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Abstract

The link between a particular class of growth processes and ran-
dom matrices was established in the now famous 1999 article of Baik,
Deift, and Johansson on the length of the longest increasing subse-
quence of a random permutation [BDJ99]. During the past ten years,
this connection has been worked out in detail and led to an improved
understanding of the large scale properties of one-dimensional growth
models. The reader will find a commented list of references at the
end. Our objective is to provide an introduction highlighting random
matrices. From the outset it should be emphasized that this connec-
tion is fragile. Only certain aspects, and only for specific models, the
growth process can be reexpressed in terms of partition functions also
appearing in random matrix theory.
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1 Growth models

A growth model is a stochastic evolution for a height function h(x, t), x
space, t time. For the one-dimensional models considered here, either x ∈ R

or x ∈ Z. We first define the TASEP1 (totally asymmetric simple exclusion
process) with parallel updating, for which h, x, t ∈ Z. An admissible height
function, h, has to satisfy h(x+1)−h(x) = ±1. Given h(x, t) and x∗ a local
minimum of h(x, t), one defines

h(x∗, t+ 1) =

{

h(x∗, t) + 2 with probability 1− q, 0 ≤ q ≤ 1 ,
h(x∗, t) with probability q

(1)

independently for all local minima, and h(x, t + 1) = h(x, t) otherwise, see
Figure 1 (left). Note that if h(·, t) is admissible, so is h(·, t+ 1).

There are two limiting cases of interest. At x∗ the waiting time for an
increase by 2 has the geometric distribution (1 − q)qn, n = 0, 1, . . .. Taking
the q → 1 limit and setting the time unit to 1−q one obtains the exponential
distribution of mean 1. This is the time-continuous TASEP for which, count-
ing from the moment of the first appearance, the heights at local minima are
increased independently by 2 after an exponentially distributed waiting time.
Thus h, x ∈ Z and t ∈ R.

The second case is the limit of rare events (Poisson points), where the
unit of space and time is

√
q and one takes q → 0. Then the lattice spacing

and time become continuous. This limit, after a slightly different height
representation (see Section 5 for more insights), results in the polynuclear
growth model (PNG) for which h ∈ Z, x, t ∈ R. An admissible height
function is piecewise constant with jump size ±1, where an increase by 1
is called an up-step and a decrease by 1 a down-step. The dynamics is
constructed from a space-time Poisson process of intensity 2 of nucleation
events. h(x, t) evolves deterministically through (1) up-steps move to the
left with velocity −1, down-steps move to the right with velocity +1, (2)
steps disappear upon coalescence, and (3) at points of the space-time Poisson
process the height is increased by 1, thereby nucleating an adjacent pair of up-
step and down-step. They then move symmetrically apart by the mechanism
described under (1), see Figure 1 (right).

The TASEP and PNG have to be supplemented by initial conditions
and, possibly by boundary conditions. For the former one roughly divides
between macroscopically flat and curved. For the TASEP examples would

1Here we use the height function representation. The standard particle representa-
tion consists in placing a particle at x if h(x + 1) − h(x) = −1 and leaving empty if
h(x+ 1)− h(x) = 1.
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Figure 1: Growth of TASEP interface (left) and continuous time PNG (right)

be h(x) = 0 for x even and h(x) = 1 for x odd, which has slope zero,
and h(x + 1)− h(x) independent Bernoulli random variables with mean m,
|m| ≤ 1, which has slope m. An example for a curved initial condition is
h(0) = 0, h(x+ 1)− h(x) = −1 for x = −1,−2, . . ., and h(x+ 1)− h(x) = 1
for x = 0, 1, . . ..

What are the quantities of interest? The most basic one is the macro-
scopic shape, which corresponds to a law of large numbers for

1

t
h
(

[yt], [st]
)

(2)

in the limit t → ∞ with y ∈ R, s ∈ R, and [·] denoting integer part. From
a statistical mechanics point of view the shape fluctuations are of prime
concern. For example, in the flat case the surface stays macroscopically flat
and advances with constant velocity v. One then would like to understand
the large scale limit of the fluctuations {h(x, t)− vt, (x, t) ∈ Z× Z}. As will
be discussed below, the excitement is triggered through non-classical scaling
exponents and non-Gaussian limits.

In 1986 in a seminal paper Kardar, Parisi, and Zhang (KPZ) proposed
the stochastic evolution equation [KPZ86]

∂

∂t
h(x, t) = λ

( ∂

∂x
h(x, t)

)2

+ ν0
∂2

∂x2
h(x, t) + η(x, t) (3)

for which h, x, t ∈ R. η(x, t) is space-time white noise which models the
deposition mechanism in a moving frame of reference. The nonlinearity re-
flects the slope dependent growth velocity and the Laplacian with ν0 > 0
is a smoothing mechanism. To make the equation well-defined one has
to introduce either a suitable spatial discretization or a noise covariance
〈η(x, t)η(x′, t′)〉 = g(x− x′)δ(t− t′) with g(x) = g(−x) and supported close
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to 0. KPZ argue that, according to (3) with initial conditions h(x, 0) = 0,
the surface width increases as t1/3, while lateral correlations increase as t2/3.
It is only through the connection to random matrix theory that universal
probability distributions and scaling functions have become accessible.

Following TASEP, PNG, and KPZ as guiding examples it is easy to con-
struct variations. For example, for the TASEP one could introduce evap-
oration through which heights at local maxima are decreased by 2. The
deposition could be made to depend on neighboring heights. Also general-
izations to higher dimensions, x ∈ Rd or x ∈ Zd, are easily accomplished.

For the KPZ equation the nonlinearity then reads λ
(

∇xh(x, t)
)2

and the
smoothening is ν0∆h(x, t). For the PNG model in d = 2, at a nucleation
event one generates on the existing layer a new layer of height one consisting
of a disk expanding at unit speed. None of these models seem to be directly
connected to random matrices.

2 How do random matrices appear?

Let us consider the PNG model with the initial condition h(x, 0) = 0
under the constraint that there are no nucleations outside the interval
[−t, t], t ≥ 0, which also refered to as PNG droplet, since the typical
shape for large times is a semicircle. We study the probability distribu-
tion P({h(0, t) ≤ n}), which depends only on the nucleation events in the
quadrant {(x, s)| |x| ≤ s, s− t ≤ x ≤ t− s , 0 ≤ s ≤ t}. Let us denote by
ω = (ω(1), . . . , ω(n)) a set of nucleation events and by h(0, t;ω) the corre-
sponding height. The order of the coordinates of the ω(j)’s in the frame
{x = ±t} naturally defines a permutation of n elements. It can be seen
that h(0, t;ω) is simply the length of the longest increasing subsequence of
that permutation. By the Poisson statistics of ω, the permutations are ran-
dom and their length is Poisson distributed. By this reasoning, somewhat
unexpectedly, one finds that P

(

{h(0, t) ≤ n}
)

can be written as a matrix
integral [BR01a]. Let Un be the set of all unitaries on Cn and dU be the
corresponding Haar measure. Then

P
(

{h(0, t) ≤ n}
)

= e−t2
∫

Un

dU exp[t tr(U + U∗)] . (4)

(4) can also be expressed as Fredholm determinant on ℓ2 = ℓ2(Z). On ℓ2
we define the linear operator B through

(Bf)(x) = −f(x+ 1)− f(x− 1) +
x

t
f(x) (5)
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and denote by P≤0 the spectral projection onto B ≤ 0. Setting θn(x) = 1 for
x > n and θn(x) = 0 for x ≤ n, one has

P
(

{h(0, t) ≤ n}
)

= det(1− θnP≤0θn) . (6)

Such an expression is familiar from GUE random matrices. Let λ1 < . . . < λN

be the eigenvalues of an N ×N GUE distributed random matrix. Then

P
(

{λN ≤ y}
)

= det(1− θyPNθy) . (7)

Now the determinant is over L2(R, dy). If one sets H = −1
2

d2

dy2
+ 1

2N
y2, then

PN projects onto H ≤
√
N .

For large N one has the asymptotics

λN
∼= 2N +N1/3ξ2 (8)

with ξ2 a Tracy-Widom distributed random variable, that is,

P({ξ2 ≤ s}) = F2(s) := det(1− χsKAiχs), (9)

with det the Fredholm determinant on L2(R, dx), χs(x) = 1(x > s), and KAi

is the Airy kernel (see (14) below). Hence it is not so surprising that for the
height of the PNG model one obtains [PS00b]

h(0, t) = 2t+ t1/3ξ2 (10)

in the limit t → ∞. In particular, the surface width increases as t1/3 in accor-
dance with the KPZ prediction. The law in (10) is expected to be universal
and to hold whenever the macroscopic profile at the reference point, x = 0 in
our example, is curved. Indeed for the PNG droplet h(x, t) ∼= 2t

√

1− (x/t)2

for large t, |x| ≤ t.
One may wonder whether (10) should be regarded as an accident or

whether there is a deeper reason. In the latter case, further height statistics
might also be representable through matrix integrals.

3 Multi-matrix models and line ensembles

For curved initial data the link to random matrix theory can be understood
from underlying line ensembles. They differ from case to case but have the
property that the top line has the same statistics in the scaling limit. We first
turn to random matrices by introducing matrix-valued diffusion processes.

Let B(t) be GUE Brownian motion, to say B(t) is an N × N hermitian
matrix such that, for every f ∈ CN , t 7→ 〈f, B(t)f〉 is standard Brownian
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motion with variance 〈f, f〉2min(t, t′) and such that for every unitary U it
holds

UB(t)U∗ = B(t) (11)

in distribution. The N ×N matrix-valued diffusion, A(t), is defined through
the stochastic differential equation

dA(t) = −V ′(A(t))dt + dB(t) , A(0) = A, (12)

with potential V : R → R. We assume A = A∗, then also A(t) = A(t)∗ for all
t ≥ 0. It can be shown that eigenvalues of A(t) do not cross with probability
1 and we order them as λ1(t) < . . . < λN(t). t 7→

(

λ1(t), . . . , λN(t)
)

is the
line ensemble associated to (12).

In our context the largest eigenvalue, λN(t) is of most interest. For
N → ∞ its statistics is expected to be independent of the choice of V . We
first define the limit process, the Airy2 process A2(t), through its finite di-
mensional distributions. Let

HAi = − d2

dy2
+ y (13)

as a self-adjoint operator on L2(R, dy). The Airy operator has R

as spectrum with the Airy function Ai as generalized eigenfunctions,
HAiAi(y − λ) = λAi(y − λ). In particular the projection onto {HAi ≤ 0}
is given by the Airy kernel

KAi(y, y
′) =

∫ ∞

0

dλAi(y + λ)Ai(y′ + λ) . (14)

The associated extended integral kernel is defined through

KA2
(y, τ ; y′, τ ′) = −(e−(τ ′−τ)HAi)(y, y′)1(τ ′ > τ) + (eτHAiKAie

−τ ′HAi)(y, y′).
(15)

Then, the m-th marginal for A2(t) at times t1 < t2 < . . . < tm is expressed
as a determinant on L2(R× {t1, . . . , tm}) according to [PS02b]

P
(

A2(t1) ≤ s1, . . . ,A2(tm) ≤ sm
)

= det(1− χsKA2
χs

)

, (16)

with χs(x, ti) = 1(x > si). t 7→ A2(t) is a stationary process with continuous
sample paths and covariance g2(t) = Cov

(

A2(0),A2(t)
)

= Var(ξ2)−|t|+O(t2)
for t → 0 and g2(t) = t−2 +O(t−4) for |t| → ∞.

The scaling limit for A2(t) can be most easily constructed by two slightly
different procedures. The first one starts from the stationary Ornstein-
Uhlenbeck process AOU(t) in (12), which has the potential V (x) = x2/2N .
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Its distribution at a single time is GUE, to say Z−1
N exp[− 1

2N
trA2]dA, where

the factor 1/N results from the condition that the eigenvalue density in the
bulk is of order 1. Let λOU

N (t) be the largest eigenvalue of AOU(t). Then

lim
N→∞

N−1/3
(

λOU
N (2N2/3t)− 2N

)

= A2(t) (17)

in the sense of convergence of finite dimensional distributions. The N2/3

scaling means that locally λOU
N (t) looks like Brownian motion. On the other

side the global behavior is confined.
The marginal of the stationary Ornstein-Uhlenbeck process for two time

instants is the familiar 2-matrix model [EM98,NF98]. Setting A1 = AOU(0),
A2 = AOU(t), t > 0, the joint distribution is given by

1

Z2
N

exp
(

− 1

2N(1− q2)
tr[A2

1 + A2
2 − 2qA1A2]

)

dA1dA2, q = exp(−t/2N).

(18)
A somewhat different construction uses the Brownian bridge defined by

(12) with V = 0 and ABB(−T ) = ABB(T ) = 0, that is

ABB(t) = B(T + t)− T + t

2T
B(2T ) , |t| ≤ T . (19)

The eigenvalues t 7→
(

λBB
1 (t), . . . , λBB

N (t)
)

is the Brownian bridge line ensem-
ble. Its largest eigenvalue, λBB

N (t), has the scaling limit, for T = 2N ,

lim
N→∞

N−1/3
(

λBB
N (2N2/3t)− 2N

)

+ t2 = A2(t) (20)

in the sense of finite-dimensional distributions. Note that λBB
N (t) is curved

on the macroscopic scale resulting in the displacement by −t2. But with this
subtraction the limit is stationary.

To prove the limits (17) and (20) one uses in a central way that the
underlying line ensemble are determinantal. For the Brownian bridge this can
be seen by the following construction. We consider N independent standard
Brownian bridges over [−T, T ], bBB

j (t), j = 1, . . . , N , bBB
j (±T ) = 0 and

condition them on non-crossing for |t| < T . The resulting line ensemble
has the same statistics as λBB

j (t), |t| ≤ T , j = 1, . . . , N , which hence is
determinantal.

The TASEP, and its limits, have also an underlying line ensemble, which
qualitatively resemble {λBB

j (t), j = 1, . . . , N}. The construction of the line
ensemble is not difficult, but somewhat hidden. Because of lack of space
we explain only the line ensemble for the PNG droplet. As before t is the
growth time and x is space which takes the role of t from above. The top
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line is λ0(x, t) = h(x, t), h the PNG droplet of Section 1. Initially we add
the extra lines λj(x, 0) = j, j = −1,−2, . . .. The motion of these lines is
completely determined by h(x, t) through the following simple rules: (1) and
(2) from above are in force for all lines λj(x, t), j = 0,−1, . . .. (3) holds only
for λ0(x, t) = h(x, t). (4) The annihilation of a pair of an adjacent down-step
and up-step at line j is carried out and copied instantaneously as a nucleation
event to line j − 1.

We let the dynamics run up to time t. The line ensemble at time t
is {λj(x, t), |x| ≤ t, j = 0,−1, . . .}. Note that λj(±t, t) = j. Also, for a
given realization of h(x, t), there is an index j0 such that for j < j0 it holds
λj(x, t) = j for all x, |x| ≤ t. The crucial point of the construction is to have
the statistics of the line ensemble determinantal, a property shared by the
Brownian bridge over [−t, t], λBB

j (x), |x| ≤ t. The multi-line PNG droplet
allows for a construction similar to the Brownian bridge line ensemble. We
consider a family of independent, rate 1, time-continuous, symmetric nearest
neighbor random walks on Z, rj(x), j = 0,−1, . . .. The j-th random walk
is conditioned on rj(±t) = j and the whole family is conditioned on non-
crossing. The resulting line ensemble has the same statistics as the PNG line
ensemble {λj(x, t), j = 0,−1, . . .}, which hence is determinantal.

In the scaling limit for x = O(t2/3) the top line λ0(x, t) is displaced by 2t
and t1/3 away from λ−1(x, t). Similarly λBB

N (x) for x = O(N2/3) is displaced
by 2N and order N1/3 apart from λBB

N−1(x). On this scale the difference
between random walk and Brownian motion disappears but the non-crossing
constraint persists. Thus it is no longer a surprise that

lim
t→∞

t−1/3
(

h(t2/3x, t)− 2t
)

+ x2 = A2(x) , x ∈ R , (21)

in the sense of finite dimensional distributions [PS02b].
To summarize: for curved initial data the spatial statistics for large t is

identical to the family of largest eigenvalues in a GUE multi-matrix model.

4 Flat initial conditions

Given the unexpected connection between the PNG model and GUE multi-
matrices, a natural question is whether such a correspondence holds also for
other symmetry classes of random matrices. The answer is affirmative, but
with unexpected twists. Consider the flat PNG model with h(x, 0) = 0 and
nucleation events in the whole upper half plane {(x, t), x ∈ R, t ≥ 0}. The
removal of the spatial restriction of nucleation events leads to the problem
of the longest increasing subsequence of a random permutation with involu-
tion [BR01b,PS00b]. The limit shape will be flat (straight) and in the limit
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t → ∞ one obtains
h(0, t) = 2t+ ξ1t

1/3 , (22)

where
P(ξ1 ≤ s) = F1(2

−2/3s). (23)

The distribution function F1 is the Tracy-Widom distribution for the largest
GOE eigenvalue.

As before, we can construct the line ensemble and ask if the link to
Brownian motion on GOE matrices persists. Firstly, let us compare the line
ensembles at fixed position for flat PNG and at fixed time for GOE Brownian
motions. In the large time (resp. matrix dimension) limit, the edges of these
point processes converge to the same object: a Pfaffian point process with
2 × 2 kernel [Fer04]. It seems then plausible to conjecture that also the
two line ensembles have the same scaling limit, i.e., the surface process for
flat PNG and for the largest eigenvalue of GOE Brownian motions should
coincide. Since the covariance for the flat PNG has been computed exactly
in the scaling limit, one can compare with simulation results from GOE
multi-matrices. The evidence strongly disfavors the conjecture [BFP08].

The process describing the largest eigenvalue of GOE multi-matrices
is still unknown, while the limit process of the flat PNG interface is
known [BFS08] and called the Airy1 process, A1,

lim
t→∞

t−1/3
(

h(t2/3x, t)− 2t
)

= 21/3A1(2
−2/3x). (24)

Its m-point distribution is given in terms of a Fredholm determinant of the
following kernel. Let B(y, y′) = Ai(y + y′), H1 = − d

dy2
. Then,

KA1
(y, τ ; y′, τ ′) = −(e−(τ ′−τ)H1)(y, y′)1(τ ′ > τ) + (eτH1Be−τ ′H1)(y, y′) (25)

and, as for the Airy2 process, the m-th marginal for A1(t) at times
t1 < t2 < . . . < tm is expressed through a determinant on L2(R×{t1, . . . , tm})
according to

P
(

A1(t1) ≤ s1, . . . ,A1(tm) ≤ sm
)

= det(1− χsKA1
χs

)

, (26)

with χs(x, ti) = 1(x > si) [Sas05,BFPS07]. The Airy1 process is a stationary
process with covariance g1(t) = Cov

(

A1(0),A1(t)
)

= Var(ξ1)−|t|+O(t2) for
t → 0 and g1(t) → 0 super-exponentially fast as |t| → ∞.

The Airy1 process is obtained using an approach different from the PNG
line ensemble, but still with an algebraic structure encountered also in ran-
dom matrices (in the the GUE-minor process [JN06,OR06]). We explain the
mathematical structure using the continuous time TASEP as model, since
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the formulas are the simplest. For a while we use the standard TASEP rep-
resentation in terms of particles. One starts with a formula by Schütz [Sch97]
for the transition probability of the TASEP particles from generic positions.
Consider the system ofN particles with positions x1(t) > x2(t) > . . . > xN (t)
and let

G(x1, . . . , xN ; t) = P(x1(t) = x1, . . . , xN(t) = xN |x1(0) = y1, . . . , xN(0) = yN).
(27)

Then
G(x1, . . . , xN ; t) = det (Fi−j(xN+1−i − yN+1−j, t))1≤i,j≤N (28)

with

Fn(x, t) =
1

2πi

∮

|w|>1

dw
et(w−1)

wx−n+1(w − 1)n
. (29)

The function Fn satisfies the relation

Fn(x, t) =
∑

y≥x

Fn−1(y, t) . (30)

The key observation is that (28) can be written as the marginal of a de-
terminantal line ensemble, i.e. of a measure which is a product of determi-
nants [Sas05]. The “lines” are denoted by xn

i with time index n, 1 ≤ n ≤ N ,
and space index i, 1 ≤ i ≤ n. We set xn

1 = xn. Then

G(x1, . . . , xN ; t) =
∑

xn

i
,2≤i≤n≤N

(

N−1
∏

n=1

det(φn(x
n
i , x

n+1
j ))ni,j=1

)

det(ΨN
N−i(x

N
j ))

N
i,j=1

(31)
with ΨN

N−i(x) = F−i+1(x−yN+1−i, t), φn(x, y) = 1(x > y) and φn(x
n
n+1, y) = 1

(here xn
n+1 plays the role of a virtual variable). The line ensembles for the

PNG droplet and GUE-valued Brownian motion have the same determinan-
tal structure. However in (31) the determinants are of increasing sizes which
requires to introduce the virtual variables xn

n+1. However, from the algebraic
perspective the two cases can be treated in a similar way. As a result, the
measure in (31) is determinantal (for instance for any fixed initial conditions,
but not only) and has a defining kernel dependent on y1, . . . , yN . The dis-
tribution of the positions of TASEP particles are then given by a Fredholm
determinant of the kernel. To have flat initial conditions, one sets yi = N−2i,
takes first the N → ∞ limit, and then analyzes the system in the large time
limit to get the Airy1 process defined above.

A couple of remarks:
(1) For general initial conditions (for instance for flat initial conditions), the
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measure on {xn
i } is not positive, but some projections, like on the TASEP

particles {xn
1}, defines a probability measure.

(2) The method can be applied also to step initial conditions (xk(0) = −k,
k = 1, 2, . . .) and one obtains the Airy2 process. In this case, the measure on
{xn

i } is a probability measure.
(3) In random matrices a measure which is the product of determinants of
increasing size occurs too, for instance in the GUE-minor process [JN06,
OR06].

5 Growth models and last passage percola-

tion

For the KPZ equation we carry out the Cole-Hopf transformation
Z(x, t) = exp(−λh(x, t)/ν0) with the result

∂

∂t
Z(x, t) = −

(

−ν0
∂2

∂x2
+

λ

ν0
η(x, t)

)

Z(x, t) , (32)

which is a diffusion equation with random potential. Using the Feynman-Kac
formula, (32) corresponds to Brownian motion paths, xt, with weight

exp

(

− λ

ν0

∫ t

0

ds η(xs, s)

)

. (33)

In physics this problem is known as a directed polymer in a random potential,
while in probability theory one uses directed first/last passage percolation.
The spirit of the somewhat formal expression (33) persists for discrete growth
processes. For example, for the PNG droplet we fix a realization, ω, of the
nucleation events, which then determines the height h(0, t;ω) according to
the PNG rules. We now draw a piecewise linear path with local slope m,
|m| < 1, which starts at (0, 0), ends at (0, t), and changes direction only
at the points of ω. Let L(t;ω) be the maximal number of Poisson points
collected when varying over allowed paths. Then h(0, t;ω) = L(t;ω). So to
speak, the random potential from (33) is spiked at the Poisson points.

In this section we explain the connection between growth models and
(directed) last passage percolation. For simplicity, we first consider the case
leading to discrete time PNG droplet, although directed percolation can be
defined for general passage time distributions. Other geometries like flat
growth are discussed later.

Let ω(i, j), i, j ≥ 1, be independent random variables with geometric
distribution of parameter q, i.e., P(ω(i, j) = k) = (1 − q)qk, k ≥ 0. An up-
right path π from (1, 1) to (n,m) is a sequence of points (iℓ, jℓ)

n+m−1
ℓ=1 with
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Figure 2: Directed percolation and growth models

(iℓ+1, jℓ+1) − (iℓ, jℓ) ∈ {(1, 0), (0, 1)}. The last passage time from (1, 1) to
(n,m) is defined by

G(n,m) = max
π:(1,1)→(n,m)

∑

(i,j)∈π

ω(i, j). (34)

The connection between directed percolation and different growth models is
obtained by appropriate projections of the three-dimensional graph of G. Let
us see how this works.

Let time t be defined by t = i+ j − 1 and position by x = i − j. Then,
the connection between the height function of the discrete time PNG and
the last passage time G is simply [Joh03]

h(x, t) = G(i, j). (35)

Thus, the discrete PNG droplet is nothing else than the time-slicing along
the i+ j = t directions, see Figure 2.

We can however use also a different slicing, at constant τ = G, to obtain
the TASEP at time τ with step initial conditions. For simplicity, consider
ω(i, j) to be exponentially distributed with mean one. Then ω(n,m) is the
waiting time for particle m to do his nth jump. Hence, G(n,m) is the time
when particle m arrives at −m+ n, i.e.,

P(G(n,m) ≤ τ) = P(xm(τ) ≥ −m+ n). (36)

From the point of view of the TASEP, there is another interesting cut,
namely at fixed j = n. This corresponds to look at the evolution of the
position of a given (tagged) particle, xn(τ).

12



A few observations:
(1) Geometrically distributed random passage times correspond to discrete
time TASEP with sequential update.
(2) The discrete time TASEP with parallel update is obtained by replacing
ω(i, j) by ω(i, j) + 1.

The link between last passage percolation and growth holds also for gen-
eral initial conditions. In (34) the optimization problem is called point-to-
point, since both (1, 1) and (n,m) are fixed. We can generalize the model by
allowing ω(i, j) to be defined on (i, j) ∈ Z2 and not only for i, j ≥ 1. Con-
sider the line L = {i + j = 2} and the following point-to-line maximization
problem:

GL(n,m) = max
π:L→(n,m)

∑

(i,j)∈π

ω(i, j). (37)

Then, the relation to the discrete time PNG droplet, namely
h(x, t) = GL(i, j) still holds but this time h is the height obtained from flat
initial conditions. For the TASEP, it means to have at time τ = 0 the parti-
cles occupying 2Z. Also random initial conditions fit in the picture, this time
one has to optimize over end-points which are located on a random line.

In the appropriate scaling limit, for large time/particle number one ob-
tains the Airy2 (resp. the Airy1) process for all these cases. One might wonder
why the process seems not to depend on the chosen cut. In fact, this is not
completely true. Indeed, consider for instance the PNG droplet and ask the
question of joint correlations of h(x, t) in space-time. We have seen that for
large t the correlation length scales as t2/3. However, along the rays leaving
from (x, t) = (0, 0) the height function decorrelates on a much longer time
scale, of order t. These slow decorrelation directions depend on the initial
conditions. For instance, for flat PNG they are the parallel to the time axis.
More generally, they coincide with the characteristics of the macroscopic sur-
face evolution. Consequently, except along the slow directions, on the t2/3

scale one will always see the Airy processes.

6 Growth models and random tiling

In the previous section we explained how different growth models (TASEP
and PNG) and observables (TASEP at fixed time or tagged particle motion)
can be viewed as different projections of a single three-dimensional object.
A similar unifying approach exists also for some growth models and random
tiling problems: there is a 2+ 1 dimensional surface whose projection to one
less dimension in space (resp. time) leads to growth in 1+1 dimensions (resp.
random tiling in 2 dimensions) [BF08a]. To explain the idea, we consider the
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Figure 3: Illustration of the particle system and its corresponding lozenge
tiling. The initial condition is on the left.

dynamical model connected to the continuous time TASEP with step initial
conditions, being one of the simplest to define.

In Section 4 we encountered a measure on set of variables
SN = {xn

i , 1 ≤ i ≤ n ≤ N}, see (31). The product of determinants of the
φn’s implies that the measure is non-zero, if the variables xn

i belong to the
set S int

N defined through an interlacing condition,

S int
N = {xn

i ∈ SN | xn+1
i < xn

i ≤ xn+1
i+1 }. (38)

Moreover, for TASEP with step initial conditions, the measure on S int
N is a

probability measure, so that we can interpret the variable xn
i as the po-

sition of the particle indexed by (i, n). Also, the step initial condition,
xn(t = 0) ≡ xn

1 (0) = −n, implies that xn
i (0) = i− n− 1, see Figure 3 (left).

Then, the dynamics of the TASEP induces a dynamics on the particles
in S int

N as follows. Particles independently try to jump on their right with
rate one, but they might be blocked or pushed by others. When particle xn

k

attempts to jump:

(1) it jumps if xn
i < xn−1

i , otherwise it is blocked (the usual TASEP dynamics
between particles with same lower index),

(2) if it jumps, it pushes by one all other particles with index (i+ ℓ, n + ℓ),
ℓ ≥ 1, which are at the same position (so to remain in the set S int

N ).

For example, consider the particles of Figure 3 (right). Then, if in this state
of the system particle (1, 3) tries to jump, it is blocked by the particle (1, 2),
while if particle (2, 2) jumps, then also (3, 3) and (4, 4) will move by one unit
at the same time.

It is clear that the projection of the particle system onto {xn
1 , 1 ≤ n ≤ N}

reduces to the TASEP dynamics in continuous time and step initial condi-
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Figure 4: Two examples of configurations at time t = 2 obtained by the
particle dynamics and its associated Aztec diamonds. The line ensembles
are also drawn.

tions, this projection being the sum in (31).
The system of particles can also be represented as a tiling using three

different lozenges as indicated in Figure 3. The initial condition corresponds
to a perfectly ordered tiling and the dynamics on particles reflects a corre-
sponding dynamics of the random tiling. Thus, the projection of the model
to fixed time reduces to a random tiling problem. In the same spirit, the
shuffling algorithm of the Aztec diamond falls into place. This time the in-
terlacing is SAztec = {zni | zn+1

i ≤ zni ≤ zn+1
i+1 } and the dynamics is on discrete

time, with particles with index n not allowed to move before time t = n. As
before, particle (i, n) can be blocked by (i, n− 1). The pushing occurs in the
following way: particle (i, n) is forced to move if it stays at the same position
of (i−1, n−1), i.e., if it would generate a violation due to the possible jump
of particle (i− 1, n− 1). Then at time t all particles which are not blocked
or forced to move, jump independently with probability q. As explained in
detail in [Nor08] this particle dynamics is equivalent to the shuffling algo-
rithm of the Aztec diamond (take q = 1/2 for uniform weight). In Figure 4
we illustrate the rules with a small size example of two steps. There we also
draw a set of lines, which come from a non-intersecting line ensemble simi-
lar to the ones of the PNG model and the matrix-valued Brownian motions
described in Section 3.

On the other hand, let xn
i := zni − n. Then, the dynamics of the shuffling

algorithm projected onto particles xn
1 , n ≥ 1, is nothing else than the discrete

time TASEP with parallel update and step initial condition! Once again, we
have a 1 + 1 dimensional growth and a 2 dimensional tiling model which are
different projections of the same 2 + 1-dimensional dynamical object.
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7 A guide to the literature

There is a substantial body of literature and only a rather partial list is
given here. The guideline is ordered according to physical model under study.

PNG model. A wide variety of growth processes, including PNG, are
explained in [Mea98]. The direct link to the largest increasing subsequences
of a random permutation and to the unitary matrix integral of [PS90] is
noted in [PS00b, PS00a]. The convergence to the Airy2 process is worked
out in [PS02b] and the stationary case in [BR00,PS04]. For flat initial con-
ditions, the height at a single space-point is studied in [BR01a,BR01b] and
for the ensemble of top lines in [Fer04]. The extension to many space-points
is accomplished by [BFS08]. Determinantal space-time processes for the
discrete time PNG model are discussed by [Joh03]. External source at the
origin is studied in [IS04b] for the full line and in [IS04a] for the half-line.

Asymmetric simple exclusion (ASEP). As a physical model reversible
lattice gases, in particular the simple exclusion process, were introduced by
Kawasaki [Kaw72] and its asymmetric version by Spitzer [Spi70]. We refer to
Liggett [Lig99] for a comprehensive coverage from the probabilistic side. The
hydrodynamic limit is treated in [Spo91] and [KL99], for example. There
is a very substantial body on large deviations with Derrida as one of the
driving forces, see [Der07] for a recent review. Schütz [Sch97] discovered a
determinantal-like formula for the transition probability for a finite number
of particles on Z. TASEP step initial conditions are studied in the seminal
paper by Johansson [Joh00]. The random matrix representation of [Joh00]
may also be obtained by the Schütz formula [NS04,RS05]. The convergence
to the Airy2 process in a discrete time setting [Joh05]. General step initial
conditions are covered by [PS02a] and the extended process in [BFP09].
In [FS06b] the scaling limit of the stationary two-point function is proved.
Periodic intial conditions were first studied by Sasamoto [Sas05] and widely
extended in [BFPS07]. A further approach comes from the Bethe ansatz
which is used in [GS92] to determine the spectral gap of the generator. In
a spectacular analytic tour de force Tracy and Widom develop the Bethe
ansatz for the transition probability and thereby extend the Johansson
result to the PASEP [TW09,TW08].

2D tiling (statics). The connection between growth and tiling was first
understood in the context of the Aztec diamond [JPS98], who prove the
arctic circle theorem. Because of the specific boundary conditions imposed,
for typical tilings there is an ordered zone spatially coexisting with a
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disordered zone. In the disordered zone the large scale statistics is expected
to be governed by a massless Gaussian field, while the line separating the
two zones has the Airy2 process statistics.

a) Aztec diamond. The zone boundary is studied by [JPS98] and by [JN06].
Local dimer statistics are investigated in [CEP96]. Refined details are
the large scale Gaussian statistics in the disordered zone [Ken00], the
edge statistics [Joh05], and the statistics close to a point touching the
boundary [JN06].

b) Ising corner. The Ising corner corresponds to a lozenge tiling under the
constraint of a fixed volume below the thereby defined surface. The largest
scale information is the macroscopic shape and large deviations [CK01].
The determinantal structure is noted in [OR03]. This can be used to study
the edge statistics [FS03,FPS04]. More general boundary conditions (skew
plane partitions) leads to a wide variety of macroscopic shapes [OR07].

c) Six-vertex model with domain wall boundary conditions, as introduced
in [KZJ00]. The free energy including prefactors is available [BF06]. A
numerical study can be found in [AR05]. The mapping to the Aztec
diamond, on the free Fermion line, is explained in [FS06a].

d) Kasteleyn domino tilings. Kasteleyn [Kas63] noted that Pfaffian methods
work for a general class of lattices. Macroscopic shapes are obtained
by [KOS06] with surprising connections to algebraic geometry. Gaussian
fluctuations are proved in [Ken08].

2D tiling (dynamics), see Section 6. The shuffling algorithm for the Aztec
diamond is studied in [EKLP92,Pro03,Nor08]. The pushASEP is introduced
by [BF08b] and anisotropic growth models are investigated in [BF08a], see
also [PS97] for the Gates-Westcott model. A similar intertwining structure
appears for Dyson’s Brownian motions [War07].

Directed last passage percolation. “Directed” refers to the constraint of
not being allowed to turn back in time. In the physics literature one speaks
of a directed polymer in a random medium. Shape theorems are proved,
e.g., in [Kes86]. While the issue of fluctuations had been repeatedly raised,
sharp results had to wait for [Joh00] and [PS02b]. Growths models naturally
lead to either point-to-point, point-to-line, and point-to-random-line last
passage percolation. For certain models one has to further impose boundary
conditions and/or symmetry conditions for the allowed domain. In (34) one
takes the max, thus zero temperature. There are interesting results for the
finite temperature version, where the energy appear in the exponential, as
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in (33) [CY06].

KPZ equation. The seminal paper is [KPZ86], which generated a large
body of theoretical work. An introductory exposition is [BS95]. The KPZ
equation is a stochastic field theory with broken time reversal invariance,
hence a great theoretical challenge, see, e.g., [Läs98].

Review articles. A beautiful review is [Joh06]. Growth models, of the type
discussed here, are explained in [FP06,Fer08]. A fine introduction to random
matrix techniques is [Sas07]. [KK08] provide an introductory exposition to
the shape fluctuation proof of Johansson. The method of line ensembles is
reviewed in [Spo06].
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