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SSStttoooccchhhaaassstttiiiccc oooppptttiiimmmiiizzzaaatttiiiooonnn fffooorrr ttthhheee rrruuuiiinnn ppprrrooobbbaaabbbiiillliiitttyyy

The Cramér-Lundberg insurance model is studied where the risk process can be controlled by

reinsurance and by investment in a financial market. The performance criterion is the ruin probability.

The problem can be imbedded in the framework of discrete-time stochastic dynamic programming.

Basic tools are the Howard improvement and the verification theorem. Explicit conditions are obtained

for the optimality of employing no reinsurance and of not investing in the market.

111... IIInnntttrrroooddduuuccctttiiiooonnn

The control of the ruin probability is studied in a variant of the Cramér � ��� Lundberg model with

exponentially distributed claims. A period will be the time between two successive claims. At first

view, the ruin probability is not a classical performance criterion for control problems. But it can be

shown that one can write the ruin probability as some total cost without discounting where one has to

pay one unit of cost when entering a ruin state. After this simple observation, the results from

discrete � ��� time dynamic programming apply. In spite of the lack of discounting, the model enjoys a kind

of contraction property. This property is strong enough for the validity of the Howard improvement and

a verification theorem. A more detailed description of the underlying stochastic optimization model and

references to the literature are given in
�
2 � . By use of the Howard improvement, one can look for a plan

which is at least better than using no kind of control (where one is in the classical Cramér � ��� Lundberg

model). As an application of the verification theorem, one can answer the questions: When is it optimal

(i) to have no reinsurance, (ii) not to invest in the financial market.

222... TTThhheee oooppptttiiimmmiiizzzaaatttiiiooonnn mmmooodddeeelll

We will consider an insurance model where the occurrence of the claims is described by a Poisson

process with rate λ. We write Z for the period length between the (n � ��� 1) � ��� th and the n � ��� th claim. Then

n� ��� th claim itself will be described by an exponentially distributed random variable Y with mean µ.n

The process � X , n≥0 � is the risk process where X ∈ � describes the surplus (capital) of the insurancen n

company immediately after the n � ��� th claim. The process can be controlled by reinsurance, i.e. by�
choosing the retention level b ∈

�
b,b � of a reinsurance for the period up to the next claim. The function����

h(b,y) specifies the part of the claim y paid by the insurer. Then h(b,y) depends on the retention level b

(fixed in the risk sharing contract at the beginning of the respective period) where 0 ≤ h(b,y) ≤ y. Hence

y � ��� h(b,y) is the part paid by the reinsurer.

We will consider the following two cases: the case of an excess of loss reinsurance where�
h(b,y) = min (b,y) with retention level 0 ≤ b ≤ b ≤ b = ∞����
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and the case of a proportional reinsurance where �
h(b,y) = b ⋅y with retention level 0 ≤ b ≤ b ≤ b = 1.����

The net income rate c(b) is calculated according to the expected value principle with safety loadings

η > 0 and θ > η of insurer and reinsurer, respectively. For each retention level b, the insurer pays a

premium rate to the reinsurer. This leads to �
c(b) = (1+η) ⋅ λ ⋅E

�
Y � � ��� (1+θ) ⋅ λ ⋅E

�
Y � ��� h(b,Y) � for b ≤ b ≤ b .����

� �
There, the retention level b stands for the control action "no reinsurance", hence h(b,y) = y. The smallest

retention level b will be chosen such that c(b) ≥ 0 for b ≥ b.���� ����
In addition, the insurance company can invest the capital in some asset, say stock, described by the

price process � S , n ≥ 0 � . There S is the price of one share of the stock at the occurrence of the n � ��� thn n

claim. We define the return process � R , n ≥ 1 � by S =: S ⋅ (1 + R ) , where of course 1 + R > 0.n n n� ��� 1 n n

Investment in the stock is specified by a number ϑ ∈
�
0,1 � representing the proportion of the capital

which is invested. Thus a control action u = (b,ϑ) will consist of two components where b and ϑ specify

the retention level and the investment, respectively. Given the surplus X and the control actionn

u = (b ,ϑ ), we can compute the surplus X according ton n n n+1

X = X ⋅
�
1 + ϑ ⋅R � + c(b ) ⋅Z � ��� h(b ,Y ).n+1 n n n+1 n n+1 n n+1

The sequence � (R ,Y ,Z ), n ≥ 1 � is assumed to be independent and identically distributed and, inn n n

addition, (R ,Z ) and Y are independent. It is reasonable to allow for a dependence of Z and R . Atn n n n n

time 0 and after each claim, the decision about the control action will depend on the present size X ofn�
the capital (surplus). A (stationary) plan ψ is a (measurable) function ψ :

�
0,∞) � U :=

�
b,b � ×

�
0,1 � such����

that u = (b ,ϑ ) = ψ(X ) , n ≥ 0. Given the initial surplus x and a plan ψ, the risk process (X ) =:n n n n n
x,ψ(X ) is well � ��� defined on the underlying probability space and the ruin probability isn

ψ x,ψJ (x) := P
�
X < 0 for some n � .n

ψ ϕThen ψ is called optimal if J (x) ≤ J (x) for all plans ϕ and x ≥ 0. We make the following well � ��� known

no arbitrage assumption: P
�

± R > 0
�
Z = z � > 0 for all z > 0.1 1

As usual in stochastic optimization it is convenient to introduce the following operators:

Tv(x,u) = Tv(x,b,ϑ) = E
�
v(x ⋅

�
1 + ϑ ⋅R � + c(b) ⋅Z � ��� h(b,Y )) � ,1 1 1

T*v(x) = min Tv(x,u) for any v : ��� � (for which the expressions exist).u∈U

An important role will be played by the plan ϕ recommending to do nothing, i.e. under ϕ the decision

maker employs no reinsurance and does not invest in the stock. Then we have:
� �

ϕ(x) := (b,0) where b stands for "no reinsurance" as before.
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In fact, ϕ will serve as a kind of benchmark for the other plans. Then under ϕ we have the usual

uncontrolled Cramér � ��� Lundberg model with exponentially distributed claims and thus we know:

ϕ � ��� κx/µJ (x) = (1� ��� κ) ⋅e with 1� ��� κ := 1/(1+η), x ≥ 0.

ϕ ϕWe remind that TJ (x,ϕ(x)) = J (x), x ≥ 0. In
�
2 � the following result was obtained:

P r o p o s i t i o n. Let ϕ be as above, S be any subset of
�
0,∞) and set

ϕ ϕU(x,ϕ) := � u ∈ U; TJ (x,u) < J (x) � , x ≥ 0.

(a) HHHooowwwaaarrrddd IIImmmppprrrooovvveeemmmeeennnttt... For each plan ψ with

ψ(x) ∈ U(x,ϕ) for x ∈ S and ψ(x) = ϕ(x) for x ∉ S,
ψ ϕ ψ ϕ ϕone has: J (x) ≤ J (x) , x ≥ 0, and J (x) ≤ TJ (x,ψ(x)) < J (x) , x ∈ S.

ϕ ϕ(b) VVVeeerrriiifffiiicccaaatttiiiooonnn ttthhheeeooorrreeemmm... If U(x,ϕ) = ∅ for x ≥ 0, i.e., J = T*J , then ϕ is optimal.

In the situation of (a) we call ψ a Howard improvement.

333... OOOppptttiiimmmaaallliiitttyyy rrreeesssuuullltttsss

In this section we first assume that the decision maker can only employ reinsurance; then we only

consider actions of the form u = (b,0). From
�
2 � we have:

T h e o r e m 1. In the model where the decision maker can only control by proportional

reinsurance, it is optimal to have no reinsurance under the condition θ > 2η + η� .

�
Now we want to study the case of excess of loss reinsurance; then b ≤ b ≤ b = ∞. By a straightforward����
but lengthy computation one obtains the following formula:

L e m m a 1. In the model where the decision maker can only control by excess of loss
ϕ ϕreinsurance, one has for TJ (x,(b,0)) =: TJ (x,b):

ϕ λµ x
�

b �T J(x,b) = � ����� ����� ����� ����� ����� ����� ��� �������� � ⋅exp � � ��� κ ⋅ � ��� � ⋅
�
1 � ��� κ ⋅exp � � ��� (1� ��� κ) � ��� � � for b ≤ x,λµ + κc(b) µ � µ �

ϕ λµ
�

x λµ b λµ x �T J(x,b) = � ����� ����� ����� ����� ����� ����� ��� �������� � ⋅ � exp � � ��� κ ⋅ � ��� � � ��� κ ⋅exp � � ��� �
1 + � ��� ����� ����� � � ⋅ � ��� � ⋅exp � � ��� ����� ����� � ⋅ � ��� ) � � for b ≥ xλµ + κc(b) � µ c( b) µ c( b) µ �� ��� b/µwhere c(b) = λµ ⋅

�
1+η � ��� (1+θ) ⋅e � .

The present situation is completely different from that of Theorem 1. Let us set:

µ 1+θ ox := � ��� ⋅ ln � ������ ����� ��� � , x > x is the minimizer of the functiono κ 1+η o

λµ
�

x �B(x) := � ����� ����� ����� ����� ����� ����� ��� �������� � ⋅
�
1 � ��� κ ⋅exp � � ��� (1� ��� κ) ⋅ � ��� � � on

�
x ,∞).λµ + κc(x) � µ � o
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T h e o r e m 2. In the situation of Lemma 1, it is never optimal to have no reinsurance for all

x ≥ 0. More exactly ψ is a Howard improvement of ϕ if
o(i) ψ(x) = ∞ for x ≤ x , (ii) ψ(x) = min(x,x ) for x > x .o o

ϕ ϕFor the proof of the first statement it is sufficient to show that TJ (x,∞) ≤ TJ (x,x) ��� x ≤ x which iso
ϕeasy. The more exact statements are obtained by minimizing the function b � TJ (x,b).

The statements of the theorems are similar to numerical results in
�
1 � where only constant plans ψ(x) =

b (for all x) are studied.

Finally, we consider the situation where the decision maker wants to minimize the ruin probability by�
investing in the stock; then we only consider actions of the form u = (b,ϑ).

L e m m a 2. In the model where the decision maker can only control by investing in the stock
ϕ � ϕ 1 1one has: TJ (x,(b,ϑ)) =: TJ (x,ϑ) = exp � � ��� � ��� κ ⋅x � ⋅E

�
exp � � ��� � ��� κ ⋅

�
c ⋅Z � + x ⋅ϑ ⋅R � � � � .µ µ

� ��� ηλZ �The following quantity will play an important role: q := E
�
R � ⋅e � .

T h e o r e m 3. In the situation of Lemma 2, one has:

(a) If q ≤ 0 , then it is optimal not to invest at all, i.e. ϕ is optimal.

(b) If q > 0, then there exists a Howard improvement ψ of ϕ investing for all x > 0 and furthermore�
investing all the capital, i.e. ψ(x) = (b,1), for all x ≤ x and some x > 0.1 1

∂For the proof it is important to notice that ���� TJ(x,ϑ) is strictly increasing in ϑ.∂ϑ
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