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AAAbbbssstttrrraaacccttt... The control problem of controlling ruin probabilities by investments in a financial

market is studied. The insurance business is described by the usual Cramer � ��� Lundberg� ��� type model

and the risk driver of the financial market is a compound Poisson process. Conditions for

investments to be profitable are derived by means of discrete � ��� time dynamic programming.

Moreover Lundberg bounds are established for the controlled model.
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The control problem of minimizing ruin probabilities is studied in a Cramér � ��� Lundberg model

where the insurance company can invest the capital (surplus) in a financial market. The return

process describing the financial market is driven by a (multi dimensional) Lévy process as in the

Black � ��� Scholes model. However, a compound Poisson process is chosen in place of a Wiener

process. Indeed, a process with jumps seems to be more realistic than a process whose trajectories

are continuous and have unbounded variation. The main advantage of the Black� ��� Scholes model is

the completeness of the financial market. But this property is not needed in the present control

problem.

At first view, the ruin probability is not a classical performance criterion for control problems.

However, one can write the ruin probability as some total cost in the embedded discrete � ��� stage

model where one has to pay one unit of cost when entering the ruin state. After this simple

observation, results from discrete � ��� time dynamic programming for minimizing costs apply but

with some special features. In fact, applications to insurance will lead to some new situations not

yet considered in the literature. These facts are summarized in section 3. In section 4, Lundberg

inequalities are derived for the controlled model which extend the classical inequalities for the

uncontrolled model (a recent paper is Cai & Dickson 2003).

In section 5 and 6 we study the problem when can the insurance company do better than keeping

all the funds as risk reserve. More exactly, we look for a Howard improvement of the simple

policy that prescribes not to invest at all. In section 5 the case of exponentially distributed claims

is studied and it is shown that it is profitable to invest if and only if the expected return is positive.
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The situation is different for Erlang distributed claims studied in section 6. Here, even in the case

where the expected return is zero, i.e., where the price process is a martingale, investments do

reduce the ruin probability in the situation where the insurer is poor.

In the appendix, the uncontrolled model is studied. The classical method for determining the ruin

probability for exponentially distributed claims is extended to Erlang � ��� (E � ��� ) distributed claims.2
In place of a first order ordinary differential equation we obtain a differential equation of second

order.

The present paper is closely related to Gaier, Grandits & Schachermayer and Hipp & Schmidli

(2003) studying models with continuous� ��� time control and a Black � ��� Scholes market model. Earlier

papers are those of Hipp & Plum (2000) and Schmidli (2002). The papers Schäl (2003,2004) are

similar to the present one, but study control by reinsurance.

222 TTThhheee mmmooodddeeelll

We consider a joint model of an insurance business and of a financial market. The real � ��� valued

discrete � ��� time process
�
X , n≥0 � describes the risk process (surplus process, fund of reserves)n

immediately after time T . The time epochs
�
T � result from the superposition of the claim timesn n

T ' at the insurance company and the jump times T" at the financial market, n ≥ 1. As in then n
Cramér � ��� Lundberg model, the claim process is described by a compound Poisson process with

claim size Y at time T ' . We write N' for the number of claims in (0,t � where
�
N' � is a Poissonn n t t

process with rate/intensity λ. There is a premium (income) rate c which is fixed. The insurance

company can invest the capital (risk reserve) in a financial market. We consider a financial market

where 1+d assets can be traded. One of them is called the bond and is described by the interest

rate which here is assumed to be zero.

However, the case where the interest force of the bond is positive and equal to the inflation force

can be treated in the same way since the ruin probability is the same if one replaces the surplus by

the discounted surplus. From the theory of finance it is well known that considering the

discounted wealth leads to a scenario which can be looked upon as market with interest rate zero.

Moreover, the premium as well as the claim sizes then are interpreted as discounted quantities.

The other d assets are called stocks and are described by a d � ��� dimensional price process
�
S =n

1 d k(S ,...,S ), n ≥ 1 � where S is the price of one share of stock k at time T". More exactly, then n n n
return process will be driven by a d � ��� dimensional compound Poisson process which can be defined

1 dby the sequence
�
T", n≥1 � of jump times and the sequence of returns R = (R ,...,R ), n≥1, wheren n n n

k k k(2.1) S = S ⋅ (1 + R ).n n� ��� 1 n

For most of the present results we will assume d = 1.
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We write N" for the number of jumps in (0,t � of the return process where
�
N" � is a Poissont t

kprocess with rate ν and 1 + R > 0 a.s. In general, ν will be much larger than λ. We define then
Poisson process

�
N � by superposition:t

(2.2) N := N' + N" is the Poisson process with parameter λ + ν and jump times T , n ≥ 1.t t t n

We write K = 1 if the jump at T is caused by the financial market and K = 0 if the jump isn n n
caused by a claim. Then we make the following asumption:

MMMooodddeeelll AAAssssssuuummmppptttiiiooonnn:::

All random variables Z := T � ��� T , Y , R , K , n≥1, are independent. The (Z ) are iid andn n n� ��� 1 n n n n
have an exponential distribution with parameter λ+ν; the (Y ) are iid and positive; the (R ) aren n
iid with P � R < 0 � > 0 and E ��� R ��� � < ∞; the (K ) are iid withn n n

ν(2.3) P � K = 1 � = � ����� ����� ��� = 1 � ��� P � K = 0 � .n λ+ν n

We set (Z ,R ,Y ,K ) = (Z,R,Y,K) for the generic elements.1 1 1 1

�
EEExxxaaammmpppllleee... Assume d = 1 and that there is an underlying BBBlllaaaccckkk� ���� ���� ��� SSSccchhhooollleeesss ppprrriiiccceee ppprrroooccceeessssss (S ), i.e. S ist n� � �
the price S at time T" and 1 + R = S /S whereT" n n T" T"n n n � ��� 1�

S = S ⋅exp
�
σ⋅W +a ⋅ t � and (W ) is a standard Wiener process.t 0 t t

m � ��� 1Then E � (1 + R) � = ν ⋅
�
ν � ��� m ⋅a � ���	� ⋅m � ⋅σ� � , m ≥ 0. � �

d kA dynamic portfolio specifies a portfolio vector θ ∈ 
 at any time T . There the component θn n n
of θ represents the amount of capital (value) which is invested in the k � � stock.n
We have the following law of motion:

(2.4) X = X + c ⋅Z + <θ ,R > ⋅K � ��� Y ⋅ (1 � ��� K ) for X ≥ 0,n+1 n n+1 n n+1 n+1 n+1 n+1 n

X = � ��� ∞ for X < 0,n+1 n
dwhere <z,y> denotes the inner product in 
 .

We write Θ(x) for the set of all portfolio vectors θ admissible at x which is assumed to be

1 d d k d kΘ(x) =
�
θ = (θ ,...,θ ) ∈ 
 ; θ ≥ 0, 1 ≤ k ≤ d, ∑∑∑ θ ≤ α ⋅x + A � , x ≥ 0.1

There α ⋅x denotes a constant fraction of capital and A some extra amount where in most cases

0 ≤ α ≤ 1, A = 0. In the case A > 0 it is possible to borrow money. This case will be interesting for

Lundberg bounds. We defined Θ(x) :=
�
0 � for x < 0.

RRReeemmmaaarrrkkk::: One can replace α ⋅x + A by max(α ⋅x,A) in the definition of Θ(x). � �
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0 d kFor θ ∈ Θ(x), θ := x � ��� ∑∑∑ θ represents the amount of the capital which is invested in the bond,1
ki.e., which is not invested in the stocks. In this model we do not allow for negative amounts θ ,n

thus excluding short selling of the stock. We have

d k(2.5) X + <θ ,R > ≥ X � ��� ∑∑∑ θ ≥ (1� ��� α) ⋅X � ��� A ≥ � ��� A for X ≥ 0.n n n+1 n 1 n n n

We choose the state space as 
 enlarged by the cemetery state � ��� ∞. There x < 0 represents a state

of ruin. A plan π is a sequence π = (ϕ , n≥0) where ϕ is a measurable (decision) function suchn n
that ϕ (x) ⊂ Θ(x) for all x. Then ϕ (X ) specifies the portfolio vector θ ∈ Θ(X ) for the periodn n n n n

∞(T ,T � . A plan is stationary and we write π = ϕ if ϕ = ϕ for all n.n n+1 n

Given a plan π, the initial value x, and the sequence Z (ω),Y (ω),R (ω),K (ω), n ≥ 1, we cann n n n
construct the state (risk) process X (ω) and we will sometimes writen

x,π(2.6) X = X .n n

Our performance criterion is the ruin probability:

π x,π(2.7) ψ (x) := P � X < 0 for some n � .n
π* πA policy π* is called optimal if ψ (x) = inf ψ (x) for x ≥ 0.π

333 DDDyyynnnaaammmiiiccc ppprrrooogggrrraaammmmmmiiinnnggg

The one � ��� period cost function g will be defined by g(x) := 111 (x). Once in state x ∈ ( � ��� ∞,0),( � ��� ∞,0)
the system moves to the absorbing state � ��� ∞ in the next step. Thus the cost of 1 unit has to be paid

at most once. Now we define

π x ,π(3.1) ψ (x) := P � X ∈ ( � ��� ∞,0) for some 0 ≤ m < n � , n ≤ ∞,n m
π πin particular ψ (x) = 1 for x ∈ ( � ��� ∞,0), ψ ( � ��� ∞) = 0,n n

which is just the probability of being ruined after n periods. Then we have

π(3.2) ψ (x) := E � ∑∑∑ g(X ,ϕ (X )) � , n ≤ ∞.n 0≤m≤n m m m
π π(3.3) ψ (x) := ψ (x).∞

DDDeeefffiiinnniiitttiiiooonnn 333...444... For any function v : 
�� 
 and v( � ��� ∞) := 0 � such the following expressions are

well defined � set:

ν λTv(x,θ) = � ����� ����� ��� E � v(x + c ⋅Z + θ ⋅R) � + � ����� ����� ��� E � v(x + c ⋅Z � ��� Y) � , x ≥ 0,λ+ν λ+ν
Tv(x,θ) = g(x), x < 0,

T v(x) := Tv(x,ϕ(x)),ϕ
T*v(x) := inf Tv(x,θ).θ∈Θ(x)



5

The following relation is obvious:

π x,π(3.5) (T ...T v)(x) = ψ (x) + E � v(X ) � for π = (ϕ ,ϕ ,...).ϕ ϕ n n 0 10 n� ��� 1

LLLeeemmmmmmaaa 333...666... For π = (ϕ ,ϕ ,...) one has:0 1
π(a) ψ = T ...T g = T ...T 0 ,n+1 ϕ ϕ ϕ ϕ0 n� ��� 1 0 n

π π π π(b) 0 ≤ g = ψ ≤ ψ ≤ ψ � ψ .0 n n+1

Proof... Part (a) is obvious where g = T 0.ϕ
(b) We have T g ≥ g = T 0 ≥ 0 for all ϕ and thusϕ ϕ

π πψ = T ...T (T 0) ≥ T ...T 0 = ψ . � �n+1 ϕ ϕ ϕ ϕ ϕ n0 n� ��� 1 n 0 n� ��� 1
∞From Lemma 3.6 and the monotone convergence theorem we obtain for stationary plans π = ϕ :

ϕ� ϕ� n(3.7) T ψ = ψ = lim T 0 .ϕ n � ∞ ϕ

PPPrrrooopppooosssiiitttiiiooonnn 333...888. Let v : � � ��� ∞,∞) � � 0,∞) be some measurable function.

ϕ�(a) If ϕ is some decision function with T v ≤ v, then we have: ψ ≤ T v ≤ v.ϕ ϕ
π(b) If T*v(x) ≥ v(x) then ψ ≥ v for all plans π provided that

x,π x,πE � v(X ) � ��� g(X ) ��� 0 (n � ∞) for all x ≥ 0 and all plans π.n n

In order to understand the condition in 3.8b it is useful to look on g also as a terminal cost

function (see 3.6a)

nProof. a) By induction we obtain T v ≤ T v ≤ v for all n. Thus we get:ϕ ϕ
ϕ� n nψ = lim T 0 ≤ lim T v ≤ T v ≤ v.n � ∞ ϕ n � ∞ ϕ ϕ

b) We obtain v ≥ T v for all decision functions ϕ and thus by Lemma 3.6ϕ
πv ≤ T ...T v = T ...T g + E � v(X ) � ��� g(X ) ��� ψ . � �ϕ ϕ ϕ ϕ n n0 n� ��� 1 0 n� ��� 1

�
TTThhheeeooorrreeemmm 333...999 (Howard Improvement). Let ϕ, ϕ be any decision functions,

�
ϕ� � ϕ�set ψ := ψ , ψ := ψ and Θ(x,ϕ) :=

�
θ ∈ Θ(x); Tψ(x,θ) < ψ(x) � .

� �
If, for some subset S of � 0,∞), ϕ(x) ∈ Θ(x,ϕ) , x ∈ S, and ϕ(x) = ϕ(x) , x ∉ S, then one has:

� �
ψ ≤ ψ and ψ(x) ≤ T � ψ(x) < ψ(x) for x ∈ S.ϕ
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�
In the situation of Theorem 3.9 with S ≠ ∅, ϕ is called a HHHooowwwaaarrrddd iiimmmppprrrooovvveeemmmeeennnttt of ϕ, and ϕ* is an

oooppptttiiimmmaaalll HHHooowwwaaarrrddd iiimmmppprrrooovvveeemmmeeennnttt of ϕ if in addition the upper bound T ψ is minimal, that is ifϕ*

(3.10) T ψ(x) = T*ψ(x) , i.e., Tψ(x,ϕ*(x)) = inf Tψ(x,θ).ϕ* θ∈Θ(x)

Proof of 3.9. We certainly have T � ψ ≤ ψ; in fact we have by (3.7)ϕ
T � ψ(x) < ψ(x) if x ∈ S and T � ψ(x) = T ψ(x) = ψ(x) if x ∉ S.ϕ ϕ ϕ

� �
From Proposition 3.8a we then obtain ψ ≤ T � ψ ≤ ψ, in particular ψ(x) ≤ T � ψ < ψ if x ∈ S. � �ϕ ϕ

Now one can ask what happens in the situation where Θ(x,ϕ) :=
�

θ ∈ Θ(x); Tψ(x,u) < ψ(x) � is

empty for all x, i.e. T*ψ ≥ ψ. Since we always have T*ψ ≤ T ψ = ψ , this means thatϕ
T*ψ = T ψ = ψ . The next theorem gives an answer.ϕ

TTThhheeeooorrreeemmm 333...111111 (Verification theorem). Let v : S � � 0,∞ � be a measurable function and ϕ some

decision function with v = T*v = T v. Then we haveϕ
π ∞v(x) = inf ψ (x) ∀ x and ϕ defines a stationary optimal plan ϕ provided thatπ
x,π x,πE � v(X ) � ��� g(X ) � � 0 as n � ∞ for all plans π and for all x ≥ 0.n n

The proof follows from Proposition 3.8.

LLLeeemmmmmmaaa 333...111222. There is some ε > 0 such that inf P � c ⋅Z + <θ,R> ⋅K � ��� Y ⋅ (1� ��� K) < � ��� ε � > 0.θ∈ 
 �

Proof. P � c ⋅Z + <θ,R> ⋅K � ��� Y ⋅ (1� ��� K) < � ��� ε � ≥ P � K=0, c ⋅Z � ��� Y < � ��� ε �
∞ � ��� λz= P � K=0 � ⋅P � c ⋅Z � ��� Y < � ��� ε � = P � K=0 � ⋅ ∫ λ ⋅e ⋅P � Y > cz+ε � dz > 00

for some ε > 0 since P � Y > 0 � > 0. � �

PPPrrrooopppooosssiiitttiiiooonnn 333...111333 . Let M > 0 be arbitrary.

x,π(a) There exists some n ∈
�

such that η := sup P � X ≥ 0 � < 1.n,M x≤M,π n
x ,π(b) P � 0 ≤ X ≤ M for infinitely many m � = 0 for all x,π.m

The proof is the same as the proof of Proposition 2 in Schäl 2004. From Proposition 3.13 we

conclude that

x,π(3.14) lim P � 0 ≤ X ≤ M � = 0 ∀ x,π, M > 0.n � ∞ n

From (3.14) we immediately obtain a kind of contraction property (see Schäl 2004, Lemma 8).
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LLLeeemmmmmmaaa 333...111555... If ξ : � � ��� ∞,∞) � � 0,∞) is any bounded measurable function such that

x,πξ(∞) := lim ξ(x) = 0 and ξ(x) = 0 for x ≤ 0, then lim E � ξ(X ) � = 0 ∀ x,π.x � ∞ n � ∞ n

oFor an application of Theorems 3.9, 3.11, we choose ξ = v � ��� g in Lemma 3.15 and v = ψ as the

∞ruin probability under the stationary plan ϕ which describes the situation where the decision

maker does not invest in stocks at all, i.e.,

(3.16) ϕ(x) = 0 .

∞ ∞Thus we want to know how to improve ϕ and under what conditions ϕ is an optimal policy, i.e.

can the insurance company do better than keeping all the funds as risk reserve.

oThe following first two properties are well � ��� known. In fact, the condition ξ(∞) = ψ (∞) = 0 just

means that the ruin probability tends to zero as the initial surplus tends to infinity.

Let us set for the classical ruin probability starting in 0:

λ ⋅E � Y � o(3.17) q := � ���������� ���������� �������� = ψ (0).c

o ϕ�LLLeeemmmmmmaaa 333...111888... Assume that q < 1. In the situation of (3.16) we have for ψ := ψ :

o o(a) ψ (∞) := lim ψ (x) = 0 .x � ∞
o o(b) ψ (x) � ��� g(x) = 0 for x ≤ 0 and lim ψ (x) � ��� g(x) = 0.x � ∞

Proof. (a) follows from the law of large numbers (see Grandell 1991 p.5) and (b) is obvious. � �
o oRecall that T ψ = ψ by (3.7).ϕ

∞ o ϕ�CCCooorrrooollllllaaarrryyy 333...111999... Assume that q < 1. Let ϕ be as in (3.16) and set ψ := ψ .

o o(a) (Howard improvement) For each decision function ϕ* with Tψ (x,ϕ*(x)) = T*ψ (x)

ϕ* �one has ψ ≤ T*ψ(x) ≤ ψ(x).

o o o o ∞(b) (Verification theorem). If ψ = T*ψ , i.e., T ψ = T*ψ , then ϕ is an optimal plan.ϕ
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444 LLLuuunnndddbbbeeerrrggg iiinnneeeqqquuuaaallliiitttiiieeesss

In this section we assume d = 1 as well as:

tYCCClllaaassssssiiicccaaalll AAAssssssuuummmppptttiiiooonnn fffooorrr m(t) = E � e � ::: there is some r ∈ (0,∞ � such that m(t) < ∞ for t < r∞ ∞
and m(t) � ∞ for t

�
r (the so-called small claims case).∞

� ��� tRNNNoootttaaatttiiiooonnn::: � (t) := E � e � ; ρ := inf � (t).t≥0

From R ≥ � ��� 1 and P � R < 0 � > 0 we get:

LLLeeemmmmmmaaa 444...111... (a) � (t) < ∞ for t < ∞, � (t) � ∞ for t � ∞.
� ��� tR � ��� tR(b) � '(t) = � ��� E � Re � , � '(0) = � ��� E � R � , � "(t) = E � R� e � > 0.

(c) There is a unique minimum point 0 ≤ t < ∞ such that � is strictly decreasing in � 0,t � ando o
strictly increasing in � t ,∞) and � (t ) = ρ ≤ 1.o o

(d) If E � R � > 0, then t > 0 and ρ < 1 .o
If E � R � ≤ 0, then t = 0 and ρ = 1.o

�
Let r be the positive solution to the equation:

ν λ c(4.2) � ����� ����� ��� ρ + � ����� ����� ��� m(r) = 1 + r � ����� ����� ��� .λ+ν λ+ν λ+ν
cFor ρ = 1 or ν = 0 , this the classical Lundberg equation: m(r) = 1 + r � ��� .λ

�
LLLeeemmmmmmaaa 444...333... If E � R � > 0 , then (4.2) has a positive solution r.

ν λ cProof. Set χ(r) := � ����� ����� ��� ρ + � ����� ����� ��� ⋅m(r) ; L(r) := 1 + r � ����� ����� ��� .λ+ν λ+ν λ+ν
Then χ(0) < 1 = L(0) since ρ < 1. Moreover we have as in the classical case:

χ(r )= ∞ for r < ∞ and χ'(r ) = ∞ if r = ∞. Thus there exists always a solution. � �∞ ∞ ∞ ∞

PPPrrrooopppooosssiiitttiiiooonnn 444...444 ... Suppose that E � R � > 0 and q < 1. If r is the classical Lundberg adjustmento
c �

coefficient, i.e., r is the positive solution to m(r) � ��� 1 = � ��� r, then one has r > r .o λ o

The proof is given in 4.9.

� �
DDDeeefffiiinnniiitttiiiooonnn 444...555... A* := t /r where A* := 0 and r := r for E � R � ≤ 0 ;o o

ϕ(x) := A* for x ≥ 0.

�
� ��� rcZ λ+νSince E � e � = � ����� ����� ����� ���������� � we obtain from (4.2):�

λ+ν+rc
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� � ��
ν � ��� rϕ(x) ⋅R λ rY � � ��� rcZ(4.6) � � ����� ����� ��� E � e � + � ����� ����� ��� E � e ��� ⋅E � e � = 1.�

λ+ν λ+ν �
For an upper bound for ψ we will prove the following result.

� �
� ��� rx � ��� rxPPPrrrooopppooosssiiitttiiiooonnn 444...777. T v ≤ v for v(x) := min (1, e ) = 111 (x) + 111 (x) ⋅e .ϕ ( � ��� ∞,0) � 0,∞)

�
Proof. Set r = r and let be x ≥ 0. Then we obtain from 3.4

ν λTv(x,θ) = � ����� ����� ��� P � x + c ⋅Z + θ ⋅R < 0 � + � ����� ����� ��� P � x + c ⋅Z � ��� Y < 0 �λ+ν λ+ν
ν+ � ����� ����� ��� E � 111 (x + c ⋅Z + θ ⋅R) ) ⋅exp

�
� ��� r ⋅ (x + c ⋅Z + θ ⋅R) �λ+ν � 0,∞)

λ+ � ����� ����� ��� E � 111 (x + c ⋅Z � ��� Y) ⋅exp
�
� ��� r ⋅ (x + c ⋅Z � ��� Y) �λ+ν � 0,∞)

ν≤ � ����� ����� ��� E � 111 (x + c ⋅Z + θ ⋅R ) ⋅exp
�
� ��� r ⋅ (x + c ⋅Z + θ ⋅R) �λ+ν ( � ��� ∞,0)

λ+ � ����� ����� ��� E � 111 (x + c ⋅Z � ��� Y) ⋅exp
�
� ��� r ⋅ (x + c ⋅Z � ��� Y) � �λ+ν ( � ��� ∞,0)

ν+ � ����� ����� ��� E � 111 (x + c ⋅Z + θ ⋅R) ⋅exp
�
� ��� r ⋅ (x + c ⋅Z + θ ⋅R) � �λ+ν � 0,∞)

λ+ � ����� ����� ��� E � 111 (x + c ⋅Z � ��� Y) ⋅exp
�
� ��� r ⋅ (x + c ⋅Z � ��� Y) � �λ+ν � 0,∞)

ν λ= � ����� ����� ��� E � exp
�
� ��� r ⋅ (x + c ⋅Z + θ ⋅R) � + � ����� ����� ��� E � exp

�
� ��� r ⋅ (x + c ⋅Z � ��� Y) � �λ+ν λ+ν

� ��� rx
�

ν � ��� r θ ⋅R λ rY � � ��� rcZ= e ⋅ � � ����� ����� ��� E � e � + � ����� ����� ��� ⋅E � e ��� ⋅E � e � ,�
λ+ν λ+ν �

hence by (4.6)
� ��� rx

�
ν λ � λ+ν � ��� rxT v(x) ≤ e ⋅ � � ����� ����� ��� ρ + � ����� ����� ��� ⋅m(r) � ⋅ � ����� ����� ����� ����� ����� � = e = v(x).ϕ

�
λ+ν λ+ν � λ+ν+rc

For x < 0 we have Tv(x,θ) = g(x) = g(x) = v(x). � �
The decision function ϕ above is aaadddmmmiiissssssiiibbbllleee, i.e. ϕ(x) ⊂ Θ(x) ∀ x, if A ≥ A*.

Now we conclude from Propositions 3.8 and 4.7:
�

ϕ� � ��� rxTTThhheeeooorrreeemmm 444...888 . If A ≥ A* and v is as in 4.7, then ϕ is admissible and ψ (x) ≤ Tv(x,A*) ≤ e .

Here one has the important case that the decision maker holds a constant amount of the risky asset

independent of the current level of capital (under ϕ). It was shown by Paulsen & Gjessing

(1997),(1998) and Frovola, Kabanov & Pergamenshchikov (2002) that the asymptotic behaviour

of the ruin probability is completely different if the decision maker holds a constant fraction of

capital (under ϕ). In the latter case the ruin probability decreases only with some negative power

of the initial reserve
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RRReeemmmaaarrrkkk 444...999... Assume 0<A<A*, i.e. ϕ ≡ A* is not admissible, and q < 1. Then E � R � > 0 and ρ < 1.

ν λ(i) Define χ and L as in the proof of 4.3 and f(r) := � ����� ����� ��� � (rA) + � ����� ����� ��� ⋅m(r).λ+ν λ+ν
� � �

Then there is a positive solution r to f(r) = L(r) such that r < r < r.o
� ν λ �

For a proof set χ(r) = � ����� ����� ��� + � ����� ����� ��� ⋅m(r) . Then for 0 < r ≤ r we have:λ+ν λ+ν
�

0 < rA < rA* ≤ rA* = t and thus 1 > � (tA) > � (t ) = ρ by Lemma 4.1.o o
� � �

Then we obtain χ(r) > f(r) > χ(r) for 0 < r ≤ r and L(0) = χ(0) = f(0) = 1 > χ(0). From the
� � �

classical case we know that L(r) ≥ χ(r) for 0 ≤ r ≤ r and from Lemma 4.3 that χ(r) = L(r).o
�

(ii) Now set ϕ(x) = A für x ≥ 0. Then as in the proof of Proposition 4.7 we have
� � � ��

ν � ��� rϕ(x) ⋅R λ rY � � ��� rcZ� � ����� ����� ��� E � e � + � ����� ����� ��� E � e ��� ⋅E � e � = 1�
λ+ν λ+ν �

Again as above, it can then be shown that
� �
ϕ� � ��� rx �

(4.10) ψ (x) ≤ e where r < r .o
�

Thus it the present situation the plan ϕ� has a better Lundberg bound that the plan that does not

invest at all. � �

For a lower bound for ψ we start with the following lemma.

LLLeeemmmmmmaaa 444...111111. Let x ≥ 0, θ ∈ 
 , ε ≥ 0 be given such that

ν λ(4.12) � ����� ����� ��� P � x + c ⋅Z + θ ⋅R < 0 � + � ����� ����� ��� P � x + c ⋅Z � ��� Y < 0 �λ+ν λ+ν�
ν≥ ε ⋅ � � ����� ����� ��� E � 111 (x + c ⋅Z + θ ⋅R ) ⋅exp

�
� ��� r ⋅ (x + c ⋅Z + θ ⋅R) ��

λ+ν ( � ��� ∞,0)
λ �+ � ����� ����� ��� E � 111 (x + c ⋅Z � ��� Y) ⋅exp

�
� ��� r ⋅ (x + c ⋅Z � ��� Y) � ��� .λ+ν ( � ��� ∞,0) �

�
� ��� rzThen one has Tv(x,θ) ≥ v(x) for v(z) := 111 (z) + ε ⋅111 (z) ⋅e .( � ��� ∞,0) � 0,∞)

The proof is similar to the proof of Proposition 4.7. We set
�

� ��� 1 r(Y� ��� y)(4.13) C := sup E � e � Y > y �y≥0

where C ≤ 1. As in Gaier, Grandits & Schachermayer 2003 one can say: Y has a uniform
�

exponential moment in the tail distribution for r if C > 0.

TTThhheeeooorrreeemmm 444...111444... For C as in (4.13) one has
� �

π � ��� rA � ��� rxψ (x) ≥ min(C,e ) ⋅e for all plans π.
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�
� ��� rAIf A = 0 we have min(C,e ) = C since C ≤ 1. The theorem is also interesting for E � R � ≤ 0

� � ��� rAwhere r = r . For A > 0, the constant min(C,e ) is worse than in the case of the Black � ��� Scholeso
model in Gaier, Grandits & Schachermayer (2003). The reason is that for A > 0 we here have

some overshooting of the boundary 0 caused by investment in the stock.

�
Proof. Set r = r and let x ≥ 0 and θ be given such that 0 ≤ θ ≤ α ⋅x + A. Then

0 ≤ ⋅θ ⋅ (1+R) = θ + θ ⋅R ≤ α ⋅x + A + θ ⋅R ≤ x + θ ⋅R + A.
� ��� rA r ⋅ (x + θR + A)Set η := e . Now we obtain 1 ≤ e , i.e.,

� ��� r ⋅ (x + θR) � ��� r ⋅ (x + cZ + θR)η⋅e ≤ 1 for x ≥ 0, which implies η⋅e ≤ 1.

From this relation we get
� ��� r ⋅ (x + cZ + θR)η⋅E � 1 ⋅e � ≤ P � x + cZ + θ ⋅R < 0 � .�

x + cZ + θR < 0 �
Now we want to prove (4.12) for ε := η � C:

ν λ� ����� ����� ��� P � x + c ⋅Z + θ ⋅R < 0 � + � ����� ����� ��� P � x + c ⋅Z � ��� Y < 0 �λ+ν λ+ν
ν � ��� r ⋅ (x + cZ + θR)≥ � ����� ����� ��� ⋅η ⋅E � 1 ⋅e �λ+ν

�
x + cZ + θR < 0 �

λ+ � ����� ����� ��� ⋅C ⋅ E � 111 (x + c ⋅Z � ��� Y) ⋅exp
�
� ��� r ⋅ (x + c ⋅Z � ��� Y) � �λ+ν ( � ��� ∞,0)�

ν≥ ε ⋅ � � ����� ����� ��� E � 111 (x + c ⋅Z + θ ⋅R ) ⋅exp
�
� ��� r ⋅ (x + c ⋅Z + θ ⋅R) ��

λ+ν ( � ��� ∞,0)
λ �+ � ����� ����� ��� E � 111 (x + c ⋅Z � ��� Y) ⋅exp

�
� ��� r ⋅ (x + c ⋅Z � ��� Y) � ��� .λ+ν ( � ��� ∞,0) �

� ��� rzWe set v(z) := 111 (z) + ε ⋅111 (z) ⋅e , then we know from Lemma 4.11 that( � ��� ∞,0) � 0,∞)

Tv(x,θ) ≥ v(x) for all θ ∈ Θ(x), i.e., T*v ≥ v.

For x < 0 we have Tv(x,θ) = 111 (x) ≥ v(x). Now Propositon 3.8 applies since( � ��� ∞,0)
� ��� rX �E � v(X ) � ��� g(X ) � = ε ⋅E � 111 (X ) ⋅e � � 0 by Lemma 3.15. � �n n � 0,∞) n

CCCooorrrooollllllaaarrryyy 444...111555... For A ≥ A* one has:
� � �

� ��� rA � ��� rx π � ��� rx.min(C,e ) ⋅e ≤ inf ψ (x) ≤ e , x ≥ 0.π
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555 EEExxxpppooonnneeennntttiiiaaallllllyyy dddiiissstttrrriiibbbuuuttteeeddd ccclllaaaiiimmmsss

AAAssssssuuummmppptttiiiooonnn: 0 < α ≤ 1, A = 0; Y ∼ E , i.e., Y is exponentially distributed,1
where for convenience and w.l.o.g. we assume E � Y � = 1 .

oFor the classical ruin probability we now write ψ = ψ and for the classical Lundberg coefficient

we now write δ = r . Then the following relations are well known:o
� ��� δ ⋅x λ(5.1) ψ(x) = q ⋅e for x ≥ 0 with q = 1 � ��� δ = � ��� > 0,c

ψ(x) = 1 for � ��� ∞ < x < 0.

This is the ruin probability when the insurer does not invest at all. We want to compute Tv(x,θ)

for some arbitrary v. For x ≥ 0 we have x + c ⋅Z + <θ,R> ≥ 0 in view of (2.5).

Now from 3.4 we get

∞ � ��� (λ+ν)z(5.2) Tv(x,θ) = ν ∫ E � v(x + c ⋅z + <θ,R>)) � e dz0
∞ � ��� (λ+ν)z+ λ ∫ E � v(x + c ⋅z � ��� Y) � e dz.0

We want to study Tψ(x,θ) for x ≥ 0. Then the second term in (5.2) does not depend on θ and it is

easy to show that
� ��� δ ⋅x(5.3) E � ψ(x � ��� Y) � = e .

Furthermore we have

∞ � ��� (λ+ν)zI(x,θ) := ∫ E � ψ(x + c ⋅z + <θ,R>) � e dz0
∞ � ��� (δ ⋅c + λ + ν) ⋅z= (1� ��� δ) ⋅E � exp

�
� ��� δ ⋅ (x + <θ,R> � ) � ∫ e dz0

1 � ��� δ= ������ �������� ����� ����� ���������� ����� ����� ��� ⋅E � exp
�
� ��� δ ⋅ (x + <θ,R>) � � .δc + λ + ν

Thus we obtain from (5.3) and from δc + λ = c:

∞ � ��� (λ+ν)zTψ(x,θ) = ν ⋅ I(x,θ) + λ ⋅ ∫ E � ψ(x + c ⋅z � ��� Y) � e dz0
1 � ��� δ ∞ � ��� δ(x+cz) � ��� (λ+ν)z= ν ⋅ ������ �������� ����� ����� ���������� ����� ����� ��� ⋅E � exp

�
� ��� δ ⋅ (x + <θ,R>) � � + λ ⋅ ∫ e e dzδc + λ + ν 0

1 � ��� δx
�

� ��� δ ⋅<θ,R> λ � 1
�

� ��� δ ⋅<θ,R> �= � ��� ����� ����� ����� ��� ⋅ (1� ��� δ) ⋅e ⋅ � ν ⋅E � e � + ������ �������� � = � ����� ����� ����� ����� � ⋅ψ(x) ⋅ � ν ⋅E � e � + c � ,c + ν
�

1� ��� δ � ν + c
� �

hence

1
�

� ��� δ ⋅<θ,R> �(5.4) Tψ(x,θ) = � ����� ����� ����� ����� � ⋅ � ν ⋅E � e � + c � ⋅ψ(x).ν + c
� �

Then Tψ(x,0) = ψ(x) as expected. Now we consider a special case:

AAAssssssuuummmppptttiiiooonnn::: d = 1, hence <θ,R> = θ ⋅R.

Then
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1
� �(5.5) Tψ(x,θ) = � ����� ����� ����� ����� � ⋅ � ν ⋅ � (δ ⋅θ) + c � ⋅ψ(x) .ν + c
� �

From Lemma 4.1 we know that � ' is strictly increasing, � is strictly convex with � (∞) = ∞.

On the one hand for E � R � ≤ 0 we have: � '(t) > � '(0) ≥ 0, t > 0. Thus:

θ � � (κ ⋅θ) is increasing and attains the minimum for θ=0. This minimum is unique.

On the other side for E � R � > 0 we have:

� '(0) < 0, � has a unique minimum point 0 < t < ∞ ando
a unique point 0 < t < ∞ with � (t ) = � (0) = 1.1 1

Thus:

θ = 0 is nnneeevvveeerrr a minimum point for x > 0; more exactly

1 1inf � (δ ⋅θ) = � (δ ⋅ (αx � ���� t )), � (δ ⋅θ) ≤ � (0) for 0 ≤ θ ≤ αx � ���� t .0≤θ≤αx δ o δ 1

TTThhheeeooorrreeemmm 555...666. (a) If E � R � ≤ 0 then it is optimal not to invest.

(b) If E � R � > 0 there exists an optimal Howard improvement ϕ* of ϕ such that

1ϕ*(x) = α ⋅x � ���� ⋅ t where � (t ) = ρ with 0 < t < ∞.δ o o o
�

(c) If E � R � > 0 then ϕ is a Howard improvement of ϕ if and only if
� � 1ϕ ≠ 0 and 0 ≤ ϕ(x) ≤ α ⋅x � ���� ⋅ t where � (t ) = 1 with 0 < t < ∞.δ 1 1 1

�
As a corollary one obtains that for any Howard improvement ϕ of ϕ one has

� ∞� � ��� δ ⋅x � ϕψ(x) ≤ ψ(x) = q ⋅e where ψ = ψ .
�

Thus investment according to ϕ is not dangerous in the sense of Frovola, Kabanov &

Pergamenshchikov (2002).

666 EEErrrlllaaannnggg dddiiissstttrrriiibbbuuuttteeeddd ccclllaaaiiimmmsss

AAAssssssuuummmppptttiiiooonnn: 0 < α ≤ 1, A = 0; Y ∼ E i.e. Y is Erlang distributed,2
where for convenience and w.l.o.g. E � Y � = 2 .

oFor the classical ruin probability ψ = ψ we have (see Appendix):
� ��� δ ⋅x � ��� γ ⋅x(6.1) ψ(x) = ∆ ⋅e � ��� Γ⋅e for x ≥ 0 with Γ > 0, ∆ > 0, 0 < δ < 1 < γ,

ψ(x) = 1 for � ��� ∞ < x < 0.

This is the ruin probability when the insurer does not invest at all. There δ is again the classical

Lundberg coefficient r and γ is the virtual Lundberg coefficient, i.e. δ and γ are the non � ��� zeroo
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solution to the Lundberg equation:

rY c 1 cm(r) = E � e � = 1 + � ��� ⋅ r ��� ( ����������� � ) � = 1 + � ��� ⋅ r ��� r = 0 or r � + ( � q � ��� 2) ⋅ r + 1 � ��� q = 0.λ 1 ���� r λ

For special values, formula (6.1) is given by Dickson & Hipp (1998) and proved by the theory of

phase � ��� type distributions. The following properties will be proved in the Appendix.

LLLeeemmmmmmaaa 666...222 ...

(a) ∆δ > Γγ where ∆δ � ��� Γγ = � q ⋅ (1� ��� q)

1(b) ∆ ⋅δ � < Γ⋅γ � where ∆ ⋅δ � � ��� Γ⋅γ � = � ��� ���� q� ⋅ (1� ��� q).4
(c) γδ = 1� ��� q.

We again set

∞ � ��� (λ+ν)z(6.3) I(x,θ) := ∫ E � ψ(x + c ⋅z + <θ,R>)) � e dz.0
Then we have by (5.2)

∞ � ��� (λ+ν)z(6.4) Tψ(x,θ) = ν ⋅ I(x,θ) + λ ∫ E � ψ(x + c ⋅z � ��� Y) � e dz0

where the last term is independent of θ.

∆ � ��� δx Γ � ��� γxLLLeeemmmmmmaaa 666...555. I(x,θ) = ������ ��� ����� ����� ����� ��� e ⋅E � exp
�
� ��� δ ⋅<θ,R> � � � ��� � ��� ��� ����� ����� ����� ��� e ⋅E � exp

�
� ��� γ ⋅<θ,R> � �δc+λ+ν γc+λ+ν

∆ Γ � ��� γx= ������ ��� ����� ����� ����� ��� ⋅E � exp
�
� ��� δ ⋅ (x + <θ,R>) � � � ��� � ��� ��� ����� ����� ����� ��� e ⋅E � exp

�
� ��� γ ⋅ (x + <θ,R>) � �δc+λ+ν γc+λ+ν

where x + <θ,R> ≥ 0 for θ ≤ α ⋅x.

∞ � ��� (λ+ν)zProof. For k > 0 we have: ∫ E � exp
�
� ��� k ⋅ (x + c ⋅z + <θ,R>)) � � e dz0

∞ � ��� (k ⋅c ⋅+λ+ν)z 1 � ��� kx= E � exp
�
� ��� k ⋅ (x + <θ,R>) � � ⋅ ∫ e dz = ������ ��� ����� ����� ����� ��� e ⋅E � exp

�
� ��� k ⋅<θ,R> � � . � �0 kc+λ+ν

Again we now consider a special case:

AAAssssssuuummmppptttiiiooonnn... d = 1.

Now we can compute

∂ ∆δ � ��� δx � ��� δθR Γγ � ��� γx � ��� γθR������ ��� I(x,θ) = ������ ��� ����� ����� ����� ��� e ⋅E � ( � ��� R) ⋅e � � ��� � ��� ��� ����� ����� ����� ��� e ⋅E � ( � ��� R) ⋅e � ,∂θ δc+λ+ν γc+λ+ν
∂

�
∆δ � ��� δx Γγ � ��� γx ������� ��� I(x,0) = E � ( � ��� R) � ⋅ � ������ ��� ����� ����� ����� ��� e � ��� � ��� ��� ����� ����� ����� ��� e � .∂θ

�
δc+λ+ν γc+λ+ν �

∆δ � ��� δx Γγ � ��� γxSince by Lemma 6.2 ∆δ > Γγ and δ < γ we know that : ������ ��� ����� ����� ����� ��� e > � ��� ��� ����� ����� ����� ��� e . Thusδc+λ+ν γc+λ+ν
∂(6.6) sign ������ ��� I(x,0) = � ��� sign E � R � .∂θ

We will here concentrate on the case E � R � ≥ 0. Then we obtain:
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TTThhheeeooorrreeemmm 666...777. If E � R � > 0, then there is an optimal Howard improvement ϕ* of ϕ with ϕ*(x) > 0

for all x ≥ 0.

∂Proof. If E � R � > 0, then ������ ��� I(x,0) < 0, and θ = 0 is never a minimum point of Tψ(x,θ). � �∂θ
∂ ∂ �For E � R � = 0 we have ������ ��� I(x,0) = 0 and we are looking for conditions for G(x,0) := ������ ��� I(x,θ) to∂θ ∂θ�

be negative. We can compute

∂ � ∂ ∂G(x,θ) := ������ ��� I(x,θ) = ���� ������ ��� I(x,θ)∂θ� ∂θ ∂θ
∆δ � � ��� δx � ��� δθR Γγ � � ��� γx � ��� γθR= ������ ��� ����� ����� ����� ��� e ⋅E � R� ⋅e � � ��� � ��� ��� ����� ����� ����� ��� e ⋅E � R� ⋅e � .δc+λ+ν γc+λ+ν

Then we obtain

∆δ � � ��� δ(x+θR) Γγ � � ��� γ(x+θR)G(x,θ) = ������ ��� ����� ����� ����� ��� ⋅E � R� ⋅e � � ��� � ��� ��� ����� ����� ����� ��� ⋅E � R� ⋅e � whereδc+λ+ν γc+λ+ν�
∆δ � Γγ � �(6.8) G(0,0) = � ������ ��� ����� ����� ����� ��� � ��� � ��� ��� ����� ����� ����� ��� � ⋅E � R� � < 0 for large ν�

δc+λ+ν γc+λ+ν �
k � 1 k � k �since ������ ��� ����� ����� ����� ��� = � ��� ⋅ ������ ��� ����� ����� ��� ��� ����� ����� ����� �������� ≈ � ����� � for large ν and since where ∆ ⋅δ � < Γ⋅γ � by Lemma 6.2.kc+λ+ν ν (kc+λ)/ν + 1 ν

Now assume that ν is large, then it is not difficult to show that

sup � G(x,θ) � ��� G(0,0) � � 0 for x � 00≤θ≤αx

and thus

∂ �sup ������ ��� I(x,θ) ≤ � G(0,0) < 0 , x ≤ x , for some x > 0.0≤θ≤αx ∂θ� o o

∂For E � R � ≥ 0 we have ������ ��� I(x,0) ≤ 0 and hence we obtain∂θ
∂������ ��� I(x,θ) < 0 for 0 < θ ≤ α ⋅x and x ≤ x .∂θ o

Thus θ = α ⋅x is a minimum point of I(x,θ) for x ≤ x . Then there exists an optimal Howardo
improvement ϕ* with

(6.9) ϕ*(x) = α ⋅x for x ≤ x , for E � R � ≥ 0 and for large ν.o
∆δ � Γγ �There ν is large and we will write ν ≥ ν � , if ������ ��� ����� ����� ����� ��� < � ��� ��� ����� ����� ����� ��� .δc+λ+ν γc+λ+ν

We have in view of Lemma 6.2

∆δ � Γγ � q q������ ��� ����� ����� ����� ��� < � ��� ��� ����� ����� ����� ��� ��� ���� ⋅q ⋅ (1� ��� q) ⋅ (λ+ν) > ���� ⋅ (1� ��� q) ⋅ γδc ��� � q ⋅ (λ+ν) > γδc = c ⋅ (1 � ��� q)δc+λ+ν γc+λ+ν 4 2
1 1��� ν > � ��� � c � � ��� 2cλ � ��� λ � � = � ��� � (c � ��� λ) � � ��� 2λ � � , henceλ λ

1(6.10) ν = � ��� � (c � ��� λ) � � ��� 2λ � � .o λ
c ���� cThen ν = 0 if (c � ��� λ) � ≤ 2λ � ��� � ��� � ��� 1 ≤

�
2 since � ��� � ��� 1 > 0.o λ λ

The condition ν ≥ ν � is always fulfilled if ν = 0 , i.e., ifo
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c ���� ����(6.11) 2 < � ��� ≤ 1 +
�
2 ��� 0,8284 = 2 ⋅ (

�
2 � ��� 1) ≤ q < 1.λ

TTThhheeeooorrreeemmm 666...111222... Assume E � R � ≥ 0 and ν ≥ ν � . Then there exists an optimal Howard improvement

ϕ* with ϕ*(x) = α ⋅x , x ≤ x (for some x > 0). The assumption ν ≥ ν � always holds undero o
condition (6.11).

As a consequence, even in the case where E � R � = 0, i.e. where the price process is a martingale,

investment (with no short selling and no borrowing of money) reduces the ruin probability in the

situation where the insurer is poor.

AAAppppppeeennndddiiixxx
� ��� zAAAssssssuuummmppptttiiiooonnn: Y ∼ E where w.l.o.g. E � Y � = 2 , hence P � Y > z � = e ⋅ (1 + z).2

For the survival probability Φ(u) = 1 � ��� ψ(u) the following identity is well known (see Grandell

1991, (4) p. 5):

λ u(A1) Φ(u) = Φ(0) + � ��� ∫ Φ(u� ��� z) (1 � ��� P � Y ≤ z � ) dz.c 0
Thus we have:

λ u � ��� zΦ(u) = Φ(0) + � ��� ∫ Φ(u � ��� z) ⋅e (1 + z) dzc 0
λ � ��� u

�
u t u t �= Φ(0) + � ��� ⋅e ⋅ � (1+u) ⋅ ∫ Φ(t) e dt � ��� ∫ Φ(t) e ⋅ t dt � where t = u � ��� z .c

�
0 0 �

Therefore we know that Φ is continuous and thus differentiable. Now we obtain:

λ λ � ��� u u t(A2) Φ'(u) = Φ(0) � ��� � 1 � ��� � ��� � ⋅Φ(u) + � ��� ⋅e ⋅ ∫ Φ(t) e dt.c c 0

Proceeding in the same way we obtain:

λ λΦ"(u) = � ��� � 2 � ��� � ��� � ⋅Φ'(u) � ��� � 1 � ��� 2 � ��� � ⋅Φ(u) + Φ(0), hencec c

(A3) Φ"(u) + b ⋅Φ'(u) + a ⋅Φ(u) = Φ(0)

λ 2 1 2where q := 2 � ��� , b = 2 � ���	� q, a = 1 � ��� q and b = 4 � ��� 2q + ���� q > 4a = 4 � ��� 4q.c 4

Now we get for ψ(x) := 1 � ��� Φ(x):

TTThhheeeooorrreeemmm AAA444. ψ"(u) + b ⋅ψ'(u) + a ⋅ψ(u) = 0.

The characteristic polynom is

2 2 2� + b ⋅ � + a = 0 ��� ( � + � b) = ( � b) � ��� a > 0 with roots
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2 � 2 �
(A5) � ��� γ = � ���	� b � ���

�
( � b) � ��� a � < � ��� β = � ���	� b +

�
( � b) � ��� a � < 0.

� ��� γu � ��� δuThe general solution of the homogeneous equation is ψ(u) = � ��� Γ e + ∆ e . There we have

(A6) � ��� Γ +++ ∆ === q,
� ��� γu � ��� δuψ'(u) = γΓ e � ��� δ∆ e ;

2 � ��� γu 2 � ��� δuψ"(u) = � ��� γ Γ e + δ ∆ e .
�

λ � λFrom (A2) we get: ψ'(0) = γΓ � ��� δ∆ = � ��� Φ'(0) = � ��� � Φ(0) � ��� � 1 � ��� � ��� � ⋅Φ(0) � = � ��� � ��� ⋅Φ(0) , hence�
c � c

(A7) γΓ � ��� δ∆ === � ���	� q ⋅ (1� ��� q)...

2 � ��� δu 2 � ��� γuFrom ψ"(u) = δ ∆ e � ��� γ Γ e and Theorem A4 we obtain

2 2 qψ"(0) = δ ∆ � ��� γ Γ = � ��� (2 � ���	� q) ⋅ψ'(0) � ��� (1� ��� q) ⋅ψ(0) � ��� ���� ⋅q ⋅ (1� ��� q) < 0, hence4
2 2 q(A8) δ ∆ � ��� γ Γ = � ��� ���� ⋅q ⋅ (1� ��� q) < 0.4

Now we want to compute γ, δ, Γ, and ∆. From (A6) and (A7) we get

1 � � q� ��� 2δ 2δ+q���� 1 1� � q� ��� 2γ 2γ+q ���� 1(A9) Γ = � ��� q ⋅ ������ �������� ������������� = q ⋅ ����������� ������������������ , ∆ = � ��� q ⋅ ������ �������� ���������� � = q ⋅ ������ ��� ������������������ .2(γ � ��� δ) 2( γ ���� δ) 2(γ � ��� δ) 2(γ ���� δ)

Furthermore we can compute from (A3) and (A5) that

����������� ����� ����� ���������� �q � q�(A10a) γ = 1 � ��� ���� + � �
2q + ����4 4
����������� ����� ����� ���������� �q � q�(A10b) δ = 1 � ��� ���� � ���	� �
2q + ���� .4 4

It is clear that δ < 1 and γ > 1. From (A10) and q < 1 we easily get:

(A11) Γ > 0 , ∆ > 0.

2Since � ��� γ, � ��� δ are solutions to � + b ⋅ � + a = 0 , we know that

1 2� ������������� ��� ��� � = 1 + ���� ⋅ � for � = γ,δ(1���� � ) � q

which is Lundberg� ��� equation. We have the following situation:

1
�
γ � ⋅Γ �ψ"(x) < 0 ��� x < � ��� ���������� �������� ln � ������ �������� ��� � i.e. ψ is concav � ��� convex.γ ���� δ
�
δ � ⋅∆ �

Finally, from (A10) we obtain

(A12) γδ = 1 � ��� q.
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