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ON THE GEOMETRY DEFINED BY DIRICHLET FORMS 

KARL-THEODOR STURM 

ABSTRACT. Every regular, local Dirichlet form on a locally compact, separable space 
X defines in an intrinsic way a pseudo metric p on the state space. Assuming that 
this is actually a complete metric (compatible with the original topology), we prove 
that (X, p) is a geodesic space. That is, any two points in X are joined by a minimal 
geodesic. 

Also analogues of the Hopf-Rinow Theorem and of the Cart an-Hadamard The
orem are obtained. The latter requires the notion of curvature which is defined by 
means of the CAT-inequality. 

§1 THE DIRICHLET SPACE (E,F) AND THE ENERGY MEASURE r 
The basic object for the sequel is a fixed regular Dirichlet form E with domain 
F = F(X) on a real Hilbert space L2(X, m) with norm Ilull = Ux u2 dm)1/2. F 
is again a real Hilbert space with norm IluliF := VE(u, u) + lIull. 

The underlying topological space X is a locally compact, separable Hausdorff 
space and m is a positive Radon measure with supp[m] = X. The initial Dirichlet 
form E is always assumed to be symmetric (i. e. E(u, v) = E(v, u)) and of diffusion 
type (i. e. E (u, v) = 0 whenever u E F is constant on a neighborhood of the support 
of v E F or, in other words, E has no killing measure and no jumping measure). 
The selfadjoint operator associated with the initial form £ is denoted by L. 

Any such form can be written as 

E(u,v) = Ix dr(u,v) 

where r is a positive semidefinite, symmetric bilinear form on F with values in the 
signed Radon measures on X (the so-called energy measure). It can be defined by 
the formulae 

( ¢dr(u,u) = E(u,¢u) - ~E(U2,¢) ix 2 

=lim 2
1 { { ¢(x)· [u(x)-U(y)]2 Tt(x,dy)m(dx) 

t-O t ix ix 
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for every u E F(X)nLOO(X,m) and every ¢ E F(X)nCo(X). Since E is assumed 
to be of diffusion type, the energy measure r is local and satisfies the Leibniz 
rule as well as the chain rule, cf. [8], [13], [2], [3] and [18]. As usual we extend 
the quadratic forms u f--+ E(u, u) and u f--+ r(u, u) to the whole spaces L2(X, m) 
resp. Lroc(X, m) in such a way that F(X) = {u E L2(X, m) : E(u, u) < (Xl} and 
Floc(X) = {u E Lroc(X, m) : r(u, u) is a Radon measure}. 

§2 THE INTRINSIC METRIC P AND ASSUMPTION (A) 

The energy measure r defines in an intrinsic way a pseudo metric p on X by 

p(x, y) = sup{ u(x) - u(y) : u E .1ioc(X) n C(X), df(u, u) ~ dm on X}, (1) 

called intrinsic metric or CaratModory metric (cf. [2], [3], [5], [22]). The condition 
dr(u,u) ~ dm in (1) means that the energy measure r(u,u) is absolutely continu
ous w. r. t. the reference measure m with Radon-Nikodym derivative d~ r( u, u) ~ 1 
on X (m-almost everywhere). The density d~ r(u, u)(z) should be interpreted as 
the square of the (length of the) gradient of u at z EX. In general, p may be 
degenerate (i. e. p(x, y) = (Xl or p(x, y) = 0 for some x f. y). Throughout this 
paper we make the 

Assumption (A). p is a complete metric on X which is compatible with the 
original topology on X. 

This assumption in particular implies that p is non-degenerate and that for any 
y E X the function x f--+ p(x, y) is continuous on X. It is discussed in more details 
in the paper [18]. There we also compared it with the weaker 

Assumption (A'). The topology induced by p is equivalent to the original topol
ogy. 

Note that under (A') the following assertions are equivalent: 

• p is a metric (i.e. it is non-degenerate), 
• p(x, y) < (Xl for all x, y E X, 
• X is connected. 

In [18] we proved that under (A') the following basic property of the distance 
function holds true. 

Lemma 1. For every y E X the distance function Py x f--+ p(x, y) satisfies 
Py E Floc(X) n C(X) and 

Hence, the distance function py can be used to construct cut-off functions on 
intrinsic balls Br(Y) of the form Py,r: x f--+ (r - p(x,y))+. 

Let us list up some important facts on intrinsic balls (which need not be true 
in general metric spaces). 
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Proposition 1. Under (A ') the following properties are satisfied for any ball 
Br(x) = {y EX: p(x, y) < r} resp. its closure Br(x): 

(i) Br(x) is connected; 
(ii) Br(x) = {y EX: p(x,y):::; r}. 

Proof. (i) Put B = Br(x). Assume that B is not connected. Let A be a nonempty 
subset of B which is open and closed in B. Put C = B \ A. Without restriction 
x E C. Define the function 1j; to be == 0 on X \ C and to be r - p(x,·) on C. Then 
1j; satisfies 1j; E Floc(X) n C(X) and df(1j;,1j;) :::; dm. Moreover, 1j;(x) -1j;(y) = r 
for all YEA. Hence, by the definition of p we must have p(x, y) 2: r for all YEA, 
i.e. AnB = 0. 

(ii) Put Kr(x) = {y EX: p(x, y) :::; r}. Obviously, Kr(x) is closed and 
contains Br(x). Assume that Kr(x) =I- Br(x). Then there exists y E Kr(x) and 
E > 0 such that BE(y) n Br(x) = 0. Now consider the following function 1j;: on 
Br(x) we put 1j; = r - p(x, .), on BE(y) we put 1j; = p(y,.) - E and on the rest we 
put 1j; = O. Then 1j; satisfies 1j; E Floc(X) n C(X) and df(1j;,1j;) :::; dm. Moreover, 
1j;(x) - 1j;(y) = r + E. Hence, by the definition of p this is a contradiction to 
p(x,y)=r. D 

In Theorem 2 we shall see that under Assumption (A) all balls Br(x) are rela
tively compact. 

§3 EXAMPLES 

The main examples which we have in mind are: 

• L is the Laplace-Beltrami operator on a Riemannian manifold and m is 
the Riemannian volume; in this case, p is just the Riemannian distance. 
More generally, L can be chosen to be a uniformly elliptic operator on a 
Riemannian manifold (cf. [16]). 

• L is a uniformly elliptic operator with a nonnegative weight ¢ on ~N, i. e. 
£(u, v) = L~j=l J aij . a~i u· a~j v· ¢dx and (u, v) = J uv¢dx with (aij) 
symmetric and uniformly elliptic and ¢ as well as ¢-l E Lloc(~N,dx); in 
this case, p is equivalent to the Euclidean distance (cf. [3], [14], [21]). 

• L is a sub elliptic operator on ~N, i. e. 

N J a a £(u,v) = L aij' -u· -vdx 
.. 1 aXi ax)· 
1..,)= 

and (u, v) = J uv dx with (aij) symmetric and such that £ (u, u) 2: 8 . 
Ilull~, - IIul1 2 for some 8, E > 0; in this case, p is equal to the metric 
used e. g. by Fefferman/Phong [6], Fefferman/Sanchez-Calle [7], Jerison 
[11], Jerison/Sanchez-Calle [12], Nagel/Stein/Wainger [15]; it can locally 
be estimated by the Euclidean distance I . I as follows 

~ . Ix - yl :::; p(x, y) :::; C· Ix - yiE. 
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This includes also Hormander type operators with bounded measurable 
coefficients in the sense of Saloff-Coste/Stroock [17]. 

§4 CONSTRUCTION OF GEODESICS 

We always take Assumption (A) for granted. A curve (or path) on X is a continu
ous map "( : I -+ X where I is an interval (=connected set) in R The length L("() 
of a curve "( : I -+ X is defined as 

L("() = sup{~ p(-y(ti), "((ti-d) : n E N, 13 to < t1 < ... < tn E I}. (3) 

Obviously, the length of a curve "( : [a, b] -+ X dominates the distance of its 
endpoints, i. e. 

L("() ;::: p(-y(a),"((b)) 

and the length of a composed curve "( : [a, b] U [b, c] -+ X is the sum of the lengths 
of the parts "(1 = "(I [a,b] and "(2 = "(I [b,c] , i. e. 

L("() = L("(l) + L("(2). 

Let us state (without proof) the following elementary properties of curves on X. 

Lemma 2. For a curve "( : I -+ X the following properties are equivalent: 

(i) for all r, s, t E I with r < s < t 

p(-y(r) , "((t)) = p(-y(r),"((s)) + p(-y(s),"((t)); 

(ii) for all compact intervals J = [s, t] C I 

L("(I[s,t]) = p(-y(s),"((t)); 

(4) 

(5) 

(iii) for an increasing sequence of compact intervals I n = [sn' tn ] with I = 
UnEN I n (e. g. for I n == I if I itself is compact) property (5) holds true; 

(iv) there exists a reparametrization :y : j -+ X with :y(i) = "((I) and 

p( :y(s), :Y(t)) = It - sl for all s, t E I. (6) 

Definitions. 
(i) A minimal geodesic on X is a curve "( : I -+ X with one (hence all) of the 

properties mentioned in the Lemma 2. 
(ii) A subunit curve on X is a curve "( : I -+ X with Ii'I :::; 1 on I, where the 

speed 11'1 of"( is defined by b(t) I = limsuP€--;o p(-r(t),;(t±€)). 

Property (6) in Lemma 2 states that the reparametrized curve :y is an isometry 
from j to X. Such a curve is also called minimal geodesic parametrized by arc 
length. A geodesic on X is a curve "( : I -+ X with the property that for every 
t E I there exists an E > 0 such that the restriction of "( on In]t - E, t + E[ is a 
minimal geodesic. Obviously, every geodesic which is parametrized by arc length 
is a subunit curve. 
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Lemma 3. For any points x, y E X with p(x, y) = R and for any r E ]0, R[ there 
exists an intermediate point z E X with 

p(x,z) =r and p(z,y) =R-r. 

In general, this intermediate point z between x and y is of course not unique. 

Proof. If there exists a point z with p(x, z) ::; rand p(z, y) ::; R - r then by the 
triangle inequality this point z already must satisfy p(x, z) = rand p(z, y) = R-r. 
(Otherwise p(x, y) < R !) 

If p(x, y) = 0 then x = y and thus one can choose z = x. Assume that 
o < p(x, y) < 00 and that there exists no such point z. That is, Kx = Br(x) and 
Ky = BR~r(Y) are disjoint closed sets and Kx is compact. In this case, these two 
sets must have a strictly positive distance, say p(Kx, Ky) 2: 38 > O. But then 
also the larger sets Lx = Br+6(x) and Ly = BR~r+6(Y) have a strictly positive 
distance p(Lx, Ly) 2: 8 > O. 

Now let us consider the following function 

{ 
p(x,') - (r+8) in Lx, 

'l/Jo = 0 in X \ (Lx U Ly), 

-p(y,,) + R - r + 8 in L y . 

From Lemma 1 and the truncation property it follows that 'l/Jo E C(X) n Floc (X) 
with 

dr('l/Jo, 'l/Jo) = 1Lx df(px, Px) + 0 + 1Ly df(py, Py) ::; dm. 

Moreover, one obviously has 'l/Jo(Y) - 'l/Jo(x) = R + 28 > R. But this is a contra
diction to R = sup{ 'l/J(y) - 'l/J(x) : 'l/J E C(X) n Froc(X) with df('l/J, 'l/J) ::; dm}. 0 

Theorem 1. (X, p) is a geodesic space. That is, any two points x, y E X are 
joined by a minimal geodesic. In other words, there exists a continuous map, : 
[0,1] -+ X with ,(0) = x, ,(1) = y and 

p(,(r), ,(t)) = p(,(r), ,(s)) + p(r(s), ,(t)) for all 0 ::; r < s < t ::; 1. 

Proof. (i) We fix points x, y E X with p(x, y) = R > O. By Assumption (A), 
the metric space (X,p) is complete and locally compact. Hence, for the point 
Xo = x there exists a maximal radius Ro E ]0, R] with the property that Br(Xo) 
is relatively compact for all r < Ro. First of all, we construct the desired geodesic 
, on the interval [0, Ro] such that its graph lies inside the closed ball BRa (XO). 

(ii) According to Lemma 3, there exists an intermediate point "((Ro/2) be
tween ,(0) = Xo and ,(R) = y with the properties p(r(O), ,(Ro/2)) = Ro/2 and 
p(r(Ro/2), ,(R)) = R - Ro/2. Applying the same argument to the pairs of points 
,(0), ,(Ro/2) and ,(Ro/2), ,(R) one obtains intermediate points ,(Ro/4) (be
tween ,(0) and ,(Ro/2)) and ,(3/4Ro) (between ,(Ro/2) and ,(R)). Doing this 
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iteratively, one finally gets a countable set of points {')'(aRO) : a E [0, 1[ dyadic} 
with the property 

p(x,')'(aRo)) = aRo = R - p('!'(aRo),y) for all dyadic numbers a E [0,1[. 

The closure of this countable set is the minimal geodesic')' restricted to [0, Roj. 
(iii) Denote the point ')'(Ro) on 8BRo(xo) by Xl. Either Ro = R then Xl = Y 

and we are finished, or Ro < R. 
In the latter case, similarly as in (i), we fix a maximal radius Rl E jO, R - Roj 

such that Br(Xl) is relatively compact for all r < Rl , and (as in (ii)) we construct 
the geodesic ')' on the interval [Ro, Ro + Rd. The graph of this part of')' lies in 
BRI (Xl) C BRo+Rl (Xo). Its endpoint ')'(Ro + R l ) on 8BR1 (xd (which lies also on 
8BRo+R1 (xo)) will be denoted by X2. 

Doing this successively, one obtains sequences {xn}n of points in X and {Rn}n 
of radii in jO, Rj. Put Sn = Lk<n Rk and Soo = sUPn Sn· Then Xn = ')'(Sn). 
The above construction yields the desired geodesic ')' restricted to the interval 
[0, Sooj C [0, Rj. 

(iv) If Soo = R we are already finished. Hence, suppose Soo < R. Then {Rn}n 
converges to ° and {xn}n is a Cauchy sequence in BR(X) which converges to the 
point Xoo := ')'(Soo). By Assumption (A), there exists a radius Roo EjO, R - Sooj 
such that BR,,,,, (xoo) is relatively compact. For finally all n E N, the balls B2Rn (xn) 
are contained in that ball BRoo (xoo) which implies that they are also relatively 
compact. This, however, contradicts the maximality of Rn. Therefore, Soo must 
equal R and we are finished. 0 

Remark. Assume that instead of (A) only (A') is satisfied and that p(x, y) < 00 

for two points under consideration. Instead ofrequiring that (X,p) is complete it 
suffices to assume in Lemma 3 and Theorem 1 that there exists a complete (w. r. t. 
the metric p) subset Y C X containing the convex hull of X and y. The latter 
means that all z E X satisfying the equality p(x, z) + p(z, y) = p(x, y) lie in Y. 

For instance, the closed ball BR(X) contains the convex hull of X and y E 

8BR(X). Thus, in Lemma 3 and Theorem 1 it suffices to assume that either 
BR(X) or BR(y) is complete. 

Let us again assume that (A) is satisfied. 

Corollary 1. The following distances on X coincide: 

• p(x, y) = sup{ ~(x) - ~(y) : ~ E C(X) n Jloc(X), dr(~,~) :::; dm}, 
• Po(x, y) = sup{ ~(x) - ~(y) : ~ E Co(X) n F(X), dr(~,~) :::; dm}, 
• Pl (x, y) = inf{ Lb): ')' is a geodesic in X joining x and y}, 
• P2(X, y) = inf{ Lb): ')' is a curve in X joining x and y}, 
• P3(X, y) = inf{ R > ° : there exists a subunit curve,), : [0, Rj --t X 

with ')'(0) = x and ')'(R) = y}. 

Proof. The equality "p = Po" was already proven in [18j. For the inequality 
"p ~ Pl" note that the previous Theorem states that p(x, y) is the length of 
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a suitable (minimal) geodesic joining x and y. The inequalities "Pl ;::: P2" and 
"P2 ;::: P" are obvious. 

In order to see "Pl ;::: P3", note that in the definition of Pl we may replace 
"geodesic" by "geodesic parametized by arc length" and that for the latter the 
length equals the length of its defining interval. Finally, note that every geodesic 
parametrized by arc length is a subunit curve. 

For the remaining inequality "P3 ::; P" note that every subunit curve 'Y : [0, Rj --+ 

X satisfies p("((s) , 'Y(t)) ::; It - sl for all s, t E [0, Rj. In particular, p('Y(O) , 'Y(R)) ::; 
R. D 

We close this section with some analogue to the Hopf-Rinow Theorem. 

Theorem 2. Under Assumption (A ') and assuming that X is connected the fol
lowing are equivalent: 

(i) the metric space (M, p) is complete; 
(ii) every ball Br (x) is relatively compact; 

(iii) every (minimal) geodesic 'Y : I --+ X defined on an interval I c ~ can be 
extended to a (minimal) geodesic defined on i. 

Proof. The implication (i) ::::} (ii) was proved by Gromov ([10], Thme. 1.10, cf. 
also [9], Lemme III. 18). It is based on the result of Theorem 1 saying that under 
(i) the metric space (X, p) is a geodesic space. The implications (ii) ::::} (i) and (i) 
::::} (iii) are trivial. In order to prove the converse implication, assume that (X, p) is 
not complete, say, the ball B Ro (x) is not relatively compact for some fixed x E X 
and some Ro < 00. Let R = R(x) = inf{ r > ° : Br(x) is not relatively compact}. 
By assumption (A'), BR(X) is not relatively compact whereas Br(x) is relatively 
compact for all r < R. 

Now consider a Cauchy sequence {Yn}n in (BR(x),p) which does not converge 
in BR(X) but to an abstract point y. Take B = BR(X) U {y}. Lemma 3 allows 
to construct a midpoint Z between x and y. Namely, for any n E N there exists 
a midpoint Zn between x and Yn satisfying p(x, zn) = p(zn, Yn) = 1/2p(x, Yn). 
Obviously, Ip(x,zn) -1/2p(x,Y)1 = 1/2Ip(x,Yn) - p(x,y)1 ::; 1/2P(Yn,Y) --+ ° and 
Ip(zn,Y) -1/2p(x,Y)1 ::; Ip(zn,Yn) -1/2p(x,Yn)1 + 3/2P(Yn,Y) = 3/2P(Yn,Y) --+ ° 
(for n --+ 00). All these points Zn, n EN, lie in the compact set Br /2 (x). Hence, 
there exists a cluster point Z of {zn}n in Br /2 (x) which (by continuiuty of p) must 
satisfy p(x, z) = 1/2p(x, y) and p(z, y) = 1/2p(x, y). 

Therefore, a slight modification of Theorem 1 allows to construct a (minimal) 
geodesic 'Y: [O,Rj--+ B from x to y. The curve 'Y: [O,R[--+ BR(X) is a (minimal) 
geodesic in X defined on the parameter interval [0, R[ which can not be extended 
to a curve in X defined on [0, Rj. D 

Even if the state space (X, p) is complete, it is in general not possible to extend 
a geodesic 'Y : I --+ X to a geodesic defined on the whole interval R For instance, 
it is not possible if X is the closed unit ball in ~N and £ is the classical Dirichlet 
form with Neumann boundary conditions (Le.:F = H1(B1(0))). In this case, no 
(!) geodesic can be extended to a geodesic defined on the whole R 
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Remark. Let (A) be satisfied. The following two conditions are equivalent: 

• every geodesic "( : I ---> X can be extended to a geodesic defined on lR; 
• every point x E' X has a neighborhood Y such that for every y E Y there 

exists a point z E X \ {x} satisfying 

p(y,z) = p(y, x) + p(x,z). 

§5 AN ALTERNATIVE ApPROACH TO THE INTRINSIC METRIC 

Up to now we can measure the distance p between two points x and y on X only 
by means of functions '¢ which are defined on the whole space. Our aim is to 
localize this procedure. In particular, we want to measure distances by moving 
along paths. 

Of course, this can already be done according to Corollary 1. Note, however, 
that our previous definition of the length of a curve requires the knowledge of the 
distance of points. In the sequel, we will reverse the procedure. We define an 
alternative notion L * of length of curves without referring to the metric p and by 
means of L * we define an alternative notion p* of distance of points. 

Definitions. 

(i) For a curve "( : [a, b] ---> X we define 

L*("() = sup{ u("((a)) - u("((b)) : Y is an open neighborhood of 

,,(([a,b]) eX, u E .rioc(Y) nC(Y), dr(u,u) :::; dm on Y} 

and, generally, for a curve "( : I ---> X we define 

L*("() = limsupL*(,,(IIn[-n,nj)' 
nEN 

(ii) For x, y E X we define 

p* (x, y) = inf{ L * ("(): "( is a curve joining x and y }. 

Note that this notion L * of length ignores loops. In particular, the L * -length 
of a closed curve is O. 

The main advantage of this alternative definition L * ("() is that it depends only 
on quantities in an arbitrary close neighborhood of "((1). Obviously, L*("() ;::: 
p("((a) , "((b)) for any curve "( : [a, b] ---> X and thus 

p* ;::: p. (7) 

This holds true without Assumption (A) or (A'). 
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Lemma 4. Let'Y: [a, e] ---> X be a curve without selfinterseetions and let bE la, e[. 
Define 'Y1 = 'Y1[a,bj and 'Y2 = 'YI [b, e]. Then 

L * ("() = L * ("(1) + L * ("(2). 

Proof. Let x = 'Y(a), Y = 'Y(b) and z = 'Y(e). The inequality"::;" is obvious since 
every function u used in the definition of L * ('Y) can simultaneously be used in the 
definition of L *("(1) and L *("(2) and since u(x) -u(z) = [u(x) -u(y)] + luCy) -u(z)]. 

For the converse inequality, choose E > O. We have to construct a neighborhood 
Y of 'Y([a, e]) and a suitable function u on it with u(x) -u(z) ;::: L *('Y1)+L * ('Y2) -4E 
and dr(u, u) ::; dm on Y. For i = 1,2 there exist neighborhoods Yi of the graphs 
of 'Yi and functions Ui E .rioc(Yi) n C(Y,;) with U1(X) - U1(Y) ;::: L*("(l) - E and 
U2(Y) - U2(Z) ;::: L*("(2) - E and dr(Ui, Ui) ::; dm on Yi. 

Let U C Y1 n Y2 be a neighborhood of Y such that U1 < U1(Y) + Eon U and 
U2 > U2(Y) - E. Since 'Y is without selfintersections, we may assume without 
restriction that U = Y1 n Y2 . Now choose an open neighborhood Y of the graph 
of 'Y with Y c Y1 U Y2 . Define 

u = { (U1 - U1 (y) - E) V 0 in Y n Y1, 
(U2 (y) - U2 + E) /\ 0 in Y n Y2. 

Then u(x) - u(z) ;::: L*(,,(d + L*("(2) - 4E. Moreover, u == 0 in U. Therefore 
(by means of the truncation property), we deduce that u E Jloc(Y) n C(Y) with 
dr(u,u) ::; dm on Y. D 

Theorem 3. Assume (A ') and let 'Y : I ---> X be a curve without selfintersections 
and such that 'Y( 1) is relatively compact in (X, p). Then 

L*("() = L("(). 

Proof. Let L*("() = L* and, without restriction, I = [a, b]. Choose E > 0, an open 
neighborhood Y of 'Y(I) and an admissible function u on Y with u("((a))-u("((b)) ;::: 
L * - E. (Here and below we call a function u on an open set Y C X admissible on 
Y if u E Jloc(Y) n C(Y) and df(u, u) ::; dm on Y.) 

Let 8 = 1/4· p("((1),X \ Y). The relative compactness of 'Y(1) implies 8 > o. 
Choose a = to < t1 < ... < tn = b with 8i := p("((ti),'Y(ti-d) ::; 8. Then 
for every i = 1, ... ,n the function u is defined and admissible on the whole ball 
B4c5i ("((td). Hence, Vi = [38i -p("((ti), ·)]/\[u-u("((ti-d)] is defined and admissible 
on B4c5i ("((ti)). It immediately follows that Vi ::; 0 on B 4c5i ("((td) \ B3c5i ("((ti)). 
Hence, 

Vi = { Vi V 0, on B3c5i ("((td) , 
0, else, 

is defined and admissible on the whole space X. From the definition of p it follows 
now that 
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and thus 

This implies 

n 

i=l 
n 

:::; Lp(-y(ti),'Y(ti-d) :::; L(')') 
i=l 

and, hence, L*(')') = L(')'). 0 

Corollary 2. Assume that (X,p) satisfies Assumption (AJ. Then 

p* = p. (8) 

§6 CURVATURE AND THE CARTAN-HADAMARD THEOREM 

In the following section we briefly sketch some ideas and results from the general 
theory of geodesic spaces and the method of "comparison of geometries". This ap
proach goes back to A. D. Aleksandrov (cf. [1]) and was further elaborated among 
many others by M. Gromov (cf. [10]). 

We again make Assumption (A) which implies that (X, p) is a locally compact, 
complete, geodesic metric space. The basic idea is to define upper bounds for the 
"curvature" on X by comparing geodesic triangles in X with isometric triangles 
in spaces of constant sectional curvature. 

For /'i, E ~, we denote by H" the two-dimensional complete, simply connected 
Riemannian manifold of constant sectional curvature /'i,. For /'i, = 0 this is the 
Euclidean plane, for /'i, > 0 it is a two-dimensional sphere of radius 1/,jK, and for 
/'i, < 0 it is the two-dimensional hyperbolic plane (homothetic to the Poincare disc). 

A geodesic triangle T in X consists of three points in X and three minimal 
geodesics connecting them. A comparison triangle T" for T in H" is a geodesic 
triangle in H" with the same edge lenghts as T. It is clear that T" is unique up 
to an isometry of H" and such a triangle T" exists if /'i, :::; 0 or if /'i, > 0 and the 
perimeter of T is less than 271"/,jK,. There is a unique map T -t T" which takes 
each edge of T isometrically onto the corresponding edge of T". For each x E T 
let x" denote its image in T" under this map. 

Definitions. 

(i) A triangle T in X (of perimeter:::; 271"/,jK, if /'i, > 0) satisfies the CAT(/'i,J
inequality iff for any vertex yET and any point x E T on the side opposite 
to y we have 

p(x,y) :::; p"(x,,,y,,), (9) 
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where x'" and y", are the corresponding points of a comparison triangle 
in HI< and PI< denotes the distance in HI<' (The abbreviation CAT comes 
from C=comparison, A=Aleksandrov, T=Toponogov.) 

(ii) The geodesic space X has curvature:::; K, iff any x E X has a neighborhood 
Y such that any geodesic triangle in Y (of perimeter :::; 27r / Vii in the case 
K, > 0) satisfies the CAT (K,)-inequality. 

Remark (cf. [1], [9]). Let (M, g) be a complete Riemannian manifold. Then M has 
curvature:::; K, (in the sense of the above definition) if and only if it has sectional 
curvature K :::; K,. 

Having at hand the notion of curvature, one can derive for our geodesic spaces 
many properties which are known to hold for complete Riemannian manifolds with 
sectional curvature K :::; K,. We pick out one of these results, namely the famous 
Cart an-Hadamard Theorem. A complete proof of this result in the full generality 
of geodesic spaces was given by W. Ballmann ([9], Chap. 10, Thm. 14). 

Theorem 4. If X is simply connected and has curvature :::; 0, then it is con
tractible. Any two points x, y E X are joined by exactly one geodesic and this 
geodesic is minimal and depends continuously on x and y. 
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