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This paper studies an insurance model where the risk process can be controlled by reinsurance and
by investment in a financial market. The performance criterion is either the expected exponential
utility of the terminal surplus or the ruin probability. It is shown that the problems can be
imbedded in the framework of discrete-time stochastic dynamic programming but with some
specia features. A short introduction to control theory with infinite state space is provided which
avoids the measure—theoretic apparatus by use of the so—called structure assumption. Moreover,
in order to treat models without discount factor, a weak contraction property is derived. Explicit
conditions are obtained for the optimality of employing no reinsurance.
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1. INTRODUCTION

An introductory survey of the use of optimal control theory for treating Markovian control
problems in non-life insurance was given by Martin—L6f (1994). There, models with finite state
gpace and a discount factor are considered. In the present paper we concentrate on models with
infinite state space without discounting in order to treat the control of the ruin probability in a
variant of the Cramér—Lundberg model. The usual problems of measurability are here avoided by
the use of so—called structure assumptions which were already explained by Porteus (1975). In
sections 2 and 4 the theory of dynamic programming is explained for a finite and an infinite
horizon, respectively. Applications to insurance, however, will lead to some new situations not yet
considered in the literature.

In these applications, given in sections 3, 5, 6, an insurance model is studied which can be
controlled by reinsurance and by investment in a financial market. The period lengths may be
deterministic or random,; e.g., a period may be the time between two successive claims. In section
3, we want to maximize the expected exponential utility of the terminal surplus. Since the general
theory of dynamic programming is here explained for minimizing costs rather than for
maximizing rewards, we will actually minimize an exponential disutility. Thisis also convenient
from a mathematical point of view, since we can then restrict attention to nonnegative functions.
By assuming that the decison maker (insurance company) enjoys an unbounded credit, the
optimality of avery simple control is established which is given by a universal retention level for
reinsurance and a universal portfolio vector for investment. Similar results are obtained by
Browne (1995) for a diffusion model.

At first view, the ruin probability is not a classical performance criterion for control problems. In
section 5, it will be shown that one can write the ruin probability as some total cost without



discounting where one has to pay one unit of cost when entering a ruin state. After this smple
observation, the results from discrete—time dynamic programming apply. However, the usual
continuity conditions do not hold since the system function is discontinuous. In spite of the lack of
discounting, the model enjoys a contraction property which is weaker than the usual ones
considered in dynamic programming. This property was established by Schmidli (2001b) for a
continuous-time insurance model. Here it is shown that the property is strong enough for the
validity of the Howard improvement and a verification theorem. By use of the Howard
improvement, one can look for a plan which is at least better than employing no reinsurance. As
an application of the verification theorem, it can be shown for a model with exponentially
distributed claims that it is optimal to have no reinsurance if the safety loading of the reinsurer is
too high. Similar results are obtained by Schmidli (1999) for maximizing the adjustment
coefficient and by Taksar & Markussen (2002) for a diffusion approximation.

The effect of reinsurance on the probability of ultimate ruin is also studied by Dickson & Waters
(1996). Minimizing the ruin probability in continuous—time models is considered by Browne
(1995), Hipp & Plum (2000), Hipp & Vogt (2001), Hggaard & Taksar (1998a,b) Schmidli
(2001a,b), Schal (2002). In these papers, diffusion models, piecewise—deterministic models, and
mixtures of these models are studied. There the decision maker can adjust the retention level and
the portfolio at every timet 0 [0,00) whereas the control action is constant throughout one period
in the present paper. We remark that also a continuously controlled piecewise—deterministic
model as the Cramér—Lundberg model can be reduced to a discrete-time model. But then the
control space has to be chosen as function space (see Schél 1998, 2002) whereas in the present
paper the control space is a subset of some Euclidean space.

We will consider an insurance model which can be controlled by reinsurance and investment in a
financial market. The process {Xn, n>0} is the risk process where Xn 0 R describes the surplus
(size of the fund of reserves) of an insurance company after n periods. The claim (payment) in
period n will be described by the random variable Yn with values in [0,0). The process can be

controlled by reinsurance, i.e. by choosing the retention level (or risk exposure) b 0 [b,b] of a
reinsurance for one period. The (measurable) function h(b,y) specifies the part of the claim y paid
by the insurer. Then h(b,y) depends on the retention level b (fixed in the risk sharing contract) at
the beginning of the respective period where 0 < h(b,y) <y. Hencey — h(b,y) is the part paid by
the reinsurer. It is natural to assume that h(b,y) isincreasing in b. In the case of an excess of loss
reinsurance we have:

h(b,y) = min (b,y) withretentionlevel 0<b<b<b=co. Q)
In case of a proportional reinsurance we have:
h(b,y) =b[y withretentionlevel O<b<b<b=1. (2

We alow for the case that the length Zn of period n is random. Thus we can cover a controlled



version of the Cramér—Lundberg model if we assume that periods are given by the intervals
between the jump times of a Poisson process. Of course, we also can think of the case where Zn =
lisdeterministic. Weset Y = Y1 for atypical claimand Z := Z1 for atypical period length.

There is a premium (income) rate ¢ which is fixed. For each retention level b, the insurer pays a
premium rate to the reinsurer which has to be deducted from c. This leads to a net income rate
c(b) where

O<c(b)<sc=c(b) for b<b<b andc(b)isincreasing. (3)
There, the retention level b stands for the control action "no reinsurance" which explains the

property "c = ¢(b)". The smallest retention level b may be chosen in such away that the condition
(3) is satisfied. Then c(b) may be calculated according to the expected value principle with safety
loading 6 of the reinsurer:

c(b)=c—(1+6) (E[Y —h(b,Y)|/E|Z]. 4
In addition, the insurance company can invest the capital (surplus) in a financial market where d
assets can be traded which are called stocks and are described by the price process

{ Sn = (Sﬁ,...,Sﬁ), n= 0} where SE is the price of one share of stock k at the beginning of period
- 1 d k k k
n+1. We define the return process {Rn = (Rn,...,Rn), n=1} by Sh= S 1+ Rn) ,1<k<d,

where of course 1+ RE > 0 as. for al k. We assume that the { Rn} are independent and

identically distributed and set R := R1 for atypical return.
A dynamic portfolio specifies at the beginning, i.e. at the beginning of period 1, a portfolio vector

60 a IRd and subsequently at the beginning of any period n+1 a portfolio vector 6n a le. There, the

component 6E of 6n represents the amount invested in stock k during period n+1. We will alow

for negative amounts 5E, thus admitting short selling of stocksin section 3, but not in section 5.
Thus a control action u = (b,d) will consist of two components where b specifies the retention

level and & = (61,...,6d) specifies the portfolio vector. At the beginning of period n+1, the decision
about the control action will depend on the present size Xn of the capital (surplus). Given the
surplus Xn and the control action u,= (bn,6n), we now want to compute the surplus Xn +1 Then

6ﬁ/8ﬁ denotes the number of shares the investor holds during period n+1. Thus the value of these

shares at the beginning of the next period is 6lr<] [SE +1/Sﬁ and we have

_ d k d k <k k
>(n+1 - Xn * C(bn) [Zn+1 o h(bn’Yn+1) o zk:1 6n * zk:1 6n [$n+1/Sn
_ d k d k k

- Xn + C(bn) [Zn+1 o h(bn’Yn+1) - zk:1 eSn + zk:1 6n 1+ Rn+1)

— d <kpk
= Xn + c(bn) [Zn+1 — h(bn,Yn+1) + zkzl 5n [Rn+1 , and thus
X1~ Xn ™ C(bn) i1 h(bn’Yn+1) * <a-)n’Rn+1> (5)



where <z,y> denotes the inner product in Rd. It is convenient to set

Xn+1 = f(Xn,bn,ESn,Rn,Yn,Zn) where

f(x,b,0,p,y,2) = x + c(b) 2 — h(b,y) + <d,p>. (6)
We will call f the system function as in Bertsekas & Shreve (1978). Moreover, we will ook on
Wn = (Rn,Yn,Zn) as the disturbance for period n. The sequence {Wn, n>1} forms the source of
randomness of the model. We make the following assumption:

INDEPENDENCE ASSUMPTION. The Wn = (Rn,Yn,Zn), n>1, areiid (independent, identically

distributed) random variables. In addition, it is assumed that (Rn,Zn) and Yn are independent.
Asaconsequence, {R_} aswell as {Y } and {Z} areasoiid random variables. However, it is
reasonable to allow for a dependence of Zn and Rn. In a combination of a Cramér—Lundberg
model and a Black—Scholes model (with d=1), Z is exponentialy distributed and 1 + R =
exp{o B, + (@ — $02) Z} with a standard Brownian motion {Bt}, the volatility o and the
appreciation rate a.

In section 2, we will consider a more general control model which contains the present insurance
model and also the model of section 5, 6 as special cases. The section 2 contains the notation and
formal results of dynamic programming. But we will use the same notation as in this introduction.

2. DYNAMIC PROGRAMMING WITH FINITE HORIZON

A general discrete-time stochastic process { Xpnz 0} is considered which can be observed and
controlled at the beginning of periods with numbers n = 1,2,... The stochastic development is
determined by a sequence of iid random variables {Wn, n =1} on some probability space (Q,5,P)
with values in some measurable space (E,&). There, (E,&) isthe disturbance space. We write W :=
W1 for atypical disturbance. The model isfurther specified by the following quantities:

(S,©) isthe state space which is a measurable space;

(U,4) isthe control (action) space which isameasurable space;

f: SXUXE+~ S isthe (measurable) system function;

a 0 [0,1] isthe discount factor;

g: SxU » (—m,00] isthe one-period cost function, which is measurable and bounded from below;
Vg: Sk (—oo,00]| isthe terminal cost function, which is measurable and bounded from below;

N ONisatime horizon (number of periods).

Of course, a negative cost can be interpreted as a reward. However for the present applications, it
is sufficient to consider nonnegative cost functions. For ssimplicity, we will not restrict the set of
control actions available in some state x. If the action u is not admissible at x one can set g(x,u) =
oo Or one can identify u with some other admissible action. In applications to insurance, we also
consider the case where the period lengths are random. Therefore, it may be reasonable to assume
that the discount factor is random. It may be a function of the length of the time period. Such



models can be treated in the same way (see Schal 1975); but for the present applications it would
be even sufficient to consider the case a = 1.

DEFINITION. A decision function is a measurable function ¢ : S+ U.

A plan (policy, strategy) isasequence 1= (¢ n) =0 of decision functions ¢ -

Then ¢n(xn) will represent the action chosen at the beginning of period n+1. Evenin a model
with finite horizon N, it is convenient to describe a plan by an infinite sequence (¢n) where ¢n
can be defined in an arbitrary way for n > N. Actually we only consider nonrandomized Markov
plans. However, thisrestriction isjustified (see Bertsekas & Shreve 1978 Proposition 8.4).

For aninitial state x 0 Sand a plan T, the state Xn = X)r(]’n of the system at the beginning of period
n+1 isdefined asarandom variable on (Q,3,P) according to:

Xo=% X041 ::f(Xn,¢n(Xn),Wn+1), n>0. (7)
In state X 0 S at the beginning of period n+1, a control action u, = ¢n(xn) 0 U is chosen which
will result in a cost g(xn,un). Then the system is influenced by a disturbance Wn+1 =w
such away that the state at the beginning of the next period is given by Xq+1 = f(xn,u
example for a system function f isgiven in (5). The costs will be discounted by a.

n_'_:I_II’]

n,Wn+1). An

REMARK. The processes studied in this paper are also called Markov decision processes. The
underlying Markov property will now be formulated. If one defines the c—algebra Sn of the past
atimenby g :=o(W,,...W), n21, where 5, = {0,Q} isthetrivial c—algebra, then {X , n= 0}
is a discrete—time Markov process (w.r.t. the filtration {Sn}) and one has the following relation
for measurable functionsv : S~ (—,00| bounded from below:

E[V(X 1) 18] =V, where v, (x) := E[ v(f(x. QW) | . ®)
DEFINITION. Given the initial state XO = x [0 S, the total discounted cost JS(X) and the value
function VN(x) in N periods are

) = E[20<n<N a"BX 0, (X)) + al Wo(Xp)] with X=X 9)

V) =inf 3000 (10)

The following lemmalis easy to prove.

<«

LEMMA 1. J({(X) = g(x.0(x)) + a TE[J] 4 (F(x,0o(x),W))] where
= (0.0,-) for = (650, (11)

It is convenient to describe the relation in Lemma 1 by the one-step cost operator T.



DEFINITION. For any v : S+ (—oo,00] , which is measurable and bounded from below, we set:
Tv(x,u) :=g(x,u) + aE[v({f(x,uW))], xOS ulU;
T ¢v(x) =Tv(x,0(x)) for any decision function ¢;

T*v(X) := inquU Tv(X,U).

If v(z) represents the cost incurred at the beginning of the next period [or the expected cost from
the next period onwards| given the state z at that time, then Tv(x,u) tells us the expected
discounted cost from the present period onwards given the present state x and the chosen action u.

LEMMA 2. For any functionsv, v' asin the definition above we have:
@ T¢v >T*v;
(b) T¢ and T* are order preserving,i.e, Vv<V'3 T¢v < T¢v', T*v < T*V'

<«

© =T, J.=T, .T, V. withnasin(5).
N oo N-17 "0y b1 O

(d) T¢O...T¢N_1v = J|7\|T +aN [E[V(Xp) = VgXp)] if V=V, isbounded from below.

The proof of Lemma 2 is easy (see Bertsekas & Shreve 1978 Lemma 8.1). The measurability of
T*v isaproblem, which we will avoid by the following assumption (see Porteus 1975).

STRUCTURE ASSUMPTION. There exist a set 7 of measurable functions v : S = (—o0,00]
bounded from below and a set ® of decision functions such that:
0] Vol 7;
(i) TxvOy fordlvly,
@iii)  foral v 7 there existsadecision function ¢ 0 ® with:
T¢v =T*v, i.e. ¢(X) isameasurable minimizer of the function U Ou+ Tv(X,u).

One main problem in dynamic programming is to find such a class 7. In general semicontinuous
models, candidates for 7 and ® are the set of |.s.c. functionsv : S~ (—o,00| bounded from below
and the set of all decision functions, respectively, where we write |.s.c for lower semicontinuous
(as usual). In a heavy measure-theoretic apparatus, one can choose 7 as the set of lower
semianalytic function (see Bertsekas & Shreve 1978 § 7.7, § 8.3). But of course, one wants to
choose 7 and @ as small as possible. In inventory theory e.g., afamous result of Scarf (1960) says
that one can choose 7 as the set of K—convex functions and ® as the set of (s.S) decision
functions.

LEMMA 3. Under the structure assumption one has:

@) T¢(.)..T¢n_1vo >T*"'V 07 foral m=(9p0,-),N>0;

(b)  there exists a sequence of decision function (¢’r‘], n>1) with ¢’F] 0 @ and

Toe-TgsVo= TV, n21.



The proof immediately follows from the structure assumption.

DEFINITION. A planisoptimal (for horizon N), if Jﬁ(x) = VN(x) foral x0OS.
The sequence of decision functions (¢;], n>0) is value conserving if T¢’F]Vn—1 = T*Vn_1 , i.e,

¢’r°](x) isaminimizer of the function ur TVn_l(x,u) foral xO0S,n>0.

The notion of value conserving was introduced by Dubins & Savage (1965). From Lemmata 2 and
3, one obtains the following theorem in a straightforward manner.

THEOREM 1. Under the structure assumption one has:

@ Vn =T* nVo 07%,n>0, (valueiteration);
(b) Vn = T*Vn_1 ,N>0, (optimality equation);
(c)  there exists avalue conserving sequence (¢’r‘], n>0) such that ¢’r‘] 0@ forn>0;

(d)  there exists an optimal plan for each finite horizon. More exactly, if (¢’r*], n>0) is

value conserving, then T[(N) = (¢;§|,...,¢i,¢0,¢0,...) is optimal for the horizon N < o
(where ¢O can be chosen arbitrarily).

INTERPRETATION. Principle of dynamic programming, Bellman 1957.

Assume that you know the minimal total costs Vn if there are n periods ahead. [For n=0, Vo is
indeed known and given.| Now you want to compute Vn +1- The way of solution is the following:
Compute the quantity TVn(x,u) which can be interpreted as the (discounted) cost at time O (i) if
you start in state Xo =X, (i) if you choose an arbitrary control action u, and (iii) if you choose an
optimal control for the n periods lying ahead at the end of the first period, i.e., if you have to pay
Vn(xl) then. Now minimize over u 0 U; then you obtain T*Vn(x) = Vn+1(x). The minimizer
u* = ¢’r‘] +1(x) is the optimal control action. Hence, the information which is important for the
choice of the control action consists in the present state x and the number n+1 of periods ahead.

EXAMPLE. Finite control spaces (see e.g. Martin—L6f 1994).

Assume that U is finite and w.l.0.g. U 0 R. We can choose ® as the set of all decision functions
and 7 asthe set of al functionsv : S+ (—e.c0] which are measurable and bounded from below .
Then condition (i) of the structure assumption is obvioudly fulfilled. For (ii) and (iii), we have
T*v(X) = mi NLou Tv(x,u) where Tv(x,u) and thus T*v(x) is measurable in x. Because of the
finiteness of U we can write 'min’ in place of 'inf'. We obtain a measurabl e selection of minimizers
by ¢(x) :=min {ulU; Tv(x,u) = T*v(x).

The measurability of ¢ followsfrom {¢(x)<a} =0 __ {x; Tv(x,u) =T*v(x)}. ]

usa



3. THE INSURANCE MODEL WITH MAXIMIZING AN EXPONENTIAL UTILITY
In this section we study the insurance model introduced in 81 where the investor (insurance
company) is allowed to borrow an unlimited amount of money. We choose the state space and the
control space as

S=R, U= [bb]xRY. (1)
Then a decision function ¢ consists of two components ¢ = (¢',¢") where ¢' specifies the
retention level b of reinsurance and ¢" specifies the portfolio vector 6 = (61,...,6d).

The cost structure is given by the idea that the insurance company is not ruined but only penalized
if the size of the surplus is negative or small. The penalty cost for being in state x is of the form

const @_B X for some 3 > 0. Therefore we define the cost functions as
g(x,u) := y@a_BX, Vo(x) =Vq E_BX for someyy, Vg2 0. (12)

Then the performance criterion is the expected total penalty paid. An important special case is
defined by y = 0 and (w.l.0.9.) Vg = 1. Then the insurer has only to pay a penalty at the end and

wants to minimize E[exp{— D(l)\(l’n}]. This is the same problem as maximizing the expected

utility of terminal wealth if one chooses the exponential utility function —e_BX. Thus, one can aso
gpeak of minimizing the expected exponential disutility of terminal surplus. Thisis an interesting
problem, since exponential utility is aso used in determining fair premiums by many
property—liability insurance companies (see Goovaerts et al. 1990 I11.6).

In the present situation, we claim that the structure assumption is satisfied if we choose 7 as the

set of all functionsv : R+ [0,c0) such that v(x) = v @_BX for somev > 0 and ® as the set of all
constant decision function ¢ : R » U. Now we want to show the properties (i) — (iii) of the
structure assumption. Obvioudly (i) holds by definition of VO'

Moreover, we have for v(x) = v @_BX, u=(b,%), W=(R)Y,2):

Tv(x,u) = g(x,u) + a E[v(f(X,uW))] = y@a_BX + o OV [E [exp{—B I (x,uW)}]

= VE_BX +o W E[exp{—LBOx +<d,R>+c(b) Z—-h(b,Y)]}]

= e_BX E[y + o W E|[exp{—B<d,R> + c(b) (Z — h(b,Y)] }]] . Hence we have
THv(x) = v* & PX (13)
with v* :=y+al [ﬂnf(b,ES)DU E[exp{-B<d,R>+ c(b) [Z —h(b,Y)]}].

Thus, our model also enjoys property (ii) and we now have to concentrate on property (iii). It is
sufficient to show that the infimum in (13) is attained by some (b*,0*), say. Then we may define
the decision function ¢ 0 @ as the constant function ¢(x) = (b*,0*). In fact, ¢ does not even
depend on v. As a consequence, we will obtain a value conserving sequence (¢’F]) by setting



¢’r°] := ¢. Thus the optimal action will then be universal in the sense that it neither depends on the
present state nor on the number of periods lying ahead.

We know that U = [b,b] <R9 where [b,b] is compact. In the examples, we have U = [b,1] in the
case of proportional reinsurance and U = [b,]| in the case of an excess of |0ss reinsurance.
Then we will need the property that

(b,5) » E[exp{—B<d,R>+ c(b) Z — h(b,Y)] }] is continuous. (14

For that purpose we make the following assumption

ASSUMPTION. The functions c¢(b) and h(b,y) are continuousin b (for each y) and
E[exp{BLY}] <, E[exp{eR||}] <o forall €>0.

The latter assumption on R is satisfied if R is bounded or if R has a normal distribution. Since Y
and R are assumed to be independent and since 0 < h(b,y) <y, we know that
E[exp{—BO<d,R>+c(b)(Z —h(b,Y)]|}]| < E[exp{—BXOR>}]| E[exp{BLY}] < foralb,8.
Now we may conclude from the dominated convergence theorem that property (14) holds. The set
Rd is not compact; but we will show that the infimum is attained under the following well—-known
condition (NA) (see e.g. Jacod & Shiryaev 1998, Pliska 1997).

NO ARBITRAGE ASSUMPTION. For any portfolio vector & 0 Rd:
P[<d,R>20] =1 implies P[ <3,R>=0] =1. (NA)

In fact, the property <6,R1> >0 implies for Xo =x > 0 that X1 =X+ <6,R1> + c(b)[Z1 —

h(b,Yl) > x [+ ¢(b) DZl — h(b,Yl). Thus, using the portfolio & [ IRd is not worse than not investing

in the stocks, i.e., there is no risk in using this portfolio. Then everybody would indeed like to use
such an opportunity if there is a chance that <6,R1> is positive. Such a portfolio & is called an
arbitrage opportunity which is excluded by our assumption.

We write .¢ for the smallest linear space L in IRd

that (NA) isequivalent to:

suchthat P[RO L] = 1. Then it is easy to show

foral o0 .#,86#0: P[<d,R><0] >0. (NA)*

LEMMA 4. The function (b,d) » v(b,d) := E[exp{—B<d,R> + c(b)(Z — h(b,Y)]|}] attainsthe
infimum over U at some (b*,5*) where & can be chosenin .%.

Proof. If x denotes the orthogonal projection on .¢, then <d,R> = <x,R> a.s. U d U Rd. Now we
can restrict attentionto 6 0 .#. In view of (3), we have
Iim)\Too v(bA [d) 2 Iim)\Too E[exp{BOANXOR>+clZ]} ﬂ{<6,R> < 0}] = o (15)

ford0 #\{0} by (NA)*. Now define F\ = {(b,3) O [b,b]x.#; ||8]] = 1, v(b,A[®) < v(b,0) + 1}.
Then F)\ is compact and it is easy to show that the convexity of v(b,d) in & implies that F)\ 0 F)\.
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for 0 < A' < A. Moreover, we conclude from (15) that NAON Fn = [I. Hence we know that there
exists some n N such that F, =0 foral A2ng,i.e v(b) 2 v(b,0) + 1 for all 5 with 18] = Nor
Thus inf(b,{))DU v(b,0) = min(b,{))D[t_),B], 5.4 ||6||sno v(b,) , i.e., the infimum over all

(b,0) 0 U isattained on the compact set [b,b]x{d0 %; [ < n }. []

Therefore the model indeed enjoys property (iii) and the structure assumption is satisfied. The use
of convexity in the present minimization problem is well-known (see Rockafellar 1970 Theorems
27.1, 27.3, Bertsekas 1974 Proposition 1, Rogers 1994 Proposition 2.2). Also the use of the
no—arbitrage condition for such problemsis known (see Rogers 1994, Schal 2000a,b, 20001).

The situation is further simplified under the assumption that the random variables R, Z, Y are
independent which isthe case if the period length Z is deterministic. Then
E[exp{—B<d,R>+c(b) Z—-h(b,Y)]|}| = E[exp{—BXd,R>}| [E[exp{—P [ <c(b) Z-h(b,Y)] } ]
and we can get the minimizer (b*,0*) in such away that

b* isaminimizer of the function b~ E[exp{-—Bc(b) Z —h(b,Y)]}] , (16)
o* isaminimizer of &+~ E[exp{— B&X5,R>}]. (17)

It is remarkable that under this additional independence assumption the control of the reinsurance
and the control of the investments can be chosen independently of each other. The investments are
controlled in such a way that the expected utility is maximized for an exponential utility function

—e_BX. In fact, a pure investment problem with an exponential utility is a special case of the
present model if one chooses c(b) = 0, h = 0. Moreover, the optimal plan invests a fixed amount,
regardless of the surplus of the company, in accordance with Ferguson (1965) and Merton (1990).
Similar results for a diffuson model are obtained by Browne (1995) who also explains that the
well—known constant proportional schemes may be inappropriate in the present scenario.

THEOREM 2. Under the assumption of this section, the structure assumption is satisfied with 7
and @ defined as above. Moreover, there exists a value conserving sequence (q)’r‘]) such that
¢’r°](x) = (b*,0*) is independent of x and n where (b*,5*) is the minimizer of Lemma 4. If R and
(Z,Y) are independent, then b* and &* can be obtained independently of each other by (16), (17).

The present results only hold if the interest rate r for the capital of the company not invested in
stocks is zero. However, the caser > 0 can be treated in the same way if one considers the problem
of minimizing the expected disutility of the discounted terminal capital. From the theory of
finance it is well known that considering the discounted wealth leads to a scenario which can be
looked upon as market with interest rate zero. Then one has to replace the price process by the
discounted price process and a portfolio vector 6n then describes the discounted invested amounts
(see Harrison & Kreps 1979, Schél 2000a,b). Moreover, the premium as well the claim sizes are
interpreted as discounted quantities.
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EXAMPLE. We want of solve (16) in the situation of a Cramér—Lundberg model where we
consider constant period lengths, Z = 1, say, and a proportional reinsurance (2). If the single
clams have expectation 4 and moment generating function m(s), then Y has a compound
distribution with Expectation At and moment generation function exp{AL(m(s) — 1)} (see
Grandell 1991 Theorem 14). We obtain from (4): c¢(b) = ¢ — (1+0)[{1-b)[Ap . Then
E[exp{-Bc(b) Z —h(b,Y)]}] = exp{~B[c— (1+6) [{1-b) ] } exp{A {Im(Bb) — 1)} .

Then it is easy to see that b* = 1, (i.e,, it is optimal to have no reinsurance) if and only if 0 istoo
high in the sense that one has (with m' denoting the derivative of m):

1403 %[]n'(B). (18)

4. DYNAMIC PROGRAMMING WITH INFINITE HORIZON
We will look on a model with infinite horizon as an approximation of a model with a finite but

large horizon N. Therefore we will define the performance criterion I as the limit IimN J;\-l[ of

those with finite horizon as Naco. Then J7is also affected by the terminal cost function VO' In
most applications, one sets V0 = 0inan infinite horizon model. But in some cases it is convenient
to allow for more general terminal cost functions. Examples are models with optimal stopping.
In the next section, we do not want to have the function 0 in the set 7. Therefore, we will assume
that V0 = g and we will then look on the one—period cost incurred in the last period as terminal
cost. We make the following assumption which is called Uniform Increase Assumption (see
Bertsekas & Shreve 1978 p. 70).

ASSUMPTION. TVO(x,u) > Vo(x) foralulU,i.e T*Vo(x) > Vo(x) foral xOS.
We will discuss the assumption below.

T_ Tt :
Lemmad. () Vo < ‘]n < ‘]n+1 forn>0;
(b) VosVnsVn+1 forn>0.
Proof. We have T¢V0 > Vo for all ¢ and thus

no= > - i
I+t T¢0"'T¢n_1(T¢nVO) = T¢O"'T¢n_ 1Vo Jy, - Now part (a) and (b) are obvious. []

Now we can define the performance criterion which isjustified by the preceding lemma.

DEFINITION. Jn(x) = Iimn_’oo J]r-][(x) isthe total discounted cost for any plan T,

V(X) := infan(x) isthe value function.

In the positive case (in the sense of Bertsekas & Shreve 1978, which is the negative case in the
sense of Strauch 1966 where rewards are maximized) we have
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g(x,u) =0, VO =0. (19a)
Then the preceding assumption is satisfied. Thisis also true in the discounted case where:
O<a <1, gisbounded and VO =9, /(1—a) where gois alower bound of g. (19Db)

There Jn(x) does not depend on the special form of Vo in view of Lemma 2d provided only that
Vo is bounded. Thusthereisno loss of generality in choosing V0 asin (19b).
From the monotone convergence theorem we obtain the following lemma.

‘—
Jt= T JU  withn* asin (10);
0

LT,V
Oy g

V®(x) =lim V() S V(X)

]
LEMMAS5. (8 J1=T ol

b) Vo<
©  lim o TV, (xU) = TV®(x,u).

We saw in 82 that the information which is important for the choice of the control action consists
in the present state x and the number of periods ahead. But in an infinite horizon model the
number of periods ahead is always the same and that is co. This motivates the following:

DEFINITION. A plan Tt= (¢n) is stationary if ¢n =¢ for adecision function ¢ and we will write
n:¢w.
From Lemma5 we obtain for every stationary plan 1= ¢°°:
[oe] _ [oe] _ . n
T¢J¢ = =lim_, T Vo (20)
For this section we will use the following general assumption.

STRUCTURE ASSUMPTION. Sis aBorel subset of some Euclidian space ( or more generally of
some Polish space). There exists a set 7 of measurable functions v : S+ (—o0,00| bounded from
below such that:

0] Vol 7;

@) TvO7fordlvly

(iiil) U isacompact metric space;

(iv)  Tv(xu)islsc.inuforalxOSvD 7.

By a selection theorem (Brown & Purves 1973) this assumption implies the following property:
for any v [ 7, there exists adecision function ¢ with T¢v =T*v. (21)

Thusthe structure assumption for the infinite horizon implies that for the finite horizon if one
defines @ as the set of all decision functions. Optimality of a plan is defined as for the finite

horizon model with J"tin place of ‘Jltl['
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THEOREM 3. () V(x) = Iimn_’oo T* nVO (value iteration);

(b) V =T*V (optimality equation);

(c)  there existsadstationary optimal plan;

(d) If T¢V =T*V, i.e. $(x) isa minimizer of the function u = TV(x,u), then the stationary

plan ¢°° isoptimal (optimality criterion).

Proof. Asin the finite horizon case, we conclude that Vn 0 7 for al n. Now fix any x 0 S and set
tn(u) = TVn_l(x,u). By aswmption we know that t (u) isincreasinginnandl.s.c.inu.

Therefore it follows that Iimn uDU n(u) uDU Myoo tn(u) from a variant of Dini's
theorem (see Schél 1975 Proposition 10.1). By use of Lemma 5c¢, this equation now means:

VE(x) = lim o V00 =lim TV 00 =inf o T@im Vi )(xu) = TV (x).

Asthe limit of an increasing sequenceof |.s.c. functions, lim t (W=TV (x u) isl.sc.

nsoo N
Asfor (21), we conclude that there exists a decision function ¢ with T¢V (x) =T*V (x), x0OS.

Thus VZ(x) = T¢V°°(x) ,x 0'S, which implies that V®(x) = (T¢)nV°°(x) > (T¢)”v0(x) and

hence for naco: V°°(x) > J¢w(x) for all x . But in view of Lemma 5b, V°°(x) <V(X) < J¢°°(x) for
al x. Thus (a), (b), and (c) are proved. From T¢V =T*V, wefinally get:

VTV = TNV TV, 1 and (d) isalso proved. []

For some of the statements of theorem 3, the structure assumption is too strong (see Bertsekas &
Shreve 1978). Now we want to extend the Howard improvement procedure, well—known for the
discounted case, to amore general situation.

THEOREM 4. (Howard Improvement). Let ¢, { be any decision functionsand set J := J¢°° and:
Ux,9) ={ulU; TIx,u)<Jx) },x0S
If, for some subset S* of S, Y(x) 0 U(x,9) ,x 0S*, and P(x) = d(x) , x 0 S*, then one has:

M 3= and ¥ 0 <Ix), x0 S

Proof. We certainly have TqJJ < J; in fact we have by (20)
TwJ(x) <Jx) ifxO0S* and TLUJ(X) = T¢J(x) =J(x) if x O S*.

Then we obtain TL%J < TLp‘] < J and by induction TLTJJ < TqJJ < Jfor al n. Now we obtain

P _ n : , i .
J I|m vaosllm Tst TLlJJsJ,ln particular J* (X) <J(x) if xOS*. []

Now one can ask what happens in the situation where U(x,9) := { u 0 U; TIx,u) < Jx) } =[O
foral x, i.e. T*J> J. Since we always have T*J< T¢J =J, thismeansthat T*J= T¢J =Jz2V
The next theorem gives an answer.

o
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Theorem 5. Verification theorem. Let v : S+ (—o0,00| be a measurable function with v 2 VO and ¢
some decision function with v =T*v = T¢v. Then we have: The function v is the value function

V and ¢ defines a stationary optimal plan ¢°° provided that a [lE[(v—VO)(Xn)] +0 asn»oo
with Xn = X>r<],LIJ°° for al decision functions Y and for all x 0 S.

Proof. On the one hand we obtain as above: J¢ = Iimn Tgv0 < Iimn Tgv = v. On the other hand
n

U] U]
v(X) < TlTJv(x) = TLTJVO(X) +aE[V(X )V X )] -

we havefor any : T, v = T*v =v and by induction T,V >v. Now we get from Lemma 2d

From our condition we obtain ¥~ = Iimn TLTJVO >v. Thus V < J(I)m <v< infLlJ M=y,
Thelast identity follows from Theorem 3c. | |

Theorem 3(b) contains a fixed—point equation. It is remarkable that it can be solved by an
iteration scheme without any contraction property in view of Theorem 3(a). In the discounted case
Banach's fixed—point theorem applies. The Howard Improvement is another tool to approach the

value function V. It works well in finite—state discounted models (see Martin—L 6f 1994).

5. MINIMIZING THE RUIN PROBABILITY

We again consider the insurance model which can be controlled by reinsurance and investment in
afinancial market. Now we want to minimize the ruin probability. Therefore, we now assume that
the company isruined if the surplus is negative. Therefore we must modify the system function of
section 1 for negative values. Moreover, we add a cemetery state — to the state space R of
sections 1, 3. Again the insurance company can invest the capital (surplus) in a financial market
where d assets can be traded and the random variables Wn = (Rn,Yn,Zn) are given as in sections
1, 3 and satisfy the independence assumption. A dynamic portfolio will again be specified by a

portfolio vector Sn ad IRd at the beginning of period n+1. But in this section, the component SE of

Sn represents the proportion of the capital x which is invested in the kt stock, k = 1,...,d, i.e.

x 9 = 0. We write © for the set of all admissible portfolio vectors which isthe simplex
0:=(9=0%.9%08% 9% 0,15k<d 586K <1} 22)
For§ 0 ©, 80 =1- z(i Sk > 0 represents the proportion of the capital which is not invested in

some stock. In this model we do not allow for negative amounts Bﬁ, thus excluding short selling,
in order to get a compact action space for the structure assumption.

In addition, the risk process may be controlled by reinsurance as in section 3. Thus a decision
function ¢ again consists of two components ¢ = (¢',¢") where ¢' specifies the retention level b

of reinsurance as above and ¢" specifies the portfolio & = (81,...,8d). Thus state space S and

control space U are given accordingto S= [—o0,0), U = [b,b]xO.
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We now want to compute the system function f. From (5) we obtain with Xn B‘Bn = 6n:

X1 = XpH1+ <8 R =] +eb)Z 4 —h(b,Y ) for X 0. (23)
Now we choose with u = (b,3), w = (p,y,2):

fx,uw) =x{1+<9,p>| +c(b)z—h(by) forx=0. (24)
The cost will be defined by

g(x,u) = Vo(x) = 1(_00,0)(x), a=1 (25)

Oncethe system is in state x 0 (—0,0), then it shall move to —o in the next step, i.e. we set
f(x,uw) = — oo for x 0 [—0,0). Thusthe cost of 1 unit hasto be paid at most once. Then

I =E[ I O X ) + VoK)
n ZOsm <n m T m\:m O\"N
= P[Xr)r(]’nD (—,0) for some0O<m<n| , (26)
in particular J]r-][(x) =1 for x 0 (—,0), J]r-][(—oo) =0,
which isjust the probability of being ruined after n periods.
Asin 83 we only consider the case where the interest rate r for the surplus not invested in stocksis
zero. However, the case r > 0 can be treated in the same way since the ruin probability is the same

if one replaces the surplus X by the discounted surplus. As explained in 83, this leads to a
scenario which can be looked upon as market with interest rate zero. Asin section 3 we assume:

CONTINUITY ASSUMPTION. The functions c(b) and h(b,y) are continuousin b (for each y).

However, there is a discontinuity of the system function f(x,u,w) at x=0. Thus the usual continuity
assumption (see Bertsekas & Shreve, 1978, pp 46, 209) is not satisfied. We will overcome that
difficulty by choosing asuitable class 7 in the structure assumption. In fact we set:

7:={v:[—0,0)r [01];Vis |.sc.on [0,0),v(x) =1 for x 0 (—0,0), v(—0) =0 }. (27)

Obvioudly we have V0 0 7. Now choose somev 0 7. Then v is obvioudly |.s.c. also on the whole
of R. Since f(x,u,w) is continuous in (x,u) on [0,:0)xU, it follows that v(f(x,u,w)) isl.s.c. in (x,u)
on [0,e0)xU. From Fatou's lemma we now conclude that Tv(x,u) = E[v(f(x,uW)] isl.s.c. in (x,u)
on [0,0)xU. Since U is compact, it isknown that T*v(x) = minuDU Tv(x,u) isl.s.c.inxon [0,)
(see Bertsekas & Shreve, 1978, Proposition 7.33). For x 0 (—,0) we have Tv(x,u) =1 and finally
Tv(—oo,u) = 0. Thus we have the following result:

PROPOSITION 1. The structure assumption of section 4 (and of section 2) is satisfied under the
continuity assumption of this section.

As a consequence, Theorems 3 — 5 hold for the present insurance model.
For the sequel, we make the following natural assumption, also used by Waters (1983).
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ASSUMPTION. P[c(b) Z < h(b,Y)] > 0 for al b.

LEMMA 6. Let € : (0,0) = (0,1] be any measurable function.
(a) For any x O R, the following function d(b,x) isl.s.cin b:

d(b,x) := E[§(2) ﬂ{c(b) Z — h(bY) < x}] =[&(2) P[c(b)Z—h(b,Y) <x] P[ZDdz] .
(b) Thereissome € > 0 such that infb d(b,—€) > 0.

Proof. a) The two representations of the function d follow from the independence of Z and Y. We
set H(b,y,2) := c(b) Z — h(b,y). Then H(b,y,z) is continuous in b and thus 1{H(by 7) <x} isl.s.c.
inb for al y,z. Now the result follows from Fatou's lemma.

b) By use of (a) and the compactness of [b,b], we obtain from a variant of Dini's theorem (see
Schal 1975, Proposition 10.1) for € | O: infb d(b,—€) 1 infb d(b,0) = d(bO,O) for some bo' The
last expression is positive for all b0 by our assumption from above and since § is positive. ||

We will use adlightly stronger version of the no-arbitrage condition already considered in 83.

NO ARBITRAGE ASSUMPTION. For al z in the range (or support) of Z and for any portfolio
vector & 0 R" we have: P[<d,R>20|Z=2z| =1 implies P[<}R>=0|Z2=2z| =1 .

LEMMA 7. (a) For all z in the range (or support) of Z we have: infa-ﬂRn P[ <9,R><0|Z=2]| >0.
(b) Thereissome € > 0 such that infbD [b,6],50Rn P[ <d,R>+c(b)[Z —h(bY)<—¢] >0.

Proof. a) We write % for the smallest linear space L in RY such that P[ROL|Z=z]| =1 Thenit

follows as in 83 that the no arbitrage condition from above is equivalent to the following
condition (NA)":

For al z in the range (or support) of Z and 6 [ %, 0#0:P[<dR><0]|Z=2z] >0. (NA)
Ford . % wehave P[ <dR>=0|Z=z] =1
Fordl %,3#0, wehaveP[ <3,R><0|Z=2] 2 P[<ﬂ%”6,R><O|Z =z| >0by (NA)"
Now as in the proof of Lemma 6, we can show that the function 6 » P| <d,R><0|Z = z| isl.sc.
and thusitsinfimum is attained on the compact sphere { 6 [ % 18]l = 1}.
b) For al z in the range (or support) of Z we have &(z) := inf6 P[ <6,R><0|Z=2] >0 by (a).
Now P[<d,R>+c(b)Z —h(b,Y)<—¢€] 2P| <4,R><0, c(b)[Z—-h(bY)<—¢]
=[P[<dR><0 |Z=2z|[P[c(b) Z—h(bY)<—¢] P[Z1dz|
> [&(2)[P[c(b)z—h(bY)<—¢| P[Z20dz] .
From Lemma 6b we now know that the last expression is positive for some € > 0. [ |

PROPOSITION 2. Let M > 0 be arbitrary.

- — X, T
(@  Thereexistssome n N such that oM = supst’T[P[Xn >0] <1
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(b P[O< Xr):]’ns M for infinitely many m| =0 for al x,1t
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Proof. a) Choose € > 0 asin Lemma 7b and set H(b,y,z) := c¢(b) [ — h(b,y). Then we have by (23):
n-1 " '
Xn=Xo* Zm=o0 [Xm®mRm+1™ T HOY )] Ontheset {X =20 forOsm<n}.

+ n 1 .
We know that for theeventAm = {<Xm¢m,Rm+1> + H(¢m,Ym+1)<—s} we have:

PIA LW W ] 2 infb,{) P[ <d,R>+ H(b,Y) <—¢]| =:v wherev >0 by Lemma7b.
By use of n r?];é Am ad o(Wl,...,Wn), we now can prove by induction that

n-1 + o . n-1 n
P[2 =0 {<Xm®mRm+1™ T HO Y e} <—NET2 Pl 5 A l2V

. . n-1 + . .
Now we obtain for Xy =x: P[X <0] 2P[¥ —5 {<X 6 R 1>+ HO Y . 1)} <—X]
2 P[Zr?,;é (<X 60 R >+ HOLY, )} <—nlE] 2v" forxsM<nlz,

and thus P[X | 2 0] <1-v" forx<M if n> Mle.

X,
m+n 1,---,

{Xr)r(]’ns M}. We define the stopping times 15 := 0, T 4 = inf {m 21 +n; X)é’n >0, f=m,

b) It is easy to see that we obtain from (a): P[X > 0|W Wm] <SNpp <1 on the set

X,TT _ : X,Tt
Xpy sM}p=inf{m=z1 +n; 0<X " <M}. Thenwe have

P[T; <, ..., Ty q <0] SP[T; <00, ., T <oo] P[XT I > 01 <00, ..., T <]
k

<Pty <o, .., T <] Dnn,M and thus
P[O< Xr)]({ns M for infinitely many m| = lim, P[rl <, .., T < |
<P[0< Xr)r(]’ns M for infinitely many m| mn,M and the result follows. ||
From Proposition 2b we conclude that

lim_, P[OSX <M ]=0 OxmM>0. (28)
Now we are able to prove akind of contraction property.
LEMMA 8. If & : [—o,0) + [0,0) isany bounded measurable function such that

§(e0) :=lim, | E(X) =0 and &(x) =0 forx<0,then lim_, E[E(X )] =0 Oxm

Proof. For any 6 >0 we can choose any M such that &(x) <& for x > M. Thusif ||§|| isthe upper
bound of & we obtain: E[§(X )] = E[l{OS X <M} (X + E[l{xn >M) (X1
< [E|P[0< X, <M] + 5. Now the result follows from (28). []

We can and will use Lemma 8 for an application of Theorems 4 and 5. There we choose

¢ = J—VO and J=v = Jq)w as the ruin probability under the stationary plan ¢°° which describes
the situation where the decision maker employs no reinsurance and does not invest in stocks, i.e.,

d(X) = (9'(x),0" (X)) = (b,0) where b stands for "no reinsurance” as before. (29)
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Thus we want to know how to improve ¢°° and under what conditions ¢°° is the optimal policy.
The following first two properties are well-known. In fact, the condition &(c) = J(c0) = O just
means that the ruin probability tends to zero asthe initial surplustendsto infinity.

LEMMA 9. Assume clE|[Z] > E[Y]. In the situation of (29) we then have for J= 2"
(@  Jx)isdecreasing;

(b))  J):= IimX_’oo Jx)=0;

©  Jx)— Vo(x) =0 forx<0 and Iimx_m J(x) — Vo(x) =0.

Proof. Part (a) is obvious. Part(b) follows from the law of large numbers (see Grandell 1991 p.5).
Part (c) follows from (b) since J(x) = Vo(x) forx <0 and Vo(x) =0forx>0. []

COROLLARY 1. AssumeclE([Z] > E[Y], let $* beasin (29), set J:= % and
Ux,9) :={ulU; TIx,u)<IJx) },x0S.
(a) Howard Improvement. For each decision function Y with (x) 0 U(x,¢$) for some states x and

Y(x) = ¢(x) for the other states x, one has: M <Jand me(x) < Jx) if P(x) 0 U(X,9).
(b) Verification theorem. If J=T*J, i.e,, T¢J =T*J, then ¢ defines a stationary optimal plan ¢°°.

Recall that T = Jby (20).

6. EXPONENTIALLY DISTRIBUTED CLAIMS
In this section we assume that there is no financial market, i.e., we can choose R = O for the return
in one period. Thus the decision maker can only control by reinsurance. Then one can restrict
attention to control actions of the form u = (b,0). Therefore we will identify u with b. Moreover
we will concentrate on the situation where

Y OExp(/p) and Z OEXp(A) for someQ <A, u<oo with ¢>Ap. (30)

There Exp(A\) stands for the exponential distribution with parameter A. Then the property
Z OExp(A) is adways fulfilled in the Cramér—Lundberg model. The following identity is
well—known (see e.g. Grandell 1991 (11)).

PROPOSITION 3. If JX) is defined as in Corollary 1, i.e., JX) is the ruin probability in the
Cramér—Lundberg model, then in the situation of (30) one hasfor x > 0:

309 = (1) & <M with k=125 0

Obvioudly, the assumptions of 85 are satisfied in the case of proportional reinsurance. In order to

improve the plan ¢°° as defined by (29) which recommends to do nothing, one has to study the
following quantity according to Corollary 1:
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TIx,b) = E[J(f(x,b,Y,Z))| = E[IX + c(b) [Z —h(b,Y))] forx=0
TIx,b)=Jx)=1 for —o<x<O0. (31)

LEMMA 10. Set 1 +n(b) := c(b)/Ap and q(b) := 7 E Kb 1 + iqlm(b)] '

Then one hasin the case of proportional reinsurance (7):

TIXb) = o(b) LX) + (1-b) Oy D2y 5 Dopl— g} forx=0

The proof follows by a straightforward but lengthy computation. Now we want to apply the
verification theorem to ¢ by showing that b = 1 is a minimizer of TJ(X,[). The second term of
TJ(X,b) is nonnegative, vanishes for b = 1, and thus attains its minimum for b = 1. Now we will
consider the first term. According to (4) we have: 1 + n(b) = 1+ n — (1+6) [{1-b) and n'(b) = 1+6.
Now we get for the first derivative q' of q by a straightforward computation:

q(b) =k m(b)2 E{ﬁ — [1+k]| {1+86) + 2(1+6) [ [H)} .
Hence, we know that g'(b) <0 for al bif only ¢'(1) <0. The latter condition obviously holds if
and only if 1o — [1+k] [{1+6) + 2(1+6) (K < 0 . Now this leads to the condition: ¢/(1) < 0 &
1+6 > (1—K)_2. If we denote the safety loading of theinsurer by n =n(1) >0, i.e.
clE[Z] =(1+n)E[Y] or ﬁ =1+n, we obtain the condition:

140> (1+n)2, ie, 8>2n+n2 (32)

This condition is also obtained when maximizing the adjustment coefficient (see Schmidli 1999).
The adjustment coefficient R(b) isin the present situation (see Dickson & Waters 1996)

Rty = L[1- 1 _ n — 6(1-b)
M [b b(1+8)—(6—n)| ~ ud1+n — (1+8)A-b)["

Since r]2 is small, the condition (32) comes close to the condition 8 > 2n. The latter condition is
obtained by Taksar & Markussen (2002, § 3.1) for a diffusion approximation and also appearsin
many different optimization problemsin insurance (see Hgjgaard & Taksar1998a).

THEOREM 6. In the model where (30) holds and where the decision maker can only control by
proportional reinsurance, it is optimal to have no reinsurance under the condition (32).

On the other hand, we know from the validity of the Howard Improvement that it is optimal to
have some reinsurance if TJ(x,b) < J(x) for some b < 1 and some x.
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Appendix.

Positive interest rate. Now we consider the following extended model: The insurance company
can invest the capital (surplus) in a financial market where 1+d assets can be traded. An investor
can invest in a bank account (bond) with an interest rate r > 0. In addition as before, there are d
stocks which can be described by the stock price process {Sn} as in section 3. The random
variables Rn, Yn, Zn will have the same meaning as before. We want to show that one gets the
same system functions asin sections 3 and 5 if one considers discounted quantities.

The discounted stock price process {én = (é%éﬂ) n=> 0} is defined by

K._n k
(A.D Sq =M=t exp{—r DZm} 5.0

The return process { Iu?n = (Iu?%,...,lu?g), n > 0} for the discounted stock price process is defined by
(A.2) =g m+RY ie 1+ R =exp(-rz, ) q1+RY), 1<k<d.

Again, it is reasonable to allow for a dependence of Zn and Rn or for a dependence of Zn and ﬁ{n.
In addition we define the discounted capital and the discounted claims by

v .—pN v ._pN
(A.3) Xy =0 oqexp{—rZ X, Y, =M exp{—Z Y,

For the part of the claim paid by the insurer we make here the following weak assumption which
isfulfilled for the two cases (5) and (7):

Assumption: h(b,yly) = yh(b,y) forall b,y,y=0.

For the premium we assume that ¢ and c(b) now are the discounted income rates. Then one has the
following undiscounted net income:

n

(A.439) Mi=1 exp{r [Zm} [¢(b) Z

in period n with a retention level b. If one takes into account a continuous—time discounting in
period n one would get an undiscounted net income of

(A.4b) I'Ir?]:1 exp{r [Zm} EJ}EQl —exp{—r DZn}) [¢(b).

A dynamic portfolio will again be specified at the beginning of any period n+1 by portfolio

vectors 6n or Sn a IRd asin section 3 an 5, respectively. But in this section, the component 6E of

6n will represent the discounted amount invested in the kt stock. We now want to compute the
system functionsf if one uses discounted quantities.

If X isthe capital at the beginning of period n+1, then Sﬁﬂdsﬁ denotes the number of shares the

investor holds in period n+1; thus the value of these shares at the end of period n+1is

k _ ok 2k k
’Sng([sﬁﬂlsﬁ_sn&[sml n

If bn isthe retention level in period n+1, we have in situation Ada:

&K _ oK
[exp{riZ , }/S =9 Eexp{riZ  }+R_, 1)
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X =X 01-30 9K lep(rz, ) + X e(riz, , )0 oXm1+RK, )

+ I'Ir?;% exp{r [Zm} E:(bn) Z 1~
>u(n+1 - ;(n 21— zgzl ’Sﬁ * zgzl 19lr<1 @+ ﬁﬁﬂﬂ to(by) g - h(bn’\?n+1)
= )u(n 1+ zg:l Bﬁ Dﬁﬁﬂ] * C(bn) e h(bn’\?

=X, 01+ <8n,R >| + c(bn) Z 1~ h(bn,Y

h(bn,Yn +1) and hence

n+1)

n+1 n+1)

=X+ <8 R >+0(b)Z 1 —h(b Y, 1) withd =X 9.

Thus we have the same system functions for sections 3 and 5 (see (13) and (24)). If one decides

for (A.4b) in place of (A.4b) one should replace c(bn) Z 1 with %Eﬂl —exp{—r Z, +1}) E:(bn).
In the discounted case we will choose

)

(A.5) W, = (ﬁn,Yn,zn).

Thus we have to replacethe quantities in sections 3 and 5 with the respective quantities
discounted by the interest rate which may be close to the quantities discounted by inflation.

Proof of Lemma 10. We obtain from (31) and Proposition 3:
TXx,b) = P[x + c(b) (Z — h(b,Y) < 0] +

+ (10 El Ly 4 by hiby) > 0) BPE- %K [{x + c(b) [Z — h(b,Y))}]
= P[x + c(b) [Z — h(b,Y) < 0] + (1K) @Xp{—% KX} O

E[Li 4 o) Z _ h(bY) > 0) @xp{—% K o(b) Z — h(b,Y))}].
For the first term we have
P[x +c(b) Z<h(bY)] = of° A& ZP[x + c(b) < h(b,Y)] dz where
P[x+c(b)Z<h(bY)]| =P[x +c(b)Z<bLY]
=P[i[x+cb)Z] Y] = exp{—%[{%[x + c(b) m] } = exp{— X+ cb) 2] ).
These computations lead to
Plx +c(H) Z<h(bY)] = J° A2
=op{- g AN
= Aexp{~ 5} [ exp(— [+ i (b)) (2} dz
= ACexp{~ 5} O + g o))

=\ exp{- ) apint bi c(0)~1 = gypy— bi) %Wbp\%

[exp{— tlj_u[x +c(b)[Z]} dz
[exp{— tl)_u c(b)(z} dz
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For the second term we obtain

E[1
=of” A
E[1

R
_OJ' |Je

I(x+c(b) [2)/b 1

- exp {_ 1y o)) I(x+c(b) 2)b 1 Lo

W
1

W

%@xp{— =k [e(b) 2 } 1—“? [ﬂ)E{l - exp{

1—K[Ib
1

1 - K |

{x+ c(b) Z — h(b,Y) > 0} EXP{-

{x+c(b)[Z>DbLY}

"1 {x +c(b)z>by}
I(x+c(b) [2)/b 1

== @xp{— m K [&(b) Z } OI(X+C(b) &)/b exp{—
= Ltexp(— LK TB(0) 2 } (T (1 —K D))

K {e(b) (Z —h(b,Y))} ]

E[l{ [exp{— KEdc(b)& bY)}] dz where

x+c(b)&>bD(}
(exp{- 3 K {e(B) 2~ bIY))]

LK e(b) 2~ b)) dy
v @xp{—ﬁxt@c(b)a—bw/)} dy

(- uy_lec(b)a_b@)}dy

[exp{—
m exp{—

y+ KEbEY}dy

(- kD)) dy
1[{1 — exp{—%(l—KEﬂ)) x + c(b)iz gb Q}]
x + c(b)ﬂ_Kdg + (1:(b)ﬁ) }]

exp{——KDt(b) 2} — exp{——KE:(b)& X * g‘(lb)&+}<ﬂ‘ i ﬁ(b)a}]

[exp{— 1 Kb 2} — exp{- %@—& tK %}]

=T [Pl Oz} - e~ FOE} (-1 k)5
Thus we obtain
E[l{X +¢(b) Z — h(b,Y) > 0} (exp{— K [{c(b) (Z —h(b,Y))} ]

OI A M ﬁ exp{— Tl [e(b)Z} — exp{— B_u@E} [exp{—(1—k [b) %ﬁ}] dz
= ﬁ ’Ojoo A M exp{— Ly [e(b) 2 } dz

OI A Edaxp{ M} [exp{—(1 — k [b) G.ﬁ} dz]
=g o7 e exp{_H K (E(b) 2 } dz
—exp{—(1—k [b) E—L%} %joo e M [éxp{— %pﬂ}dz]
- :OI°° exp{~ (A + LKD) 2 } 2
—exp{—(1—k [b) %ﬁ} O OIOO exp{—(\ + %Q) [z} dz]

- [('/\ , % KIe(b)) T — exp{—(L— K b) B OO+ gil)l)—l}
_ A
=T = Kb [)\p ) — P D) G Dﬁ]
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For the whole second term we now have:

(1K) [Bxp{— & KO} E[ Ly 4 o)z hbiy) > 0) @xp{—% K [o(b) I — h(b,Y))}]
N b
= 0@l x5 G g [ e Pl-0 <D ]
A b
= gll(—%[[exp{— % K X} D)\U ¥ UK eb) exp{ bﬁ} Ug M

Altogether we finally obtain:

TJ(x,b) = exp{— )t;_u} Eiﬂ\u—bPlclTb)

A 1) 1 U X
T K[ﬂ)[{eXp{_HKD(} B+ kem — &Pl ou! Yo

_ b\ A1- b
—eXp{—)é_u}E{bD\u - ‘é(b)_ﬂ KKEB)J “bxp +mC(b)}
+ exp{—% KX} [%1\ E@EK[% % +uK [e(b)

B X bl]\ 1 — K 1 1 — K )\m
= el ) o ) 2|27 = k1] 2Pl By O e

— X bAu 1
—exp{—m} DbD\u T (D) Cr— K[H){l—K[ﬂ)—(l—K)}
A

1 1- « W
+exp{- KB} O —1p g+ k)

= C(b)]

b

-+ C(b)]

b Q1
1+nb) "1 - Kb

= exp{— )t;_u} Op— K [(1-b)
1

1
—K[ﬂ)D1+

+ (1K) exp{— & K} Op - |

Optimal reinsurance under certain other principlesisrecently studied e.g. in:

Gajek, L. & Zagrodny, D. (2000). Insurer's optimal reinsurance strategies. Insurance: Mathematics
and Economics 27, 105 — 112.

Kaluszka, M. (2001). Optimal reinsurance under mean—variance premium principles. Insurance:
Mathematics and Economics 28, 61 —67.
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