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AAAbbbssstttrrraaacccttt... Dynamic programming for piecewise deterministic Markov processes is studied where

only the jumps but not the deterministic flow can be controlled. Then one can dispense with

relaxed controls. There exists an optimal stationary policy of feedback form.

Further, a piecewise deterministic Markov model for the control of dividend pay � ��� out and

reinsurance is introduced. This model can be transformed to a model with uncontrolled flow. It is

shown that a classical solution to the Bellman equation exists and that a non � ��� relaxed optimal

policy of feedback form can be obtained via the Bellman equation. Lipschitz continuity of the

1 � ��� dim. vector field defining the controlled flow will be replaced by strict positivity.
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111... IIInnntttrrroooddduuuccctttiiiooonnn

Piecewise deterministic processes (PDPs) form a class of time � ��� homogenous Markov processes

living on a Borel subset E of
���

. (In the insurance model of section 2 we will have d=1.) Davis

(1984) calls this class a general class of non � ��� diffusion stochastic models. This name can be

justified by the following result of Cinlar & Jacod (1981):

(((111...000))) Every strong Markov process � X , t≥0 � living on E with paths that are botht
continuous and of (locally) bounded variation is deterministic, i.e.,

X = ϕ(t � X ) where ϕ is a dddeeettteeerrrmmmiiinnniiissstttiiiccc ffflllooowww.t 0
A deterministic flow ϕ just defines a deterministic time � ��� homogenous Markov process, i.e.

(((111...111))) ϕ : � 0,∞)×E � E , ϕ(0 � x) = x, ϕ(t+s � x) = ϕ(s � ϕ(t,x)), s,t≥0, x∈E,

dwhere ϕ(t � x) is continuous in t. Hence, in order to obtain non � ��� trivial Markov processes on
�

, one

has to allow for paths having infinite total variation or one has to consider jumps. The first

possibility leads to the study of diffusion processes arising as solutions of stochastic differential

equations. Davis (1993) says in the preface: It is hard to deny that the stochastic differential

equation model has received more than its fair share of attention.

If one wants to stick to paths of (locally) bounded variation, one has to allow for jumps. In view of

applications, an appealing assumption is to exclude explosions of jumps, i.e. to assume that the

jumps occur at randon times

(((111...222))) 0 < T < ... < T < T � ∞ .1 n� ��� 1 n
According to Cinlar & Jacod (1981), � X � is necessarily described by a deterministic flowt
between two jump times T < T . Thus, these considerations lead to the class of PDPs in a veryn n+1
natural way. Let us now concentrate on the case where E ⊂ R (i.e. d=1) as in the insurance model.

We will consider a flow ϕ which is defined as the unique solution to an Initial Value Problem (in

the sense of Carathéodory) defined for an autonomous differential equation with a (here

one � ��� dimensional) vector field b on E :

t(((111...333))) ϕ(t) = ϕ(t � x) = x + ∫ b(ϕ(s)) ds.0
Then we can write

(((111...444))) dX = b(X ) dt + ∆X where ∆X = X � ��� X .t t t t t t � ��� 0
We can compare this approach with that defined by a stochastic differential equation

(((111...555))) dX = b(X ) dt + σ(X ) dWt t t t
where � W � is a Wiener process (standardized Brownian motion). Obviously in (1.4), the 'whitet
noise' perturbations dW in (1.5) are replaced by random jumps which however need not bet
compensated. Hence (1.4) provides not yet a semi � ��� martingale decomposition. For such a

decomposition, the compensator of the jumps has to be taken into account.

Davis (1993) assumes that the process will jump if it hits the boundary of the state space. But

there are other interesting cases. In the present paper, the topological boundary will not play an



3

�
exta role. In the insurance model, we will have E = � 0,∞)∪ � � ��� 1 � where � ��� 1 is an absorbing

(cemetary) state and the process leaves the boundary state 0 by means of the flow. Deshmukh &

Pliska (1980) consider an optimal consumption model where S = � 0,∞) and the boundary point 0

is sticky, i.e. the process will wait in 0 until the next jump occurs.

When PDPs were introduced, it was soon discovered that the model and the developped

techniques are important for risk theory, insurance science � cf. Embrechts (1984)
�
. Then, there

followed a series of papers � cf. Dassios & Embrechts (1989), Embrechts (1990), Davis (1993,

(21.12)), Embrechts & Schmidli (1994), Davis & Vellekoop (1995)
�
. Control in insurance was

studied by Martin � ��� Löf (1994) in a discrete � ��� time framework. Recently, diffusions models were

developped for the control of dividend pay � ��� out and reinsurance � cf. Asmussens & Taksar (1997),

Hφjgaard & Taksar (1996), (1997), Taksar & Zhou (1997)
�
.

It is known from deterministic control theory that one has to introduce the concept of relaxed

controls in order to get optimal controls. Therefore, it was natural to introduce relaxed controls for

the control of PDPs � cf. Davis (1993, § 43)
�
. Yushkevich (1987) derived the Bellman equation for

the control of PDPs without use of relaxed controls; however he only studied the case where one

can only control the jumps and not the deterministic flow. We will combine the results of

Yushkevich with the investigation about continuity and compactness properties by Davis (1986),

(1993) in the framework of relaxed controls and will obtain a result for the existence of a

nonrelaxed optimal policy for the control of the jumps in §3. The optimal policy can be obtained

as a feedback control via a classical solution to the Bellman equation. In terms of Davis (1993, §

42), naive dynamic programming works for the control of jumps.

In general, one has to generalize the concept of a solution to the optimality equation because one

does not know whether the value function is sufficiently regular. There, one can use the Clarke

generalized gradient and non � ��� smooth analysis. In the presence of strong convexity properties it

can be shown that one can dispense with relaxed controls � cf. Davis (1993, § 45),

Dempster (1991), Dempster & Ye (1990, 1992, 1995)
�
. A second direction is the use of the

concept of a viscosity solution � cf. Soner (1986), Fleming & Soner (1993)
�
.

In special models, special techniques can be used to show that naive dynamic programming works

� cf. Davis et al. (1987)
�
. In the present paper we will study a one � ��� dimensional insurance control

model as another special model. There we will use a property which is typical for a large class of

PDPs: there are a deterministic flow in one direction and jumps in the other direction. This

property enables us to make a transformation to a model with an uncontrolled flow. A similar

transformation is used by Pliska (1978), Deshmukh & Pliska (1980), Soner (1985). For the

transformed model, we can then use the results of §3. There are some other properties of the

insurance model which will cause some technical problems: e.g. the vector field describing the

flow is unbounded. We will get a classical solution to the optimality equation which is absolutely

continuous which is the most natural regularity property. The result on the insurance model can be
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used as a first step to investigate qualitative properties of the value function and of the policy of

an insurance company for the optimal reinsurance and distribution of dividends.

222... CCCooonnntttrrrooolll ooofff aaannn iiinnnsssuuurrraaannnccceee mmmooodddeeelll

The real � ��� valued process � X , t≥0 � describes the sssuuurrrpppllluuusss ppprrroooccceeessssss (fund of reserves). There is at
ppprrreeemmmiiiuuummm (((iiinnncccooommmeee))) rrraaattteee c which is fixed. The process can be controlled by the choice of the

dddiiivvviiidddeeennnddd rrraaattteee d and the ppprrreeemmmiiiuuummm rrraaattteee p paid by the insurer to a reinsurer, hence the aaaccctttiiiooonnn consists

in the choice of a = (d,p). We assume
�

�

�

�

�

�

222...111 AAAssssssuuummmppptttiiiooonnn... 0 ≤ d ≤ d, 0 ≤ p ≤ p for some upper bounds d, p with d + p < c ;
�

�

hence the aaaccctttiiiooonnn ssspppaaaccceee is A := � 0,d
�

× � 0,p
�

.

The insurance company gets interest for capital above a certain level L ≥ 0, the amount of capital

the company retains as a liquid reserve (cf. Embrechts & Schmidli (1994)). The corresponding

iiinnnttteeerrreeesssttt rrraaattteee is γ ≥ 0, while we denote the general dddiiissscccooouuunnnttt rrraaattteee by β > 0. There, β and γ may

conincide or not. We choose the ssstttaaattteee ssspppaaaccceee E according to

222...222 AAAssssssuuummmppptttiiiooonnn... E = � 0,∞) ∪ � � ��� 1 � where � ��� 1 represents the state of ruin.

� We could also choose E = � 0,∞) with 0 as the state of ruin, but then we had to assume that 0 is an

isolated point. As a consequence we would have to work with a topology which does not agree

with the usual topology on
�

which fact is less convenient.
�

The jumps at T , n≥1, are caused by the claims. Between the jumps, there is a deterministic flown
which will be described by

+222...333 AAAssssssuuummmppptttiiiooonnn... b(x,a) := c � ��� d � ��� p + γ ⋅ (x � ��� L) , x ≥ 0,

b( � ��� 1,a) := 0, for a = (d,p),

where b is now also a function of the action in the controlled case. Obviouly, we have

(((222...444))) b(x,a) is Lipschitz continuous in x ≥ 0 uniformly in a.

It is remarkable that b(x,a) is unbounded in x. This property appears here in a natural way, but will

cause some technical difficulties. Davis (1993, (41.1)) assumes in the controlled case that b is

bounded.

Given the history H at T , the surplus at T +t (< T ) is deterministic. Therefore one cann n n n+1
decide at T about the aaaccctttiiiooonnn a = u(t) = (d(t),p(t)) at T +t ≤ T wheren T +t n n+1n
(((222...555))) the cccooonnntttrrrooolll fffuuunnnccctttiiiooonnn u : � 0,∞) � A is measurable

uand may depend on H . Then the flow ϕ = ϕ (t � x) is a solution ton
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u t(((222...666))) ϕ(t) = ϕ (t � x) = x + ∫ b(ϕ(s),u(s)) ds , x ≥ 0,0
uϕ (t � � ��� 1) = � ��� 1 , t ≥ 0, i.e.

d +
������ � ϕ(t) = c � ��� d(t) � ��� p(t) + γ ⋅ (ϕ(t) � ��� L) for almost all t and for x ≥ 0.dt

uBecause of (2.1), ϕ (t � x) is strictly increasing in t for x ≥ 0. We have

u(((222...777))) X = ϕ (t � X ) , T +t < T .T +t T n n+1n n

By (2.4) and Carathéodory's theorem in ordinary differential equations � cf. Warga (1972)

Theorems II.41, II.4.2
�

there is a unique solution ϕ to (2.6). Of special interest are feedback

controls u(t) = δ(X ) , T < T +t ≤ T whereT +t n n n+1n
(((222...888))) the fffeeeeeedddbbbaaaccckkk cccooonnntttrrrooolll fffuuunnnccctttiiiooonnn δ : E � A is measurable.

This will lead to the autonomous differential equation in the sense of Carathéodory:

δ t(((222...999))) ϕ(t) = ϕ (t � x) = x + ∫ b(ϕ(s),δ(ϕ(s))) ds .0

In the prevailing opinion, one needs at least locally Lipschitz continuity to guarantee existence

and uniqueness of the solution ϕ which would put a severe restriction on the control δ. Here

however, we are lucky and can use a special property of the insurance model, namely that b has

only one sign and is bounded away from zero. In fact, we have a deterministic flow in one

direction and jumps in the other direction. For an arbitrary feedback control function δ, there

exists a unique solution to (2.7) according to the following theorem.

222...111000 TTThhheeeooorrreeemmm... Let g be a measurable function g : � x ,∞) � � such thato
0 < ε ≤ g(x) ≤ α + γ ⋅x , x≥x , for some ε,α,γ ≥ 0, x ∈

�
.o o

Then there is a unique solution ϕ : � 0,∞)× � x ,∞) � � too
tϕ(t � x) = x + ∫ g(ϕ(s � x)) ds , t ≥ 0, x ≥ x ,0 o

and ϕ is continous.

The proof is given in the Appendix. The case where g is negative can be treated by looking at � ��� ϕ
δand � ��� g( � ��� x). Upon defining u(t) := δ(ϕ (t � x)), we have a control function in the sense of (2.5) and

δϕ is a solution to (2.6).

As usual, the claim process is described by a compound Poisson process with rate λ and with

claims of height Y at T where Y ∼ Q and Q is the ccclllaaaiiimmm dddiiissstttrrriiibbbuuutttiiiooonnn.n n n
We will look upon the claims Y as disturbances which form an iid sequence of random variablesn
taking values in D = � 0,∞). There is a sssyyysssttteeemmm fffuuunnnccctttiiiooonnn f such that

(((222...111111))) X = f(X , a ,Y )T T � ��� 0 T n+1n+1 n+1 n+1
where
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�
x � ��� h(p,y) x � ��� h(p,y) ≥ 0

222...111222 AAAssssssuuummmppptttiiiooonnn... f(x,a,y) = f(x,d,p,y) := � for .�
���� 1 x � ��� h(p,y) < 0

Here, 0 ≤ h(p,y) ≤ y is the part of the claim y paid by the insurer where h(p,y) depends on the

premium rate which is is paid when the claim occurs. Hence, y � ��� h(p,y) is the part paid by the

reinsurer. In the case of an eeexxxccceeessssss ooofff lllooossssss rrreeeiiinnnsssuuurrraaannnccceee, with retention level M(p) ≥ 0 we have:

h(p,y) = M(p) � y. In the case of a ppprrrooopppooorrrtttiiiooonnnaaalll rrreeeiiinnnsssuuurrraaannnccceee with retention level 0 ≤ α(p) ≤ 1 we

have: h(p,y) = α(p) ⋅y. In general we only need the

222...111333 AAAssssssuuummmppptttiiiooonnn... h is continuous in p.

The effect of reinsurance on the probability of ultimate ruin is studied by Waters (1983) and

Dickson & Waters (1996). It is a special feature of the insurance model that in general the system
� �

function f is not continuous in the action p in spite of (2.13). We define the gain rate r by
� � � �

(((222...111444))) r(x,a) = r(x,d,p) = d ⋅111 (x) � ��� β ⋅K ⋅111 (x) ,� 0,∞) � � ��� 1 �
where K determines the fixed cost of ruin . If

(((222...111555))) τ := inf � t≥0, X < 0 �t
is the ruin time, then the tttoootttaaalll dddiiissscccooouuunnnttteeeddd rrreeewwwaaarrrddd is

∞ � ��� βt � � τ � ��� βt � ��� βτ(((222...111666))) ∫ e r(X ,a ) dt = ∫ e d dt � ��� e ⋅K where a =: (d ,p ) .0 t t 0 t t t t

Thus we have modelled a fixed cost of amount K at the ruin time by a cost rate. A general

transformation from fixed costs to cost rates is explained by Davis (1993, (31.16)), see also (2.20)

below. When maximizing the total discounted reward, we want to minimize the fixed cost

incurred by ruin and to maximize the total discounted dividends paid up to the ruin time.

Now we make a simple transformation to nonnegative rewards. Define
� �

(((222...111777))) r(x,a) := r(x,d,p) + β ⋅K = � d + β ⋅K
�

⋅111 (x) ≥ 0, a = (d,p) ∈ A,� 0,∞)
then we get

∞ � ��� βt ∞ � ��� βt � �
(((222...111888))) ∫ e r(X ,a ) dt = K + ∫ e r(X ,a ) dt .0 t t 0 t t � �
Therefore it is equivalent to maximize the total discounted reward w.r.t. r and w.r.t. r. Obviously

we have the following properties

(((222...111999))) r(x,a) is bounded, nonnegative and continuous.

A pppooollliiicccyyy π is a sequence π = (π , n≥0) where π (H ,t) is an A� ��� valued measurable function of tn n n
and the history H which in this model is given through H = (T ,Y ,...,T ,Y ). Then π specifiesn n 1 1 n n n
the control function u(t) for the period (T ,T

�
according to u(t) = π (H ,t) and the action a isk k+1 n n t

defined through

a := π (H ,t � ��� T ) for T < t ≤ T .t n n n n n+1
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δA feedback control function δ defines a ssstttaaatttiiiooonnnaaarrryyy fffeeeeeedddbbbaaaccckkk pppooollliiicccyyy π through

δ δa = δ(X ) = δ(ϕ (t � ��� T � X )) for T < t ≤ T under π ,t t � ��� 0 n T n n+1n
δwhere X is obviously a measurable function of H and ϕ is defined in (2.9).T nn

There is a probability space (Ω, � ,P) on which the random variables T and Y are defined andn n
have the following martingale dynamics � cf. Bremaud (1981, p. 245), Davis (1993, §§26, 31),

Last & Brandt (1995, 4.1.14)
�
:

T �(((222...222000))) E � ϑ(H ,T ,Y )
�

= E � ∫ ∫ ϑ(H ,s,y) Q � dy
�

λ ds
�

k� ��� 1 k k T ����� k� ��� 1
for any measurable function ϑ bounded from below.

Given ω ∈ Ω , an initial capital x, and a policy π, the state and action processes are well � ��� defined

π.x π.xand we should write � X , t ≥ 0 � and � a , t ≥ 0 � . For convenience, we will use the followingt t
notation for any function F of the trajectories:

π π,x π,x(((222...222111))) E � F(X ,a , t≥0)
�

:= E � F(X ,a , t≥0)
�
.x t t t t

There can be given a probabilistic basis to this notation � cf. Davis (1993, §25)
�
.

By use of (2.20) and the chain rule (cf. Appendix A1), one can prove the following identity:

π � ��� βt π t � ��� βs(((222...222222))) E � e v(X )
�

= v(x) + E � ∫ e � v'(X ) ⋅b(X ,a ) � ��� β ⋅v(X )x t x 0 s s s s
+ λ ⋅ ∫ � v(f(X ,a ,y)) � ��� v(X )

�
Q � dy

� � ds
�

s s s
for any bounded absolute continuous function v with bounded derivative v'.

The vvvaaallluuueee fffuuunnnccctttiiiooonnn or oooppptttiiimmmaaalll rrreeewwwaaarrrddd fffuuunnnccctttiiiooonnn V* is defined through

π π π ∞ � ��� βt(((222...222333))) V*(x) := sup V (x) where V (x) := E � ∫ e r(X ,a ) dt
�

.π x 0 t t

Now we can state the main result for the insurance model:

d222...222444 TTThhheeeooorrreeemmm... V* is bounded, absolutely continuous on � 0,∞) with bounded derivative ��������� V*dx
and satisfies the (HHHaaammmiiillltttooonnn� ���� ���� ��� JJJaaacccooobbbiii� ��� ) BBBeeellllllmmmaaannn eeeqqquuuaaatttiiiooonnn :�

dsup �

� r(x,d,p) + ��������� V*(x) ⋅b(x,d,p)0≤d≤d,0≤p≤p � dx
�+ λ ⋅ ∫ � V*(f(x,d,p,y)) � ��� V*(x)

�
Q � dy

�
� ��� β ⋅V*(x) = 0 , x ≥ 0,�

V*( � ��� 1) = 0.

The proof by use of the results of §3 and a transformation defined below is given in the Appendix.
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222...222555 CCCooorrrooollllllaaarrryyy... There exists a measurable function δ(x) = (d*(x),p*(x)) such that the

supremum in the Bellman equation is attained at (d,p) = δ(x) for x ≥ 0. Each such

function (with δ( � ��� 1) := 0 say) defines an optimal stationary feedback policy, i.e.

δπV (x) = V*(x) for x ∈ E.

PPPrrroooooofff... The existence of δ follows from the considerations for 3.18. Now, from the Bellman

equation we conclude that under any policy π
d
��������� V*(X )b(X ,a ) � ��� β ⋅V*(X ) + λ ⋅ ∫ � V*(f(X ,a ,y)) � ��� V*(X )

�
Q � dy

�
≤ � ��� r(X ,a )dx s s s s s s s s s

δwith equality under the stationary feedback policy π . Then we obtain from (2.22):

π � ��� βt π t � ��� βs δE � e V*(X )
�

≤ V*(x) � ��� E � ∫ e r(X ,a ) ds
�

with equality under π .x t x 0 s s
δπ πPassing to the limit t � ∞, we finally obtain: V (x) ≤ V*(x) and V (x) = V*(x) , x ∈ E. � �

Upon dividing the Bellman equation by b(x,a), which is bounded away from zero by (2.1), it can

easily be seen that the Bellman equation is equivalent to

d
�

∼ ∼(((222...222666))) ��������� V*(x) + sup r(x,a) + λ(x,a) ⋅ ∫ � V*(f(x,a,y)) � ��� V*(x)
�

Q � dy
�

dx a∈A �
∼ �

� ��� β(x,a) ⋅V*(x) = 0 , x ≥ 0,�
V*( � ��� 1) = 0

where

∼ ∼ ∼(((222...222777))) r(x,a) := r(x,a)/b(x,a), λ(x,a) := λ/b(x,a), β(x,a) := β/b(x,a) , x ≥ 0,

∼ ∼ ∼r( � ��� 1,a) := 0, λ( � ��� 1,a) := 0, β( � ��� 1,a) := β.

∼The equation (2.26) is the optimality equation of a controlled PDP where the flow ϕ is

∼ ∼(((222...222888))) ϕ(t � x) = t+x for t≥0, x≥0, and ϕ(t � � ��� 1) = � ��� 1

∼ � �and hence uncontrolled, where the reward rate is r, the jump rate is λ and the discount rate is β.

Hence, in the transformed model, the jump rate and the discount rate depend both on the state and

�the action. Even worse, the discount rate β is not bounded away from zero. Therefore we have to

make sure that discounting in the transformed model is strong enough. We make use of the

bbbooouuunnndddiiinnnggg fffuuunnnccctttiiiooonnn

1(((222...222999))) η(x) := � ��� ����� ����� ����� ����������� , x ≥ 0; η( � ��� 1) := 1,c + γ ⋅x
where it is easy to see that η satisfies the following conditions:

∞ ∼(((222...333000))) ∫ η(ϕ(t � x)) dt = ∞ , x ∈ E ;0
1 ∼ ∼(((222...333111))) For x � x ∃ n such that: ���� ≤ η(ϕ(t � x ))/η(ϕ(t � x )) ≤ 2 for t ≥ 0, n ≥ n .n o o 2 n o o
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Further, we will need the following property:
���� 1(((222.333222))) 0 < C ≤ b(x,a) ⋅η(x) ≤ 1 , x ≥ 0 , for some constant C ≥ 1,b b

from which we obtain:

�(((222...333333))) β ⋅η(x) ≤ β(x,a) ≤ C ⋅ β ⋅η(x) ;b
�λ(x,a) ≤ C ⋅ λ ⋅η(x) ;b

∼ �

0 ≤ r(x,a) ≤ (d + β ⋅K) ⋅C ⋅η(x) .b

The following property will be used as a substitute of the continuity of f.

222...333444 LLLeeemmmmmmaaa... If w is a nonnegative, bounded, and upper semi � ��� continuous (u.s.c.) mapping

on E with w( � ��� 1) = 0, then (x,a) � w(f(x,a,y)) is u.s.c. ∀ y ≥ 0.

PPPrrroooooofff... We have w(f(x,a,y)) = 111 (x � ��� h(p,y)) w(x � ��� h(p,y)) .� 0,∞)
Now (x,a) � x � ��� h(p,y) is continuous ∀ y ≥ 0 and v(z) := 111 (z) ⋅w(z) is u.s.c. ; therefore� 0,∞)
(x,a) � w(f(x,a,y)) = v(x� ��� h(p,y)) is u.s.c. ∀ y ≥ 0. � �
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333... CCCooonnntttrrrooolll ooofff jjjuuummmpppsss

In this section we consider the case that the deterministic flow ϕ cannot be controlled Then we

can rely on results of Yushkevich (1987). In this situation we can allow that the state space E is a

Borel subset of any Polish space. Moreover, we will replace continuity of r as in (2.19) by the

more general concept of upper semi � ��� continuity. A real � ��� valued function ϑ on some metric space Ξ
is called upper semi � ��� continuous (u.s.c.) if

lim sup ϑ(ξ ) ≤ ϑ(ξ) ∀ ξ ∈ Ξ.ξ � ξ nn
Any u.s.c. function ϑ attains the supremum on compact sets while continuous functions attain

both the supremum and the infimum on compact sets. We will make the following

333...111 AAAssssssuuummmppptttiiiooonnnsss:

(a) the ffflllooowww ϕ(t � x) satisfies (1.1) and is a continuous mapping on � 0,∞)×E ;

(b) the aaaccctttiiiooonnn ssspppaaaccceee A is a compact metric space;

(c) the bbbooouuunnndddiiinnnggg fffuuunnnccctttiiiooonnn is a continuous function η : E � (0.∞) such that

∞(((iii))) ∫ η(ϕ(t � x)) dt = ∞ , x ∈ E;0
1(((iiiiii))) for x � x ∃ n such that: ���� ≤ η(ϕ(t � x ))/η(ϕ(t � x )) ≤ 2 for t ≥ 0, n ≥ n .n o o 2 n o o

(d) the jjjuuummmppp rrraaattteee λ(x,a) is a continuous function on E×A with:

λ(x,a) ≤ C ⋅η(x) , a ∈ A, x ∈ E, for some constant C ;λ λ
(e) the gggaaaiiinnn rrraaattteee r(x,a) is an u.s.c. function on E×A with:

� r(x,a) � ≤ C ⋅η(x) , a ∈ A, x ∈ E, for some constant C ;r r
(f) the dddiiissscccooouuunnnttt rrraaattteee β(x,a) is a continuous function on E×A with:

� �

C ⋅η(x) ≤ β(x,a) ≤ C ⋅η(x) , a ∈ A, x ∈ E, for some constants 0 < C ≤ C ;
� ��� β β � ��� β β

(g) the dddiiissstttuuurrrbbbaaannnccceee dddiiissstttrrriiibbbuuutttiiiooonnn Q is a probability on the dddiiissstttuuurrrbbbaaannnccceee ssspppaaaccceee (D,
�

);

(h) the sssyyysssttteeemmm fffuuunnnccctttiiiooonnn f : E×A×D � E is a measurable mapping where f(x,a,y) is

continuous in (x,a) or more generally Assumption (3.14) below is satisfied.

We assume that the distribution Q of the disturbances Y does not depend on the previous statesn
and actions and hence (Y ) forms an iid sequence. This assumption is made for convenience andn
fulfilled in many examples like that of §2. In fact, there is no loss of generality in assuming that

D = � 0,1
�

und Q is the uniform distribution on D. This fact was shown by Davis (1993 §§ 23 ,24).

In the one � ��� dimensional case D ⊂
�
, the reduction to the present case is achieved by defining the

system function f by use of the generalized inverse of the distribution function of the (possibly

conditional) distribution Q of Y .n
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The assumption that the discount rate β depends on the present state x and action a is needed for

the application to the transformed insurance model. In fact, there would again be no loss of

generality to assume that β is one, in particular independent of x,a; compare the transformations

by Davis (via killing) (1993, (31.6) ) and Yushkevich (1987, § 5). However, we want to work

explicitely with the discount rate because this is more convenient for applications. As in Davis

(1986), (1993) and Yushevich (1987) we will study an equivalent dddiiissscccrrreeettteee� ��� tttiiimmmeee ssseeemmmiii� ���� ���� ��� MMMaaarrrkkkooovvv

mmmooodddeeelll. For reasons of compactness of the corresponding action space, we have to deal with

relaxed controls. However, these are only used for the proofs. One of the main results will be that

the optimal policy can be chosen by use of a classical non � ��� relaxed feedback control.

We write � (A) for the set of all probability measures on A which is known to be again a compact

metric space when endowed with the topology of weak convergence of probability measures. Set

(((333...222))) U := � u : � 0,∞) � A , u measurable � ,
� � �
U := � u : � 0,∞) ��� (A) , u measurable � .

� � �
Any u ∈ U is called a relaxed control function. The measurability of u is equivalent to the fact that

u can be considered as a transition probability from � 0,∞) to A � cf. Bertsekas & Shreve (1978,

7.26), Rieder (1975)
�
. Relaxed controls though well � ��� defined in a mathematical sense have the

disadvantage that they cannot be applied not only from a practical but also from a measure

theoretical point of view. In fact, in contrast to randomized controls in discrete time models, in

general there cannot be constructed an action process (a ) with values in A (but only in � (A))t
under relaxed controls.

�
The YYYooouuunnnggg� ���� ���� ��� tttooopppooolllooogggyyy on U is the coarsest topology such that the mappings

� ∞ �
u � ∫ ∫ ϑ(t,a) u(t;da) dt0 A

are continuous for all real functions ϑ on � 0,∞)×A, where ϑ is a Carathéodory function, i.e. ϑ is

continuous in a and measurable in t , and where ϑ is integrable in the sense that

∞∫ max � ϑ(t,a) � dt < ∞.0 a∈A � �
The introduction of U is justified by the fact � cf. Davis (1993, (43.3)),Warga (1972)

�
that U is a

compact space w.r.t the Young topogy, but U is in general not compact.

We have to define quantities, already defined for a∈A, also for µ∈ � (A):
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(((333...333))) λ(x,µ) := ∫ λ(x,a) µ � da
�

,A � �
λ(x,µ) ⋅ ∫ v(z) q(dz � x,µ) := ∫ λ(x,a) � ∫ v(f(x,a,y)) Q � dy

� � µ � da
�
,E A

�
D �

r(x,µ) := ∫ r(x,a) µ � da
�

,A
β(x,µ) := ∫ β(x,a) µ � da

�
,A

� t �
Λ(x,u,t) := ∫ λ(ϕ(s � x),u(s)) ds ,0

� t � � �
B(x,u,t) := ∫ β(ϕ(s � x),u(s)) ds , u ∈ U .0

From (3.1c(i),f), one immediately obtains:
� � �

(((333...444))) B(x,u,∞) = ∞ , x ∈ E, u ∈ U,

which fact will ensure that discounting is strong enough. In the equivalent discrete � ��� time model,
�

we will choose U as action space. The dddiiissscccrrreeettteee� ���� ���� ��� tttiiimmmeee rrreeewwwaaarrrddd ooopppeeerrraaatttooorrr is
� τ � � �

(((333...555))) Tv(x,u) := E � ∫ exp � � ��� B(x,u,s) � r(ϕ(s � x),u(s)) ds + exp � � ��� B(x,u,τ) � ⋅v(Z)
�

0
�

where τ is the first jump time and Z is the state immediately after τ. Then Tv(x,u) describes the
�

expected discounted reward up to the first jump if the process starts in x and the control function u

is chosen for the first period and if a reward v is obtained immediately after the first jump τ
depending on the actual state Z. We can write

� ∞ � �
�

t � � �
�

Tv(x,u) = ∫ exp � � ��� Λ(x,u,t) � λ(ϕ(t � x),u(t)) � ∫ exp � � ��� B(x,u,s) � r(ϕ(s � x),u(s)) ds � dt0
�
0 �

� ∞ � � �
+ exp � � ��� Λ(x,u,∞) � ⋅ ∫ exp � � ��� B(x,u,s) � r(ϕ(s � x),u(s)) ds0

∞ � � � �
+ ∫ exp � � ��� Λ(x,u,t) � λ(ϕ(t � x),u(t)) exp � � ��� B(x,u,t) � ⋅ ∫ v(z) q(dz � ϕ(t � x),u(t)) dt0 E

where (3.4) is used. By an easy computation we get
� ∞ � �

(((333...666))) Tv(x,u) = ∫ exp � � ��� (Λ+B)(x,u,t) � ⋅ � r(ϕ(t � x),u(t))0
� �

+ λ(ϕ(t � x),u(t)) ∫ v(z) q(dz � ϕ(t � x),u(t))
�

dt .E

The oooppptttiiimmmaaalll rrreeewwwaaarrrddd ooopppeeerrraaatttooorrr is
�

(((333...777))) T*v(x) := inf � � Tv(x,u).u∈U

333...888 LLLeeemmmmmmaaa Let w : E×A � � be a function with � w(x,a) � ≤ C ⋅η(x) for some C <∞ and setw w
w(x,µ) := ∫ w(x,a) µ � da

�
, µ∈ � (A),A

� ∞ � � � � �
W(x,u) = ∫ exp � � ��� (Λ+B)(x,u,t) � ⋅w(ϕ(t � x),u(t)) dt , x ∈ E, u ∈ U.0

�
If w(x,a) is continuous or u.s.c. in (x,a), then W(x,u) is a bounded and continuous or

�
u.s.c. function in (x,u), respectively.

The proof is given in the Appendix.
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� � �
333...999 RRReeemmmaaarrrkkk. Let A be any compact metric space and R(x,a) a bounded function on E×A. If

� �
R(x,a) is continuous or u.s.c., resp., so is R*(x) := max � � R(x,a).a∈A

This fact is well � ��� known � cf. Bertsekas & Shreve (1978) 7.32
�
. � �

Let B(E) be the set of all bounded and upper semianalytic (u.s.a.) functions on E.

We will not give the definition of an u.s.a. function here. We need the fact that B(E) contains any

bounded Borel � ��� measurable function and that each w ∈ B(E) is µ � ��� integrable w.r.t. any probability

µ ∈ � (E) (more exactly w.r.t. the comletion of µ). A problem in dynamic programming is that

T*(v) need not to be Borel � ��� measurable for each bounded Borel � ��� measurable function w, but B(E)

is large enough to contain T*(w) in that case. Moreover, B(E) is small enough such that for any w

∈ B(E): T*(w) ∈ B(E) � cf. Bersekas & Shreve (1978, §§ 7.7, 8.2)
�
.

333...111000 LLLeeemmmmmmaaa The operator T* : B(E) � B(E) is contracting w.r.t. the sup � ��� norm � ... � , in fact:
� ��� 1� T*w � ��� T*v � ≤ C (C +C ) ⋅ � w � ��� v � .λ λ � ��� β

�
PPPrrroooooofff... For any x, u:

� � ∞ � �� Tw(x,u) � ��� Tv(x,u) � ≤ ∫ exp � � ��� (Λ+B)(x,u,t) � ⋅ λ(ϕ(t � x),u(t)) � w� ��� v � dt0
∞ � �

= � w� ��� v � ⋅ ∫ exp � � ��� (Λ+B)(x,u,t) � ⋅ (λ+β)(ϕ(t � x),u(t)) ⋅0
� � � � ��� 1λ(ϕ(t � x),u(t)) ⋅ (λ+β)(ϕ(t � x),u(t)) dt

� ��� 1 ∞ � �
≤ C (C +C ) ⋅ � w� ��� v � ∫ exp � � ��� (Λ+B)(x,u,t) � ⋅ (λ+β)(ϕ(t � x),u(t)) dtλ λ � ��� β 0

� ��� 1≤ C (C +C ) ⋅ � w� ��� v � , since λ/β ≤ C /C by 3.1d,f. � �
λ λ � ��� β λ � ��� β

�
(((333...111111))) C (E) stands for the set of all bounded and u.s.c. functions on E,b� �

C (E) is a non � ��� empty subset of C (E) which is closed w.r.t. uniformo b
convergence such that

�
(x,a) � v(f(x,a,y)) is u.s.c. ∀ y ∈ D for v ∈ C (E).o� �

Obviously we can choose C (E) = C (E) if the system function f is continuous.o b
�

333...111222 LLLeeemmmmmmaaa... For v ∈ C (E) we have:o
(a) r(x,a) + λ(x,a) ⋅ ∫ v(f(x,a,y)) Q � dy

�
is u.s.c. in (x,a);

� � �
(b) Tv(x,u) is a bounded and u.s.c. function in (x,u) and T*v ∈ C (E) .b

∼PPPrrroooooofff... Set w(x,a) := ∫ v(f(x,a,y)) Q � dy
�

.

From the assumption and Fatou's Lemma we obtain:
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lim sup ∫ v(f(x ,a ,y)) Q � dy
�

≤ ∫ lim sup v(f(x ,a ,y)) Q � dy
�

n � ∞ n n n � ∞ n n
∼≤ ∫ v(f(x ,a ,y)) Q � dy

�
= w(x ,a ).0 0 0 0

∼ ∼Thus, w(x,a) is u.s.c. and bounded. Therefore, we get that w(x,a) := r(x,a) + λ(x,a) ⋅w(x,a) is

∼ ∼u.s.c. with � w � ≤ C ⋅η(x) + � w � ⋅C ⋅η(x) = (C + � w � ⋅C ) ⋅η(x) and thatr λ r λ
� ∞ � � � �

Tv(x,u) = ∫ exp � � ��� (Λ+B)(x,u,t) � ⋅w(ϕ(t � x),u(t)) =: W(x,u)0
� �

as in 3.8 from which we conclude that Tv(x,u) is a bounded and u.s.c. function in (x,u). Using the
�

compactness of U we obtain from 3.9 our result. � �

Now we obtain from 3.10 and 3.12:

333...111333 TTThhheeeooorrreeemmm... If the system function f is continuous, then T* is a contraction operator
� �

T* : C (E) � C (E) .b b

In view of the application to the transformed insurance model, we will consider a situation which

is more general than that of 3.13.
� �

333...111444 AAAssssssuuummmppptttiiiooonnn... T* is an operator T* : C (E) � C (E).o o

By Banach's fixed point theorem we obtain from 3.10 and 3.14 :
�

333...111555 CCCooorrrooollllllaaarrryyy There exists a unique V* ∈ C (E) such that T*V* = V*.o

It is well � ��� known that the value function of the equivalent controlled discrete � ��� time model is also a

fixed point of T* � cf. Bertsekas & Shreve (1978, 9.10)
�

and hence coincides with V*.

nThere is another argument that V* := T* 0 converges to the value function of the equivalentn
controlled discrete � ��� time model which also works in the case of unbounded costs. From 3.14 and

�
3.12b we conclude that V* ∈ C (E) and TV*( ⋅ , ⋅ ) is bounded and u.s.c. . Thus, TV*( ⋅ , ⋅ ) can ben o n n
approximated from above by a decreasing sequence of bounded and continuous functions. Now a

result by Schäl (1975 Theorem 13.1) applies.

We want to apply the results of Yushkevich (1987) who only considers non � ��� relaxed controls.
� �

Therefore we will use the following device. We look on a relaxed control function u∈U as a

classical non� ��� relaxed control function for the action space � (A) in place of A. Then V* is also the

value function for the continuous� ��� time model � cf. Yushkevich (1987): (3.15), Davis (1993):

§44
�
. The boundedness assumptions of Yushkevich (1987, 2.18) are satisfied since V* is

bounded. Now we will use the results of Yushkevich (1987) proved for the controlled

continuous� ��� time model. We need the cccooonnntttiiinnnuuuooouuusss� ���� ���� ��� tttiiimmmeee rrreeewwwaaarrrddd ooopppeeerrraaatttooorrrsss:
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Lv(x,a) := r(x,a) + λ(x,a) ∫ � v(f(x,a,y)) � ��� v(x)
�

Q � dy
�

� ��� β(x,a) ⋅v(x),D
Lv(x,µ) := r(x,µ) + λ(x,µ) ⋅ ∫ � v(z) � ��� v(x)

�
q(dz � x,µ) � ��� β(x,µ) ⋅v(x) ,E

L*v(x) := sup Lv(x,µ) .µ∈ � (A)

From Lv(x,µ) = ∫ Lv(x,a) µ � da
�

one easily obtains the following important equation:A

(((333...111666))) L*v(x) = sup Lv(x,a).a∈A

333...111777 BBBeeellllllmmmaaannn eeeqqquuuaaatttiiiooonnn � Yushkevich (1987) 4.10, 4.15, 5.2.6
�

V*(ϕ(t � x)) is an absolutely continuous function in t≥0 and

∂
� ��� ������ � V*(ϕ(t � x)) = L*V*(ϕ(t � x)) a.e. on � 0,∞) for all x∈E.∂t

333...111888 LLLeeemmmmmmaaa... There exists a measurable function δ : E � A such that

LV*(x,δ(x)) = L*V*(x), x∈E.

PPPrrroooooofff... By assumption � ��� λ(x,a) ⋅ v(x) � ��� β(x,a) ⋅v(x) is continuous in a. Now from 3.15 and 3.12 we

obtain that LV*(x,a) is u.s.c. in a for all x ∈ E. Now a well � ��� known selection theorem applies

� cp. Bersekas & Shreve (1978, 7.33)
�
. � �

333...111999 CCCooorrrooollllllaaarrryyy If the system f is continuous or if more generally Assumption 3.14 holds, then

there exists an optimal stationary (non � ��� relaxed) feedback policy defined through

a = δ(X ) , t ≥ 0, where δ is chosen as in 3.18 and a is the action chosen at time t.t t � ��� 0 t

The proof follows as in 2.25 or from Yushkevich (1987, 4.10) or other verification theorems � cf.

Yushkevich (1989), Davis (1993, (42.8))
�
.

AAAppppppeeennndddiiixxx...

AAA...111 CCChhhaaaiiinnn RRRuuullleee (((CCChhhaaannngggeee� ���� ���� ��� ooofff� ���� ���� ��� VVVaaarrriiiaaabbbllleee FFFooorrrmmmuuulllaaa))). Let V be an absolute continuous function

on an interval I , i.e.

tV(t) � ��� V(t ) = ∫ v(s) ds for some locally integrable function v on I.o to
Let G : � x ,∞) � I be an absolute continuous function, i.e.o

xG(x) � ��� G(x ) = ∫ g(y) dy for some locally integrable function g on � x ,∞).o x oo
If g is strictly positive, then V � G is absolute continuous and more exactly

xV(G(x)) � ��� V(G(x )) = ∫ v(G(y)) g(y) dy , x ≥ x .o x oo
The present form of the chain rule is probably well known, but a proof for this special situation

could not be found in the literature. Therefore we provide the proof.
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PPPrrroooooofff... The mapping G is continuous and strictly increasing. Let be G(∞) := lim G(t) (≤ ∞).t � ∞
Then I' := � G(x ),G(∞)) ⊂ I. There exists the inverse mapping G�

�
: I' � � x ,∞) and we haveo o

G(x)V(G(x)) � ��� V(G(x )) = ∫ v(u) du = ∫ 111 (u) v(G � G�
�
(u)) duo G(x ) (G(x ),G(x)

�
o o

= ∫ 111 (G�
�
(u)) v(G � G�

�
(u)) du = ∫ 111 (y) v(G(y)) µ � dy

�
I' (x ,x

�
(x ,x

�
o o

where µ is the image measure of the Lebesgue measure λ on � x ,∞) under the mapping G�
�
.o

We have for x > x : µ � � x ,x
� �

= λ � � u; x ≤ G�
�
(u) ≤ x � �

= λ � � u; G(x ) ≤ u ≤ G(x) � �
o o o o

x= G(x) � ��� G(x ) = ∫ g(y) dy , hence µ � dy
�

= g(y) dy , and we finally obtain:o xo
xV(G(x)) � ��� V(G(x )) = ∫ v(G(y)) g(y) dy. � �

o xo

AAA222 PPPrrroooooofff ooofff TTThhheeeooorrreeemmm 222...111000...

x 1Define ψ : � x ,∞)× � x ,∞) � � 0,∞) by ψ(x � z) := ∫ ���������������� � dy .o o z g(y)

Then ψ(z � z) = 0, ψ is continuous and ψ( ⋅ � z) is stricty increasing to ∞ since

x 1lim ψ(x � z) ≥ lim ∫ � ����� ����� ���������� ����������� dy = ∞ .x � ∞ x � ∞ z α + γ ⋅y
Now let z be fixed and ψ( ⋅ � z) =: ψ. Then, ψ : � z,∞) � � 0,∞) is bijective and the inverse

ψ�
�
( ⋅ ) : � 0,∞) � � z,∞) exists. Set

tϕ(t) = ϕ(t � z) := z + ∫ g � ψ�
�
(s) ds,0

t twhere 0 < ∫ g � ψ�
�
(s) ds ≤ ∫ � α + γ ⋅ψ�

�
(s)

�
ds < ∞ , t > 0, since ψ�

�
is continuous. Then by the0 0

chain rule

x 1ϕ(ψ(x)) � ��� z = ϕ(ψ(x)) � ��� ϕ(ψ(z)) = ∫ g � ψ�
�
(ψ(y)) ���������������� � dy = x � ��� z , x≥z.z g(y)

tThus ϕ = ψ�
�

and we have ϕ(t) := z + ∫ g � ϕ(s) ds . Having proved the existence, we now turn0
∼to the uniqueness of the solution. Let ϕ be any solution which is necessarily increasing, hence

∼ ∼ϕ(t) ∈ � z,∞) and ψ � ϕ is defined. From the chain rule we get

∼ ∼ t ∼ ∼ψ(ϕ(t)) � ��� ψ(z) = ψ(ϕ(t)) = ∫ g(ϕ(s))/g(ϕ(s)) ds = t ,0
∼ ∼Thus ϕ is the inverse ψ�

�
of ψ, i.e. ϕ= ϕ. In order to prove continuity, suppose t � t , z � z and setn o n o

�

x := ϕ(t � z ), x := lim inf x , x := lim sup x . Then ψ(x � z ) ) = t .n n n ���� n n n n n
Now choose ζ > x , then for infinitely many n: ζ > x and hence ψ(ζ � z ) ≥ ψ(x � z ) = t .

���� n n n n n
This implies ψ(ζ � z ) ≥ t and for ζ

�
x : ψ(x � z ) ≥ t . By the same sort of argument, weo o ���� ���� o o

� �

obtain: t ≤ ψ(x � z ) ≤ ψ(x � z ) ≤ t . This proves x = x = ϕ(t � z ) . � �
o ���� o o o ���� o o
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AAA333 PPPrrroooooofff ooofff LLLeeemmmmmmaaa 333...888...
� �

a) Let w be bounded and continuous. For (x ,u ) � (x ,u ) we writen n 0 0
� � � �

Λ (t) + B (t) := Λ(x ,u ,t) + B(x ,u ,t), R (t) := w(ϕ(t � x ),u (t)) ,mn mn m n m n mn m n
k(t) := η(ϕ(s � x )), where k is positive and continuous.0

Then we have � Λ (t) � ��� Λ (t) ≤ � Λ (t) � ��� Λ (t) � + � Λ (t) � ��� Λ (t) � .nn 00 nn 0n 0n 00

W.o.l.g. we can assume that n ≥ n as in 3.1c(ii). By definition of the Young � ��� topology we get:o
∞ �

Λ (t) = ∫ ∫ 111 (s) ⋅ λ(ϕ(s � x ),a) u (s,da) ds � Λ (t) ,0n 0 A (0,t
�

0 n 00

since ϑ(t,a) := 111 (s) ⋅ λ(ϕ(s � x ),a) ≤ 111 (s) ⋅C ⋅k(s) . Further(0,t
�

0 (0,t
�

λ
t� Λ (t) � ��� Λ (t) � ≤ ∫ sup � λ(ϕ(s � x ),µ) � ��� λ(ϕ(s � x ),µ) � dsnn 0n 0 µ∈ � (A) n 0

t≤ ∫ sup ∫ � λ(ϕ(s � x ),a) � ��� λ(ϕ(s � x ),a) � µ � da
�

ds0 µ∈ � (A) A n 0
t≤ ∫ sup � λ(ϕ(s � x ),a) � ��� λ(ϕ(s � x ),a) � ds .0 a∈A n 0

Now, by 3.9, the last integrand tends to zero and is dominated by 3 ⋅C ⋅k(s) in view of 3.1c,d;λ
therefore the integral tends to zero. The same consideration applies for B. Thus we have by 3.1c,f

t(*) K (t) := Λ (t) + B (t) � K (t) and K (t) ≥ � ⋅C ⋅ ∫ k(s) ds ∀ t≥0 .n nn nn 0 n � ��� β 0

Now we can consider :
� � ∞

� �
� W(x ,u ) � ��� W(x ,u ) � = � ∫ � exp � � ��� K (t) � ⋅R (t) � ��� exp � � ��� K (t) � ⋅R (t) � dt �0 0 n n 0

�
0 00 n nn �

∞≤ ∫ � exp � � ��� K (t) � � ��� exp � � ��� K (t) � � ⋅ � R (t) � dt0 0 n nn
∞+ � ∫ exp � � ��� K (t) � ⋅ � R (t) � ��� R (t)

�
dt �0 0 00 nn

∞≤ 2 ⋅C ⋅ ∫ � exp � � ��� K (t) � � ��� exp � � ��� K (t) � � ⋅k(s) dtw 0 0 n
∞ ∞+ � ∫ exp � � ��� K (t) � ⋅R (t) dt � ��� ∫ exp � � ��� K (t) � ⋅R (t) dt �0 0 00 0 0 0n

∞+ ∫ exp � � ��� K (t) � ⋅ � R (t) � ��� R (t) � dt .0 0 nn 0n

Because of (*) we have dominated convergence to zero of the first integrand and hence of the first

integral. By the definition of the Young � ��� topology, the second term converges to zero , since

tϑ(t,a) := exp � � ��� K (t) � ⋅w(ϕ(t � x ),a) ≤ C ⋅exp � � ��� � ⋅C ⋅ ∫ k(s) ds � ⋅k(t) .0 o w � ��� β 0

Finally, the same arguments as for (*) show that the last integral tends to zero.

b) According to a theorem of Baire � cf. Bertsekas & Shreve (1978) 7.14
�
, w is u.s.c. if and only if

∼there exists a decreasing sequence of continuous functions w such that w
�

w. Now set w (x,a)n n n
∼:= (w (x,a) � C ⋅η(x)) � ( � ��� C ⋅η(x)) , hence � w (x,a) � ≤ C ⋅η(x).n w w n w
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∼ ∼Then w is continuous and w
�

(w � C ⋅η) � ( � ��� C ⋅η) = w. From part (a) we know thatn n w w
� ∞ � � ∼ � �

W (x,u) = ∫ exp � � ��� Λ(x,u,t) � ��� B(x,u,t) � ⋅w (ϕ(t � x),u(t)) dt is continuous. Furthermoren 0 n
� � ∼ � � texp � � ��� Λ(x,u,t) � ��� B(x,u,t) � ⋅ � w (ϕ(t � x),u(t)) � ≤ C ⋅exp � � ��� C ⋅ ∫ η(ϕ(s � x)) ds � ⋅η(ϕ(t � x)) ;n w � ��� β 0

� �
therefore we obtain W (x,u)

�
W(x,u) because of monotone and dominated convergence andn

� W � ≤ C /C . Thus W is u.s.c. and bounded. � �
w � ��� β

AAA333 PPPrrroooooofff ooofff TTThhheeeooorrreeemmm 222...222444...
�

In the transformed insurance model, define C (E) as the set of all function v on E which areo
nonnegative, u.s.c., and bounded with v( � ��� 1) = 0. Then (3.11) is satisfied because of 2.34. By 3.12,

�
we further know that T*v is u.s.c. and bounded for v ∈ C (E). It is obvious that T*v iso� �
nonnegative and that T*v( � ��� 1) = 0. Hence T*v ∈ C (E) for v ∈ C (E) and Assumption 3.14 iso o
satisfied. We further noted in §2 that the Assumptions 3.1 are satisfied. Thus the Bellman equation

∼ ∼3.17 holds. Since ϕ(t � x) = x + t for x ≥ 0, absolute continuity of V*(ϕ(t � x)) = V*(x+t) in t

∂ dimplies absolute continuity of V on � 0,∞). Furthermore, ������ � V*(x+t) = ( ��������� V*)(x+t).∂t dx
Now the Bellman equation reads:

d
� ��� ( ��������� )V*(x+t)dx �

∼ ∼ ∼ �= sup r(x+t,a) + λ(x+t,a) ⋅ ∫ � V*(f(x+t,a,y)) � ��� V*(x+t)
�

Q � dy
�

� ��� β(x+t,a) ⋅V*(x+t) .a � �

Upon setting x = 0, we obtain (2.26); the case x = � ��� 1 is clear. � �
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