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1 Department of Theoretical Physics, Budapest University of Technology and Economics, 8 Budafoki út, 1111 Budapest,
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Abstract. We explore the possibilities of importance sampling in the Monte Carlo pricing of a structured
credit derivative referred to as Collateralized Debt Obligation (CDO). Modeling a CDO contract is chal-
lenging, since it depends on a pool of (typically ∼100) assets, Monte Carlo simulations are often the only
feasible approach to pricing. Variance reduction techniques are therefore of great importance. This paper
presents an exact analytic solution using Laplace-transform and MC importance sampling results for an
easily tractable intensity-based model of the CDO, namely the compound Poissonian. Furthermore analytic
formulas are derived for the reweighting efficiency. The computational gain is appealing, nevertheless, even
in this basic scheme, a phase transition can be found, rendering some parameter regimes out of reach. A
model-independent transform approach is also presented for CDO pricing.

1 Introduction

Econophysics literature, especially due to the availabil-
ity of high-resolution stock exchange trading data, has
initially been concerned with interpreting equity stylized
facts [1–3] and equity derivatives. The past decade how-
ever, has shown a tremendous rise in the trading volume of
credit derivatives [4], i.e., products depending on an event
like bankruptcy, default or changes in the credit rating
of a company or government. The buyer of the protec-
tion against such an event transfers his credit risk to the
seller, and pays a periodic fee in return, maximally un-
til the maturity of the contract. Although in this setting,
credit derivatives are instruments of risk reduction, since
it is not necessary to own, e.g., a bond of the companies
of interest, they open ground for speculation, too.

The simplest credit derivative is the Credit Default
Swap (CDS), which is a swap transferring the risk of hold-
ing a fixed income product of a single company, such as
a bond. In case the company defaults on paying the bond
coupons, the buyer of the CDS is entitled to the face value
of the bond. The price (the periodic payment to the seller)
of a CDS is quoted in bps (basis points), i.e., 10−4 of
the nominal value of the contract, and is referred to as
CDS spread. The higher the spread, the riskier the mar-
ket deems investing in the company in question.

Opposed to CDS-s, structured products depend on the
status of many underlying assets (e.g., the bonds of many
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companies) which, due to the interwoven nature of busi-
ness relationships and macroeconomic factors, have a com-
plex correlation structure. The subprime mortgage crisis
of 2007−2008 has shown that the rising volume of such
contracts [4] can lead to unforeseen instabilities.

Monte Carlo simulations are essential in the pricing
procedure of structured products since the models used in
this context are to complex for analytic assessment. Much
effort has been spent on improving different aspects of
these MC simulations, like speed and accuracy. An addi-
tional important task is calibrating the model parameters
to market-observable prices of benchmark instruments.
One approach to the latter problem is reweighting MC
paths gained using a prior probability measure (weighted
Monte Carlo, or WMC, Avellaneda et al. [5] and in the
context of credit derivatives Cont and Minca [6]). Our
work also involves reweighting MC paths, but the goal is
reducing the variance of the Monte Carlo estimates of the
expected cashflow, not calibration to market observables.
The reweighting scheme is based on the Radon-Nikodým
derivative, and is also referred to as importance sampling
(see Sect. 4.3 in [7]). Similar investigations have been car-
ried out in the context of different models, for further de-
tails, see [8–10].

In this paper, we are dealing with collateralized debt
obligations, which are contingent on the default status of
the constituents of a reference portfolio, such as Markit
iTraxx Europe or CDX NA IG [11]. The contract can basi-
cally be viewed as a combination of many CDS-s, however,
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the net loss on the portfolio is divided into smaller inter-
vals, termed tranches. The seller of a CDO tranche pays
the excess loss on the portfolio above a threshold (attach-
ment point of the tranche), up to a maximum value (de-
tachment point), and receives in return a periodic pay-
ment from the buyer (proportional to the remaining width
of the tranche), referred to as CDO tranche premium.
Standard CDO tranches for the CDX NA IG series in-
clude the equity (0−3%), the mezzanine (3−7%, 7−15%)
and the super senior (15−100%) tranches. The attach-
ment points of the super senior tranches of other indices
range from 15% to 35%; in our work, we used the 30−100%
slice as a representative super senior tranche. In the mar-
ket, these products are quoted in either basis points (10−4,
e.g., a spread of 100 basis points means the annual pre-
mium payment fraction, although payments are typically
made semi-annually), i.e., the value of the periodic pay-
ment, or, assuming a fixed premium, the value of the up-
front payment (in % of the tranche notional). For the sake
of simplicity, we assume zero upfront in each case consid-
ered.

Note that the cost functions of buyer/seller are non-
linear, thus, the dependence structure between portfolio
elements plays a crucial role in pricing a CDO tranche.
“Bottom-up” approaches, including the Gaussian copula
model [12] which became infamous during the recent fi-
nancial crisis [13], try to estimate this dependence struc-
ture, and price CDO-s consistently with single name credit
defaults swaps. “Top-down” models, in contrast, deal di-
rectly with the aggregate loss on the portfolio, thereby de-
creasing the number of model parameters (in bottom-up
approaches, this is done by introducing homogeneity as-
sumptions) and giving up information about component
risks (but see the “random thinning” procedure in [14]).
In this paper, we consider a simple top-down compound
Poisson model in order to retain analytic tractability and
demonstrate MC possibilities.

The paper is organized as follows: Section 2 summa-
rizes model details and the relevant quantities. Section 3
introduces a general method for CDO pricing for mod-
els including a constant interest rate and deduces analytic
formulas for the cash flow of the CDO contract in the
Poissonian case. Section 4 turns to presenting the pos-
sibilities of the Monte Carlo simulation and importance
sampling, which, for this simple model, can again be ana-
lytically verified.

2 Basic concepts

2.1 Collateralized debt obligation – the basic model

Let us assume that the CDO is based on a homogeneous
pool of companies, which, for the sake of simplicity, is
homogeneous, i.e., the number of default events is pro-
portional to the loss on portfolio value. Furthermore, we
assume that the losses on the portfolio are continuous.
This is a natural simplification for typical index portfolios
of ∼100 entities.

This model is based on a single default process Dt

which is a compound Poisson process in the following
sense: the default events occur according to a simple
Poisson process of intensity ρ, and during the ith event,
a fraction Ji of the companies default. The jump sizes Ji

are independent and identically distributed random vari-
ables of exponential distribution with parameter λ, i.e.,
P (Ji < x) = 1 − e−λx. We also use the notation μ = λ−1

for the expected value of the jumps. We assume that {Ji}i
are also independent from the jump times.

We considered two natural ways to define the actual
loss process with values in [0, 1]. The first one is referred
to as the linear specification given by

Llin
t := min (Dt, 1) .

The exponential specification

Lexp
t := 1 − exp {−Dt} (1)

is obtained by a smooth transformation from Dt. For
small values of Dt, the two quantities Lexp

t and Dt are
close, which is the typical case for the relevant parameter
regimes. In what follows, we use the exponential speci-
fication and omit the superscript (Lexp

t → Lt), and we
say that, at time t, an Lt proportion of the companies
defaulted.

The buyer of the a CDO tranche [a, d] makes periodic
payments (called premium leg) proportional to the out-
standing notional (the remaining width) of the tranche
until either the maturity M (the expiry of the contract) is
reached or the loss exceeds the detachment point. In the
analytic calculations that follow in Section 3, we will as-
sume a premium payment that is continuous in time. This
assumption is of course not realistic, however, as compar-
isons with computer simulation results (Sect. 4) show, it
does not have a serious effect on the present values of
the premium and default legs. The seller of the protection
pays the default leg after each default event, which is the
increment of min{Lt, d} − min{Lt, a}.

The default of a company does not mean that it be-
comes entirely worthless, a fraction r̃ of its original value
is recovered, i.e., the portfolio loss Lt increases by a 1− r̃
proportion of the jump which occurred at time t. In the
simplest setting, the recovery r̃ is a deterministic constant
r̃ ∈ [0, 1) (see [12,15,16] for example). In this paper, we
simply assume that r̃ = 0.

2.2 Relevant quantities

Let the interest rate r be constant in time. For a tranche
[a, d], we denote by

�a,d
t = min (Lt, d) − min (Lt, a) (2)

the loss on this tranche at time t. The phrase tranche loss
is often used in the literature for �a,d

M the total loss at the
maturity.

The default leg present value (defPV) of a tranche is
approximately the expected present value of the tranche
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loss, more precisely, the increments of the loss are dis-
counted. In mathematical terms,

defPV = E

(∫ M

0

e−rt d�a,d
t

)
(3)

which is meant as a Stieltjes integral. The dependence of
the defPV on the tranche is suppressed in the notation.

The premium leg present value (premPV) is the ex-
pected present value of the total amount of the periodic
payment by the protection buyer. The annual payment is
spread× ONt where the spread is given in basis points
(bps) and fixed in the contract. ONt is the outstanding
notional of the tranche [a, d] at time t, i.e.

ONt = d − a − �a,d
t .

Hence,

premPV = spread× E

(∫ M

0

e−rtONt dt

)
(4)

where the expectation on the right-hand side is denoted
by premPV1bp.

The aim of CDO pricing is to give a good estimate
of the fair value of the spread (and upfront) for given
tranches. Therefore, the equation

defPV = spread× premPV1bp (+upfront)

has to be satisfied, since the left-hand side is the expected
income of the protection buyer, whereas the right-hand
side is that of the protection seller. The problem is now
reduced to finding the values defPV and premPV1bp.

Throughout the paper, we will also use the notation

X(def) : =
∫ M

0

e−rt d�a,d
t , (5)

X(prem) : =
∫ M

0

e−rtONt dt, (6)

which stand for the present value of the tranche loss and
that of the total amount of premium leg paid by the pro-
tection buyer respectively. Note that these are random
variables, and their expectations are

E
(
X(def)

)
= defPV, (7)

E
(
X(prem)

)
= premPV1bp, (8)

compare with (3) and (4).
We define

a : = − ln(1 − a), (9)
d : = − ln(1 − d). (10)

Due to (1), the event {Lt > a} is equal to {Dt > a}. The
same hold with d and d respectively. This notation serves
to reduce the length of subsequent formulas.

3 Analytic approach

In the compound Poissonian case, we can derive explicit
formulas for the relevant quantities defPV and premPV1bp.
The expressions contain an infinite series representation,
which converges faster than exponential, therefore, our
method provides a promising approach to CDO pricing.
The basic idea of the computations is that we decompose
the underlying expectation according to the first passage
of certain levels of loss.

3.1 The defPV and premPV1bp expressed
with the first passage time

The loss Lt is an exponential transformation of the com-
pound Poisson process Dt, see (1), and the computations
can be done in terms of Dt. Hence, we introduce

Th := min{t ≥ 0 : Dt ≥ h}

the first passage time of level h for Dt. It turns out that
the quantities defPV and premPV1bp can be expressed by
the integral of the function

ϕr(h, M) := E
(
e−rTh11(Th < M)

)
(11)

which is a modified Laplace transform of the first passage
time, and 11 (·) denotes the indicator function. Therefore,
knowing the function ϕr is enough to determine defPV and
premPV1bp and also the fair value of spread and upfront.

It is not difficult to show that instead of the original
definition of defPV in (3) where the increments of loss
are added, with a new approach, an integration along the
vertical axis can be done, see also Figure 1. We obtain

defPV = E

(∫ d

a

e−r min{t≥0:Lt≥x}11(x < LM ) dx

)

= E
(∫ d

a

e−rTh11(Th < M) e−h dh

)

=
∫ d

a

ϕr(h, M) e−h dh (12)

after a change of variable under the integral sign (x →
h = − ln(1 − x)), which corresponds to considering the
compound Poisson process Dt itself instead of Lt.

Similarly, definition (4) of the premPV1bp is replaced
by

premPV1bp = E

(∫ d

a

∫ min{0≤t≤M :Lt≥x}

0

e−rs ds dx

)

= E

(∫ d

a

∫ min(Th,M)

0

e−rs ds e−h dh

)

= E
(∫ d

a

1 − e−r min(Th,M)

r
e−h dh

)
. (13)
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Fig. 1. (Color online) A sample scenario of the loss process Lt.
The jumps in the solid red line indicate the default events oc-
curring according to a Poisson process of intensity ρ. Assuming
continuous payment, the default leg present value defPV is the
sum of the discounted increments of the loss process Lt (see
Eq. (12)) and the the premium leg present value premPV1bp

is related to the grey area (in case r = 0, they coincide, see
Eq. (13)).

In terms of Figure 1, formulas (4) and (13) give the in-
dicated area in two different ways. After straightforward
manipulations, one obtains from (13) that

premPV1bp =
1
r

(
1 − e−rM

)
(d − a)

+
e−rM

r

∫ d

a

ϕ0(h, M) e−h dh

− 1
r

∫ d

a

ϕr(h, M) e−h dh, (14)

with the unknown function ϕr depending on the details of
the model. An important remark is that formulas (12)
and (14) are valid for any distribution of the process
Dt, not only for the compound Poissonian case, we as-
sumed only a constant interest rate and continuous pay-
ment possibilities for both sides (it is simple to gener-
alize the results for deterministic interest rate functions
e−rt → exp{− ∫ t

0
r (s) ds}, but we omit this possibility in

the present paper). Using the present approach, for any
distribution of Dt, it is enough to determine the function
ϕr for pricing a CDO. In the next subsection, we calculate
ϕr in the compound Poissonian case.

3.2 Partial differential equation for the Laplace
transform of the first passage time

For the compound Poisson process Dt, a series represen-
tation of ϕr can be given as follows. In order to avoid later
confusions, we fix the value of the interest rate r, and we
suppress the subindex of ϕ. The expectation in (11) can
be decomposed according to the time and the size of the
first jump of the process Dt since these are independent
exponential random variables with parameter ρ and λ re-
spectively. After change of variable, one can obtain the

integral equation

ϕ(h, M) = ρe−(ρ+r)Me−λh

×
∫ M

0

e(ρ+r)y

(
λ

∫ h

0

eλxϕ(x, y) dx + 1

)
dy

(15)

using the memoryless property of the exponentials. Dif-
ferentiating (15), we can deduce the partial differential
equation

∂2
hMϕ + λ∂Mϕ + (ρ + r)∂hϕ + λrϕ = 0. (16)

One boundary value is obviously

ϕ(h, 0) = 0. (17)

One has to be more careful at the other one. By definition,
the function is constant 1 along the line h = 0, but the
bivariate function ϕ(h, M) is not continuous here. There-
fore, we redefine ϕ at the boundary, or, more precisely, we
can say that the definition (11) is valid only if h > 0, and
we extend the function continuously. Since as h ↓ 0, the
probability that the first jump exceeds h tends to 1, the
boundary value is

ϕ(0, M) = lim
h↓0

ϕ(h, M) =
∫ M

0

e−ryρe−ρydy

=
ρ

ρ + r

(
1 − e−(ρ+r)M

)
. (18)

3.3 Solution of the PDE

Equation (16) is a second order hyperbolic partial differ-
ential equation, which contains extra terms of lower order.
One way of solving it is performing Laplace transforma-
tion in both variables. Let

ϕst :=
∫ ∞

0

∫ ∞

0

e−she−tMϕ(h, M) dh dM

be the Laplace transform. We will also use the functions

ϕs(M) : =
∫ ∞

0

e−shϕ(h, M) dh,

ϕt(h) : =
∫ ∞

0

e−tMϕ(h, M) dM

for computing the Laplace transforms of ∂2
hMϕ, ∂hϕ and

∂Mϕ. They can be given by integration by parts. In the
calculation, the Laplace transforms of the boundary val-
ues (17) and (18) also appear.

The Laplace transform of equation (16) is written as

stϕst − t
ρ

t(t + ρ + r)
+ λtϕst

+ (ρ + r)
(

sϕst − ρ

t(t + ρ + r)

)
+ λrϕst = 0.
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The unknown function ϕst can be expressed easily:

ϕst =
ρ

t

1
st + λt + (ρ + r)s + λr

. (19)

The elimination of variable t can be done by using the
identity ∫ ∞

0

e−px 1 − e−αx

α
dx =

1
p(p + α)

with α = ((ρ + r)s + λr)/(s + λ). We get

ϕs(M) =
ρ

ρ + r

1
s + λr

ρ+r

×
(

1 − exp
(
−(ρ + r)M +

λρM

s + λ

))
. (20)

The second inversion is not completely obvious. The dif-
ficulty is that, in the second term in (20), the variable s
appears in two different places: in the denominator of the
prefactor 1/(s+λr/(ρ+r)) and in the exponential as well.

We could use the general identity
∫ ∞

0

e−px

(
eβx

∫ x

0

f(y) dy

)
dx =

∫ ∞
0 e−(p−β)xf(x) dx

p − β
(21)

with β = −λr/(ρ + r) to proceed. Then the problem re-
duces to finding the inverse Laplace transform of the func-
tion

gs(M) = exp

(
λρM

s + λρ
ρ+r

)

in the s variable where s occurs only once. It can be solved
by considering the series expansion of the exponential and
by performing the inversion for each term individually us-
ing the general formula∫ ∞

0

e−px

(
xn−1

(n − 1)!
e−αx

)
dx =

1
(p + α)n

.

One may notice that for each term of the sum in the series
expansion, we get functions of the form x �→ cxn−1e−νx.
These are to be integrated by the left-hand side of (21) in
place of f . Hence, we also use the following series repre-
sentation of the lower incomplete gamma function:

∫ x

0

tn−1e−νt dt =
(n − 1)!

νn

(
1 − e−νx

n−1∑
k=0

(νx)k

k!

)
.

The resulting formula is

ϕr(h, M) =
ρ

ρ + r
e−λh−(ρ+r)M

×
∞∑

n=1

(ρ + r)nMn

n!

n−1∑
k=0

(
λρh

ρ + r

)k 1
k!

. (22)

It is not hard to see that the solution (22) indeed sat-
isfies equation (16) along with the boundary values (18)

and (17). One more important special case is if r = 0.
The (22) reduces to

ϕ0(h, M) =
∞∑

n=1

e−ρM (ρM)n

n!

n−1∑
k=0

e−λh (λh)k

k!
(23)

which can be verified intuitively as follows. The left-hand
side of (23) is equal to P(Th < M) by definition. The
right-hand side is the sum of the weights of those tra-
jectories of Dt which give rise to the event {Th < M}.
Assume that Dt has n jumps in the interval [0, M ]. The
jump sizes can be generated by a Poisson point process
with intensity λ along the vertical axis. Th < M is sat-
isfied if and only if this Poisson process has k point in
[0, h] with 0 ≤ k < n. In the general r > 0 case, the same
factors as on the right-hand side of (23) appear in the for-
mula, but there is no explicit probabilistic interpretation
of (22).

The benefit of the computations is that, with (22),
the value of defPV and premPV are known explicitly us-
ing (12) and (14). The expression (22) is computation-
ally stable because of the factorial in the denominator.
This new method gives an unbiased answer also for those
tranches for which one cannot guarantee enough sample
paths with the usual Monte Carlo simulation. In these pa-
rameter regimes (e.g., pricing a super senior tranche), the
results can be compared to those of the weighted Monte
Carlo simulation.

4 Monte Carlo simulation

This section presents a Monte Carlo study of the com-
pound Poissonian case (Sect. 2.1) that might provide a
better understanding of importance sampling for more
complex models as well. Although admittedly unrealistic,
the model used captures the two basic quantities accessi-
ble in any top-down model, namely event frequency and
size. Its simplicity allowed not only an analytic solution
but, as we shall see in Section 4.2, an analytic treatment
of the importance sampling procedure as well.

From the technical point of view, there are two basic
approaches to the MC treatment of CDO models:

– the “path-based” approach calculates each quantity of
interest for all generated paths, and afterwards calcu-
lates the statistics of the gained data sets;

– the “surface-based” approach estimates the time-de-
pendent probability density function of the portfolio
loss, i.e., a simple matrix, as in Figure 2.

Although both methods provide the present values of the
premium and default legs, for our purposes, the former is
more suitable since our aim is to reduce the number of
Monte Carlo paths necessary to obtain the price of senior
tranches with a certain precision.
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λ
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Monte Carlo with paths

For the ith realization of the process, the cash flow values
are calculated as follows:

X
(def)
i =

kmax∑
k=1

e−rtk

(
�a,d
tk

− �a,d
tk−1

)
(24)

X
(prem)
i =

kmax∑
k=1

e−rtk ON tk
, (25)

with 0 = t0, t1, . . . , tkmax = M representing an equally
spaced time grid. The necessity of discretization is com-
monly a drawback of simulations, in our case, however,
it is realistic since CDO payments are typically trans-
ferred quarterly. For efficiency reasons, the generated
paths should be evaluated simultaneously for all tranches
[a, d] of interest. The individual financial values X

(def)
i and

X
(prem)
i per tranche are subject to a statistical analysis.

4.1 Reweighted Monte Carlo

The aim of reweighting is to reduce the computational
time needed for finding the expected present values of the
premium and the default. Applying reweighting, the pro-
gram generates Monte Carlo paths with an altered pa-
rameter set of the compound Poisson model, that is, with
an altered intensity ρ′ and an altered expected jump size
1
λ′ . Using parameters which describe a relatively calm eco-
nomic situation, senior tranches are typically not reached
by MC paths, i.e., one obtains a poor estimate of their
price. The idea is to simulate paths using a parameter set
describing a more severe situation, and reweight them to
preserve the original expected value while reducing the
variance.

The reweighting relies on the Radon-Nikodým deriva-
tive, the derivative of one probability measure with respect
to another [7]. To get the appropriate weights, we have to
calculate it for the real with respect to the altered one.

We write the probability of realization of a path con-
sidering that the NM jumps occur in small intervals

(tj , tj + dt) j = 1, . . . , NM with the given intensity ρ and
that there is no jump outside of these intervals. We han-
dle the jump sizes in a similar way under the condition
that the number of jumps is already given by the Poisson
process (we introduce the notations t0 = 0 and D0 = 0):

P(path) =
NM∏
i=1

(
e−ρ(ti−ti−1)ρ dt

)
e−ρ(M−tNM

)

×
NM∏
i=1

(
e−λ(Dti

−Dti−1 )λdh
)

, (26)

with the first term corresponding to the pdf of the inter-
vals between jumps, the second to the probability that
there is no event between the last jump and the matu-
rity M and the third to the pdf of the jump sizes. It is
straightforward to generalize the latter equation for arbi-
trary renewal processes, one only has to change the terms
to the jump time and size distributions of interest.

The Radon-Nikodým derivative of one probability
measure with respect to another one is the ratio of the
weights of the same path given in (26) under the two mea-
sures, and for a path with NM jumps is given by

R(NM , DM ) =
dP
dP′ (NM , DM )

=
(

ρλ

ρ′λ′

)NM

e−(ρ−ρ′)M−(λ−λ′)DM (27)

where P and P′ are respectively the measures
parametrized by the real and the alternative parameters.
This quantity is both calculable analytically as a random
variable and numerically for a specific Monte Carlo path.
The Monte Carlo simulation calculates R(path) step by
step, during the generation of a path. Starting from the
value 1, at each jump in the path, the program multiplies
the stored value by the contribution of that jump (terms
under the product signs in (26)); at the end of the path,
it multiplies the value by the contribution which describes
that no more events happened until the maturity (middle
factor on the right-hand side of (26)).

In mathematical terms, the random variable simulated
under the altered measure P′ is RX (with X standing
for either premium or default leg), thus, its observable
variance is

Var′(RX) = E′(R2X2) − (E′RX)2

= E(RX2) − (EX)2, (28)

since E′ (RX) = E (X), by definition of the
Radon-Nikodým derivative.

Being able to measure the variance, we use this fea-
ture to find the optimal parameter set for the speed of
convergence and then we perform importance sampling
with those parameters.

4.2 Reweighting: analytic approach

In this section, we analytically evaluate the variance of
the reweighted default considering the compound Poisson

http://www.epj.org


Eur. Phys. J. B (2012) 85: 51 Page 7 of 11

process Dt where the jump times follow a Poisson process
with intensity ρ and the sizes of the jumps are independent
exponentially distributed random variables with parame-
ter λ, which are independent of the Poisson point process
as well. Then we calculate the expected loss and its vari-
ance analytically with the assumption that there are no
discount factors, i.e., r = 0.

Recall (5), and note that in case r = 0, we have

X(def) = (LM − a) · 11 (LM ∈ [a, d])
+ (d − a) · 11 (LM > d)

=
(
1 − e−DM − a

) · 11 (DM ∈ [a, d])

+ (d − a) · 11 (DM > d) . (29)

Then

defPV = E
(
X(def)

)
= E′

(
RX(def)

)
, (30)

where the second equality holds by the definition of the
measure change. The important quantity here is the error
of the Monte Carlo simulation carried out with importance
sampling, thus, our aim is to calculate the variance given
in (28).

The joint density of NM (number of jumps) and DM

is given by

f∗(n, h) = P∗(NM = n, DM ∈ (h, h + dh))

= e−ρ∗M (ρ∗M)n

n!
hn−1e−λ∗h (λ∗)n

(n − 1)!
dh + o(dh)

= e−λ∗h−ρ∗M (ρ∗Mλ∗)nhn−1

n!(n − 1)!
dh + o(dh)

where ∗ can stand for either altered or real. This bi-
variate joint probability density function is composed
of the product of the probability density functions of a
POI(ρ∗M) describing n events until the maturity and a
Γ (λ∗, n) describing the conditional probability of arriving
in (h, h + dh) having n jumps. Please note that this is
a defective probability distribution, the missing mass is
P∗(DM = 0) = e−ρ∗M .

Using (29), one can calculate

E
(
X(def)

)
= (1 − a)

∫ d

a

∞∑
n=1

f(n, h) dh

−
∫ d

a

e−h
∞∑

n=1

f(n, h) dh

+ (d − a)
∫ ∞

d

∞∑
n=1

f(n, h) dh, (31)

similarly, for the variance,

E
(

R
(
X(def)

)2
)

=
∫ d

a

∞∑
n=1

e−2hR(n, h)f(n, h) dh

− 2(1 − a)
∫ d

a

∞∑
n=1

e−hR(n, h)f(n, h) dh

+ (1 − a)2
∫ d

a

∞∑
n=1

R(n, h)f(n, h) dh

+ (d − a)2
∫ ∞

d

∞∑
n=1

R(n, h)f(n, h) dh

(32)

where the integrals can be expressed in terms of incom-
plete gamma functions, since the dependence of the inte-
grands on h is a product of a polynomial and an exponen-
tial function, that is, they are of the form∫ u

l

e−νhhn−1 dh.

Deriving the result is not extremely difficult but rather
technical, therefore we omit these details.

We remark one more interesting feature of the expec-
tation in (32) which is the appearance of phase transition.
In the first two terms on the right-hand side of (32), the
integrals are not necessarily finite (for the other term, we
do not have this issue). It can be verified by analyzing
the exponential factors in h of the integrand. In the first
term on the right-hand side of (32), R(n, h) contributes
with e−(λ−λ′)h, whereas f(n, h) gives an exponential fac-
tor of e−λh. The product of these two is clearly e−(2λ−λ′)h.
Hence, the first integral in (32) is finite if and only if

2λ − λ′ > 0 ⇐⇒ μ′ >
1
2

μ.

The consequence of this phase transition is that if one
intends to apply the importance sampling method for a
more complex model, where such divergences cannot be
assessed analytically, one has to take care to identify the
permissible parameter regime that can actually be worked
with.

4.3 Monte Carlo results

In this section, we discuss the simulation results and com-
pare them to the analytic solution. For illustration pur-
poses, we have chosen from the standard tranches (see
Sect. 1) the super senior tranche (a = 0.3, d = 1). For
each Monte Carlo simulation we used n = 106 paths and
no recovery (r̃ = 0).

Approximating the model parameters in a calm eco-
nomic situation by:

ρ = 0.05
events
year

(33)

http://www.epj.org
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Fig. 3. (Color online) The measured average and standard
deviation of X(def) for the super senior tranche as a function
of 1

λ′ , with ρ′ = ρ, (λ = 10, ρ = 0.05). The average (E axis)

and standard deviation (D axis) of the X(def) are given in basis
points. The variance remarkably decreases for 1

λ′ ≈ 2.8 × 1
λ

=
0.28.

for the intensity of the compound Poisson process and
about

1
λ

= 0.10
fraction of the original notional

event
(34)

for the expected number of defaults (i.e., 10 assets are
expected to default per event for a 100-element portfolio).
The standard maturity is

M = 5 years. (35)

The benefit of the reweighting procedure is given quantita-
tively by the well-known fact that the standard deviation
of a sample average (of independent realizations of a ran-
dom variable) is σ√

n
, where σ is the standard deviation of

the random variable and n is the number of realizations
used to estimate its mean. Thus, the number of MC paths
necessary to achieve a fixed precision is proportional to
the variance. We define the gain in the number of paths
consequently as

Gnum :=
n

n′ =
σ2

σ′2 . (36)

The parameter set (ρ, λ) corresponds to relatively rare
events (one event per four realizations on average) and
small chance to touch the super senior tranche. Thus it
is qualitatively clear that to obtain a lower variance of its
present value, the alternative parameters have to fall in
{(ρ′, λ′) : ρ′ > ρ, λ′ < λ}.

We executed a simulation for the given ρ, 1
λ and M = 5

to study the effect of the jump size parameter on the stan-
dard deviation. The results for the super senior tranche are
presented in Figures 3 and 4. In both diagrams, the top
part represents the MC average and the analytic expected
value, as well as the analytically calculated Monte Carlo
error marking the confidence interval. This error is given
by the standard deviation of the X(def) for one path di-
vided by

√
n = 1000. The bottom part of the diagrams

Fig. 4. (Color online) The measured average and standard
deviation of X(prem) for the super senior tranche as a function
of 1

λ′ , with ρ′ = ρ, (λ = 10, ρ = 0.05). The average (E axis)

and standard deviation (D axis) of X(prem) are given for a 1
basis point spread. The estimation of the premium leg present
value was not improved for the super senior tranche. We have
no analytic formula for premPV1bp.

retraces the analytic and the empirical value of the same
standard deviation to facilitate the comparison. We per-
formed the same comparison for each standard tranche
as well as the index tranche, and observed a very good
match of analytic and simulation results. Moreover, stan-
dard deviations of the default leg present value could be
decreased in each case except for the equity tranche. The
maximal gain for the super senior tranche is obtained for
1
λ′ = 0.28 where the variance was reduced to 14% of
its original value. In contrast, premPV1bp cannot be es-
timated more accurately than in the non-reweighted case,
however, X(prem) can already be easily and accurately esti-
mated without reweighting, as shown in Figure 3. Even the
relative error ( std. dev.

expected v. ) of premPV1bp increased by the
reweighting procedure remains an order below the relative
error of defPV. Thus, the importance sampling scheme
improves the more relevant source of uncertainty in the
pricing procedure.

The same investigation was carried out along the ρ′
axis; the results for the super senior tranche are shown
in Figures 5 and 6. We observe an equally good match
of the analytic and numerical (path) approach as previ-
ously. In this case, all tranches exhibit a gain in precision
with growing process intensity (which is no wonder, since a
larger intensity corresponds to more events until maturity
is reached, and consequently a lower variance of the av-
erages). The maximal gain for the super senior tranche is
obtained for ρ′ = 0.23(5) where the variance was reduced
to 30% of its original value.

Although by increasing ρ we can gain on the number
of Monte Carlo paths, the gain on computation power is
not so evident. On average, each path contains Mρ′ jumps
which need to be generated and kept account of. An ex-
plicit chronometry was done where the process’ real com-
putational time on the CPU was collected (not the clock
ticks during the execution because the computer could do
other things in the background). The execution time for
increased ρ′-s is plotted in Figure 7 and is linear in ρ′.

http://www.epj.org
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Fig. 5. (Color online) The measured average and standard
deviation of X(def) for the super senior tranche as a function
of ρ′, with λ′ = λ, (λ = 10, ρ = 0.05). The average (E axis)
and standard deviation (D axis) of the X(def) are given in
basis points. The variance decreases most if ρ′ ∈ (4ρ, 5ρ) =
(0.20, 0.25).

Fig. 6. (Color online) The measured average and standard
deviation of X(prem) for the super senior tranche as a function
of ρ′, with λ′ = λ, (λ = 10, ρ = 0.05). The average (E axis)
and standard deviation (D axis) of X(prem) are given for a 1
basis point spread. The estimation of the premium leg present
value was not improved for the super senior tranche.

Fig. 7. (Color online) The computational time as a function
of the reweighting parameter ρ′, which denotes the Poisson
process intensity. The points fit on a line of equation t = c+bρ′

where c = 1.1(67) is the average initialization cost of the 106

MC paths and b = 5.57(1) is the time consumed by processing
the jumps.

Fig. 8. (Color online) The magnitude of the gain − log2 Gnum

for the super senior tranche in the defPV measurement, given in
number of Monte Carlo paths as a function of the reweighting
parameters: ρ′ denotes the altered Poisson process intensity, 1

λ′
the altered expected jump size. The real process uses the real
world parameters described in (33) to (35). The variance de-
creases for the super senior tranche by increasing the intensity
and the jump size to 2−6 times of their original value.

With regard to this fact the gain in computational time
can be defined as

Gtime =
tcomp

t′comp
=

σ2

σ′2
ρ′

ρ
, (37)

where ′ stands for the reweighted simulation’s results, σ
denotes the standard deviation of the measured quantity
(X(def) or X(prem)) and ρ denotes the Poisson process in-
tensity. This effect is not present in the case of 1

λ′ because
higher jumps do not provoke more events – they only re-
sult in larger numeric values.

To find the optimum with respect to the quantities
defined in (36) and (37), we analyzed the Gnum(ρ′, 1/λ′)
and Gtime(ρ′, 1/λ′) maps (Figs. 8 and 9). We can conclude
that, in both specifications, the Monte Carlo reweight-
ing scheme can be successfully applied. For the pricing of
the super senior tranche the total gain in computer time
reaches Gtime = 12.4, which is more than appealing. The
gain in the number of paths was at least Gnum = 3.0, this
minimum appeared at the equity tranche. The numerical
results are summarized in Table 1. According to analytic
considerations, the functions are smooth, this seems to be
satisfied in our Monte Carlo simulation figures, except for
the region of rare but large jumps. This is explained by the
relatively small number of paths (105) being simulated, an
order less than for Figures 3 to 6. This number is, however,
justified, because the full map with this acceptable resolu-
tion (∼104 points) is calculated in more than an hour on
a state-of-the-art computer, the optimal sampling of this
map is out of the scope of the current paper.

We would like to assure the reader that, in accordance
with the analytic results that found a divergence for the
λ/λ′ < 1/2 regime, the λ/λ′ ∈ [0, 0.5] margins on the

http://www.epj.org
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Table 1. The optimum of the gains Gtime and Gnum for defPV measurement. The reweighting parameters: ρ′ denotes the
Poisson process intensity, 1

λ′ the expected jump size. The lowest gain appears for the equity tranche (a = 0, d = 0.03), the
highest for the super senior tranche (a = 0.3, d = 1). The real process uses the real world parameters described in (33) to (35)
as ρ = 0.05 event

year
, 1

λ
= 0.1 original notional

event
, M = 5 years. The index tranche shows a comportment between the equity and the

super senior tranches’ comportment.

Tranche Original values Gnum optimum Gtime optimum
in bps rel. to index tr. place gain place gain

a d E(X(def)) σ(X(def)) ρ′ 1/λ′ value ρ′ 1/λ′ value
[1] [1] [bps] [bps]

[
event
year

] [
1

event

]
[1]

[
event
year

] [
1

event

]
[1]

0.00 0.03 58.6 115 0.20 0.11 3.0 0.08(5) 0.11 1.1
0.03 0.07 57.1 134 0.22 0.13 3.1 0.07(5) 0.13 1.1
0.07 0.10 30.8 88 0.23 0.16 3.5 0.07(0) 0.16 1.2
0.10 0.15 35.1 121 0.23 0.18 4.3 0.09(0) 0.17 1.5
0.15 0.30 39.1 202 0.25 0.27 9.3 0.11(0) 0.25 2.7
0.30 1.00 6.8 92 0.28 0.38 53.2 0.16(0) 0.34 12.4
0.00 1.00 227.7 606 0.23 0.18 6.0 0.11(0) 0.17 1.8

Fig. 9. (Color online) The magnitude of the gain − log2 Gtime

for the super senior tranche in the defPV measurement, given
in computational time as a function of the reweighting param-
eters: ρ′ denotes the altered Poisson process intensity, 1

λ′ the
altered expected jump size. The real process uses the real world
parameters described in (33) to (35). The variance decreases
for the super senior tranche by increasing the intensity and the
jump size to 2−4 times of their original value, but this is less
significant than in Figure 8.

maps were intentionally left out. Already in the λ/λ′ ∈
[0.5, 1] region, a tendency of increasing variance can be
observed. The ρ′/ρ ∈ [0, 0.5] margins on the maps were
left out, because decreasing ρ′ below 0.5ρ results in even
rarer events, thus higher variance, exceeding the current
color scales.

In addition to the previous case, we have analyzed a
more extreme, crisis-like situation where ρ = 1 event

year . As
anticipated, the gain in either number of paths or com-
putational time is less spectacular, since even the original
estimation was not as poor as with the previous, “calm”
parameter set. This investigation showed that importance
sampling has its limits: less than 75% saving was achieved
for the super senior tranche even in the number of paths

and at most 25% or nothing for the others, in contrast to
the minimum of 66% that we have previously seen.

5 Conclusions

In this paper, we have shown the capabilities of im-
portance sampling in estimating the fair price of CDO
tranches. The simple model we covered, enabled us to
check our results both analytically and by computer simu-
lation. We showed that this approach is promising in pric-
ing rare events, nevertheless, it has to be treated with care,
since even in this basic model, singular behavior emerged.
Furthermore, it has been shown that to speed up simu-
lations, reducing the number of MC paths does not nec-
essarily help if one thereby increases the computational
time needed per path.

Future directions include testing the method for more
elaborate models (such as [17] or [18]) and automatiz-
ing the optimization procedure, more specifically, gain a
parameter set that simultaneously improves all standard
tranches.
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