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This paper studies an insurance model where the risk process can be controlled by reinsurance and

by investment in a financial market. The performance criterion is either the expected exponential

utility of the terminal surplus or the ruin probability. It is shown that the problems can be

imbedded in the framework of discrete � ��� time stochastic dynamic programming but with some

special features. A short introduction to control theory with infinite state space is provided which

avoids the measure � ��� theoretic apparatus by use of the so � ��� called structure assumption. Moreover,

in order to treat models without discount factor, a weak contraction property is derived. Explicit

conditions are obtained for the optimality of employing no reinsurance.
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verification theorem

111... IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

An introductory survey of the use of optimal control theory for treating Markovian control

problems in non � ��� life insurance was given by Martin � ��� Löf (1994). There, models with finite state

space and a discount factor are considered. In the present paper we concentrate on models with

infinite state space without discounting in order to treat the control of the ruin probability in a

variant of the Cramér � ��� Lundberg model. The usual problems of measurability are here avoided by

the use of so � ��� called structure assumptions which were already explained by Porteus (1975). In

sections 2 and 4 the theory of dynamic programming is explained for a finite and an infinite

horizon, respectively. Applications to insurance, however, will lead to some new situations not yet

considered in the literature.

In these applications, given in sections 3, 5, 6, an insurance model is studied which can be

controlled by reinsurance and by investment in a financial market. The period lengths may be

deterministic or random; e.g., a period may be the time between two successive claims. In section

3, we want to maximize the expected exponential utility of the terminal surplus. Since the general

theory of dynamic programming is here explained for minimizing costs rather than for

maximizing rewards, we will actually minimize an exponential disutility. This is also convenient

from a mathematical point of view, since we can then restrict attention to nonnegative functions.

By assuming that the decision maker (insurance company) enjoys an unbounded credit, the

optimality of a very simple control is established which is given by a universal retention level for

reinsurance and a universal portfolio vector for investment. Similar results are obtained by

Browne (1995) for a diffusion model.

At first view, the ruin probability is not a classical performance criterion for control problems. In

section 5, it will be shown that one can write the ruin probability as some total cost without
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discounting where one has to pay one unit of cost when entering a ruin state. After this simple

observation, the results from discrete � ��� time dynamic programming apply. However, the usual

continuity conditions do not hold since the system function is discontinuous. In spite of the lack of

discounting, the model enjoys a contraction property which is weaker than the usual ones

considered in dynamic programming. This property was established by Schmidli (2001b) for a

continuous� ��� time insurance model. Here it is shown that the property is strong enough for the

validity of the Howard improvement and a verification theorem. By use of the Howard

improvement, one can look for a plan which is at least better than employing no reinsurance. As

an application of the verification theorem, it can be shown for a model with exponentially

distributed claims that it is optimal to have no reinsurance if the safety loading of the reinsurer is

too high. Similar results are obtained by Schmidli (1999) for maximizing the adjustment

coefficient and by Taksar & Markussen (2002) for a diffusion approximation.

The effect of reinsurance on the probability of ultimate ruin is also studied by Dickson & Waters

(1996). Minimizing the ruin probability in continuous� ��� time models is considered by Browne

(1995), Hipp & Plum (2000), Hipp & Vogt (2001), Hφjgaard & Taksar (1998a,b) Schmidli

(2001a,b), Schäl (2002). In these papers, diffusion models, piecewise � ��� deterministic models, and

mixtures of these models are studied. There the decision maker can adjust the retention level and

the portfolio at every time t ∈
�
0,∞) whereas the control action is constant throughout one period

in the present paper. We remark that also a continuously controlled piecewise � ��� deterministic

model as the Cramér � ��� Lundberg model can be reduced to a discrete � ��� time model. But then the

control space has to be chosen as function space (see Schäl 1998, 2002) whereas in the present

paper the control space is a subset of some Euclidean space.

We will consider an insurance model which can be controlled by reinsurance and investment in a

financial market. The process � X , n≥0 � is the risk process where X ∈ � describes the surplusn n
(size of the fund of reserves) of an insurance company after n periods. The claim (payment) in

period n will be described by the random variable Y with values in
�
0,∞). The process can ben �

controlled by reinsurance, i.e. by choosing the retention level (or risk exposure) b ∈
�
b,b � of a����

reinsurance for one period. The (measurable) function h(b,y) specifies the part of the claim y paid

by the insurer. Then h(b,y) depends on the retention level b (fixed in the risk sharing contract) at

the beginning of the respective period where 0 ≤ h(b,y) ≤ y. Hence y � ��� h(b,y) is the part paid by

the reinsurer. It is natural to assume that h(b,y) is increasing in b. In the case of an excess of loss

reinsurance we have: �
h(b,y) = min (b,y) with retention level 0 ≤ b ≤ b ≤ b = ∞. (1)����

In case of a proportional reinsurance we have: �
h(b,y) = b ⋅y with retention level 0 ≤ b ≤ b ≤ b = 1. (2)����

We allow for the case that the length Z of period n is random. Thus we can cover a controlledn
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version of the Cramér � ��� Lundberg model if we assume that periods are given by the intervals

between the jump times of a Poisson process. Of course, we also can think of the case where Z =n
1 is deterministic. We set Y = Y for a typical claim and Z := Z for a typical period length.1 1
There is a premium (income) rate c which is fixed. For each retention level b, the insurer pays a

premium rate to the reinsurer which has to be deducted from c. This leads to a net income rate

c(b) where � �
0 ≤ c(b) ≤ c = c(b) for b ≤ b ≤ b and c(b) is increasing. (3)�����

There, the retention level b stands for the control action "no reinsurance" which explains the�
property "c = c(b)". The smallest retention level b may be chosen in such a way that the condition����
(3) is satisfied. Then c(b) may be calculated according to the expected value principle with safety

loading θ of the reinsurer:

c(b) = c � ��� (1+θ) ⋅E
�
Y � ��� h(b,Y) � /E

�
Z � . (4)

In addition, the insurance company can invest the capital (surplus) in a financial market where d

assets can be traded which are called stocks and are described by the price process

1 d k� S = (S ,...,S ), n ≥ 0 � where S is the price of one share of stock k at the beginning of periodn n n n
1 d k k kn+1. We define the return process � R = (R ,...,R ), n ≥ 1 � by S =: S ⋅ (1 + R ) , 1 ≤ k ≤ d,n n n n n� ��� 1 n

kwhere of course 1 + R > 0 a.s. for all k. We assume that the � R � are independent andn n
identically distributed and set R := R for a typical return.1
A dynamic portfolio specifies at the beginning, i.e. at the beginning of period 1, a portfolio vector

d dδ ∈ � and subsequently at the beginning of any period n+1 a portfolio vector δ ∈ � . There, the0 n
kcomponent δ of δ represents the amount invested in stock k during period n+1. We will allown n

kfor negative amounts δ , thus admitting short selling of stocks in section 3, but not in section 5.n
Thus a control action u = (b,δ) will consist of two components where b specifies the retention

1 dlevel and δ = (δ ,...,δ ) specifies the portfolio vector. At the beginning of period n+1, the decision

about the control action will depend on the present size X of the capital (surplus). Given then
surplus X and the control action u = (b ,δ ), we now want to compute the surplus X . Thenn n n n n+1
k kδ /S denotes the number of shares the investor holds during period n+1. Thus the value of thesen n

k k kshares at the beginning of the next period is δ ⋅S /S and we haven n+1 n
d k d k k kX = X + c(b ) ⋅Z � ��� h(b ,Y ) � ��� ∑∑∑ δ + ∑∑∑ δ ⋅S /Sn+1 n n n+1 n n+1 k=1 n k=1 n n+1 n
d k d k k= X + c(b ) ⋅Z � ��� h(b ,Y ) � ��� ∑∑∑ δ + ∑∑∑ δ ⋅ (1 + R )n n n+1 n n+1 k=1 n k=1 n n+1
d k k= X + c(b ) ⋅Z � ��� h(b ,Y ) + ∑∑∑ δ ⋅R , and thusn n n+1 n n+1 k=1 n n+1

X = X + c(b ) ⋅Z � ��� h(b ,Y ) + <δ ,R > (5)n+1 n n n+1 n n+1 n n+1
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where <z,y> denotes the inner product in ��� . It is convenient to set

X = f(X ,b ,δ ,R ,Y ,Z ) wheren+1 n n n n n n

f(x,b,δ,ρ,y,z) = x + c(b) ⋅z � ��� h(b,y) + <δ,ρ> . (6)

We will call f the system function as in Bertsekas & Shreve (1978). Moreover, we will look on

W = (R ,Y ,Z ) as the disturbance for period n. The sequence � W , n≥1 � forms the source ofn n n n n
randomness of the model. We make the following assumption:

IIINNNDDDEEEPPPEEENNNDDDEEENNNCCCEEE AAASSSSSSUUUMMMPPPTTTIIIOOONNN... The W = (R ,Y ,Z ), n ≥ 1, are iid (independent, identicallyn n n n
distributed) random variables. In addition, it is assumed that (R ,Z ) and Y are independent.n n n

As a consequence, � R � as well as � Y � and � Z � are also iid random variables. However, it isn n n
reasonable to allow for a dependence of Z and R . In a combination of a Cramér � ��� Lundbergn n
model and a Black � ��� Scholes model (with d=1), Z is exponentially distributed and 1 + R =

exp � σ B + (a � ����� σ� ) Z � with a standard Brownian motion � B � , the volatility σ and theZ t
appreciation rate a.

In section 2, we will consider a more general control model which contains the present insurance

model and also the model of section 5, 6 as special cases. The section 2 contains the notation and

formal results of dynamic programming. But we will use the same notation as in this introduction.

222... DDDYYYNNNAAAMMMIIICCC PPPRRROOOGGGRRRAAAMMMMMMIIINNNGGG WWWIIITTTHHH FFFIIINNNIIITTTEEE HHHOOORRRIIIZZZOOONNN

A general discrete � ��� time stochastic process � X , n ≥ 0 � is considered which can be observed andn
controlled at the beginning of periods with numbers n = 1,2,... The stochastic development is

determined by a sequence of iid random variables � W , n ≥ 1 � on some probability space (Ω,� ,P)n
with values in some measurable space (E, � ). There, (E, � ) is the disturbance space. We write W :=

W for a typical disturbance. The model is further specified by the following quantities:1
(S, � ) is the state space which is a measurable space;

(U, � ) is the control (action) space which is a measurable space;

f : S×U×E 	 S is the (measurable) system function;

α ∈
�
0,1 � is the discount factor;

g : S×U 	 ( � ��� ∞,∞ � is the one-period cost function, which is measurable and bounded from below;

V : S 	 ( � ��� ∞,∞ � is the terminal cost function, which is measurable and bounded from below;0
N ∈ 
 is a time horizon (number of periods).

Of course, a negative cost can be interpreted as a reward. However for the present applications, it

is sufficient to consider nonnegative cost functions. For simplicity, we will not restrict the set of

control actions available in some state x. If the action u is not admissible at x one can set g(x,u) =

∞ or one can identify u with some other admissible action. In applications to insurance, we also

consider the case where the period lengths are random. Therefore, it may be reasonable to assume

that the discount factor is random. It may be a function of the length of the time period. Such
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models can be treated in the same way (see Schäl 1975); but for the present applications it would

be even sufficient to consider the case α = 1.

DDDEEEFFFIIINNNIIITTTIIIOOONNN... A decision function is a measurable function ϕ : S 	 U.

A plan (policy, strategy) is a sequence π = (ϕ ) of decision functions ϕ .n n≥0 n

Then ϕ (X ) will represent the action chosen at the beginning of period n+1. Even in a modeln n
with finite horizon N, it is convenient to describe a plan by an infinite sequence (ϕ ) where ϕn n
can be defined in an arbitrary way for n ≥ N. Actually we only consider nonrandomized Markov

plans. However, this restriction is justified (see Bertsekas & Shreve 1978 Proposition 8.4).

x,πFor an initial state x ∈ S and a plan π, the state X = X of the system at the beginning of periodn n
n+1 is defined as a random variable on (Ω, � ,P) according to:

X = x, X := f(X ,ϕ (X ),W ), n≥0. (7)0 n+1 n n n n+1

In state x ∈ S at the beginning of period n+1, a control action u = ϕ (x ) ∈ U is chosen whichn n n n
will result in a cost g(x ,u ). Then the system is influenced by a disturbance W = w inn n n+1 n+1
such a way that the state at the beginning of the next period is given by x = f(x ,u ,w ). Ann+1 n n n+1
example for a system function f is given in (5). The costs will be discounted by α.

RRREEEMMMAAARRRKKK... The processes studied in this paper are also called Markov decision processes. The

underlying Markov property will now be formulated. If one defines the σ� ��� algebra � of the pastn
at time n by � := σ(W ,...,W ), n≥1, where � = � ∅,Ω � is the trivial σ� ��� algebra, then � X , n ≥ 0 �n 1 n 0 n
is a discrete � ��� time Markov process (w.r.t. the filtration � � � ) and one has the following relationn
for measurable functions v : S 	 ( � ��� ∞,∞ � bounded from below:

� �
E

�
v(X )

� � � = v (X ) where v (x) := E
�

v(f(x,ϕ (x),W)) � . (8)n+1 n n n n n

πDDDEEEFFFIIINNNIIITTTIIIOOONNN... Given the initial state X = x ∈ S, the total discounted cost J (x) and the value0 N
function V (x) in N periods areN

π ����� n N x,πJ (x) = E
�

α ⋅g(X ,ϕ (X )) + α ⋅V (X ) � with X = X . (9)N �
	�� n n n 0 N n n0≤n<N
πV (x) := inf J (x) . (10)N π N

The following lemma is easy to prove. �
π πLLLEEEMMMMMMAAA 111... J (x) = g(x,ϕ (x)) + α ⋅E

�
J (f(x,ϕ (x),W)) � whereN 0 N���� 1 0�

π = (ϕ ,ϕ ,...) for π = (ϕ ,ϕ ,...). (11)1 2 0 1

It is convenient to describe the relation in Lemma 1 by the one-step cost operator T.
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DDDEEEFFFIIINNNIIITTTIIIOOONNN... For any v : S 	 ( � ��� ∞,∞ � , which is measurable and bounded from below, we set:

Tv(x,u) := g(x,u) + α ⋅E
�
v(f(x,u,W)) � , x ∈ S, u ∈ U;

T v(x) := Tv(x,ϕ(x)) for any decision function ϕ;ϕ
T*v(x) := inf Tv(x,u).u∈U

If v(z) represents the cost incurred at the beginning of the next period
�
or the expected cost from

the next period onwards � given the state z at that time, then Tv(x,u) tells us the expected

discounted cost from the present period onwards given the present state x and the chosen action u.

LLLEEEMMMMMMAAA 222... For any functions v, v' as in the definition above we have:

(a) T v ≥ T*v ;ϕ
(b) T and T* are order preserving, i.e., v ≤ v' � T v ≤ T v', T*v ≤ T*v';ϕ ϕ ϕ�

π π
�

(c) J = T J = T ...T V with π as in (5).N ϕ N���� 1 ϕ ϕ 00 0 N� ��� 1
π N(d) T ...T v = J + α ⋅E

�
v(X ) � ��� V (X ) � if v � ��� V is bounded from below.ϕ ϕ N N 0 N 00 N� ��� 1

The proof of Lemma 2 is easy (see Bertsekas & Shreve 1978 Lemma 8.1). The measurability of

T*v is a problem, which we will avoid by the following assumption (see Porteus 1975).

SSSTTTRRRUUUCCCTTTUUURRREEE AAASSSSSSUUUMMMPPPTTTIIIOOONNN... There exist a set � of measurable functions v : S 	 ( � ��� ∞,∞ �
bounded from below and a set Φ of decision functions such that:

(i) V ∈ � ;0
(ii) T*v ∈ � for all v ∈ � ;

(iii) for all v ∈ � there exists a decision function ϕ ∈ Φ with:

T v = T*v , i.e. ϕ(x) is a measurable minimizer of the function U ∋ u 	 Tv(x,u).ϕ

One main problem in dynamic programming is to find such a class � . In general semicontinuous

models, candidates for � and Φ are the set of l.s.c. functions v : S 	 ( � ��� ∞,∞ � bounded from below

and the set of all decision functions, respectively, where we write l.s.c for lower semicontinuous

(as usual). In a heavy measure � ��� theoretic apparatus, one can choose � as the set of lower

semianalytic function (see Bertsekas & Shreve 1978 § 7.7, § 8.3). But of course, one wants to

choose � and Φ as small as possible. In inventory theory e.g., a famous result of Scarf (1960) says

that one can choose � as the set of K� ��� convex functions and Φ as the set of (s.S) decision

functions.

LLLEEEMMMMMMAAA 333... Under the structure assumption one has:

n(a) T . ..T V ≥ T* V ∈ � for all π = (ϕ ,ϕ ,...), n > 0;ϕ ϕ 0 0 0 10 n� ��� 1
(b) there exists a sequence of decision function (ϕ*, n≥1) with ϕ* ∈ Φ andn n

nT ...T V = T* V , n≥1.ϕ* ϕ* 0 0n 1
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The proof immediately follows from the structure assumption.

πDDDEEEFFFIIINNNIIITTTIIIOOONNN... A plan is optimal (for horizon N), if J (x) = V (x) for all x ∈ S.N N
The sequence of decision functions (ϕ*, n>0) is value conserving if T V = T*V , i.e.,n ϕ* n� ��� 1 n � ��� 1n
ϕ*(x) is a minimizer of the function u 	 TV (x,u) for all x ∈ S, n > 0.n n� ��� 1

The notion of value conserving was introduced by Dubins & Savage (1965). From Lemmata 2 and

3, one obtains the following theorem in a straightforward manner.

TTTHHHEEEOOORRREEEMMM 111... Under the structure assumption one has:

n(a) V = T* V ∈ � , n > 0, (value iteration);n 0
(b) V = T*V , n > 0, (optimality equation)));n n � ��� 1
(c) there exists a value conserving sequence (ϕ*, n>0) such that ϕ* ∈ Φ for n > 0;n n
(d) there exists an optimal plan for each finite horizon. More exactly, if (ϕ*, n>0) isn

(N)value conserving, then π := (ϕ* ,...,ϕ*,ϕ ,ϕ ,...) is optimal for the horizon N < ∞N 1 0 0
(where ϕ can be chosen arbitrarily).0

IIINNNTTTEEERRRPPPRRREEETTTAAATTTIIIOOONNN. Principle of dynamic programming, Bellman 1957...

Assume that you know the minimal total costs V if there are n periods ahead.
�
For n = 0, V isn 0

indeed known and given. � Now you want to compute V . The way of solution is the following:n+1
Compute the quantity TV (x,u) which can be interpreted as the (discounted) cost at time 0 (i) ifn
you start in state X = x, (ii) if you choose an arbitrary control action u, and (iii) if you choose an0
optimal control for the n periods lying ahead at the end of the first period, i.e., if you have to pay

V (X ) then. Now minimize over u ∈ U; then you obtain T*V (x) = V (x). The minimizern 1 n n+1
u* = ϕ* (x) is the optimal control action. Hence, the information which is important for then+1
choice of the control action consists in the present state x and the number n+1 of periods ahead.

EEEXXXAAAMMMPPPLLLEEE... Finite control spaces (see e.g. Martin � ��� Löf 1994).

Assume that U is finite and w.l.o.g. U ⊂ � . We can choose Φ as the set of all decision functions

and � as the set of all functions v : S 	 ( � ��� ∞.∞ � which are measurable and bounded from below .

Then condition (i) of the structure assumption is obviously fulfilled. For (ii) and (iii), we have

T*v(x) = min Tv(x,u) where Tv(x,u) and thus T*v(x) is measurable in x. Because of theu∈U
finiteness of U we can write 'min' in place of 'inf'. We obtain a measurable selection of minimizers

by ϕ(x) := min � u ∈ U; Tv(x,u) = T*v(x).

The measurability of ϕ follows from � ϕ(x) ≤ a � = ∪∪∪ � x; Tv(x,u) = T*v(x) � .
� �u≤a
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333. TTTHHHEEE IIINNNSSSUUURRRAAANNNCCCEEE MMMOOODDDEEELLL WWWIIITTTHHH MMMAAAXXXIIIMMMIIIZZZIIINNNGGG AAANNN EEEXXXPPPOOONNNEEENNNTTTIIIAAALLL UUUTTTIIILLLIIITTTYYY

In this section we study the insurance model introduced in §1 where the investor (insurance

company) is allowed to borrow an unlimited amount of money. We choose the state space and the

control space as �
dS = � , U =

�
b,b � × � . (11)����

Then a decision function ϕ consists of two components ϕ = (ϕ',ϕ") where ϕ' specifies the

1 dretention level b of reinsurance and ϕ" specifies the portfolio vector δ = (δ ,...,δ ).

The cost structure is given by the idea that the insurance company is not ruined but only penalized

if the size of the surplus is negative or small. The penalty cost for being in state x is of the form
� ��� β ⋅xconst ⋅e for some β > 0. Therefore we define the cost functions as

� ��� βx � ��� βxg(x,u) := γ ⋅e , V (x) := ν ⋅e for some γ, ν ≥ 0. (12)0 0 0

Then the performance criterion is the expected total penalty paid. An important special case is

defined by γ = 0 and (w.l.o.g.) ν = 1. Then the insurer has only to pay a penalty at the end and0
x ,πwants to minimize E

�
exp � � ��� β ⋅X � � . This is the same problem as maximizing the expectedN

� ��� βxutility of terminal wealth if one chooses the exponential utility function � ��� e . Thus, one can also

speak of minimizing the expected exponential disutility of terminal surplus. This is an interesting

problem, since exponential utility is also used in determining fair premiums by many

property � ��� liability insurance companies (see Goovaerts et al. 1990 III.6).

In the present situation, we claim that the structure assumption is satisfied if we choose � as the
� ��� βxset of all functions v : � 	 �

0,∞) such that v(x) = ν ⋅e for some ν ≥ 0 and Φ as the set of all

constant decision function ϕ : � 	 U. Now we want to show the properties (i) � ��� (iii) of the

structure assumption. Obviously (i) holds by definition of V .0
� ��� βxMoreover, we have for v(x) = ν ⋅e , u = (b,δ), W = (R,Y,Z):

� ��� βxTv(x,u) = g(x,u) + α ⋅E
�
v(f(x,u,W)) � = γ ⋅e + α ⋅ν ⋅E

�
exp � � ��� β ⋅ f(x,u,W) � �

� ��� βx= γ ⋅e + α ⋅ν ⋅E
�
exp � � ��� β ⋅

�
x + <δ,R> + c(b) ⋅Z � ��� h(b,Y) � � �

� ��� βx � �= e ⋅
�
γ + α ⋅ν ⋅E

�
exp � � ��� β ⋅

�
<δ,R> + c(b) ⋅Z � ��� h(b,Y) � � � �

. Hence we have� �
� ��� βxT*v(x) = ν* ⋅e (13)

with ν* := γ + α ⋅ν ⋅ inf E
�
exp � � ��� β ⋅

�
<δ,R> + c(b) ⋅Z � ��� h(b,Y) � � � .(b,δ)∈U

Thus, our model also enjoys property (ii) and we now have to concentrate on property (iii). It is

sufficient to show that the infimum in (13) is attained by some (b*,δ*), say. Then we may define

the decision function ϕ ∈ Φ as the constant function ϕ(x) = (b*,δ*). In fact, ϕ does not even

depend on v. As a consequence, we will obtain a value conserving sequence (ϕ*) by settingn
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ϕ* := ϕ. Thus the optimal action will then be universal in the sense that it neither depends on then
present state nor on the number of periods lying ahead.�

d
�

We know that U =
�
b,b � × � where

�
b,b � is compact. In the examples, we have U =

�
b,1 � in the���� ���� ����

case of proportional reinsurance and U =
�
b,∞ � in the case of an excess of loss reinsurance.����

Then we will need the property that

(b,δ) 	 E
�
exp � � ��� β ⋅

�
<δ,R> + c(b) ⋅Z � ��� h(b,Y) � � � is continuous. (14)

For that purpose we make the following assumption

AAASSSSSSUUUMMMPPPTTTIIIOOONNN... The functions c(b) and h(b,y) are continuous in b (for each y) and

E
�
exp � β ⋅Y � � < ∞, E

�
exp � ε ⋅ � R � � � < ∞ for all ε > 0.

The latter assumption on R is satisfied if R is bounded or if R has a normal distribution. Since Y

and R are assumed to be independent and since 0 ≤ h(b,y) ≤ y, we know that

E
�
exp � � ��� β ⋅

�
<δ,R> + c(b) ⋅Z � ��� h(b,Y) � � � ≤ E

�
exp � � ��� β ⋅<δ,R> � � ⋅E

�
exp � β ⋅Y � � < ∞ for all b, δ.

Now we may conclude from the dominated convergence theorem that property (14) holds. The set

��� is not compact; but we will show that the infimum is attained under the following well � ��� known

condition (NA) (see e.g. Jacod & Shiryaev 1998, Pliska 1997).

NNNOOO AAARRRBBBIIITTTRRRAAAGGGEEE AAASSSSSSUUUMMMPPPTTTIIIOOONNN... For any portfolio vector δ ∈ ��� :
P

�
<δ,R> ≥ 0 � = 1 implies P

�
<δ,R> = 0 � = 1 . (NA)

In fact, the property <δ,R > ≥ 0 implies for X = x > 0 that X = x + <δ,R > + c(b) ⋅Z � ���

1 0 1 1 1
dh(b,Y ) ≥ x ⋅ + c(b) ⋅Z � ��� h(b,Y ). Thus, using the portfolio δ ∈ � is not worse than not investing1 1 1

in the stocks, i.e., there is no risk in using this portfolio. Then everybody would indeed like to use

such an opportunity if there is a chance that <δ,R > is positive. Such a portfolio δ is called an1
arbitrage opportunity which is excluded by our assumption.

dWe write � for the smallest linear space L in � such that P
�
R ∈ L � = 1. Then it is easy to show

that (NA) is equivalent to:

for all δ ∈ � , δ ≠ 0 : P
�
<δ,R> < 0 � > 0 . (NA)*

LLLEEEMMMMMMAAA 444. The function (b,δ) 	 v(b,δ) := E
�
exp � � ��� β ⋅

�
<δ,R> + c(b) ⋅Z � ��� h(b,Y) � � � attains the

infimum over U at some (b*,δ*) where δ* can be chosen in � .

Proof. If χ denotes the orthogonal projection on � , then <δ,R> = <χδ,R> a.s. ∀ δ ∈ ��� . Now we

can restrict attention to δ ∈ � . In view of (3), we have

lim v(b,λ ⋅δ) ≥ lim E
�
exp � � ��� β ⋅

�
λ ⋅<δ,R> + c ⋅Z � � ⋅111 � = ∞ (15)λ � ∞ λ � ∞ � <δ,R> < 0 ��

for δ ∈ � \ � 0 � by (NA)*. Now define F := � (b,δ) ∈
�
b,b � × � ; � δ � = 1, v(b,λ ⋅δ) ≤ v(b,0) + 1 � .λ ����

Then F is compact and it is easy to show that the convexity of v(b,δ) in δ implies that F ⊂ Fλ λ λ'
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for 0 < λ' < λ. Moreover, we conclude from (15) that ∩∩∩ F = ∅. Hence we know that theren∈ 
 n
exists some n ∈ 
 such that F = ∅ for all λ ≥ n , i.e. v(b,δ) ≥ v(b,0) + 1 for all δ with � δ � ≥ n .o λ o o
Thus inf v(b,δ) = min

�
v(b,δ) , i.e., the infimum over all(b,δ)∈U (b,δ)∈

�
b,b � , δ∈ � , � δ � ≤n���� o�

(b,δ) ∈ U is attained on the compact set
�
b,b � × � δ ∈ � ; � δ � ≤ n � .

� ����� o

Therefore the model indeed enjoys property (iii) and the structure assumption is satisfied. The use

of convexity in the present minimization problem is well � ��� known (see Rockafellar 1970 Theorems

27.1, 27.3, Bertsekas 1974 Proposition 1, Rogers 1994 Proposition 2.2). Also the use of the

no� ��� arbitrage condition for such problems is known (see Rogers 1994, Schäl 2000a,b, 20001).

The situation is further simplified under the assumption that the random variables R, Z, Y are

independent which is the case if the period length Z is deterministic. Then

E
�
exp � � ��� β ⋅

�
<δ,R>+c(b) ⋅Z � ��� h(b,Y) � � � = E

�
exp � � ��� β ⋅<δ,R> � � ⋅E

�
exp � � ��� β ⋅

�
<c(b) ⋅Z � ��� h(b,Y) � � �

and we can get the minimizer (b*,δ*) in such a way that

b* is a minimizer of the function b 	 E
�
exp � � ��� β ⋅

�
c(b) ⋅Z � ��� h(b,Y) � � � , (16)

δ* is a minimizer of δ 	 E
�
exp � � ��� β ⋅<δ,R> � � . (17)

It is remarkable that under this additional independence assumption the control of the reinsurance

and the control of the investments can be chosen independently of each other. The investments are

controlled in such a way that the expected utility is maximized for an exponential utility function
� ��� βx

� ��� e . In fact, a pure investment problem with an exponential utility is a special case of the

present model if one chooses c(b) = 0, h = 0. Moreover, the optimal plan invests a fixed amount,

regardless of the surplus of the company, in accordance with Ferguson (1965) and Merton (1990).

Similar results for a diffusion model are obtained by Browne (1995) who also explains that the

well � ��� known constant proportional schemes may be inappropriate in the present scenario.

TTTHHHEEEOOORRREEEMMM 222. Under the assumption of this section, the structure assumption is satisfied with �
and Φ defined as above. Moreover, there exists a value conserving sequence (ϕ*) such thatn
ϕ*(x) = (b*,δ*) is independent of x and n where (b*,δ*) is the minimizer of Lemma 4. If R andn
(Z,Y) are independent, then b* and δ* can be obtained independently of each other by (16), (17).

The present results only hold if the interest rate r for the capital of the company not invested in

stocks is zero. However, the case r ≥ 0 can be treated in the same way if one considers the problem

of minimizing the expected disutility of the discounted terminal capital. From the theory of

finance it is well known that considering the discounted wealth leads to a scenario which can be

looked upon as market with interest rate zero. Then one has to replace the price process by the

discounted price process and a portfolio vector δ then describes the discounted invested amountsn
(see Harrison & Kreps 1979, Schäl 2000a,b). Moreover, the premium as well the claim sizes are

interpreted as discounted quantities.
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EEEXXXAAAMMMPPPLLLEEE... We want of solve (16) in the situation of a Cramér � ��� Lundberg model where we

consider constant period lengths, Z = 1, say, and a proportional reinsurance (2). If the single

claims have expectation µ and moment generating function m(s), then Y has a compound

distribution with Expectation λ ⋅µ and moment generation function exp � λ ⋅ (m(s) � ��� 1) � (see

Grandell 1991 Theorem 14). We obtain from (4): c(b) = c � ��� (1+θ) ⋅ (1� ��� b) ⋅ λµ . Then

E
�
exp � � ��� β ⋅

�
c(b) ⋅Z � ��� h(b,Y) � � � = exp � � ��� β ⋅

�
c � ��� (1+θ) ⋅ (1� ��� b) ⋅ λµ � � ⋅exp � λ ⋅ (m(βb) � ��� 1) � .

Then it is easy to see that b* = 1, (i.e., it is optimal to have no reinsurance) if and only if θ is too

high in the sense that one has (with m' denoting the derivative of m):

11 + θ ≥ � ��� ⋅m'(β). (18)µ

444... DDDYYYNNNAAAMMMIIICCC PPPRRROOOGGGRRRAAAMMMMMMIIINNNGGG WWWIIITTTHHH IIINNNFFFIIINNNIIITTTEEE HHHOOORRRIIIZZZOOONNN

We will look on a model with infinite horizon as an approximation of a model with a finite but

π πlarge horizon N. Therefore we will define the performance criterion J as the limit lim J ofN N
πthose with finite horizon as N � ∞. Then J is also affected by the terminal cost function V . In0

most applications, one sets V = 0 in an infinite horizon model. But in some cases it is convenient0
to allow for more general terminal cost functions. Examples are models with optimal stopping.

In the next section, we do not want to have the function 0 in the set � . Therefore, we will assume

that V = g and we will then look on the one � ��� period cost incurred in the last period as terminal0
cost. We make the following assumption which is called Uniform Increase Assumption (see

Bertsekas & Shreve 1978 p. 70).

AAASSSSSSUUUMMMPPPTTTIIIOOONNN... TV (x,u) ≥ V (x) for all u ∈ U, i.e. T*V (x) ≥ V (x) for all x ∈ S.0 0 0 0

We will discuss the assumption below.

π πLLLeeemmmmmmaaa 444... (a) V ≤ J ≤ J for n ≥ 0;0 n n+1
(b) V ≤ V ≤ V for n ≥ 0.0 n n+1

Proof... We have T V ≥ V for all ϕ and thusϕ 0 0
π πJ = T ...T (T V ) ≥ T ...T V = J . Now part (a) and (b) are obvious.

� �n+1 ϕ ϕ ϕ 0 ϕ ϕ 0 n0 n� ��� 1 n 0 n� ��� 1

Now we can define the performance criterion which is justified by the preceding lemma.

π πDDDEEEFFFIIINNNIIITTTIIIOOONNN... J (x) := lim J (x) is the total discounted cost for any plan π,n � ∞ n
πV(x) := inf J (x) is the value function.π

In the positive case (in the sense of Bertsekas & Shreve 1978, which is the negative case in the

sense of Strauch 1966 where rewards are maximized) we have
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g(x,u) ≥ 0, V = 0. (19a)0

Then the preceding assumption is satisfied. This is also true in the discounted case where:

0 ≤ α < 1, g is bounded and V = g /(1 � ��� α) where g is a lower bound of g. (19b)0 o o
πThere J (x) does not depend on the special form of V in view of Lemma 2d provided only that0

V is bounded. Thus there is no loss of generality in choosing V as in (19b).0 0
From the monotone convergence theorem we obtain the following lemma.�

π π π
�

LLLEEEMMMMMMAAA 555... (a) J = T ...T V � J = T J with π as in (11);n ϕ ϕ 0 ϕ0 n� ��� 1 0
∞(b) V ≤ V (x) :=lim V (x) ≤ V(x) .0 n � ∞ n

∞(c) lim TV (x,u) = TV (x,u).n � ∞ n

We saw in §2 that the information which is important for the choice of the control action consists

in the present state x and the number of periods ahead. But in an infinite horizon model the

number of periods ahead is always the same and that is ∞. This motivates the following:

DDDEEEFFFIIINNNIIITTTIIIOOONNN... A plan π = (ϕ ) is stationary if ϕ = ϕ for a decision function ϕ and we will writen n
∞π = ϕ .

∞From Lemma 5 we obtain for every stationary plan π = ϕ :

ϕ� ϕ�

nT J = J = lim (T ) V . (20)ϕ n � ∞ ϕ 0

For this section we will use the following general assumption.

SSSTTTRRRUUUCCCTTTUUURRREEE AAASSSSSSUUUMMMPPPTTTIIIOOONNN... S is a Borel subset of some Euclidian space ( or more generally of

some Polish space). There exists a set � of measurable functions v : S 	 ( � ��� ∞,∞ � bounded from

below such that:

(i) V ∈ � ;0
(ii) T*v ∈ � for all v ∈ � ;

(iii) U is a compact metric space;

(iv) Tv(x,u) is l.s.c. in u for all x ∈ S, v ∈ � .

By a selection theorem (Brown & Purves 1973) this assumption implies the following property:

for any v ∈ � , there exists a decision function ϕ with T v = T*v . (21)ϕ
Thus the structure assumption for the infinite horizon implies that for the finite horizon if one

defines Φ as the set of all decision functions. Optimality of a plan is defined as for the finite

π πhorizon model with J in place of J .N
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nTTTHHHEEEOOORRREEEMMM 333... (a) V(x) = lim T* V (value iteration);n � ∞ 0
(b) V = T*V (optimality equation);

(c) there exists a stationary optimal plan;

(d) If T V = T*V, i.e. ϕ(x) is a minimizer of the function u 	 TV(x,u), then the stationaryϕ
∞plan ϕ is optimal (optimality criterion).

Proof. As in the finite horizon case, we conclude that V ∈ � for all n. Now fix any x ∈ S and setn
t (u) := TV (x,u). By assumption we know that t (u) is increasing in n and l.s.c. in u.n n � ��� 1 n
Therefore it follows that lim inf t (u) = inf lim t (u) from a variant of Dini'sn � ∞ u∈U n u∈U n � ∞ n
theorem (see Schäl 1975 Proposition 10.1). By use of Lemma 5c, this equation now means:

∞ ∞V (x) = lim V (x) = lim T*V (x) = inf T(lim V )(x,u) = T*V (x).n � ∞ n n � ∞ n� ��� 1 u∈U n � ∞ n� ��� 1
∞As the limit of an increasing sequence of l.s.c. functions, lim t (u) = TV (x,u) is l.s.c.n � ∞ n

∞ ∞As for (21), we conclude that there exists a decision function ϕ with T V (x) = T*V (x), x ∈ S.ϕ
∞ ∞ ∞ n ∞ nThus V (x) = T V (x) , x ∈ S, which implies that V (x) = (T ) V (x) ≥ (T ) V (x) andϕ ϕ ϕ 0

∞ ϕ� ∞ ϕ�

hence for n � ∞: V (x) ≥ J (x) for all x . But in view of Lemma 5b, V (x) ≤ V(x) ≤ J (x) for

all x. Thus (a), (b), and (c) are proved. From T V = T*V, we finally get:ϕ
n n ϕ�

V = T V = (T ) V ≥ (T ) V � J and (d) is also proved.
� �ϕ ϕ ϕ 0

For some of the statements of theorem 3, the structure assumption is too strong (see Bertsekas &

Shreve 1978). Now we want to extend the Howard improvement procedure, well � ��� known for the

discounted case, to a more general situation.

ϕ�

TTTHHHEEEOOORRREEEMMM 444... (Howard Improvement). Let ϕ, ψ be any decision functions and set J := J and:

U(x,ϕ) := � u ∈ U; TJ(x,u) < J(x) � , x ∈ S.

If, for some subset S* of S, ψ(x) ∈ U(x,ϕ) , x ∈ S*, and ψ(x) = ϕ(x) , x ∉ S*, then one has:

ψ� ϕ� ψ�

J ≤ J = J and J (x) < J(x) , x ∈ S*.

Proof. We certainly have T J ≤ J; in fact we have by (20)ψ
T J(x) < J(x) if x ∈ S* and T J(x) = T J(x) = J(x) if x ∉ S*.ψ ψ ϕ

2 nThen we obtain T J ≤ T J ≤ J and by induction T J ≤ T J ≤ J for all n. Now we obtainψ ψ ψ ψ
ψ�

n n ψ�

J = lim T V ≤ lim T J ≤ T J ≤ J, in particular J (x) < J(x) if x ∈ S*.
� �n � ∞ ψ 0 n � ∞ ψ ψ

Now one can ask what happens in the situation where U(x,ϕ) := � u ∈ U; TJ(x,u) < J(x) � = ∅
for all x, i.e. T*J ≥ J. Since we always have T*J ≤ T J = J , this means that T*J = T J = J ≥ V .ϕ ϕ 0
The next theorem gives an answer.
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TTThhheeeooorrreeemmm 555... Verification theorem. Let v : S 	 ( � ��� ∞,∞ � be a measurable function with v ≥ V and ϕ0
some decision function with v = T*v = T v. Then we have: The function v is the value functionϕ

∞ nV and ϕ defines a stationary optimal plan ϕ provided that α ⋅E
�
(v� ��� V )(X ) � � 0 as n � ∞0 n

x,ψ�

with X = X for all decision functions ψ and for all x ∈ S.n n

ϕ�

n nProof. On the one hand we obtain as above: J = lim T V ≤ lim T v = v. On the other handn ϕ 0 n ϕ
nwe have for any ψ: T v ≥ T*v = v and by induction T v ≥ v. Now we get from Lemma 2dψ ψ

n n nv(x) ≤ T v(x) = T V (x) + α ⋅E
�
v(X ) � ��� V (X ) � .ψ ψ 0 n 0 n

ψ�

n ϕ� ψ�

From our condition we obtain J = lim T V ≥ v. Thus V ≤ J ≤ v ≤ inf J = V .n ψ 0 ψ
The last identity follows from Theorem 3c.

� �
Theorem 3(b) contains a fixed � ��� point equation. It is remarkable that it can be solved by an

iteration scheme without any contraction property in view of Theorem 3(a). In the discounted case

Banach's fixed � ��� point theorem applies. The Howard Improvement is another tool to approach the

value function V. It works well in finite � ��� state discounted models (see Martin � ��� Löf 1994).

555... MMMIIINNNIIIMMMIIIZZZIIINNNGGG TTTHHHEEE RRRUUUIIINNN PPPRRROOOBBBAAABBBIIILLLIIITTTYYY

We again consider the insurance model which can be controlled by reinsurance and investment in

a financial market. Now we want to minimize the ruin probability. Therefore, we now assume that

the company is ruined if the surplus is negative. Therefore we must modify the system function of

section 1 for negative values. Moreover, we add a cemetery state � ��� ∞ to the state space � of

sections 1, 3. Again the insurance company can invest the capital (surplus) in a financial market

where d assets can be traded and the random variables W = (R ,Y ,Z ) are given as in sectionsn n n n
1, 3 and satisfy the independence assumption. A dynamic portfolio will again be specified by a

d kportfolio vector ϑ ∈ � at the beginning of period n+1. But in this section, the component ϑ ofn n
ϑ represents the proportion of the capital x which is invested in the k

� �
stock, k = 1,...,d, i.e.n

x ϑ = δ. We write Θ for the set of all admissible portfolio vectors which is the simplex

1 d d k d kΘ := � ϑ = (ϑ ,...,ϑ ) ∈ � ; ϑ ≥ 0, 1 ≤ k ≤ d, ∑∑∑ ϑ ≤ 1 � . (22)1
0 d kFor ϑ ∈ Θ, ϑ := 1 � ��� ∑∑∑ ϑ ≥ 0 represents the proportion of the capital which is not invested in1

ksome stock. In this model we do not allow for negative amounts ϑ , thus excluding short selling,n
in order to get a compact action space for the structure assumption.

In addition, the risk process may be controlled by reinsurance as in section 3. Thus a decision

function ϕ again consists of two components ϕ = (ϕ',ϕ") where ϕ' specifies the retention level b

1 dof reinsurance as above and ϕ" specifies the portfolio ϑ = (ϑ ,...,ϑ ). Thus state space S and�
control space U are given according to S =

�
� ��� ∞,∞), U =

�
b,b � ×Θ .����
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We now want to compute the system function f. From (5) we obtain with X ⋅ϑ = δ :n n n

X = X ⋅
�
1 + <ϑ ,R > � + c(b ) ⋅Z � ��� h(b ,Y ) for X ≥ 0. (23)n+1 n n n+1 n n+1 n n+1 n

Now we choose with u = (b,ϑ), w = (ρ,y,z):

f(x,u,w) = x ⋅
�
1 + <ϑ,ρ> � + c(b) ⋅z � ��� h(b,y) for x ≥ 0. (24)

The cost will be defined by

g(x,u) = V (x) := 111 (x), α = 1. (25)0 ( � ��� ∞,0)

Once the system is in state x ∈ ( � ��� ∞,0), then it shall move to � ��� ∞ in the next step, i.e. we set

f(x,u,w) = � ��� ∞ for x ∈
�
� ��� ∞,0). Thus the cost of 1 unit has to be paid at most once. Then

π �����J (x) = E
�

g(X ,ϕ (X )) + V (X ) �n �
	�� m m m 0 N0≤m<n
x ,π= P

�
X ∈ ( � ��� ∞,0) for some 0 ≤ m ≤ n � , (26)m

π πin particular J (x) = 1 for x ∈ ( � ��� ∞,0), J ( � ��� ∞) = 0,n n

which is just the probability of being ruined after n periods.

As in §3 we only consider the case where the interest rate r for the surplus not invested in stocks is

zero. However, the case r ≥ 0 can be treated in the same way since the ruin probability is the same

if one replaces the surplus X by the discounted surplus. As explained in §3, this leads to an
scenario which can be looked upon as market with interest rate zero. As in section 3 we assume:

CCCOOONNNTTTIIINNNUUUIIITTTYYY AAASSSSSSUUUMMMPPPTTTIIIOOONNN... The functions c(b) and h(b,y) are continuous in b (for each y).

However, there is a discontinuity of the system function f(x,u,w) at x=0. Thus the usual continuity

assumption (see Bertsekas & Shreve, 1978, pp 46, 209) is not satisfied. We will overcome that

difficulty by choosing a suitable class � in the structure assumption. In fact we set:

� := � v :
�
� ��� ∞,∞) 	 �

0,1 � ; v is l.s.c. on
�
0,∞), v(x) = 1 for x ∈ ( � ��� ∞,0), v( � ��� ∞) = 0 � . (27)

Obviously we have V ∈ � . Now choose some v ∈ � . Then v is obviously l.s.c. also on the whole0
of � . Since f(x,u,w) is continuous in (x,u) on

�
0,∞)×U, it follows that v(f(x,u,w)) is l.s.c. in (x,u)

on
�
0,∞)×U. From Fatou's lemma we now conclude that Tv(x,u) = E

�
v(f(x,u,W) � is l.s.c. in (x,u)

on
�
0,∞)×U. Since U is compact, it is known that T*v(x) = min Tv(x,u) is l.s.c. in x on

�
0,∞)u∈U

(see Bertsekas & Shreve, 1978, Proposition 7.33). For x ∈ ( � ��� ∞,0) we have Tv(x,u) = 1 and finally

Tv( � ��� ∞,u) = 0. Thus we have the following result:

PPPRRROOOPPPOOOSSSIIITTTIIIOOONNN 111... The structure assumption of section 4 (and of section 2) is satisfied under the

continuity assumption of this section.

As a consequence, Theorems 3 � ��� 5 hold for the present insurance model.

For the sequel, we make the following natural assumption, also used by Waters (1983).
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AAASSSSSSUUUMMMPPPTTTIIIOOONNN... P
�
c(b) ⋅Z < h(b,Y) � > 0 for all b.

LLLEEEMMMMMMAAA 666. Let ξ : (0,∞) 	 (0,1 � be any measurable function.

(a) For any x ∈ � , the following function d(b,x) is l.s.c in b:

d(b,x) := E
�
ξ(Z) ⋅111 � = ∫ ξ(z) P

�
c(b) ⋅z � ��� h(b,Y) < x � P

�
Z ∈ dz � .� c(b) ⋅Z � ��� h(b,Y) < x �

(b) There is some ε > 0 such that inf d(b,� ��� ε) > 0.b

Proof. a) The two representations of the function d follow from the independence of Z and Y. We

set H(b,y,z) := c(b) ⋅z � ��� h(b,y). Then H(b,y,z) is continuous in b and thus 111 is l.s.c.� H(b,y,z) < x �
in b for all y,z. Now the result follows from Fatou's lemma.�
b) By use of (a) and the compactness of

�
b,b � , we obtain from a variant of Dini's theorem (see����

Schäl 1975, Proposition 10.1) for ε
�

0: inf d(b, � ��� ε) � inf d(b,0) = d(b ,0) for some b . Theb b o o
last expression is positive for all b by our assumption from above and since ξ is positive.

� �o
We will use a slightly stronger version of the no-arbitrage condition already considered in §3.

NNNOOO AAARRRBBBIIITTTRRRAAAGGGEEE AAASSSSSSUUUMMMPPPTTTIIIOOONNN. For all z in the range (or support) of Z and for any portfolio

nvector δ ∈ � we have: P
�

<δ,R> ≥ 0
�
Z = z � = 1 implies P

�
<δ,R> = 0

�
Z = z � = 1 .

LLLEEEMMMMMMAAA 777. (a) For all z in the range (or support) of Z we have: inf P
�

<ϑ,R> ≤ 0
�
Z = z � > 0.δ∈ ���

(b) There is some ε > 0 such that inf
�

P
�

<δ,R> + c(b) ⋅Z � ��� h(b,Y) < � ��� ε � > 0.b∈
�
b,b � ,δ∈ �������

dProof. a) We write � for the smallest linear space L in � such that P
�
R ∈ L

�
Z = z � = 1. Then itz

follows as in §3 that the no arbitrage condition from above is equivalent to the following

condition (NA)':

For all z in the range (or support) of Z and δ ∈ � , δ ≠ 0 : P
�
<δ,R> < 0

�
Z = z � > 0. (NA)'z

For δ � � we have P
�

<δ,R> = 0
�
Z = z � = 1.z

1For δ ∈ � , δ ≠ 0, we have P
�

<δ,R> ≤ 0
�
Z = z � ≥ P

�
< �������������� δ,R> < 0

�
Z = z � > 0 by (NA)'.z � δ �

Now as in the proof of Lemma 6, we can show that the function δ 	 P
�

<δ,R> < 0
�
Z = z � is l.s.c.

and thus its infimum is attained on the compact sphere � δ ∈ � ; � δ � = 1 � .z
b) For all z in the range (or support) of Z we have ξ(z) := inf P

�
<δ,R> ≤ 0

�
Z = z � > 0 by (a).δ

Now P
�
<δ,R> + c(b) ⋅Z � ��� h(b,Y) < � ��� ε � ≥ P

�
<δ,R> ≤ 0, c(b) ⋅Z � ��� h(b,Y) < � ��� ε �

= ∫ P
�

<δ,R> ≤ 0
�
Z = z � ⋅P

�
c(b) ⋅z � ��� h(b,Y) < � ��� ε � P

�
Z ∈ dz �

≥ ∫ ξ(z) ⋅P
�
c(b) ⋅z � ��� h(b,Y) < � ��� ε � P

�
Z ∈ dz � .

From Lemma 6b we now know that the last expression is positive for some ε > 0.
� �

PPPRRROOOPPPOOOSSSIIITTTIIIOOONNN 222. Let M > 0 be arbitrary.

x,π(a) There exists some n ∈ 
 such that η := sup P
�
X ≥ 0 � < 1.n,M x≤M,π n
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x ,π(b) P
�
0 ≤ X ≤ M for infinitely many m � = 0 for all x,π.m
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Proof. a) Choose ε > 0 as in Lemma 7b and set H(b,y,z) := c(b) ⋅z � ��� h(b,y). Then we have by (23):

n � ��� 1X = X + ∑∑∑
�
<X ϕ " ,R > + H(ϕ ' ,Y ) � on the set � X ≥ 0 for 0 ≤ m < n � .n 0 m=0 m m m+1 m m+1 m

+We know that for the event A := � <X ϕ " ,R > + H(ϕ ' ,Y ) < � ��� ε � we have:m m m m+1 m m+1
P

�
A

�
W ,...,W � ≥ inf P

�
<δ,R> + H(b,Y) < � ��� ε � =: ν where ν > 0 by Lemma 7b.m 1 m b,δ

n � ��� 1By use of ∩∩∩ A ∈ σ(W ,...,W ), we now can prove by induction thatm=0 m 1 n
n � ��� 1 + n � ��� 1 nP

�
∑∑∑ � <X ϕ " ,R > + H(ϕ ' ,Y ) � < � ��� n ⋅ ε � ≥ P

�
∩∩∩ A � ≥ ν .m=0 m m m+1 m m+1 m=0 m

n � ��� 1 +Now we obtain for X = x: P
�
X < 0 � ≥ P

�
∑∑∑ � <X ϕ " ,R > + H(ϕ ' ,Y ) � < � ��� x �0 n m=0 m m m+1 m m+1

n � ��� 1 + n≥ P
�
∑∑∑ � <X ϕ " ,R > + H(ϕ ' ,Y ) � < � ��� n ⋅ ε � ≥ ν for x ≤ M ≤ n ⋅ ε,m=0 m m m+1 m m+1

nand thus P
�
X ≥ 0 � ≤ 1 � ��� ν for x ≤ M if n ≥ M/ε.n

x , πb) It is easy to see that we obtain from (a): P
�
X ≥ 0

�
W ,...,W � ≤ η < 1 on the setm+n 1 m n,M

x ,π x,π� X ≤ M � . We define the stopping times τ := 0, τ := inf � m ≥ τ + n; X > 0, � ≤ m,m 0 k+1 k �
x ,π x ,πX ≤ M � = inf � m ≥ τ + n; 0 ≤ X ≤ M � . Then we havem k m

x, πP
�
τ < ∞, ... , τ < ∞ � ≤ P

�
τ < ∞, ... , τ < ∞ � ⋅P

�
X > 0

�
τ < ∞, ... , τ < ∞ �1 k+1 1 k τ +n 1 kk

≤ P
�
τ < ∞, ... , τ < ∞ � ⋅η and thus1 k n,M

x ,πP
�
0 ≤ X ≤ M for infinitely many m � = lim P

�
τ < ∞, ... , τ < ∞ �m k 1 k

x ,π≤ P
�
0 ≤ X ≤ M for infinitely many m � ⋅η and the result follows.

� �m n,M

From Proposition 2b we conclude that

x,πlim P
�
0 ≤ X ≤ M � = 0 ∀ x,π, M > 0. (28)n � ∞ n

Now we are able to prove a kind of contraction property.

LLLEEEMMMMMMAAA 888... If ξ :
�
� ��� ∞,∞) 	 �

0,∞) is any bounded measurable function such that

x,πξ(∞) := lim ξ(x) = 0 and ξ(x) = 0 for x ≤ 0, then lim E
�
ξ(X ) � = 0 ∀ x,π.x � ∞ n � ∞ n

Proof. For any δ > 0 we can choose any M such that ξ(x) ≤ δ for x > M. Thus if � ξ � is the upper

bound of ξ we obtain: E
�
ξ(X ) � = E

�
111 ⋅ ξ(X ) � + E

�
111 ⋅ ξ(X ) �n � 0 ≤ X ≤ M � n � X > M � nn n

≤ � ξ � ⋅P
�
0 < X ≤ M � + δ . Now the result follows from (28).

� �n

We can and will use Lemma 8 for an application of Theorems 4 and 5. There we choose

ϕ� ∞ξ = J � ��� V and J = v = J as the ruin probability under the stationary plan ϕ which describes0
the situation where the decision maker employs no reinsurance and does not invest in stocks, i.e.,� �

ϕ(x) = (ϕ'(x),ϕ"(x)) = (b,0) where b stands for "no reinsurance" as before. (29)
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∞ ∞Thus we want to know how to improve ϕ and under what conditions ϕ is the optimal policy.

The following first two properties are well � ��� known. In fact, the condition ξ(∞) = J(∞) = 0 just

means that the ruin probability tends to zero as the initial surplus tends to infinity.

ϕ�

LLLEEEMMMMMMAAA 999... Assume c ⋅E
�
Z � > E

�
Y � . In the situation of (29) we then have for J = J :

(a) J(x) is decreasing;

(b) J(∞) := lim J(x) = 0 ;x � ∞
(c) J(x) � ��� V (x) = 0 for x ≤ 0 and lim J(x) � ��� V (x) = 0.0 x � ∞ 0

Proof. Part (a) is obvious. Part(b) follows from the law of large numbers (see Grandell 1991 p.5).

Part (c) follows from (b) since J(x) = V (x) for x ≤ 0 and V (x) = 0 for x > 0.
� �0 0

∞ ϕ�

CCCOOORRROOOLLLLLLAAARRRYYY 111... Assume c ⋅E
�
Z � > E

�
Y � , let ϕ be as in (29), set J := J and

U(x,ϕ) := � u ∈ U; TJ(x,u) < J(x) � , x ∈ S.

(a) Howard Improvement. For each decision function ψ with ψ(x) ∈ U(x,ϕ) for some states x and

ψ� ψ�

ψ(x) = ϕ(x) for the other states x, one has: J ≤ J and J (x) < J(x) if ψ(x) ∈ U(x,ϕ).

∞(b) Verification theorem. If J = T*J , i.e., T J = T*J, then ϕ defines a stationary optimal plan ϕ .ϕ

Recall that T J = J by (20).ϕ

666... EEEXXXPPPOOONNNEEENNNTTTIIIAAALLLLLLYYY DDDIIISSSTTTRRRIIIBBBUUUTTTEEEDDD CCCLLLAAAIIIMMMSSS

In this section we assume that there is no financial market, i.e., we can choose R = 0 for the return

in one period. Thus the decision maker can only control by reinsurance. Then one can restrict

attention to control actions of the form u = (b,0). Therefore we will identify u with b. Moreover

we will concentrate on the situation where

Y ∼ Exp(1/µ) and Z ∼ Exp(λ) for some 0 < λ, µ < ∞ with c > λµ. (30)

There Exp(λ) stands for the exponential distribution with parameter λ. Then the property

Z ∼ Exp(λ) is always fulfilled in the Cramér � ��� Lundberg model. The following identity is

well � ��� known (see e.g. Grandell 1991 (II)).

PPPRRROOOPPPOOOSSSIIITTTIIIOOONNN 333. If J(x) is defined as in Corollary 1, i.e., J(x) is the ruin probability in the

Cramér � ��� Lundberg model, then in the situation of (30) one has for x ≥ 0:
� ��� κ ⋅x/µ λµJ(x) = (1 � ��� κ) ⋅e with κ := 1 � ��� � ����� ��� > 0.c

Obviously, the assumptions of §5 are satisfied in the case of proportional reinsurance. In order to

∞improve the plan ϕ as defined by (29) which recommends to do nothing, one has to study the

following quantity according to Corollary 1:
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TJ(x,b) = E
�
J(f(x,b,Y,Z)) � = E

�
J(x + c(b) ⋅Z � ��� h(b,Y)) � for x ≥ 0

TJ(x,b) = J(x) = 1 for � ��� ∞ < x < 0. (31)

1 1LLLEEEMMMMMMAAA 111000... Set 1 + η(b) := c(b)/λµ and q(b) := ������ ���������� ����� ������������� ⋅ ������ ����� ����� ����� �������������������� ����� ����� �������� ������ .1 ���� κ ⋅b 1 + κ ⋅
�
1+η(b) �

Then one has in the case of proportional reinsurance (7):

κ b xTJ(x,b) = q(b) ⋅ J(x) + (1 � ��� b) ⋅ ������ ����� ����� ����� ������������� ⋅ ������ ����� ����� ���������� ����� ����� ����� ����� �������� � ⋅ exp � � ��� ������ ��� � for x ≥ 0.1 � ��� κ ⋅b b + 1 + η(b) bµ

The proof follows by a straightforward but lengthy computation. Now we want to apply the

verification theorem to ϕ by showing that b = 1 is a minimizer of TJ(x, ⋅ ). The second term of

TJ(x,b) is nonnegative, vanishes for b = 1, and thus attains its minimum for b = 1. Now we will

consider the first term. According to (4) we have: 1 + η(b) = 1 + η � ��� (1+θ) ⋅ (1� ��� b) and η'(b) = 1+θ.

Now we get for the first derivative q' of q by a straightforward computation:

2 � 1 �q'(b) = κ ⋅q(b) ⋅
� ����������� ��� � ���

�
1+κ � ⋅ (1+θ) + 2(1+θ) ⋅ κ ⋅b

�
.�

1���� κ �
Hence, we know that q'(b) < 0 for all b if only q'(1) < 0. The latter condition obviously holds if

1and only if ����������� ��� � ���

�
1+κ � ⋅ (1+θ) + 2(1+θ) ⋅ κ < 0 . Now this leads to the condition: q'(1) < 0 � �1���� κ

� ��� 21+θ > (1� ��� κ) . If we denote the safety loading of the insurer by η = η(1) > 0, i.e.

1c ⋅E
�
Z � = (1 + η) ⋅E

�
Y � or ����������� ��� = 1 + η , we obtain the condition:1 ���� κ

2 21+θ > (1 + η) , i.e., θ > 2η + η . (32)

This condition is also obtained when maximizing the adjustment coefficient (see Schmidli 1999).

The adjustment coefficient R(b) is in the present situation (see Dickson & Waters 1996)

1 � 1 1 � η � ��� θ(1���� b)R(b) = � ��� � ���� � ��� ������ �������� ���������� �������� �������� ����� ����� � � = � ������������������������� ����� ����� ����� ���������� ������������� ���������� ��� �������� ���������� ������ .µ
�
b b(1+θ) ���� (θ� ��� η)

�
µ ⋅b ⋅

�
1+η ���� (1+θ)(1� ��� b) �

2Since η is small, the condition (32) comes close to the condition θ > 2η. The latter condition is

obtained by Taksar & Markussen (2002, § 3.1) for a diffusion approximation and also appears in

many different optimization problems in insurance (see Hφjgaard & Taksar1998a).

TTTHHHEEEOOORRREEEMMM 666... In the model where (30) holds and where the decision maker can only control by

proportional reinsurance, it is optimal to have no reinsurance under the condition (32).

On the other hand, we know from the validity of the Howard Improvement that it is optimal to

have some reinsurance if TJ(x,b) < J(x) for some b < 1 and some x.
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AAAppppppeeennndddiiixxx...

PPPooosssiiitttiiivvveee iiinnnttteeerrreeesssttt rrraaattteee... Now we consider the following extended model: The insurance company

can invest the capital (surplus) in a financial market where 1+d assets can be traded. An investor

can invest in a bank account (bond) with an interest rate r ≥ 0. In addition as before, there are d

stocks which can be described by the stock price process � S � as in section 3. The randomn
variables R , Y , Z will have the same meaning as before. We want to show that one gets then n n
same system functions as in sections 3 and 5 if one considers discounted quantities.

� � 1 � dThe discounted stock price process � S = (S ,...,S ), n ≥ 0 � is defined byn n n
� k n k(A.1) S := Π exp � � ��� r ⋅Z � ⋅S ⋅n m=1 m n

� � 1 � dThe return process � R = (R ,...,R ), n ≥ 0 � for the discounted stock price process is defined byn n n
� k � k � k � k k(A.2) S = S ⋅ (1 + R ) , i.e. (1 + R ) = exp � � ��� r ⋅Z � ⋅ (1 + R ), 1 ≤ k ≤ d.n n � ��� 1 n n n n

�

Again, it is reasonable to allow for a dependence of Z and R or for a dependence of Z and R .n n n n
In addition we define the discounted capital and the discounted claims by

� n � n(A.3) X := Π exp � � ��� r ⋅Z � ⋅X , Y := Π exp � � ��� r ⋅Z � ⋅Y ,n m=1 m n n m=1 m n

For the part of the claim paid by the insurer we make here the following weak assumption which

is fulfilled for the two cases (5) and (7):

AAAssssssuuummmppptttiiiooonnn::: h(b,γ ⋅y) = γ ⋅h(b,y) for all b, y, γ ≥ 0.

For the premium we assume that c and c(b) now are the discounted income rates. Then one has the

following undiscounted net income:

n(A.4a) Π exp � r ⋅Z � ⋅c(b) ⋅Zm=1 m n
in period n with a retention level b. If one takes into account a continuous� ��� time discounting in

period n one would get an undiscounted net income of

n 1(A.4b) Π exp � r ⋅Z � ⋅ ���� ⋅ (1 � ��� exp � � ��� r ⋅Z � ) ⋅c(b).m=1 m r n

A dynamic portfolio will again be specified at the beginning of any period n+1 by portfolio

d kvectors δ or ϑ ∈ � as in section 3 an 5, respectively. But in this section, the component δ ofn n n
δ will represent the discounted amount invested in the k

� �
stock. We now want to compute then

system functions f if one uses discounted quantities.

k kIf x is the capital at the beginning of period n+1, then ϑ ⋅x/S denotes the number of shares then n
investor holds in period n+1; thus the value of these shares at the end of period n+1 is

k k k k � k � k k � kϑ ⋅x ⋅S /S = ϑ ⋅x ⋅S ⋅exp � r ⋅Z � /S = ϑ ⋅x ⋅exp � r ⋅Z � ⋅ (1 + R ).n n+1 n n n+1 n+1 n n n+1 n+1

If b is the retention level in period n+1, we have in situation A4a:n
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d k d k � kX = X ⋅
�
1 � ��� ∑∑∑ ϑ � ⋅exp � r ⋅Z � + X ⋅exp � r ⋅Z � ⋅∑∑∑ ϑ ⋅ (1 + R )n+1 n k=1 n n+1 n n+1 k=1 n n+1

n +1+ Π exp � r ⋅Z � ⋅c(b ) ⋅Z � ��� h(b ,Y ) and hencem=1 m n n+1 n n+1
� � d k d k � k �

X = X ⋅
�
1 � ��� ∑∑∑ ϑ + ∑∑∑ ϑ ⋅ (1 + R ) � + c(b ) ⋅Z � ��� h(b ,Y )n+1 n k=1 n k=1 n n+1 n n+1 n n+1

� d k � k �

= X ⋅
�
1 + ∑∑∑ ϑ ⋅R � + c(b ) ⋅Z � ��� h(b ,Y )n k=1 n n+1 n n+1 n n+1

� � �

= X ⋅
�
1 + <ϑ ,R > � + c(b ) ⋅Z � ��� h(b ,Y )n n n+1 n n+1 n n+1

� � � �

= X + <δ ,R > + c(b ) ⋅Z � ��� h(b ,Y ) with δ = X ϑ .n n n+1 n n+1 n n+1 n n n

Thus we have the same system functions for sections 3 and 5 (see (13) and (24)). If one decides

1for (A.4b) in place of (A.4b) one should replace c(b ) ⋅Z with ���� ⋅ (1 � ��� exp � � ��� r ⋅Z � ) ⋅c(b ).n n+1 r n+1 n
In the discounted case we will choose

� �

(A.5) W = (R ,Y ,Z ).n n n n

Thus we have to replace the quantities in sections 3 and 5 with the respective quantities

discounted by the interest rate which may be close to the quantities discounted by inflation.

PPPrrroooooofff ooofff LLLeeemmmmmmaaa 111000... We obtain from (31) and Proposition 3:

TJ(x,b) = P
�
x + c(b) ⋅Z � ��� h(b,Y) ≤ 0 � +

1+ (1� ��� κ) ⋅E
�
111 ⋅exp � � ��� � ��� κ ⋅ (x + c(b) ⋅Z � ��� h(b,Y)) � �� x + c(b) ⋅Z � ��� h(b,Y) > 0 � µ

1= P
�
x + c(b) ⋅Z � ��� h(b,Y) ≤ 0 � + (1� ��� κ) ⋅exp � � ��� � ��� κ ⋅x � ⋅µ

1E
�
111 ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅Z � ��� h(b,Y)) � � .� x + c(b) ⋅Z � ��� h(b,Y) > 0 � µ

For the first term we have

∞ � ��� λ ⋅zP
�
x + c(b) ⋅Z ≤ h(b,Y) � = ∫ λ ⋅e ⋅P

�
x + c(b) ⋅z ≤ h(b,Y) � dz where0

P
�
x + c(b) ⋅z ≤ h(b,Y) � = P

�
x + c(b) ⋅z ≤ b ⋅Y �

1 1 � 1 � 1= P
� ���� �

x + c(b) ⋅z � ≤ Y � = exp � � ��� � ��� ⋅ � ���� �
x + c(b) ⋅z � � � = exp � � ��� ������ ��� �

x + c(b) ⋅z � � .b µ
�
b

�
bµ

These computations lead to

∞ � ��� λ ⋅z 1P
�
x + c(b) ⋅Z ≤ h(b,Y) � = ∫ λ ⋅e ⋅exp � � ��� ������ ��� �

x + c(b) ⋅z � � dz0 bµ
x ∞ � ��� λ ⋅z 1= exp � � ��� ������ ��� � ⋅ ∫ λ ⋅e ⋅exp � � ��� ������ ��� c(b) ⋅z � dzbµ 0 bµ

x ∞ 1= λ ⋅exp � � ��� ������ ��� � ⋅ ∫ exp � � ���

�
λ + ������ ��� c(b) � ⋅z � dzbµ 0 bµ

x 1 � ��� 1= λ ⋅exp � � ��� ������ ��� � ⋅
�
λ + ������ ��� c(b) �bµ bµ

x λ ⋅bµ + c(b) � ��� 1 x b ⋅ λµ= λ ⋅exp � � ��� ������ ��� � ⋅
� � ��������������� ����� ����� ����� ����� ����� ��� �������� � � = exp � � ��� ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ����� �������� �

bµ bµ bµ b ⋅ λµ + c(b)
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For the second term we obtain

1E
�
111 ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅Z � ��� h(b,Y)) � �� x + c(b) ⋅Z � ��� h(b,Y) > 0 � µ

∞ � ��� λz 1= ∫ λ ⋅e E
�
111 ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅z � ��� b ⋅Y) � � dz where0 � x + c(b) ⋅z > b ⋅Y � µ

1E
�
111 ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅z � ��� b ⋅Y) � �� x + c(b) ⋅z > b ⋅Y � µ

∞ 1 � ��� y/µ 1= ∫ � ��� e 111 ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅z � ��� b ⋅y) � dy0 µ � x + c(b) ⋅z > b ⋅y � µ
(x+c(b) ⋅z)/b 1 1 1= ∫ � ��� exp � � ��� � ��� y � ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅z � ��� b ⋅y) � dy0 µ µ µ
(x+c(b) ⋅z)/b 1 1 1= ∫ � ��� exp � � ��� � ��� y � ��� � ��� κ ⋅ (c(b) ⋅z � ��� b ⋅y) � dy0 µ µ µ

1 (x+c(b) ⋅z)/b 1 1 1= exp � � ��� � ��� κ ⋅c(b) ⋅z � ∫ � ��� exp � � ��� � ��� y + � ��� κ ⋅b ⋅y � dyµ 0 µ µ µ
1 1 (x+c(b) ⋅z)/b 1= � ��� ⋅exp � � ��� � ��� κ ⋅c(b) ⋅z � ∫ exp � � ��� � ��� (1 � ��� κ ⋅b) ⋅y � dyµ µ 0 µ
1 1 1 � ��� 1 � 1 x + c(b) ⋅z �= � ��� ⋅exp � � ��� � ��� κ ⋅c(b) ⋅z � ⋅

� � ��� (1 � ��� κ ⋅b) � ⋅
�
1 � ��� exp � � ��� � ��� (1 � ��� κ ⋅b) ⋅ ������ ����� ����� ���������� �������� �������� � � �

µ µ µ
�

µ b
�

1 1 µ � 1 x + c(b) ⋅z x + c(b) ⋅z �= � ��� ⋅exp � � ��� � ��� κ ⋅c(b) ⋅z � ⋅ ������ ����� ����� ����� ����� ������������� ⋅ �
1 � ��� exp � � ��� � ��� ( ������ ����� ����� ���������� �������� �������� � � ��� κ ⋅ ������ ����� ����� ���������� �������� �������� � ) � �

µ µ 1 � ��� κ ⋅b
�

µ b 1
�

1 � 1 1 x + c ( b) ⋅z x + c(b) ⋅z �= ������ ����� ����� ���������� ������������� �
exp � � ��� � ��� κ ⋅c(b) ⋅z � � ��� exp � � ��� � ��� κ ⋅c(b) ⋅z � ��� ������ ����� ����� ���������� ���������� �������� � + κ ⋅ ������ ����� ����� ����� ����� �������� �������� � � �

1 � ��� κ ⋅b
�

µ µ bµ µ
�

1 � 1 x + c ( b) ⋅z x �= ������ ����� ����� ���������� ������������� �
exp � � ��� � ��� κ ⋅c(b) ⋅z � � ��� exp � � ��� ������ ����� ����� ���������� ���������� �������� � + κ ⋅ � ��� � �

1 � ��� κ ⋅b
�

µ bµ µ
�

1 � 1 c ( b) ⋅z x �= ������ ����� ����� ���������� ������������� �
exp � � ��� � ��� κ ⋅c(b) ⋅z � � ��� exp � � ��� ������ ���������� �������� � � ⋅exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � �

1 � ��� κ ⋅b
�

µ bµ bµ
�

Thus we obtain

1E
�
111 ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅Z � ��� h(b,Y)) � �� x + c(b) ⋅Z � ��� h(b,Y) > 0 � µ

∞ � ��� λz 1 � 1 c ( b) ⋅z x �= ∫ λ ⋅e ������ ����� ����� ���������� ������������� �
exp � � ��� � ��� κ ⋅c(b) ⋅z � � ��� exp � � ��� ������ ���������� �������� � � ⋅exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � �

dz0 1 � ��� κ ⋅b
�

µ bµ bµ
�

1 � ∞ � ��� λz 1= ������ ����� ����� ���������� ������������� �
∫ λ ⋅e exp � � ��� � ��� κ ⋅c(b) ⋅z � dz1 � ��� κ ⋅b

�
0 µ

∞ � ��� λz c ( b) ⋅z x �
� ��� ∫ λ ⋅e ⋅exp � � ��� ������ ���������� �������� � � ⋅exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � dz

�
0 bµ bµ

�

λ � ∞ � ��� λz 1= ������ ����� ����� ����� ����� ������������� �
∫ e exp � � ��� � ��� κ ⋅c(b) ⋅z � dz1 � ��� κ ⋅b

�
0 µ

x ∞ � ��� λz c ( b) ⋅z �
� ��� exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � ⋅ ∫ e ⋅exp � � ��� ������ ���������� �������� � � dz

�
bµ 0 bµ

�

λ � ∞ 1= ������ ����� ����� ����� ����� ������������� �
∫ exp � � ��� (λ + � ��� κ ⋅c(b)) ⋅z � dz1 � ��� κ ⋅b

�
0 µ

x ∞ c ( b) �
� ��� exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � ⋅ ∫ exp � � ��� (λ + ������ ���������� � ) ⋅z � dz

�
bµ 0 bµ

�

λ � 1 � ��� 1 x c ( b) � ��� 1 �= ������ ����� ����� ����� ����� ������������� �
(λ + � ��� κ ⋅c(b)) � ��� exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � ⋅ (λ + ������ ���������� � ) �

1 � ��� κ ⋅b
�

µ bµ bµ
�

λ � µ x b ⋅ µ �= ������ ����� ����� ����� ����� ������������� � � ����� ����� ����� ����� ����� ����� ���������� ��� �������� � � ��� exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ��� �������� � �
1 � ��� κ ⋅b

�
λµ + κ ⋅c(b) bµ b ⋅ λµ + c(b)

�
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For the whole second term we now have:

1 1(1 � ��� κ) ⋅exp � � ��� � ��� κ ⋅x � ⋅E
�
111 ⋅exp � � ��� � ��� κ ⋅ (c(b) ⋅Z � ��� h(b,Y)) � �µ � x + c(b) ⋅Z � ��� h(b,Y) > 0 � µ

1 λ � µ x b ⋅ µ �= (1� ��� κ) ⋅exp � � ��� � ��� κ ⋅x � ⋅ ������ ����� ����� ����� ����� ������������� � � ����� ����� ����� ����� ����� ����� ���������� ��� �������� � � ��� exp � � ��� (1 � ��� κ ⋅b) ⋅ ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ��� �������� � �
µ 1 � ��� κ ⋅b

�
λµ + κ ⋅c(b) bµ b ⋅ λµ + c(b)

�

λ ⋅ (1� ��� κ) � 1 µ x b ⋅ µ �= � ���������� �������� ����� �������� ⋅ �
exp � � ��� � ��� κ ⋅x � ⋅ � ����� ����� ����� ����� ����� ����� ���������� ��� �������� � � ��� exp � � ��� ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ��� �������� � �

1 � � κ ⋅ b
�

µ λµ + κ ⋅c(b) bµ b ⋅ λµ + c(b)
�

Altogether we finally obtain:

x b ⋅ λµTJ(x,b) = exp � � ��� ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ����� �������� �
bµ b ⋅ λµ + c(b)

λ ⋅ (1� ��� κ) � 1 µ x b ⋅ µ �+ � ���������� �������� ����� �������� ⋅ �
exp � � ��� � ��� κ ⋅x � ⋅ � ����� ����� ����� ����� ����� ����� ���������� ��� �������� � � ��� exp � � ��� ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ��� �������� � �

1 � � κ ⋅ b
�

µ λµ + κ ⋅c(b) bµ b ⋅ λµ + c(b)
�

x
�

b ⋅ λµ λ ⋅ (1� ��� κ) b ⋅ µ �= exp � � ��� ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ����� �������� � � ��� � ���������� �������� ����� �������� ⋅ ����������� ����� ���������� ����� ����� ��� �������� �
bµ � b ⋅ λµ + c(b) 1 � � κ ⋅ b b ⋅ λµ + c(b)

�
1 λ ⋅ (1� ��� κ) µ+ exp � � ��� � ��� κ ⋅x � ⋅ � ���������� �������� ����� �������� ⋅ � ����� ����� ����� ����� ����� ���������� ��� �������� �
µ 1 � � κ ⋅ b λµ + κ ⋅c(b)

x b ⋅ λµ
�

1 � ��� κ � 1 1 � ��� κ λ ⋅µ= exp � � ��� ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ����� �������� � ⋅ 1 � ��� ����������� ����� ����� ����� �������� + exp � � ��� � ��� κ ⋅x � ⋅ ����������� ����� ����� ����� �������� ⋅ � ����� ����� ����� ����� ���������� ����� ���������� ��� �������� �
bµ b ⋅ λµ + c(b) � 1 � ��� κ ⋅ b

�
µ 1 � ��� κ ⋅ b λµ + κ ⋅c(b)

x b ⋅ λµ 1
� �= exp � � ��� ������ ��� � ⋅ ����������� ����� ���������� ����� ����� ����� �������� � ⋅ ������ ����� ����� ���������� ������������� 1 � ��� κ ⋅b � ��� (1� ��� κ)bµ b ⋅ λµ + c(b) 1 � ��� κ ⋅b � �

1 1 � ��� κ λ ⋅µ+ exp � � ��� � ��� κ ⋅x � ⋅ ����������� ����� ����� ����� �������� ⋅ � ����� ����� ����� ����� ���������� ����� ���������� ��� �������� �
µ 1 � ��� κ ⋅ b λµ + κ ⋅c(b)

x b 1= exp � � ��� ������ ��� � ⋅ ������ ����� ����� ���������� ����� ����� ����� ����� �������� � ⋅ ������ ����� ����� ���������� ������������� κ ⋅ (1� ��� b)bµ b + 1 + η(b) 1 � ��� κ ⋅b
1 1 1+ (1� ��� κ) ⋅exp � � ��� � ��� κ ⋅x � ⋅ ������ ����� ���������� ������������� ⋅ ������ ����� ����� ���������� ���������� �������� ����� ����� �������� ��� � .

� �µ 1 � ��� κ ⋅b 1 + κ ⋅ (1+η(b))

OOOppptttiiimmmaaalll rrreeeiiinnnsssuuurrraaannnccceee uuunnndddeeerrr ccceeerrrtttaaaiiinnn ooottthhheeerrr ppprrriiinnnccciiipppllleeesss is recently studied e.g. in :

Gajek, L. & Zagrodny, D. (2000). Insurer's optimal reinsurance strategies. Insurance: Mathematics
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Kaluszka, M. (2001). Optimal reinsurance under mean � ��� variance premium principles. Insurance:

Mathematics and Economics 222888, 61 � ��� 67.
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Professor Angus Macdonald

Dept. of Actuarial Mathematics & Statistics

Heriot � ��� Watt University
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EH14 4AS

Großbritannien

Dear colleague,

Thank you very much for the report on my paper

"On discrete � ��� time dynamic programming in insurance:

exponential utility and minimizing the ruin probability"

which I submitted for possible publication in the Scandinavian Actuarial Journal.

Now I revised my paper along the lines suggested by the referee.

I enclose the revised paper and an answer to the referee.

Would you please be so kind to acknowledge receipt of the paper.

My Email address is: schael@uni � ��� bonn.de

Thank you very much and best regards
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26. September 2002

Answer to the referee.

Thank you very much for your prompt and careful report and for your excellent advice. I rewrote

the paper along the lines you suggested.

I explained the insurance model before I introduced the formal notation.

I added further remarks just behind the introduction of the structure assumption.

I added some remarks on the computation of the fixed point of T* at the end of §4 on p 14.

I assumed that c(b) and h(b,y) are increasing in b.

I mentioned that the R are iid after the Independence Assumption on p 4.n
I explained the meaning of V at the beginning of §4.0
I also made the corrections of my misprints and some further explaining remarks.

∞ 1 � ��� y/µE
�
Φ(t � ��� h(b,Y)) � = ∫ � ��� e Φ(t � ��� h(b,y)) dy0 µ

∞ 1 � ��� y/µ � 1 �= ∫ � ��� e 111 (t � ��� h(b,y)) ⋅
�
1 � ��� Ψ(0) ⋅exp � � ��� � ��� �

1� ��� Ψ(0) � ⋅ (t � ��� h(b,y)) � �
dy0 µ (0,∞)

�
µ

�


