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Chapter 1
A review of measure theory

In this first chapter I review the main concepts of measure the-
ory that we will need. I will not give proofs in most cases. Those
familiar with my W-Theorie 1 lecture will find that most of this
material was covered there, except that here we will take a some-
what more abstract point of view, replacing the space of real num-
bers by arbitrary metric spaces. One will see, however, that this
implies very few changes. For more details, there is a wealth of
references on measure theory. See e.g. [2, 15, 11, 8, 5, 1].

1.1 Probability spaces

A space, Ω , is an arbitrary non-empty set. Elements of a space Ω will be denoted
by ω . If A ⊂ Ω is a subset of Ω , we denote by 1A the indicator function of the set
A, i.e.

1A(ω) =

{
1, if ω ∈ A,
0, if ω ∈ Ac ≡Ω\A.

(1.1.1)

Definition 1.1. Let Ω be a space. A family A ≡ {Aλ}λ∈I , Aλ ⊂ Ω , with I an ar-
bitrary set, is called a class of Ω . A non-empty class of Ω is called an algebra,
if:

(i) Ω ∈ A.
(ii)For all A ∈ A, Ac ∈ A.
(iii)For all A,B ∈ A, A∪B ∈ A.

If A is an algebra, and moreover

(iv)
⋃

∞
n=1 An ∈ A, whenever for all n ∈ N, An ∈ A,

then A is called a σ -algebra.

1



2 1 A review of measure theory

Definition 1.2. A space, Ω , together with a σ -algebra, F, of subsets of Ω is called
a measurable space, (Ω ,F).

Definition 1.3. Let (Ω ,F) be a measurable space. A map µ : F→ [0,∞] from F the
non-negative real numbers (and infinity) is called a (positive) measure, if

(i) µ( /0) = 0.
(ii)For any countable family {An}n∈N of mutually disjoint elements of F,

µ

( ⋃
n∈N

An

)
= ∑

n∈N
µ(An). (1.1.2)

A measure, µ , is called finite, if µ(Ω) < ∞. A measure is called σ -finite, if there
exists a countable class, Ωn, of subsets of Ω , such that Ω =

⋃
n∈N Ωn, such that, for

all n ∈ N, µ(Ωn)< ∞.
A triple, (Ω ,F,µ), is called a measure space.

Definition 1.4. Let (Ω ,F) be a measurable space. A positive measure, P, on (Ω ,F)
that satisfies P[Ω ] = 1 is called a probability measure. A triple (Ω ,F,P), where Ω

is a set, F a σ -algebra of subsets of Ω , and P a probability measure on (Ω ,F), is
called a probability space.

Probability spaces provide the scenery where probability theory takes place. The
set of sceneries is huge, since we have so far not made any restriction on the al-
lowable spaces Ω . In most instances, we will, however, want to stay on reasonable
grounds. Fortunately, where is a quite canonical setting where everything we ever
want to do can be constructed. This is the realm where Ω is a topological space and
F=B(Ω) is the Borel-σ -algebra of Ω .

We recall the definition of a topological space.

Definition 1.5. A space, E, is called a topological space, if for every point p ∈ E
there exists a collection, Up, of subsets of E, called (open) neighborhoods, with the
following properties:

(i) For every point, p, Up 6= /0.
(ii)Every neighborhood of p contains p.
(iii)If U1,U2 ∈Up, then there exists U3 ∈Up such that U3 ⊂U1∩U2.
(iv)If U ∈Up and q ∈U , then there exists V ∈Uq such that V ⊂U .

Recall that in a topological space, one can define the notions such open sets and
closed sets; open sets have the property that any of its points has a neighborhood
that is contained in the set, and closed sets are the complements of open sets. Note
that the empty set is also considered as an open set by default. Since the entire space
E is also open, the empty set is, however, also a closed set.

Definition 1.6. Two topological spaces are considered equivalent, or have the same
topology, if they contain the same open sets. In particular, given two sets of col-
lections of neighborhoods, Up, and Vp, on a space E, then they generate the same
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topology1, if for any p ∈ E, and any U ∈Up, there exists V ∈ Vp such that V ⊂U
and for any V ∈ Vp there exists U ∈Up such that U ⊂V .

Definition 1.7. A topological space, E, is called:

(i) Hausdorff, if any two distinct points in E have disjoint neighborhoods.
(ii)separable, if there exists a countable subset, E0 ⊂ E whose closure2 is E.

Definition 1.8. Let E be a topological space. The Borel-σ -algebra, B(E) of E is
the smallest σ -Algebra that contains all open sets of E.

The point behind the notion of the Borel-σ -algebra is that it is big enough to
satisfy our needs, but small enough to ensure that it is possible to construct mea-
sures on it. Larger σ -algebras, such as the power set on any uncountable topological
space, do not usually allow to define measures with nice properties on them.

One says that the Borel-σ -algebra is generated by the open sets of E. This no-
tion will be used quite frequently. We say in general that a class, A, of a space Ω

generates a σ -algebra, σ(A), defined as the smallest σ -algebra that contains A,

σ (A)≡
⋂
F⊃A

F isσ−algebra

F.

Even more structure appears if we work on so-called metric spaces.

Definition 1.9. Let E be a set. A map, ρ : M×M→ [0,∞], is called a metric, if

(i) ρ(x,y) = 0, if and only if x = y;
(ii)ρ(x,y) = ρ(y,x);
(iii)ρ(x,z)≤ ρ(x,y)+ρ(y,z), for all x,y,z ∈ E.

The set Br(x)≡ {y ∈ E : ρ(x,y)< r} is called the (open) ball of radius r.
The set of neighborhoods obtained from the open balls associated to a metric,

ρ , is called the metric topology. A topological space endowed with a metric and its
metric topology is called a metric space.

A sequence xn ∈ E, n ∈ N is called a Cauchy sequence, if for any ε > 0, there
exists n0 ∈N, such that for all n,m≥ n0, ρ(xn,xm)< ε . A metric space, E, is called
complete, if any Cauchy sequence in E converges.

A related concept is that of a normed space.

Definition 1.10. Let E be a vector space. A map ‖ · ‖ : E→ R+ is called a norm, if

(i) For all x ∈ E, ‖x‖ ≥ 0, and ‖x‖= 0 iff x = 0;
(ii)for all x ∈ E and α ∈ R, ‖αx‖= |α|‖x‖;
(iii)for any x,y ∈ E, ‖x+ y‖ ≤ ‖x‖+‖y‖;

1 One says that the collections of neighborhoods B = {Up, p ∈ E} generate a topology T , or it is
a base for a topology T , if every open set in T can be written as a union of elements of B
2 The closure of a subset, A, of a topological space is the intersection of all closed subsets contain-
ing A.



4 1 A review of measure theory

A vector space equipped with a norm is called a normed (vector) space.
Defining ρ(x,y)≡ ‖x− y‖ yields a metric, so every normed space can be turned

into a metric space. A normed vector space that is a complete metric space with
respect to this norm is called a Banach space.

A further useful specialisation is the restriction to so called Polish spaces.

Definition 1.11. A topological space E is called Polish if it is separable, and com-
pletely metrisable spaces. A completely metrisable space is a space that it homeo-
morphic to a complete metric space.

That is, a Polish space is essentially a complete, separable metric space up to the
fact that the metric may not have been fixed. Recall that Rd is a Polish space, and
so is RN when equipped with the product topology.

Note that in many cases, different families of sets generate the same σ -algebra.
For instance, if E is not only a topological space, but a metric space with the topol-
ogy given by the metric topology, then the set of open balls generates the Borel-σ -
algebra B(E). But also the set of closed balls will generate B(E). If E is the real
line, the half-lines also generate the Borel-σ -algebra.

An advantage in Ω being a Polish space lies in the fact that one can choose
as a generator of the Borel-σ -algebra a countable collection of sets. For example,
in the case of the real line, the Borel-σ -algebra is already generated by the half-
lines (−∞,q], with q ∈ Q (just observe that if x is any real number, there exists a
sequence qn ↓ x, and the set

⋂
n∈N(−∞,qn] = (−∞,x] is also contained in the σ -

algebra generated by these half-lines.
A related, but more general class of spaces are sometimes useful. These are called

Lousin spaces. These are spaces that are homeomorphic to a Borel subset of a com-
pact metric space.

Two notions of special types of classes are very useful in this context.

Definition 1.12. Let Ω be a space. A class of Ω , T , is called a Π -system, if T is
closed under finite intersections; a class, G, is called a λ -system, if

(i) Ω ∈G,
(ii)If A,B ∈G, and A⊃ B, then A\B ∈G,
(iii)If An ∈G and An ⊂ An+1, then limn→∞ An ∈G.

The following useful observation is called Dynkin’s theorem.

Theorem 1.13. If T is a Π -system and G is a λ -system, then G ⊃ T implies that
G contains the smallest σ -algebra containing T .

The most useful application of Dynkin’s theorem is the observation that, if two
probability measures are equal on a Π -system that generates the σ -algebra, then
they are equal on the σ -algebra (since the set on which the two measures coincide
forms a λ -system containing T ).



1.1 Probability spaces 5

Examples.

The general setup allows allows to treat many important examples on the same foot-
ing.

Countable spaces. If Ω is a countable space, the natural topology is the discrete
topology. Here the set of neighborhoods of a point p is just the set {p}. Clearly this
is a topology, and all sets are open and closed with respect to it. The Borel-σ -algebra
consists of the power set of Ω . Countable spaces equipped with the discrete metric
defined by ρ(x,y) = 1x 6=y is a metric space.

Euclidean space. Rd equipped with the Euclidean metric ρ(x,y) ≡ ‖x− y‖ is a
metric space. Choosing as sets of neighborhoods the set of all open balls, Br(p) ≡
{x ∈ Rd : ‖x− p‖< r} turns this into a topological space. The corresponding Borel-
σ -algebra is the smallest σ -algebra containing all these balls.

Note that, since on Rd the Euclidean norm and the sup-norm are equivalent, the
Borel-σ -algebra is also generated by open (or closed) rectangles.

Infinite product spaces. If E is a topological space, then the infinite Cartesian prod-
uct space, E∞, can also be turned into a topological space through the product topol-
ogy. Here the set of neighborhoods of a point p ≡ (p1, p2, p3, . . .) is given by the
collection of sets

Up1 ×Up2 ×Upk ×E×E× . . . , (1.1.3)

where k ∈N, and Upi ∈Upi . If B(E) is the Borel-σ -algebra of E, then the Borel-σ -
algebra of E∞ is the product σ -algebra, B(E∞) =B(E)⊗∞, i.e. the σ -algebra that
is generated by the family of sets A1×·· ·×Ak×E× . . . , k ∈ N, Ai ∈B(E) (where
of course it also suffices to choose the sets E×·· ·×E×Ak×E× . . . , k ∈N, and Ak
running through a generator of B(E)).

If E is a metric space, then one can also turn E∞ into a metric space, such that
the associated metric topology is equivalent to the product topology. This is done,
e.g. by setting

ρE∞(p,q)≡
∞

∑
n=1

2−n ρE(pn,qn)

1+ρE(pn,qn)
. (1.1.4)

Note that this implies that, if E is a Polish space, then the infinite product space E∞

equipped with the product topology is also Polish.
Infinite product spaces will be the scenario to discuss stochastic processes with

discrete time, the main topic of this course.

Function spaces. Important examples of metric spaces are normed function spaces,
such as the space of bounded, real-valued functions on R (or subsets I ⊂ R),
equipped with the supremum norm

‖ f −g‖∞ ≡ sup
t∈I
| f (t)−g(t)|. (1.1.5)

In the case when I is infinite (e.g. I =R+), we will often use a weaker topology that
“ignores infinity”, called the topology of “uniform convergence on finite subsets”.
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It can be metrized with a norm

‖ f −g‖ ≡
∞

∑
n=1

2−n sup0≤t≤n | f (t)−g(t)|
1+ sup0≤t≤n | f (t)−g(t)|

. (1.1.6)

We will begin to deal with such examples in the later parts of this course, when we
introduce Gaussian random processes with continuous time.

Spaces of measures. Another space we are often encountering in probability the-
ory is that of measures on a Borel-σ -algebra. There are various ways to introduce
topologies on spaces of measures, but a very common one is the so-called weak
topology. Let E be the topological space in question, and C0(E,R) the space of real-
valued, bounded, and continuous functions on E. We denote by M+(E,B(E)) the
set of all positive measures on (E,B(E)). One can then define neighborhoods of a
measure µ of the form

Bε,k, f1,..., fk(µ)≡
{

ν ∈M+(E,B(E)) :
k

max
i=1
|µ( fi)−ν( fi)|< ε

}
, (1.1.7)

where ε > 0, k ∈ N, and fi ∈C0(E,R).
If E is a Polish space, then the weak topology can also be derived from a suitably

defined metric.

1.2 Construction of measures

The problem of the construction of measures in the general context of topological
spaces is not entirely trivial. This is due to the richness of a Borel-σ -algebra and the
hidden subtlety associated with the requirement of σ -additivity. The general strategy
is to construct a “measure” first on a simpler set, an algebra or a semi-algebra, and
then to use a powerful theorem ensuring the unique extendibility to the σ -algebra.

To do this we first define the notion of a σ -additive set-function.

Definition 1.14. Let A be a class of subset of some set Ω . A function ν : A→ [0,∞]
is called a positive, σ -additive (or countably additive) set-function, if

(i) ν( /0) = 0,
(ii)for any sequence, Ak, k ∈ N, of mutually disjoint elements of A such that⋃

k∈N Ak ∈ A,

ν

(⋃
k∈N

Ak

)
= ∑

k∈N
ν(Ak). (1.2.1)

The aim of this section is to prove the following version of Carathéodory’s theo-
rem.

Theorem 1.15 (Carathéodory’s theorem). Let Ω be a set and let S be an algebra
on Ω . Let µ0 be a countably additive function S → [0,∞]. Then there exists a
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measure, µ , on (Ω ,σ(S )), such that µ = µ0 on S . If µ0 is σ -finite, then µ is
unique.

Proof. We begin by defining the notion of an outer measure.

Definition 1.16. Let Ω be a set. A map µ∗ : P(Ω)→ [0,∞] is called an outer mea-
sure if,

(i) µ∗( /0) = 0;
(ii)If A⊂ B, then µ∗(A)≤ µ∗(B) (increasing);
(iii)for any sequence An ∈P(Ω), n ∈ N,

µ
∗

(⋃
n∈N

An

)
≤ ∑

n∈N
µ
∗ (An) (1.2.2)

(σ -sub-additivity).

Note that an outer measure is far less constraint than a measure; this is why it can
be defined on any set, not just on σ -algebras.
Example. If (Ω ,F,µ) is a measure space, we can define an extension of µ that will
be an outer measure on P(Ω) as follows: For any D⊂Ω , let

µ
∗(D)≡ inf{µ(F) : F ∈ F;F ⊃ D}. (1.2.3)

This is of course not how we want to proceed when constructing a measure.
Rather, we will construct an outer measure from a σ -additive function on an algebra
(that is also a Π -system), and then use this to construct a measure.

Next we define the notion of µ∗-measurability of sets.

Definition 1.17. A subset B⊂Ω is called µ∗-measurable, if, for all subsets A⊂Ω ,

µ
∗(A) = µ

∗(A∩B)+µ
∗(A∩Bc). (1.2.4)

The set of µ∗-measurable sets is called M (µ∗).

Theorem 1.18.

(i) M (µ∗) is a σ -algebra that contains all subsets B⊂Ω such that µ∗(B) = 0.
(ii)The restriction of µ∗ to M (µ∗) is a measure.

Proof. Note first that in general, by sub-additivity,

µ
∗(A)≤ µ

∗(A∩B)+µ
∗(A∩Bc). (1.2.5)

If µ∗(B) = 0, we have also that

µ
∗(A)≥ µ

∗(A∩Bc) = µ
∗(A∩B)+µ

∗(A∩Bc). (1.2.6)

Thus, M (µ∗) contains all sets B with µ∗(B) = 0. This implies in particular that
/0 ∈M (µ∗). Also, by the symmetry of the definition, M (µ∗) contains all its sets
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together with their complements. Thus the only non-trivial thing to show (i) is the
stability under countable unions. Let B1,B2 be in M (µ∗). Then

µ
∗(A∩ (B1∪B2)) = µ

∗(A∩ (B1∪B2)∩B1)+µ
∗(A∩ (B1∪B2)∩Bc

1)

= µ
∗(A∩B1)+µ

∗(A∩B2∩Bc
1), (1.2.7)

where we used that B1 ∈M (µ∗) for the first equality. Then

µ
∗(A∩ (B1∪B2))+µ

∗(A∩ (B1∪B2)
c) (1.2.8)

= µ
∗(A∩B1)+µ

∗(A∩B2∩Bc
1)+µ

∗(A∩Bc
1∩Bc

2)

= µ
∗(A∩B1)+µ

∗(A∩Bc
1) = µ

∗(A).

Thus B1∪B2 ∈M (µ∗). This implies that M (µ∗) is closed under finite union. Since
it is also closed under passage to the complement, it is closed under finite inter-
section. Thus it is enough to show that countable unions of pairwise disjoint sets,
Bk ∈M (µ∗), k ∈ N, are in M (µ∗). To show this, we show that, for all m ∈ N,

µ(A) =
m

∑
n=1

µ
∗(A∩Bn)+µ

∗

(
A∩

m⋂
n=1

Bc
n

)
. (1.2.9)

This holds for m = 1 by definition, and if it holds for m, then

µ
∗

(
A∩

m⋂
n=1

Bc
n

)
= µ

∗

(
A∩

m⋂
n=1

Bc
n∩Bm+1

)
+µ

∗

(
A∩

m+1⋂
n=1

Bc
n

)

= µ
∗ (A∩Bm+1)+µ

∗

(
A∩

m+1⋂
n=1

Bc
n

)
,

so, inserting this into (1.2.9), it holds for m+ 1. Hence, by induction, it is true for
all m ∈ N.

From (1.2.9) we deduce further that

µ(A)≥
m

∑
n=1

µ
∗(A∩Bn)+µ

∗

(
A∩

∞⋂
n=1

Bc
n

)
. (1.2.10)

Now we let m tend to infinity, and use sub-additivity:

µ(A) ≥
∞

∑
n=1

µ
∗(A∩Bn)+µ

∗

(
A∩

∞⋂
n=1

Bc
n

)
(1.2.11)

≥ µ
∗

(
A∩

(
∞⋃

n=1

Bn

))
+µ

∗

(
A∩

∞⋂
n=1

Bc
n

)
.

Since the converse inequality follows by sub-additivity, equality holds in (1.2.11)
and thus the union

⋃
∞
n=1 Bn ∈M (µ∗).
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It remains to prove that µ∗ restricted to M (µ∗) is a measure. We know already
that µ∗( /0) = 0. Let now Bn be disjoint as above. Let us choose in the first line of
(1.2.11) A =

⋃
∞
n=1 Bn. This gives

µ
∗

(
∞⋃

n=1

Bn

)
≥

∞

∑
n=1

µ
∗ (Bn) . (1.2.12)

Since the converse inequality holds by sub-additivity, equality holds and the result
is proven. ut

The preceding theorem provides a clear strategy for proving Carathéodory’s the-
orem. All we need is to prescribe a σ -additive function, µ , on the algebra. Then
construct an outer measure µ∗. This can be done in the following way: If S is an
algebra, set

µ
∗(D) = inf{µ(A) : A ∈S ;A⊃ D} (1.2.13)

One needs to show that this is sub-additive and defines an outer measure. Once this
is done, it remains to show that M (µ∗) contains σ(S ). This is done by showing
that it contains S , since M (µ∗) is a σ -algebra.

Let us now conclude our proof by carrying out these steps.

Lemma 1.19. Let S be an algebra, µ a σ -additive function on S , and µ∗ defined
by (1.2.13). Then µ∗ is an outer measure.

Proof. First, note that the first two conditions for µ∗ to be an outer measure are triv-
ially satisfied. To prove sub-additivity, let An, n∈N be a family of subsets of Ω . For
each n, we can choose sets Fn ∈S , such that An ⊂ Fn, and µ(Fn)≤ µ∗(An)+ε2−n,
for any ε > 0 (since µ∗(An) = inf{µ(F) : F ∈ S ;F ⊃ An}. Then, since

⋃
n Fn ⊃⋃

n An, and µ is σ -additive,

µ
∗

(⋃
n∈N

An

)
≤ µ

(⋃
n∈N

Fn

)
≤ ∑

n∈N
µ (Fn)≤ ∑

n∈N
µ
∗(An)+2ε, (1.2.14)

which proves the claim since ε > 0 is arbitrary. ut

Lemma 1.20. Let µ∗ be the outer measure defined by (1.2.13). Let M (µ∗) be the
σ -algebra of µ∗-measurable sets. Then σ(S )⊂M (µ∗).

Proof. We must show that M (µ∗) contains a family that generates σ(S ). In fact,
we will show that it contains all the elements of the algebra S . To see this, let
A⊂Ω be arbitrary. Then (if µ∗(A)< ∞), for any ε > 0, there is a set F ∈S , such
that A⊂ F and µ∗(A)≥ µ(F)− ε . But then, for B ∈S ,

µ
∗(A∩B)≤ µ(F ∩B) (1.2.15)

and also
µ
∗(A∩Bc)≤ µ(F ∩Bc) (1.2.16)
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But the two sets on the right-hand sides are disjoint and in S . Thus

µ
∗(A∩B)+µ

∗(A∩Bc)≤ µ(F ∩B)+µ(F ∩Bc) = µ(F)≤ µ
∗(A)+ ε. (1.2.17)

This proves
µ
∗(A)≥ µ

∗(A∩B)+µ
∗(A∩Bc) (1.2.18)

and since the opposite inequality follows by sub-additivity, B ∈M (µ∗). ut

Thus we have in fact constructed an outer measure that is a measure on σ(S )
and that extends µ on S . The uniqueness of the extension in the finite case fol-
lows from Dynkin’s theorem. Assume that there are two extensions, µ and ν that
coincide on S . One verifies easily that the class of sets where µ(B) = ν(B) is a λ -
system which contains the Π -system S ; by Dynkin’s theorem this λ -system must
be σ(S ). Finally, if µ is σ -finite, one uses the following standard argument (that
allows to carry many results from finite to σ -finite measures): By σ -finiteness, there
exists a sequence of increasing sets, Ωn ↑ Ω , with µ(Ωn) < ∞. Then the measure
µn ≡ µ1Ωn ↑ µ . So if there are two extensions of a given σ -additive set-function,
then their restrictions to all Ωn are finite measures and must coincide. But then so
must their limits. This concludes the proof of Carathéodory’s theorem. ut

Remark. Carathéodory’s theorem should appear rather striking at first by its gener-
ality. It makes no assumptions on the nature of the space Ω whatsoever. Does this
mean that the construction of a measure is in general trivial? The answer is of course
no, but Caratherodory’s theorem separates clearly the topological aspects form the
algebraic aspects of measure theory. Namely, it shows that in a concrete situation,
to construct a measure one needs to construct a σ -additive set-function on an alge-
bra that contains a Π -system that will generate the desired σ -algebra. The proof of
Carathéodory’s theorem shows that the extension to a measure is essentially a matter
of algebra and completely general. We will see later how topological aspects enter
into the construction of additive set-functions, and why aspects like separability and
metric topologies become relevant.

Remark. The σ -algebra M (µ∗) is in general not equal to the σ -algebra generated
by S . In particular, we have seen that M (µ∗) contains all sets of µ∗-measure zero,
all of which need not be in σ(S ). This observation suggests to consider in general
extensions of a given σ -algebra with respect to a measure that ensures that all sets
of measure zero are measurable. Let (Ω ,F,µ) be a measure space. Define the outer
measure, µ∗, as in (1.2.3), and define the inner measure, µ∗, as

µ∗(D)≡ sup{µ(F) : F ∈ F;F ⊂ D}. (1.2.19)

Then
M (µ)≡ {A⊂Ω : µ∗(A) = µ

∗(A)}. (1.2.20)

One can easily check that M (µ) is a σ -algebra that contains F and all sets of outer
measure zero.
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Terminology. A measure, µ , defined on a Borel-σ -algebra F=B(Ω) is sometimes
called a Borel measure. The measure space (Ω ,M (µ),µ) is called the completion
of (Ω ,F,µ).

It is a nice feature of null-sets that not only can they be added, but they can also
be gotten rid off. This is the content of the next lemma.

Lemma 1.21. Let (Ω ,F,µ) be a probability space and assume that G ⊂ Ω is such
that µ∗(G) = 1. Then for any A ∈ F, µ∗(G∩A) = µ(A) and if G ≡ F∩G (that is
the set of all subsets of G of the form G∩A, A ∈ F), then (G,G,µ∗) is a probability
space.

Proof. Exercise. ut

Lebesgue measure. The prime example of the construction of a measure using
Carathéodory’s theorem ist the Lebesgue measure on R. Consider the algebra, S ,
of all sets that can be written as finite unions of semi-open, disjoint intervals of the
form (a,b], and (a,+∞), a ∈ R∪{−∞}, b ∈ R. Clearly, the function λ , defined by

λ

(⋃
i

(ai,bi]

)
= ∑

i
(bi−ai) (1.2.21)

provides a countably additive set-function (this needs a proof!!). Then we know that
this can be extended to σ(S ) = B(Ω); more precisely, one actually constructs a
measure on the σ -algebra M (λ ∗), and strictly speaking it is this measure on the
complete measure space (R,M (λ ),λ ) that is called the Lebesgue measure.

Of course the same construction can be carried out on any finite non-empty in-
terval, I ⊂R; the corresponding measures are finite and thus unique. It is easy to see
that λ as a measure on R is σ -finite and hence also unique.

The construction carries over, with obvious modificatons, to Rd : just replace half-
open intervals by half-open rectangles. The key is that we have a natural notion of
volume for the elementary objects, and that this provides a σ -additive function an
the corresponding algebra.

On topological spaces, one can ask for a number of continuity related properties
of measures that occasionally will come very handy.

Definition 1.22. Let Ω be a Hausdorff space and B(Ω) the corresponding Borel-
σ -algebra. A measure, µ , on (Ω ,F=B(Ω)), is called:

(0)Borel measure, if for any compact set3, C ∈ F, µ(C)< ∞;
(i) inner regular or tight, if, for all B∈F, µ(B)= supC⊂B µ(C), where the supremum

is over all compact sets contained in B;
(ii)outer regular, if for all B∈F, µ(B) = infO⊃B µ(O), where the infimumum is over

all open sets containing B.

3 For Hausdorff spaces it holds also that compact sets are closed. Closed sets in a compact topo-
logical space are compact.
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(iii)locally finite, if for any point p ∈ Ω there exists a neighborhood Up such that
µ(Up)< ∞.

(iv)Radon measure, if it is inner regular and locally finite.

A very important result is that on a compact metrisable spaces4, all probability
measures are inner regular. The following result will be used in the construction of
stochastic processes in Section 3.2.

Theorem 1.23. Let Ω be a (Hausdorff) compact metrisable space and let P be a
probability measure on (Ω ,B(Ω)). Then P is inner regular.

Proof. Let A be the class of elements, B, of B(Ω), such that, for all ε > 0, there
exists a compact set, K ⊂ B, and an open set, G ⊃ B, such that P(B\K) < ε and
P(G\B)< ε .

Step 1: Show that A is an algebra. First, if B ∈ A, then its complement, Bc,
will also be in A (for Gc is closed, Bc ⊃ Gc, and Bc\Gc = G\B, and vice versa).
Next, if B1,B2 ∈ A, then there are Ki ⊂ Bi and Gi ⊃ Bi, such that P(Bi\Ki) < ε/2
and P(Gi\Bi) < ε/2. Then K = K1 ∪K2 and G = G1 ∪G2 are the desired sets for
B = B1∪B2. Thus A is an algebra.

Step 2: Show that A is a σ -algebra. Now let Bn be an increasing sequence of
elements of A such that

⋃
n∈N Bn = B. We choose sets Kn and Gn as before, but with

ε/2 replaced by 2−n−1ε . Then there exists a N < ∞ such that P
(
B\
⋃N

n=1 Kn
)
<

ε . Indeed, P(B\
⋃

n∈N Kn) < ε/2, while P
(⋃

n∈N Kn\
⋃N

n=1 Kn
)
< ε/2 for N large

enough. Therefore, there exists a compact set K ≡
⋃N

n=1 Kn such that P(B\K) < ε .
The same construction works for the corresponding open sets, and so B ∈ A. Thus
A is a σ -algebra.

Step 3: Show that B(Ω) =A. We need to verify that any compact set K ∈B(Ω)
is in A. Since Ω is metrisable, there exists a metric, ρ , such that the topology of Ω

is equivalent to the metric topology. If K is a closed and thus compact subset of Ω ,
then K is the intersection of a sequence of open sets Gn≡{ω ∈Ω : ρ(ω,K)< 1/n},

K =
⋂

n∈N
Gn. (1.2.22)

Since Gn ↓ K and P is finite, it follows that P[Gn] ↓ P[K], because Gn\K ↓ /0 and
by σ -additivity P[Gn\K] ↓ 0. This means that K ∈ A. Thus A is a σ -algebra that
contains all closed sets, and since B(Ω) is the smallest σ -algebra that contains all
closed sets, then B(Ω)⊂ A. By definition A⊂B(Ω), thus B(Ω) = A.

Now for any B ∈B(Ω) and K ⊂ B compact, P(B) = P(K)+P(B\K). But since,
for any B∈A, and for any ε > 0, by definition, there exists K such that P(B\K)< ε .
Thus sup{P(K) : K ⊂ B}= P(B), so P is inner regular. ut

Remark. Note that the proof shows that P is also outer regular. Measures that are
both inner and outer regular are sometimes called regular.

4 A topological space E is compact if every open cover of E has a finite subcover. In other words,
if E is the union of a family of open sets, there is a finite subfamily whose union is E.
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1.3 Random variables

Definition 1.24. Let (Ω ,F) and (E,G) be two measurable spaces. A map f : Ω→E
is called measurable from (Ω ,F) to (E,G), if, for all A ∈ G, f−1(A) ≡ {ω ∈ Ω :
f (ω) ∈ A} ∈ F.

The notion of measurability implies that a measurable map is capable of trans-
porting a measure from one space to another. Namely, if (Ω ,F,P) is a probability
space, and f is a measurable map from (Ω ,F) to (E,G), then

P f ≡ P◦ f−1

defines a probability measure on (E,G), called the induced measure. Namely, for
any B ∈G, by definition

P f (B) = P
(

f−1(B)
)

is well defined, since f−1(B) ∈ F.
The standard notion of a random variable refers to a measurable function from

some measurable space to the space (R,B(R)). We will generally extend this notion
and call any measurable map from a measurable space (Ω ,F) to a measurable space
(E,B(E)), where E is a topological, respectively metric space, a E-valued random
variable or a E-valued Borel function. Our privileged picture is then that we have
an unspecified, so called abstract probability space (Ω ,F,P) on which all kinds of
random variables, be it, reals, infinite sequences, functions, or measures, are defined,
possibly simultaneously.

An important notion is then that of the σ -algebra generated by random variables.

Definition 1.25. Let (Ω ,F) be a measurable space, and let (E,B(E)) be a topologi-
cal space equipped with its Borel-σ -algebra. Let f be an E-valued random variable.
We say that σ( f ) is the smallest σ -algebra such that f is measurable from (Ω ,σ( f ))
to (E,B(E)).

Note that σ( f ) depends on the set of values f takes. E.g., if f is real valued, but
takes only finitely many values, the σ -algebra generated by f has just finitely many
elements. If f is the constant function, then σ( f ) = {Ω , /0}, the trivial σ -algebra.
This notion is particularly useful, if several random variables are defined on the
same probability space.

Dynkin’s lemma has a sometimes useful analogue for so-called monotone classes
of functions.

Theorem 1.26 (Monotone class theorem). Let H be a class of bounded functions
on Ω to R. Assume that

(i) H is a vector space over R,
(ii)1 ∈H ,
(iii)if fn ≥ 0 are in H , and fn ↑ f , where f is bounded, then f ∈H .

If H contains the indicator functions of every element of a Π -system S , then
H contains any bounded σ(S )-measurable function.
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Proof. Let D be the class of subsets D of Ω such that 1D ∈H . Then D is a λ -
system. Since by hypothesis D contains S , by Dynkin’s theorem, D contains the
σ -algebra generated by S . Now let f be a σ(S )-measurable function s.t. 0≤ f ≤
K < ∞ for some constant K. Set

D(n, i)≡ {ω ∈Ω : i2−n ≤ f (ω)< (i+1)2−n}, (1.3.1)

and set

fn(ω)≡
K2n

∑
i=0

i2−n
1D(n,i)(ω). (1.3.2)

Every D(n, i) is σ(S )-measurable, and so 1D(n,i) ∈H , and so by (i), fn ∈H .
Since fn ↑ f , f ∈H .

To conclude, we take a general σ(S )-measurable function and decompose it
into the positive and negative part and treat each part as before. ut

An important property of measurable functions is that the space of measurable
functions if closed under limit procedures.

Lemma 1.27. Let fn, n ∈ N, be real valued random variables. Then the functions

f+ ≡ limsup
n→∞

fn and f− ≡ liminf
n→∞

fn (1.3.3)

are measurable. In particular, if the fn→ f pointwise, than f is measurable.

The proof is left as an exercise.
If Ω is a topological space, we have the natural class of continuous functions

from Ω to R. It is easy to see that all continuous functions are measurable if Ω and
R are equipped with their Borel σ -algebras. Thus, all functions that are pointwise
limits of continuous functions are measurable, etc..

Remark. Instead of introducing the Borel-σ -algebra, one could go a different path
and introduce what is called the Baire-σ -algebra. Here one proceeds form the idea
that on a topological space one naturally has the notion of continuous functions.
One certainly will want all of these to be measurable functions, but certainly one
will want more: any pointwise limit of a continuous function should be measurable,
as well as limits of sequences of such functions. In this way one arrives at a class of
functions, called Baire-functions, that is defined as the smallest class of functions
that is closed under pointwise limits and that contains the continuous functions.
One can then define the Baire-σ -algebra as the smallest σ -algebra that makes all
Baire-functions measurable. It is in general true that the Borel-σ -algebra contains
the Baire-σ -algebra, but in general they are not the same. However, on most spaces
we will consider (Polish spaces), the two concepts coincide.
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1.4 Integrals

We will now recall the notion of an integral of a measurable function (respectively
expectation value of random variables).

To do this one first introduces the notion of simple functions:

Definition 1.28. A function, g : Ω → R, is called simple if it takes only finitely
many values, i.e. if there are numbers, w1, . . . ,wk, and a partition of Ω , Ai ∈ F with⋃k

i=1 Ai = Ω , such that Ai = {ω ∈ F : g(ω) = wi}. Then we can write

g(ω) =
k

∑
i=1

wi1Ai(ω).

The space of simple measurable functions is denoted by E+.

It is obvious what the integral of a simple function should be.

Definition 1.29. Let (Ω ,F,µ) be a measure space and g=∑
k
i=1 wi1Ai a simple func-

tion. Then ∫
Ω

gdµ =
k

∑
i=1

wiµ(Ai). (1.4.1)

The integral of a general measurable function is defined by approximation with
simple functions.

Definition 1.30.

(i) Let f be non-negative and measurable. Then∫
Ω

f dµ ≡ sup
g≤ f ,g∈E+

∫
Ω

gdµ (1.4.2)

Note that the value of the integral is in R∪{+∞}.
(ii)If f is measurable, set

f (ω) = 1 f (ω)≥0 f (ω)+1 f (ω)<0 f (ω)≡ f+(ω)− f−(ω)

If either
∫

Ω
f+(ω)< ∞ or −

∫
Ω

f−(ω)dµ < ∞, define∫
Ω

f dµ ≡
∫

Ω

f+(ω)dµ−
∫

Ω

f−(ω)dµ (1.4.3)

(iii)We call a function f integrable or absolutely integrable, if∫
Ω

| f |dµ < ∞.

We state the key properties of the integral without proof.
The most fundamental property is the monotone convergence theorem, which to

a large extent justifies the (otherwise strange) definition above.
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Theorem 1.31. Let (Ω ,F,µ) be a measure space and f a real valued non-negative
measurable function. Let f1 ≤ f2 ≤ ·· · ≤ f be a monotone increasing sequence of
non-negative measurable functions that converge pointwise to f . Then∫

Ω

f dµ = lim
n→∞

∫
Ω

fndµ (1.4.4)

The monotone convergence theorem allows to provide an “explicit” construction
of the integral as originally used by Lebesgue as a definition.

Lemma 1.32. Let f be a non-negative measurable function. Then

∫
Ω

f dµ ≡ lim
n→∞

[
n2n−1

∑
k=0

2−nk µ({ω : 2−nk ≤ f (ω)< 2−n(k+1)})

+nµ({ω : f (ω)≥ n})

]
(1.4.5)

The following lemma is known as Fatou’s lemma:

Lemma 1.33. Let fn be a sequence of measurable non-negative functions. Then∫
Ω

liminf
n→∞

fndµ ≤ liminf
n→∞

∫
Ω

fndµ. (1.4.6)

Equally central is Lebesgue’s dominated convergence theorem:

Theorem 1.34. Let fn be a sequence of absolutely integrable functions, and let f be
a measurable function such that

lim
n→∞

fn(ω) = f (ω) for µ-almost all ω.

Let g≥ 0 be a positive function such that
∫

Ω
gdµ < ∞ and

| fn(ω)| ≤ g(ω) for µ-almost all ω.

Then f is absolutely integrable with respect to µ and

lim
n→∞

∫
Ω

fndµ =
∫

Ω

f dµ. (1.4.7)

In the case when we are dealing with integrals with respect to a probability mea-
sure, there exists a very useful improvement of the dominated convergence theorem
that leads us to the important notion of uniform integrability.

Let us first make the following observation.

Lemma 1.35. Let (Ω ,F,P) be a probability space and let X be an integrable real
valued random variables on this space. Then, for any ε > 0, there exists K < ∞,
such that

E
(
|X |1|X |>K

)
< ε. (1.4.8)
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Proof. This is a direct consequence from the monotone convergence theorem. We
leave the details to the reader. ut

When dealing with families of random variables, one problem is that this prop-
erty will in general not hold uniformly. A nice situation occurs if it does:

Definition 1.36. Let (Ω ,F,P) be a probability space. A class, C, of real valued ran-
dom variables is called uniformly integrable, if, for any ε > 0, there exists K < ∞,
such that, for all X ∈ C,

E
(
|X |1|X |>K

)
< ε. (1.4.9)

Note that, in particular, if C is uniformly integrable, then there exists a constant,
C < ∞, such that, for all X ∈ C, E(|X |)≤C.

Remark. The simplest example of a class of random variables that is not uniformly
integrable is given as follows. Take Xn such that

P(Xn = 1) = 1−1/n and P(Xn = n) = 1/n. (1.4.10)

Clearly, for any K, limn→∞E(|Xn|1|Xn|>K) = 1. One should always keep this exam-
ple in mind when reflecting upon uniform integrability.

Note that on the other hand the class of functions, Yn, with

P(Yn = 1) = 1−1/n and P(Yn =
√

n) = 1/n (1.4.11)

is uniformly integrable.

Theorem 1.37 (Uniform integrability). Let Xn, n ∈N and X be integrable random
variables on some probability space (Ω ,F,P). Then limn→∞E|Xn−X | = 0, if and
only if

(i) Xn→ X in probability, and
(ii)the family Xn,n ∈ N is uniformly integrable.

Proof. We show the “if” part. Define

φK(x)≡


K, ifx > K,

x, if |x| ≤ K,

−K, ifx <−K.

(1.4.12)

We have obviously from the uniform integrability that

E(|φK(Xn)−Xn|)≤ ε, (1.4.13)

for n≥ 0 (where for convenience we set X ≡X0). Moreover, since |φK(x)−φK(y)| ≤
|x− y|, (i) implies that φK(Xn)→ φK(X) in probability. Since, moreover, φK(Xn) is
bounded, we may choose n0 such that, for n≥ n0, P(|φK(Xn)−φK(X)|> δ )≤ ε/K.
Then
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E(|φK(Xn)−φK(X)|)≤ δ +2ε

and so limn→∞E(|φK(Xn)−φK(X)|) = 0. In view of the fact that (1.4.13) holds for
any ε , it follows that E(|Xn−X |)→ 0.

Let us now show the converse (“only”) direction. If E(|Xn−X |)→ 0, then by
Chebychev’s inequality, P(|Xn−X |> ε)≤ E(|Xn−X |)

ε
→ 0, so Xn→ X in probability.

Moreover, X is absolutely integrable.
Now write Xn = (Xn−X)+X and use that, by the triangle inequality,

E(|Xn|)≤ E(|X |)+E(|Xn−X |). (1.4.14)

For any ε > 0, there exists n0 such that, for all n ≥ n0, E(|Xn−X |) < ε . Since all
Xi and X are integrable, there exists K such that, for all n≤ n0, E(|Xn|1|Xn|>K)< ε .
Hence

E(|Xn|1|Xn|>2K)≤

{
ε if n≤ n0,

E(|X |1|Xn|>2K)+ ε if n > n0.
(1.4.15)

Finally we use that, for n > n0,

E(|X |1|Xn|>2K) ≤ E(|X |1|X |>2K−|X−Xn|) (1.4.16)
≤ E(|X |1|X |>K)+E(|X |1|X |≤K1|X−Xn|>K)

≤ ε +KP(|X−Xn|> K)≤ 2ε.

This concludes the proof. ut
The importance of this result lies in the fact that in probability theory, we are

very often dealing with functions that are not really bounded, and where Lebesgue’s
theorem is not immediately applicable either. Uniform integrability is the best pos-
sible condition for convergence of the integrals. Note that the simple example
(1.4.11) of a uniformly integrable family given above furnishes a nice example
where E(|Xn−X |)→ 0, but where Lebesgue’s dominated convergence theorem can-
not be applied.
Exercise: Use the previous criterion to prove Lebesgue’s dominated convergence
theorem in the case of probability measures.

1.5 L p and Lp spaces

I will only rather briefly summarize some frequently used notions concerning spaces
of integrable functions. Given a measure space, (Ω ,F,µ), one defines, for p∈ [1,∞]
and measurable functions, f ,

‖ f‖p,µ ≡ ‖ f‖p ≡ (E| f |p)1/p =

(∫
Ω

| f |pdµ

)1/p

. (1.5.1)

The set of functions, f , such that ‖ f‖p,µ < ∞ is denoted by L p(Ω ,F,µ)≡L p.



1.5 L p and Lp spaces 19

There are two crucial inequalities.

Lemma 1.38 (Minkowski inequality). For f ,g ∈L p,

‖ f +g‖p ≤ ‖ f‖p +‖g‖p, (1.5.2)

Lemma 1.39 (Hölder inequality). For measurable functions f ,g and p,q ∈ [1,∞]
are such that 1

p +
1
q = 1, then

|E( f g)| ≤ ‖ f‖p‖g‖q, (1.5.3)

Both inequalities follow from one of the most important inequalities in integra-
tion theory, Jensen’s inequality.

Theorem 1.40 (Jensen’s inequality). Let (Ω ,F,µ) be a probability space, let X be
an absolutely integrable random variable, and let ϕ : R→ R be a convex function.
Then, for any c ∈ R,

Eϕ(X−EX + c)≥ ϕ(c), (1.5.4)

and in particular
Eϕ(X)≥ ϕ(EX). (1.5.5)

Proof. If ϕ is convex, then for any y there is a straight line below ϕ that touches
ϕ at (y,ϕ(y)), i.e. there exists m ∈ R such that ϕ(x)≥ ϕ(y)+(x− y)m. Choosing
x = X−EX + c and y = c and taking expectations on both sides yields (1.5.4). ut

G

c

a

Fig. 1.1 Convex funktion

Exercise: Prove the Hölder inequalties (for p > 1) using Jensen’s inequality.

Since Minkowski’s inequality is really a triangle inequality and linearity is trivial,
we would be inclined to think that ‖ · ‖p is a norm and L p is a normed space. In
fact, the only problem is that ‖ f‖p = 0 does not imply f = 0, since f maybe non-
zero on sets of µ-measure zero. Therefore to define a normed space, one considers
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equivalence classes of functions in L p by calling two functions, f , f ′ equivalent,
if f − f ′ is non-zero only on set of measure zero. The space of these equivalence
classes is called Lp ≡ Lp(Ω ,F,µ).

The following fact about Lp spaces will be useful to know.

Lemma 1.41. The spaces Lp(Ω ,F; µ) are Banach spaces (i.e. complete normed
vector space).

Proof. The by now only non-trivial fact that needs to be proven is the completeness
of Lp. Let fi ∈ Lp, i ∈ N be a Cauchy sequence. Then there are nk ∈ N, such that,
for all i, j ≥ nk, ‖ fi− f j‖p ≤ 2−k−k/p. Set gk ≡ fnk and

F ≡ ∑
k∈N

2kp|gk−gk+1|p. (1.5.6)

Then

E(F) = ∑
k∈N

2kpE(|gk−gk+1|p) = ∑
k∈N

2kp‖gk−gk+1‖p
p ≤ 1. (1.5.7)

Therefore, F is integrable and hence finite except possibly on a set of measure zero.
It follows that for all ω ∈Ω s.t. F(ω) is finite, |gk(ω)−gk+1(ω)| ≤ 2−kF(ω)1/p. It
follows further, using telescopic expansion and the triangle inequality, that gk(ω) is
a Cauchy sequence of real numbers, and hence convergent. Set f (ω)= limk→∞ gk(ω).
For the ω in the null-set where F(x) = +∞, we set f (ω) = 0. It follows readily that

E(|gk− f |p)→ 0, (1.5.8)

and using once more the Cauchy property of fn, that

E(| fn− f |p)→ 0. (1.5.9)

ut

The case p = 2 is particularly nice, in that the space L2 is not only a Banach
space, but a Hilbert space. The point here is that the Hölder inequality, applied for
the case p = 2, yields

E( f g)≤
√

E( f 2)E(g2) = ‖ f‖2‖g‖2. (1.5.10)

This means that on L2, there exists a quadratic form (·, ·)µ ,

( f ,g)µ ≡
∫
R

f gdµ ≡ E( f g) (1.5.11)

which has the properties of a scalar product. The L2-norm being the derived norm,
‖ f‖2 =

√
( f ,g)µ . Although somehow L2 spaces are not the most natural settings

for probability, it is sometimes quite convenient to exploit this additional structure.
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1.6 Fubini’s theorem

An always important tool for the computation of integral on product spaces is Fu-
bini’s theorem. We consider first the case of non-negative functions.

Theorem 1.42 (Fubini-Tonnelli). Let (Ω1,F1,µ1), and (Ω2,F2,µ2) be two mea-
sure spaces, and let f be a real-valued, non-negative measurable function on
(Ω1×Ω2,F1⊗F2). Then the two functions

h(x)≡
∫

Ω2

f (x,y)µ2(dy) and g(y)≡
∫

Ω1

f (x,y)µ1(dx)

are measurable with respect to F1 resp. F2, and∫
Ω1×Ω2

f d(µ1⊗µ2) =
∫

Ω1

hdµ1 =
∫

Ω2

gdµ2 (1.6.1)

Now we turn to the general case.

Theorem 1.43 (Fubini-Lebesgue). Let f : (Ω1 ×Ω2,F1 ⊗ F2)→ (R,B(R)) be
absolutely integrable with respect to the product measure µ1⊗µ2. Then

(i) For µ1-almost all x, f (x,y) is absolutely integrable with respect to µ2, and vice
versa.

(ii)The functions h(x) =
∫

Ω2
f (x,y)µ2(dy) and g(y) =

∫
Ω1

f (x,y)µ1(dx), are well-
defined except possibly on a set of measure zero with respect to the measures µ1,
resp. µ2, and absolutely integrable with respect to these same measures.

(iii)The equation∫
Ω1×Ω2

f d(µ1⊗µ2) =
∫

Ω1

h(x)µ1(dx) =
∫

Ω2

g(y)µ2(dy) (1.6.2)

holds.

1.7 Densities, Radon-Nikodým derivatives

In Probability 1 we have encountered the notion of a probabil-
ity density. In fact, we had constructed the Lebesgue-Stieltjes mea-
sure on R by prescribing a distribution function, F , (i.e. a non-
decreasing, right-continuous function) in term of which any in-
terval (a,b] had measure µ((a,b]) = F(b)− F(a). In the special
case when there was a positive function f , such that for all a < b,
F(b)−F(a)=

∫ b
a f (x)dx, where dx indicates the standard Lebesgue

measure, we called f the density of µ and said that µ is absolutely
continuous with respect to Lebesgue measure.
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We now want to generalise these notions to the general con-
text of positive measures. In particular, we want to be able to
say when two measures are absolutely continuous with respect
to each other, and define the corresponding relative densities.

First we notice that it is rather easy to modify a given mea-
sure µ on a measurable space (Ω ,F) with the help of a mea-
surable function f . To do so, we set, for any A ∈ F,

µ f (A)≡
∫

A
f dµ. (1.7.1)

Exercise: Show that if f is measurable and integrable, but not
necessarily non-negative, µ f , defined as in (1.7.1), defines an
additive set-function. Show that, if f ≥ 0, µ f is indeed a mea-
sure on (Ω ,F).

We see that in the case when µ is the Lebesgue measures, µ f is the absolutely
continuous measure with density f . In the general case, we have that, if µ(O) = 0,
then it is also true that µ f (O) = 0. The latter property will define the notion of
absolute continuity between general measures.

Definition 1.44. Let µ,ν be two measures on a measurable space (Ω ,F).

• We say that ν is absolutely continuous with respect to µ , or ν � µ , if and only
if, all µ-null sets, O (i.e. all sets O with µ(O) = 0), are ν-null sets.

• We say that two measures, µ,ν , are equivalent if µ � ν and ν � µ .
• We say that a measure ν is singular with respect to µ , or ν ⊥ µ , if there exists a

set O ∈ F such that µ(O) = 0 and ν(Oc) = 0.

It is important to keep in mind that the notion of absolute continuity is not sym-
metric.

The following important theorem, called the Radon-Nikodým theorem, asserts
that relative absolute continuity is equivalent to the existence of a density.

Theorem 1.45. Let µ,ν be two σ -finite measures on a measurable space (Ω ,F).
Then the following two statements are equivalent:

(i) ν � µ .
(ii)There exists a non-negative measurable function, f , such that ν = µ f .

Moreover, f is unique up to µ-null sets.

Definition 1.46. If ν � µ , then a positive measurable function f such that ν = µ f
is called the Radon-Nikodým derivative of ν with respect to µ , denoted

f =
dν

dµ
. (1.7.2)
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Proof. Note that the implication (ii)⇒ (i) is obvious from the definition. The other
direction is more tricky.

We consider for simplicity the case when µ,ν are finite measures. The extension
to σ -finite measures can then easily be carried through by using suitable partitions
of Ω .

We need a few concepts and auxiliary results. The first is the notion of the essen-
tial supremum.

Definition 1.47. Let (Ω ,F,µ) be a measure space and T an arbitrary non-empty
set. The essential supremum, g ≡ esupt∈T gt , of a class, {gt , t ∈ T}, of measurable
functions gt : Ω → [−∞,+∞] (with respect to µ), is defined by the properties

(i) g is measurable;
(ii)g≥ gt , µ-almost everywhere, for each t ∈ T ;
(iii)for any h that satisfies (i) and (ii), h≥ g, µ- a.e.

Note that by definition, if there are two g that satisfy this definition, then they are
µ-a.e. equal. Not that the essential supremum depends on µ only trough its null-sets.

The first fact we need to establish is that the essential supremum is always equal
to the supremum over a countable set.

Lemma 1.48. Let (Ω ,F,µ) be a measure space with µ a σ -finite measure. Let
{gt , t ∈ T} be a non-empty class of real measurable functions. Then there exists
a countable subset T0 ⊂ T , such that

sup
t∈T0

gt = esupt∈T gt . (1.7.3)

Proof. It is enough to consider the case when µ is finite. Moreover, we may re-
strict ourselves to the case when |gt | < C, for all t ∈ T (e.g. by passing from gt to
tanh−1(gt), which is monotone and preserves all properties of the definition). Let
S denote the class of all countable subsets of T . Set

α ≡ sup
I∈S

E
(

sup
t∈I

gt

)
. (1.7.4)

Now let In ∈S be a sequence such that

sup
n∈N

E

(
sup
t∈In

gt

)
= α, (1.7.5)

and set T0 =
⋃

n∈N In. Of course, T0 is countable and α =E
(
supt∈T0

gt
)
. The function

g ≡ supt∈T0
gt is measurable, since it is the supremum over a countable set of mea-

surable functions. To see that it also satisfies (ii), assume that there exists t ∈ T , such
that gt > g on a set of positive measure. Then for this t, E(max(g,gt))> E(g) = α .
On the other hand, T0 ∪{t} is a countable subset of T , and so by definition of α ,
E(max(g,gt)) ≤ α , which yields a contradiction. Thus (ii) holds. To show (iii), as-
sume that there exists h satisfying (i) and (ii). By (ii), h ≥ gt , a.e., for each t ∈ T ,
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and thus also h ≥ supt∈T0
gt , a.e., since a countable union of null-sets is a null set.

Thus g satisfies property (iii), too. Therefore, g = esupt∈T gt . ut

The notion of essential supremum is used in the next lemma, which is the major
step in the proof of the Radon-Nikodým theorem.

Lemma 1.49. Let (Ω ,F,µ) be a measure space, with µ a σ -finite measure, and let
ν be another σ -finite measure on (Ω ,F). Let H be the family of all measurable
functions, h≥ 0, such that, for all A ∈ F,

∫
A hdµ ≤ ν(A). Then, for all A ∈ F,

ν(A) = ψ(A)+
∫

A
gdµ, (1.7.6)

where ψ is a measure that is singular with respect to µ and

g = esuph∈H h (1.7.7)

with respect to µ .

Proof. We again assume µ,ν to be finite, and leave the extension to σ -finite
measures as an easy exercise. We also exclude the trivial case of µ = 0. From
Lemma 1.48 we know that there exists a sequence of functions hn ∈H , such that
g = supn∈N hn. Let us first note that if h1,h2 ∈H , then so is h ≡ max(h1,h2). To
see this, note that the disjoint sets

A1 ≡ {ω ∈ A : h1(ω)≥ h2(ω)}, A2 ≡ {ω ∈ A : h2(ω)> h1(ω)} (1.7.8)

are measurable and A1∪A2 = A. But∫
A

hdµ =
∫

A1

h1dµ +
∫

A2

h2dµ ≤ ν(A1)+ν(A2) = ν(A), (1.7.9)

which implies h ∈H . We may therefore assume the sequence hn ordered such that
hn ≤ hn+1, for all n≥ 1. Then g = limn→∞ hn, and by monotone convergence, for all
A ∈ F, ∫

A
gdµ = lim

n→∞

∫
A

hndµ ≤ ν(A). (1.7.10)

As a consequence, ψ defined by (1.7.6) satisfies ψ(A)≥ 0, for all A ∈ F. Moreover,
trivially ψ( /0) = 0, as both ν and gdµ are measures, ψ defined as their difference is
σ -additive. Thus ψ is a measure.

It remains to show that ψ is singular with respect to µ . To this end we construct a
set of zero ψ-measure whose complement has zero µ-measure. Of course, this can
only be done through a delicate limiting procedure. To begin we define collections
of sets whose ψ-measure is much smaller than their µ-measure. More precisely, for
n ∈ N and A ∈ F with µ(A)> 0, let

Dn(A)≡
{

B ∈ F : B⊂ A,ψ(B)< n−1
µ(B)

}
. (1.7.11)
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The key fact is that any set A of positive µ measure contains such subsets, i.e.
Dn(A) 6= /0 whenever µ(A) 6= 0. This is proven by contradiction: assume that
Dn(A) = /0. Then set h0 = n−1

1A. For all B ∈ F one has that∫
B

h0dµ = n−1
µ(A∩B)≤ ψ(A∩B)≤ ψ(B) = ν(B)−

∫
B

gdµ. (1.7.12)

But then
∫

B(h0 +g)dµ ≤ ν(B), for all B ∈ F, so that g+h0 ∈H , which contradicts
the fact that g = esuph∈H h, since h0 > 0 on a set of positive µ-measure.

Since any set of positive µ-measure contains ψ-tiny subsets, one may expect that
a set of full µ-measure is ψ-tiny. Below we show this by successively collecting all
the µ mass in such sets.

We can now choose B1,n ∈Dn(Ω) with the property that

µ(B1,n)≥
1
2

sup{µ(B) : B ∈Dn(Ω)} ≡ α1,n. (1.7.13)

Morally, B1,n is our first attempt to pick up as much µ-mass as we can from the ψ-
tiny sets. If we were lucky, and µ(Bc

1,n) = 0, then we stop the procedure. Otherwise,
we continue by picking up as much mass as we can from what was left, i.e. we
choose B2,n ∈Dn(Bc

1,n) with

µ(B2,n)≥
1
2

sup
{

µ(B) : B ∈Dn(Bc
1,n)
}
≡ α2,n. (1.7.14)

If µ ((B2,n∪B1,n)
c) = 0, we are happy and stop. Otherwise, we continue and choose

B3,n ∈Dn ((B1,n∪B2,n)
c) with

µ(B3,n)≥
1
2

sup
{

µ(B) : B ∈Dn(Bc
1,n∩Bc

2,n)
}
≡ α3,n, (1.7.15)

and so on. If the process stops at some kn-th step, set B j,n = /0 for j > kn.
It is obvious from the definition that B j,n ∈ Dn(Ω), if B j,n 6= /0. Since Dn(Ω) is

closed under countable disjoint unions (both ψ and µ being measures), also Mn ≡⋃
∞
j=1 B j,n ∈ Dn(Ω). We want to show that µ(Mc

n) = 0, that is we have picked up
all the mass eventually. To do this, note again that, if µ(Mc

n) > 0, then there exists
D ∈Dn(Mc

n) with µ(D)> 0.
On the other hand, for any m ∈ N,

2αm,n = sup

{
µ(B) : B ∈Dn

(
m−1⋂
j=1

Bc
j,n

)}
(1.7.16)

≥ sup{µ(B) : B ∈Dn(Mc
n)} ≥ µ(D).

Thus, if µ(D)> 0, then there exists some α > 0, such that µ(Bm,n)≥ αm,n = α , for
all m. Since all B j,n are disjoint, this would imply that µ(Mn) =∞, which contradicts
the assumption that µ is a finite measure. Thus we conclude that µ(Mc

n) = 0, and so
ψ(Mn)< n−1µ(Mn) = n−1µ(Ω). Therefore,
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Fig. 1.2 Construction of the sets Bi,n

ψ

(
∞⋂

n=1

Mn

)
≤

∞

lim
n=1

ψ (Mn) = 0, (1.7.17)

µ

((
∞⋂

n=1

Mn

)c)
= µ

(⋃
n=1

∞Mc
n

)
≤

∞

∑
n=1

µ (Mc
n) = 0.

This proves that ψ is singular with respect to µ . ut

As the first consequence of this lemma, we state the famous Lebesgue decompo-
sition theorem.

Theorem 1.50. If µ,ν are σ -finite measures on a measurable space (Ω ,F), then
there exist two uniquely determined measures, νc,νs, such that ν = νs +νc, where
νc is absolutely continuous with respect to µ and νs is singular with respect to µ .

Proof. Lemma 1.49 provides the existence of two measures νs and νc with the de-
sired properties. To prove the uniqueness of this decomposition, assume that there
are ν̃s, ν̃c with the same properties. Since the measures νs, ν̃s are carried on sets of
zero µ-mass, they can only be different if there exists a set A∈ F with µ(A) = 0 and
νs(A) 6= ν̃s(A) > 0. But then νc(A) 6= ν̃c(A) as well, while by absolute continuity,
νc(A) = ν̃c(A) = 0. Thus νs = ν̃s and consequently νc = ν̃c. ut

The Radon-Nikodým theorem is now immediate: Assume that ν is absolutely
continuous with respect to µ . The decomposition (1.7.6) applied to µ-null sets A
then implies that for all these sets, ψ(A) = 0. But ψ is singular with respect to µ ,
so there should be a µ-null set, A, for which ψ(Ac) = 0. But since for all such A,
ψ(A) = 0, it follows that ψ(Ω) = ψ(A)+ψ(Ac) = 0, and so ψ is the zero-measure.

All that remains is to assert that the Radon-Nikodým derivative is unique a.e.. To
do this, assume that there exists another measurable function, g∗, such that
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ν(A) =
∫

A
g∗dµ. (1.7.18)

Now define the measurable set A = {ω : C > g∗ > g >−C}. Then, by assumption,∫
A

g∗dµ = ν(A) =
∫

A
gdµ. (1.7.19)

But since on A g∗ > g, this can only hold if µ(A) = 0, for all C < ∞. Thus, µ(g∗ >
g) = 0. In the same way one shows that µ(g∗ < g) = 0, implying that g and g∗ differ
at most on sets of measure zero.

ut

Remark. We have said (and seen in the proof), that the Radon-Nikodým derivative
is defined modulo null-sets (w.r.t. µ). This is completely natural. Note that if µ and
ν are equivalent, then 0 < dν

dµ
< ∞ almost everywhere, and dν

dµ
= 1

dµ

dν

.

The following property of the Radon-Nikodým derivative will be needed later.

Lemma 1.51. Let µ,ν be σ -finite measures on (Ω ,F), and let ν � µ . If X is F-
measurable and ν-integrable, then, for any A ∈ F,∫

A
Xdν =

∫
A

X
dν

dµ
dµ. (1.7.20)

Proof. We may assume that µ is finite and X non-negative. Appealing to the mono-
tone convergence theorem, it is also enough to consider bounded X (otherwise, ap-
proximate and pass to the limit on both sides). Let H be the class of all bounded
non-negative F-measurable functions for which (1.7.20) is true. Then H satisfies
the hypothesis of Theorem 1.26: clearly, (i) H is a vector space, (ii) the function
1 is contained in H be definition of the Radon-Nikodým derivative, and the prop-
erty (1.7.20) is stable under monotone convergence by the monotone convergence
theorem. Also, H contains the indicator functions of all elements of F. Then the
assertion of Theorem 1.26 implies that H contains all bounded F-measurable func-
tion, as claimed. ut





Chapter 2
Conditional expectations and conditional
probabilities

In this chapter we will generalise the notion of conditional expectations and condi-
tional probabilities from elementary probability theory considerably. In elementary
probability, we could condition only on events of positive probability. This notion
is too restrictive, as we have seen in the context of Markov processes, where this
limited us to consider discrete state spaces. The new notions we will introduce is
conditioning on σ -algebras. In this section we follow largely the presentation in
Chow and Teicher [4] where much further material can be found.

2.1 Conditional expectations

Definition 2.1. Consider a probability space (Ω ,F,P). Let G⊂ F be sub-σ -algebra
of F. Let X be a random variable, i.e. a F-measurable (real-valued) function on Ω

such that |EX | ≤∞. We say that a function Y is a conditional expectation of X given
G, written Y = E(X |G), if

(i) Y is G-measurable, and
(ii)For all A ∈G, ∫

A
Y dP=

∫
A

XdP. (2.1.1)

Remark. If two functions Y,Y ′ both satisfy the conditions of a conditional expecta-
tion, then they can differ only on sets of probability zero, i.e. P(Y = Y ′) = 1. One
calls such different realizations of a conditional expectation versions.

Remark. The condition |EX | ≤ ∞ means that EX is well-defined, in the sense that
EX = EX+−EX− and either EX+ < ∞ or EX− < ∞. It is the weakest possible
under which a definition of conditional expectation can make sense. Existence of
conditional expectations can be established under just this condition (see [4]), how-
ever, we will in the sequel only treat the simple case when X is absolutely integrable,
E(|X |)< ∞.

29
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Intuitively, this notion of conditional expectation can be seen as “integrating”
the random variable partially, i.e. with respect to all degrees of freedom that do not
affect the σ -algebra G. A trivial example would be the case where Ω = R2, and G
is the σ -algebra of events that depend only on the first coordinate, say x. Then the
conditional expectation of a function f (x,y) is just the integral with respect of the
variables y (recall the construction of the integral in Fubini’s theorem), modulo re-
normalisation. What is left is, of course, a function that depends only on x, and that
also satisfies property (ii). The advantage of the notion of a conditional expectation
given a σ -algebra is that it largely generalises this concept.

Before we discuss the existence of conditional expectations with respect to σ -
algebras, we want to discuss the relation to the more elementary notion of con-
ditional expectations with respect to sets. Recall that if A ∈ F has positive mass,
P(A)> 0, we can define the conditional expectation, given A, as

E(X |A) =
∫

A XdP
P(A)

. (2.1.2)

Recall that when we were studying Markov chains, we wanted to define conditional
expectations of the form

E( f (Xn+1)|Xn = x). (2.1.3)

In the case of finite state spaces, we could do this using the definition (2.1.2), be-
cause we could without loss generality assume that P(Xn = x) was strictly posi-
tive. In the case of continuous state space, the canonical situation would be that
P(Xn = x) = 0, for any x ∈ S, and so the definition (2.1.2) is not applicable. It is to
overcome this difficulty that we introduce our new notion of conditional expectation
given a σ -algebra.

Let us now see how these two concepts connect. To this end, we define

Y (ω)≡ ∑
x∈S

E( f (Xn+1)|Xn = x)1Xn(ω)=x.

Clearly, this is a σ(Xn)-measurable function and for any A ∈ σ(Xn)

EY1A = ∑
x∈S

E
(
1Xn(ω)∈A1Xn(ω)=xE( f (Xn+1)|Xn = x)

)
= ∑

x∈Xn(A)
P(Xn = x)E( f (Xn+1)|Xn = x)

= E

(
∑

x∈Xn(A)
f (Xn+1)1Xn(ω)=x

)
= E(1A f (Xn+1)) , (2.1.4)

and thus Y is the conditional expectation of f (Xn+1) given the σ -algebra σ(Xn).
Note also that we want to think of the σ(Xn)-measurable function Y (ω) as a function
of the value of the random variable Xn, since it depends on ω only through this value.



2.1 Conditional expectations 31

In many cases that we will encounter, the σ -algebra, G, with respect to which we
are conditioning is the σ -algebra, σ(Y ), generated by some other random variable,
Y . In that case we will often write

E(X |σ(Y ))≡ E(X |Y ) (2.1.5)

and call this the conditional expectation of X given Y . We may than also think of is
a function of the value of the random variable Y .

As we can see, the difficulty associated with constructing conditional expecta-
tions in the general case relates to making sense of expressions of the form 0/0. The
key to the construction of conditional expectations in the general case will use the
concept of the Radon-Nikodým derivative.

Theorem 2.2. Let (Ω ,F,P) be a probability space, let X be a random variable such
that E(|X |)< ∞, and let G⊂ F be a sub-σ -algebra of F. Then

(i) there exists a G-measurable function, E(X |G), unique up to sets of measure zero,
the conditional expectation of X given G, such that for all A ∈G,∫

A
E(X |G)dP=

∫
A

XdP. (2.1.6)

(ii)If X is absolutely integrable and Z is an absolutely integrable, G-measurable
random variable such that, for some Π -System D with σ(D) =G,

E(Z) = E(X), and
∫

A
ZdP=

∫
A

XdP for all A ∈D , (2.1.7)

then Z = E(X |G) almost everywhere.

Proof. We begin by proving (i). Define the set functions λ ,λ+,λ− as

λ
±(A)≡

∫
A

X±dP, λ ≡ λ
+−λ

− (2.1.8)

Now we can consider the restriction of λ to G, denoted by λG, and the restriction
of P to G, PG. Clearly, λ± are absolutely continuous with respect to P, and their
restrictions to G, λ

±
G , are absolutely continuous with respect to the restriction of P

to G, PG. But since X is assumed to be absolutely integrable with respect to P and
P is a probability measure, it follows that also λ

±
G are finite measures. Therefore,

the Radon-Nikodým theorem 1.45 implies that there exist G-measurable functions,

Y± =
dλ
±
G

dPG
, such that, for all A ∈G,∫

A
Y±dP= λ

±(A) =
∫

A
X±dP, (2.1.9)

and hence Y = dλG
dPG
≡ Y+−Y−, such that∫

A
Y dP= λ (A) =

∫
A

XdP. (2.1.10)
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Thus, Y has the properties of a conditional expectation and we may set E(X |G) =

Y = dλG
dPG

. Note that Y is unique up to sets of measure zero. Finally, to show that the
conditional measure is unique in the same sense, assume that there is a function Y ′

satisfying the conditions of the conditional expectation that differs from Y on a set
of positive measure. Then one may set A± = {ω : ±(Y ′(ω)−Y (ω)) > 0}, and at
least one of these sets, say A+, has positive measure. Then∫

A+
XdP=

∫
A+

Y ′dP>
∫

A+
Y dP=

∫
A+

XdP, (2.1.11)

which is impossible. This proves uniqueness and hence (i) is established.
To prove (ii), set

A≡
{

A ∈ F :
∫

A
ZdP=

∫
A

XdP
}
. (2.1.12)

then Ω ∈A, and D ⊂A, by assumption. Also, A is a λ -system, and so by Dynkin’s
theorem, A⊃ σ(D) =G, and so Z is the desired conditional expectation. ut

2.2 Elementary properties of conditional expectations

Conditional expectations share most of the properties of ordinary expectations. The
following is a list of elementary properties:

Lemma 2.3. Let (Ω ,F,P) be a probability space and let G⊂ F be a sub-σ -algebra.
Then:

(i) If X is G-measurable, then E(X |G) = X, a.s.;
(ii)The map X → E(X |G) is linear;
(iii)E[E(X |G)] = E(X);
(iv)If B⊂G is a σ -algebra, then E[E(X |G)|B] = E(X |B), a.s..
(v) |E(X |G)| ≤ E(|X | |G), a.s.;
(vi)If X ≤ Y , then E(X |G)≤ E(Y |G), a.s.;

Proof. Left as an exercise! ut

The following theorem summarises the most important properties of conditional
expectations with regard to limits.

Theorem 2.4. Let Xn, n ∈ N and Y be absolutely integrable random variables on a
probability space (Ω ,F,P), and let G⊂ F be a sub-σ -algebra. Then

(i) If Y ≤ Xn ↑ X a.s., then E(Xn|G) ↑ E(X |G) a.s..
(ii)If Y ≤ Xn a.s., then

E
(

liminf
n→∞

Xn|G
)
≤ liminf

n→∞
E(Xn|G) . (2.2.1)
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(iii)If Xn→ X a.s., and |Xn| ≤ |Y |, for all n, then

lim
n→∞

E(Xn|G) = E(X |G) a.s..

Of course, these are just the analogs of the three basic convergence theorems for
ordinary expectations. We leave the proofs as exercises.

A useful, but not unexpected, property is the following lemma.

Lemma 2.5. Let X be integrable and let Y be bounded and G-measurable. Then

E(XY |G) = YE(X |G), a.s. (2.2.2)

Proof. We may assume that X ,Y are non-negative; otherwise decompose them into
positive and negative parts and use linearity of the conditional expectation. More-
over, it is enough to consider bounded random variables; otherwise, consider in-
creasing sequences of bounded random variables that converge to them and use the
monotone convergence theorem.

Define, for any A ∈ F,

ν(A)≡
∫

A
XY dP, µ(A)≡

∫
A

XdP. (2.2.3)

Both µ and ν are finite measures that are absolutely continuous with respect to P.
Then

dνG

dPG
= E(XY |G),

dµG

dPG
= E(X |G),

dµ

dP
= X . (2.2.4)

Then, using Lemma 1.51, for any A ∈G,∫
A

Y dµG =
∫

A
Y

dµG

dPG
dPG =

∫
A

YE(X |G)dPG, (2.2.5)

whereas for any A ∈ F, ∫
A

Y dµ =
∫

A
Y

dµ

dP
dP=

∫
A

Y XdP. (2.2.6)

Specializing the second equality to the case when A ∈G, we find that for those A,∫
A

YE(X |G)dP=
∫

A
Y XdP. (2.2.7)

Now Z ≡ YE(X |G) is G-measurable, and (2.2.7) is precisely the defining property
for Z to be the conditional expectation of XY . This concludes the proof. ut

There should be a natural connection between independence and conditional ex-
pectation, as it was the case for the elementary notion of conditional expectation.
Here it is.

Theorem 2.6. Two σ -algebras, G1,G2, are independent, if and only if, for all G2-
measurable integrable random variables, X,
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E(X |G1) = E(X) a.s. (2.2.8)

Note that in the theorem we can replace “for all integrable G2 measurable random
variable” by “for all random variables of the form X = 1B, B ∈G2”.

Proof. Assume first that G1 and G2 are independent. Let A ∈ G1 and X be G2-
measurable. The random variables 1A and X are independent, thus

E(1AX) = E(1A)E(X) = E(1AE(X))

and from the definition of conditional expectation

E[1AE(X |G1)] = E(1AX)

for all A ∈G1. Thus (2.2.8) holds.
Now assume that (2.2.8) holds. Choose X = 1B, B ∈G2. Then

E(1B|G1) = E(1B) = P(B).

Then, for all A ∈G1,

P(A∩B) = E(1A1B) = E[E(1A1B|G1)]

= E[E(1B|G1)1A] = E(P(B)1A) = P(A)P(B).

Thus G1 and G2 are independent. ut

2.3 The case of random variables with absolutely continuous
distributions

Let us consider some cases where conditional expectations can be computed more
“explicitly”. For this, consider two random variables, X ,Y , with values in Rm and
Rn (in the sequel, nothing but notation changes if the assume n = m = 1, so we will
do this). We assume that the joint distribution of X and Y is absolutely continuous
with respect to Lebesgue’s measure with density p(x,y). That is, for any function
f : Rm×Rn→ R+,

E( f (X ,Y )) =
∫

f (x,y)p(x,y)dxdy.

The (marginal) density of the random variable Y is then

q(y) =
∫

p(x,y)dx

(where we should modify the density to be zero, when
∫

p(x,y)dx = ∞. This can be
done because this can be true only on a set of Lebesgue measure zero). Let us note
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first that the set where q(y) = 0 has mesure zero: indeed,∫ ∫
1q(y)=0 p(x,y)dxdy =

∫
1q(y)=0q(y)dy = 0.

Let now h : Rm → R+ be a measurable function. We want to compute E(h(X)|Y ).
To do this, take a measurable function g : Rn→ R+. Then

E(h(X)g(Y )) =
∫

h(x)g(y)p(x,y)dxdy (2.3.1)

=
∫ (∫

h(x)p(x,y)dx
)

g(y)dy

=
∫ (∫ h(x)p(x,y)dx

q(y)

)
g(y)q(y)1q(y)>0dy

≡
∫

φ(y)g(y)q(y)1q(y)>0dy

= E(φ(Y )g(Y )),

where we were allowed to introduce the indicator function 1q(y)>0 because as we
have seen, the complementray set has measure zero.

From this calculation we can derive the following

Proposition 2.7. With the notation above, let ν(y,dx) be the measure on Rm defined
by

ν(y,dx)≡

{
p(x,y)
q(y) dx, if q(y)> 0,

δ0(dx), if q(y) = 0.
(2.3.2)

Then for any measurable1 function h : Rm→ R+,

E(h(X)|Y )(ω) =
∫

h(x)ν(Y (ω),dx). (2.3.3)

Proof. It is obvious that the right-hand side of Equation (2.3.3) is measurable with
respect to σ(Y ). Verifying the second defining property of the conditional expecta-
tion amounts to repeating the compuations in Eq. (2.3.1). ut

Definition 2.8. The function p(x,y)
q(y) as a function of x is called the conditional density

of X given Y = y.

What is particular here is that we can represent it as an expectation with respect to
an explicitely given probability measure. We see that in this context, we are formally
quite close to the discrete case and the intuitive notion of conditional expectations.

1 One can show that the statement holds true for any measurable and integrable h : Rm→ R.
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2.4 The special case of L2-random variables

Conditional expectations have a particularly nice interpretation in the case when
the random variable X is square-integrable, i.e. if X ∈ L2(Ω ,F,P) (since for the
moment we think of conditional expectations as equivalence classes modulo sets of
measure zero, we may consider X as an element of L2 rather than L 2). We will
identify that space L2(Ω ,G,P) as the subspace of L2(Ω ,F,P) for which at least one
representative of each equivalence class is G-measurable.

Theorem 2.9. If X ∈ L2(Ω ,F,P), then E(X |G) is the orthogonal projection of X on
L2(Ω ,G,P).

Proof. The Jensen-inequality applied to the conditional expectation yields that
E(X2|G) ≥ E(X |G)2, and hence E[E(X |G)2] ≤ E[E(X2|G)] = E(X2) < ∞, so that
E(X |G) ∈ L2(Ω ,G,P). Moreover, for any bounded, G-measurable function Z,

E[Z(X−E(X |G))] = E(ZX)−E[ZE(X |G)] = E(ZX)−E[E(ZX |G)] = 0. (2.4.1)

Thus, X −E(X |G) is orthogonal to all bounded G-measurable random variables,
and using that these form a dense set in L2(Ω ,G,P), it is orthogonal to L2(Ω ,G,P).
This proves the theorem. ut

Note that this interpretation of the conditional expectation can be used to define
the conditional expectation for L2-random variables.

2.5 Conditional probabilities and conditional probability
measures

From conditional expectations we now want to construct conditional probability
measures. These seems quite straightforward, but there are some non-trivial techni-
calities that arise from the version business of conditional expectations.

As before we consider a probability space (Ω ,F,P) and a sub-σ -algebra G. For
any A ∈ F, we can define

P(A|G)≡ E(1A|G), (2.5.1)

and call it the conditional probability of A given G. It is a G-measurable function
that satisfies∫

B
P(A|G)dP= E

(∫
B
1AdP

∣∣∣G)= E(P(A∩B)|G) = P(A∩B),

for any B ∈ F.
It clearly inherits from the conditional expectation the following properties:

(i) 0≤ P(A|G)≤ 1, a.s.;
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(ii)P(A|G) = 0, a.s., if and only if P(A) = 0; also P(A|G) = 1, a.s., if and only if
P(A) = 1;

(iii)If An ∈ F, n ∈ N, are disjoint sets, then

P
( ⋃

n∈N
An

∣∣∣G)= ∑
n∈N

P(An|G) ,a.s.; (2.5.2)

(iv)If An ∈ F, such that limn→∞ An = A, then

lim
n→∞

P(An|G) = P(A|G),a.s.. (2.5.3)

These observations bring us close to thinking that conditional probabilities can be
thought of as G-measurable functions taking values in the probability measures, at
least for almost all ω . The problem, however, is that the requirement of σ -additivity
which seems to be satisfied due to (iii) is in fact problematic: (iii) says, that, for any
sequence An, there exists a set of measure one, such that, for all ω in this set,

P
( ⋃

n∈N
An

∣∣∣G)(ω) = ∑
n∈N

P(An|G)(ω). (2.5.4)

However, this set may depend on the sequence, and since that space is not countable,
it is unclear whether there exists a set of full measure on which (2.5.4) holds for all
sequences of sets.

These considerations lead to the definition of so-called regular conditional prob-
abilities.

Definition 2.10. Let (Ω ,F,P) be a probability space and let G be a sub-σ -algebra.
A regular conditional probability measure or regular conditional probability on F
given G is a function, P(ω,A), defined for all A ∈ F and all ω ∈Ω , such that

(i) for each ω ∈Ω , P(ω, ·) is a probability measure on (Ω ,F);
(ii)for each A∈F, P(·,A) is a G-measurable function coinciding with the conditional

probability P(A|G) almost everywhere.

The point is that, if we have a regular conditional probability, then we can express
conditional expectations as expectations with respect normal probability measures.

Theorem 2.11. With the notation form above, if Pω(A)≡ P(ω,A) is a regular con-
ditional probability on F given G, then for a F-measurable integrable random vari-
able, X,

E(X |G)(ω) =
∫

XdPω a.s. (2.5.5)

Proof. As often, we may assume X positive. The proof then goes through the mono-
tone class theorem (Theorem 1.26), quite similar to the proof of Theorem 1.51. One
defines the class of functions where (2.5.5) holds, verifies that it satisfies the hy-
pothesis of the monotone class theorem and notices that it is true for all indicator
functions of sets in F. ut
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The question remains whether and when regular conditional probabilities exist.
An example of a regular conditional probability measure (on the measure space
(Rn×Rm,B((Rn×Rm), p(x,y)dxdy) is the measure ν from Proposition 2.7. It is
easy to check that this has all the required properties properties, in particular it exitst
for every y.

A central result for us is the existence in the case when Ω is a Polish space.

Theorem 2.12. Let (Ω ,B(Ω),P) be a probability space where Ω is a Polish space
and B(Ω) is the Borel-σ -algebra. Let G ⊂B(Ω) be a sub-σ -algebra. Then there
exists a regular conditional probability P(ω,A) given G.

We will not give the proof of this theorem here.



Chapter 3
Stochastic processes

We are finally ready to come to the main topic of this course, stochastic processes.
In this chapter we give the basic definitions, prove the fundamental theorem of Kol-
mogorov, and discuss some examples.

3.1 Definition of stochastic processes

There are various equivalent ways in which stochastic processes can be defined, and
it will be useful to always keep them in mind.

The traditional definition.

The standard way to define stochastic processes is as follows. We begin with an
abstract probability space (Ω ,F,P). Next we need a measurable space (S,B) (which
in almost all cases will be a Polish space together with its Borel σ -algebra). The
space S is called the state space. Next, we need a set I, called the index set. Then a
stochastic process with state space S and index set I is a collection of (S,B)-valued
random variables, {Xt , t ∈ I} defined on (Ω ,F,P).

We call such a stochastic process also a stochastic process indexed by I. The
term stochastic process is often reserved to the cases when I is either N,Z,R+, or
R. The index set is then interpreted as a time parameter. Depending on whether the
index set is discrete or continuous, one refers to stochastic processes with discrete or
continuous time. However, there is also an extensive theory of stochastic processes
indexed by more complicated sets, such as Rd , Zd , etc.. Often these are also referred
to as stochastic fields. We will mostly be concerned with the standard case of one-
dimensional index sets, but I will give examples of the more general case below.

From the point of view of mappings, we have the picture that for any t ∈ I, there
is a measurable map,

39
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Xt : Ω → S,

whose inverse maps B into F.
For this to work, we do want, of course, F to be so rich that it makes all functions

Xt , t ∈ I measurable. We denote this σ -algebra by

σ(Xt ; t ∈ I). (3.1.1)

An example of a stochastic process with discrete time are families of independent
random variables.

Sample paths.

Given a stochastic process as defined above, we can take a different perspective and
view, for each ω ∈Ω , X(ω) as a map from I to S,

X(ω) : I→ S

t 7→ Xt(ω)

We call such a function a sample path of X , or a realisation of X . Clearly here we
want to see the stochastic process as a random variable with values in the space of
functions,

X : Ω → SI

ω 7→ X(ω),

where we view SI as the space of functions I→ S. To complete this image, we need
to endow SI with a σ -algebra, BI . How should we choose the σ -algebra on SI? Our
picture will be that X maps (Ω ,F) to (S I ,BI). If this map is measurable, then the
marginals Xt : Ω → S should be measurable. This will be the case if the projection
maps πt : SI 7→ S that map a function x ∈ SI to its value at time t, πt(x) = xt , are
measurable from BI to B.

Lemma 3.1. Let BI be the smallest σ -algebra that contains all subsets of SI of the
form

C(A, t)≡
{

x ∈ SI : xt ∈ A
}
. (3.1.2)

with A∈B, t ∈ I. Then BI is the smallest σ -algebra such that all the maps πt : SI→
S that map x 7→ xt , are measurable. Then σ(Xt , t ∈ I)⊂ F is the smallest σ -algebra
such that the map X : Ω 7→ SI is measurable from (Ω ,σ(Xt , t ∈ I)) to (SI ,BI).

Proof. We first show that all πt are measurable from

σ(C(A, t),A ∈B, t ∈ I)→B. (3.1.3)

To do this, let A ∈B, and chose t ∈ I. Then
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π
−1
t (A) =C(A, t).

Thus each πt is measurable. On the other hand, assume that there is some t and some
A such that C(A, t) 6∈BI . Then clearly π

−1
t (A) 6∈BI , and then πt is not measurable!

So all C(A, t) must be contained, but none more have to.
Finally, xt(ω) = πt(X(ω), so if X is measurable from F to BI and πt from BI

to B, then the composition is measurable from F to B. The fact that σ(Xt , t ∈ I) is
minimal follows as before. ut

Definition 3.2. If J ⊂ I is finite, and B ∈BJ , we call a set

C(B,J)≡ {x ∈ SI : xJ ≡ {xt , t ∈ J} ∈ B} (3.1.4)

a cylinder set or more precisely finite dimensional cylinder sets. If B is of the form
B =×t∈JAt , At ∈B, we call such a set a special cylinder.

It is clear that BI contains all finite dimensional cylinder sets, but of course it
contains much more. We call BI the product σ -algebra, or the algebra generated by
the cylinder sets.

It is easy to check that the special cylinders form a Π -system, and the cylinders
form an algebra; both generate BI .

Lemma 3.3. The map X : Ω → SI is measurable from F→ BI if and only if, for
each t, Xt is measurable from F→B.

Proof. Since a map, X , is measurable from a σ -algebra F→BI , if X−1(C) ∈ F for
all C in a class that generates B, to check measurablility it is enough to consider C
of the form C(A, t). But

X−1(C(A, t)) = {ω ∈Ω : Xt(ω) ∈ A},

which is in F whenever Xt is measurable. To prove the converse implication is
equally trivial. ut

Thus we see that the choice of the σ -algebra BI is just the right one to make
the two points of view on stochastic processes equivalent from the point of view of
measurablility.

The law of a stochastic process.

Once we view X as a map from Ω to the S-valued functions on I, we can define the
probability distribution induced by P on the space (SI ,BI),

µX ≡ P◦X−1 (3.1.5)

on (SI ,BI) as the distribution of the random variable X .
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Canonical process.

Given a stochastic process with law µ , one can of course realise this process on the
probability space (SI ,BI ,µ). In that case the random variable X is the trivial map

X : SI → SI

x 7→ X(x) = x.

The viewpoint of the canonical process is, however, not terribly helpful, since more
often than not, we want to keep a much richer probability space on which many
other random objects can be defined.

3.2 Construction of stochastic processes; Kolmogorov’s theorem

The construction of a stochastic process may appear rather formidable, but we may
draw encouragement from the fact that we have introduced a rather coarse σ -algebra
on the space SI . The most fundamental observation is that stochastic processes are
determined by their observation on just finitely many points in time. We first make
this important notion precise.

For any J ⊂ I, we will denote by πJ the canonical projection from SI to SJ ,
i.e. πJX ∈ SJ , such that, for all t ∈ J, (πJX)t = Xt . Naturally, we can define the
distributions

µ
J
X ≡ P◦ (πJX)−1

on SJ .

Definition 3.4. Let F(I) denote the set of all finite, non-empty subsets of I. Then
the collection of probability measures{

µ
J
X : J ∈ F(I)

}
(3.2.1)

is called the collection of finite dimensional distributions1 of X .

Note that the finite dimensional distributions determine µX
on the algebra of finite dimensional cylinder sets. Hence, by
Dynkin’s theorem, they determine the distribution on the σ -
algebra BI . This is nice. What is nicer, is that one can also go
the other way and construct the law of a stochastic process from
specified finite dimensional distributions. This will be the content
of the fundamental theorem of Daniell and Kolmogorov.

1 Alternative appellation are “finite dimensional marginal distributions” or “finite dimensional
marginals”.
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Theorem 3.5. Let S be a compact metrisable space, and let B≡
B(S) be its Borel-σ -algebra. Let I be a set. Suppose that, for each J ∈ F(I), there
exists a probability measure, µJ , on (SJ ,BJ), such that for any J1 ⊂ J2 ∈ F(I),

µ
J1 = µ

J2 ◦π
−1
J1

, (3.2.2)

where πJ1 denotes the canonical projection from SJ2 → SJ1 . Then there exists a
unique measure, µ , on (SI ,BI), such that, for all J ∈ F(I),

µ ◦π
−1
J = µ

J . (3.2.3)

Proof. It will not come as a surprise that we will use Carathéodory’s theorem to
prove our result. To do this, we have to construct a σ -additive set function on an
algebra that generates the σ -algebra BI . Of course, this algebra will be the algebra
of all finite-dimensional cylinder events. It is rather easy to see what this set function
will have to be. Namely, if B is a finite dimensional cylinder, then there exists J ∈
F(I), and AJ ∈BJ , such that B = AJ×SI\J (we call in such a case J the base of the
cylinder). Then we can define

µ0(B) = µ
J(AJ). (3.2.4)

Clearly µ0( /0) = 0, and µ0 is finitely additive: if B1,B2 are disjoint finite dimensional
cylinders with basis Ji, then we can write Bi, i = 1,2, in the form Ai× SI\J , where
J = J1∪ J2, and Ai ∈BJ are disjoint. Then it is clear that

µ0(B1∪B2) = µ
J(A1∪A2) = µ

J(A1)+µ
J(A2) = µ0(B1)+µ0(B2) (3.2.5)

where the consistency relations (3.2.2) were used in the last step. The usual way to
prove σ -additivity is to use the fact that an additive set-function, µ0, is σ -additive if
and only if for any sequence Gn ↓ /0, µ(Gn) ↓ 0.

Therefore, the proof will be finished once we establish the following lemma.

Lemma 3.6. Let Bn, n∈N be a sequence of cylinder sets such that Bn ⊃ Bn+1 for all
n. If there exists an ε > 0, such that for all n ∈N, µ0(Bn)≥ 2ε , then limn→∞ Bn 6= /0.

Proof. If Bn satisfies the assumptions of the lemma, then there exists a sequence
Jn ∈ F(I) and An ∈BJn , such that Bn = An×SI\Jn , Jn ⊂ Jn+1 and

µ0(Bn) = µJn(An).

It will be enough to assume that Jn = {1, . . . ,n}. Since µJn is a probability measure
on the compact metrisable space SJn , Theorem 1.23 implies that, for any ε > 0, there
exists a compact subset, Kn ⊂ An, such that

µ
Jn(Kn)≥ µ

Jn(An)−2−n
ε,

or, with Hn = Kn×SI\Jn ,
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µ0(Hn)≥ µ0(Bn)−2−n
ε. (3.2.6)

Now, under the hypothesis of the lemma, for all n ∈ N,

µ0(H1∩·· ·∩Hn)≥ µ0(B1∩·· ·∩Bn)−
n

∑
i=1

µ0(Bi\Hi)≥ 2ε−ε

∞

∑
i=1

2−i = ε. (3.2.7)

In particular, for any n, H1 ∩ ·· · ∩Hn 6= /0. Now let xn ∈ H1 ∩ ·· · ∩Hn, and hence
πJk xn ∈ K1∩·· ·∩Kk, for any k ≤ n. By compactness of this set, there exist a subse-
quence, ni, such that limi→∞ πJk xni ∈

⋂k
j=1 K j.

Taking subsequently sub-subsequences2, we can construct a sequence in such a
way that πJk xni → xk ∈

⋂k
j=1 K j for all k. Clearly, πJ`x

k = x`, for all ` ≤ k. Then
there exist an x ∈ SI whose projections are equal to these limits for all k and hence
x ∈ ∩k

j=1B j for all k, hence x ∈ ∩∞
n=1Bn and so

⋂
n∈N Bn 6= /0. But this is the claim of

the lemma. ut

So we are done: µ0 is σ -additive on the algebra of finite dimensional cylinders,
and so there exists a unique probability measure on the σ -algebra BI with the ad-
vertised properties. ut

Remark. Note that we have used the assumption on the space S only to ensure that
the measures µJ , for J ∈F(I), are all inner regular. Thus we can replace the assertion
of the theorem by:

Theorem 3.7. Let S be a topological space, and let B = B(S) be its Borel-σ -
algebra. Let I be a set. Suppose that, for each J ∈ F(I), there exists an inner regular
probability measure, µJ , on (SJ ,BJ), such that for any J1 ⊂ J2 ∈ F(I),

µ
J1 = µ

J2 ◦π
−1
J1

, (3.2.8)

where πJ1 denotes the canonical projection from SJ2 → SJ1 . Then there exists a
unique measure, µ , on (SI ,BI), such that, for all J ∈ F(I),

µ ◦π
−1
J = µ

J . (3.2.9)

Finally, one can show that the assumption that Ω be compact and metrisable in
Theorem 1.23 can be replaced by assuming that Ω be Polish3. In fact by inspecting
the proof one sees that if we replace the requirement “compact” by “closed”, then
the compactness requirement on Ω is no longer needed. Thus all what remains to
be seen is that the closed sets K = Kε that approximate B well from within can be
chosen bounded on a separable metric space. But this follows for instance since
on a metric space, P(Bn(x)) ↑ 1, where Bn(x) is the closed metric ball of radius n

2 This is possible because the subsequences for k+1 is a sub-subsequence for k, due to ∩k
j=1K j ⊃

∩k+1
j=1K j . Indeed, denote (ni,k)i≥1 the subsequence for k. Applying the Cantor diagonal procedure,

i.e., taking (nk,k)k≥1 provides the desired subsequence.
3 The notations here are as in Theorem 1.23.
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around x and using instead of Kε simply K̃ε = Kε/2 ∩Bnε
(0) with nε chosen such

that P(Bnε
(0))≥ 1−ε/2, so that P(B\ K̃ε)< ε and K̃ε is a closed and bounded set.

Remark. Note that we have seen no need to distinguish cases according to the nature
of the set I.

3.3 Examples of stochastic processes

The Kolmogorov-Daniell theorem goes a long way in helping to construct stochastic
processes. However, one should not be deceived: prescribing a consistent family of
finite dimensional distributions (i.e. distributions satisfying (3.2.3)) is by no means
an easy task and in practise we want to have a simpler way of describing a stochastic
process of our liking.

In this section I discuss some of the most important classes of examples without
going into too much detail.

3.3.1 Independent random variables

We have of course already encountered independent random variables in the first
course of probability. We can now formulate the existence of independent random
variables in full generality and with full rigour.

Theorem 3.8. Let I be a set and let, for each t ∈ I, µt be a probability measure on
(S,B(S)), where S is a polish space. Then there exists a unique probability measure,
µ , on (SI ,BI), such that, for J ∈ F(I), and At ∈B,

µ

(⋂
t∈J

π
−1
t (At)

)
= ∏

t∈J
µt(At). (3.3.1)

Proof. Under the hypothesis that S is polish, the proof is direct from the Kolmogorov-
Daniell theorem. Note that this hypothesis is not, however, necessary. ut

Remark. Note that we don’t assume I to be countable. In the case when I is un-
countable, such a collection of random variables is sometimes called white noise.
This is, however, a rather unpleasant object. When we discuss seriously the issue
of stochastic processes with continuous time, we will see that we always will want
additional properties of sample paths that the theorem above does not provide.

Independent random variables are a major building block for more interesting
stochastic processes. We have already encountered sums of independent random
variables. Other interesting processes are e.g. maxima of independent random vari-
ables: If Xi, i ∈ N are independent random variables, define
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Mn = max
1≤k≤n

Xk. (3.3.2)

The study of such maxima is an interesting topic in itself.
Of course one can look at many more functions of independent random variables.

3.3.2 Gaussian processes

Gaussian processes are one of the most important class of stochastic process that
can be defined with the help of densities. Let us proceed in two steps.

First, we consider finite dimensional Gaussian vectors. Let n∈N be fixed, and let
C be a real symmetric positive definite n×n matrix. We denote by C−1 its inverse.
Define the Gaussian density,

fC(x1, . . . ,xn)≡
1

(2π)n/2
√

detC
exp
(
−1

2
(x,C−1x)

)
. (3.3.3)

You see that the necessity of having C positive derives from the fact that we want
this density to be integrable with respect to the n-dimensional Lebesgue measure.

Definition 3.9. A family of n real random variables is called jointly Gaussian with
mean zero and covariance C, if and only if their distribution is absolutely continuous
w.r.t. the Lebesgue measure on Rn with density given by fC.

Remark. In this section I will always consider only Gaussian random variables with
mean zero. The corresponding expressions in the general case can be recovered by
simple computations.

The definition of Gaussian vectors is no problem. The question is, can we define
Gaussian processes? From what we have learned, it will be crucial to be able to
define compatible families of finite dimensional distributions.

The following result will be important.

Lemma 3.10. Let X1, . . . ,Xn be random variables whose joint distribution is Gaus-
sian with density covariance matrix C and mean zero.

(i) For any k, ` ∈ {1, . . . ,n},
E(XkX`) =Ck,`. (3.3.4)

(ii)If J ⊂ {1, . . . ,n} with |J| = m, then the random variables X`, ` ∈ J are jointly
Gaussian with covariance given by the m×m-matrix CJ with elements CJ

k,` =
Ck,`, if k, ` ∈ J.

Proof. For technical reasons it is very convenient to compute the moment generat-
ing function, or the Laplace transform, of our jointly Gaussian vector. We define,
for u ∈ Cn,
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φC(u)≡ E
(

e(u,X)
)
≡ E

(
e∑

n
i=1 uiXi

)
=
∫

dnx fC(x1, . . . ,xn)e∑
n
i=1 uixi . (3.3.5)

It is easy to see that this integral is always finite. Its computation involves a nice
trick, that is well worth remembering! To understand it, recall that a real positive
matrix can always be written in the form C = AtA, where At denotes the transpose
of A, and A is itself invertible. Then likewise C−1 = A−1(At)−1. For simplicity we
write B = (At)−1.

φC(u) =
1

(2π)n/2
√

detC

∫
dnxexp

(
−1

2
(x,C−1x)+(u,x)

)
(3.3.6)

=
1

(2π)n/2
√

detC

∫
dnxexp

(
−1

2
(Bx,Bx)+(u,x)

)
=

1
(2π)n/2

√
detC

∫
dnxexp

(
−1

2
(Bx−Au,Bx−Au)+

1
2
(Au,Au)

)
=

exp
(
− 1

2 (u,Cu)
)

(2π)n/2
√

detC

∫
dnxexp

(
−1

2
(x−Cu,C−1(x−Cu))

)
= exp

(
−1

2
(u,Cu)

)
,

where in the last line we used that the domain of integration in the integral is invari-
ant under translation.

Now it is easy to compute the correlation function. Clearly,

E(XkX`) =
d2φC(u)
dukdu`

∣∣∣∣
u=0

=Ck,`.

This establishes (i). (ii) is now quite simple. To compute the Laplace transform of
the vector X`, ` ∈ J, we just need to set ui = uJ

i for i ∈ J and ui = 0 for i 6∈ J. The
result is precisely the Laplace transform of a Gaussian vector with covariance CJ .
Since the Laplace transform determines the distribution uniquely, (ii) follows. ut

This result if very encouraging for the prospect of defining Gaussian vectors.
If we can specify an infinite dimensional positive matrix, C then all its finite di-
mensional sub-matrices, CJ , J ∈ F(N), are positive and the ensuing family of finite
dimensional distributions are Gaussian distributions that do satisfy the consistency
requirements of Kolmogorov’s theorem! The result is:

Theorem 3.11. Let C be a symmetric positive quadratic form on RN. Then there
exists a unique Gaussian process with index set N, state space R, such that, for all
finite J ⊂ N, the marginal distributions are |J|-dimensional Gaussian vectors with
covariance CJ .

Thus the trick is to construct positive quadratic forms. Of course is easy to guess
a few by going the other way, and using independent Gaussian random variables
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as building blocks. For example, consider Xn, n ∈ N to be independent, Gaussian
random variables with mean zero and variance σ2

n . Set Zn ≡ ∑
n
k=1 Xk. Then

Cn,m ≡ E(ZnZm) = E
( n

∑
i=1

m

∑
j=1

XiX j

)
=

m∧n

∑
i=1

E(X2
i ) =

m∧n

∑
i=1

σ
2
i .

Thus the quadratic form Cn,m = ∑
m∧n
i=1 σ2

i is apparently positive. In fact, if u ∈ RN,

(u,Cu) = ∑
n,m∈N

unum

m∧n

∑
i=1

σ
2
i = ∑

i∈N
σ

2
i ∑

m≥i
um ∑

n≥i
un

= ∑
i∈N

σ
2
i

(
∑
m≥i

um

)2

≥ 0

and it is equal to zero if and only if u = 0.
Now we have seen that in the construction of stochastic processes, the fact to

have discrete time did not appear (so far) to be much of an advantage. Thus the
above example may make us courageous to attempt to define a Gaussian process on
R+. To this end, define a function C : R+×R+ 7→ R+ by

C(t,s)≡ t ∧ s. (3.3.7)

What we have to check is that, for any J ∈ F(R+), the restriction of C to a quadratic
form on RJ is positive. But indeed,

∑
t,s∈J

utus(t ∧ s) = ∑
t,s∈J

utus

∫ (t∧s)

0
1dr =

∫
∞

0
dr
(

∑
t∈J,t≥r

ut

)2

≥ 0.

Thus all finite dimensional distributions exist as Gaussian vectors, and the com-
patibility conditions are trivially satisfied. Therefore there exists a Gaussian process
on R+ with this covariance. This process is called “Brownian motion”. Note, how-
ever, that this constructs the process only in the product topology, which does not
yet yield any nice path properties. We will later see that this process can actually
be constructed on the space of continuous functions, and this object will then more
properly called Brownian motion.

Exercise. Let Xk,k ∈N, be independent Gaussian random variables with mean zero
and variance σ2 = 1. Define, for n ∈ N, and t ∈ [0,1],

Zn(t)≡
1√
n

[nt]

∑
k=1

Xk,

where [·] denotes the largest integer smaller than ·. Show that

(i) Zn(t) is a stochastic process with indexset [0,1] and state space R.
(ii)Compute the covariance, Cn, of Zn and show that for any I ∈ F([0,1]), CI

n→CI ,
where C(s, t) = s∧ t.
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(iii)Show that the finite dimensional distributions of the processes Zn converge, as
n→ ∞, to those of the “Brownian motion” defined above.

(iv)Show that the results (i)− (iii) remain true if instead of requiring that the Xk are
Gaussian we just assume that their variance equals to 1.

Note that to prove (iv), you need to prove the multi-dimensional analogue of the
central limit theorem. This requires, however, little more than an adaptation of the
notation from the standard CLT in dimension one.

3.3.3 Markov processes

Gaussian processes were build from independent random variables using densities.
Another important way to construct non-trivial processes uses conditional probabil-
ities. Markov processes are the most prominent examples. In the case of Markov
processes we really think of the index set, N0 or R+, as time. The process Xt then
shall have two properties: (1) it should be causal, i.e. we want an expression for the
law of Xt given the σ -algebra Ft− ≡ σ(Xs,s < t), (2) we want this law to be forget-
ful of the past: if we know the position (value; we will think mostly of a Markov
process as a “particle” moving around in S) of X at some time s < t, then the law of
Xt should be independent of the positions of Xs′ with s′ < s. In a way, Markov pro-
cesses are meant be the stochastic analogues of deterministic evolution (differential
equations).

To set such a process up, let us consider the (much simpler) case of discrete time,
i.e. I = N0 (we always want zero in our index set). The main building block for a
Markov chain is then the so called (one-step) transition kernel, P : N0×S×B→
[0,1], with the following properties:

(i) For each t ∈ N0 and x ∈ S, Pt(x, ·) is a probability measure on (S,B).
(ii)For each A ∈B, and t ∈ N0, Pt(·,A) is a B-measurable function on S.

Then, a stochastic process X with state space S and index set N0 is a discrete time
Markov process with law P, if, for all A ∈B, t ∈ N,

P(Xt ∈ A|Ft−1)(ω) = Pt−1(Xt−1(ω),A), P− a.s. (3.3.8)

The remarkable thing is that this requirement fixes the law P up to one more proba-
bility measure on (S,B), the so-called initial distribution, P0.

Theorem 3.12. Let (S,B) be a Polish space, let P be a transition kernel and P0
an probability measure on (S,B). Then there exists a unique stochastic process
satisfying (3.3.8) and P(X0 ∈ A) = P0(A), for all A.

Proof. In view of the Kolmogorov-Daniell theorem, we have to show that our re-
quirements fix all finite dimensional distributions, and that these satisfy the compat-
ibility conditions. This is more a problem of notation than anything else. We will
need to be able to derive formulas for
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P(Xtn ∈ An, . . . ,Xt1 ∈ A1) .

To get started, we consider
P(Xt ∈ A|Fs) ,

for s < t. To do this, we use that by the elementary properties of conditional expec-
tations (we drop the a.s. that applies to all equations relating to conditional expecta-
tions).

P(Xt ∈ A|Fs) = E [P(Xt ∈ A|Ft−1) |Fs] (3.3.9)
= E [Pt−1(Xt−1(ω),A)|Fs]

= E [E [Pt−1(Xt−1(ω),A)|Ft−2] |Fs]

where we used Fs ⊂ Fs′ for all s < s′. Further,

(3.3.9) = E
[
E
[∫

Pt−1(xt−1,A)Pt−2(Xt−2(ω),dxt−1)
∣∣∣Ft−2

]∣∣∣Fs

]
= E

[∫
Pt−1(xt−1,A)Pt−2(xt−2,dxt−1) · · ·

· · ·Ps+1(xs+1,dxs+2)Ps(Xs(ω),dxs+1)
∣∣∣Fs

]
=
∫

Pt−1(xt−1,A)Pt−2(xt−2,dxt−1) · · ·Ps(Xs(ω),dxs+1)

since Xs is Fs measurable. We will set

Ps,t(x,A)≡
∫

Pt−1(xt−1,A)Pt−2(xt−2,dxt−1) · · ·Ps(x,dxs+1) (3.3.10)

and call Ps,t the transition kernel from time s to time t. With this object defines, we
can now proceed to more complicated expressions:

P(Xtn ∈ An, . . . ,Xt1 ∈ A1)

= E
[
P(Xtn ∈ An|Ftn−1)1An−1(Xtn−1) · · ·1A1(Xt1)

]
= E

[
E
[
Ptn−1,tn(Xtn−1(ω),An)|Ftn−1

]
1An−1(Xtn−1) · · ·1A1(Xt1)

]
= E

[
E
[∫

An−1

Ptn−1,tn(xn−1,An)Ptn−2,tn−1(Xtn−2(ω),dxn−1)
∣∣∣Ftn−2

]
×1An−2(Xtn−2) · · ·1A1(Xt1)

]
=
∫

An−1

Ptn−1,tn(xn−1,An)
∫

An−2

Ptn−2,tn−1(xn−2,dxn−1)

· · ·
∫

A1

Pt1,t2(x1,dx2)
∫

S
P0,t1(x0,dx1)P0(dx0). (3.3.11)
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Thus, we have the desired expression of the marginal distributions in terms of the
transition kernel P and the initial distribution P0. The compatibility relations follow
from the following obvious, but important property of the transition kernels.

Lemma 3.13. The transition kernels Ps,t satisfy the Chapman-Kolmogorov equa-
tions

Ps,t(x,A) =
∫

Pr,t(y,A)Ps,r(x,dy) (3.3.12)

for any s < r < t.

Proof. This is obvious from the definition. ut

The proof of the compatibility relations is now also obvious; if some of the Ai are
equal to S, we can use (3.3.12) and recover the expressions for the lower dimensional
marginals. ut

Exercise. Consider the Brownian motion process from the last sub-section. Show
that this process is Markov in the sense that all finite dimensional distributions sat-
isfy the Markov property.
Hint: Let J = tn > tn−1 > · · · > t1. Show that the family of random variables
Yn ≡ Xtn −Xtn−1 ,Xtn−1 ,Xtn−2 , . . . ,Xt1 are jointly Gaussian and that Yn is independent
of the σ -algebra generated by Xtn−1 , . . . ,Xt1 .

3.3.4 Gibbs measures

As an aside, I will briefly explain another important way to construct stochastic
processes with the help of conditional expectations and densities, that is central in
statistical mechanics. It is particularly useful in the setting where I is not an ordered
set, the most prominent example is I = Zd .

In order not to introduce too much notation, I will stick to a simple example,
the so-called Ising-model. In this case, S = {−1,1}. The main object is family of
functions, HΛ : SZ

d → R, called Hamiltonians, that are defined for every finite Λ ⊂
Zd , and are given by

HΛ (X) =− ∑
i, j:i∨ j∈Λ

XiX jJi j. (3.3.13)

Using this function, we will construct a family of probability kernels, µΛ , that have
the following properties:

(i) For each y ∈ SZ
d
, µΛ (·,τ) is a probability measure on SZ

d
;

(ii)For each A∈BZd
, µΛ (A, ·) is a FΛ c -measurable function, where FΛ c = σ(Xi, i ∈Λ c);

(iii)For any pair of volumes, Λ ,Λ ′, with Λ ⊂Λ ′, and any A ∈BZd
,∫

µΛ (z,A)µΛ ′(x,dz) = µΛ ′(x,A). (3.3.14)
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We will indeed give an explicit formula for µΛ :

µΛ (A,y) =
∑xi,i∈Λ 1(xΛ ,yΛc )∈Ae−βHΛ ((xΛ ,yΛc ))

∑xi,i∈Λ e−βHΛ ((xΛ ,yΛc ))
. (3.3.15)

It is easily checked that this expression indeed defines a kernel with properties (i)
and (ii). An expression of this type is called a local Gibbs specification.

Now we see that the properties of these kernels are reminiscent of those of regular
conditional probabilities.

One defines the notion of a Gibbs measure as follows:

Definition 3.14. A probability measure on SZ
d

is called a Gibbs measures, if and
only if, for any finite Λ ⊂ Zd , the kernel µΛ is a regular conditional probabilty for
µ given FΛ c .

More specifically, if the kernel is the Gibbs specification (3.3.15), it will be called
a Gibbs measures for the d-dimensional Ising model at temperature β−1.

One can prove that such Gibbs measures exist; for this one shows that any ac-
cumulation point of a sequence µΛn(·,x), where Λn ↑ Zd is any increasing sequence
of volumes that converges to Zd (in the sense, that, for any finite Λ , there exists
n0, such that, for all n ≥ n0, Λ ⊂ Λn), will be a Gibbs measure. This is relatively
straightforward, by writing equation (3.3.14) for a sequence of volumes Λn ↑ Zd :∫

µΛ (z,A)µΛn(x,dz) = µΛn(x,A).

If µΛn conveges weakly to some measure µ , then the right-hand side converges to
µ(A). The left-hand side will converge to

∫
µΛ (z,A)µ(x,dz), since one can easily

see that µΛ (z,A) is a continuous function, if A is a cylinder event (in fact, in our
example, it is a local function on a discrete space). But then µ satisfies the desired
properties of a Gibbs measure.

The existence of accumulation points is then guaranteed by the fact that SZ
d

is
compact (Tychonov, since S = {−1,1} is compact), and that the set of probability
measures over a compact space is compact. What makes this setting interesting is
that there is no general uniqueness result. In fact, if d ≥ 2, and β > βc, for a certain
βc, then it is known that there exists more than one Gibbs measure. This mathemati-
cal fact is connected to the physical phenomenon of a so-called phase transition, and
this is what makes the study of Gibbs measures so interesting. For deeper material
on Gibbs measures see [3, 13, 6].



Chapter 4
Martingales

In this chapter we introduce the fundamental concept of mar-
tingales, which will keep playing a central rôle in our investi-
gation of stochastic processes. Martingales are “truly random”
stochastic processes, in the sense that their observation in the past
does not allow for useful prediction of the future. By useful we
mean here that no gambling strategies can be devised that would
allow for systematic gains. In thi chapter we will always assume
that random variables take values in R, unless specified otherwise.
The treatment of martingales follows largely the book of Rogers and Williams [12],
with the exception of a section on the central limit theorem, which is inspired by
Billingsley’s presentation[2].

4.1 Definitions

We begin by formally introducing the notion of a filtration of a σ -algebra that we
have already briefly encountered in the context of Markov processes. We remain in
the context of discrete index sets.

Definition 4.1. Let (Ω ,F) be a measurable space. A family of sub-σ -algebras,
{Fn,n ∈ N0} of F that satisfies

F0 ⊂ F1 ⊂ ·· · ⊂ · · ·F∞ ≡ σ

( ⋃
n∈N0

Fn

)
⊂ F, (4.1.1)

is called a filtration of the σ -algebra F. We call a quadruple (Ω ,F,P,{Fn,n ∈ N0})
a filtered (probability) space.

In this chapter we will henceforth always assume that we are given a filtered
space.

53
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Filtrations and stochastic processes are closely linked. We will see that this goes
in two ways.

Definition 4.2. A stochastic process, {Xn,n∈N0}, is called adapted to the filtration
{Fn,n ∈ N0}, if, for every n, Xn is Fn-measurable.

Now the other direction:

Definition 4.3. Let {Xn,n ∈ N0} be a stochastic process on (Ω ,F,P). The natural
filtration, {Wn,n ∈ N0} with respect to X is the smallest filtration such that X is
adapted to it, that is,

Wn = σ(X0, . . . ,Xn). (4.1.2)

We see that the basic idea of the natural filtration is that functions of the pro-
cess that are measurable with respect to Wn depend only on the observations of the
process up to time n.

We now define martingales.

Definition 4.4. A stochastic process, X , on a filtered space is called a martingale, if
and only if the following hold:

(i) The process X is adapted to the filtration {Fn,n ∈ N0};
(ii)For all n ∈ N0, E(|Xn|)< ∞;
(iii)For all n ∈ N,

E(Xn|Fn−1) = Xn−1, a.s.. (4.1.3)

If (i) and (ii) hold, but instead to (iii), it holds E(Xn|Fn−1) ≥ Xn−1, respectively
E(Xn|Fn−1) ≤ Xn−1, then the process X is called a sub-martingale, respectively a
super-martingale.

In particular, for a martingale it holds E(Xn) = E(Xn−1), for a sub-martingale
E(Xn)≥ E(Xn−1), finally, for a super-martingale E(Xn)≤ E(Xn−1).

It is clear that the property (iii) is what makes martingales special: intuitively, it
means that the best guess for what Xn could be, knowing what happened up to time
n−1 is simply Xn−1. No prediction on the direction of change is possible.

We will now head for the fundamental theorem concerning the impossibility of
winning systems in games build on martingales.

To put us into the gambling mood, we think of the increments of the process,
Yn ≡ Xn−Xn−1, as the result of (not necessarily independent) games (Examples: (i)
Coin tosses, or (ii) the daily increase of the price of a stock). We are allowed to bet
on the outcome in the following way: at each moment in time, n− 1, we choose a
number Cn ∈ R. Then our wealth will increase by the amount CnYn, i.e. the wealth
process, Wn is given by Wn = ∑

n
k=1 CnYn (Example: (i) in the coin toss, case, choose

Cn > 0 means to bet on head (= {Yn = +1}) an amount Cn, and Cn < 0 means to
bet on the outcome tails (= {Yn = −1}) the amount −Cn; (ii) in the stock case, Cn
represents the amount of stock an investor decides to hold at time n−1 up to time n
(here negative values can be realised by short-selling).

The choice of the Cn is done knowing the process up to time n−1. This justifies
the following definition.
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Definition 4.5. A stochastic process {Cn,n ∈ N} is called previsible1, if, for all n ∈
N, Cn is Fn−1-measurable.

Given an adapted stochastic process, X and a previsible process C, we can define
the wealth process

Wn ≡
n

∑
k=1

Ck(Xk−Xk−1)≡ (C •X)n. (4.1.4)

Definition 4.6. The process C •X is called the martingale transform of X by C or
the discrete stochastic integral of C with respect to X .

Now we can formulate the general “no-system” theorem for martingales:

Theorem 4.7. Let (Ω ,F,P,{Fn,n ∈ N}) be a filtered space.

(i) Let C be a bounded non-negative previsible process such that there exists K < ∞,
such that, for all n, and all ω ∈ Ω , |Cn(ω)| ≤ K. Let X be a super-martingale.
Then C •X is a super-martingale that vanishes for n = 0.

(ii)Let C be a bounded previsible process (boundedness as above) and X be a mar-
tingale. Then C •X is a martingale that vanishes at zero.

(iii)Both in (i) and (ii), the condition of boundedness can be replaced by Cn ∈L 2, if
also Xn ∈L 2.

Remark. In terms of gambling, (i) says that, if the underlying process has a tendency
to fall, then playing against the trend (“investing in a falling stock”) leads to a wealth
process that tends to fall. On the other hand, (ii) says that, if the underlying process
X is a martingale, then no matter what strategy you use, the wealth process has mean
zero.

Proof. (i) and (ii). To check integrability it is trivial. We also have that Wn−Wn−1 =
Cn(Xn−Xn−1). Then

E(Wn−Wn−1|Fn−1) =CnE(Xn−Xn−1|Fn−1), (4.1.5)

by Lemma 2.5. If X is a martingale, the conditional expectation on the right is zero,
so E(Wn−Wn−1|Fn−1) = 0, and W is a martingale. If X is a super-martingale, the
conditional expectation is non-positive and this remains true for the product, if Cn is
non-negative. This proves (i) and (ii).

To prove (iii), we just need to show that under the hypothesis of (iii), Eq. (4.1.5)
still holds. But first, by the Cauchy-Schwartz inequality, Cn(Xn−Xn−1) is absolutely
integrable. Next, chose since the bounded functions are dense in L2, take a sequence
of bounded functions Ck

n that converge to Cn. Then

E(Wn−Wn−1|Fn−1) =Ck
nE(Xn−Xn−1|Fn−1)+E((Cn−Ck

n)(Xn−Xn−1)|Fn−1).
(4.1.6)

Again by Cauchy-Schwartz, the second term tends to zero as k ↑ ∞, while the first
tends to CnE(Xn−Xn−1|Fn−1), almost surely. ut
1 The teminology previsible refers to the fact that Cn can be foreseen from the information available
at time n−1.
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The quantities Yn =Xn−Xn−1 are called martingale differences. A sequence Sn≡
∑

n
k=1 Yn where E(Yn|Fn−1) = 0 is called a martingale difference sequence. If Yn are

square integrable, then the variance of a martingale difference sequence satisfies

E(S2
n) =

n

∑
k=1

E(Y 2
k ). (4.1.7)

Some examples.

A canonical way to construct a martingale is to take any random variable, X , on a
filtered probability space, (Ω ,F,P,{Fn,n ∈ N0}), and to define

Xn ≡ E(X |Fn).

Then, by the properties of conditional expectation,

E(Xn|Fn−1) = E[E(X |Fn)|Fn−1] = E(X |Fn−1) = Xn−1,a.s.

In this case, we should expect that limn→∞ Xn = X , a.s..
Another example is a Markov chain whose transition kernel has the property that∫

xP(y,dx) = y.

In particular, sums of iid random variables with mean zero are martingales.

4.2 Upcrossings and convergence

Consider an interval [a,b]. We want to count the number of times a process crosses
this interval from below.

Definition 4.8. Let a < b ∈ R and let Xs be a stochastic process with values in R.
We say that an upcrossing of [a,b] occurs between times s and t, if

(i) Xs < a,Xt > b,
(ii for all r such that s < r < t,Xr ∈ [a,b].

We denote by UN(X , [a,b])(ω) the number of uprossings in the time interval
[0,N].

We will now consider a (obviously) previsible process constructed as follows:

C1 = 1X0<a; Cn = 1Cn−1=11Xn−1≤b +1Cn−1=01Xn−1<a, for n≥ 2. (4.2.1)

This process represents a “winning” strategy: wait until the process (say, price of
....) drops below a. Buy the stock, and hold it until its price exceeds b; sell, wait
until the price drops below a, and so on. Our wealth process is W =C •X .
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Now each time there is an upcrossing of [a,b] we win at least (b− a). Thus, at
time N, we have

WN ≥ (b−a)UN(X , [a,b])−|a−XN |1XN<a, (4.2.2)

where the last term count is the maximum loss that we could have incurred if we are
invested at time N and the price is below a.

Naive intuition would suggest that in the long run, the first term must win. Our
theorem above says that this is false, if we are in a fair or disadvantageous game
(that is, in practice, always).

Theorem 4.9 (Doob’s upcrossing lemma). Let X be a super-martingale.. Then
Then for any a < b ∈ R,

(b−a)E(UN(X , [a,b]))≤ E(|a−XN |1XN<a) . (4.2.3)

Proof. The process C defined in (4.2.1) is a bounded, non-negative previsible pro-
cess. Therefore (i) of Theorem 4.7 implies that W ≡C •X is super-martingale with
W0 = 0. Therefore 0≥ EWN and taking the expectation of (4.2.2) gives (4.2.3). ut

The result has the following, quite remarkable consequence:

Corollary 4.10. Let Xn be a L 1-bounded super-martingale, i.e. supnE|Xn|< ∞.
Define U∞(X , [a,b]) = limn→∞ Un(X , [a,b]) for any interval [a,b]. Then

(b−a)E(U∞(X , [a,b]))≤ a+ sup
n
E(|Xn|)< ∞. (4.2.4)

In particular, P(U∞(X , [a,b]) = ∞) = 0.

Proof. Exercise! ut

Remark. We will say in general that a stochastic process Xn is bounded in L p, if
supnE|Xn|p < ∞. Note that this requirement is strictly stronger than just asking that
for all n, E|Xn|p < ∞.

This is quite impressive: a (super) martingale that is L 1-bounded cannot cross
any interval infinitely often. The next result is even more striking, and in fact one of
the most important results about martingales.

Theorem 4.11 (Doob’s super-martingale convergence theorem). Let Xn be a
L 1-bounded super-martingale. Then, almost surely, X∞ ≡ limn→∞ Xn exists and is
a finite random variable.

Proof. Define

Λ ≡ {ω : Xn(ω)does not converge to a limit in [−∞,+∞]} (4.2.5)
= {ω : limsup

n→∞

Xn(ω)> liminf
n→∞

Xn(ω)}

=
⋃

a<b∈Q
{ω : limsup

n→∞

Xn(ω)> b > a > liminf
n→∞

Xn(ω)} ≡
⋃

a<b∈Q
Λa,b.
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But
Λa,b ⊂ {ω : U∞(X , [a,b])(ω) = ∞}. (4.2.6)

Therefore, by Corollary 4.10, P(Λa,b) = 0, and thus also P(
⋃

a<b∈QΛa,b) = 0, since
countable unions of null-sets are null-sets.

Thus the limit of Xn exists in [−∞,∞] with probability one. It remains to show
that it is finite. To do this, we use Fatou’s lemma:

E(|X∞|) = E(liminf
n→∞

|Xn|)≤ liminf
n→∞

E(|Xn|)≤ sup
n∈N0

E(|Xn|)< ∞. (4.2.7)

So X∞ is almost surely finite. ut

Doob’s convergence theorem implies that positive super-martingale always con-
verge a.s.. This is because the super-martingale property ensures in this case that
E(|Xn|) =E(Xn)≤E(X0), so the uniform boundedness in L 1 is always guaranteed.

Our next result gives a sharp criterion for convergence that brings to light the
importance of the notion of the uniform integrability.

Theorem 4.12. Let X be a L 1-bounded super-martingale, so that, by Theorem 4.11
X∞≡ limn→∞ Xn exists a.s.. Then Xn→X∞ in L 1, if and only if the sequence {Xn,n∈
N0} is uniformly integrable. Then, for n ∈ N0,

E(X∞|Fn)≤ Xn, a.s. (4.2.8)

with equality holding if X is a martingale.

Proof. The first statement follows from Theorem 1.37. For m≥ n, E(Xm|Fn) ≤ Xn
a.s.. We let m tend to infinity and use L 1-convergence to obtain limm→∞ E(Xm|Fn)=
E(limm→∞ Xm|Fn) = E(X∞|Fn), we obtain (4.2.8). ut

A martingale with the property that there exists integrable X∞ such that Xn =
E(X∞|Fn) is called a closed martingale. The same applies to super (sub) martin-
gales upon appropriate modification of the equality relation. The preceding theorem
thus says in particular that (sup,super) martingales that are uniformly integrable and
converge a.s. are closed.

The martingales of our first example are by definition closed. The next result
implies that such martingales converge almost surely and in L 1. To show this, we
need yet another result of Doob that implies the uniform integrability of conditional
expectations.

Theorem 4.13. Let X be an absolutely integrable random variable on some proba-
bility space (Ω ,F,P). Then the family

{E(X |G) : G is a sub-σ -algebra of F} (4.2.9)

is uniformly integrable.
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Proof. Since X is absolutely integrable, for any ε > 0, we can find δ > 0 such that,
if F ∈ F with P(F) < δ , then E(|X |1F) < ε . Let such ε and δ be given. Choose K
such that K−1E(|X |)< δ . Let now G⊂ F be a σ -algebra, and let Y be a version of
E(X |G). Then Jensen’s inequality for conditional expectations implies that

|Y | ≤ E(|X | |G), a.s.

By Chebychev inequality we have, KP(|Y |> K)≤ E(|Y |)≤ E(|X |). Thus P(|Y |>
K)< δ . Moreover, since the event {|Y |> K} ∈G, we can argue that

E(|Y |1|Y |>K) ≤ E[1|Y |>KE(|X ||G)] = E[E(|X |1|Y |>K |G)]

= E(|X |1|Y |>K))< ε,

where in the last step we have set F = {|Y | > K}. This is the uniform integrability
property we want to prove. ut

Theorem 4.14. Let ξ be an absolutely integrable random variable on a filtered
probability space (Ω ,F,P,{Fn,n ∈ N0}). Define Xn ≡ E(ξ |Fn), a.s.. Then Xn is
a uniformly integrable martingale and

Xn→ X∞ = E(ξ |F∞), (4.2.10)

almost surely and in L 1.

Proof. Xn is a L 1-bounded martingale by the properties of conditional expecta-
tions. The proceedings Theorem 4.13 implies that Xn is uniformly integrable. Thus
Xn converges almost surely and in L 1. We have to show the last equality in (4.2.10).
For any n, and any F ∈ Fn,

E[1FE(ξ |F∞)] = E[E[E(1F ξ |Fn)]|F∞]] = E(1F Xn).

But for all m > n,
E[1F Xn] = E[1F Xm],

and so
E[1F Xn] = lim

m↑∞
E[1F Xm] = E[1F X∞]

since Xm converges in L 1. Thus E[1FE(ξ |F∞)] = E(1F X∞) for any F in the π-
system

⋃
n∈N0

Fn that generates the σ -algebra F∞. But this means that E(ξ |F∞)=X∞

almost surely. ut

Note that, when F= F∞, the theorem says that E(ξ |Fn)→ ξ .
An application of this result is Kolmogorov’s 0−1 law.

Theorem 4.15 (Kolmogorov’s 0−1 law). Let Xn,n ∈ N be a sequence of indepen-
dent random variables. Define Tn = σ(Xn+1,Xn+2, . . .) and T ≡

⋂
n∈NTn. Then,

P(F) ∈ {0,1} if F ∈T .
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Proof. Let Fn ≡ σ(X1, . . . ,Xn), F ∈ T and set η = 1F . Since η is bounded and
F∞-measurable, the preceding theorem tells us that

η = E(η |F∞) = lim
n→∞

E(η |Fn), a.s.

Now η is Tn-measurable for each n and hence independent of Fn. Thus, for any n

E(η |Fn) = E(η) = P(F), a.s.

and so η = P(F), a.s.. But η takes only the values 0 and 1, being an indicator
function. Thus P(F) ∈ {0,1}, proving the theorem. ut

The next theorem relates to filtrations to the infinite past. It is called the Lévy-
Doob downward theorem. It is somehow an inverted version of the upward theorem.

Theorem 4.16. Let (Ω ,F,P) be a probability space, and let {G−n,n ∈ N} be a col-
lection of sub-σ -algebras of F such that, for all n ∈ N,

G−∞ ≡
⋂
k∈N

G−k ⊂ ·· · ⊂G−n−1 ⊂G−n ⊂ ·· · ⊂G−1. (4.2.11)

Let {X−n,n ∈ N} be a super-martingale relative to {G−n,n ∈ N}, i.e.

E(X−n|G−m)≤ X−m, a.s.

for m ≥ n. Assume that supn≥1E(X−n) < ∞. Then the process X is uniformly inte-
grable and the limit

X−∞ = lim
n→∞

X−n

exists a.s. and in L 1. Moreover,

E(X−n|G−∞)≤ X−∞, a.s.

with equality in the martingale case.

Remark. Note that the limit we are considering here is really quite different form
the one in the previous convergence theorems. We are really looking backward in
time: as n tends to infinity, X−n is measurable with respect to smaller and smaller
σ -algebras, contrary to the usual Xn, that depend on more information. Therefore,
while a convergent martingale Xn can converge to a constant only if the entire se-
quence is a constant, but usually is a random variable, a convergent X−n has a much
better chance to converge to a real constant. We will see shortly why this can be
used to prove things like the strong law of large numbers.

Proof. The nice thing about the upcrossing theorem is that it also provides a proof
of the convergence of X−n. In fact, just as before, if E(|X−1|) is bounded, it fol-
lows that the number of upcrossings of any [a,b] by the process X−n is a.s. finite.
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Therefore the limit exists in [−∞,∞]. The finiteness then follows since the condition
supn∈NE(X−n)< ∞, and the super-martingale property imply that ∞ > E(X−∞) ≥
E(X−1)>−∞. This implies that X−∞ is finite almost surely.

Thus we just need to prove uniform integrability to obtain convergence in L 1.
Now we know that E(X−n) is monotone increasing, and limn→∞E(X−n)< ∞. Thus,
for any ε > 0, there is k ∈ N, such that

0≤ E(X−n)−E(X−k)≤ ε/2, (4.2.12)

for all n≥ k. Now, for such n,k, and λ > 0,

E(|X−n|1|X−n|>λ ) = −E(X−n1X−n<−λ )+E(X−n)−E(X−n1X−n≤λ )

≤ −E(X−k1X−n<−λ )+E(X−n)−E(X−k1X−n≤λ )

where we used the super-martingale property to replace n by k. Next we can replace
E(X−n) by E(X−k) with an error of at most ε/2, after which the right-hand side
reproduces the left hand one with n replaced by k in the first place, i.e.

E(|X−n|1|X−n|>λ )≤ E(|X−k|1|X−n|>λ )+ ε/2. (4.2.13)

Since X−k is absolutely integrable, there exists δ > 0 such that for all F with

P(F)< δ ⇒ E(|X−k|1F)< ε/2. (4.2.14)

But P(|X−n|> λ )≤ λ−1E(|X−n|). To control E(|X−n|), let us set X−≡max(−X ,0),
and write

E(|X−n|) = E(X−n)+2E(X−−n).

But X− is a sub-martingale, and so

E(|X−n|)≤ sup
n∈N

E(X−n)+2E(X−−1). (4.2.15)

Thus we can choose K < ∞ such that

P(|X−n|> K)≤ δ , if n≥ k, (4.2.16)
E(|X− j|1|X− j |>K)< ε, if j < k,

(for the second we just use the integrability for the finitely many values of i; for
the first we use the uniform bound (4.2.15)). Then the first inequalities imply that
E(|X−n|1|X−n|>K)≤ ε for n≥ k via (4.2.13) and the implication (4.2.14). This proves
the uniform integrability. ut

As an application we give a new proof of Kolmogorov’s law of large numbers.

Theorem 4.17 (Kolmogorov’s law of large numbers). Let Xn,n∈N be iid random
variables with E(|Xn|)< ∞. Let µ = E(Xn). Set Sn ≡ ∑

n
i=1 Xi. Then

n−1Sn→ µ, (4.2.17)
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a.s. and in L 1.

Proof. Define G−n = σ(Sn,Sn+1, . . . ,). Then, for n≥ 1,

E(X1|G−n) = E(X2|G−n) = · · ·= E(Xn|G−n). (4.2.18)

The reason for these equalities is simply that knowing something about the sums
Sn,Sn+1, etc. effects the expectation of the Xk, k ≤ n all in the same way: we could
simply re-label the first indices without changing anything. Then, by linearity

E(X1|G−n) = (n−1)−1E(Sn−1|G−n) = n−1E(Sn|G−n) = n−1Sn, a.s. (4.2.19)

where we used the fact that Sn is G−n measurable. Thus, L−n≡ n−1Sn is a martingale
with respect to the filtration {G−n,n ∈ N}. Thus, by the preceding theorem L ≡
limn→∞ L−n exists a.s. and in L 1.

But clearly we also have, for any finite k, that L = limn→∞ n−1(Xk+1 + · · ·+Xn+k),
which means that L is measurable with respect to Tk, for any k. Now Kolmogorov’s
zero-one law implies that, for any c, P(L≤ c)∈{0,1}. Since as a function of c this is
monotone and right-continuous, there must be exactly one c0, such that P(L= c)= 1
for all c≥ c0 and P(L = c) = 0 for all c < c0. Then E(L) = c0. But E(L−n) = µ , for
all n, so c0 = µ . ut

The proof above shows some of the power of martingales!

4.3 Inequalities

In this section we derive some fundamental inequalities for martingales. One of the
most useful ones is the following maximum inequality.

Theorem 4.18 (Sub-martingale maximum inequality). Let Z be a non-negative
sub-martingale. Then, for c > 0, and n ∈ N,

cP
(

max
k≤n

Zk ≥ c
)
≤ E

(
Zn1{maxk≤n Zk≥c}

)
≤ E(Zn). (4.3.1)

Remark. You may recall a similar result for sums of iid random variables as Kol-
mogorov’s inequality. The estimate is extremely powerful, since it gives the same
estimate for the probability of the maximum to exceed c as Chebychev’s inequality
would give for just the endpoint!

Proof. Define the sequence of disjoint events F0 ≡ {Z0 ≥ c},

Fk ≡
⋂
`<k

{Z` < c}∩{Zk ≥ c}= {ω : min(`≤ n : X` ≥ c) = k}. (4.3.2)

Then
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F ≡
{

sup
k≤n

Zk ≥ c
}
=

n⋃
k=0

Fk. (4.3.3)

Clearly, the events Fk ∈ Fk. Moreover, on Fk we know that Zk ≥ c. Thus

E(Zn1Fk)≥ E(Zk1Fk)≥ cP(Fk) (4.3.4)

for all k ≤ n. Here the first inequality used of course the sub-martingale property of
Z. Thus

E(Zn1F) =
n

∑
k=0

E(Zn1Fk)≥ c
n

∑
k=0

P(Fk) = cP(F). (4.3.5)

This implies the assertion of the theorem. ut

This implies the following corollary.

Corollary 4.19. Let M be a martingale and f : R→ [0,∞) a positive function that
is convex and , increasing on R+. Then, for any c > 0,

P

(
sup
k≤n

Mk > c

)
≤ E( f (Mn))

f (c)
. (4.3.6)

Proof. Note that if Mn is a martingale and f a convex function such that E f (Mn)<
∞, then f (Mn) is a sub-martingale. Namely, convexity of f implies that there is a
constant k such that f (Mn)− f (Mn−1)≥ k(Mn−Mn−1). Therefore

E( f (Mn)|Fn−1) ≥ E( f (Mn−1)|Fn−1)+ cE(Mn−Mn−1|Fn−1)

f (Mn−1), a.s.. (4.3.7)

Since f is increasing, P(maxk≤n Mn > c) = Pmaxk≤n f (Mk) > f (c)). Using Theo-
rem 4.18 for the positive sub-martingale f (Mn) yields the assertion of the corollary.
ut

This allows to obtain many useful inequalities from the one of Theorem 4.18! In
particular, Kolmogorov’s inequality follows by choosing f (X) = X2. Other useful
choices are the exponential function, f (x) = exp(λx), for λ > 0.

Our next target is Doob’s L p inequality. The next lemma is a first step in this
direction.

Lemma 4.20. Let X and Y be non-negative random variables such that, for all c >
0,

cP(X ≥ c)≤ E(Y1X≥c). (4.3.8)

Then, for p > 1 and q−1 = 1− p−1,

‖X‖p ≤ q‖Y‖p. (4.3.9)

Proof. By our hypothesis, it holds that
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L≡
∫

∞

0
pcp−1P(X ≥ c)dc≤

∫
∞

0
pcp−2E(Y1X≥c)dc≡ R.

Using Fubini’s theorem for non-negative integrands, we can write

L =
∫

∞

0
pcp−1

(∫
Ω

1X(ω)≥cP(dω)

)
dc

=
∫

Ω

(∫ X(ω)

0
pcp−1dc

)
P(dω) =

∫
Ω

X(ω)pP(dω) = E(X p).

Starting from the right-hand side, we can perform the same calculation, and derive
that

R = qE(X p−1Y )≤ q‖Y‖p‖X p−1‖q,

where the second inequality is just Hölder’s inequality. Then

E(X p)≤ q‖Y‖p‖X p−1‖q. (4.3.10)

Assume that ‖X‖q is finite. Clearly, (p−1)q = p, and so

‖X p−1‖q =
(
EXq(p−1)

)1/q
= (EX p)1/q .

Therefore (4.3.10) reads
‖X‖p

p ≤ q‖Y‖p‖X‖p/q
p ,

or ‖X‖p ≤ q‖Y‖p, as claimed. If ‖X‖p =∞, one derives the inequality first for X∧n,
and then uses monotone convergence. This proves the lemma. ut

We can now formulate Doob’s L p-inequality.

Theorem 4.21 (Doob’s L p-inequality). Let p > 1 and q−1 = 1− p−1. Let Z be a
non-negative sub-martingale bounded in L p, and define

Z∗ ≡ sup
k∈N0

Zk. (4.3.11)

Then Z∗ ∈L p, and
‖Z∗‖p ≤ q sup

n∈N0

‖Zn‖p. (4.3.12)

The limit, Z∞ ≡ limn→∞ Zn, exists a.s. and in L p, and

‖Z∞‖p = sup
n∈N0

‖Zn‖p = lim
n→∞
‖Zn‖p. (4.3.13)

If Z is of the form Z = |M|, where M is a martingale bounded in L p, then M∞ ≡
limn→∞ Mn exists a.s. and in L p, and Z∞ = |M∞|, a.s..

Proof. Define Z∗n ≡ supk≤n Zk. Theorem 4.18 and Lemma 4.20 imply that
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‖Z∗n‖p ≤ q‖Zn‖p ≤ qsup
k≤n
‖Zk‖p.

Using the monotone convergence theorem, we get (4.3.12). Now −Z is a super-
martingale bounded in L p, and hence in L 1, it follows that Z∞ exists a.s.. But

|Z∞−Zn|p ≤ (max(Z∞,Zn))
p ≤ (Z∗)p ∈L 1,

so that, by Lebesgue’s dominated convergence theorem, E(|Z∞−Zn|p)→ 0, i.e.
Xn→ X∞ in L p.

The last assertion in (4.3.13) follows since by Jensen’s inequality and the sub-
martingale property

E(Zp
n ) = E(E(Zp

n |Fn−1))≥ E(E(Zn|Fn−1)
p)≥ E(Zp

n−1),

and so ‖Zn‖p is a non-decreasing sequence. The remaining assertions are straight-
forward. ut

4.4 Doob decomposition

One of the games when dealing with stochastic processes is to “extract the martin-
gale part”. There are several such decompositions, but the following Doob decom-
position is very important and its continuous time analogue will be fundamental for
the theory of stochastic integration.

Theorem 4.22 (Doob decomposition).

(i) Let {Xn,n ∈ N0} be an adapted process on a filtered space (Ω ,F,P,{Fn,n ∈
N0}) with Xn ∈L 1 for all n. Then X can be written in the form2

X = X0 +M+A, (4.4.1)

where M is a martingale with M0 = 0 and A is a previsible process with A0 = 0.
This decomposition is unique modulo indistinguishability, i.e. if for some other
M′,A′, X = X0 +M′+A′, then

P(Mn = M′n,An = A′n,∀n ∈ N) = 1.

(ii)The process X is a sub-martingale, if and only if A is an increasing process in
the sense that

P(An ≤ An+1,∀n ∈ N) = 1.

Proof. The proof is unsurprisingly very easy. All we need to do is to derive explicit
formulae for M and A. Now assume that a decomposition of the claimed form exists.

2 To make sure that there is no confusion about notation: the following equation is to be understood
in the sense that X0 = X0, and for n≥ 1, Xn = X0 +Mn +An.
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Then

E((Xn−Xn−1)|Fn−1) = E((Mn−Mn−1)|Fn−1)+E((An−An−1)|Fn−1)

= 0+An−An−1 (4.4.2)

by the martingale and predictability properties. Therefore

An =
n

∑
k=1

E((Xk−Xk−1)|Fk−1), a.s. (4.4.3)

So now just define An by (4.4.3), and Mn by Mn ≡ Xn−X0−An. Clearly M is then
a martingale, and A is by construction predictable. To see uniqueness, we use Mn−
M′n = A′n −An and applying the conditional expectation with respect to Fn−1 we
have Mn−1−M′n−1 = A′n−An a.s.. Then, by M0 = M′0 = 0 follows A′1 = A1 a.s.,
from which M1 = M′1 a.s. and so on. This ends the proof of (i). The assertion of (ii)
is obvious from (4.4.2). ut

An immediate application of the decomposition theorem is a maximum inequal-
ity without positivity assumption.

Lemma 4.23. If X is either a sub-martingale or a super-martingale then, for n ∈ N
and c > 0,

cP

(
sup
k≤n
|Xk| ≥ 3c

)
≤ 4E(|X0|)+3E(|Xn|). (4.4.4)

Proof. We consider the case when X is a sub-martingale, the case of the super-
martingale is identical by passing to −X . Then there is a Doob decomposition

X = X0 +M+A

with A an increasing process. Thus

sup
k≤n
|Xk| ≤ |X0|+ sup

k≤n
|Mk|+ sup

k≤n
|Ak|= |X0|+ sup

k≤n
|Mk|+An.

Note that |M| is a non-negative sub-martingale, so for the supremum of |Mk| we can
use Theorem (4.18). We use the simple observation that, if x+ y+ z > 3c, then at
least one of the x,y,z must exceed c. Thus,

cP

(
sup
k≤n
|Xk| ≥ 3c

)
≤ cP(|X0| ≥ c)+ cP

(
sup
k≤n
|Mk| ≥ c

)
+ cP(An ≥ c)

≤ E(|X0|)+E(|Mn|)+E(An) (4.4.5)

Now
E(|Mn|) = E(|Xn−X0−An|)≤ E(|Xn|)+E(|X0|)+E(An)

and
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E(An) = E(Xn−X0−Mn) = E(Xn−X0)≤ E(|Xn|)+E(|X0|).

Inserting these two bounds into (4.4.5) gives the claimed inequality. ut

The Doob decomposition gives rise to two important derived processes associ-
ated to a martingale, M, the bracket, 〈M〉, and [M].

Definition 4.24. Let M be a martingale in L 2 with M0 = 0. Then M2 is a sub-
martingale with Doob decomposition

M2 = N + 〈M〉,

where N is a martingale that vanishes at zero and 〈M〉 is a previsible process that
vanishes at zero. The process 〈M〉 is called the bracket of M.

Note that boundedness in L 1 of 〈M〉 is equivalent to boundedness in L 2 of M.
From the formulas associated with the Doob decomposition, we derive that

〈M〉n−〈M〉n−1 = E((M2
n −M2

n−1)|Fn−1) = E((Mn−Mn−1)
2|Fn−1). (4.4.6)

Definition 4.25. Let M be as before. We define

[M]n ≡
n

∑
k=1

(Mk−Mk−1)
2. (4.4.7)

Lemma 4.26. If M is as before,

M2− [M]≡V = (C •M), (4.4.8)

where Cn ≡ 2Mn−1. V is a martingale. If M is bounded in L 2, then V is bounded in
L 1.

Proof. Exercise! ut

4.5 A discrete time Itô formula.

We will now give in some way a justification of the name “discrete stochastic in-
tegral” for the martingale tranform. We consider a martingale M zero in zero and
a function F : R→ R. We want to consider the process F(MT ) and ask whether
we can represent F(MT )−F(M0) as a “stochastic integral. Since we have called
C •M a stochastic integral, we might expect that this formula could simply read
F(MT ) = (F ′ •X)T +F(M0), as in the usual fundamental theorem of calculus, but
this will not turn out to be the case in general.

Let us consider the situation when the increments of Mt are getting very small;
the idea here is that the spacings between consecutive times are really small. So
we introduce parameter ε > 0 that will later tend to zero, while we think that T =
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ε−1C. We also assume that E(Mt−Mt−1)
2 = O(ε). To see why this may reasonable

think of Mt ≡ Bt/T with B Brownian motion, where E(Bt/T −B(t−1)T )
2 = 1/T = ε .

Assuming that F is a smooth function, we can expand F(Mt) in a Taylor series:

F(Mt) = F(Mt−1)+(Mt −Mt−1)F ′(Mt−1) (4.5.1)

+
1
2

F ′′(Mt−1)(Mt −Mt−1)
2 +O

(
(Mt −Mt−1)

3)
where we assume that

E
[
O
(
(Mt −Mt−1)

3)]≤ Kε
3/2,

and therefore T E
[
O
(
(MT −MT−1)

3
)]
≤Kε1/2 ↓ 0, so that as ε ↓ 0 these error terms

will be negligible. Now we may iterate this procedure to obtain

F(MT ) = F(M0)+
T

∑
t=1

F ′(Mt−1)(Mt −Mt−1) (4.5.2)

+
1
2

T

∑
t=1

F ′′(Mt−1)(Mt −Mt−1)
2 +O(ε1/2).

This expression looks almost like the Doob decomposition of the process F(Mt),
except that the last term is not exactly predictable. In fact, from the Doob decompo-
sition, we would instead expect a predictable term of the form

T

∑
t=1

F ′′(Mt−1)E
[
(Mt −Mt−1)

2|Ft−1
]
. (4.5.3)

However, under reasonable assumptions (on F and on the behavior of the increments
of the martingale M), the martingale

∆T ≡
T

∑
t=1

F ′′(Mt−1)
(
(Mt −Mt−1)

2−E
[
(Mt −Mt−1)

2|Ft−1
])

satisfies E(∆ 2
T ) = O(ε), and is therefore negligible in our approximation. This im-

plies the discrete version of Itô’s formula:

F(MT ) = F(M0)+
T

∑
t=1

F ′(Mt−1)(Mt −Mt−1) (4.5.4)

+
1
2

T

∑
t=1

F ′′(Mt−1)E
[
(Mt −Mt−1)

2|Ft−1
]
+O(ε1/2).
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4.6 Central limit theorem for martingales

One important further result for martingales concerns central limit theorems. There
are various different formulations of such theorems. We will present one which
emphasises the rôle of the bracket.

Theorem 4.27 (Central limit theorem). Let M be a martingale with M0 = 0. Set
s2

n ≡ ∑
n
i=1E(Mi−Mi−1)

2 = E([M]n). Assume that, as n→ ∞,
s−2

n maxk≤nE(Mk−Mk−1)
2 ↓ 0, and, for all ε > 0,

s−2
n

n

∑
k=1

E
[
(Mk−Mk−1)

2
1|Mk−Mk−1|>εsn

∣∣Fk−1
]
↓ 0, a.s. (4.6.1)

If moreoveer 〈M〉n/s2
n→ 1 in probability, then

s−1
n Mn→N (0,1) (4.6.2)

in distribution.

Remark. Condition (4.6.1) is called the conditional Lindeberg condition. In the case
when Mn = Sn = ∑

n
i=1 Xi with independent centered random variables Xi, (4.6.1)

reduces to the usual Lindeberg condition

s−2
n

n

∑
k=1

E
[
X2

k 1|Xk|>εsn

]
↓ 0. (4.6.3)

Moreover, in this case E([M]n) = 〈M〉n, and so condition 〈M〉n/s2
n → 1 is trivially

verified (it is equal to one for all n). Thus the above theorem implies the usual CLT
for sums of independent random variables under the weakest possible conditions.

Interestingly, the conditions for the CLT for the martingale include a law of large
numbers for the bracket of the martingale. This is worth keeping in mind.

Proof. To simplify notation we set M̃k ≡Mk/sn. Then the assumptions of the theo-
rem read:

max
k≤n

E((M̃k− M̃k−1)
2)→ 0,

n

∑
k=1

E
(
(M̃k− M̃k−1)

2
1|M̃k−M̃k−1|>ε

∣∣∣Fk−1

)
→ 0,

〈M̃〉n→ 1, in probability,

(4.6.4)

as n→ ∞. We have to prove that M̃n →N (0,1). This holds if and only if, for all
u ∈ R,

lim
n→∞

E(eiuM̃n) = e−u2/2. (4.6.5)

Let use set X̃k ≡ M̃k− M̃k−1. Then, it holds
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〈M̃〉n =
n

∑
k=1

E(X̃2
k |Fk−1) = 〈M̃〉n−1 +E(X̃2

n |Fn−1),

M̃n =
n

∑
k=1

X̃k = M̃n−1 + X̃n.

(4.6.6)

Things are a little tricky, and the following decomposition is quite helpful:∣∣∣∣E[eiuM̃n − e−
u2
2

]∣∣∣∣
=

∣∣∣∣E[eiuM̃n

(
1− e

u2
2 〈M̃〉ne−

u2
2

)
+ e−

u2
2

(
eiuM̃ne

u2
2 〈M̃〉n −1

)]∣∣∣∣
≤E
[∣∣∣∣1− e

u2
2 〈M̃〉ne−

u2
2

∣∣∣∣]+ ∣∣∣∣E[eiuM̃ne
u2
2 〈M̃〉n −1

]∣∣∣∣
≤E
[∣∣∣∣1− e

u2
2 〈M̃〉ne−

u2
2

∣∣∣∣]+ n

∑
k=1

∣∣∣∣E[eiuM̃k e
u2
2 〈M̃〉k − eiuM̃k−1e

u2
2 〈M̃〉k−1

]∣∣∣∣
(4.6.7)

Now we show that the result holds under the assumption

〈M̃〉n ≤C (4.6.8)

for some finite constant C. In a second step we will show how to remove this as-
sumption. First, notice that the assumption that 〈M̃〉n → 1 in probability implies
that

E
[∣∣∣∣1− e

u2
2 〈M̃〉ne−

u2
2

∣∣∣∣]→ 0, as n→ ∞. (4.6.9)

Thus we need to deal with the second term in (4.6.7). Using (4.6.6), we get

E
[

eiuM̃k e
u2
2 〈M̃〉k − eiuM̃k−1e

u2
2 〈M̃〉k−1

]
=E
[

eiuM̃k−1e
u2
2 〈M̃〉k−1

(
eiuX̃k+

u2
2 E(X̃2

k |Fk−1)−1
)]

=E
[

eiuM̃k−1e
u2
2 〈M̃〉k−1E

(
eiuX̃k+

u2
2 E(X̃2

k |Fk−1)−1
∣∣∣Fk−1

)]
.

(4.6.10)

This implies that ∣∣∣∣E[eiuM̃k e
u2
2 〈M̃〉k − eiuM̃k−1e

u2
2 〈M̃〉k−1

]∣∣∣∣ (4.6.11)

≤ eC u2
2 E
[∣∣∣∣E(eiuX̃k+

u2
2 E(X̃2

k |Fk−1)−1
∣∣∣Fk−1

)∣∣∣∣]

To simplify the notation, set σ2
k ≡E(X̃2

k |Fk−1). To bound E
(

eiuX̃k+
u2
2 σ2

k −1
∣∣∣Fk−1

)
,

we use the following elementary estimates:
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eix = 1+ ix− x2/2+R1(x), with |R1(x)| ≤min(x2, |x|3), (4.6.12)

ex2/2 = 1+ x2/2+R2(x), with |R2(x)| ≤ x4ex2/2. (4.6.13)

With this we get

E
(

eiuX̃k+
u2
2 σ2

k −1
∣∣∣Fk−1

)
= E

([
1+ iuX̃k−

u2

2
X̃2

k +R1(uX̃k)
][

1+
u2

2
σ

2
k +R2(uσk)

]
−1
∣∣∣Fk−1

)
.

Since σk is Fk−1-mesurable, the second bracket can be taken out of the conditional
expectation. Also, E(X̃k|Fk−1) = 0 since M̃ is a martingale. Since E(X̃2

k |Fk−1) = σ2
k ,

so that

E
(

eiuX̃k+
u2
2 σ2

k −1
∣∣∣Fk−1

)
=

(
1+

u2

2
σ

2
k +R2(uσk)

)
E
(
R1(uX̃k)

∣∣Fk−1
)

+

(
1− u2

2
σ

2
k

)
R2(uσk)−

u4

4
σ

4
k . (4.6.14)

We use the following bounds:

(i) 〈M̃〉n = ∑
n
k=1 σ2

k ≤C. In particular, σ2
k is both bounded and summable.

(ii) σ2
k = E(X̃2

k |Fk−1)≤ ε2 +E(X̃2
k 1|X̃k|>ε |Fk−1). This is nice, because the second

term is controlled by the Lindeberg condition.
(iii) |E(R1(uX̃k)|Fk−1)| ≤ ε|u|3σ2

k +u2E(X̃2
k 1|X̃k|>ε |Fk−1). This holds by comput-

ing the conditional expectation given Fk−1 of both sides of the inequality

min{u2X̃2
k , |u|3|X̃k|3} = min{u2X̃2

k , |u|3|X̃k|3}
(
1|X̃k|≤ε +1|X̃k|>ε

)
≤ u3|X̃k|31|X̃k|≤ε +u2|X̃k|21|X̃k|>ε

≤ ε|u|3X̃2
k +u2X̃2

k 1|X̃k|>ε . (4.6.15)

(iv) |R2(uσk)| ≤ e
u2
2 Cu4σ4

k ≤ e
u2
2 Cu4C2.

Using these estimates, we get

|(4.6.14)| ≤
(

1+
u2

2
C+ e

u2
2 Cu4C2

)(
ε|u|3σ

2
k +u2E(X̃2

k 1|X̃k|>ε |Fk−1)
)

+

(
1+

u2

2
C
)

e
u2
2 Cu4

(
σ

2
k ε

2 +CE(X̃2
k 1|X̃k|>ε |Fk−1)

)
+

u4

4

(
σ

2
k ε

2 +CE(X̃2
k 1|X̃k|>ε |Fk−1)

)
≤ K(u)

(
σ

2
k ε

2 +E(X̃2
k 1|X̃k|>ε |Fk−1)

)
, (4.6.16)
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for some constant K(u)< ∞. But

n

∑
k=1

(
σ

2
k ε

2 +E(X̃2
k 1|X̃k|>ε |Fk−1)

)
≤Cε

2 +
n

∑
k=1

E(X̃2
k 1|X̃k|>ε |Fk−1), (4.6.17)

there by the Lindeberg condition the second term tends to zero for any ε > 0. Thus
the limit as n ↑ ∞ of the second trem in Eq. (4.6.7) is bounded by a constant times
ε2, for any ε > 0, that is it is equal to zero, as desired. This proves the CLT under
the assumption (4.6.8).

To conclude, let us show that we can remove Assumption (4.6.8). Define

Am ≡

{
ω ∈Ω : 〈M̃〉m ≡

m

∑
k=1

E
(
X̃2

k |Fk−1
)
≤C

}
. (4.6.18)

Of course, for m ≤ n, An ⊂ Am, and so P(An) ≤ P(Am). Moreover, by assumption
〈m̃〉n→ 1 and so limn→∞P(An) = 1. Notice that ∑

m
k=1E

(
X̃2

k |Fk−1
)

is Fm−1 measur-
able, and hence so is 1Am . Thus, if we set Zm≡ X̃m1Am , it holds that E(Zm|Fm−1)= 0,
for all m ≤ n. Therefore the variables {Zm,m ≤ n}, for fixed n, form a martingale
difference sequence. Since |Zm| ≤ |X̃m|, all the properties used in the calculations
above carry over to the Zm. Therefore, repeating the calculations above with M̃n
replaced by M̂n ≡ ∑

n
m=1 Zm, we find that

lim
n→∞

E
(

eiuM̂n
)
= e−u2/2. (4.6.19)

SInce on Am it holds that M̃m = Zm and since An ⊂ Am, it is true that on An, we have
that M̃n = M̃n. Therefore,

lim
n→∞

E
(

eiuM̃n
)
= lim

n→∞
E
(

eiuM̃n1An

)
+ lim

n→∞
E
(

eiuM̃n1Ac
n

)
(4.6.20)

= lim
n→∞

E
(

eiuM̂n1An

)
+0

= lim
n→∞

E
(

eiuM̂n
)
− lim

n→∞
E
(

eiuM̂n1Ac
n

)
= e−u2/2.

This concludes the proof of the theorem. ut

Very similar computations like those presented above play an important rôle in
what is called the concentration of measure phenomenon. Without going into too
many details, let me briefly describe this. The setting one is considering is the fol-
lowing. We have n independent, identically distributed random variables, X1, . . . ,Xn,
assumed to have mean zero, variance one, and to satisfy, e.g. E(euXi) < ∞, for all
u ∈ R. Let f : Rn→ R be a differentiable function that satisfies

n
sup
k=1

sup
x∈Rn

∣∣∣∣ ∂ f
∂xk

(x1, . . . ,xn)

∣∣∣∣≤ 1.
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Set F ≡ f (X1, . . . ,Xn). Then one can show that for some constant, C > 0,

P(|F−E(F)|> ρn)≤ 2e−
nρ2
2C . (4.6.21)

The proof relies on the exponential Markov inequality, that states that

P(F−E(F)> nρ)≤ inf
t≥0

e−tnρE(et(F−E(F))).

The trick is to bound the Laplace transform by

E(et(F−E(F)))≤ et2nC/2.

(and not, as one might worry, of order exp(n2)!!).
To do this, one writes F−E(F) as a martingale difference sequence with respect

to the filtration generated by the random variables Xi:

F−E(F) =
n

∑
k=1

(E(F |Fk)−E(F |Fk−1)) . (4.6.22)

The computations one has to do are quite similar to those we have perfored in the
proof of the central limit theorem. There is one small trick that is useful to use: Set
Fu ≡ f (X1, . . . ,uXk,Xk+1, . . .Xn) . Then

F−F0 =
∫ 1

0
du

d
du

Fu =
∫ 1

0
duXk

∂

∂xk
f (X1, . . . ,uXk,Xk+1, . . .Xn)

and

E(F |Fk)−E(F |Fk−1) =
∫ 1

0
du
(
E
[

d
du

Fu
∣∣∣Fk

]
−E

[
d

du
Fu
∣∣∣Fk−1

])
≡ E(Zk|Fk)−E(Zk|Fk−1), (4.6.23)

where |Zk| ≤ |Xk|. Hence

E
(

eλ (E(F |Fk)−E(F |Fk−1))−1−λ (E(F |Fk)−E(F |Fk−1))
∣∣∣Fk−1

)
≤ λ

2E
(
(E(F |Fk)−E(F |Fk−1))

2 eλ |E(Zk|Fk)−E(Zk|Fk−1)|
∣∣∣Fk−1

)
≤ λ

2C (4.6.24)

by the assumption on the law of Xk. We leave the remaining details of the calculation
as an exercise. For more on concentration of measure, see e.g. [9, 10].
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4.7 Stopping times, optional stopping

In a stochastic process we often want to consider random times that are determined
by the occurrence of a particular event. If this event depends only on what happens
“in the past”, we call it a stopping time. Stopping times are nice, since we can de-
termine there occurrence as we observe the process; hence, if we are only interested
in them, we can stop the process at this moment, hence the name.

Definition 4.28. A map T : Ω →N0∪{+∞} is called a stopping time (with respect
to a filtration {Fn,n ∈ N0}), if, for all n ∈ N0∪{+∞},

{T = n} ∈ Fn. (4.7.1)

Example. The most important examples of stopping times are hitting time. Let X
be an adapted process, and let B ∈B. Define

τB ≡ inf{t > 0 : Xt ∈ B}.

Then τB is a stopping time. To see this, note that, if n ∈ N.

{τB = n}= {ω : Xn(ω) ∈ B,Xk(ω) 6∈ B,∀0 < k < n}.

This event is manifestly in Fn. The event {τB =∞} occurs if {Xn 6∈ B,∀n ∈ N} ⊂ F∞.
In principle all stopping times can be realised as first hitting times of some pro-

cess. To do so, define

X[T,∞)(n,ω) =

{
1, if n≥ T (ω),

0, otherwise.

This process is adapted, and T = τ1.
It is sometimes very convenient to have the notion of a σ -algebra of events that

take place before a stopping time.

Definition 4.29. The pre-T -σ -algebra, FT , is the set of events F ⊂ F, such that, for
all n ∈ N0∪{+∞},

F ∩{T ≤ n} ∈ Fn. (4.7.2)

Pre-T -σ -algebras will play an important rôle in formulation the strong Markov
property.

There are some useful elementary facts associated with this concept.

Lemma 4.30. Let S,T be stopping times. Then:

(i) If X is an adapted process, then XT is FT -measurable.
(ii)If S < T , then FS ⊂ FT .
(iii)FT∧S = FT ∩FS.
(iv)If F ∈ FS∨T , then F ∩{S≤ T} ∈ FT .
(v)FS∨T = σ(FT ,FS).



4.7 Stopping times, optional stopping 75

Proof. Exercise. ut

We now return to our gambling mode. We consider a super-martingale X and we
want to play a strategy, C, that depends of a stopping time, T : say, we keep one unit
of stock until the random time T . Then

Cn ≡CT
n ≡ 1n≤T .

Note that CT is a previsible process. Namely,

{CT
n = 0}= {T ≤ n−1} ∈ Fn−1,

and since CT
n only takes the two values 0,1, this suffices to show that CT

n ∈ Fn−1.
The wealth process associated to this strategy is then

(CT •X)n = XT∧n−X0.

Definition 4.31. We define define the stopped process XT , via

XT
n (ω)≡ XT (ω)∧n(ω).

With this definition we have (for our choice of C)

CT •X = XT −X0.

Theorem 4.32. (i) If X is a super-martingale and T is a stopping time, then the
stopped process, XT , is a super-martingale. In particular, for all n ∈ N,

E(XT∧n)≤ E(X0). (4.7.3)

(ii)If X is a martingale and T is a stopping time, then XT is a martingale. In partic-
ular

E(XT∧n) = E(X0). (4.7.4)

Proof. It follows directly from Theorem 4.7(i) because CT is positive and bounded.
ut

This theorem is disappointing news for whose who might have hoped to reach
a certain gain by playing until they have won a preset sum of money, and stopping
then. In a martingale setting, the sure gain that will occur if this stopping time is
reached before time n is offset by the expected loss, if the target has not yet been
reached.

Note, however, that the theorem does not assert that E(XT )≤E(X0) (see example
below). The following theorem, called Doob’s Optional Stopping Theorem, gives
conditions under which even that holds.
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Theorem 4.33 (Doob’s Optional Stopping Theorem).

(i) Let T be a stopping time, and let X be a super-martingale. Then, XT is integrable
and

E(XT )≤ E(X0), (4.7.5)

if one of the following conditions holds:

(a)T is bounded (i.e. there exists N ∈ N, s.t. T (ω)≤ N ∀ω ∈Ω );
(b)X is bounded, and T is a.s. finite;
(c)E(T )< ∞, and, for some K < ∞,

|Xn(ω)−Xn−1(ω)| ≤ K, (4.7.6)

for all n ∈ N,ω ∈Ω .

(ii)If X is a martingale and one of the conditions (a)-(c) holds, then E(XT ) =E(X0).

Remark. This theorem may look strange, and contradict the “no strategy” idea: take
a simple random walk, Sn, (i.e. a series of fair games, and define a stopping time
T = inf{n : Sn = 10}. Then clearly E(XT ) = XT = 10 6=E(X0) = 0! So we conclude,
using (c), that E(T ) = +∞. In fact, the “sure” gain if we achieve our goal is offset
by the fact that on average, it takes infinitely long to reach it (of course, most games
will end quickly, but chances are that some may take very very long!).

Proof. We already know that E(XT∧n)−E(X0)≤ 0 for all n ∈N. Consider case (a).
Then we know that T ∧N = T , and so E(XT ) = E(XT∧N)≤ E(X0), as claimed.

In case (b), we start from E(XT∧n)−E(X0)≤ 0 and let n→∞. Since T is almost
surely finite, limn→∞ XT∧n = XT , a.s., and since Xn is uniformly bounded,

lim
n→∞

E(XT∧n) = E( lim
n→∞

XT∧n) = E(XT ),

which implies the result.
In the last case, (c), we observe that

|XT∧n−X0|=

∣∣∣∣∣T∧n

∑
k=1

(Xk−Xk−1)

∣∣∣∣∣≤ KT,

and by assumption E(KT ) < ∞. Thus, we can again take the limit n→ ∞ and use
Lebesgue’s dominated convergence theorem to justify that the inequality survives.

Finally, to justify (ii), use that if X is a martingale, then both X and −X are
super-martingales. The ensuing two inequalities imply the desired equality. ut

Case (c) in the above theorem is certainly the most frequent situation one may
hope to be in. For this it is good to know how to show that E(T ) < ∞, if that is the
case. The following lemma states that this is always the case, whenever, eventually,
the probability that the event leading to T is reasonably big.
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Lemma 4.34. Suppose that T is a stopping time and that there exists N ∈ N and
ε > 0, such that, for all n ∈ N,

P(T ≤ n+N|Fn)> ε, a.s. (4.7.7)

Then E(T )< ∞.

Proof. Consider P(T > kN). Clearly we can write

P(T > kN) = E
(
1T>(k−1)N1T>kN

)
(4.7.8)

= E
(
E
(
1T>(k−1)N1T>kN |F(k−1)N

))
= E

(
1T>(k−1)NE

(
1T>kN |F(k−1)N

))
≤ (1− ε)E

(
1T>(k−1)N

)
≤ (1− ε)k,

by iteration. The exponential decay of the probability implies the finiteness of the
expectation of T immediately. ut

Finally we state Doob’s super-martingale inequalities for non-negative super-
martingales.

Theorem 4.35. Let X be non-negative super-martingale and T a stopping time.
Then

E(XT )≤ E(X0). (4.7.9)

Moreover, for any c > 0,

cP
(

sup
k

Xk > c
)
≤ E(X0). (4.7.10)

Proof. We know that E(XT∧n)≤ E(X0). Using Fatou’s lemma allows to pass to the
limit n→∞. For (4.7.10), set T = inf{n : Xn > c}. Then, E(X0)≥E(XT )≥ cP(XT ≥
c)≥ cP(supk Xk > c) because supk Xk > c implies XT ≥ c. ut





Chapter 5
Markov processes

We have seen the definition and construction of discrete time Markov chains already
in Chapter 3. Markov chains are among the most important stochastic processes
that are used to model real live phenomena that involve disorder. This is because
the construction of these processes is very much adapted to our thinking about such
processes. Moreover, Markov processes can be very easily implemented in numeri-
cal algorithms. This allows to numerically simulate even very complicated systems.
We will always imagine a Markov process as a “particle” moving around in state
space; mind, however, that these “particles” can represent all kinds of very compli-
cated things, once we allow the state space to be sufficiently general. In this section,
S will always be a complete separable metric space.

5.1 Markov processes with stationary transition probabilities

In general, we call a stochastic process whose index set supports the action of a
group (or semi-group) stationary (with respect to the action of this (semi) group, if
all finite dimensional distributions are invariant under the simultaneous shift of all
time-indices. Specifically, if our index sets, I, are R+ or Z, resp. N, then a stochastic
process is stationary if for all ` ∈ N, s1, . . . ,s` ∈ I, all A1, . . . ,A` ∈B, and all t ∈ I,

P
[
Xs1 ∈ A1, . . . ,Xs` ∈ A`

]
= P

[
Xs1+t ∈ A1, . . . ,Xs`+t ∈ A`

]
. (5.1.1)

We can express this also as follows: Define the shift θ , for any t ∈ I, as (X ◦θt)s≡
Xt+s. Then X is stationary, if and only if, for all t ∈ I, the processes X and X ◦ θt
have the same finite dimensional distributions.

In the case of Markov processes, a necessary (but not sufficient) condition for
stationarity is the stationarity of the transitions kernels. Recall that we have defined
the one-step transition kernel Pt of a Markov process in Section 3.3.

Definition 5.1. A Markov process with discrete time N0 and state space S is said to
have stationary transition probabilities (kernels), if it’s one step transition kernel,

79
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Pt , is independent of t, i.e. there exists a probability kernel, P(x,A), s.t.

Pt(x,A) = P(x,A), (5.1.2)

for all t ∈ N, x ∈ S, and A ∈B.

Remark. With the notation Pt,s for the transitions kernel from time s to time t, we
could alternatively state that a Markov process has stationary transition probabili-
ties (kernels), if there exists a family of transition kernels Pt(x,A), s.t.

Ps,t(x,A) = Pt−s(x,A), (5.1.3)

for all s < t ∈N, x ∈ S, and A ∈B. Note that there is a potential conflict of notation
between Pt and Pt which should not be confused.

A key concept for Markov chains with stationary transition kernels is the notion
of an invariant distribution.

Definition 5.2. Let P be the transition kernel of a Markov chain with stationary
transition kernels. Then a probability measure, π , on (S,B) is called an invariant
(probability) distribution, if ∫

π(dx)P(x,A) = π(A), (5.1.4)

for all A ∈B. More generally, a positive, σ -finite measure, π , satisfying (5.1.4), is
called an invariant measure.

Lemma 5.3. A Markov chain with stationary probability kernels and initial distri-
bution P0 = π is a stationary stochastic process, if and only if π is an invariant
probability distribution.

Proof. Exercise. ut

In the case when the state space, S, is finite, we have seen that there is always at
least one invariant measure, which then can be chosen to be a probability measure. In
the case of general state spaces, while there still will always be an invariant measure
(through a generalisation of the Perron-Frobenius theorem to the operator setting),
there appears a new issue, namely whether there is an invariant measure that is finite,
viz. whether there exists a invariant probability distribution.

5.2 The strong Markov property

The setting of Markov processes is very much suitable for the application of the
notions of stopping times introduced in the last section. In fact, one of the very
important properties of Markov processes is the fact that we can split expectations
between past and future also at random times.
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Theorem 5.4. Let X be a Markov process with stationary transition kernels. Let
Fn = σ(X0, . . . ,Xn) be the natural filtration, and let T be a stopping time. Let F and
G be F-measurable functions, and let F in addition be measurable with respect to
the pre-T -σ -algebra FT . Then

E [1T<∞F G◦θT |F0] = E
[
1T<∞F E′

[
G|F′0

]
(XT )

∣∣F0
]

(5.2.1)

where E′ and F′ refers to an independent copy, X ′, of the Markov chain X.

Remark. If this looks fancy, just think of G as a function of the Markov process,
i.e. G = G(Xi1 , . . . ,Xik), and F = F(XT ,XT−1, . . . ,X0). Then the statement of the
theorem says that

E
[
1T<∞F(XT ,XT−1, . . . .X0)G(XT+i1 , . . . ,XT+ik)|F0

]
(5.2.2)

= E
[
1T<∞F(XT ,XT−1, . . . .X0)E′

[
G(X ′i1 , . . . ,X

′
ik)|F

′
0
]
(XT )

∣∣F0
]

Proof. We have

E [1T<∞F G◦θT |F0] = E [E [1T<∞F G◦θT |FT ] |F0] (5.2.3)
= E [1T<∞F E [G◦θT |FT ] |F0] .

Now E [G◦θT |FT ] depends only on XT and by stationarity is equal to E′ [G|F′0] (XT ),
which yields the claim of the theorem. ut

5.3 Markov processes and martingales

We now want to develop some theory that will be more important and more difficult
in the continuous time case. First we want to see how the transition kernels can be
seen as operators acting on spaces of measures respectively spaces of function.

If µ is a σ -finite measure on S, and P is a Markov transition kernel, we define
the measure µP as

µP(A)≡
∫

S
P(x,A)dµ(x), (5.3.1)

and similarly, for the t-step transition kernel, Pt ,

µPt(A)≡
∫

S
Pt(x,A)dµ(x). (5.3.2)

By the Markov property, we have of course the

µPt(A) = µPt(A). (5.3.3)

The action on measures has of course the following natural interpretation in terms
of the process: if P(X0 ∈ A) = µ(A), then
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P(Xt ∈ A) = µPt(A). (5.3.4)

Alternatively, if f is a bounded, measurable function on S, we define

(P f )(x)≡
∫

S
f (y)P(x,dy), (5.3.5)

and
(Pt f )(x)≡

∫
S

f (y)Pt(x,dy), (5.3.6)

where again
Pt f = Pt f . (5.3.7)

We say that Pt is a semi-group acting on the space of measures, respectively on the
space of bounded measurable functions. The interpretation of the action on functions
is given as follows.

Lemma 5.5. Let Pt be a Markov semi-group acting on bounded measurable func-
tions f . Then

(Pt f )(x) = E( f (Xt)|F0)(x)≡ Ex f (Xt). (5.3.8)

Proof. We only need to show this for t = 1. Then, by definition,

Ex( f (X1)) =
∫

S
f (y)P(X1 ∈ dy|F0)(x) =

∫
S

f (y)P(x,dy) = (P f )(x).

ut

Notice that, by telescopic expansion, we have the elementary formula

Pt f − f =
t−1

∑
s=0

Ps(P−1) f =
t−1

∑
s=0

PsL f , (5.3.9)

where we call L≡P−1 the (discrete) generator of our Markov process (this formula
will have a complete analogon in the continuous-time case).

An interesting consequence is the following observation:

Lemma 5.6 (Discrete time martingale problem). Let L be the generator of a
Markov process, Xt , and let f be a bounded measurable function. Then

Mt ≡ f (Xt)− f (X0)−
t−1

∑
s=0

L f (Xs) (5.3.10)

is a martingale.

Proof. Let t,r ≥ 0. Then
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E(Mt+r|Ft) = E( f (Xt+r)|Ft)−E( f (X0)|Ft)−
t+r−1

∑
s=0

E(L f (Xs)|Ft)

= Pr f (Xt)− f (Xt)+ f (Xt)− f (X0)

−
t+r−1

∑
s=t

E(L f (Xs)|Ft)−
t−1

∑
s=0

E(L f (Xs)|Ft)

= f (Xt)− f (X0)−
t−1

∑
s=0

L f (Xs)

+Pr f (Xt)− f (Xt)−
r−1

∑
s=0

PrL f (Xt)

= Mt +0. (5.3.11)

This proves the lemma. ut

Remark. (5.3.10) is of course the Doob decomposition of the process f (Xt), since
∑

t−1
s=0 L f (Xs) is a previsible process. One may check that this can be obtained directly

using the formula (4.4.3) [Exercise!].

What is important about this observation is that it gives rise to a characterisation
of Markov processes that will be extremely useful in the continuous time setting.

Namely, one can ask whether the requirement that Mt be a martingale given a
family of pairs ( f ,L f ) characterises fully a Markov process.

Theorem 5.7. Let X be a discrete time stochastic process on a filtered space such
that X is adapted. Then X is a Markov process with transition kernel P = 1+L, if
and only if, for all bounded measurable functions, f , the expression on the right-
hand side of (5.3.10) is a martingale.

Proof. Lemma 5.6 already provides the “only if” part, so it remains to show the “if”
part.

First, if we assume that X is a Markov process, setting r = 1 and t = 0 above and
taking conditional expectations given F0, we see from Lemma 5.5 that E( f (X1)) =
f (X0)+(L f )(X0), implying that the transition kernel must be 1+L.

It remains to show that X is indeed a Markov process. For this we want to show
that We want to show that

E( f (Xt+s)|Ft) = (1+L)s f (Xt)≡ Ps f (Xt), (5.3.12)

from the martingale problem formulation. To see this, we just use the above calcu-
lation to see that
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E( f (Xt+r)|Ft) = E(Mt+r|Ft)+ f (X0)

+
t−1

∑
s=0

(L f )(Xs)+
t+r−1

∑
s=t

E((L f )(Xs)|Ft)

= Mt + f (X0)+
t−1

∑
s=0

(L f )(Xs)+
t+r−1

∑
s=t

E((L f )(Xs)|Ft)

= f (Xt)+
r−1

∑
s=0

E((L f )(Xt+s)|Ft) (5.3.13)

Now let again r = 1. Then

E( f (Xt+1)|Ft) = f (Xt)+(L f )(Xt) = ((1+L) f )(Xt)≡ P f (Xt), (5.3.14)

which is (5.3.12) for r = 1. Now proceed by induction: assume that (5.3.12) holds
for it holds for all bounded measurable functions for s ≤ r−1. We must show that
it then also holds for s = r. To do this, we use (5.3.13) for the last sum in (5.3.13),

r−1

∑
s=0

E((L f )(Xt+s)|Ft) =
r−1

∑
s=0

(Ps(L f ))(Xt) = (Pr f )(Xt)− f (Xt), (5.3.15)

where we undid the telescopic sum. Inserting this into (5.3.13) yields (5.3.12) for
s = r. Hence (5.3.12) holds for all r, by induction. ut

Remark. The full strength of this theorem will come out in the continuous time
case, where it remains valid. A crucial point is that it will not be necessary to even
consider all bounded functions, but just sufficiently rich classes. This allows to for-
mulate martingale problems even then one cannot write down the generator in a
explicit form. The idea of characterising Markov processes by the associated mar-
tingale problem goes back to Stroock and Varadhan, see [14].

5.4 Harmonic functions and martingales

We have seen that measures that satisfy µL = 0 are of special importance in the
theory of Markov processes (they are the invariant measures). Also of central im-
portance are functions that satisfy L f = 0. In this section we will assume that the
transition kernels of our Markov chains have bounded support, so that for some
K < ∞, |Xt+1−Xt | ≤ K < ∞ for all t.

Definition 5.8. Let L be the generator of a Markov process. A measurable function
that satisfies

L f (x) = 0,∀x ∈ S, (5.4.1)

is called a harmonic function. A function is called subharmonic (resp. superhar-
monic, if L f ≥ 0, resp. L f ≤ 0.



5.5 Dirichlet problems 85

Theorem 5.9. Let Xt be a Markov process with generator L. Then, a non-negative
function f is

(i) harmonic, if and only if f (Xt) is a martingale;
(ii) subharmonic, if and only if f (Xt) is a submartingale;
(iii) superharmonic, if and only if f (Xt) is a supermartingale;

Proof. Simply use Lemma 5.6. ut

Remark. Theorem 5.9 establishes a profound relationship between potential theory
and martingales. It also explains, the strange choice of super and sub in martingale
theory.

A nice application of the preceding result is the maximum principle.

Theorem 5.10. Let X be a Markov process and let D be a bounded open domain
such that E(τDc)< ∞. Assume that f is a non-negative subharmonic function on D.
Then

sup
x∈D

f (x)≤ sup
x∈Dc

f (x). (5.4.2)

Proof. Let us define T ≡ τDc . Then f (XT ) is a submartingale, and thus

E( f (XT )|F0)(x)≥ f (x). (5.4.3)

Since XT ∈ Dc, it must be true that

sup
y∈Dc

f (y)≥ E( f (XT )|F0)(x)≥ f (x), (5.4.4)

for all x ∈ D, hence the claim of the theorem. Of course we used again the Doob’s
optional stopping theorem in case (i,c). ut

The theorem can be phrased as saying that (sub) harmonic functions take on their
maximum on the boundary, since of course the set Dc in (5.4.2) can be replaced by
a subset, ∂D⊂ Dc such that Px(XT ∈ ∂D) = 1.

The above proof is an example of how intrinsically analytic results can be proven
with probabilistic means. The next section will further develop this theme.

5.5 Dirichlet problems

Let us now consider a connected bounded open subset D of S. We define the stopping
time T = τDc ≡ inf{t > 0 : Xt ∈ Dc}.

If g is a measurable function on D, we consider the Dirichlet problem associated
to a generator, L, of a Markov process, X :

−(L f )(x) = g(x), x ∈ D, (5.5.1)
f (x) = 0, x ∈ Dc.
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Theorem 5.11. Assume the E(T )< ∞. Then (5.5.1) has a unique solution given by

f (x) = E

(
T−1

∑
t=0

g(Xt)
∣∣∣F0

)
(x)≡ Ex

(
T−1

∑
t=0

g(Xt)

)
(5.5.2)

for x ∈ D, and f (x) = 0, for x ∈ Dc.

Proof. Consider the martingale Mt from Lemma 5.6. We know from Theorem 4.32
that MT is also a martingale. Moreover,

MT = f (XT )− f (X0)−
T−1

∑
t=0

(L f )(Xt) = 0− f (X0)−
T−1

∑
t=0

(L f )(Xt). (5.5.3)

But we want f such that−L f = g on D. Thus, (5.5.3) seen as a problem for f , reads

MT =− f (X0)+
T−1

∑
t=0

g(Xt). (5.5.4)

Taking expectations conditioned on F0, yields

0 =− f (X0)+E

(
T−1

∑
t=0

g(Xt)
∣∣∣F0

)
, (5.5.5)

or

f (x) = Ex

(
T−1

∑
t=0

g(Xt)

)
(5.5.6)

Here we relied of course on Doob’s optimal stopping theorem for E(MT ) = 0.
Thus, any solution of the Dirichlet problem is given by (5.5.6). To verify exis-

tence, we just need to check that (5.5.6) solves−L f = g on D. To do this we use the
Markov property “backwards”, to see that

P f (x) = PEx

(
T−1

∑
t=0

g(Xt)

)
=
∫

D
P(x,dy)Ey

(
T−1

∑
t=0

g(Xt)

)
+
∫

Dc
P(x,dy0

= Ex

[
T−1

∑
t=1

g(Xt)

]
= Ex

[
T−1

∑
t=0

g(Xt)

]
−g(x) = f (x)−g(x). (5.5.7)

This concludes the proof. ut

We see that the Markov process produces a solution of the Dirichlet problem. We
can express the solution in terms of an integral kernel, called the Green’s kernel,
GD(x,dy), as

f (x) =
∫

GD(x,dy)g(y)≡ Ex

(
T−1

∑
t=0

g(Xt)

)
, (5.5.8)

or, in more explicit terms,
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GD(x,dy) =
∞

∑
t=0

Pt
D(x,dy), (5.5.9)

where

Pt
D(x,dy) =

∫
D

P(x,dz1)
∫

D
P(z1,dz2) . . .

∫
D

P(zt−1,dy). (5.5.10)

The preceding theorem has an obvious extension to more complicated boundary
value problems:

Theorem 5.12. Let D be as above, and let h be a bounded function on Dc. Assume
the E(T )< ∞. Then

f (x)≡

{
Ex
(
∑

T−1
t=0 g(Xt)

)
+Ex (h(XT )) , x ∈ D,

h(x), x ∈ Dc,
(5.5.11)

is the unique solution of the Dirichlet problem

−(L f )(x) = g(x), x ∈ D, (5.5.12)
f (x) = h(x), x ∈ Dc.

Proof. Identical to the previous one. ut

Theorem 5.12 is a two way game: it allows to produce solutions of analytic prob-
lems in terms of stochastic processes, and it allows to compute interesting proba-
bilistic problems analytically. As an example, assume that Dc =A∪B with A∩B= /0.
Set h = 1A. Then, clearly, for x ∈ D,

Ex(h(XT )) = Px(XT ∈ A)≡ Px(τA < τB), (5.5.13)

and so Px(XT ∈ A) can be represented as the solution of the boundary value problem

(L f )(x) = 0, x ∈ D, (5.5.14)
f (x) = 1, x ∈ A,

f (x) = 0, x ∈ B.

The is a generalisation of the ruin problem for the random walk that we discussed
in Probability 1.
Exercise. Derive the formula for Px(τA < τB) directly from the Markov property
without using Lemma 5.6.
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5.5.1 Green function, equilibrium potential, and equilibrium
measure

Let us consider the case where the solution of the Dirichlet problem is unique. Then
the solution can be written in the form

f (x) =
∫

D
GDc(x,dz)g(z)+

∫
Dc

HDc(x,dz)ḡ(z), (5.5.15)

where

Gλ
Dc(x,A) = Ex

[
τDc−1

∑
t=0

1X(t)∈A

]
is called the Green kernel, and

Hλ
Dc(x,A) = Ex

[
1X(τDc )∈A

]
(5.5.16)

=
∞

∑
t=0

Px (τDc = t ∧X(t) ∈ A)

is called the Poisson kernel. The Green kernel can also be characterised as the weak
solution of the problem

−(LGDc(x,dz) = δz(dx), ∀x ∈ D,
GDc(x,dz) = 0, ∀x ∈ Dc.

(5.5.17)

Let A,B⊂ S be two disjoint subsets. Consider the Dirichlet problem

(−Lh)(x) = 0, ∀x ∈ S\ (A∪B),
h(x) = 1, ∀x ∈ A,
h(x) = 0, ∀x ∈ B.

(5.5.18)

Suppose that (5.5.18) has a unique solution, e.g. because Ex[τA∪B]< ∞ for all x ∈ S.
The harmonic function that solves (5.5.18) will be denoted by hA,B(x) and is called
the equilibrium potential. We have already seen that

hA,B(x) = Ex [1A(X(τA∪B))] = Px (τA < τB) , x ∈ S\ (A∪B). (5.5.19)

We would like to view this equation as an analytic expression for the probability
in the right-hand side. Naturally we would like to obtain such a formula also when
x ∈ A or x ∈ B. However, using the Markov property, we see that

Px (τA < τB) =
∫
(A∪B)c

P(x,dy)Py (τA < τB)+
∫

A
P(x,dy) (5.5.20)

=
∫

S
P(x,dy)hA,B(y) = PhA,B(x)

= (LhA,B)(x)+hA,B(x).
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For x ∈ B, the latter can be also written as (since hA,B(x) = 0)

Px (τA < τB) = (LhA,B)(x), (5.5.21)

and for x ∈ A as

− (LhA,B)(x) = 1−Px (τA < τB) = Px (τB < τA) . (5.5.22)

The quantity eA,B(x) ≡ −LhA,B(x), x ∈ A, is called the equilibrium measure on A,
and will be the second fundamental object in our study of metastability.

The following simple observation provides the fundamental connection between
the objects we have introduced so far, and leads to a different representation of the
equilibrium potential. Pretend that the equilibrium measure eA,B is already known.
Then the equilibrium potential satisfies the inhomogeneous Dirichlet problem

−(Lh)(x) = eA,B(x), ∀x ∈ S\B,
h(x) = 0, ∀x ∈ B. (5.5.23)

The solution of (5.5.23) can be written in terms of the Green function.

Lemma 5.13. With the notation introduced above,

hA,B(x) =
∫

A
GB(x,dy)eA,B(y). (5.5.24)

Note that ea,B(a) = Pa(τB < τa) has the meaning of an escape probability.

5.5.2 Reversibility

Considerable simplifications occur when we assume a certain symmetry property
of the transition kernels known as reversibility or, in physics terminology, detailed
balance.

Definition 5.14. A Markov chain with state space S and one-step transition kernel
P is called reversible if there exists a measure µ on S, such that∫

µ(dx) f (x)(Pg)(x) =
∫

µ(dx)(P f )(x)g(x) ∀ f ,g ∈ L2(S,µ). (5.5.25)

The measure µ is called the reversible measure of the Markov chain.

The function space L2(S,µ) is a natural space to work on when the Markov chain
is reversible with respect to µ .

Lemma 5.15. Let f ∈ L2(S,µ), where µ is invariant with respect to P. Then P f ∈
L2(S,µ).
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Proof. The claim follows from the fact that P is a contraction in the L2-norm:

∫
S

µ(dx) [(P f )(x)]2 =
∫

S
µ(dx)

[∫
S

P(x,dy) f (y)
]2

(5.5.26)

≤
∫

S
µ(dx)

∫
S

P(x,dy) f (y)2
∫

S
P(x,dy)

≤
∫

S
µ(dx)

∫
S

P(x,dy) f (y)2 =
∫

S
µ(dx) f (x)2,

where we use the Cauchy-Schwartz inequality and the invariance of µ , i.e., µP = µ .
ut

Reversibility can be expressed by saying that the transition kernel P acts as a
self-adjoint operator on the Hilbert space L2(S,µ).

Lemma 5.16. If µ is a reversible probability measure for P, then µ is an invariant
probability measure for P.

Proof. Clearly, f ≡ 1 is in L2(S,µ). Hence, for all bounded measurable functions g,∫
S

∫
S

µ(dx)P(x,dy)g(y) =
∫

S

∫
S

P(y,dx)g(y)µ(dy) =
∫

S
g(y)µ(dy). (5.5.27)

Hence µ is invariant. ut

Note that the converse is not true in general, i.e., an invariant measure is not neces-
sarily reversible.

We next come to the definition of the Dirichlet form.

Lemma 5.17. 6 Let µ be a reversible measure for a Markov process with generator
L. Then L defines a non-negative definite quadratic form

E ( f ,g)≡−
∫

S
µ(dx)g(x)(L f )(x), (5.5.28)

called the Dirichlet form.

Proof. It suffices to write out E ( f ,g) explicitly. Namely, by reversibility,

E ( f ,g) =
∫ ∫

µ(dx)g(x)P(x,dy)[ f (x)− f (y)] (5.5.29)

=
∫ ∫

µ(dx) f (x)P(x,dy)[g(x)−g(y)]

Symmetrising between the first and the last expression, we get
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E ( f ,g) =
1
2

∫ ∫
µ(dx)P(x,dy) [g(x)( f (x)− f (y))+(g(x)−g(y)) f (x)](5.5.30)

=
1
2

∫ ∫
µ(dx)P(x,dy)[ f (x)− f (y)][g(x)−g(y)]

+
1
2

∫ ∫
µ(dx) [g(x) f (x)−P(x,dy)g(y) f (y)]

=
1
2

∫ ∫
µ(dx)P(x,dy)[ f (x)− f (y)][g(x)−g(y)].

In the last equality we used of course the invariance of the measure µ . The final
expression is manifestly is a non-negative definite quadratic form. ut

An important rôle will be played by the analog of the two Green identities for
sums.

Lemma 5.18. Let f ,g ∈ L2(S,µ) and let D ⊂ S. Assume that P is reversible with e
respect to µ . Then (first Green identity)∫

D

∫
D

µ(dx)P(x,dy)[ f (x)− f (y)][g(x)−g(y)] (5.5.31)

=−2
∫

D
µ(dx) f (x)(Lg)(x)+2

∫
D

∫
Dc

µ(dx) f (x)P(x,dy)[g(x)−g(y)]

and (second Green identity)∫
D

µ(dx) [ f (x)(Lg)(x)−g(x)(L f )(x)] (5.5.32)

=
∫

D

∫
Dc

µ(dx)P(x,dy)(g(x)[ f (x)− f (y)]− f (x)[g(x)−g(y)])

=
∫

Dc
µ(dy)(g(y)(L f )(y)− f (y)(Lg)(y)) .

Proof. To proof the first Green identity, we proceed as in the proof of Lemma 5.17.
If D = S, then this gives (5.5.31) without the last term. If D ( S, then to produce
the full action of L in the second term, we must add terms that are not present and
involve points in Dc. These are exactly compensated by the last term.

The first equality in the second Green identity is a trivial consequence of the first
Green identity. To get the second line, use reversibility and fill up terms to recover
the full action of L by adding a zero consisting of double sums over Dc. Note that
the equality between the first and last line is just the statement that L is symmetric.
ut

Definition 5.19. Let A,B⊂ S be two disjoint sets. Then the capacity of the capacitor
A,B is defined as

cap(A,B)≡ ∑
x∈A

µ(x)eA,B(x). (5.5.33)

The first Green identity provides an important alternative representation.
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Lemma 5.20. Let A,B ⊂ S be disjoint. Then cap(A,B) defined in (5.5.33) can be
expressed as

cap(A,B) = E (hA,B,hA,B). (5.5.34)

Proof. Just use Lemma 5.18 with f = g = hA,B in combination with the defining
properties of the equilibrium potential hA,B. ut

We have seen that the Dirichlet form computed on the equilibrium potential gives
the capacity. We will now show that the equilibrium potential is the solution of a
variational problem.

Theorem 5.21. Let A,B,D be as in the definition of the Dirichlet problem. Let HA,B
be the space of continuous functions f on S such that

(i) E ( f , f )< ∞.
(ii) f ≥ 1 on A and f ≤ 0 on B.

Assume moreover that the corresponding Dirichlet problem has a unique solution,
the equilibrium potential hA,B. Then

cap(A,B) = inf
f∈HA,B

E ( f , f ). (5.5.35)

Moreover, if HA,B 6= /0, then the infimum in (5.5.35) is achieved uniquely on the
equilibrium potential, i.e., cap(A,B) = E (hA,B,hA,B).

Proof. Suppose that HA,B 6= /0. Let g be a function with E (g,g)< ∞ such that g≤ 0
on A and g≥ 0 on both B. Then, for h ∈HA,B,

E (h+ εg,h+ εg)−E (h,h) = ε[E (h,g)+E (g,h)]+ ε
2E (g,g)

= 2ε

∫
A

µ(dx)g(x)(Lh)(x+)+2ε

∫
B

µ(dx)g(x)(Lh)(x)

+ 2ε

∫
D

µ(dx)g(x)(Lh)(x)+ ε
2E (g,g). (5.5.36)

If h is the equilibrium potential, then the integrals over A and B are positive, since
for x ∈ A

(Lh)(x) =
∫

S
P(x,dy)(h(y)−h(x)) =

∫
D

P(x,dy)(h(y)−1)≤ 0,

and for x ∈ B

(Lh)(x) =
∫

S
P(x,dy)(h(y)−h(x)) =

∫
D

P(x,dy)(h(y))≥ 0.

The integral over D vanishes since h is harmonic in D and the remaining term is
manifestly non-negative. Thus, h is a global minimum of E in HA,B. Finally, sup-
pose that there is another function f such that E ( f , f ) = E (h,h). Then the identity

E
(

f+h
2 , f+h

2

)
+E

(
f−h

2 , f−h
2

)
= 1

2E ( f , f )+ 1
2E (h,h) (5.5.37)
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implies that
E
(

f+h
2 , f+h

2

)
≤ E (h,h)−E

(
f−h

2 , f−h
2

)
. (5.5.38)

Since h is an absolute minimum, this inequality can only hold if

E ( f −h, f −h) = 0. (5.5.39)

But the latter means that µ-a.s., (L( f − g))(x) = 0 and since outside of D, it holds
that f = g, uniqueness of the solution of the Dirichlet problem implies f = g. ut

5.6 Doob’s h-transform

Let us consider a discrete time Markov process, X , with generator L = P−1 given.
We may want to consider modification of the process. One important type of con-
ditioning is that to reach some set in particular places (e.g. consider a random walk
in a finite interval; we may be interested to consider this walk conditioned on the
fact that it exits on a specific side of the interval; this may correspond to consider a
sequence of games conditioned on the player to win).

How and when can we do this, and what is the nature of the resulting process?
In particular, is the resulting process again a Markov process, and if so, what is its
generator?

As an example, let us try to condition a Markov process to hit a domain B for the
first time in a subset A ⊂ B. We may assume that EτB < ∞. Define h(x) ≡ Px[τA =
τB], if x 6∈ B. Let P be the law of X . Let us define a new measure, Ph, on the space
of paths as follows: If Y is a Ft -measurable random variable, then

Eh[Y |F0] =
1

h(X0)
E[h(Xt)Y |F0]. (5.6.1)

Lemma 5.22. With the notation above, if Y is a FτB−1-measurable function,

Eh
x [Y ] = Ex[Y |τA = τB]. (5.6.2)

Proof. This is an application of the strong Markov property. We have by definition
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Eh
x [Y ] =

1
h(x)

Ex[Y h(XτB−1)] (5.6.3)

=
1

h(x)
Ex
[
YE′x[1τA=τB |F

′
0](XτB−1)

]
=

1
h(x)

Ex [Y1τA=τB ◦θτB−1]

=
1

Px[τA = τB]
Ex [Y1τA=τB ]

= Ex[Y |τA = τB].

Here the first equality is just the definition of h and reproduces the form of the right-
hand side of the strong Markov property; the second equality is the strong Markov
property; the last equality uses that fact that the event {τA = τB} depends only on
what happens after τB−1, and so 1τA=τB ◦θτB−1 = 1τA=τB . ut

Let us now look at the transformed measure Ph in the general case. The first thing
to check is of course whether this defines in a consistent way a probability measure.
Some thought shows that all that is to show for this is the following lemma.

Lemma 5.23. Let Y be Fs-measurable. Then, for any t ≥ s,

Eh[Y |F0]≡
1

h(X0)
E[h(Xs)Y |F0] =

1
h(X0)

E[h(Xt)Y |F0]. (5.6.4)

In particular, Ph[Ω |F0] = 1.

Proof. Just introduce a conditional expectation:

E[h(Xt)Y |F0] = E[E[h(Xt)Y |Fs]|F0] = E[YE[h(Xt)|Fs]|F0], (5.6.5)

and use that h(Xt) is a martingale

= E[Y h(Xs)|F0],

from which the result follows. ut

This lemma shows why it is important that h be a harmonic function.
Now we turn to the question of whether the law Ph is a Markov chain.

Theorem 5.24. Let X be a Markov chain with generator L and law P. Let h be a
harmonic function. Then the h-transformed measure, Ph, is the law of a Markov
process with generator Lh, where for any bounded measurable function f ,

Lh f (x)≡ 1
h(x)

∫
S

P(x,dy)h(y) f (y)− f (x). (5.6.6)

Proof. To proof this theorem we turn to the martingale problem. We will show that
for Lh defined by (5.6.6),
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Mh
t ≡ f (Xt)− f (X0)−

t−1

∑
s=0

(Lh f )(Xs) (5.6.7)

is a martingale under the law Eh, i.e. that, for t > t ′,

Eh[Mh
t |Ft ′ ] = Mh

t ′ . (5.6.8)

Note first that, by definition

Eh[Mh
t |Ft ′ ] =

1
h(Xt ′)

E[h(Xt) f (Xt)|Ft ′ ]− f (X0)−
t ′−1

∑
s=0

(Lh f )(Xs)

−
t−1

∑
s=t ′

1
h(Xt ′)

E[h(Xs)Lh f (Xs)|Ft ′ ]. (5.6.9)

The middle terms are part of Mh
t ′ and we must consider E[ f (Xt)h(Xt)|Ft ′ ]. This is

done by applying the martingale problem for P and the function f h. This yields

E[ f (Xt)h(Xt)|Ft ′ ] = f (Xt ′)h(Xt ′)+
t−1

∑
s=t ′

E[(L( f h))(Xs)|Ft ′ ]

Inserting this in (5.6.9) gives

Eh[Mh
t |Ft ′ ] = f (Xt ′)− f (X0)−

t ′−1

∑
s=0

(Lh f )(Xs)

+
1

h(Xt ′)

t−1

∑
s=t ′

[
E[(L( f h))(Xs)|Ft ′ ]−E[h(Xs)Lh f (Xs)|Ft ′ ]

]
= Mh

t ′

+
1

h(Xt ′)

t−1

∑
s=t ′

[
E[(L( f h))(Xs)|Ft ′ ]−E[h(Xs)Lh f (Xs)|Ft ′ ]

]
.

The second term will vanish if we choose Lh f (x)= h(x)−1(L(h f ))(x), i.e. as defined
in (5.24).

Hence we see that under Ph, X solves the martingale problem corresponding to
the generator Lh, and so is a Markov chain with transition kernel Ph = Lh +1. The
process X under Ph is called the (Doob) h-transform of the original Markov process.
ut

Exercise. As a simple example, consider a simple random walk on {−N,−N +
1, . . . ,N}. Assume we want to condition this process on hitting +N before −N.
Then let

h(x) = Px[τN = τ{N}∪{−N}] = Px[τN < τ−N ].
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Compute h(x) and use this to compute the transition rates of the h-transformed walk?
Plot the probabilities to jump down in the new chain!

5.7 Markov chains with countable state space

The setting of discrete time Markov chains does in some sense not go too well with
general state spaces. In fact, in these cases, it is usually more appropriate to con-
sider continuous time. Here we provide some results on Markov chains with count-
able state space, in particular introduce the notions of recurrence and transience and
discuss the existence and uniqueness of invariant distributions.

Much of the theory of Markov chains with countable state space is similar to the
case of finite state space. In particular, the notions of communicating classes, irre-
ducibility, and periodicity carry over. There are, however, important new concepts
in the case when the state space is infinite. These are the notions of recurrence and
transience. It will be useful to use a notation close to the matrix notation of finite
chains. Thus we set

P(i,{ j}) = p(i, j) (5.7.1)

We will place us in the setting of an irreducible Markov chain, i.e. the all states
in S communicate (i.e. for any i, j ∈ S, P j(τ j < ∞)> 0). We may also for simplicity
assume that our chain is aperiodic. In the case of finite state space, we have seen that
such chains are ergodic in the sense that there exists a unique invariant probability
distribution, and the marginal distributions at time t, converge to this distribution
independently of the starting measure. Essentially this is true because the chain is
trapped on the finite set. If S is infinite, a new phenomenon is possible: the chain
may run “to infinity”.

Definition 5.25. Let X be an irreducible aperiodic Markov chain with countable
state space S. Then:

(i) X is called transient, if for any i ∈ S,

Pi(τi < ∞)< 1; (5.7.2)

(ii) X is called recurrent, if it is not transient.
(iii) X is called positive recurrent or ergodic, if, for all i ∈ S,

Ei(τi)< ∞. (5.7.3)

Remark. The notion of recurrence and transience can be defined for states rather
than for the entire chain. In the case of irreducible and aperiodic chains, all states
have the same characteristics.

Some simple consequences of the definition are the following.
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Lemma 5.26. Let X be a Markov chain with countable state space be irreducible.
Then X is transient, iff

P` (Xt = `, i.o.) = 0. (5.7.4)

Proof. Assume that X is transient. Then P`(τ` < ∞) = c < 1. By the first Borel-
Cantelli lemma, (5.7.4) holds if

∞

∑
t=0

P`(Xt = `)< ∞. (5.7.5)

But

∞

∑
t=0

P`(Xt = `) = E`

(
∞

∑
t=0

1Xt=`

)
=

∞

∑
n=1

nP` (Xt = `,n-times) . (5.7.6)

Using the strong Markov property,

P` (Xt = `,n-times) = P`(τ` < ∞)nP`(τ` = ∞) = cn(1− c). (5.7.7)

Inserting this equality into (5.7.12) yields that (5.7.11) holds and thus that (5.7.4) is
true.

To show the converse, assume that (5.7.4) holds. Then

1 = 1−P(Xt = `, i.o.) = P(Xt = `,finitely many times)

=
∞

∑
n=0

P` (Xt = `,n-times) =
∞

∑
n=0

cn(1− c). (5.7.8)

The latter sum equals 1 if and only if c < 1. Thus X is transitive. ut

Positive recurrent chains are called ergodic, because they are ergodic in the same
sense as finite Markov chains.

Lemma 5.27. Let X positive recurrent Markov chain with countable state space, S.
Then, for any j, ` ∈ S,

µ( j)≡
E`

(
∑

τ`
t=11Xt= j

)
E`τ`

. (5.7.9)

is the unique invariant probability distribution of X.

Proof. Define ν`( j) =E`

[
∑

τ`
t=11Xt= j

]
. We show first that ν is an invariant measure.

Obviously, 1 = ∑m∈S1X`−1=m, and hence, using the strong Markov property,



98 5 Markov processes

ν`( j)≡ E`

[
τ`

∑
t=1

1Xt= j

]
= E`

[
∑

m∈S

τ`

∑
t=1

1Xt= j1Xt−1=m

]

= ∑
m∈S

E`

[
τ`

∑
t=1

1Xt−1=mP[Xt = j|Ft−1](m)

]

= ∑
m∈S

E`

[
τ`

∑
t=1

1Xt−1=m

]
p(m, j)

= ∑
m∈S

E`

[
τ`

∑
t=1

1Xt=m

]
P(m, j)

= ∑
m∈S

ν`(m)P(m, j)

Thus µ` solves the invariance equation and thus is an invariant measure. It remains
to show that ν` is normalisable. But

∑
j∈Σ

ν`( j) = E`(t`)< ∞,

by assumption. Thus ν`( j)/∑i∈S ν`(i)= µ( j) is an invariant probability distribution.
Next we want to show uniqueness. Note first that for any irreducible Markov

chain (with discrete state space) it holds that, if µ is an invariant measure and µ(i) =
0, for some i ∈ S, then µ ≡ 0. Namely, if for some j,µ( j) > 0, then there exists t
finite such that Pt

ji > 0, and µ(i)≥ µ( j)Pt
ji > 0, in contradiction to the hypothesis.

We will now actually show that ν` is the only invariant measure such that ν`(`) =
1 (which implies the desired uniqueness result immediately). To do so, we will show
that for any other invariant measure, ν , such that ν(`) = 1, we have that ν( j)≥ ν`( j)
for all j. For then, ν −ν` is a positive invariant measure as well, and being zero in
`, must vanish identically. Hence ν = ν`.

Now we clearly have that

ν(i) = ∑
j 6=`

p( j, i)ν( j)+ p(`, i), (5.7.10)

since ν(`) = 1, by hypothesis. We want to think of p(`, i) as

p(`, i) = E`

(
1τ`≥11Xs=i

)
.

Now iterate the same relation in the first term in (5.7.10). Thus

ν(i) = ∑
j1, j2 6=`

p( j2, j1)p( j1, i)ν( j2)+ ∑
j1 6=`

p(`, j1)p( j1, i)+E`

(
1τ`≥11X1=i

)
= ∑

j1, j2 6=`

p( j2, j1)p( j1, i)ν( j2)+E`

(
2∧τ`

∑
s=1

1Xs=i

)
. (5.7.11)
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Further iteration yields for any n ∈ N

ν(i) = ∑
j1, j2,... jn 6=`

p( jn, jn−1) . . . p( j2, j1)p( j1, i)ν( jn)+E`

(
n∧τ`

∑
s=1

1Xs=i

)

≥ E`

(
n∧τ`

∑
s=1

1Xs=i

)
. (5.7.12)

This implies ν(i)≥ ν`(i), as desired, and the proof is complete. ut

Corollary 5.28. An ergodic Markov chain satisfies

µ( j) =
1

E j(τ j)
. (5.7.13)

Proof. Just set `= j in the definition of µ( j), and note that ν j( j)=E j(∑
τ j
t=11Xt=x)=

1. ut

We have seen that positive recurrence is needed to ensure the existence of an in-
variant probability measures. Next we show that if the chain is in addition aperiodic,
we get convergence towards this invariant measure.

Let us show first that the existence of strictly positive invariant probability mea-
sure ensures positive recurrence.

Lemma 5.29. Let X be an irreducible Markov chain with countable state space. If
there exists an invariant probability measure µ , then µ(i)= 1/Eiτi, and X is positive
recurrent.

Proof. Since µ is a probability measure, due to irreduciblity for any ` there exists
n such that ` für geeignetes n gelten, dass µ(`) = ∑i∈S µ(i)(pn)i` > 0. Then λ ( j)≡
µ( j)/µ(`) is an invariant measure satisfying λ (i) = 1. We have seen above that
λ (k)≥ ν`(k). Hence

E`τ` = ∑
i∈S

ν`(i)≤∑
i∈S

µ(i)
µ(`)

=
1

µ(`)
< ∞. (5.7.14)

Therefore X is positive recurrent. ut

We can now state our first ergodic theorem.

Theorem 5.30. Let X be an irreducible, aperiodic, and positive recurrent Markov
chain with countable state space. Let P denote its transition kernel and µ its unique
invariant probability measure. Then, for any initial distribution π0, we have that for
all i ∈ S,

lim
n↑∞

(π0Pn)i = µ(i). (5.7.15)
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Proof. The proof uses the method of “coupling”. Let π0 be our initial distribu-
tion.die Anfangsverteilung unserer Kette X . We construct a second Markov chain,
indpendent of X with the same transition kernel but initial distribution µ . Then we
define the stopping time T with respect to the filtration Fn≡σ(X0,Y0,X1,Y1, . . . ,Xn,Yn)
as

T ≡ inf{n : Xn = Yn = i} , (5.7.16)

where i ∈ S is an arbitrary state in S.
We show first that T is almost surely finite. To do this, we consider the pair

W = (X ,Y ) as a Markov chain with state space S× S. Its transition kernel P̃ has
elements

p̃(ik)( jm) ≡ pi j pkm. (5.7.17)

The initial distribution of this chain is π̃0(( jk)) = π0( j)µ(k). Since P is irreducible
and aperiodic, for any i, j,k, ` there exists n, such that

p̃n
(ik)( jm) = pn

i j p
n
km > 0. (5.7.18)

Hence W is irreducible. Furthermore, it is evident that the invariant distribution of
W is given by µ̃

µ̃(( jk)) = µ( j)µ(k)> 0. (5.7.19)

Hence W is positive recurrent. Since T = inf{n≥ 0 : Wn = (ii)}, we have ET < ∞

and hence P(T < ∞) = 1.
Next we construct a new Markov chain with state space S as

Zn =

{
Xn, wennn < T
Yn, wennn≥ T.

(5.7.20)

This chain has the same law as X . It follows that

P(Xn = i) = P(Zn = i) (5.7.21)
= P(Zn = i∧{n < T})+P(Zn = i∧{n≥ T})
= P(Xn = i∧{n < T})+P(Yn = i∧{n≥ T})
= P(Yn = i)+−P(Yn = i∧{n < T})+P(Xn = i|{n < T})
= µ(i)+(P(Yn = i|n < T )−P(Xn = i|n < T ))P(n < T ) .

The expression in the brackets is smaller than one while the coefficient P(n < T )
tends to zero, as n ↑ ∞. This proves the theorem. ut

Remark. Note that both irreducibility and aperiodicity were used in the proof. It
is clear from elementary examples that the conclusion cannot hold in for periodic
Markov chains.

Let us remark that for any transient states i of a Markov chainetransiente
Zustände, i, it holds thst for any j ∈ S and any invariant measure, µ ,
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lim
n↑∞

(pn) ji = 0 = µ(i).

Namely, by Lemma 5.7.15

∞

∑
n=0

(pn) ji ≤ Ei

(
∞

∑
n=0

1Xn=i

)
< ∞.

This implies the claim.
Finally we note that the stong ergodic theorem that we know for irreducible

Markov chains with finite state space holds also for positive recurrent chains with
countable state space. The proof is identical to that in the finite state space, given
that we already know existence und uniqueness of an invariant probability measure.





Chapter 6
Random walks and Brownian motion

The goal of this chapter is to introduce Brownian motion as a continuous time
stochastic process with continuous paths and to explain its connection to random
walks through Donsker’s invariance principle. A very detailed source on Brownian
motion is the classical book by Itô and McKean [7].

6.1 Random walks

The innocent looking stochastic processes

Sn ≡
n

∑
i=1

Xi, (6.1.1)

with Xi, i ∈ N iid random variables are generally called random walks and receive
a considerable attention in probability theory. A special case is the so-called simple
random walk on Zd , characterized by the fact that the random variables Xi take
values in the set of ± unit vectors in the lattice Zd . Consequently, Sn ∈ Zd , is a
stochastic process with discrete state space. Obviously, Sn is a Markov chain, and,
moreover, the coordinate processes, Sµ

n , µ = 1, . . .d, are sub-, super-, or martingales,
depending on whether E(X µ

0 ) is positive, negative, or zero.
Let us focus on the centred case, E(X1) = 0. In this case we have seen that Zn ≡

n−1/2Sn converges in distribution to a Gaussian random variable. By considering the
process coordinate wise, it will also be enough to think about d = 1. We now want
to extend this result to a convergence result on the level of stochastic process. That
is, rather than saying something about the position of the random walk at a time n,
we want to trace the entire trajectories of the process and try give a description of
their statistical properties in terms of some limiting stochastic process.

It is rather clear from the central limit theorem that we must consider a rescaling
like

103
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Zn(t)≡ n−1/2
[tn]

∑
k=1

Xk. (6.1.2)

In that case we have from the central limit theorem, that for any t ∈ (0,1],

Zn(t)
D→ Bt ,

([x] denotes the lower integer part of x) where Bt is a centred Gaussian random vari-
able with variance t. Moreover, for any finite collection of indices t1, . . . , t`, define
Yn(i)≡ Zn(ti)−Zn(ti−1). Then the random variables Yn(i) are independent and it is
easy to see that they converge, as n→∞, jointly to a family of independent centered
Gaussian variables with variances ti− ti−1. This implies that the finite dimensional
distributions of the processes Zn(t), t ∈ (0,1], converge to the finite dimensional dis-
tributions of the Gaussian process with covariance C(s, t) = s∧ t, that we introduced
in Section 3.3.2 and that we have preliminarily called Brownian motion.

We now want to go a step further and discuss the properties of the paths of our
processes.
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Fig. 6.1 Paths of Sn for various values of n.

From looking at pictures, it is clear that the limiting process Bt should have rather
continuous looking sample paths.

6.2 Construction of Brownian motion

Before stating the desired convergence result, we have to define and construct the
limiting object, the Brownian motion.
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Definition 6.1. A stochastic process {Bt ∈ Rd , t ∈ R+}, defined on a probability
space (Ω ,F,P), is called a d-dimensional Brownian motion starting in 0, iff

(o) B0 = 0, a.s..
(i) For any p ∈ N, and any 0 = t0 < t1 < · · ·< tp, the random variables Bt1 ,Bt2 −

Bt1 , . . . ,Btp −Btp−1 , are independent and each Bti −Bti−1 is a centered Gaussian
r.v. with variance ti− ti−1.

(ii) For any ω ∈Ω , the map t 7→ Bt(ω) is continuous.

The question is whether such a process exists. The first property can, as we have
seen, be established with the help of Kolmogorov’s theorem. The problem with this
is that it constructs the process on the space ((Rd)R+ ,BR+(Rd)); but the second
requirement, the continuity of the sample paths, is not a measurable property with
respect to the product σ -algebra. Therefore, we have to proceed differently. In fact,
we want to construct Brownian motion as a random variable with values in the space
C(R+,Rd).

Theorem 6.2. Brownian motion exists.

Proof. We consider the case d = 1, the extension to higher dimensions is straight-
forward. We consider a probability space (Ω ,F,P) on which an infinite family of
independent standard Gaussian random variables is defined. We define the so-called
Haar-functions, hk

n on [0,1] via

h0
0(t) ≡ 1, (6.2.1)

hk
n(t) ≡ 2(n−1)/2 [

1[(2k)2−n,(2k+1)2−n)(t)−1[(2k+1)2−n,(2k+2)2−n)(t)
]

for k ∈ {0, . . . ,2n−1− 1} and n ≥ 1. We set I(n) ≡ {0, . . . ,2n−1− 1} for n ≥ 1 and
I(0) = {0}. The functions hk

n, n ∈ N, k ∈ I(n) form a complete orthonormal system
of functions in L2([0,1]), as one may easily check. Now set

f k
n (t) =

∫ t

0
hk

n(u)du, (6.2.2)

and set

B(n)
t ≡

n

∑
m=0

∑
k∈I(m)

f k
m(t)Xm,k (6.2.3)

for t ∈ [0,1], where Xm,k are our independent standard normal random variables.
We will show that (i) the continuous functions B(n)(ω) converge uniformly, almost
surely, and hence to continuous functions, and (ii) that the covariances of B(n) con-
verge to the correct limit. The limit, modified to be Bt(ω) ≡ 0 when B(n)

t (ω) does
not converge to a continuous function, will then be Brownian Motion on [0,1].

Let us now prove (i). The point here is that, of course, that the functions f k
n (t) are

very small, namely,
| f k

n (t)| ≤ 2−(n+1)/2.

Moreover, for given t, there is only one value of k such that f k
n (t) 6= 0. Therefore,
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P
[

sup
0≤t≤1

|B(n)
t −B(n−1)

t |> an

]
= P

[
sup

0≤t≤1
| ∑

k∈I(n)
f k
n (t)Xn,k|> an

]
(6.2.4)

= P

[
sup

k∈I(n)
|Xn,k|> 2(n+1)/2an

]
≤ 2nP

[
|Xn,1|> 2(n+1)/2an

]
≤ 2n e−a2

n2n√
π/2an2(n+1)/2

=
2n/2e−a2

n2n

√
πan

,

where we used the very useful bound

P[|X |> u]≤ 1
u
√

π/2
e−u2/2 (6.2.5)

for Gaussian probabilities. Now we are close to being done: Choose a sequence an
such that ∑

∞
n=0 an < ∞ and

∞

∑
n=1

P
[

sup
0≤t≤1

|B(n)
t −B(n−1)

t |> an

]
< ∞.

Clearly, the choice an = 2−n/4 will do. Then, by the Borel-Cantelli lemma,

P
[

sup
0≤t≤1

|B(n)
t −B(n−1)

t |> an i.o.
]
= 0,

and hence for all δ ,

P
[
∀δ>0∃n<∞∀m>n sup

0≤t≤1
|B(m)

t −B(n)
t |< δ

]
= 1. (6.2.6)

which implies that almost surely, the sequence B(n) converges uniformly in the inter-
val [0,1]. Since uniformly convergent sequences of continuous functions converge
to continuous functions, limn→∞ B(n)

t ≡ Bt(ω) in C([0,1],R), for almost all ω .
To check (ii), we compute the covariances:

E(B(n)
t B(n)

s ) =
n

∑
m=0

∑
k∈I(m)

n

∑
m′=0

∑
k′∈I(m′)

f k
m(t) f k′

m′(s)E(Xm,kXm′,k′)

=
n

∑
m=0

∑
k∈I(m)

f k
m(t) f k

m(s) (6.2.7)

=
∫ 1

0
du
∫ 1

0
dv1[0,t](u)1[0,s](v)

n

∑
m=0

∑
k∈I(m)

hk
m(u)h

k
m(v).

Taking the n→ ∞ we obtain
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lim
n→∞

E(B(n)
t B(n)

s ) =
∫ 1

0
du
∫ 1

0
dv1[0,t](u)1[0,s](v)

∞

∑
m=0

∑
k∈I(m)

hk
m(u)h

k
m(v)

=
∫ 1

0
du1[0,t](u)1[0,s](u) = s∧ t (6.2.8)

due to the fact that the system hk
n is a complete orthonormal system. Now note that

from the definition of Brownian motion, for s < t,

EBtBs = E [((Bt −Bs)+Bs)Bs] = EB2
s = s = t ∧ s,

so the limiting covariance is that of Brownian motion. Finally, since B(n)
t are Gaus-

sian whose covariances converge, the limit is necessarily Gaussian with the limiting
covariance (Exercise! Hint: Show that the Fourier transforms converge!).

This provides Bt on [0,1]. To construct Bt for t ∈ (k,k+1], just take k+1 inde-
pendent copies of the B we just constructed, say Bt,1, . . . ,Bt,k+1, via

Bt =
k

∑
i=1

B1,i +Bt−k,k+1.

Finally, to construct d-dimensional Brownian motion, take d independent copies of
Bt , say Bt,1, . . . ,Bt,d and let eµ , µ = 1, . . . ,d, be a orthonormal basis of Rd . Then set

B̂t ≡
d

∑
µ=1

eµ Bt,µ . (6.2.9)

It is easily checked that this process is a Brownian motion in Rd . This concludes the
existence proof. ut

Having constructed the random variable Bt in C(R+,Rd), we can now define its
distribution, the so-called Wiener measure.

For this is it useful to observe that

Lemma 6.3. The smallest σ -algebra, C, on C(R+,Rd) that makes all coordinate
functions, t 7→w(t), measurable coincides with the Borel-σ -algebra, B≡B(C(R+,Rd)),
of the metrisable space C(R+,Rd) equipped with the topology of uniform conver-
gence on compact sets.

Proof. First, C⊂B since all functions t 7→ w(t) are continuous and hence measur-
able with respect to the Borel-σ -algebra B. To prove that B ⊂ C, we note that the
topology of uniform convergence is equivalent to the metric topology relative to the
metric

d(w,w′)≡ ∑
n∈N

2−n sup
0≤t≤n

(
|w(t)−w′(t)|∧1

)
. (6.2.10)

We thus have to show that any ball with respect to this distance is measurable with
respect to C. But since w are continuous functions,
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sup
t∈[0,n]

(
|w(t)−w′(t)|∧1

)
= sup

t∈[0,n]∩Q

(
|w(t)−w′(t)|∧1

)
,

we see that e.g. the set {w : d(w,0)< ρ} is in fact in C. ut

Note that by construction, the map ω 7→ B(ω) is measurable, since the maps
ω 7→ Bt(ω) are measurable for all t, and by definition of C, all coordinate maps
B 7→ Bt are measurable. Thus the following definition makes sense.

Definition 6.4. Let Bt a Brownian motion in Rd defined on a probability space
(Ω ,F,P). The probability measure on (C(R+,Rd),B(C(R+,Rd))) given as the im-
age of P under the map ω 7→ {Bt(ω), t ∈ R+} is called the d-dimensional Wiener
measure.

Note that uniqueness of the Wiener measure is a consequence of the Kolmogorov-
Daniell theorem, since we have already seen that the finite-dimensional distributions
are fixed by the prescription of the covariances.

6.3 Donsker’s invariance principle

We are now in the position to prove Donsker’s theorem.

Theorem 6.5. Let Xi be independent, identically distributed random variables with
mean zero and variance one. Let Zn(t) be as defined in (6.1.2). Then the processes
Zn(t), t ∈ [0,1], converge in distribution to Brownian motion. More precisely, if Bt
is a Brownian motion, then there exists a sequence of processes Z̃n(t), t ∈ [0,1] such
that the process Z̃n(t), t ∈ [0,1] has the same distribution as Zn(t), t ∈ [0,1], and for
all ε > 0,

lim
n↑∞

P

(
sup

t∈[0,1]
‖Z̃n(t)−Bt‖> ε

)
= 0. (6.3.1)

Remark. The assertion of the theorem implies what is called weak convergence
in the uniform topology on [0,1]. This means the following: Take any function
F : B([0,1],R)→ R, that is continuous in the uniform topology, meaning that for
any ε > 0, one can find δ > 0, such that whenever two functions w,w′ satisfy
supt∈[0,1] |w(t)−w′(t)|< δ , then |F(w)−F(w′)|< ε . Then

lim
n↑∞

EF(Zn) = EF(B). (6.3.2)

This is easily proven from the assertion of our theorem: First,

EF(Zn) = EF(Z̃n). (6.3.3)

Next,
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)∣∣∣ ≤ ∣∣∣E((F(Z̃n)−F(B)1supt∈[0,1] |Z̃n(t)−B(t)|≤δ

)∣∣∣ (6.3.4)

+
∣∣∣E((F(Z̃n)−F(B)1supt∈[0,1] |Z̃n(t)−B(t)|>δ

)∣∣∣
≤ ε +CP

(
sup

t∈[0,1]
‖Z̃n(t)−Bt‖> ε

)
.

This implies that
lim
n↑∞

∣∣∣EF(Z̃n)−F(B)
∣∣∣= 0. (6.3.5)

Obviously, the interval [0,1] can be replaced with any other finite interval.

Proof. We will give an interesting proof of this theorem which will not use what
we already know about finite dimensional distributions. For simplicity we consider
the case d = 1 only. It will be based on the famous Skorokhod embedding. What
this will do is to construct any desired random walk from a Brownian motion. This
goes a follows: we assume that F is the common distribution function of our random
variables Xi, assumed to have finite second moments σ2. We now want to construct
stopping times, T , for the Brownian motion, B, such that (i) the law of BT is F , and
(ii) E(T ) = σ2. This is a little tricky. First, we construct a probability measure on
(−R+)×R+, from the restrictions, F±, of F to the positive and negative axis:

µ(da,db)≡ γ (b−a)dF−(a)dF+(b). (6.3.6)

where γ provides the normalization, i.e.,

γ
−1 =

∫
∞

0
bdF+(b) =−

∫ 0

−∞

adF−(a). (6.3.7)

We need some elementary facts that follow easily once we know that Bt is a
Markov chain with continuous time and generator ∆/2:

Lemma 6.6. Let a < 0 < b and τ ≡ inf{t > 0 : Bt 6∈ (a,b)}. Then

(i) P(Bτ = a) = b
b−a ;

(ii)E(τ) = |ab|.

Proof. As we will discuss shortly, Bt is a martingale and let us anticipate that Doob’s
optional stopping theorem also holds for Brownian motion. Then 0 = E(Bτ) =
bP[Bτ = b] + aP[Bτ = a] = b + (a− b)P[Bτ = a], which gives (i). To prove (ii)
consider

Mt = (Bt −a)(b−Bt)+ t,

which is a martingale with M0 = −ba. On the other hand (again assuming that we
can use the optional stopping theorem,

E(M0) = E(Mτ) = E(τ)+E((Bτ −a)(b−Bτ)) = E(τ)+0.

which gives the claimed result. ut
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The Skorokhod embedding is now constructed by choosing α < 0 < β at random
from µ , and T = inf{t > 0 : Bt 6∈ (α,β )}. Then:

Theorem 6.7. The law of BT is F and E(T ) = σ2.

Proof. Let b > 0. Then

P(BT ∈ db) =
∫ 0

−∞

−a
b−a

γ(b−a)dF+(b)dF−(a) = dF+(b).

Analogously, for a < 0, P(BT ∈ da) = dF−(a). This proves the first assertion. Fi-
nally, by a simple computation,

E(T ) =
∫

∞

0

∫ 0

−∞

µ(da,db)|ab|=
∫

∞

−∞

x2F(dx) = σ
2.

This proves (ii). ut

Exercise. Construct the Skorokhod embedding for the simple random walk on Z.
We can now define a sequence of stopping times T1 = T , T2 = T1+T ′2 , . . . , where

T ′i are independent and constructed in the same way as T on the Brownian motions
BTi−1+t −BTi−1 . Then it follows immediately from the preceding theorem that:

Theorem 6.8. The process S̃n,n ∈ N where S̃n ≡ BTn , for all n ∈ N, has the same
distribution as the process Sn ≡ ∑

n
i=1 Xi, where Xi are iid with distribution F. Simi-

larly, the process there are stopping times T n
k such that Z̃n(t) ≡ BT n

[nt]
has the same

distribution as Zn(t) and T n
k have the same distribution as Tk/n..

Proof. Let Xi be iid with distribution functions F . By Theorem 6.7, the random vari-
ables X̃i ≡ BTi −BTi−1 are iid with the same distribution as Xi. Therefore, Sn(t) has
the same law as BTn . Then Zn(t) has the same distribution as n−1/2BT[nt] . However,
we can also construct the Skorokhod embedding to reproduce the random variables
n−1/2Xi as BT n

i
−BT n

i−1
. Then Zn(t) also has the same distribution as Z̃n(t)≡ BT n[nt].

Now we use an important property of Brownian motion:

Lemma 6.9. For any a ∈ R+, the processes Bt and Ba
t ≡ a−1Bta2 have the same

distribution.

Proof. Obviously, Ba is a Gaussian process. It suffices to show that B and Ba have
the same covariance. But trivially

EBa
t Ba

s = a−2EBa2tBa2s = a−2(a2t)∧ (a2s) = s∧ t.

which is the covariance of B. ut

From the scaling property it follows easily that T n
i have the same law as Ti/n.

This proves the theorem. ut
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The Skorokhod embedding now provides the means to prove Donsker’s theorem.
Namely, we will show that the process Z̃n(t) converges uniformly to Bt in proba-
bility. This is possible, since it is coupled to Bt realisationwise, unlike the original
Zn(t) which would not know which particular Bt(ω) it should stick with. We will
set σ2 = 1.

Note first that by the continuity of Brownian motion, for any ε > 0, we can find
δ > 0 such that

P(∃u, t ∈ [0,1]; |u− t| ≤ δ s.d. |Bu−Bt |> ε)≤ ε/2.

Next, by the independence of the T ′i , and the law of large numbers,

lim
n→∞

Tn

n
= E(T ) = 1, a.s. (6.3.8)

Thus
lim
n→∞

n−1 sup
k≤n
|Tk− k|= 0, a.s. (6.3.9)

This holds since otherwise there exits with positive probability a sequence kn ↑ ∞,
where knn, such that for all n, |Tkn/kn−1| ≥ εn/kn ≥ ε , for some ε > 0. But this
contradicts (6.3.8) Therefore, there exists n1 such that for all n≥ n1,

P

[
n−1 sup

k≤n
|Tk− k| ≥ δ/3

]
≤ ε/2. (6.3.10)

Since T n
i have the same law as Ti/n, this impies that also

P

[
sup
k≤n
|T n

k − k/n| ≥ δ/3

]
≤ ε/2. (6.3.11)

Finally, the process Z̃n(t) will coincide for any t = k/n with BT n
k

. Therefore,

P
[

sup
0≤t≤1

∣∣∣Z̃n(t)−Bt

∣∣∣≥ ε

]
≤ P

[
sup

0≤t≤1

∣∣∣Z̃n(t)−Bt

∣∣∣≥ ε, |T n
k − k/n| ≤ nδ/3,∀k≤n

]
+P

[
sup
k≤n
|T n

k − k/n| ≥ δ/3

]
≤ P

[
∃k ≤ n, t ∈ [0,1], |k/n− t| ≤ δ :

∣∣∣BT n
k
−Bt

∣∣∣≥ ε

]
+ ε/2

≤ P [∃u, t ∈ [0,1], |u− t| ≤ δ : |Bu−Bt | ≥ ε]+ ε/2≤ ε..
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This implies that the difference between Z̃n(t) and Bt converges uniformly in
t ∈ [0,1] to zero in probability. On the other hand, Z̃n(t) has the same law as Zn(t).
This implies weak convergence as claimed. ut

6.4 Martingale and Markov properties

Although we have not studied with full rigor the concepts of martingales and
Markov processes in continuous time, Brownian motion is a good example to get
provisionally acquainted with them. The nice thing here is that we know already that
it has continuous paths, so that we need not worry about discontinuities; moreover,
a path is determined by knowing it on a dense set of times, say the rational numbers,
so we also need not worry about unaccountability.

Proposition 6.10. Brownian motion is a continuous time martingale, in the sense
that, if Ft is a filtration such that Bt is adapted, for any s < t,

E[Bt |Fs] = Bs. (6.4.1)

Proof. Of course we have not defined what a continuous time filtration is, but
we will not worry at this moment, and just take Ft as the σ -algebra generated be
{Bs}s≤t . Now we know that Bt = Bt −Bs +Bs, where Bt −Bs and Bs are indepen-
dent. Thus

E[Bt |Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs]+E[Bs|Fs] = 0+Bs,

as claimed. ut

Next we show that Brownian motion is also a Markov process. As a definition of
a continuous time Markov process, we adopt the obvious generalisation of (3.3.8).

Definition 6.11. A stochastic process with state space S and index set R+ is called
a continuous time Markov process, if there exists a two-parameter family of proba-
bility kernels, Ps,t , satisfying the Chapman-Kolmogorov equations,

Ps,t(x,A) =
∫

S
Pr,t(y,A)Ps,r(x,dy), ∀r ∈ (s, t),A ∈B, (6.4.2)

such that for all A ∈B, s < t ∈ R+,

P[Bt ∈ A|Fs](ω) = Ps,t(Bs(ω),A), a.s.. (6.4.3)

This definition may not sound abstract enough, because it stipulates that we search
for the kernels Ps,t ; one may replace this by saying that

P[Bt ∈ A|Fs] (6.4.4)
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is independent of the σ -algebras Fr, for all r < s; or in other words, that P[Bt ∈
A|Fs](ω) is a function of Bs(ω), a.s.. You can see that we will have to worry a little
bit about these definitions in general, but by the continuity of Brownian motion, we
may just look at rational times and then no problem arises. We come to these things
in the next course. We see that the two definitions are really the same, using the
existence of regular conditional probabilities: namely, Ps,t will be just the regular
version of P[Bt ∈ A|Fs].

Proposition 6.12. Brownian motion in dimension d is a continuous time Markov
process with transition kernel

Ps,t(x,A) =
1

(2π(t− s))d/2

∫
A

exp
(
− |y− x|2

2(t− s)

)
dy. (6.4.5)

Proof. The proof is next to trivial from the defining property (i) of Brownian motion
and left as an exercise. ut

We now come, again somewhat informally, to the martingale problem associated
with Brownian motion.

Theorem 6.13. Let f be a two time differentiable function with bounded second
derivatives. Let Bt be Brownian motion. Then

Mt = f (Bt)− f (B0)−
1
2

∫ t

0
∆ f (Bs)ds (6.4.6)

is a martingale.

Proof. We consider for simplicity only the case d = 1; the general case works the
same way. We proceed as in the discrete time case.

E[Mt+r|Ft ] = f (Bt)− f (B0)−
1
2

∫ t

0
f ′′(Bs)ds (6.4.7)

+E[ f (Bt+r)− f (Bt)|Ft ]−
1
2

∫ r

0
E[ f ′′(Bt+s)|Ft ]ds

= Mt +
1√
2πr

∫
R

f (y)exp
(
− (y−Bt)

2

2r

)
dy− f (Bt)

−1
2

∫ r

0

1√
2πs

∫
R

f ′′(y)exp
(
− (y−Bt)

2

2s

)
dyds

= Mt

The last inequality holds since, using integration by parts
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1√
2πs

∫
R

f ′′(y)exp
(
− (y− x)2

2s

)
dy (6.4.8)

=
∫
R

f (y)
d2

dy2
1√
2πs

exp
(
− (y− x)2

2s

)
dy

=
1√
2π

∫
R

f (y)
[
−s−3/2 +(y− x)2s−5/2

]
exp
(
− (y− x)2

2s

)
dy

= 2
∫
R

f (y)
d
ds

1√
2πs

exp
(
− (y− x)2

2s

)
dy

Integrating the last expression in (6.4.7) over s yields

2√
2πr

∫
R

f (y)exp
(
− (x− y)2

2r

)
dy− f (x),

where we used that

lim
h↓0

2√
2πh

∫
R

f (y)exp
(
− (x− y)2

2h

)
dy = f (x).

Inserting this into (6.4.7) concludes the proof. ut

Note that we really used that the function

e(t,x)≡ 1√
2πt

exp
(
−‖x‖

2

2t

)
(6.4.9)

satisfies the (parabolic) partial differential equation

∂

∂ t
e(x, t) =

1
2

∆e(x, t), (6.4.10)

with the (singular) initial condition

e(x, t) = δ (x), (6.4.11)

(where δ here denotes the Dirac-delta function, i.e., for any bounded integrable
function

∫
R δ (x) f (x)dx = f (0)). e(t,x) is called the heat kernel associated to (one-

dimensional) Brownian motion.

Remark. Let us note that if we rewrite (6.4.6) in the form

f (Bt) = f (B0)+Mt +
1
2

∫ t

0
∆ f (Bs)ds, (6.4.12)

it formally resembles the Itô formula (4.5.4) that we derived formally in Section 4.
The martingale Mt should then play the rôle of the stochastic integral, i.e. we would
like to think of

Mt =
∫ t

0
∇ f (Bs) ·dBs.
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It will turn out that this is indeed a correct interpretation if and that (6.4.12) is the
Itô formula for Brownian motion.

The preceding theorem justifies to call L = ∆

2 the generator of Brownian motion,
and to think of (6.4.7) as the associated martingale problem. The connection be-
tween Markov processes and potential theory, established for discrete time Markov
processes, also carries over to Brownian motion; in this case, this links to the clas-
sical potential theory associated to the Laplace operator ∆ .

6.5 Sample path properties

We have constructed Brownian motion on a space of continuous paths. What else
can we say about the properties of theses paths? The striking feature is that Brown-
ian paths are almost surely nowhere differentiable!

The following theorem shows that it is not even Lipshitz continuous anywhere:

Theorem 6.14. For almost all ω , B(ω) is nowhere Lipshitz continuous.

Proof. Let K > 0 and define

An,K ≡ {ω ∈Ω : ∃s∈[0,1]∀|t−s|≤2/n|Bt −Bs| ≤ K|t− s|}. (6.5.1)

Clearly

An,K ⊂ ∪n
k=2
{
|B j/n−B( j−1)/n| ≤ 4K/n, for j ∈ {k−1,k,k+1}

}
. (6.5.2)

Now

P[An,K ] ≤ (n−1)
(
P[|B1/n−B0| ≤ 4K/n]

)3 (6.5.3)

≤ (n−1)
(
P[|B1/n| ≤ 4K/n]

)3 ≤Cn−1/2

for some finite constant C = (8K/
√

2π)3. Now An,K ⊂ An+1,K , and so for all n and
all K,

P[An,K ]≤ lim
`→∞

P[A`,K ] = 0. (6.5.4)

Finally, by monotonicity of the Lipshitz property, it follows that

P[∃K<∞An,K ]≤ ∑
K∈N

P[An,K ] = 0.

ut

Remark. The argument used in the proof can be extended to show that Brownian
motion is nowhere Hölder continuous with exponent larger than 1/2. Namely, for
α > 1/2, let k be chosen such that k(α−1/2)> 1. Then define
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An,K ≡ {ω ∈Ω : ∃s∈[0,1]∀|t−s|≤k/n|Bt −Bs| ≤ K|t− s|α}. (6.5.5)

We then obtain that

P[An,K ] ≤ (n−1)
(
P[|B1/n−B0| ≤ 2kK/nα ]

)k (6.5.6)

≤ (n−1)
(
P[|B1/n| ≤ 2kK/nα ]

)k ≤Cn−k(α−1/2)+1

which yields the conclusion as in the case α = 1.

An important notion is that of the quadratic variation. Let tn
k ≡ (k2−n)∧ t and

set

[B]nt ≡
∞

∑
k=1

[Btn
k
−Btn

k−1
]2. (6.5.7)

Lemma 6.15. With probability one, as n→ ∞, [B]nt → t, uniformly on compact in-
tervals.

Proof. Note that all sums over k contain only finitely many non-zero terms, and
that all the summands in (6.5.12) are independent random variables, satisfying (for
tn
k ≤ t)

E
(

Btn
k
−Btn

k−1

)2
= 2−n, (6.5.8)

var
((

Btn
k
−Btn

k−1

)2
)
= 2−2n. (6.5.9)

Thus
E[B]nt = t, var([B]nt ) = 2−nt, (6.5.10)

and thus
lim
n→∞

[B]nt = t, a.s.. (6.5.11)

By telescopic expansion,

B2
t −B2

0 =
∞

∑
k=1

(
B2

tk
n
−B2

tn
k−1

)
(6.5.12)

=
∞

∑
k=1

(
Btk

n
−Btn

k−1

)(
Btk

n
+Btn

k−1

)
=

∞

∑
k=1

2Btn
k−1

(
Btn

k
−Btn

k−1

)
+[B]nt .

Now set

V n
t ≡ B2

t − [B]nt =
∞

∑
k=1

2Btn
k−1

(
Btn

k
−Btn

k−1

)
. (6.5.13)

One can check easily that for any n, V n is a martingale. Then also

V n
t −V n+1

t = [B]n+1
t − [B]nt (6.5.14)
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is a martingale. If we accept that Doob’s L 2-inequality (Theorem 4.21) applies in
the continuous martingale case as well, we get that, for any T < ∞,∥∥∥∥ sup

0≤t≤T

(
[B]n+1

t − [B]nt
)∥∥∥∥

2
≤ 2 sup

0≤t≤T

∥∥[B]n+1
t − [B]nt

∥∥
2 = 2

√
T 2−n−1, (6.5.15)

where the last inequality is obtained by explicit computation. This implies that [B]nt
converges uniformly on compact intervals. ut

Remark. Lemma 6.15 plays a crucial rôle in stochastic calculus. It justifies the claim
that d[B]t = dt. If we go with this into our “discrete Itô formula (Section 4.6), this
means this justifies in a more precise way the step from Eq. (4.5.2) to Eq. (4.5.4).

Remark. The definition of the quadratic variation we adopt here via di-adic parti-
tions is different from the “true” quadratic variation that would be

sup

{
n

∑
k=1

[Btk −Btk−1 ]
2, n ∈ N, 0 = t0 < t1 < · · ·< tn = 1

}
,

which can be shown to be infinite almost surely (note that the choices of the ti can be
adapted to the specific realization of the BM). The diadic version above is, however,
important in the construction of stochastic integrals.

Remark. The fact that the quadratic variation of BM converges to t implies that the
linear variation,

∞

∑
k=1

∣∣∣Btn
k
−Btn

k−1

∣∣∣
is infinite on every interval. This means in particular that the length of a Brownian
path between any times t, t ′ is infinite.

6.6 The law of the iterated logarithm

How precisely random phenomena can be controlled is witnessed by the so-called
law of the iterated logarithm (LIL). It states (not in its most general form) that

Theorem 6.16. Let Sn = ∑
n
i=1 Xi, where Xi are independent identically distributed

random variables with mean zero and variance σ2. Then

P
[

limsup
n→∞

Sn

σ
√

2n ln lnn
= 1
]
= 1. (6.6.1)

Remark. Just as the CLT, the LIL has extensions to the case of non-identically dis-
tributed random variables. For a host of results, see [4], Chapter 10. Furthermore,
there are extensions to the case of martingales, under similar conditions as for the
CLT.
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The nicest proof of this result passes though the analogous result for Brownian
motion and then uses the Skorokhod embedding theorem. The proof below follows
[12].

Thus we want to first prove:

Theorem 6.17. Let Bt be a one-dimensional Brownian motion. Then

P
[

limsup
t→∞

Bt√
2t ln ln t

= 1
]
= 1, (6.6.2)

and

P

[
limsup

t↓0

Bt√
2t ln ln(1/t)

= 1

]
= 1. (6.6.3)

Proof. Note first that the two statements are equivalent since the two processes Bt
and tB1/t have the same law (Exercise!).

We concentrate on (6.6.3). Set h(t) =
√

2t ln ln(1/t). Basically, the idea is to
use exponentially shrinking subsequences tn ≡ θ n in such a way that the variables
Btn are essentially independent. Then, for the lower bound, it is enough to show
that along such a subsequence, the h(tn) is reached infinitely often: this will prove
that the limsup is as large as claimed. For the upper bound, one shows that along
such subsequences, the threshold h(tn) is not exceeded, and then uses a maximum
inequality for martingales to control the intermediate values of t.

We first show that limsupt↓0(· · ·) ≤ 1. For this we will assume that we can use
Doob’s submartingale inequality, Theorem 4.18 also in the continuous time case.
Define

Zt ≡ exp
(

αBt −
1
2

α
2t
)
. (6.6.4)

A simple calculation shows that Zt is a martingale (with E(Zt) = 1), and so

P
[

sup
s≤t

(Bs−αs/2)> β

]
= P

[
sup
s≤t

eαBs−α2s/2 > eαβ

]
≤ e−αβE(Zt) = e−αβ .

Let θ ,δ ∈ (0,1), and chose tn = θ n, αn = θ−n(1+δ )h(θ n), and βn =
1
2 h(θ n). Then

P

[
sup
s≤θ n

(Bs−αns/2)> βn

]
≤ n−(1+δ )(ln1/θ)−(1+δ ),

since αnβn = (1 + δ ) ln lnθ−n = (1 + δ )(lnn + ln lnθ−1). Therefore, the Borel-
Cantelli lemma implies that, almost surely, for all but finitely many values of n,

sup
s≤θ n

(
Bs−

s
2
(1+δ )θ−nh(θ n)

)
≤ 1

2
h(θ n).

It follows that
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sup
s≤θ n

Bs ≤
θ n

2
(1+δ )θ−nh(θ n)+

1
2

h(θ n) =
1
2
(2+δ )h(θ n) (6.6.5)

and so for any θ n+1 ≤ t ≤ θ n,

Bt ≤ sup
s≤θ n

Bs ≤
1
2
(2+δ )θ−1/2h(t), (6.6.6)

hence, almost surely,

limsup
t↓0

Bt/h(t)≤ 1
2

θ
−1/2(2+δ ). (6.6.7)

Since this holds for any δ > 0 and θ < 1 almost surely, it holds along any countable
subsequence δk ↓ 0, θk ↑ 1, almost surely, and

limsup
t↓0

Bt/h(t)≤ 1, a.s.. (6.6.8)

To prove the converse inequality, consider the event

An ≡ {Bθ n −Bθ n+1 > (1−θ)1/2h(θ n)}.

The events are independent, and their probability can be bounded easily using that
for any u > 0,

1
2π

∫
∞

u
e−x2/2dx≥ 1

u
√

2π
e−u2/2 (1−2u−2) . (6.6.9)

This implies that

P[An] =
1√

2π(θ n(1−θ))

∫
∞

(1−θ)1/2h(θ n)
exp
(
− x2

2θ n(1−θ)

)
dx (6.6.10)

=
1√
2π

∫
∞

θ−n/2h(θ n)
exp
(
−x2

2

)
dx

≥
exp
(
−θ−nh(θ n)2/2

)
√

2πθ−n/2h(θ n)

(
1−2θ

nh(θ n)−2)≡ γn.

Now θ−nh(θ n)2 = 2lnn+2ln ln(1/θ), and so

γn ≥C
1

n
√

lnn
,

so that ∑n γn =+∞; hence, the second Borel-Cantelli lemma implies that, with prob-
ability one, An happens infinitely often, i.e. for infinitely many n,

Bθ n ≥ (1−θ)1/2h(θ n)+Bθ n+1 .
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Now, the upper bound (6.6.8) also holds for −Bt , so that, almost surely, for all but
finitely many n,

Bθ n+1 ≥−h(θ n+1).

But by some simple estimates,

h(θ n+1) = θ
1/2h(θ n)

√
ln ln(θ−nθ−1)

ln ln(θ−n)
≤ θ

−1/2h(θ n)
(
1+O(lnθ

−1/n)
)
,

so that, for infinitely many n,

Bθ n ≥
(
(1−θ)1/2−2θ

1/2
)

h(θ n).

This implies that

limsup
n→∞

Bθ n/h(θ n)≥
(
(1−θ)1/2−2θ

1/2
)
, (6.6.11)

for all θ > 0; hence,
limsup

t→∞

Bt/h(t)≥ 1, (6.6.12)

which completes the proof. ut
From the LIL for Brownian motion one can prove the LIL for random walk using

the Skorokhod embedding.

Proof. (of Theorem 6.16). From the construction of the Skorokhod embedding, we
know that we may choose Sn(ω) =BTn(ω). The strong law of large numbers implies
that Tn/n→ 1, a.s., and so also h(Tn)/h(n)→ 1, a.s.. Thus the upper bound follows
trivially:

limsup
n→∞

Sn

h(n)
= limsup

n→∞

BTn

h(Tn)
≤ limsup

t→∞

Bt

h(t)
= 1. (6.6.13)

To prove the complementing lower bound, note that by Kolmogorov’s 0− 1-law,
ρ ≡ limsupn→∞

Sn
h(n) is almost surely a constant (since the limsup is measurable with

respect to the tail-σ -algebra. Assume ρ < 1; then, there exists n0 < ∞, such that for
all n ≥ n0, BTn

h(Tn)
< ρ . We will show that this leads to a contradiction with (6.6.2)

of Theorem 6.17. To show this, we must show that the Brownian motion cannot
rise too far in the intervals [Tn,Tn+1]. But recall that Tn+1 is defined as the stopping
time at the random interval [α,β ] of the Brownian motion Bt . We will want to show
that in no such interval can the BM climb by more than ε

√
2n ln lnn. An explicit

computation shows that

φ(x)≡ P

[
sup
t≤T1

Bt > x

]
= γ

∫ 0

−∞

dF−(a)
∫

∞

x
dF+(b)(b−a)

−a
x−a

, (6.6.14)

where the ratio −a
x−a is the probability that the BM reaches x before a (i.e. before T1)

(the logic of the formula is that for Bt to exceed x before T1, the random variable β
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must be larger than x, and then Bt may not hit the lower boundary before reaching
x). Now we will be done by Borel-Cantelli, if

∑
n

φ(ε
√

2n ln lnn)< ∞,

or in fact the stronger but simpler condition

∑
n

φ(ε
√

n)< ∞ (6.6.15)

holds for all ε > 0. For than, except finitely often,

sup
Tn<t<Tn+1

Bt ≤ h(n)(ρ + ε),

which implies

limsup
t→∞

Bt

h(t)
< ρ + ε,

which can be made smaller than 1, thus contradicting the result for BM.
We are left we checking (6.6.15). We may decompose φ as

Φ(x) = γ

∫ 0

−∞

dF−(a)
∫

∞

x
dF+(b)(b− x)

−a
x−a

(6.6.16)

+ γ

∫ 0

−∞

dF−(a)
∫

∞

x
dF+(b)|a| ≡ φ1(x)+φ2(x).

Now ∑n φ2(ε
√

n) < ∞ if
∫

∞

0 φ2(ε
√

x) < ∞. Recalling the formula for γ , (6.3.7),
we see that∫

∞

0
φ2(ε
√

x)dx =
∫

∞

0
(1−F(ε

√
x))dx = ε

−2
∫

∞

0
(1−F(t))tdt < E(X2)< ∞.

To deal with φ1, use that x−a > x, and then as before

φ1(x)≤ x−1
∫

∞

x
(b− x)dF+(x)

Comparing the sum to an integral, we must check the finiteness of∫
dx

1
ε
√

x

∫
∞

ε
√

x
dF+(b)(b− ε

√
x) = 2ε

−2
∫

dt
∫

∞

t
dF+(b)(b− t),

which again hold since F has finite second moment. This concludes the proof. ut

Remark. On can show more than what we did. For one thing, not only is limsupt Bt/h(t)=
+1 (and hence by symmetry liminft Bt/h(t) = −1), a.s., it is also true that the
set of limit points of the process Bt/h(t) is the entire interval [−1,1]; i.e., for any
a ∈ [−1,1], there exist subsequences tn, such that limn Btn/h(tn) = a.
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The following theorem, called Lévy’s theorem , is closely related to the LIL.

Theorem 6.18. Let B be Brownian motion. Then

P

(
limsup

δ↓0
sup

t∈[0,1]

Bt+δ −Bt√
2δ | lnδ |

= 1

)
= 1. (6.6.17)

Remark. This theorem implies in particular that Brownian motion is almost surely
Hölder continuous with exponent α , i.e.

P

(
limsup

δ↓0
sup

t∈[0,1]
δ
−α |Bt+δ −Bt |= 0

)
= 1, (6.6.18)

for any α < 1/2. This is a basic property of Brownian motion that one should mem-
orise. But Theorem 6.18 is sharper than that. It states that almost surely, on any
compact interval, there will be points where BM increases like

√
δ | lnδ |, faster

than what one would guess from the LIL, which states that at any given point, it
increases like

√
δ ln | lnδ |!

Proof. The proof we give her is due to Lévy and differs from that of the LIL in
that it does not use maximum inequalities for the upper bound, but a new technique,
called chaining. We first prove the lower bound. For ε ∈ (0,1), Here it is enough to
exhibit candidates for the highly singular behaviour:

P
(

max
k≤2n

(
Bk2n −B(k−1)2n

)
≤ (1− ε)

√
21−n ln2n

)
(6.6.19)

=
[
1−P

(
B2−n > (1− ε)

√
21−n ln2n

)]2n

=
[
1−P

(
B1 > (1− ε)

√
2ln2n

)]2n

≤
[

1− 1√
2π2n ln2

exp
(
−(1− ε)2 ln2n)]2n

≤ exp

(
−2−n(1−ε)2+n
√

2π2n ln2

)
∼ exp

(
−22εn) ,

which tends to zero and is summable over n, for any ε > 0. By the first Borel-
Cantelli lemma, this implies that the event considered can happen only for finitely
many values of n, almost surely. Thus

P

(
limsup

δ↓0
sup

t∈[0,1]

Bt+δ −Bt√
2δ | lnδ |

≥ 1

)
= 1.

The lower bound is more tricky and uses an interesting technique of chaining.
We first establish that the required conditions hold on a 2−n grid. By convention we
set h(ε)≡

√
2ε| lnε|. Then we estimate
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P
(

max
j+ ji− j2≤2εn, ji≤2n

h( j2−n)
∣∣B j22−n −B j12−n

∣∣> 1+2ε

)
(6.6.20)

≤ 2(1+ε)nP
(∣∣B j2−n

∣∣> (1+2ε)h( j2−n)
)

= 2(1+ε)nP
(
|B1|> (1+ ε)

√
2ln2n(1−ε)

)
≤ 2(1+ε)n 2√

2π2n ln2
exp(−(1+2ε)2 ln2n(1−ε))≤ 2−2εn.

This bound is summable over n, so that, by the first Borel-Cantelli lemma, almost
surely, there exists an n(ω)< ∞, such that for all n≥ n(ω),

max
j+ ji− j2≤2εn, ji≤2n

h( j2−n)
∣∣B j22−n −B j12−n

∣∣≤ 1+ ε.

We may chose n(ω) in such a way that 2(n+1)ε−1 > 2 and 2−n(1−ε) < 1/e, and

∞

∑
m=n+1

h(2−m)≤ εh(2−(1−ε)(n+1)), (6.6.21)

for all n > n(ω).
Now let t2− t1 in [0,1] be such that δ = t2− t1 < 2−n(ω)(1−ε) and chose n≥ n(ω)

such that 2−(n+1)(1−ε) ≤ δ ≤ 2−n(1−ε). Obviously, we can represent the numbers ti
in a binary representation as

t1 = j12−n−2−n1 −2−n2 − . . . ,

t2 = j22−n +2−m1 +2−m2 = . . . .

By our estimates, we have then the bound

|Bt2 −Bt1 | ≤ |B j12−n −Bt1 |+ |B j22−n −Bt2 |+ |B j12−n −B j22−n | (6.6.22)

≤ 2 ∑
m>n

(1+ ε)h(2−m)+(1+ ε)h( j2−n)

≤ 2(1+ ε)εh(2−(n+1)(1−ε))+(1+ ε)h( j2−n)

≤ (1+4ε)h(δ ).

This provides the upper bound and concludes the proof. ut
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0−1-law
Kolmogorov’s, 59

Lp-space, 18
L p-space, 18
Π -system, 4
λ -system, 4
σ -additive, 6
σ -algebra, 1

Borel, 3
generated, 3

absolute continuity, 22
absolutely integrable, 15
adapted process, 54
algebra, 1

Baire σ -algebra, 14
Baire function, 14
Banach space, 4
Borel measure, 11
Borel-σ -algebra, 3
Brownian motion, 48, 104

construction, 104

Carathéodory’s theorem, 6
Cauchy sequence, 3
central limit theorem

for martingales, 69
Chapman-Kolmogorov equations, 51, 112
class, 1
closed, 2
concentration of measure, 72
conditional expectation, 29
conditional probability, 36
coupling, 100
cylinder set, 41

density, 22

Dirichlet form, 90
Dirichlet principle, 92
Dirichlet problem, 85
Donsker’s theorem, 108
Doob decomposition, 65, 83
Doob’s super-martingale inequality, 77
Dynkin’s theorem, 4

equilibrium measure, 89
equilibrium potential, 88
equivalence (of measures), 22
ergodic, 96
ergodic theorem, 99
essential supremum, 23

Fatou’s lemma, 16
filtered space, 53
filtration, 53
filtrations

natural, 54
Fubini-Lebesgue theorem, 21
Fubini-Tonnelli theorem, 21

Gaussian density, 46
Gaussian process, 46
generator, 82
Gibbs measure, 51
Green identities, 91
Green kernel, 88

Hölder inequality, 19
Haar functions, 105
harmonic function, 84
heat kernel, 114

independent random variables, 45
index set, 39
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indicator function, 1
induced measure, 13
inequality

Hölder, 19
inequality, 19
Jensen, 19
maximum, 66
upcrossing, 57

initial distribution, 49
inner regular, 11
integrable, 15
invariance principle, 108
invariant

distribution, 80, 97
measure, 80

invariant measure, 90, 97
Ising model, 51
Itô formula, 67, 115

Jensen inequality, 19

Kolmogorov’s 0−1-law, 59
Kolmogorov’s LLN, 61
Kolmogorov-Daniell theorem, 42

Lévy’s downward theorem, 60
Lévy’s theorem, 122
Laplace transform, 47
law of large numbers, 61
law of the iterated logarithm, 117
Lebesgue decomposition theorem, 26
Lebesgue integral, 15
Lebesgue measure, 11
Lebesgue’s dominated convergence theorem,

16
Lindeberg condition, 69
local specification, 52
Lousin space, 4

marginals, 42
finite dimensional, 42

Markov chain, 49
Markov inequality

exponential, 73
Markov process, 49, 79

continuous time, 112
stationary, 79

Markov property, 51
strong, 80

martingale, 53
convergence theorem, 57
problem, 82
sub, 54
super, 54

transform, 55
martingale difference sequence, 56
maximum inequality, 62, 66
maximum principle, 85
measurable space, 2
measure, 2

σ -finite, 2
equilibrium, 89
finite, 2
invariant, 90, 97
probability, 2
Wiener, 107

measure space, 2
metric, 3
metric space, 3
Minlowski inequality, 19
monotone class theorem, 13
monotone convergence theorem, 15

norm, 4
normed vector space, 4

open, 2
outer measure, 7
outer regular, 11

Poisson kernel, 88
Polish space, 4
positive recurrent, 96
potential

equilibrium, 88
pre-T -σ -algebra, 74
previsible process, 55
probability

regular conditional, 37
probability measure, 2
process

adapted, 54
product space, 5
product topology, 5

quadratic variation, 116

Radon measure, 12
Radon-Nikodým derivative, 22
Radon-Nikodým theorem, 22
random variable, 13
random walk, 103
recurrence, 96
recurrent

positive, 96
regular conditional probability, 37, 52

sample path, 40
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set-function, 6
simple function, 15
Skorokhod embedding, 110
space, 1

Banach, 4
complete, 3
filtered, 53
Hausdorff, 3
Lousin, 4
measurable, 2
metric, 3
normed, 4
Polish, 4
topological, 2

special cylinder, 41
state space, 39
stationary process, 79
statistical mechanics, 51
stochastic integral, 55
stochastic process, 39
stopping time, 74
strong Markov property, 80

supremum norm, 6

time
continuous, 39
discrete, 39

topological space, 2
topology, 2
transience, 96
transition kernel, 49

stationary, 79

uniform integrability, 16, 58
upcrossing, 56

inequality, 57

variational principle
Dirichlet, 92

version (of conditional expectation), 29

white noise, 45
Wiener measure, 107
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