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The numeraire portfolio in discrete time:
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1 Introduction and summary

An important subject of financial mathematics is adequate pricing of financial deriva-
tives, in particular options. In the modern theory (see e.g. Duffie 1992), the historical
concept based on expectations of discounted quantities (the present value principle)
is replaced by the concept of deflators, numeraires (inverse deflators) or the applica-
tion of the present value principle after a change of measure. In this paper we focus
on the concept of the numeraire portfolio, present its definition, its relation to various
valuation concepts and its role in important applications. When the value process of
a numeraire portfolio is used as a discount process, the relative value processes of all
other portfolios with respect to it will be martingales or at least supermartingales (see
Vasicek 1977, Long 1990, Artzner 1997, Bajeux-Besnainou and Portait 1997, Korn &
Schäl 1999, Schäl 2000a, Becherer 2001, Platen 2001, 2006, Christensen and Larsen
2007, Karatzas & Kardaras 2007).

We will study a financial market with small investors which is free of arbitrage
opportunities but incomplete (although we will see that much is valid under a weaker
assumption than the no arbitrage assumption). Then in discrete time, one has several
choices for an equivalent martingale measure (EMM) needed to value derivatives. In
continuous time an EMM exists under more restrictive conditions. It is known (see
Harrison & Kreps 1979) that each EMM corresponds to a consistent price system.
Thus in incomplete markets, no preference-independent pricing of financial derivatives
is possible. In the present paper, the unique martingale measure Q

∗ is studied which
is defined by the concept of the numeraire portfolio (see Korn & Korn 2001, Section
3.7). The choice of Q

∗ can be justified by a change of numeraire in place of a change
of measure. Uniqueness is obtained by the fact that the EMM after the change of
numeraire should be the original real-world probability measure.

It is known that in many cases one can get a numeraire portfolio from the growth
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optimal portfolio (GOP) which maximises the expected utility when using the log-
utility. Utility optimisation is now a classical subject. Recent papers with the log-utility
are Goll & Kallsen 2000, Kallsen 2000, Goll and Kallsen 2003.

When looking for a numeraire portfolio (in the strict martingale sense), we are inter-
ested in optimal portfolios which can be chosen from the interior of the set of admissi-
ble portfolios. Also for more general utilities, optimal ’interior’ portfolios can be used
to define equivalent martingale measures (see Karatzas & Kou 1996, Schäl 2000a,b).

In order to get full equivalence of a numeraire portfolio and a GOP, one has to
generalise the concept by defining a weak numeraire portfolio introduced by Becherer
2001 under the name ’numeraire portfolio’. Such a portfolio defines a supermartingale
measure in the above sense.

The paper is laid out as follows. We consider a discrete-time market. It turns out that
all the ideas can be explained in a simple one-period model starting in 0 and finishing at
the time-horizon T = 1. In fact, for a log-utility investor, the optimal strategy is myopic
even for market models where optimal power-utility strategies are not guaranteed to be
myopic (see Hakansson & Ziemba, 1995). Given the solution to a one-period model,
the form of the optimal strategy for a multi-period model is obvious. Therefore we will
restrict to such a (0,1)-period. Then strategies ξ and portfolios π can be described by
d-dimensional vectors. In fact when considering general semi-martingale models, it is
sufficient (in most passages) to replace the inner products ξ

�ΔS or π

�
R by stochastic

integrals ξ · S or π · R, where S describes the prices and R the cumulative returns.
Except for the restriction to a (0, 1)-period, we try to choose the framework as gen-

eral as possible where the recent paper by Karatzas & Kardaras 2007 will serve as
a model. In particular, we accept the framework with general convex constraints.

We then consider various valuation and optimisation concepts that are directly re-
lated to the numeraire portfolio. Among them are the GOP, the benchmark portfolio,
the value preserving portfolio and of course the valuation with the help of EMMs. This
is followed by existence considerations for (weak) numeraire portfolios. Finally, we
give two important applications of the numeraire portfolios in insurance mathematics
and in portfolio optimisation.

2 The one-period market setting

On the market an investor can observe the prices of 1 + d assets at the dates t = 0, 1
which are described by S

0
t and St = (S1

t , . . . , S
d
t )
�

t = 0, 1. [For any vector x we write
x

� for the transposed vector and x

�
y for the inner product of x, y ∈ R

d thought of as
column vectors.]

Hence our time horizon will be T = 1. Then S

0
0 and S0 are deterministic, S

0
1 is

a random variable, S1 is a random vector on a probability space (Ω, F, P ) and S

0
t is

positive.
One of these assets will play a special role for which we will choose S

0. But any
other component S

k can be chosen in place of S

0. An important situation will be
the case where the asset with price S

0 describes the bank account (or money market)
and the other d assets are stocks. This is a very useful interpretation and we will use
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it. The interpretation of S

0 as money market leads to further convenient interpreta-
tions. But remember that, mathematically, all price components will satisfy the same
assumptions.

Given an initial capital V0 > 0, one can invest in the assets described by S by
choosing some ξ ∈ R

d which describes the strategy in the present simple case with
T = 1. The number ξ

k represents the number of shares for stock k bought and held
by the investor at time 0. The total amount invested in stocks is ξ

�
S0 =

∑d
k=1 ξ

k
S

k
0 .

For satisfying the self-financing condition, the remaining wealth of the initial value V0,
namely ξ

0 := V0−ξ

�
S0 is invested in the bank account. Then V0 = V

ξ
0 =

∑d
k=0 ξ

k
S

k
0 .

Upon defining ΔX := X1 −X0 for X being defined for t = 0, 1, the value V

ξ
1 of ξ at

time 1 is described by

ΔV

ξ = ξ

0ΔS

0 + ξ

�ΔS

(
=

d∑
k=0

ξ

k(Sk1 − S

k
0 )

)
. (2.1)

Upon defining discounted quantities S̆t = (S̆1
t , . . . , S̆

d
t )
� and V̆t by

S̆

k
t := S

k
t / S

0
t , V̆

ξ
t := V

ξ
t / S

0
t , (2.2)

we easily obtain
ΔV̆

ξ = ξ

�ΔS̆ . (2.3)

This simple relation is the mathematical reason for using “discounted” quantities.
Since we might as well work in discounted terms, from now on we assume that S

0
t ≡ 1

as is common in Mathematical Finance (see Harrison & Kreps 1979). Then ΔS

0 ≡ 0
and one can dispense with ξ

0. Starting with capital V0 = x > 0 and investing according
to strategy ξ, the investor’s value at time 1 is V

ξ
1 (x) := x+ ξ

�ΔS. For any V0 = x > 0

and any strategy ξ, V

ξ
1 (x) = x + ξ

�ΔS is called admissible if V

ξ
1 (x) ≥ 0. The return

R

k for stock k is defined by

S

k
1 = S

k
0 · (1 + R

k) . (2.4)

Then we can write V

ξ
1 (x) = x · (1 +

∑d
k=1(ξ

k
S

k
0 /V0)R

k). Defining π ∈ R
d as the

vector with components π

k = ξ

k
S

k
0 /V0, π

k signifies the proportion of V0 invested in
stock k and we have

V

ξ
1 (x) = x · (1 + π

�
R) =: x · V π

1 . (2.5)

The equivalent of “V

ξ
1 (x) > 0 (≥ 0)”, for x > 0, is “V

π
1 = 1 + π

�
R > 0 (≥ 0)”. This

simple representation is the reason for our restriction to the case x = 1 in the sequel
where we write V

π
1 in place of V

ξ
1 (1). By use of π, admissibility is independent of the

initial wealth x and thus easier to handle.
We will now introduce constraints, where Karatzas & Kardaras 2007, Kardaras 2006

will serve as a model. For the sake of motivation, we will start with the following
example.

Example A. The case where the investor is prevented from selling stock short or bor-
rowing from the bank can be describe by ξ

k ≥ 0, 1 ≤ k ≤ d, and ξ

0 := V0− ξ

�
S0 ≥ 0.
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This condition is equivalent to π

k ≥ 0, 1 ≤ k ≤ d, and π

0 := 1 −
∑d
k=1 π

k ≥ 0. By
setting C := {π ∈ R

d : π

k ≥ 0 and
∑d

k=1 π

k ≤ 1}, the prohibition of short sales and
borrowing is translated into the requirement π ∈ C.

Definition 2.1. Consider an arbitrary convex closed set C ⊂ R
d with 0 ∈ C. The

admissible value V

π
1 is called C-constrained, if π ∈ C. Here the following set

Č := ∩a>0 aC (2.6)

is called the set of cone points (or recession cone) of C.

Note in particular that the “safe” portfolio π = 0 is always admissible.

Example A (continuation). Here we have aC = {aπ ∈ R
d : π

k ≥ 0 and
∑d

k=1 π

k ≤

1} = {ϑ ∈ R
d : ϑ

k ≥ 0 and
∑d
k=1 ϑ

k ≤ a}. This leads to the relation Č = {0} ⊂ R
d.

The following example describes the positivity constraints for admissibility.

Example B (Natural Constraints).

C := Θ := {ϑ ∈ R
d ; 1 + ϑ

�
R ≥ 0 a.s.} = {ϑ ∈ R

d ; 1 + ϑ

�
z ≥ 0 ∀z ∈ Z},

where Z is the support of R, i.e. the smallest closed subset B of R
d such that P [R ∈

B] = 1.

The representation of Θ by means of Z is easily proved (see Korn and Schäl, 1999
Lemma 4.3a).

We use “≥”in place of “>” in the definition of Θ to keep the set Θ closed. Then
aC = {aπ ∈ R

d; 1 + π

�
R ≥ 0 a.s.} = {ϑ ∈ R

d; a + ϑ

�
R ≥ 0 a.s.} and Č =

∩a>0 aC = {ϑ ∈ R
d; ϑ

�
R ≥ 0 a.s.}.

The requirement of admissibility of V

π
1 is exactly what corresponds to π being Θ-

constrained.
Consider the special case d = 1 and the no-arbitrage condition: −α, β ∈ Z for some

α, β > 0. Then again Č = {0} ⊂ R
1. We shall always assume that C is enriched with

the natural constraints, i.e. C ⊂ Θ. Otherwise, we can replace C by C ∩Θ.

Example C. The case where the investor is prevented from selling stock short but not
from borrowing from the bank can be described by ξ

k ≥ 0, 1 ≤ k ≤ d. This condition
is equivalent to π

k ≥ 0, 1 ≤ k ≤ d. By setting C := {π ∈ R
d : π

k ≥ 0}, the prohibition
of short sales is translated into the requirement π ∈ C. Here C is a cone and thus we
get Č = C = aC for a > 0.

In the sequel we will write

Π := {π ∈ C ; 1 + π

�
R > 0 a.s.} . (2.7)

The elements of Π will be called portfolios; we make this distinction with the corre-
sponding notion of strategy, denoted by ξ.
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Lemma 2.2. For ρ ∈ C and ϑ ∈ Č we have ρ + ϑ ∈ C.

Proof (See Karatzas & Kardaras 2007). We know that aϑ ∈ C for all a > 0. Then
(1− 1

a )ρ + 1
aa ϑ = (1− 1

a )ρ + ϑ ∈ C by the convexity of C. But C is also closed, and
so ρ + ϑ ∈ C. �

3 Weak numeraire portfolio

In general, by “numeraire” one understands any strictly positive random variable Y

such that it acts as an “inverse deflator D = Y

−1”, e.g. a stochastic discount factor,
for the values V

π
1 . Then we see our investment according to portfolio π relative to Y ,

giving us a wealth of V

π
1 /Y . There Y may not even be generated by a portfolio.

Definition 3.1. A portfolio ρ ∈ Π will be called weak numeraire portfolio, if for the
relative value defined as V

π
1 /V

ρ
1 one has: E [V π

1 /V

ρ
1 ] ≤ 1 (= V

π
0 /V

ρ
0 ) for every port-

folio π.

The qualifier “weak” is used because we have “≤” in place of “=” in the definition
above. Since 0 ∈ Π, one has E [1/V

ρ
1 ] ≤ 1 (= 1/V

ρ
0 ). Thus V

π
t /V

ρ
t and 1/V

ρ
t are

positive supermartingales. The definition in this form first appears in Becherer 2001.

Proposition 3.2. If ρ1 and ρ2 are weak numeraire portfolios, then V

ρ1
1 = V

ρ2
1 a.s.

Proof. We have both E[V ρ1
t /V

ρ2
t ] ≤ 1 and E[V ρ2

t /V

ρ1
t ] ≤ 1 which implies that

V

ρ1
1 = V

ρ2
1 a.s. �

Therefore the value generated by weak numeraire portfolios is unique. Moreover
ρ

�
1 R = ρ

�
2 R a.s. In this sense, the weak numeraire portfolio is unique, too.

Of course, if ρ satisfies the requirements of the definition above, V

ρ
1 can act as

a numeraire in the sense of this discussion. For a weak numeraire portfolio ρ, V

ρ
1 is

in a sense the best tradable benchmark: whatever anyone else is doing, it looks as
a supermartingale (decreasing in the mean) through the lens of relative value to V

ρ
1 .

An obvious example for a numeraire would be Y1 = S

0
1 before assuming S

0
t ≡ 1.

Obviously the relative values do not depend on the discount factor since V̆

π
1 /V̆

ρ
1 =

V

π
1 /V

ρ
1 = Y

−1
V

π
1 /Y

−1
V

ρ
1 . Now we again see that there was no loss of generality

in considering discounted values. It will turn out that ρ satisfies certain optimality
properties. Thus, when using V

ρ
t as inverse deflator in place of the classical S

0
t , we

take into account that an investment in the bank account may be far from optimal.
The following relation will be used for sake of motivation (see Kardaras 2006):

V

π
1 /V

ρ
1 = (1 + ρ

�
R)−1(1 + π

�
R) = 1 + (π − ρ)�R

ρ

where R

ρ = (1 + ρ

�
R)−1

R is the return in an auxiliary market. Therefore the relative
value can be seen as the usual value generated by investing in the auxiliary market. If
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E[π�R] ∈ [−1,∞] is called the rate of return or drift rate, then

r(π|ρ) := E[(π − ρ)�R

ρ] (3.1)
= E[(1 + ρ

�
R)−1 · (π − ρ)�R] = (π − ρ)�E[(1 + ρ

�
R)−1

R]

is the rate of return of the relative value process V

π
t /V

ρ
t . Since E[V π

1 /V

ρ
1 ] = 1+r(π|ρ),

we now obtain the following lemma.

Lemma 3.3. ρ is a weak numeraire portfolio if and only if

r(π|ρ) ≤ 0 for every π ∈ Π . (3.2)

It is obvious that if (3.2) is to hold for C, then it must also hold for the closed convex
hull of C, so it was natural to assume that C is closed and convex if we want to find the
portfolio ρ.

The market may show some degeneracies. This has to do with linear dependence
that some stocks might exhibit and which are not excluded. As a consequence, there
may be seemingly different portfolios producing exactly the same value. Thus they
should then be treated as equivalent. To formulate this notion, consider two differ-
ent portfolios π1 and π2 producing exactly the same value, i.e. π

�
1 R = π

�
2 R a.s.

Now (π2 − π1)
�

R = 0 a.s. is equivalent to (π2 − π1)
�

z for all z ∈ Z where Z is
again the support of R. Let L be the smallest linear space in R

d containing Z and
L⊥ = {ϑ ∈ R

d; ϑ ⊥ L} its orthogonal complement.

Lemma 3.4. (a) π

�
1 R = π

�
2 R a.s. is equivalent to π2 − π1 ∈ L

⊥
.

(b) ϑ ∈ R
d \ L⊥ if and only if P [ϑ�R �= 0] > 0.

Two portfolios π1 and π2 satisfy π2 − π1 ∈ L
⊥ if and only if V

π1

1 = V

π2

1 a.s. It is
convenient to assume that L⊥ ⊂ C. So the investor should have at least the freedom
to do nothing; that is, if an investment leads to absolutely no profit or loss, one should
be free to make it. In the non-degenerate case L = R

d this just becomes 0 ∈ C.
The natural constraints Θ can easily be seen to satisfy this requirement as well as the
requirements of closedness and convexity.

Definition 3.5. Let us define the set I of arbitrage opportunities to be the set of port-
folios ϑ such that

P [ϑ�R > 0] > 0 and P [ϑ�R ≥ 0] = 1 ,

i.e., the set of portfolios ϑ ∈ R
d \ L⊥ such that ϑ

�
R ≥ 0 a.s.

4 The NUIP condition I ∩ Č = ∅

The condition I ∩ Č = ∅ will play an important role and will be called No Unbounded
Increasing Profit (NUIP) condition as by Karatzas and Kardaras 2007. The qualifier
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“increasing” stems from the fact that ϑ

�
R ≥ 0 a.s. for ϑ ∈ I . The qualifier “un-

bounded” reflects the following fact:
Suppose that ϑ ∈ I ∩ Č and V

ϑ
1 = 1+ϑ

�
R where ϑ

�
R ≥ 0 a.s. and P [ϑ�R > 0] >

0. Since ϑ ∈ Č, we know that aϑ ∈ C for all a > 0. Moreover aϑ

�
R ≥ 0 a.s. and

{aϑ

�
R, a > 0} is unbounded on the set ϑ

�
R > 0 with positive measure.

Now suppose that ϑ ∈ I ∩ Č and ρ is a weak numeraire portfolio, then

E[V aϑ
1 /V

ρ
1 ] = E[1/V

ρ
1 ] + aE[ϑ�R/V

ρ
1 ] where E[ϑ�R/V

ρ
1 ] > 0 .

Thus E[V aϑ
1 /V

ρ
1 ] is unbounded in a, in particular E[V aϑ

1 /V

ρ
1 ] > 1 for large a which is

a contradiction. Therefore we can obtain the following result:

Proposition 4.1. The NUIP condition I ∩ Č = ∅ is necessary for the existence of
a weak numeraire portfolio.

Note in particular that the NUIP condition is far weaker than the no arbitrage condi-
tion.

Example A (continuation). In the case C := {π ∈ R
d : π

k ≥ 0 and
∑

k π

k ≤ 1}, we
know that Č = {0} ⊂ R

d.
Since I ⊂ R

d \ L⊥, in particular 0 /∈ I, the NUIP condition I ∩ Č = ∅ is always
satisfied.

Example B (Natural Constraints continuation). In the case C := Θ := {ϑ ∈ R
d; 1 +

ϑ

�
R ≥ 0 a.s.} we have Č = {ϑ ∈ R

d; ϑ

�
R ≥ 0 a.s.} ⊃ I. Here the NUIP condition

I ∩ Č = ∅ amounts to the no arbitrage condition I = ∅.

Example C (continuation). In the case C := {π ∈ R
d : π

k ≥ 0} we have Č = C.
Here the NUIP condition I ∩ Č = ∅ amounts to the no arbitrage condition I ∩ C = ∅.

We now present an example where E[log V

π
1 ] = ∞ for nearly all π, but where

V

π
1 /V

ϑ
1 is bounded in π for nearly all ϑ and where a unique numeraire portfolio exists.

Example D (see Kardaras 2006). Consider the case where d = 1 and

P [R ∈ dx] ∝
(
1(−1,1] + x

−1(log{1 + x})−2 · 1(1,∞)

)
dx .

Since the support Z of R is [−1,∞), we have Θ = [0, 1] =: C. Now the expected
log-utility is

E[log V

π
1 ] = E[log(1 + πR)] = ∞ for π ∈ (0, 1]

since
∫∞
1 log(1 + πx)x−1(log(1 + x))−2

dx = ∞ which easily follows by use of the
substitution y = log(1 + x). Obviously E[log V

π
1 ] = 0 for π = 0.

However if we consider relative values V

π
1 /V

ϑ
1 = 1+πR

1+ϑR , then V

π
1 /V

ϑ
1 is bounded

since
min

(
π

ϑ

,

1− π

1− ϑ

)
≤ V

π
1 /V

ϑ
1 ≤ max

(
π

ϑ

,

1− π

1− ϑ

)
.
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Moreover, if we fix ϑ ∈ (0, 1) and define

g(π) = E[log(V π
1 /V

ϑ
1 )] = E

[
log

(
1 + πR

1 + ϑR

)]
,

then we obtain for π ∈ (0, 1)

g

′(π) = E

[
R

1 + πR

]

where g

′(0+) = ∞ and g

′(1−) = −∞. Therefore there exists a unique ρ ∈ (0, 1) such
that g

′(ρ) = 0. As a consequence we obtain the relation

E[V π
1 /V

ρ
1 ] = E

[
1 + πR

1 + ρR

]
= 1 + (π − ρ)E

[
R

1 + ρR

]
= 1

for any π ∈ Θ. Then ρ will be called a numeraire portfolio (in the strict sense). The
portfolio ρ is computed by Kardaras as ρ

∼= .916.
Although the expected log-utility is infinite, the numeraire portfolio does not put all

the weight on the stock. Finally we know that ρ is the unique portfolio such that

E[log(V ρ
1 /V

ρ
1 )] = sup

π∈Π
E[log(V π

1 /V

ρ
1 )] = 0 .

5 The weak numeraire portfolio and the growth-
optimal portfolio

Definition 5.1. (a) A portfolio ρ ∈ Π is log-optimal if E[log V

π
1 ] ≤ E[log V

ρ
1 ] for

every π ∈ Π.

(b) A portfolio ρ ∈ Π will be called growth optimal portfolio (GOP) [or relatively
log-optimal] if E[log(V π

1 /V

ρ
1 )] ≤ 0 for every π ∈ Π.

The present concept of GOP is used e.g. by Christensen & Larsen 2007, the name
(relatively) log-optimal is used e.g. by Karatzas and Kardaras 2007. Of course, if the
portfolio ρ is log-optimal with E[log V

ρ
1 ] <∞, then ρ is also a GOP and we will prefer

the notation GOP in that case. The two notions coincide if supπ∈Π E[log V

π
1 ] < ∞.

In the Example D above, this condition fails and almost every portfolio is log-optimal.
But we have existence of a unique numeraire portfolio which is the unique GOP.

Theorem 5.2. A portfolio is a weak numeraire portfolio if and only if it is a GOP.

Note that this result shows in particular that the existence of a weak numeraire port-
folio implies the existence of a GOP and vice versa.

Proof of Theorem 5.2. (See Becherer 1999, Christensen and Larsen 2007, Bühlmann
and Platen 2003.)
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(i) Suppose ρ is numeraire portfolio. Then we have by Jensen’s inequality

E[log(V π
1 /V

ρ
1 )] ≤ log (E[V π

1 /V

ρ
1 ]) ≤ log 1 = 0 .

(ii) Suppose that ρ is GOP and π is an arbitrary portfolio. Then V

ε
1 := (1 − ε)V ρ

1

+εV

π
1 is the value of some portfolio where V

ε
1 − V

ρ
1 = ε(V π

1 − V

ρ
1 ). From

1− t

−1 ≤ log t for t > 0 we obtain

0 ≥ ε

−1 · E[log(V ε
1 /V

ρ
1 )] ≥ ε

−1 · E[(V ε
1 − V

ρ
1 )/V

ε
1 ] = E[(V π

1 − V

ρ
1 )/V

ε
1 ].

From

−2 ≤ 2
x− y

x + y

≤
x− y

(1− ε)y + εx

↑
x

y

− 1 for 1

2
≥ ε ↓ 0 (where x, y > 0)

we finally get E[V π
1 /V

ρ
1 ] ≤ 1 from the monotone convergence theorem.

�

Proposition 5.3. The NUIP condition I ∩ Č = ∅ is necessary for the existence of
a GOP.

Proof. Suppose that ρ is a GOP and suppose that ϑ ∈ I ∩ Č . Since ϑ ∈ I, we know
that ϑ

�
R ≥ 0 a.s. and P [ϑ�R > 0] > 0. Now we conclude from Lemma 2.2 that

ρ+ϑ ∈ C where E[ϑ�R/V

ρ+ϑ
1 ] > 0 and thus E[log(V ρ

1 /V

ρ+ϑ
1 )] ≤ log E[V ρ

1 /V

ρ+ϑ
1 ] =

log{1− E[ϑ�R/V

ρ+ϑ
1 ]} < 0. Now we have a contradiction to the optimality of ρ. �

However, one can also directly derive Proposition 5.3 from Theorem 5.2 and Propo-
sition 4.1 without a proof.

6 Existence of weak numeraire portfolios

In this section we will show that the NUIP condition is also sufficient for the existence
of a weak numeraire portfolio. This in particular shows that valuation via discounting
by the wealth process of a weak numeraire can even be performed in situations where
the no arbitrage condition is not satisfied. This was already emphasised by Platen 2006.
For getting the existence result we need some technical notations and results.

Definition 6.1. For f : R
d �→ (0, 1] we write f ∈ F if E[f(R) · log(1 + ‖R‖)] <∞.

Example E. (see Kardaras 2006) We have fk ∈ F and fk ↑ 1 for

fk(x) := 1{‖x‖≤1} + 1{‖x‖>1} · ‖x‖
−1/k

.

Under the no-arbitrage condition I ∩ Θ = ∅, one knows that Θ ∩ L is compact (see
Korn and Schäl 1999) where Θ is defined in Example B. Under the weaker NUIP
condition we need the following more technical lemma.
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Lemma 6.2. Assume I ∩ Č = ∅. Let F∗ be some subset of F which is bounded from
below in the following sense: there is some f

∗ ∈ F such that f ≥ f

∗ for all f ∈ F∗.
Let R ⊂ C be a set of portfolios which are “not too bad” in the following sense: for

every ρ ∈ R, ρ ∈ L \ {0}, there exists some f ∈ F

∗ such that the function [0, 1] � u �→
gf (uρ) is increasing where

gf (π) := E[log(1 + π

�
R) · f(R)] [≤ (log ‖π‖)+ + E[log(1 + ‖R‖)f(R)] < ∞] .

Then R is bounded.

The lemma is hidden in the proof of Theorem 3.15 in Karatzas and Kardaras 2007.

Proof by contradiction. Suppose there exists some sequence (ρm, fm) ⊂ R×F∗ such
that ρm ∈ L ∩ C and [0, 1] � u �→ gfm

(uρm) is increasing where ‖ρm‖ → ∞. Define
ξm := ‖ρm‖

−1
ρm. We can assume that ξm → ξ for some ξ ∈ L. We want to show that

ξ ∈ Č.
Choose any a > 0 and ma such that 0 < u = a/‖ρm‖ < 1 for m ≥ ma. Then

aξm = uρm = uρm + (1 − u)0 ∈ C since C is convex. Moreover, since C is closed,
we also have aξ ∈ C. This proves ξ ∈ Č ∩L with ‖ξ‖ = 1. Now for u ∈ (0, 1] we have

0 ≤ ε

−1[gfm
(uρm)− gfm

((1 − ε)uρm)]

= E
[
ε

−1
(
log

{
1 + u ρ

�
mR

}
− log

{
1 + (1 − ε)u ρ

�
mR

})
· fm(R)

]
.

From the concavity of log we conclude that the integrand is decreasing for ε ↓ 0. Since
the expectation if finite for ε = 1, we apply the monotone convergence theorem and
obtain

0 ≤ E

[
d

du

log{1 + uρ

�
mR} · fm(R)

]
= E

[
(1 + uρ

�
mR)−1

ρ

�
mRfm(R)

]
.

Again choose any a > 0 and ma such that 0 < u = a/‖ρm‖ < 1 for m ≥ ma. Then

0 ≤ E[(1 + a ξ

�
mR)−1

ξ

�
mR fm(R)] where (1 + a ξ

�
mR)−1

ξ

�
mR fm(R) ≤ a

−1
.

From Fatou’s lemma we now obtain

a

−1 ≥ E

[
(1 + aξ

�
R)−1

ξ

�
R lim

m
fm(R)

]
≥ lim

m
E

[
(1 + aξ

�
mR)−1

ξ

�
mRfm(R)

]
≥ 0

Since lim fm(R) ≥ f

∗(R) > 0, we conclude from the first inequality that 1+a ξ

�
R >

0 a.s.
Now a > 0 was arbitrary, so we conclude that ξ

�
R ≥ 0 a.s. where ‖ξ‖ = 1 and

ξ ∈ L. Therefore P [ξ�R = 0] > 0, otherwise ξ ∈ L⊥. Thus we finally have ξ ∈ I and
hence ξ ∈ I ∩ Č which is a contradiction to our assumption. �

Theorem 6.3. Under the NUIP assumption I ∩ Č = ∅, there exists a weak numeraire
portfolio ρ.
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If E[log(1 + ‖R‖)] < ∞, then ρ is obtained as the unique solution of the following
concave optimisation problem and thus the only GOP in C ∩ L :

ρ = arg max
π∈C∩L

g(π) where g(π) := E[log(1 + π

�
R)].

Remark 6.4. In the general case, where the condition E[log(1 + ‖R‖)] < ∞ does not
hold, one can solve a sequence of optimisation problems and show that the correspond-
ing solutions converge to the solution of the original problem, see below and Theorem
3.15 in Karatzas and Kardaras 2007.

Proof. We start with a sequence (fk) ⊂ F where fk↑1. The sequence can be chosen as
in Example E above. Now define gk(π) = gfk

(π) := E[log(1 + π

�
R) · fk(R)].

Then gk is strictly concave on C ∩ L and −∞ ≤ gk(π) < +∞. Further set

0 ≤ g

∗
k := sup

π∈C
gk(π) = lim

n→∞
gk(ρkn)

for some sequence (ρkn) ⊂ C. Since gk(π+ζ) = gk(π) for ζ ⊥ Lwe can choose ρkn ∈
L ∩ C. Moreover, we may choose ρkn such that gk(ρkn) = max0≤u≤1 gk(uρkn) ≤
supπ∈C gk(π).

Then by concavity, u �→ gk(uρkn) is increasing. From the preceding lemma we
know that R = (ρkn) is bounded, in particular g

∗
k ∈ [0,∞) and g

∗
k = gk(ρ

∗
k).

Now fix some k and assume w.l.o.g. that ρkn→ρ

∗
k for some ρ

∗
k ∈ C where g

∗
k =

gk(ρ
∗
k) since C is closed. Choose π ∈ C, then [0, 1] � u �→ gk(ρ

∗
k + u(π − ρ

∗
k)) is real

valued, concave. Since ρ

∗
k is a maximum point, we conclude from the concavity that

0 ≤ G(u) :=
1

u

[gk(ρ
∗
k)− gk(ρ

∗
k + u(π − ρ

∗
k))] ≤ gk(ρ

∗
k)− gk(π)

is increasing in 0 < u ≤ 1. From the monotone convergence theorem, we obtain for
u ↓ 0, again by concavity of log,

G(u) ↓ E

[
−

d

du

log
{
1 + [ρ∗k + u(π − ρ

∗
k)]
�

R}
]∣∣∣
u=0

· fk(R)

]
.

Thus we get
E[(π − ρ

∗
k)
�

R /(1 + ρ

∗�
k R)] ≤ 0.

Since we know that (ρ∗k) is also bounded, we may assume that ρ

∗
k → ρ for some

ρ ∈ C ∩ L.
Now (π − ρ

∗
k)
�

R /(1 + ρ

∗�
k R) = (1 + π

�
R)/(1 + ρ

∗�
k R)− 1 ≥ 1.

Then we obtain from Fatou’s lemma r(π|ρ) ≤ 0, since

r(π|ρ) = E[(π−ρ)�R /(1+ρ

�
R)] = E[lim

k
(π−ρ

∗
k)
�

R

/
(1+ρ

∗�
k R)] ≤ lim E[· · · ] ≤ 0.

From Lemma 3.3 we finally conclude that ρ is a weak numeraire portfolio.
In the case where E[log(1 + ‖R‖) < ∞] < ∞, we can choose fk ≡ 1 for all k and

thus ρk = ρ.

Then g

∗ := sup
π∈C

g(π) = g(ρ∗k) = max
π∈C∩L

where g(π) := E[log(1 + π

�
R)].

Since g is strictly concave on C ∩ L, the maximum point is unique. �
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7 Deflators and value preserving portfolios

The concept of a deflator is important for the valuation of uncertain payment streams
and is more general than that of a numeraire portfolio.

Definition 7.1. The class D of supermartingale deflators is defined as

D := {D ≥ 0; D is a random variable with E[DV

π
1 ] ≤ 1(= V

π
0 )} for all portfolios π}.

Since 0 ∈ Π, we know that E[D] ≤ 1 for D ∈ D.

Corollary 7.2. (a) A portfolio ρ ∈ Π is a weak numeraire portfolio if and only if
(V ρ

1 )−1 is a supermartingale deflator.

(b) E[log V

ρ
1 ] = infD∈D E[log(D−1)].

The second property in (a) is introduced by Korn 1997 and called “ρ is interest-
oriented ”. The property (b) of ρ can be seen as an optimal property dual to log-
optimality.

Proof. (a) is clear by definition. (b) See Becherer 2001. E[log(D−1)] makes sense
since E[log−(D−1)] ≤ E[D] ≤ 1. Assume w.l.o.g. that the right hand in (b) is finite and
E[log(D−1)] ∈ R. Then E[log V

ρ
1 − log(D−1)] = E[log(DV

ρ
1 )] ≤ log E[DV

ρ
1 ] = 0. �

Definition 7.3 (Hellwig 1996). For π ∈ Π and D ∈ D, V

π
D := D · (1 + π

�
R) is called

present economic value of π (at time 0) associated with D ∈ D.

Since D is a supermartingale deflator, we always have E[V π
D ] ≤ 1 where 1 is here

the initial value. Therefore the following definition is interesting:

Definition 7.4 (Hellwig 1996). A portfolio π ∈ Π is called value preserving if V

π
D ≡ 1

a.s. for some D ∈ D.

Theorem 7.5. The following properties are equivalent:

(1) π is value preserving w.r.t. the supermartingale deflator D;

(2) π is a weak numeraire portfolio and D = (1 + π

�
R)−1.

Thus, by Theorem 7.5 existence of a value preserving portfolio is also related to the
existence of a GOP (see Korn and Schäl 1998).

Proof. “(1)⇒ (2)” From D · (1 + π

�
R) = 1 we get D = (1 + π

�
R)−1 where D ∈ D.

Now Corollary 7.2 (a) applies. “(2) ⇒ (1)” Again from Corollary 7.2 we know that
D = (1 + π

�
R)−1 is a deflator and D · (1 + π

�
R) = 1. �
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8 Fair portfolios and applications in
actuarial valuation

Benchmarked portfolios and fair valuation is a concept that is suggested for use in
actuarial valuation by Bühlman and Platen 2003. As ibidem we call V

π
1 /V

ρ
1 the bench-

marked value of portfolio π if ρ is a weak numeraire portfolio and hence V

ρ
1 is uniquely

determined according to Proposition 3.2. Then we know that: E[V π
1 /V

ρ
1 ] ≤ 1 for every

portfolio π.
In financial valuations in competitive markets, a price is typically chosen such that

seller and buyer have no systematic advantage or disadvantage. Let the random variable
H be a contingent claim which is a possibly negative random payoff. Candidates for
prices of H are E[DH ] for some deflator D ∈ D. For H = V

π
1 we thus have E[DH ] ≤

1. For the case E[DH ] < 1, this could give an advantage to the seller of the portfolio
π; its expected future benchmarked payoff is less than its present value. The only
situation when buyers and sellers are equally treated is when the benchmarked price
process V

π
t /V

ρ
t is a martingale, that means in our situation: E[V π

1 /V

ρ
1 ] = 1.

Definition 8.1 (see Bühlmann and Platen 2003). A value process Vt, t = 0, 1, is called
fair if its benchmarked value Vt/V

ρ
t is a martingale, i.e. if E[V1/V

ρ
1 ] = V0 (since

V

ρ
0 = 1).

Let us consider a contingent claim H , which has to be paid at the maturity date 1.
Let ρ be the weak numeraire portfolio. We choose the following pricing formula

pr(H) := E[H/V

ρ
1 ] (8.1)

which by definition is fair. In contrast to classical actuarial valuation principles no
loading factor enters the valuation formula. For premium calculations in insurance
business the use of a change of measure is explained in Delbaen & Haezendonck 1989.
An important case arises when H is independent of the value V

ρ
1 . Then we obtain

pr(H) = E[H ] · E[1/V

ρ
1 ] . (8.2)

Here P (0, 1) = E[1/V

ρ
1 ] is the fair price of the contingent claim H

′ ≡ 1 to be paid at
the maturity date T = 1 and thus the zero coupon bond with maturity 1. Thus (8.2)
is the classical actuarial pricing formula in the case of stochastic interest rates and
pr(H) := E[H/V

ρ
1 ] is an extension to the more general case where dependence may

occur.
For equity-linked or unit-linked insurance contracts we look again at a claim H

payed at T = 1 where H has the following form: H = U · V π
1 . Intuitively, H stands

now for unit linked benefit and premium. Then H can be of either sign. The benefit at
maturity is linked to some strictly positive reference portfolio V

π
1 with given portfolio

π. The insurance contract specifies the reference portfolio π and the random variable
U depending on the occurrence of insured events during the period (0, 1], for instance,
death, disablement or accident.

These products offer the insurance company as well as the insurance customer ad-
vantages compared to traditional products. The insurance industry may benefit from
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offering more competitive products and the customer may benefit from higher yields
in financial markets. Compared to classical insurance products, one distinguishing fea-
ture of unit-linked products is the random amount of benefit. But the traditional basis
for pricing life insurance policies, the principle of equivalence, based on the idea that
premiums and expenses should balance in the long run, does not deal with random
benefits. Therefore, we have to use financial valuation theories together with elements
of actuarial theory to price such products.

The standard actuarial value pro(H) of the contingent claim H = U · V π
1 is deter-

mined by the properly defined liability of prospective reserve as

pro(H) = V

π
0 · E[H/V

π
1 ] = E[H · V π

0 /V

π
1 ].

The standard actuarial methodology assumes that the insurer invests all payments in
the reference portfolio π. Then one obtains for pro(H), when expressed in units of the
domestic currency, the expression

pro(H) = pro(U · V
π
1 ) = V

π
0 · E[U ].

We observe the difference between pro(H) and pr(H). Hence the standard actuarial
pricing and fair pricing will, in general, lead to different results. As one could see this
is to be expected when the endowments depend on the numeraire portfolio. Indeed,
let us assume that ρ is a numeraire portfolio (in the strict sense), then E[V π

1 /V

ρ
1 ] =

V

π
0 /V

ρ
0 = V

π
0 and we obtain

pr(U · V π
1 )− pro(U · V

π
1 ) = Cov(U, V

π
1 /V

ρ
1 ). (8.3)

A similar formula is derived by Dijkstra 1998. Hence, the two prices coincide if and
only if U and V

π
1 /V

ρ
1 are uncorrelated. Moreover, the sign of the difference is the sign

of the covariance. This condition differs from the one given by Bühlmann and Platen
2003.

In many cases, the endowment H of the insurance contract will include a guaranteed
(non-stochastic) amount g(K) where K is the premium paid by the insured. Then
the benefit at maturity is composed of the guaranteed amount plus a call option with
exercise price g(K) and with the reference portfolio as underlying assets. Then the
fair premium is the solution to an equation in K and g(K) (see Nielsen and Sandmann
1995).

9 Existence of numeraire portfolios

It seems to be a general agreement that S

k
t should be fair, since S

k
0 is a fair price for

H = S

k
1 for every k ∈ {0, 1, . . . , d}. This leads to the requirement

E[Sk1 /V

ρ
1 ] = S

k
0 , 0 ≤ k ≤ d. (9.1)

Definition 9.1. A portfolio ρ ∈ Π will be called numeraire portfolio (in the strict
sense), if the above condition (9.1) holds.
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Proposition 9.2. (a) If ρ is a numeraire portfolio, then we have for any strategy ξ

and
V

ξ
1 (x) := x + ξ

�ΔS : E[V ξ
1 (x)/V

ρ
1 ] = x = V

ξ
0 .

(b) A numeraire portfolio is a weak numeraire portfolio.

Proof. Set V

ξ
t (x) =

∑d
k=0 ξ

k
S

k
t . Then we obtain E[V ξ

1 /V

ρ
1 ] =

∑d
k=0 ξ

k
E[Sk1 /V

ρ
1 ] =∑d

k=0 ξ

k
S

k
0 = V0. In the present simple situation, where the horizon is T = 1 we

do not have any integrability problems and we even get the martingale property. In
the more general case we obtain the supermartingale property from the fact that each
non-negative local martingale is a supermartingale. �

As in Lemma 3.3 we know that ρ is a numeraire portfolio if and only if r(π|ρ) =
0, where π is a unit vector or the zero vector in R

d. There r(π|ρ) is the directional
derivative of g(π) := E[log(1 + π

�
R)] at the point ρ in the direction of π − ρ (if g is

finite).
In general, we cannot expect to be able to compute the numeraire portfolio just by

naively trying to solve the first-order condition ∇g(ρ) = r(0|ρ) = 0, because some-
times this equation simply fails to have a solution. In this section, we make the follow-
ing assumptions.

Assumption 9.3. C = Θ describes the natural constraints, I = ∅ which here is the
NUIP condition, and integration of the log exists in the following sense:
E[log(1 + ‖R‖)] < ∞.

We now introduce another condition given in the following theorem proved in Schäl
(1999, Theorem 4.15):

Theorem 9.4. Let ρ be the only GOP in Θ ∩ L according to Theorem 6.3. Then, the
condition

E[ ϑ

� · R/(1 + ϑ

� ·R)] < 0 for all ϑ ∈ ∂Θ ∩ L , (9.2)

implies the first order condition: E[Rk
/(1 + ρ

� · R)] = 0 for k = 1, . . . , d.

Corollary 9.5. Let ρ be defined as in the preceding theorem. Then, under condition
(9.2), ρ is a numeraire portfolio (in the strict sense) and

E[ 1/V

ρ
1 ] = 1. (9.3)

Proof. We obtain from Theorem 9.4

1 = 1−

d∑
k=1

ρ

k
E[Rk

/(1 + ρ

� · R)] = 1− E[ρ� · R/(1 + ρ

� · R)] ,

which implies (9.3). Now we get for 0 ≤ k ≤ d with R

0 ≡ 0:

E[Sk1 /V

ρ
1 ] = E[Sk0 (1 + R

k)/(1 + ρ

� · R)] = S

k
0 E[1/(1 + ρ

� · R)] = S

k
0 .

Thus ρ is a numeraire portfolio. �
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Example F. The one-dimensional case.
Consider the case where d = 1 and R is bounded, then the support Z is a compact

subset of R. Set −α = min Z, β = max Z. Then conv(Z) = [−α, β]. For the
no-arbitrage condition we need α > 0, β > 0.

Then condition (9.3) is satisfied if and only if

E[ R/(1 +
1

α

R)] < 0 < E[ R/(1−
1

β

R)] . (9.4)

For a proof we have

min
z∈Z

1 + ϑz = min
−α≤z≤β

1 + ϑz = 1− ϑα for ϑ > 0 and = 1 + ϑβ for ϑ < 0 .

Hence, we know that Θ = [− 1
β ,

1
α ] and ∂Θ = {− 1

β ,

1
α}.

Then E

[
ϑ·R

1+ϑ·R

]
= ϑ · E

[
R

1+ϑ·R

]
< 0 for ϑ ∈ ∂Θ if and only if (9.4) holds. In fact,

the condition (9.4) is weak. It can be looked upon as a kind of no-arbitrage condition.
The martingale case E[R] = 0 is not interesting as we can choose ϑ = 0 then. Let
us suppose that E[R] > 0. Then E[R/(1 − R/β)] ≥ E[R] > 0 and the condition
E[R/(1 + R/α)] < 0 requires that there should not be too little probability for negative
values of R. The condition (9.4) can easily be proved to be also necessary for the first
order condition.

We will give a sufficient condition for (9.2) which is far from being necessary, how-
ever.

Theorem 9.6. If Ω or Z is finite, then the condition (9.2) is always satisfied and thus
the statements of Corollary 9.5 hold true.

Proof (See also Long 1990). If Ω is finite, then Z is finite. Choose ϑ ∈ ∂Θ ∩ L, then
one obtains the following relation :

0 = min
z∈Z

(1 + ϑ

� · z) = 1 + ϑ

� · zo for some zo ∈ Z .

Further, {R = zo} ⊂ {1 + ϑ

�
R = 0} = {ϑ� · R = −1}. Now

E[ϑ� ·R/(1 + ϑ

� · R)] ≤ E[1{R=zo} · ϑ
� · R/(1 + ϑ

� ·R)]

+E[1{ϑ�·R>0} · ϑ
� · R/(1 + ϑ

� · R)]

≤ −E[1{R=zo}/(1 + ϑ

� ·R)] + 1

= −∞, since P [R = zo] > 0 .

�

For the theorem one can also use a result by Hakansson 1971 that the GOP can
be chosen as an interior point. The theorem is generalised in (Korn and Schäl 1999,
Theorem 4.22).

It is known that the existence of a growth-optimal portfolio will not imply the exis-
tence of a numeraire portfolio (see Becherer 2001). We will give an example.
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Example G. We may restrict attention to the case d = 1 (see Example F). Let the
distribution of R on Z := [−1, 1] be given by

E[g(R)] := λ ·

∫ 0

−1

3

2
(1− z

2)g(z)dz + (1− λ) ·

∫ 1

0

3

2
(1− z

2)g(z)dz ,

where we choose λ > 0 sufficient small, e.g. λ = 1/12. Then

E[R] := λ ·

∫ 0

−1

3

2
(1− z

2)z dz + (1− λ) ·

∫ 1

0

3

2
(1 − z

2)z dz

= (1− 2λ)

∫ 1

0

3

2
(1− z

2)z dz =
3

8
(1− 2λ) > 0 .

[Obviously, by the choice of λ = λ∗ = 1
2 , one obtains an equivalent martingale mea-

sure (see below)]. Now set

f(ϑ) := E

[
R

1 + ϑ ·R

]
,

then f is strictly decreasing on Θ := [−1, 1], where f(−1) ≥ f(ϑ) ≥ f(1) for ϑ ∈ Θ.
Now

f(1) = E

[
R

1 + R

]

= λ

∫ 0

−1

3

2
(1− z)z dz + (1− λ) ·

∫ 1

0

3

2
(1 − z)z dz

=
1

4
−

3

2
λ > 0 ,

f(−1) = E

[
R

1−R

]

= λ

∫ 0

−1

3

2
(1 + z)z dz + (1− λ) ·

∫ 1

0

3

2
(1 + z)z dz

=
5

4
− λ > 0 .

Hence there is no ϑ ∈ Θ such that f(ϑ) = 0 and ϑ is hence a numeraire portfolio. On
the other hand, we have ∞ > f(−1) ≥ f(ϑ) = d

dϑE [ln(1 + ϑ · R)] ≥ f(1) > 0 for
−1 < ϑ < 1.

Thus, we know that maxϑ∈Θ E[ln(1 + ϑ ·R)] = E[ln(1 + R)] and ϑ∗ = 1 defines the
GOP.
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10 Equivalent martingale measures and the numeraire
portfolio

A well-known candidate for a fair price of a financial derivative described by the con-
tingent claim H is given by an EMM Q (defined below) with positive density dQ/dP

according to

EQ

[
H/S

0
1

]
= E

[
dQ

dP

H/S

0
1

]

where dQ
dP /S

0
1 is a deflator (see Duffie 1992, p. 23).

Definition 10.1. A probability measure Q is an equivalent martingale measure (EMM),
if Q has a (a.s.) positive density dQ/dP such that

EQ[Sk1 /S

0
1 ] = E

[
dQ

dP

S

k
1/S

0
1

]
= S

k
0 /S

0
0 , 0 ≤ k ≤ d. (10.1)

Here, we present the general property though we decided to consider only the case
S

0
t ≡ 1.

Proposition 10.2. (a) A portfolio ρ ∈ Π is a numeraire portfolio if and only if
1/V

ρ
1 = dQ

∗
/dP for some EMM Q

∗.

(b) In the case of existence, an EMM Q

∗ implied by a numeraire portfolio in the
sense of (a) is unique.

Proof. (a) We make use of (9.1). For the ’only if’-direction we get E[dQ

∗
/dP ] = 1

from dQ

∗
/dP = 1/V

ρ
1 > 0 and E[Sk1 /V

ρ
1 ] = S

k
0 for k = 0.

Part (b) follows from the uniqueness of V

ρ
1 according to Proposition 3.2. �

From the “Fundamental Theorem of Asset Pricing” (see Back and Pliska 1990,
Dalang et al. 1990, Schachermayer 1992, Rogers 1994, Jacod & Shiryaev 1998) we
know that there exists an EMM if and only if the no arbitrage condition I = ∅ holds. If
in addition the market is complete, then the EMM Q is known to be unique and we may
consider L

−1 := (dQ/dP )−1 as a contingent claim. Upon making use of the definition
of completeness, we obtain L

−1 = V

ξ(x) for some strategy ξ and some initial capital
x. Then we obtain x = E[L V

ξ
1 (x)] = E[L L

−1] = 1. Therefore we conclude that
V

ξ
1 (x) = 1 + ρ

�
R where ρ

k = ξ

k
S

k
0 . From the preceding proposition we obtain the

following result:

Corollary 10.3. Let C = Θ describe the natural constraints. If the market is complete
and free of arbitrage opportunities, then a numeraire portfolio (in the strict sense)
exists.

For the remainder of this section, we consider the case where d = 1 and (as in
Example F):

conv(Z) = [−α, β] for some α, β > 0 with − α, β ∈ Z. (10.2)



Numeraire portfolio 321

The minimal martingale measure was introduced by Föllmer and Schweizer 1991 in
the context of option hedging and pricing in incomplete financial markets. By the
discrete-time Girsanov transformation one obtains the minimal martingale Q

o accord-
ing to dQ

dP

o
= b + a ·R (see Schweizer 1995). From the two conditions E[dQdP

o
] = 1 and

E[dQdP
o
R] = 0, one can compute that

b = 1 + {μ/σ}2, a = −μ/σ

2 where μ := E[R] and σ

2 := Var[R] . (10.3)

One difficulty with the Girsanav transformation in discrete time is that it may lead
to a density with negative values. The resulting martingale measure is then called
a signed martingale measure. However, in the case where Z ⊂ {d − 1, 0, u − 1} for
some 0 < d < 1 < u, it is easy to see that dQdP

o
> 0. On the other hand, we know from

Theorem 9.6 and Corollary 9.5 that dQdP
∗

= {1+ρR}−1
> 0 always defines a (positive)

martingale measure if Z is finite. Thus we know that the minimal martingale measure
cannot coincide with the martingale measure Q

∗ induced by the numeraire portfolio
if Q

o is not a positive measure but a signed measure. It can be shown that the two
measures only coincide in a binomial model that means only for a complete market
(according to Harrison & Pliska 1981 and Jacod & Shiryaev 1998).

A binomial model is characterised by the fact

R ∈ {−α, β} a.s. (10.4)

Theorem 10.4. Let Q∗ be the measure defined by Proposition 10.2 and let Qo be the
minimal martingale measure. Then Q

∗ = Q

o if and only if (10.4) holds.

The proof is given in Korn and Schäl (1999, Theorem 5.18). The theorem is sur-
prising because one always has Q

∗ = Q

o in the important case of financial markets
modeled by diffusion processes (see Becherer 2001, Korn 1998).

11 Portfolio optimisation and the numeraire portfolio

So far we mainly highlighted the role of the numeraire portfolio in valuation of uncer-
tain payment streams. However, we already saw that the numeraire portfolio is closely
related to the growth optimal portfolio. In this section, we generalise this and show
that, for a wide class of portfolio optimisation problems, the numeraire portfolio is the
main ingredient of their solution.

Definition 11.1. (a) A strictly concave function U on (0,∞) which is increasing,
twice continuously differentiable and satisfies

U

′(0+) = ∞, U

′(∞) = 0 (11.1)

is called a utility function.
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(b) We call the optimisation problem

u(x) := sup
π∈Π

E[U(V π
1 (x))], where V

π
1 (x) = x · V π

1 , (11.2)

the portfolio problem of an investor with initial value x.

Popular utility functions are U(x) = log x or U(x) = 1
γx

γ for γ < 1. The portfolio
problem can now be explicitly solved in a complete market setting:

Theorem 11.2. Let ρ be the weak numeraire portfolio; define

I(y) = (U ′)−1(y), X(y) = E[I(y/V

ρ
1 )/V

ρ
1 ], Y (x) = X

−1(y) , (11.3)
B = I(Y (x)/V

ρ
1 ) and assume (11.4)

X(y) < ∞ . (11.5)

(a) Then E[U(V π
1 (x))] ≤ E[U(B)] and E[B/V

ρ
1 ] = x for all admissible portfolios π.

(b) If the market is complete and ρ is chosen as the numeraire portfolio, then B is the
optimal final value for the portfolio problem of an investor with initial wealth x.

Proof. Under the assumption (11.5) it can easily be shown (by dominated and/or mono-
tone convergence) that X(y) is strictly decreasing with X(0) = ∞, X(∞) = 0. Thus,
an inverse Y (x) exists and one can define B as in (11.4). Further, by construction, B

satisfies
E[B/V

ρ
1 ] = x , (11.6)

while for all other admissible portfolios π we have

E[V π
1 (x)/V

ρ
1 ] ≤ x . (11.7)

The following property of a concave function

U(x) ≤ U(y) + U

′(y)(x − y), y, x > 0 , (11.8)

implies that
U(x) ≤ U(I(y)) + y(x− I(y)), y, x > 0 . (11.9)

From (11.9), (11.4)–(11.7) we then obtain

E[U(V π
1 (x))] ≤ E[U(B) + Y (x)(E[V π

1 (x)/V

ρ
1 ]− E[B/V

ρ
1 ]) ≤ E[U(B)] . (11.10)

If the market is complete, then there exists a portfolio π

B and an initial value x

B

generating the final payment of B, i.e. V

πB

1 (xB) = B. Now, x

B = E[B/V

ρ
1 ] = x

by (11.6), since ρ is a numeraire portfolio (see proof of Proposition 9.2). Thus π

B is
a solution to the portfolio problem. �

Example H. (a) Note that for U(x) = log x, we recover from Theorem 11.2 that
we have

B = xV

ρ
1 , (11.11)

which restates the relation between the growth optimal and the numeraire port-
folio.
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(b) For U(x) = 1
γx

γ , Theorem 11.2 yields the optimal final wealth of

B = x(V ρ
1 )γ

′

/E[(V ρ
1 )γ·γ

′

] where γ

′ =
1

1− γ

. (11.12)

Remark 11.3. Portfolio optimisation problems in incomplete markets can be solved
by duality methods in a similar way as in Kramkov and Schachermayer 1999. There,
the problem is transformed to auxiliary markets which are complete. The portfolio
problem in these markets is again solved with the help of the numeraire portfolio.

The optimisation problem (11.2) makes sense only if its value function u is finite.
Due to the concavity of U , if u(x) < +∞ for some x > 0, then u(x) < +∞ for
all x > 0 and u is continuous, concave and increasing. When we have u(x) = ∞ for
some (equivalently, all) x > 0, there are two cases. Either the supremum in (11.2) is not
attained, so there is no solution; or, in case there exists a portfolio with infinite expected
utility, the concavity of U will imply that there will be infinitely many of them. We will
show that one cannot do utility optimisation if the NUIP condition fails. We can use
the same arguments as at the beginning of Section 4. Then aϑ

�
R is unbounded for

a →∞ on the set ϑ

�
R > 0 where P [ϑ�R > 0] > 0. Thus

u(x) ≥ lim
a→∞

E[U(xV

aϑ
1 )] = U(1) · P [ϑ�R = 0] + U(∞) · P [ϑ�R > 0]

and we proved the following result (see Karatzas and Kardaras 2007 Prop. 4.19):

Proposition 11.4. Assume that the NUIP condition fails. If U(∞) = ∞ then u(x) =
∞ for all x > 0. If U(∞) < ∞, then there is no solution.

12 Additional remarks

1 Vasicek 1977 was perhaps the first who used the concept of a numeraire portfo-
lio for an equilibrium characterisation of the term structure. In the language of
Long 1990 and of the present paper, Vasicek constructed a numeraire portfolio
investing in two assets: the short rate and a long rate.

2 By the use of the numeraire portfolio we can replace the change of measure
P→Q where Q is an EMM by changing the numeraire {S0

t }→{V
ρ
t } and stick-

ing to the original probability measure P . There P models the ’true world’-
probability which can be investigated by statistical methods. Long 1990, for
example, studied the application of measuring abnormal stock returns by dis-
counting NYSE-stock returns by empirical proxys of the numeraire portfolio.

3 Further properties and applications in the diffusion case, where the numeraire
portfolio is mean-variance efficient and therefore related to the CAPM-theory,
can also be found in Bajeux-Besnainou & Portait (97) and Johnson (96).
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4 De Santis, Gerard and Ortu 2000 are interested in the case where no self-financing
trading strategy has strictly positive value and introduce the concept of a gener-
alised numeraire portfolio based on non-self-financing strategies.

5 A further advantage of the present discrete time market is the fact that there ex-
ists only one concept of no-arbitrage under the natural constraints (Example B).
In particular, it cannot happen then as in continuous-time models that the weak
numeraire portfolio exists but no equivalent martingale measure does. As men-
tioned above, a numeraire portfolio can be used for the purpose of pricing deriva-
tive securities. Platen 2002 argues that this can be done even in models where an
equivalent martingale measure is absent and has developed a benchmark frame-
work to do so (see Platen 2006).

6 Theorem 9.6 is generalised by Korn, Oertel and Schäl 2003 to a market modeled
by a jump-diffusion process where the state space of the jumps is finite.

7 How to apply the results for the one-period model to the multi-period model is
explained in Schäl 2000.

8 The concept of a numeraire portfolio (in the strict sense) is extended to financial
markets with proportional transaction cost by Sass and Schäl 2009.
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