XT (τT ) is, up to nor-
malization, Ω(vs(τ

−)xT−1/3)Ω(vs(τ
+)xT−1/3), with vs(τ

±) = (−2g′′(τ±))1/3

and Ω(x) given in (2.8).
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A Properties of the Airy function and its ze-

ros

For the convenience of the reader we list a few properties of the Airy function
needed in the main text. We follow the conventions in [1].

1. For large z,

Ai(z) ≃ 1

2
√
π 4
√
z
e−

2

3
z3/2

. (A.1)

2. Ai(z) ≤ 0.54 for all z and the maximum is reached at z = −µ ≃ −1.02.

3. For large k, ωk ≃
(

3π
2
k
)2/3

and for all k ≥ 2

ωk − ω1 ≥ k2/3. (A.2)

4. |Ai′(−ωk)| ≥ Ai′(−ω1) where ω1 ≃ 2.34, Ai′(−ω1) ≃ 0.70.

5. For x ∈ [0,−ω1 + µ],

Ai(−ω1 + x) ≥ Ai(−ω1 + µ)

(−ω1 + µ)
x. (A.3)

6. For all x ∈ R+,

Ω(x) = Ai(−ω1 + x)/Ai′(−ω1) ≤ 6e−x, Ω(x) ≤ x. (A.4)

B Leading term of the transition density

Lemma B.1. Let Γ = 1
2
(t2 − t1)hs and yi = vsxi, i = 1, 2, then

Ŵ (x2, t2|x1, t1) = vse
−ω1Γ

[
Ai(−ω1 + y1) Ai(−ω1 + y2)

Ai′(−ω1)2
+RΓ(y1, y2)

]
(B.1)

with

|RΓ(y1, y2)| ≤ R0
Γ(y1)R

0
Γ(y2), R0

Γ(y) = min{y exp(−aΓ), exp(−ayΓ1/3)}
(B.2)

for a constant a > 0 and Γ large enough. Moreover, for any fixed Γ > 0,
Ŵ (x2, t2|x1, t1) is uniformly bounded in x1, x2.
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Proof. Let

Φk(y) = e−
1

2
(ωk−ω1)Γ Ai(−ωk + y)

Ai′(−ωk)
. (B.3)

Then RΓ(y1, y2) is given by

RΓ(y1, y2) =
∑

k≥2

Φk(y1)Φk(y2) (B.4)

and
|RΓ(y1, y2)| ≤

∑

k≥2

|Φk(y1)|
∑

l≥2

|Φl(y2)|. (B.5)

For large k, ωk ≃ (3
2
πk)2/3, and for small k the exact values of ωk are

known [1], from which we deduce that ωk − ω1 ≥ 1
2
k2/3. for all k ≥ 2. More-

over we have |1/Ai′(ωk)| ≤ 1 and |Ai(−ωk + y)| ≤ |y| |Ai′(−ωk)|. Therefore
it follows that

∑

k≥2

|Φk(y)| ≤ y
∑

k≥2

e−
1

2
k2/3Γ ≤ ye−Γ/2c1(Γ) (B.6)

with c1(Γ) = 3(
√

Γ +
√
π/2)Γ−3/2.

This estimate is good except for very large y. For large y, the Airy
function becomes of order one for ωk ≃ y, i.e., for k ≃ 2

3π
y3/2. Let k0(y) =

y3/2/10. Then we distinguish between the cases for k ≤ k0 and k ≥ k0.
a) 2 ≤ k ≤ k0(y). In this case Ai(−ωk + y) ≃ exp

(
−2

3
(−ωk + y)3/2

)
≤

exp
(
−1

3
y3/2

)
and, with the same estimate for the exponential term, we obtain

|Φk(y)| ≤ exp
(
−1/2k2/3Γ

)
exp

(
−1

3
y3/2

)
. (B.7)

b) k ≥ k0(y). For this case we use ωk − ω1 ≥ 1
2
k2/3 and |Ai(−ωk + y)| ≤ 1

and obtain
|Φk(y)| ≤ exp

(
−1

2
k2/3Γ

)
. (B.8)

Therefore for large y we have

∑

k≥2

|Φk(y)| =

k0(y)∑

k=2

|Φk(y)| +
∑

k>k0(y)

|Φk(y)|

≤
∑

k≥2

e−
1
2
k2/3Γe−

1
3
y3/2

+
∑

k≥k0(y)

exp
(
−1

2
k2/3Γ

)
. (B.9)

The first term in r.h.s. of (B.9) is bounded by c1(Γ) exp
(
−Γ/2 − y3/2/3

)
, and

the second one is bounded by
∫ ∞

k0(y)

dke−
1

2
k2/3Γ ≤ c2(Γ)e−Γy/2 (B.10)
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with c2(Γ) = 3(
√
π/2 +

√
Γy/2)Γ−3/2.

If we take Γ large, we can apply the approximation for large y to the

y ≥ Γ2/3 and use e−
1
3
y3/2 ≤ e−

1
3
yΓ1/3

to see that (B.2) holds. On the other
hand from (B.6), (B.10), and the boundness of the ground state, it follows

that Ŵ (x2, t2|x1, t1) is uniformly bounded in x1, x2 for any fixed Γ > 0.

C Estimate of the integral with error terms

Lemma C.1. Let us define

I(0,∞) =

∫ ∞

0

dxΩ(vjx)Ω(vj+1x)e
−νx,

IE(0,∞) =

∫ ∞

0

dxΩ(vjx)R
0
Γj+1

(vj+1x)e
−νx, (C.1)

IEE(0,∞) =

∫ ∞

0

dxR0
Γj

(vjx)R
0
Γj+1

(vj+1x)e
−νx.

Then, if ν ≥ 0,

IE(0,∞) ≤ I(0,∞)Ce−aΓ
1/3

j+1 , IEE(0,∞) ≤ I(0,∞)Ce−a(Γ
1/3

j +Γ
1/3

j+1
) (C.2)

for some constant C > 0, assuming Γj,Γj+1 large enough.

Proof. First we change variables as y = vjx. Setting λ = vj+1/vj and ν̃ =
ν/vj, then

Ĩ(0,∞) = I(0,∞)vj =

∫ ∞

0

dyΩ(y)Ω(λy)e−ν̃y,

ĨE(0,∞) = IE(0,∞)vj =

∫ ∞

0

dyΩ(y)R0
Γj+1

(λy)e−ν̃y, (C.3)

ĨEE(0,∞) = IEE(0,∞)vj =

∫ ∞

0

dyR0
Γj

(y)R0
Γj+1

(λy)e−ν̃y.

To prove the lemma we have to find lower bounds for Ĩ(0,∞) and upper
bounds for ĨE(0,∞) and ĨEE(0,∞). We use essentially (B.2), (A.3), and
(A.4). First let us bound Ĩ(0,∞).
a) λ ≤ 1. Let θ = Ai(−ω1 + µ)/[(−ω1 + µ) Ai′(−ω1)]. Then

Ĩ(0,∞) ≥
∫ 1

0

dyθ2y2λe−ν̃y = λθ2κ(ν̃), (C.4)
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where κ(ν̃) =
∫ 1

0
dxx2e−ν̃x. It is easy to see that e−x ≤ 3κ(x).

b) λ ≥ 1. By the change of variable x = λy, and then using the previous
bound we obtain

Ĩ(0,∞) =
1

λ

∫ ∞

0

dxΩ(x)Ω(x/λ)e−ν̃x/λ ≥ 1

λ2
θ2κ(ν̃/λ). (C.5)

Next we compute some upper bounds of ĨE(0,∞).
a) λ ≤ 1.

ĨE(0, 1) ≤
∫ 1

0

dyλy2e−aΓj+1e−ν̃y = λe−aΓj+1κ(ν̃) (C.6)

and

ĨE(1,∞) ≤
∫ ∞

1

dyλye−aΓj+1e−ν̃y6e−y ≤ 6e−ν̃λe−aΓj+1 . (C.7)

b) λ ≥ 1.

ĨE(0, 1/λ) ≤
∫ 1/λ

0

dyλy2e−aΓj+1e−ν̃y =
e−aΓj+1

λ2
κ(ν̃/λ) (C.8)

and

ĨE(1/λ,∞) ≤
∫ ∞

1/λ

dyye−aλyΓ
1/3

j+1e−ν̃y ≤ 4

λ2
e−aΓ

1/3

j+1e−ν̃/λ. (C.9)

Putting all together, we obtain

IE(0,∞)

I(0,∞)
=
ĨE(0,∞)

Ĩ(0,∞)
≤ Ce−aΓ

1/3

j+1 (C.10)

for all λ with C = 19/θ2 (and Γj+1 ≥ 1).
Finally we bound ĨEE(0,∞).

a) λ ≤ 1.

ĨEE(0, 1) ≤
∫ 1

0

dyλy2e−a(Γj+Γj+1)e−ν̃y = λe−a(Γj+Γj+1)κ(ν̃) (C.11)

and

ĨEE(1,∞) ≤
∫ ∞

1

dyλye−aΓj+1e−ayΓ
1/3

j e−ν̃y ≤ 4e−ν̃λe−aΓj+1e−aΓ
1/3

j . (C.12)

b) λ ≥ 1. By the change of variable x = λy we obtain immediately

ĨEE(0, 1/λ) = 1
λ2 e

−a(Γj+Γj+1)κ(ν̃/λ) and ĨEE(1/λ,∞) ≤ 4
λ2 e

−ν̃/λe−aΓje−aΓ
1/3

j+1 .
Putting all together, we see that for all λ

IEE(0,∞)

I(0,∞)
=
ĨEE(0,∞)

Ĩ(0,∞)
≤ Ce−a(Γ

1/3

j +Γ
1/3

j+1
). (C.13)
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D Monotonicity on conditioning shapes

Let us consider a simple random walk on Z conditioned to come back to the
origin after 2N steps, denoted by ξN = (ξN(i))2N

i=0. Let ∆t = 1
2N

, ∆x =
√

∆t,
and define BN(t) by setting BN(k∆t) = ∆xξN(k) for k = 0, . . . , 2N , and by
linear interpolation for the other values of t ∈ [0, 1]. The set of possible paths
BN is called ΓN . We denote by µN the uniform measure on the continuous
paths BN .

In the sequel we consider two conditioning shapes s1, s2 such that s1(t) ≤
s2(t) for t ∈ [0, 1], s2(0) ≤ 0, s2(1) ≤ 0, and s2(t) <∞, and we denote by µsi

N

the path measure conditioned to remain above si, i.e., µsi
N(·) = µN(·|BN(t) ≥

si(t), t ∈ [0, 1]). Let S = C([0, 1]) be the set of bounded continuous functions
from [0, 1] to R with sup norm, and define the set of increasing function by

M = {f ∈ C(S)|f(b1) ≤ f(b2) whenever b1(t) ≤ b2(t)∀t ∈ [0, 1]}. (D.1)

Proposition D.1. If s1 ≤ s2, then for all f ∈ M,

∑

b∈ΓN

µs1N (b)f(b) ≤
∑

b∈ΓN

µs2N (b)f(b). (D.2)

Proof. (D.2) is equivalent to

0 ≤
∑

(b1,b2)∈Γ2
N

µs2N (b2)f(b2)µ
s1
N (b1) −

∑

(b1,b2)∈Γ2
N

µs2N (b2)µ
s1
N (b1)f(b1)

=
1

2

∑

(b1,b2)∈Γ2
N

(f(b2) − f(b1))(µ
s2
N (b2)µ

s1
N (b1) − µs1N (b2)µ

s2
N (b1)). (D.3)

Denote by νN(b1, b2) = µs2N (b2)µ
s1
N (b1) − µs1N (b2)µ

s2
N (b1). In what follows the

notation b1 6≥ s1 means that exists a t such that b1(t) < s1(t). Similarly,
b1 ≥ s1 means that b1(t) ≥ s1(t) for all t. For the couple (b1, b2) there are
different possibilities:
a) b1 6≥ s1 and b2 6≥ s1, then νN(b1, b2) = 0.
b) b1 ≥ s1 and b2 ≥ s2, then νN(b1, b2) = 0,
c) b1 ≥ s1, b2 ≥ s2, but b1 6≥ s2, then
c1) if b2 ≥ b1, then f(b2) − f(b1) ≥ 0 and νN(b1, b2) ≥ 0 since µs2N (b1) = 0,
c2) otherwise, b1 and b2 intersect above s2. In this case, let (b′1, b

′
2) be the

couple of random walks defined as follows. Take a t = t0 such that b1(t0) <
s2(t0) and set b′1(t0) = b1(t0) and b′2(t0) = b2(t0). Then for all other t from
t0 to 1, b′1 and b′2 are defined by exchanging the paths of b1 and b2 when
they merge and/or divide. Similarly for t from t0 back to 0. By Markov
property we have νN(b1, b2) = νN(b′1, b

′
2), and the new paths satisfy b′2 ≥ b1
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and b2 ≥ b′1, and moreover if we apply twice the transformation we obtain
the original paths. Thus, f(b2) + f(b′2) − f(b1) − f(b′1) ≥ 0, so that the
contributions in (D.3) coming from (b1, b2) and from (b′1, b

′
2) are positive.

d) b2 ≥ s1, b1 ≥ s2. By symmetry the same conclusion is obtained in case c)
holds.

Proposition D.2 (Invariance principle). Let W 0 be the path measure of the
Brownian bridge from (0, 0) to (1, 0). Then, as N → ∞, µN ⇒ W 0, i.e.,

lim
N→∞

∑

b∈ΓN

µN(b)f(b) =

∫

S

dW 0(b)f(b) (D.4)

for all f ∈ C(S).

Proposition D.3. Let µsi(b) = W 0(b|b ≥ si) be the path measure for the
Brownian bridge conditioned to stay above si, i = 1, 2. We assume that si
are continuous, piecewise C1, and s1 ≤ s2. Then, for all f ∈ M,

∫

S

dµs1(b)f(b) ≤
∫

S

dµs2(b)f(b). (D.5)

Proof. Define K(si)(b) = mint∈[0,1] Θ(b(t)− si(t)) with Θ the Heaviside func-
tion, and let DK(si) be the set of discontinuities of K(si). We want to show
that PW 0(DK(si)) = 0. A path b 6∈ DK(si) if ∀ε > 0, ∃δ > 0 such that
|K(si)(b) −K(si)(b

′)| ≤ ε, for all b′ satisfying ‖b′ − b‖∞ ≤ δ. Observe that
K(si)(b) ∈ {0, 1}, thus a path b 6∈ DK(si) if mint∈[0,1](b(t)−si(t)) 6= 0. There-
fore b ∈ DK(si) if b touches si but does not cross it. Now, consider a path
b with touches si and let τ(b) be the first time that happens. The shape si
is continuous and piecewise C1, therefore a.s. the path b will cross si, thusPW 0(DK(si)) = 0. From this follows

lim
N→∞

∑

b∈ΓN

µN(b)f(b)K(si)(b) =

∫

S

dW 0(b)f(b)K(si)(b), (D.6)

for all f ∈ C(S). Since

∑

b∈ΓN

µsi
N(b)f(b) =

∑
b∈ΓN

µN(b)f(b)K(si)(b)∑
b∈ΓN

µN(b)K(si)(b)
, (D.7)

(D.6) implies

lim
N→∞

∑

b∈ΓN

µsi
N(b)f(b) =

∫

S

dµsi(b)f(b). (D.8)

Finally, using Proposition D.1 we conclude that (D.5) holds.



D MONOTONICITY ON CONDITIONING SHAPES 24

Proposition D.4. Let µ(z) be the path measure for the Brownian bridge from
(0, z) to (1, 0) conditioned to stay above a continuous piecewise C1 shape s.
If z ≥ 0, then ∫

S

dµ(0)(b)f(b) ≤
∫

S

dµ(z)(b)f(b) (D.9)

for all increasing functions f ∈ M.

Proof. We have to show that

∫

S2

dµ(z)(b2) dµ(0)(b1)(f(b2) − f(b1)) ≥ 0. (D.10)

For each couple (b1, b2) of Brownian bridges, let τ(b1, b2) = mint∈[0,1](b1(t) =
b2(t)). Define ϕ : (b1, b2) → (b′1, b

′
2) where b′i(t) = bi(t) for t ∈ [0, τ(b1, b2)]

and b′i(t) = b3−i(t) for t ∈ [τ(b1, b2), 1], i = 1, 2. Obviously ϕ(ϕ(b1, b2)) =
(b1, b2) and by Markov property dµ(z)(b2) dµ(0)(b1) = dµ(z)(b′2) dµ(0)(b′1). By
construction b′2 ≥ b1, b2 ≥ b′1, which implies

∫

S2

dµ(z)(b2) dµ(0)(b1)(f(b2) − f(b1)) (D.11)

=
1

2

∫

S2

dµ(z)(b2) dµ(0)(b1)(f(b2) − f(b′1) + f(b′2) − f(b1)) ≥ 0.

Corollary D.5. By linearity Proposition D.3 holds also if the initial and
final points have a given joint density independent of the path measure.

Corollary D.6. Let g1, g2 two probability densities such that

∫

x≤x1

g1(x) dx ≤
∫

x≤x1

g2(x) dx. (D.12)

Denote by µx the path measure of Brownian motion b(t) starting from x.
Then

∫
dyh(y)

∫
dxg1(x)µx(f |b(1) = y) ≤

∫
dyh(y)

∫
dxg2(x)µx(f |b(1) = y)

(D.13)
for any increasing function f ∈ M and where h denotes the probability den-
sity of b(1).
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Proof. By linearity we need to verify the assertion only for a fixed end point.
Let Fi(x) =

∫
y≤x

gi(y) dy, and let ψi(y) = F−1
i (y) if gi(y) > 0 and ψ(y) = 0

if gi(y) = 0. ψ1(x) ≤ ψ2(x) for all x. Therefore
∫

dxg2(x)µx(f |b(1) = y) =

∫ 1

0

dzµψ2(z)(f |b(1) = y)

≤
∫ 1

0

dzµψ1(z)(f |b(1) = y) =

∫
dxg1(x)µx(f |b(1) = x). (D.14)
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