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Abstract. Dynamic programming for piecewise deterministic Markov processes is studied where
only the jumps but not the deterministic flow can be controlled. Then one can dispense with
relaxed controls. There exists an optimal stationary policy of feedback form.

Further, a piecewise deterministic Markov model for the control of dividend pay—out and
reinsurance is introduced. This model can be transformed to a model with uncontrolled flow. It is
shown that a classical solution to the Bellman equation exists and that a non—relaxed optimal
policy of feedback form can be obtained via the Bellman equation. Lipschitz continuity of the
1-dim. vector field defining the controlled flow will be replaced by strict positivity.
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1. Introduction
Piecewise deterministic processes (PDPs) form a class of time—homogenous Markov processes
living on a Borel subset E of Rd. (In the insurance model of section 2 we will have d=1.) Davis
(1984) calls this class a general class of non—diffusion stochastic models. This name can be
justified by the following result of Cinlar & Jacod (1981):
(1.0 Every strong Markov process {Xt, t>0} living on E with paths that are both
continuous and of (locally) bounded variation is deterministic, i.e.,
X, = ¢(t|XO) where ¢ is adeterministic flow.
A deterministic flow ¢ just defines a deterministic time—homogenous Markov process, i.e.
1.1 ¢ : [0,00)xEr E, $(0]x) =X, d(t+s|X) = ¢(s| d(t,X)), St=0, XUE,

where ¢(t|x) is continuousin t. Hence, in order to obtain non—trivial Markov processes on [Rd, one

has to allow for paths having infinite total variation or one has to consider jumps. The first
possibility leads to the study of diffusion processes arising as solutions of stochastic differential
equations. Davis (1993) says in the preface: It is hard to deny that the stochastic differential
equation model has received more than itsfair share of attention.

If one wants to stick to paths of (locally) bounded variation, one has to alow for jumps. In view of
applications, an appealing assumption is to exclude explosions of jumps, i.e. to assume that the
jumps occur at randon times

1.2 0<T1< <Tn—1
According to Cinlar & Jacod (1981), {Xt} is necessarily described by a deterministic flow
between two jump times Tn < Tn +1 Thus, these considerations lead to the class of PDPsin avery
natural way. Let us now concentrate on the case where E 0 R (i.e. d=1) asin the insurance model.
We will consider aflow ¢ which is defined as the unique solution to an Initial Value Problem (in
the sense of Carathéodory) defined for an autonomous differential equation with a (here
one—dimensional) vector fieldbon E :

< o0 ,
Tn"

(1.3) O(t) = d(t[x) =x+4f "b(o(9) ds.

Then we can write

(1.9) dXt = b(Xt) dt + AX, where AX =X =X o

We can compare this approach with that defined by a stochastic differential equation
(1.5) dXt = b(Xt) dt + G(Xt) th

where {Wt} is a Wiener process (standardized Brownian motion). Obvioudy in (1.4), the ‘white
noise’ perturbations th in (1.5) are replaced by random jumps which however need not be
compensated. Hence (1.4) provides not yet a semi—martingale decomposition. For such a
decomposition, the compensator of the jumps has to be taken into account.

Davis (1993) assumes that the process will jump if it hits the boundary of the state space. But
there are other interesting cases. In the present paper, the topological boundary will not play an



exta role. In the insurance model, we will have E = [0,0)0{-1} where —1 is an absorbing
(cemetary) state and the process |leaves the boundary state O by means of the flow. Deshmukh &
Pliska (1980) consider an optimal consumption model where S = [0,0) and the boundary point O
issticky, i.e. the process will wait in O until the next jump occurs.

When PDPs were introduced, it was soon discovered that the model and the developped
techniques are important for risk theory, insurance science [cf. Embrechts (1984)]. Then, there
followed a series of papers [cf. Dassios & Embrechts (1989), Embrechts (1990), Davis (1993,
(21.12)), Embrechts & Schmidli (1994), Davis & Vellekoop (1995)|. Control in insurance was
studied by Martin—L&f (1994) in a discrete—time framework. Recently, diffusions models were
developped for the control of dividend pay—out and reinsurance [cf. Asmussens & Taksar (1997),
Hgjgaard & Taksar (1996), (1997), Taksar & Zhou (1997)].

It is known from deterministic control theory that one has to introduce the concept of relaxed
controls in order to get optimal controls. Therefore, it was natural to introduce relaxed controls for
the control of PDPs [cf. Davis (1993, § 43)|. Y ushkevich (1987) derived the Bellman equation for
the control of PDPs without use of relaxed controls, however he only studied the case where one
can only control the jumps and not the deterministic flow. We will combine the results of
Y ushkevich with the investigation about continuity and compactness properties by Davis (1986),
(1993) in the framework of relaxed controls and will obtain a result for the existence of a
nonrelaxed optimal policy for the control of the jumpsin 83. The optimal policy can be obtained
as a feedback control via a classical solution to the Bellman equation. In terms of Davis (1993, 8
42), naive dynamic programming works for the control of jumps.

In general, one has to generalize the concept of a solution to the optimality equation because one
does not know whether the value function is sufficiently regular. There, one can use the Clarke
generalized gradient and non—smooth analysis. In the presence of strong convexity properties it
can be shown that one can dispense with relaxed controls [cf. Davis (1993, § 45),

Dempster (1991), Dempster & Ye (1990, 1992, 1995) |. A second direction is the use of the
concept of aviscosity solution |cf. Soner (1986), Fleming & Soner (1993)].

In special models, special techniques can be used to show that naive dynamic programming works
[cf. Davis et a. (1987)]. In the present paper we will study a one—dimensional insurance control
model as another special model. There we will use a property which istypical for a large class of
PDPs. there are a deterministic flow in one direction and jumps in the other direction. This
property enables us to make a transformation to a model with an uncontrolled flow. A similar
transformation is used by Pliska (1978), Deshmukh & Pliska (1980), Soner (1985). For the
transformed model, we can then use the results of 8§3. There are some other properties of the
insurance model which will cause some technical problems: e.g. the vector field describing the
flow is unbounded. We will get a classical solution to the optimality equation which is absolutely
continuous which is the most natural regularity property. The result on the insurance model can be



used as afirst step to investigate qualitative properties of the value function and of the policy of
an insurance company for the optimal reinsurance and distribution of dividends.

2. Control of an insurance modd

The rea—valued process {Xt, t>0} describes the surplus process (fund of reserves). There is a
premium (income) rate ¢ which is fixed. The process can be controlled by the choice of the
dividend rate d and the premium rate p paid by the insurer to a reinsurer, hence the action consists
in the choice of a= (d,p). We assume

2.1 Assumption. 0<d<d,0<p<p for someupper bounds d, p with d+p<c;
hence the action spaceis A := [0,d]x[0,p] .

The insurance company gets interest for capital above a certain level L > 0, the amount of capital
the company retains as a liquid reserve (cf. Embrechts & Schmidli (1994)). The corresponding
interest rate is y = 0, while we denote the general discount rate by 3 > 0. There, 3 and y may
conincide or not. We choose the state space E according to

2.2 Assumption. E = [0,0) [0 {1} where —1 representsthe state of ruin.

[We could also choose E = [0,0) with O as the state of ruin, but then we had to assume that O isan
isolated point. As a consequence we would have to work with a topology which does not agree
with the usual topology on R which fact isless convenient. |
The jumps at Tn' n>1, are caused by the claims. Between the jumps, there is a deterministic flow
which will be described by
23 Assumption.  b(x,a) :=c—d—p+yx— L)+ , X220,

b(-1,a) := 0, for a=(d,p),
where b is now also a function of the action in the controlled case. Obviouly, we have

(2.9 b(x,a) is Lipschitz continuousin x = 0 uniformly in a.

It is remarkable that b(x,a) is unbounded in Xx. This property appears here in a natural way, but will
cause some technical difficulties. Davis (1993, (41.1)) assumes in the controlled case that b is
bounded.

Given the history Hn at Tn’ the surplus at Tn+t (< Tn +1) is deterministic. Therefore one can
decide at Tn about the action aTn 4= u(t) = (d(t),p(t)) at Tn+t < Tn +1 where

(2.5 the control function u: [0,c) ~ A ismeasurable

and may depend on Hn' Then theflow ¢ = ¢“(t |X) isasolution to



(26) 0(0) = 9(t1) =x + o B U(S) ds, x 20,
oYt|-1)=-1,t=0,i.e
%q)(t) =c—d(t) — p(t) + ydot) —L)"  for almost all t and for x 0.

Because of (2.1), ¢u(t |X) isstrictly increasing int for x = 0. We have
_.u
(2'7) xTn+t - ¢ (t | XTn) ’ Tn+t < Tn+1-

By (2.4) and Carathéodory's theorem in ordinary differential equations [cf. Warga (1972)
Theorems 11.41, 11.4.2] there is a unique solution ¢ to (2.6). Of special interest are feedback
controls u(t) = 6(XT +t) , Tn < Tn+t < Tn +1 where

n

(2.8) the feedback control function 6: E~ A ismeasurable.

Thiswill lead to the autonomous differential equation in the sense of Carathéodory:

(29) o) = 9Ot =x + of "h(9(9).5(6()) ds .

In the prevailing opinion, one needs at least locally Lipschitz continuity to guarantee existence
and uniqueness of the solution ¢ which would put a severe restriction on the control 6. Here
however, we are lucky and can use a special property of the insurance model, namely that b has
only one sign and is bounded away from zero. In fact, we have a deterministic flow in one
direction and jumps in the other direction. For an arbitrary feedback control function o, there
exists a unique solution to (2.7) according to the following theorem.

2.10 Theorem. L et g be a measurable function g: [xo,oo) r» R such that
O<esgX)<sa+ykx, X2X 0, for some €,a,y = 0, xOD[R.
Then thereisaunique solution ¢ : [0,00)x [xo,oo) ~ R to

O(t1x) =x + o/ g(d(s[x) ds, t20,x2x,
and ¢ iscontinous.

The proof is given in the Appendix. The case where g is negative can be treated by looking at —¢
and —g(—x). Upon defining u(t) := 6(¢5(t |x)), we have a control function in the sense of (2.5) and

d)6 isasolution to (2.6).

As usual, the claim process is described by a compound Poisson process with rate A and with
claims of height Yn at Tn where Yn 0Q and Q isthe claim distribution.

We will look upon the claims Yn as disturbances which form an iid sequence of random variables
taking valuesin D = [0,»). Thereisa system function f such that

(2.11) X: =fX+ A
Ty O Theg o""Tn+1 n+1

where



_ x —h(py) x—h(py) 20
2.12 Assumption. f(x,a,y) = f(x,d,p,y) := for )
-1 x—h(py) <0

Here, 0 < h(p,y) <y isthe part of the claim y paid by the insurer where h(p,y) depends on the
premium rate which is is paid when the claim occurs. Hence, y — h(p,y) is the part paid by the
reinsurer. In the case of an excess of loss reinsurance, with retention level M(p) = 0 we have:
h(p,y) = M(p) Ay. In the case of a proportional reinsurance with retention level 0 < a(p) < 1 we
have: h(p,y) = a(p) y. In general we only need the

2.13 Assumption. hiscontinuousin p.

The effect of reinsurance on the probability of ultimate ruin is studied by Waters (1983) and
Dickson & Waters (1996). It is a specia feature of the insurance model that in general the system

function f is not continuous in the action p in spite of (2.13). We define the gain rate r by

(2.14) r(x,a) =r(x,d,p) =d El[o,oo)(x) -BIK El{_l}(x) ,
where K determines the fixed cost of ruin . If
(2.15) T:=inf { 20, X, <0}

isthe ruin time, then the total discounted reward is
(2.16) ST e PR a) di= ofTePld di— e PTK  where a = (d.p,) -

Thus we have modelled a fixed cost of amount K at the ruin time by a cost rate. A general
transformation from fixed costs to cost rates is explained by Davis (1993, (31.16)), see also (2.20)
below. When maximizing the total discounted reward, we want to minimize the fixed cost
incurred by ruin and to maximize the total discounted dividends paid up to the ruin time.

Now we make a simple transformation to nonnegative rewards. Define

(2.17) r(x,a) :=r(x,d,p) + K = [d+BK]|] A
then we get

[O’W)(X) 20, a=(dpUA,
(2.18) [©ePlyx. a)di=K + e Plix. a) dt

: 0 % 0 pd) At
Thereforeit is equivalent to maximize the total discounted reward w.r.t. r and w.r.t. r. Obviousy
we have the following properties
(2.19) r(x,a) is bounded, nonnegative and continuous.
A policy Ttis a sequence T = (T[n, n=0) where T[n(Hn,t) is an A—valued measurable function of t
and the history Hn which in thismodel is given through Hn = (Tl’Yl"“’Tn'Yn)' Then T, specifies
the control function u(t) for the period (Tk’Tk +1] according to u(t) = T[n(Hn,t) and the action 3 is
defined through

8 = T[n(Hn,t—Tn) for Tn <t< Tn+1‘



A feedback control function & defines a stationary feedback policy T[6 through

8, = 8(X,_o) = 3(@°(t-T | Xg ) for Tp<tsT,; under o,

where X.r isobviously a measurable function of Hn and ¢6 isdefined in (2.9).
n

There is a probability space (Q,§,P) on which the random variables Tn and Yn are defined and
have the following martingale dynamics [cf. Bremaud (1981, p. 245), Davis (1993, §§26, 31),
Last & Brandt (1995, 4.1.14)]:

T
(2.20) E[9(H 1TV 1=El 1 [ [ 9(H,_5y)Qldy] Ads]
for any measurable function 9 bounded from below.

Given w0 Q , aninitial capital x, and a policy T, the state and action processes are well—defined

and we should write {X?‘X, t> 0} and {a?‘x, t > 0}. For convenience, we will use the following
notation for any function F of the trajectories:

(2.21) E[ F(Xpa, 20) | := E[ FX{al™, ©20) |.
There can be given a probabilistic basisto this notation [cf. Davis (1993, 825)].
By use of (2.20) and the chain rule (cf. Appendix A1), one can prove the following identity:
@2 Efe P u(xy] =v0) + ERfof' e PO vixg Dx ga) — BIV(Xg
A [V(f(Xgagy)) —v(Xg] Qfdy] } ds |

for any bounded absolute continuous function v with bounded derivative v'.
The value function or optimal reward function VV* is defined through
(2.23) V*(X) := supnvn(x) where Vn(x) = EQ[ OIOO e_Bt r(Xt,at) dt| .
Now we can state the main result for the insurance model:

2.24 Theorem. V* is bounded, absolutely continuous on [0,0) with bounded derivative g_x *
and satisfiesthe (Hamilton—Jacobi—) Bellman equation :

SUPo<d<d,0<ps<p { r(x.dp) + g_x V*(x) b(x,d,p)

£ A [V*(F(x.dpy)) — V*(x)] Q[dy] —Bw*(x)} =0,x20,
V*(~1) = 0.

The proof by use of the results of §3 and a transformation defined below is given in the Appendix.



2.25Corollary. There exists a measurable function o(x) = (d*(x),p*(x)) such that the
supremum in the Bellman equation is attained at (d,p) = &(x) for x = 0. Each such
function (with &(—1) := 0 say) defines an optimal stationary feedback policy, i.e.

1'[6
V" (X)=V*(x) forxOE.

Proof. The existence of & follows from the considerations for 3.18. Now, from the Bellman
equation we conclude that under any policy 1t

G V(XX gag — BIV¥ (X + AT [V*(f(Xgagy)) - V*(Xg] Qlay] <~ r(Xgay
with equality under the stationary feedback policy 1'[6. Then we obtain from (2.22):

Eg[e_[3t V* (Xt)] <SV*(x) — EQ[OIt e_BS r(X s’as) ds| with equality under na.

5
Passing to the limit taco, we finally obtain: VT{(x) < V*(x) and V™' (X) = V*(x) , x DE.[]

Upon dividing the Bellman equation by b(x,a), which is bounded away from zero by (2.1), it can
easily be seen that the Bellman equation is equivalent to

(2.26) G V700 + stpg, | Txa) + Rxa) [V (fx.ay) —V*(0] QI
— E(x,a) W*(x)} =0,x=>0,
V*(~1) =0
where
(2.27) Hx,8) 1= r(x,a)/b(x,a), Mx,a) := Ab(x,a), B(x.,a) := B/b(x,a) , X >0,

P(—l,a) =0, )Q(—l,a) =0, E(—l,a) =B.
The equation (2.26) is the optimality equation of a controlled PDP where the flow @ is
(2.28) #(t|x) = t+x _for t20, x20, and ${t|-1) =1

and hence uncontrolled, where the reward rate is P the jump rate is A and the discount rate is .
Hence, in the transformed model, the jump rate and the discount rate depend both on the state and

the action. Even worse, the discount rate 3 is not bounded away from zero. Therefore we have to
make sure that discounting in the transformed model is strong enough. We make use of the
bounding function

— 1 . —
(229) r](X) = m ,X20:; r](—l) =1,
whereit is easy to see that n satisfies the following conditions:
230) @) d=e xOE;

(2.31) For x » X, Ong such that: %s n(@(t|xn))/r](8(t|xo)) <2 fort=0,n= N



Further, we will need the following property:
(2.32) 0< CBl <b(x,@m(x) <1, x=0,for some constant Cb >1,
from which we obtain:
(2.33) B(x) < B(x,8) < C,BM(X);
A(x,a) < CpAM(X) ;
0< Hxa) < (d+BK) [T, M(X).
The following property will be used as a subgtitute of the continuity of f.
2.34 Lemma. If w is a nonnegative, bounded, and upper semi—continuous (u.s.C.) mapping
on Ewith w(-1) =0, then (x,a+ w(f(x,ay)) is usc. 0y=0.

Proof. Wehave w(f(x,ay)) = 1[0,00)(x —h(p,y)) w(x —h(p,y)) .
Now (x,@) + X — h(p,y) iscontinuous 0y >0 and v(z) := 1[0 o0)(2) (W(z) isu.s.c. ; therefore
(x,@) » w(f(x,ay)) = v(x-h(py)) is usc. 0y=0. []|
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3. Control of jumps

In this section we consider the case that the deterministic flow ¢ cannot be controlled Then we
can rely on results of Yushkevich (1987). In this situation we can allow that the state space E isa
Borel subset of any Polish space. Moreover, we will replace continuity of r as in (2.19) by the
more general concept of upper semi—continuity. A real—valued function 9 on some metric space =
is called upper semi—continuous (u.s.c.) if

lim SUpEn-'E S(En) <8 0D&EO0Z=.

Any u.s.c. function 9 attains the supremum on compact sets while continuous functions attain
both the supremum and the infimum on compact sets. We will make the following

3.1 Assumptions:

(@  theflow ¢(t|x) satisfies (1.1) and is a continuous mapping on |[0,00)xE ;
(b)  theaction space A isacompact metric space;

(c)  thebounding function is a continuous function n : E+ (0.00) such that

M e d=e x0E

@ii) for X=X Ong such that: %s r](¢(t|xn))/r](¢(t|xo)) <2 fort=0,n2 o
(d)  thejump rate A(x,a) is a continuous function on ExA with:
A(x,a) < C)\ M(x) ,alA, x 0 E, for some constant C)\;
(e) thegainrater(x,a) isan u.s.c. function on ExA with:
[r(x,@)| < C, mM(x) ,alA, x 0E, for some constant C,
()] the discount rate 3(x,a) is a continuous function on ExA with:

QBEI](X) <B(x,a) < CBDI](X) ,alA, x 0E, for some constants 0 < QB < CB ;

(g) thedisturbance distribution Q is a probability on the disturbance space (D,D);
() the system function f : ExAxD » E is a measurable mapping where f(x,ay) is
continuousin (x,a) or more generally Assumption (3.14) below is satisfied.

We assume that the distribution Q of the disturbances Yn does not depend on the previous states
and actions and hence (Yn) forms an iid sequence. This assumption is made for convenience and
fulfilled in many examples like that of 82. In fact, there is no loss of generality in assuming that
D = [0,1] und Q isthe uniform distribution on D. This fact was shown by Davis (1993 88 23 ,24).
In the one—dimensional case D 0 R, the reduction to the present case is achieved by defining the
system function f by use of the generalized inverse of the distribution function of the (possibly
conditional) distribution Q of Yn.
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The assumption that the discount rate 3 depends on the present state x and action a is needed for
the application to the transformed insurance model. In fact, there would again be no loss of
generality to assume that (3 is one, in particular independent of x,a; compare the transformations
by Davis (via killing) (1993, (31.6) ) and Y ushkevich (1987, § 5). However, we want to work
explicitely with the discount rate because this is more convenient for applications. As in Davis
(1986), (1993) and Yushevich (1987) we will study an equivalent discrete-time semi—Markov
model. For reasons of compactness of the corresponding action space, we have to deal with
relaxed controls. However, these are only used for the proofs. One of the main results will be that
the optimal policy can be chosen by use of a classical hon—relaxed feedback control.

We write IP(A) for the set of all probability measures on A which is known to be again a compact
metric space when endowed with the topology of weak convergence of probability measures. Set
(32 U:={u:[00)~A,umeasurable },

U:={0: [0,0)~P(A),  measurable }.

Any 00U iscalled arelaxed control function. The measurability of (1is equivalent to the fact that
u can be considered as a transition probability from [0,0) to A [ cf. Bertsekas & Shreve (1978,
7.26), Rieder (1975)]. Relaxed controls though well—-defined in a mathematical sense have the
disadvantage that they cannot be applied not only from a practical but also from a measure
theoretical point of view. In fact, in contrast to randomized controls in discrete time models, in
general there cannot be constructed an action process (at) with values in A (but only in P(A))
under relaxed controls.

The Y oung—topology on U is the coarsest topology such that the mappings

Ur g [ AJ (6.3 G(t;da) dt
are continuous for all real functions 9 on [0,0)xA, where § is a Carathéodory function, i.e. 9 is
continuous in aand measurableint, and where 9 isintegrable in the sense that

OI°° maX _n |[9(t,@)| dt <oo.

The introduction of U isjustified by the fact [cf. Davis (1993, (43.3)),Warga (1972)] that U isa
compact space w.r.t the Y oung topogy, but U isin general not compact.
We have to define quantities, already defined for aJA, also for plP(A):
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(33) AGH) = o A(x,8) p[da] |

NoH) G V() oz ) = 5 M) [ v(i(xay) Qay] | u[dal.
M) = J r(x.@) p[dal |
BOGH) = 5[ B(x.a) u[da] |

A(X,0,t) = OIt A($(s|x),u(s)) ds,

B(x,ut) := OIt B(d(s|x),0u(s)) ds , 00 U.
From (3.1c(i),f), one immediately obtains:

(3.4) B(x,0,0) =0, x O E, 10 U,

which fact will ensure that discounting is strong enough. In the equivalent discrete—time model,
we will choose U as action space. The discrete—time reward operator is

(3.5 Tv(x,0) := E[OIT exp{— B(x,0,9)} r(¢(s|x),u(s)) ds+ exp{— B(x,u,1)} ¥(2) |
where 1 is the first jump time and Z is the state immediately after 1. Then Tv(x,U) describes the

expected discounted reward up to the first jump if the process starts in x and the control function u
is chosen for the first period and if a reward v is obtained immediately after the first jump t
depending on the actual state Z. We can write

TU(x0) = of” exp{—AX.AD} MO(HX).00) [of* exp(-Bxa9)} r(0(s/x).a(9) s |
+ exp{—A(x,0,0) } [~ exp{—B(x,0.9)} (¢ (s]).u(s)) ds
+ o exp{= AN} AB(E]X).0(t) exp{—B(x.0.t)} IS v(2) a(dz|$(t] x),a(®)) dt
where (3.4) isused. By an easy computation we get
(36) TV(x,0) = o exp{—(A+B)(x,0,0) } CTr((t]x),u(®))
+A(O(t]x),u(t)) £ V(2) a(dz|(t]x),u()] dt .
The optimal reward operator is

(3.7 T*v(X) := infODU Tv(x,U).

38Lemmalet w: ExA =R beafunctionwith |w(x,a)| < CWE](X) for some Cy < and set
W(X,W) = 5 J W(x,a) p[da] , uOP(A),
W(x,0) = OIOO exp{—(A+B)(x,0,t)} (d (t|x),0(t)) dt , x OE, a0 U.
If w(x,a) is continuous or u.s.c. in (x,a), then W(x,U) is a bounded and continuous or

u.s.c. function in (x,u), respectively.

The proof is given in the Appendix.
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3.9 Remark. Let A be any compact metric space and R(x,4) a bounded function on ExA. If
R(x,a) is continuous or u.s.c., resp., s0is R*(X) := maX 1 A R(x,a).

Thisfact iswell-known [cf. Bertsekas & Shreve (1978) 7.32]. ||

Let B(E) be the set of all bounded and upper semianalytic (u.s.a.) functionson E.

We will not give the definition of an u.s.a. function here. We need the fact that B(E) contains any
bounded Borel—measurable function and that each w 0 B(E) is p—integrable w.r.t. any probability
i O P(E) (more exactly w.r.t. the comletion of ). A problem in dynamic programming is that
T*(v) need not to be Borel—measurable for each bounded Borel—measurable function w, but B(E)
islarge enough to contain T*(w) in that case. Moreover, B(E) is small enough such that for any w
0B(E): T*(w) 0 B(E) [cf. Bersekas & Shreve (1978, 88 7.7, 8.2)].

3.10 Lemma The operator T* : B(E) » B(E) is contracting w.r.t. the sup—norm ||...|| , infact:

IT*w = T*v]| £ G\ (Cy+Ca) - Ohw V] -

Proof. For any x, U:
| Tw(x,u) — Tv(x,0) | < Ojoo exp{—(A+B)(x,0,t) } IA($(t]x),u(t)) [|w—v/|| dt
= lw—v|| O * exp{—(A+B)(x,0,0) } TA+B)((t|x).0(t)) O
A((t]X),0(0) C+B)(® (¢ ]x),0)) " dt
< CA(CA+QB)_1 Ow—v]| o exp{—(A+B)(x,0.t)} TA+B)(O(t[X).u(t)) it
< C)\(C)\+QB)_1 Ow-v| , since MB<C,/Cq by 3.1df. ]

(3.11) Cb(E) stands for the set of all bounded and u.s.c. functionson E,

CO(E) is a non—empty subset of Cb(E) which is closed w.rt. uniform
convergence such that

(x,@ » v(f(x,ay)) isusc.0yOID forvD CO(E).

Obvioudy we can choose CO(E) = Cb(E) if the system function f is continuous.

3.12 Lemma. For v [ CO(E) we have:
@  r(x,a +Axa) 0 v(f(x,ay)) Q[dy] isusc.in(x,a);
(b)  Tv(x,u) isabounded and u.s.c. function in (x,u) and T*v [0 Cb(E) .

Proof. Set w(x,a) = J v(f(x.ay)) Q[dy] -
From the assumption and Fatou's Lemma we obtain:
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limsup, ., J v(f(x,.a,y) Qldy] < [limsup v(f(x,a,y)) Qldy]
< J V(f(xg ) Qlely] = W(xqap).
Thus, \%(x,a) is u.s.c. and bounded. Therefore, we get that w(x,a) := r(x,a) + A(X,a) EW(x,a) is
usc. with |w| <C M)+ W|| [T, M(x) = (C, + |W||[T,) M(x) and thet
Tv(x,0) = of ™ exp{—(A+B)(x,0t) } V(D (tx),U(H) =: W(x,0)
asin 3.8 from which we conclude that Tv(x,U) is a bounded and u.s.c. function in (x,u). Using the

compactness of U we obtain from 3.9 our result. []
Now we obtain from 3.10 and 3.12:

3.13 Theorem. If the system function f is continuous, then T* is a contraction operator

T* (:b(E) b éb(E) .

In view of the application to the transformed insurance model, we will consider a situation which
ismore general than that of 3.13.

3.14 Assumption. T* isan operator T* : C XK CO(E).
By Banach's fixed point theorem we obtain from 3.10 and 3.14 :
3.15 Corollary There existsaunique V* [ CO(E) suchthat T*V* =V*,

It iswell-known that the value function of the equivalent controlled discrete—time model isaso a
fixed point of T* [cf. Bertsekas & Shreve (1978, 9.10) | and hence coincides with V*.

There is another argument that V’F] =T+"o converges to the value function of the equivalent
controlled discrete—time model which also works in the case of unbounded costs. From 3.14 and

3.12b we conclude that V’r‘] a CO(E) and TV’r‘]( 00 is bounded and u.s.c. . Thus, TV’r‘]( 00 can be
approximated from above by a decreasing sequence of bounded and continuous functions. Now a
result by Schal (1975 Theorem 13.1) applies.

We want to apply the results of Yushkevich (1987) who only considers non—relaxed controls.

Therefore we will use the following device. We look on a relaxed control function 00U as a
classical non—relaxed control function for the action space P(A) in place of A. Then V* isalso the
value function for the continuous—-time model |[cf. Yushkevich (1987): (3.15), Davis (1993):
844|. The boundedness assumptions of Yushkevich (1987, 2.18) are satisfied since V* is
bounded. Now we will use the results of Yushkevich (1987) proved for the controlled
continuous—time model. We need the continuous—time reward operators.
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Lv(x.a) = r(x,8) + Ax.a) pJ [V(f(x.ay)) —v(¥)] Q[dy] — B(x.8) (),
LV(x,11) = () + AGGR) LS [V(2) — V(9] a(dz]x,) — Bow) Dv(x) |
L*v(X) := SUppDIP(A) Lv(X,W) .

From Lv(x,u) = AI Lv(x,a) pu|da| oneeasly obtainsthe following important equation:

(3.16) L*v(X) = SUP A Lv(x,a).

3.17 Bellman equation | Y ushkevich (1987) 4.10, 4.15, 5.2.6]
V*(¢(t|x)) isan absolutely continuous function in t=0 and

—%V* (¢(t|x)) =L*V*(d(t|x)) ae. on [0,) for all xCE.
3.18 Lemma. There exists ameasurable function d : E+~ A such that

LV*(x,0(x)) = L*V*(x), xUE.

Proof. By assumption —A(x,a) Ov(x) — B(Xx,a) W(x) is continuousin a. Now from 3.15 and 3.12 we
obtain that LV*(x,a) isu.s.c.ina for all x 0 E. Now a well-known selection theorem applies
[cp. Bersekas & Shreve (1978, 7.33)]. [ |

3.19 Corollary If the system f is continuous or if more generally Assumption 3.14 holds, then
there exists an optima dsationary (non—relaxed) feedback policy defined through
8 =9(X;_g) 120, wheredischosenasin 3.18 and &, isthe action chosen at timet.

The proof follows asin 2.25 or from Y ushkevich (1987, 4.10) or other verification theorems |cf.
Y ushkevich (1989), Davis (1993, (42.8))].

Appendix.
A.1 Chain Rule (Change—of—Variable Formula). Let V be an absolute continuous function
onaninterva | ,i.e.

V() — V(to) = tOIt v(s) ds for somelocally integrable functionv on .
LetG: [x o®) + | be an absolute continuous function, i.e.

G(x) — G(xo) = XOIX g(y) dy for some locally integrable function g on [xo,oo).
If gisdtrictly positive, then VoG is absolute continuous and more exactly

V(G(0) = V(Blg) = VG d0) dy X2,

The present form of the chain rule is probably well known, but a proof for this special situation
could not be found in the literature. Therefore we provide the proof.



16

Proof. The mapping G is continuous and strictly increasing. Let be G() = Iim,[_’oo G(t) (< ).
Thenl':= [G(XO),G(oo)) 0 1. There existsthe inverse mapping G : I' = [x 0,oo) and we have
UCORCEMEI 18O ey du = | ()G () V(GG (W) do

RGOV DL EMITONCOINCY
where p is the image measure of the Lebesgue measure A on [x 0,oo) under the mapping G-1.
Wehavefor x> x i W[ [X X ] =A[{u; x < G(u) < x}]| =A[{u; G(x ) sus G(x)}]
=G(x) — G(xo) =y IX g(y) dy, hence p[dy]| =g(y) dy , and we finally obtain:

0

V(G) ~V(GX) = | XV(G(y)) g(y) dy. []

A2 Proof of Theorem 2.10.

: : — x 1
Define l'lJ . [XO!OO)X [XO!OO) = [O!OO) by l'IJ(X | Z) L Z‘[ W dy .
Then Y(z|z) = 0, Y is continuous and Y( z) is stricty increasing to o since

. . X 1
Ilmx_’oo L|J(X|Z)2|Imx_’oo ZI mdy:oo :

Now let z be fixed and Y( [ z) =: Y. Then, Y : [z,0) » [0,e0) is bijective and the inverse
W0 : [0,00)  [z,00) exists. Set
60 = 6(t]2) =2+ o gouri(s) s
where 0 < 0 | t goyI(s) ds< Ojt [a +yp(9)] ds< o , t>0, since P! iscontinuous. Then by the

chain rule

D09) — 2= B0 —0W@) = I gouri(Wy) gy v =x—2.xez

Thus ¢ = -1 and we have ¢(t) ==z + 0 | t god(s) ds. Having proved the existence, we now turn
to the uniqueness of the solution. Let @ be any solution which is necessarily increasing, hence

g(t) 0 [z,00) and qu&;] is defined. From the chain rule we get
WD)~ W@ = wEn) = ot ate)aW(s) ds=t,

Thus@ isthe inverse Y1 of |, i.e. @: ¢. In order to prove continuity, suppose tto 2077, and set

Xp = 0t [Z), X :=liminf x , x :=limsupx . Then W(x,|z)) =t
Now choose { > x , then for infinitely many n: {>x_ andhence W(Z|z,) 2 W(x,|z) =t -

This implies (¢ |zo) 2t and for C | x: L|J(§|zo) 2t By the same sort of argument, we

obtain: tys qJ(§|zo) < Y(X| zo) <t Thisproves x =X = ¢(t0|zo) al
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A3 Proof of Lemma 3.8.

a) Let w be bounded and continuous. For (xn,ﬂn) - (xo,ﬂo) we write

/\mn(t) + an(t) = /\(xm,ﬂn,t) + B(xm,un,t), Rmn(t) = w((t] xm),ﬂn(t)) :
K(t) :=n(d(s| xo)), where k is positive and continuous.

Then we have [ Ann® = Agg® S [AL® = Ag O] + [AG1) —Agp® | -
W.o.l.g. we can assume that n 2 n asin 3.1c(ii). By definition of the Y oung—topology we get:
Non® = OI°° aJ 1(0,,[] (9 A(D(s|x).a) U (s,da) ds » Ayy(1),
since d(t,a) := 1(0,t] () A(d(s| xo),a) < 1(0,,[] (9 ED)\ [k(s) . Further
[Ann® = Agn®1 < o suprpeay IMOGIX) )~ AB(s|xg))]| ds
< of P rpgay AJ IMOGIX)) ~A®(s|x).a)| u[da] ds
< of sup IM(SIX).8) —MO(S| x| ds.

Now, by 3.9, the last integrand tends to zero and is dominated by 3[([3)\ (k(s) in view of 3.1c,d;
therefore the integral tendsto zero. The same consideration appliesfor B. Thus we have by 3.1c,f

) KO =A,O+B(H-+Kyt) and K ()2} T0h k(s ds 0t0.
Now we can consider :
W) — Wk, )| = |of [ expl—K () Rog(®) — exp{-K (0} (R (0] et
<of” lexp{=Ky0)} —exp{-K O} OR ()] dt
+| of " exp{=Ko(} TRg(®) — Ry(®)] dt |

<2rc, 0, Il exp{—K (1)} —exp{—K ()} | k() dt

+ | of " ep{-Ko(O)} Ryg(®) dt — o exp{-K()} R0 dt |

+ol” exp{-Ko(} IR0 ~ Ry (O] dt

Because of (*) we have dominated convergence to zero of the first integrand and hence of the first
integral. By the definition of the Y oung—topol ogy, the second term convergesto zero, since

3(t,a) := exp{—KO(t)} Cv(d(t| xo),a) <Cy [exp{—% @B %jt K(s) ds} [k(t) .
Finally, the same arguments as for (*) show that the last integral tendsto zero.
b) According to atheorem of Baire [cf. Bertsekas & Shreve (1978) 7.14], wisu.s.c. if and only if

there exists a decreasing sequence of continuous functionsw _ such that Wh | w. Now set \Qn(x,a)

n
= (Wn(x,a) ACyy M (x)) v (—CW M (x)) , hence |\Hn(x,a) | < Cw M (x).
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Then \Hn is continuous and \%n | (w A CWDI]) % (—CWDj]) = w. From part (a) we know that
Wn(x,U) = OIOO exp{—\(x,0,t)—-B(x,0,t) } aﬁn(q; (t]x),0(t)) dt iscontinuous. Furthermore
eP{-AX6)-BX,aD} OW (®(t]),00) | < C,, Bxp{~Cg Tyl n(é(s]) ds} M(@(EI ) ;

therefore we obtain Wn(x,ﬂ) | W(x,U) because of monotone and dominated convergence and
W] < CW/QB . ThusW isu.s.c. and bounded. []

A3 Proof of Theorem 2.24.

In the transformed insurance model, define CO(E) as the set of all function v on E which are
nonnegative, u.s.c., and bounded with v(—1) = 0. Then (3.11) is satisfied because of 2.34. By 3.12,

we further know that T*v is u.s.c. and bounded for v [ CO(E). It is obvious that T*v is

nonnegative and that T*v(—1) = 0. Hence T*v [ CO(E) for v O CO(E) and Assumption 3.14 is
satisfied. We further noted in 82 that the Assumptions 3.1 are satisfied. Thus the Bellman equation

3.17 holds. Since @(t|x) =x +t for x 2 0, absolute continuity of V*(@(t|x)) = V*(x+t) int

implies absolute continuity of V on [0,). Furthermore, %V* (x+t) = (g—XV*)(x+t).

Now the Bellman equation reads:
— @IV (x+)

= sup, {P(x+t,a) + )@(x+t,a) O [V*(f(x+t,ay)) — V*(x+t)| Q[dy] — E(x+t,a) W*(x+t)} )
Upon setting x = 0, we obtain (2.26); the case x =—1 isclear. ||

Acknowledgements
The author is grateful to the referee for several useful remarks.

References

Asmussen, S., Taksar, M. (1997): Controlled diffusion models for optimal dividend pay—out.
Insurance: Mathematics and Economics 523 (1997) 1 —15.

Bertsekas, D., Shreve, SE. (1978): Stochastic Optimal Control: the Discrete-Time Case,
Academic Press, New Y ork.

Bremaud, P. (1981): Point Processes and Queues. Martingale Dynamics,
Springer—Verlag, Berlin.



19

Cinlar, E., Jacod, J. (1981): Representation of semimartingale Markov processes in terms of
Wiener processes and Poisson random measures. Seminar on Stochastic Processes,
ed. E. Cinlar, K.L. Chung, R. K. Getoor, Birkhduser, p. 159 — 242.

Dassios, A. and Embrechts, P. (1989) Martingal es and insurance risk.

Communications in Statistics — Stochastic Models 5, 181-217.

Davis, M.H.A. (1984): Piecewise—deterministic Markov processes. a general class of
non—diffusion stochastic models. J. Royal Statistical Society B, 46, 353—388.

Davis, M.H.A. (1986): Control of piecewise—deterministic processes via discrete-time
dynamic programming, in Stochastic Differential System (ed. M. Kohlmann).

Lecture Notesin Control and Information Sciences 78 , Springer—Verlag, Berlin.

Davis, M.H.A. (1993): Markov Models and Optimization. Chapman & Hall, London.

Davis, M.H.A., Dempster, M.A.H., Sethi, SP.,, Vermes, D. (1987): Optima capacity
expansion under uncertainty. Advancesin Applied Probability, 19, 156 — 76

Davis. M.H.A., Vellekoop, M.H. (1995): Permanent health insurance: A case study in
piecewise deterministic Markov modelling. Mitteilungen der Schweiz. Vereinigung der
Versicherungsmathematiker, Heft 2/1995, 177—211.

Dempster, M.A.H. (1991): Optimal control of piecewise deterministic Markov Processes, in:
Applied Stochastic Analysis (ed. M.H.A. Davis and R.J.Elliot), Gordon and Breach,
New York, pp. 303—25.

Dempster, M.A.H., Ye, JJ. (1990): A maximum principle for control of piecewise
deterministic Markov processes, in: A.G. Law and C.L. Wang (eds.) Approximation,
Optimization and Computing: Theory and Applications, North Holland, Amsterdam,
pp. 235—40.

Dempster, M.A.H., Ye, JJ. (1992): Necessary and sufficient optimality conditions for control
of piecewise deterministic Markov processes. Stochastics and Stochastics Reports, 40,
125-145.

Dempster, M.AH., Ye, JJ (1995): Impulse control of piecewise determistic Markov
processes. Annals of Applied Probability 5, 399 — 423.

Deshmukh, S.D., Pliska, S.R. (1980): Optimal consumption and exploration of nonrenewable
resources under uncertainty. Econometrica 48, 177—200.

Dickson, D.C.M., Waters, H.R. (1996): Reinsurance and ruin, Insurance: Mathematics and
Economics 19, 61-80.

Embrechts, P. (1984): Discussion to Davis (1984).

Embrechts, P. (1990): Martingales in Non-Life insurance. Vilnius Conference Proceedings
VNU Press, 1, 314-322.

Embrechts, P., Schmidli, H. (1994): Ruin estimation for a general insurance risk model.
Advancesin Applied Probability 26, 404—422.



20

Fleming, W.H., Soner, H.M. (1993): Controlled Markov Processes and Viscosity Solutions.
Springer Verlag, New Y ork.

Hgjgaard, B., Taksar, M. (1996): Optimal proportional reinsurance policies for diffusion
models. Working paper.

Hgjgaard, B., Taksar, M. (1997): Controlling risk exposure and dividends pay—out schemes:
insurance company example. Working paper.

Last, G., Brandt, A. (1995): Marked point processes on thereal line.
Springer Verlag, New Y ork.

Martin—L 6f, Anders (1994): Lectures on the use of control theory in insurance.
Scandinavian Actuarial Journal 1: 1 — 25.

Pliska, SR. (1978): On a functiona differential equation that arises in a Markov control
problem. Differential equations 28, 390—405.

Rieder, U. (1975): Bayesian dynamic programming. Advances in Applied Probability 7
330-348.

Schél, M. (1975): Conditions for optimality in dynamic programming and for the limit of
n—stage optimal policiesto be optimal.
Zeitschrift fir Wahrscheinlichkeitstheorie und verwandte Gebiete 32, 179—-196.

Soner, H.M. (1985): Optimal control of a one—dimensional storage process.
Applied Mathematics and Optimization 13, 175-191.

Soner, H.M. (1986): Optimal control with state space constraint 11,
SIAM J. Control and Optimization 24, 1110-1122.

Taksar, M., Zhou, X.Y. (1997): Optimal risk and dividend control for a company with a debt
liability. Working paper.

Yushkevich, A.A. (1987): Bellman inequalities in Markov decison deterministic drift
processes. Stochastics 23, 25—77.

Yushkevich, A.A. (1989): Verification theorems for Markov decision processes with controlled
deterministic drift and gradual and impulsive controls.
Theory of Probability and Its Applications 34, 474496 .

Warga, J. (1972): Optimal Control of Differential and Functional Equations,
Academic Press, New Y ork.

Waters, H.R. (1983): Some mathematical aspects of reinsurance.
Insurance: Mathematics and Economics 2, 17 — 26.



