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Abstract. The control problem of controlling ruin probabilities by investments in a financial
market is studied. The insurance businessis described by the usual Cramer—L undberg—type model
and the risk driver of the financial market is a compound Poisson process. Conditions for
investments to be profitable are derived by means of discrete-time dynamic programming.
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1 Introduction

The control problem of minimizing ruin probabilities is studied in a Cramér— Lundberg model
where the insurance company can invest the capital (surplus) in a financial market. The return
process describing the financial market is driven by a (multi dimensional) Lévy process as in the
Black—Scholes model. However, a compound Poisson process is chosen in place of a Wiener
process. Indeed, a process with jumps seems to be more realistic than a process whose trajectories
are continuous and have unbounded variation. The main advantage of the Black—Scholes model is
the completeness of the financial market. But this property is not needed in the present control
problem.

At first view, the ruin probability is not a classical performance criterion for control problems.
However, one can write the ruin probability as some total cost in the embedded discrete—stage
model where one has to pay one unit of cost when entering the ruin state. After this simple
observation, results from discrete-time dynamic programming for minimizing costs apply but
with some special features. In fact, applications to insurance will lead to some new situations not
yet considered in the literature. These facts are summarized in section 3. In section 4, Lundberg
inequalities are derived for the controlled model which extend the classical inequalities for the
uncontrolled model (arecent paper is Cai & Dickson 2003).

In section 5 and 6 we study the problem when can the insurance company do better than keeping
al the funds as risk reserve. More exactly, we look for a Howard improvement of the smple
policy that prescribes not to invest at all. In section 5 the case of exponentially distributed claims
isstudied and it isshown that it is profitable to invest if and only if the expected return is positive.



The situation is different for Erlang distributed claims studied in section 6. Here, even in the case
where the expected return is zero, i.e., where the price process is a martingale, investments do
reduce the ruin probability in the situation where the insurer is poor.

In the appendix, the uncontrolled model is studied. The classical method for determining the ruin
probability for exponentially distributed claims is extended to Erlang— (EZ—) distributed claims.
In place of afirst order ordinary differential equation we obtain a differential equation of second
order.

The present paper is closely related to Gaier, Grandits & Schachermayer and Hipp & Schmidli
(2003) studying models with continuous—time control and a Black—Scholes market model. Earlier
papers are those of Hipp & Plum (2000) and Schmidli (2002). The papers Schél (2003,2004) are
similar to the present one, but study control by reinsurance.

2 The model

We consider a joint model of an insurance business and of a financial market. The real—valued
discrete—time process {Xn, n>0} describes the risk process (surplus process, fund of reserves)
immediately after time Tn. The time epochs { Tn} result from the superposition of the claim times
Tr'] at the insurance company and the jump times T'r'] at the financial market, n > 1. As in the
Cramér—Lundberg model, the claim process is described by a compound Poisson process with
claimsizeY attimeT . Wewrite N, for the number of claimsin (O,t] where {Ni} isa Poisson
process with rate/intensity A. There is a premium (income) rate ¢ which is fixed. The insurance
company can invest the capital (risk reserve) in afinancial market. We consider a financial market
where 1+d assets can be traded. One of them is called the bond and is described by the interest
rate which here is assumed to be zero.

However, the case where the interest force of the bond is positive and equal to the inflation force
can be treated in the same way since the ruin probability is the same if one replaces the surplus by
the discounted surplus. From the theory of finance it is well known that considering the
discounted wealth leads to a scenario which can be looked upon as market with interest rate zero.
Moreover, the premium as well asthe claim sizesthen are interpreted as discounted quantities.
The other d assets are called stocks and are described by a d—dimensional price process { Sn =

(S%,...,Sﬁ), n=1} where SE is the price of one share of stock k at time Tn More exactly, the

return process will be driven by a d—dimensional compound Poisson process which can be defined

by the sequence { Tn n>1} of jump times and the sequence of returns Rn = (Rﬁ,...,Rﬂ), n>1, where
k

@2.1) S

For most of the present results we will assumed = 1.

k
1+R&.



We write Ny for the number of jumpsin (0,t] of the return process where { N't'} is a Poisson

process with ratev and 1 + er<] >0 as. In general, v will be much larger than A. We define the
Poisson process { Nt} by superposition:
(2.2 Nt = Ni + N't' is the Poisson process with parameter A + v and jump i mesTn, nx1.

We write Kn = 1if the jump at Tn is caused by the financial market and Kn = 0if the jump is
caused by a claim. Then we make the following asumption:

Model Assumption:

All random variables Zn = Tn — Tn—l’ Yn’ Rn, Kn, n>1, areindependent. The (Zn) are iid and
have an exponential distribution with parameter A+v; the (Yn) are iid and positive; the (Rn) are
lidwith P[R<0] >0 and E[[|R[[?] <; the (K ) areiid with

(2.3) P[K,=1] = x3y = 1-P[K,=0].

We set (Zl'Rl’Yl’Kl) = (Z,R,Y ,K) for the generic elements.

Example. Assume d = 1 and that there is an underlying Black—Scholes price process (St), i.e. Sn is

the price éT attimeT and 1+R_= éT/éT where
n n n-1
ét =S [éxp{o (W +alf} and (Wt) isastandard Wiener process.

ThenE[(1+R)™] =vv-m@&a—imm2) L, m20.[]

A dynamic portfolio specifies a portfolio vector Gn a IRd at any time Tn' There the component GE

of en represents the amount of capital (value) which isinvested in the k th stock.

We have the following law of motion:

(2.4 Xog1 =X T CZ gt <en’Rn+1> K1~ Yne1 q1- Kn+1) for X,20,

=—o0 for X, <0,

where <z,y> denotes the inner product in IRd.

We write O(x) for the set of al portfolio vectors 8 admissible at x which is assumed to be
o) ={0=(0"...0% 0r% 620, 1<k<d 36X sax+A}, x20.

There a [x denotes a constant fraction of capital and A some extra amount where in most cases
O<a<l1 A=0.Inthecase A >0itispossible to borrow money. This case will be interesting for
Lundberg bounds. We defined O(x) := {0} for x <O0.

Remark: One can replace a X + A by max(a X,A) in the definition of O(x). []



For 6 0 ©(x), 60 =X — zclj Gk represents the amount of the capital which isinvested in the bond,

i.e., which is not invested in the stocks. In this model we do not allow for negative amounts Blri,

thus excluding short selling of the stock. We have
d ok
(2.5) X, + <en Riy™ 2 X,—21 Gn > (1-a) X,—A 2 -A for X,20.
We choose the state space as R enlarged by the cemetery state —. There x < 0 represents a state
of ruin. A plan Ttis a sequence 1= (¢n, n=0) where ¢n is a measurable (decision) function such

that ¢n(x) 0 O(x) for al x. Then ¢n(Xn) specifies the portfolio vector Gn a G)(Xn) for the period
(Tn,Tn+1] . A plan is stationary and we write 1= ¢°° if ¢n =¢ foral n.

Given a plan T, the initial value x, and the sequence Zn(w),Yn(w),Rn(w),Kn(w), n=1, we can
construct the state (risk) process Xn(oo) and we will sometimes write

— WX TT
(2.6) X=X,
Our performance criterion isthe ruin probability:
(2.7) L|JT[(X) = P[X)r(]’n< 0 for somen] .
A policy 1 is called optimal if wrr*(x) = infann(x) for x> 0.

3 Dynamic programming

The one—period cost function g will be defined by g(x) := 1(_oo 0)(x). Oncein state x [ (—,0),
the system moves to the absorbing state —o in the next step. Thus the cost of 1 unit has to be paid
at most once. Now we define

(3.2 L|J1r-][(X) = P[X?;]’HD (—,0) forsomeO0<m<n]| ,n< o,
in particular L|J1r-][(X) =1 for x 0 (—,0), L|J1r-][(—00) =0,

which isjust the probability of being ruined after n periods. Then we have

(3.2) W) = E[ 3 gemen 9K rpd X )] - n< oo
(3.3) W) = W)

Definition 3.4. For any function v:R+~R and v(—w) := 0 [such the following expressions are
well defined| set:

A

Ny E[V(X+clZ—Y)] ,x20,

Tv(x,0) = )\+v E[v(x +cZ +0[R)]| +
Tv(x,0) = g(x), x <0,
T¢v(x) = Tv(X,0(x)),

T*v(X) := infeDG)(x) Tv(x,0).



The following relation is obvious:

(3.5) (T¢0...T¢n_1v)(x) = @) + E[V(XTT]  for = (90 1..-).

Lemma3.6. For 1= (¢0,¢1,...) one has.
m  _ -
€) qJn+1—T¢O...T¢n_19—T¢O...T¢nO :

(b) Osg=ygsursyl  tuh
Proof. Part (a) isobviouswhereg=T ¢O.
(b) We have T¢g >Qg= T¢0 >0foral ¢ andthus

1 T
] =T, ..T (T, 00=T, ..T o=uw_.|[]

A ORI R N R T L
From Lemma 3.6 and the monotone convergence theorem we obtain for stationary plans = ¢°°:

3.7) T¢Lp¢°° =g =lim_ THO.

Proposition 3.8. Let v : [—o,0) + [0,0) be some measurable function.
(@) If ¢ is some decision function with T¢v < v, then we have: L|J¢w < T¢v <V.
(b) If T*v(x) = v(x) then l.|JT[2 v for all plans 1t provided that
E[V(X;(]’T[) - g(X)r(]’n)] + 0 (n»o) for all x> 0and all plans Tt
In order to understand the condition in 3.8b it is useful to look on g aso as a terminal cost
function (see 3.63)
Proof. a) By induction we obtain Tgv < T¢v <v foral n. Thuswe get:
N-00

o~ _|; n : n
) —Ilmn_’oon)OsIlm T¢vs T¢vsv.

b) We obtain v > T¢v for all decision functions ¢ and thus by Lemma 3.6

V< T¢O...T¢n_1v = T¢O"'T¢n—1g +E[v(X) —9(X )] ~» W]

Theorem 3.9 (Howard Improvement). Let ¢, ¢ be any decision functions,

set = ljJ¢w, Q= wqu and O(x,0) :={ 6006(x); TY(x,0) <Y(x) } .

If, for some subset Sof [0,00), ¢§(x) 0 O(x,0), xS, and §(x) = ¢(x),x IS, then one has:
g<yg and Q(x)< T¢ljJ(X) <yY(x) forxOS.



In the situation of Theorem 3.9 with S# [, ¢ is called a Howard improvement of ¢, and ¢* isan
optimal Howard improvement of ¢ if in addition the upper bound T¢*qJ isminimal, that isif

(3.20) T¢* Px) =T*Px) ,i.e, TPXe*(x)) = infeDG)(x) TY(x,0).
Proof of 3.9. We certainly have T¢L|J < ; infact we have by (3.7)
T¢L|J(x) <Y(x) if xI Sand T¢w(x) = T¢lIJ(X) =) ifxOS
From Proposition 3.8a we then obtain @) < T¢ljJ <, inparticular Q(x) < T¢L|J <yifx0S []
Now one can ask what happens in the situation where O(x,$) := { 8 0 ©(x); TY(x,u) < Y(x) } is

empty forall x, i.e. T* = . Since we aways have T*U < T¢LlJ = ( , this means that
T Y= T¢qJ = . The next theorem gives an answer.

Theorem 3.11 (Verification theorem). Let v : S~ [0,0] be a measurable function and ¢ some
decision function with v =T*v = T¢v. Then we have

V(X) = infn LlJT[(X) 0x and ¢ defines a stationary optimal plan ¢°° provided that

E[V(X;(]’T[) - g(X)r(]’n)] +0 asn»o for all plansttand for all x = 0.
The proof follows from Proposition 3.8.
Lemma3.12. Thereissome e > O suchthat infg-p, P[ c[Z + <B,R>[K —Y [{1-K) <—¢] >0.

Proof. P[c[Z +<B,R>K — Y [{1-K)<—¢] 2P[ K=0,cZ -Y <—¢]
= P[K=0|P[cZ -Y <—¢] = P| K=0] %IW)\G}_)‘ZDP[Y >cz+e| dz >0

forsomee >0 sinceP[Y >0] >0. ||

Proposition 3.13. Let M > 0 be arbitrary.
. ._ X,
(@  Thereexistssomen N such that MM = Py 10 P[Xn 20| <1
(b P[O< Xr):]’ns M for infinitely many m| =0 for all x,Tt
The proof is the same as the proof of Proposition 2 in Schédl 2004. From Proposition 3.13 we
conclude that
- X,TT _
(3.19) Ilmn_’oo P[Osxn <M |=0 Ox,;u M>0.

From (3.14) we immediately obtain a kind of contraction property (see Schal 2004, Lemma 8).



Lemma3.15. If §: [—o0,0)+~ [0,00) isany bounded measurable function such that

§(e0) :=lim, | E(X) =0 and §(x) =0 for x <0, then lim__ E[(XT)] =0 Ox

For an application of Theorems 3.9, 3.11, we choose { =v—ginLemma3.15 andv = Lpo asthe

ruin probability under the stationary plan ¢°° which describes the situation where the decision
maker does not invest in stocks at al, i.e.,
(3.16) d(x)=0.

Thus we want to know how to improve ¢°° and under what conditions ¢°° isan optimal policy, i.e.
can the insurance company do better than keeping all the funds asrisk reserve.

The following first two properties are well—known. In fact, the condition §(c) = qu(oo) =0 just
means that the ruin probability tends to zero asthe initial surplustendsto infinity.
Let us set for the classical ruin probability starting in O:

(3.17) q:= MENL =00

Lemma 3.18. Assume that g < 1. In the situation of (3.16) we have for L|J0 = L|J¢°°Z

@  YA«):=lim 4Ox)=0.
() YoM —g(x) =0 forx<0 and lim  W°(x)—g(x) =0.

Proof. (a) follows from the law of large numbers (see Grandell 1991 p.5) and (b) is obvious. ]

Recall that T¢L|JO =u° by (3.7).

Corollary 3.19. Assume that g < 1. Let ¢°° be asin (3.16) and set qJO = lIJ¢°°.

(a) (Howard improvement) For each decision function ¢* with TL|JO(X,¢*(X)) = T* L|JO(X)
one has qu)*w < T*P(X) < W(x).

(b) (Verification theorem). If $© = T*y° , i.e, T¢LlJo = T*Y°, then ¢ isan optimal plan.



4 Lundberg inequalities
In this section we assume d = 1 aswell as;

Classical Assumption for m(t) = E[etY] : thereissomer 0 (0,0] suchthat m(t) < oo fort<r
and m(t) » o fort tr_ (the so-called small claims case).

Notation: /(t) := E[e_tR] ;pi= inft>0 {t).
From R>-1 and P[R < 0] >0 we get:

Lemma4.1. (a) {(t) <o fort<oo, {(t) » 0 fort-co.

b 't =—E[Re T, (0)=—E[R], £"(t) =E[Re ] >0,

(c)  Thereisaunigue minimum point 0 < ty < such that /is strictly decreasing in [O,to] and
strictly increasing in [to,oo) and é(to) =p<l.

(d) IfE[R]>O,thentO>0 and p <1.
IfE[R] <0, thent =0 and p=1.

e—t R

Let i be the positive solution to the equation:

Vv A _ C
(42) mp+mm(r)—l+rm.

Forp=1orv =0, thisthe classical Lundberg equation: m(r) =1 + r)—c\.

Lemma4.3.1f E[R] >0, then (4.2) has a positive solution .

Proof. Set x(r) := % p+ %D}n(r) s L(n):=1+ rﬁ.
Then x(0) <1=L(0) since p < 1. Moreover we have asin the classical case:

X(r,)=oforr <eco andx'(r, ) =ocoif r_ =oco. Thusthere existsalwaysasolution. []

Proposition 4.4 . Suppose that E[R] > 0 and g < 1. If o is the classical Lundberg adjustment

coefficient, i.e., o isthe positive solutionto m(r) — 1= % r,thenonehast > o

The proof isgivenin 4.9.

Definition 4.5. A* :=t /f whereA* :=0andf :=r_ for E[R] <0;
d(x) :=A* forx=0.

Since E [e—rcz] = MV e obtain from (4.2):

AV+ic



(4.6) [}\VTVE[ TRy 4 A E[erY]][E[e reZy -,

For an upper bound for Y we will prove the following result.

Proposition 4.7. T¢vsv for v(x) :=min (1, e_fx) = ( o)(x) + 1[0 )(x)@ X

Proof. Set  =r and let be x = 0. Then we obtain from 3.4

P[x+cZ—-Y <0]

Tv(x,0) = )\+VP[X+CDZ+6DR<O] +)\+v

)\+VE[l[OOO)(X+C[Z+6[R))@xp{—r[ﬂx+c[2+e[|R)]
Ai\-vE[l[o )(X+C[Z Y) [exp{—r[{x + c[Z —Y)]

‘)\+v E[l( ooo)(x+c[27_+9[lR)@xp{ rix + cZ + 6[R)]

)\+VE[1( ooo)(x+c[27_ Y) exp{—rx+clZ—-Y)}]

)\+v E[l[o )(x+cDZ+6DR) [exp{—r{x+cZ+0[R)}|

E[1 )(x+c[Z—Y)®xp{—rEﬂx+c[Z—Y)}]

T [0,00

E[exp{—rx +cZ +0O[R)]| + Elexp{—rx+cZ—-Y)}|

)\+v )\+v

B[R Y Z
= el el O e e,
hence by (4.6)

T ¢v(x) <e '™ E{% p+ % Dm(r)] Ei% =e
For x < 0 we have Tv(x,0) = g(x) = g(X) = v(X). |]

X< V(X).

The decision function ¢ aboveisadmissible, i.e. ¢(x) 0 O(x) O x, if A =A*,
Now we conclude from Propositions 3.8 and 4.7:

Theorem 4.8 If A > A* and v isasin 4.7, then ¢ is admissible and $®”(x) < Tv(x A*) < 6 X,

Here one has the important case that the decision maker holds a constant amount of the risky asset
independent of the current level of capital (under ¢). It was shown by Paulsen & Gjessing
(1997),(1998) and Frovola, Kabanov & Pergamenshchikov (2002) that the asymptotic behaviour
of the ruin probability is completely different if the decision maker holds a constant fraction of
capital (under ¢). In the latter case the ruin probability decreases only with some negative power

of theinitial reserve
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Remark 4.9. Assume 0<A<A*, i.e. ¢ = A* isnot admissible, and q <1.ThenE[R] >0andp<1.

(i) Define x and L asin the proof of 4.3 and f(r) := )\+ {rA) + mn(r).

)\+v
Then thereisapositive solution T to f(r) = L(r) such that fo < F<rT.
A

For aproof set x(r) = % + m[]n(r) . Thenfor O0<r<rt wehave:

O<rA<rA* <fA* = ty and thus 1 > ((tA) > E(to) =p by Lemma4.1.

Then we obtain x(r) > f(r) > x(r) for 0 <r <t and L(0) = x(0) = f(0) = 1 > x(0). From the
classical case we know that L(r) = X(r) forO<r< o and from Lemma 4.3 that x(r) = L(F).

(if) Now set $(x) = A fir x =2 0. Then asin the proof of Proposition 4.7 we have

[ E[e rqi(x)[lR] + AN E[erY]] Efe cm] -1

Again as above, it can then be shown that

(4.10) W ) <e ™ wherer, <.

Thus it the present situation the plan ¢~ has a better Lundberg bound that the plan that does not
investatal. []

For alower bound for Y we start with the following lemma.

Lemma4.11. Let x>0, 6 OR, € > 0 be given such that

(4.12) P[x+cZ+6[R<0]| + P[x+cZ-Y <0]

}\+V )\+v
2 € E{m E[1 g, )X+ CZ +BMR)exp{-—r{x + C[Z + B[R]

vy E[l O)(x+c[Z—Y)Edaxp{—rEQx+c[Z—Y)}]].

Thenonehas Tv(x,0) 2v(x) for v(z):= 1(_00 0)(z) +€ El[o oo)(z) @—fz

The proof is similar to the proof of Proposition 4.7. We set

—1._ r(Y—
(4.13) cli=sp o Ele YY)y >y
whereC < 1. As in Gaier, Grandits & Schachermayer 2003 one can say: Y has a uniform

exponential moment in the tail distribution for r if C > 0.

Theorem 4.14. For C asin (4.13) one has

l.IJT[(X) > mi n(C,e_?A) @—fx for al plans Tt
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If A =0 we have min(C,e_rA) = Csince C < 1. The theorem is also interesting for E[R] <0

where r = o For A > 0, the constant mi n(C,e_rA) isworse than in the case of the Black—Scholes
model in Gaier, Grandits & Schachermayer (2003). The reason is that for A > 0 we here have
some overshooting of the boundary 0 caused by investment in the stock.

Proof. Setr=rt andlet x>0 and 6 be given suchthat 0<s 6 <a X + A. Then

O<MBI+R)=0+08R<aX+A+0[R<x+0O[R+A.

Setn = e ™A Now we obtain 1<er[ﬂx+6R+A) [

r[ﬂx+9R)<1 for x = 0, which implies n[& rEQx+cZ+GR)<1

From this relation we get

r]DE“{X+cZ+6R<O}@_rEQX+CZ+GR)] <P[x+cZ+8R<0].

Now we want to prove (4.12) for € :=nAC:

P[x+cZ+06[R<0]| + P[x+cZ—-Y <0]

)\+v )\+v
—r[{x+cZ+6R
‘mm[ﬂz[l{x+cZ+GR<O}@ ! )]
A

T
ZSE{W E[l_ )(x+c[Z+9[R)Edaxp{—r[ﬂx+c[Z+GER)]

[COE[L_ o)X+ CZ=Y) xp{-rx +clZ - Y)}]

vy E[l O)(x+c[Z—Y)Edaxp{—rEQx+c[Z—Y)}]] :

Weset v(z) := 1w 0)(2) +€ El[o oo)(Z) [& "%, then we know from Lemma4.11 that
Tv(x,0) 2 v(x) foral 860 O(x),i.e, T*v=v.

For x < 0 we have Tv(x,0) = 1(_ o)(x) > Vv(x). Now Propositon 3.8 applies since

E[V(X) 90X =€ (E[Lpg (X ) & —Xn1 .50 by Lemma3.15.[]

Corollary 4.15. For A > A* one has:

IX.

mi n(C,e_rA) e X< infn l.|JT[(X) <e 7 ,x20.
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5 Exponentialy distributed claims

Assumption: 0<a <1, A=0;Y [ El’ i.e., Y isexponentially distributed,
where for convenience and w.l.0.g. weassume E[Y] = 1.

For the classical ruin probability we now write | = qJO and for the classical Lundberg coefficient
we now writed=r o Then the following relations are well known:

(5.1) m(x):q@_{ﬂ( for x = 0 with q:1—6:%>0,

P(x) =1 for —o <x<0.
Thisis the ruin probability when the insurer does not invest at all. We want to compute Tv(X,0)

for some arbitrary v. For x > 0 we have x + c[Z + <8,R>=>0 inview of (2.5).
Now from 3.4 we get

(5.2) Tv(x,0) =V OI°° E[v(x + c(z + <6,R>))] e_()‘J’V)Z dz
+A OIOO E[v(x +clz—Y)] e_()‘J’V)Z dz.

We want to study Ty(x,0) for x = 0. Then the second term in (5.2) does not depend on 6 and it is
easy to show that

(5.3) E[u(x—Y)] =e O

Furthermore we have

I(x8) = o E[W(x + cz + <BR>)] e MV gz

= (1-8) (E[exp{-30x + <BR>})] o e CLEFATVIZ g

1-9
=5c ¥ & + v E[ep{-0lx+<6R>)}].

Thuswe obtain from (5.3) and from éc + A = c:
TW(x,0) =v(x,08) +A Doj°° E[Y(x +cz—Y)] Az g,
=v % [E[exp{—0L{x + <B,R>)}]| + A Dofoo e—6(x+cz) e—()\+v)z dz

hence

(5.4) TY(x,0) =5 1 c E{v EE[e_6 Be'Rﬁ + c] [W(x).

Then TY(x,0) = P(x) asexpected. Now we consider a special case:

Assumption: d =1, hence <6,R>=06[R.
Then
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(5.5) T, = g+ E{v (3 B) + c] W) .
From Lemma4.1 we know that /" is strictly increasing, ¢ is strictly convex with {(c0) = co.

On the one hand for E[R| < 0Owe have: ¢'(t) > ('(0) 20, t> 0. Thus:
0~ /(k @) isincreasing and attains the minimum for 6=0. This minimum is unique.

On the other side for E[R]| > 0 we have:
£'(0) <0, {hasaunique minimum point 0 < ty<o and
aunique point 0 < t] <o with K(tl) ={0) = 1.

Thus:
0 = 0 is never aminimum point for x > O0; more exactly

INf o geqy (O 0) = (OLOX A %to)), (5M) < /0) for 0<O<ax A %tl.

Theorem 5.6. (a) If E[R] < O thenitisoptimal not to invest.
(b) If E[R] > O there exists an optimal Howard improvement ¢* of ¢ such that

d*(x) = O(D<A6 b Wheref(to) p W|th0<t < 00,
(c) IfE[R] > Othen ¢ isaHoward improvement of ¢ if and only if

¢ #0 and 0<q5(x)<0(D</\6[ﬂ Whereﬁ(tl) 1withO<t, <oco.

1

Asacorollary one obtains that for any Howard improvement ¢ of ¢ one has

P(x) < W) = qre °OX

Thusinvestment according to ¢ is not dangerous in the sense of Frovola, Kabanov &
Pergamenshchikov (2002).

where (= w¢m.

6 Erlang distributed claims
Assumption: 0<a <1, A=0;Y DE2 i.e. Y isErlang distributed,
where for convenienceand w.l.o.g. E[Y] =2

For the classical ruin probability Q) = L|JO we have (see Appendix):

6.1) W) =A@ OF e Y¥forx>0withl >0,A>0,0<5< 1<y,

P(x) =1 for —o <x<0.

Thisis the ruin probability when the insurer does not invest at al. There & is again the classical
Lundberg coefficient o and y is the virtual Lundberg coefficient, i.e. d and y are the non—zero
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solution to the Lundberg equation:

m(r) = E[e" | =1+50 & (1—}r)2:1+§m &r=0orn+(}q-2)E+1-q=0.

For special values, formula (6.1) is given by Dickson & Hipp (1998) and proved by the theory of
phase—type distributions. The following properties will be proved in the Appendix.

Lemmab6.2.
(@ Ad>Ty where Ad—Ty=41q{1-q)

() ABR<I§2 where AR T [§2 =7 {14).

(0 =1

We again set

6.3) 1(x.8) = o E[W(x + c2 + <BR>))| & MV)2 g

Then we have by (5.2)

6.4) TY(x,8) =v(x8) + A o E[(x +cz—Y)] & "2z

where the last term isindependent of 6.

Lemma6.5. 1(x,0) = 6c$)\+v [E[exp{ —-0XB,R>}] — yc+)\+v e WX [E [exp{—Y[X6,R>}]

A
= 3CHA Y

where x +<6,R>=>0 for 8 < aX.

r

Jorny € 1 E[exp{-yx + <BR>)}]

[E[exp{-dUXx +<6,R>)}] —
Proof. For k > 0 we have: OI E[exp{—k{x +cz+<B,R>))}] e —(Atv)z 4,

= Efexp({kx + <0R>))| [y ® & KEEAVZ gy = Lo

KX [ [exp{—k ZB,R>}]. []

Again we now consider a special case:

Assumption. d=1.

Now we can compute

0009 =g~ EICRIETH) o g MECRIET.

_6 y _
ae |(X 0) E[( R)] E[6C+)\+V X yc+}\+v yx]

Sinceby Lemma6.2 Ad>Ty and o <yweknow that : 6ce§+v e_a-)X > IY ¥ Thys

(6.6) sgn%I(X,O) =—signE[R].

We will here concentrate on the case E[R] = 0. Then we obtain:
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Theorem 6.7. If E[R] > 0, then there is an optimal Howard improvement ¢* of ¢ with ¢*(x) > 0
for all x> 0.

Proof. If E[R] >0, then g—e 1(x,0) <0, and 6 =0isnever aminimum point of TY(x,0). |]

For E[R] = 0we have 29 [(x,0) = 0 and we are looking for conditions for G(x,0) := 662 1(x,0) to
be negative. We can compute

2
G(x.0) = 95, 1(x.6) = 9 95 1(x.6)

_ D32 —6x —00R ryz -— R
=scrary € [E[RLE T - yc-l-—)yﬁ-_v e VE[R e v I
Then we obtain
2 _
G(x.0) = 6c$§+v[E[R2@ 6(X+9R)1 yc-ll_-—)yﬁ-_vDE[RzGa y(x+9R)] where
2 2
(6.8 G(0,0) = [&ﬁ){) ey —VCEX +v] [(E[R?] <0 forlargev

. k2 k2 k2
since p—asy - qu for large v and since where A[®2 < I [}2 by Lemma 6.2.

Now assume that v islarge, then it is not difficult to show that

SUPO<g<ax |G(x,8) —G(0,0)| -0 for x-0

and thus

02
SUP<g<ox ooz | (%:8) £3G(0,0) <0, x < X, for some x> 0.

For E[R] = 0 we have g—e [(x,0) < 0 and hence we obtain
g—el(x,9)<0 for0<B<alxand X< X,

Thus 6 = a X is a minimum point of 1(x,0) for x < Xy Then there exists an optimal Howard
improvement ¢* with

(6.9) d*(X) = a X forxsxo,for E[R] =20and for large v.

if Ad2 [y2
OC+A+V yc+)\+v :

Therev islarge and we will writev 2 v,
We havein view of Lemma 6.2

2 2
5C$§’+V < e Edl—q) M+) > 01-0) I8 & 3gmr+) > yoe = c{L-q)
&V >F [c2 —2cA —)\2] =X [(c—)\)2 —2A?] , hence

(6.10) 5 T [(c—)\)2 —2\7].

Thenvo:O|f (c—)\)2£2)\2 =3 X—lsﬁ since )—C\—1>O.
The conditionv = v, isawaysfulfilled if Vo= 0,i.e,if
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(6.11) 2<§s1+ﬁ & 0,8284=2[(2—1)<q<1.

Theorem 6.12. Assume E[R] 2 0 and v 2 v,. Then there exists an optimal Howard improvement
¢* with ¢*(X) =a X, x < X (for some X5 > 0). The assumption v > v, always holds under
condition (6.11).

As a consequence, even in the case where E[R]| = 0, i.e. where the price process is a martingale,
investment (with no short selling and no borrowing of money) reduces the ruin probability in the
situation where the insurer is poor.

Appendix
Assumption: Y OE, wherew.l.o.g. E[Y] =2, hence P[Y >z] = e 21 +2).

For the survival probability ®(u) = 1 — Y(u) the following identity is well known (see Grandell
1991, (4) p. 5):
A

(A1) D(U) = P(0) + 2 Oj“ ®(u-2) (1-P[Y <z]) dz.
Thus we have:
O(U) = B(0) +A S d(u-2) &% (1+2) dz
= o(0) + A E{(1+u) /o) el dt— oS ) el dt} where t=u-z.
Therefore we know that @ is continuous and thus differentiable. Now we obtain:
(A2) O'(U) = B(0) - [1- 2] () + e Uiyt o) e et
Proceeding in the same way we obtain:
®"(u) = — [2— 4] @'(W) — [1- 22| b(U) + B(0), hence
(A3) ®"(u) + b['(u) + aleb(u) = d(0)
where q:= 2)—(‘:, b=2-}g, a=1-q and b2:4—2q+%fq2>4a:4—4q.

Now we get for P(x) :=1— P(x):

Theorem A4. ("(u) + bp'(u) + alp(u) = 0.

The characteristic polynom is

P+bd+a=0e (£+%b)2: (%b)z—a> 0 with roots
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(A5) y=—ib—{(4b)>—a)’ <B=—ib+ {(ib)°—a)’ <o.

—ou

The general solution of the homogeneous equationis Y(u) =—T e W A e There we have

(A6) T +A=q,
P =yre M-sn e o

g'(u) = —y2F e Wi52ne

From (A2) we get: W'(0) = y© — 8A = —®'(0) = — [CD(O) — - @D(O)] =—A(0) , hence
(A7) v — A =—4q{1-q).

From " (u) = 52 e—6u - y2F e W and Theorem A4 we obtain

Y'(0) = 8°A— VT =~(2—3) W'(0) — (1-0) W(0) — JTer[L) <O, hence

(A8) A~ v = Jmmig) <o.

Now we want to computey, o, I, and A. From (A6) and (A7) we get

(A9) r=-q %Ev— E%?; 5% A=-q %(y ~5) [g(v—é)

Furthermore we can compute from (A3) and (A5) that

(A10a) y=1-9+4/2q9 + &
(A10b) 5=1-9-1/2q + .

Itisclear that d<1andy> 1. From (A10) and g < 1 we easily get:

(A1) r>0,A>0.

Since—y, —0 aresolutionstof2 + bl +a=0, weknow that

ﬂ}W:1+§H for (=v,®

which is Lundberg—equation. We have the following situation:

Pr'(X) <0ex< v E 5 In {gﬁ %] i.e. Y is concav—Convex.

Finally, from (A10) we obtain
(A12) yo=1-—q.
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