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4.6 Central limit theorem for martingales 73

4.7 Stopping times, optional stopping 78

5 Markov processes 83

5.1 Markov processes with stationary transition proba-

bilities 83

5.2 The strong Markov property 85

5.3 Markov processes and martingales 85

5.4 Harmonic functions and martingales 89

5.5 Dirichlet problems 90

5.6 Doob’s h-transform 92

5.7 Markov chains with countable state space 95

6 Random walks and Brownian motion 99

6.1 Random walks 99

6.2 Construction of Brownian motion 101

6.3 Donsker’s invariance principle 105

6.4 Martingale and Markov properties 108

6.5 Sample path properties 111

6.6 The law of the iterated logarithm 114

Bibliography 119

Index 121



1

A review of measure theory

In this first chapter I review the main concepts of

measure theory that we will need. I will not give proofs

in most cases. Those familiar with my W-Theorie 1

lecture will find that most of this material was covered

there, except that here we will take a somewhat more

abstract point of view, replacing the space of real num-

bers by arbitrary metric spaces. One will see, however,

that this implies very few changes. For more details, there is a wealth

of references on measure theory. See e.g. [2, 14, 10, 7, 5, 1].

1.1 Probability spaces

A space, Ω, is an arbitrary non-empty set. Elements of a space Ω will be

denoted by ω. If A ⊂ Ω is a subset of Ω, we denote by 1IA the indicator

function of the set A, i.e.

1IA(ω) =

{
1 , if ω ∈ A,

0 , if ω ∈ Ac ≡ Ω\A.
(1.1)

Definition 1.1.1 Let Ω be a space. A family A ≡ {Aλ}λ∈I , Aλ ⊂ Ω,

with I an arbitrary set, is called a class of Ω. A non-empty class of Ω

is called an algebra, if:

(i) Ω ∈ A.

(ii) For all A ∈ A, Ac ∈ A.

(iii) For all A,B ∈ A, A ∪B ∈ A.

If A is an algebra, and moreover

(iv)
⋃∞

n=1An ∈ A, whenever for all n ∈ N, An ∈ A,

1



2 1 A review of measure theory

then A is called a σ-algebra.

Definition 1.1.2 A space, Ω, together with a σ-algebra, F , of subsets

of Ω is called a measurable space, (Ω,F).

Definition 1.1.3 Let (Ω,F) be a measurable space. A map µ : F →
[0,∞] from F the non-negative real numbers (and infinity) is called a

(positive) measure, if

(i) µ(∅) = 0.

(ii) For any countable family {An}n∈N of mutually disjoint elements of F ,

µ

(⋃

n∈N

An

)
=
∑

n∈N

µ(An). (1.2)

A measure, µ, is called finite, if µ(Ω) < ∞. A measure is called σ-

finite, if there exists a countable class, Ωn, of subsets of Ω, such that

Ω =
⋃

n∈N Ωn, such that, for all n ∈ N, µ(Ωn) <∞.

A triple, (Ω,F , µ), is called a measure space.

Definition 1.1.4 Let (Ω,F) be a measurable space. A positive mea-

sure, P, on (Ω,F) that satisfies P[Ω] = 1 is called a probability measure.

A triple (Ω,F ,P), where Ω is a set, F a σ-algebra of subsets of Ω, and

P a probability measure on (Ω,F), is called a probability space.

Probability spaces provide the scenery where probability theory takes

place. The set of sceneries is huge, since we have so far not made any re-

striction on the allowable spaces Ω. In most instances, we will, however,

want to stay on reasonable grounds. Fortunately, where is a quite canon-

ical setting where everything we ever want to do can be constructed.

This is the realm where Ω is a topological space and F = B(Ω) is the

Borel-σ-algebra of Ω.

We recall the definition of a topological space.

Definition 1.1.5 A space, E, is called a topological space, if for every

point p ∈ E there exists a collection, Up, of subsets of E, called neigh-

borhoods, with the following properties:

(i) For every point, p, Up 6= ∅.
(ii) Every neighborhood of p contains p.

(iii) If U1, U2 ∈ Up, then there exists U3 ∈ Up such that U3 ⊂ U1 ∩ U2.

(iv) If U ∈ Up and q ∈ U , then there exists V ∈ Uq such that V ⊂ U .
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Recall that in a topological space, one can define the notions such open

sets and closed sets ; open sets have the property that any of its points

has a neighborhood that is contained in the set, and closed sets are the

complements of open sets. Note that the empty set is also considered as

an open set by default. Since the entire space E is also open, the empty

set is, however, also a closed set. Two topological spaces are considered

equivalent, or have the same topology, if they contain the same open sets.

In particular, given two sets of collections of neighborhoods, Up, and Vp,

on a space E, then they generate the same topology, if for any p ∈ E,

and any U ∈ Up, there exists V ∈ Vp such that V ⊂ U and and for any

V ∈ Vp there exists U ∈ Up such that U ⊂ V .

Definition 1.1.6(i) A topological space, Ω, is called Hausdorff, if any

two distinct points in Ω have disjoint neighborhoods.

(ii) A topological space, E, is called separable, if there exists a countable

subset, E0 ⊂ E whose closure1 is E.

Definition 1.1.7 Let E be a topological space. The Borel-σ-algebra,

B(E) of E is the smallest σ-Algebra that contains all open sets of E.

The point behind the notion of the Borel-σ-algebra is that it is big

enough to satisfy our needs, but small enough to ensure that it is possible

to construct measures on it. Larger σ-algebras, such as the power set

on any uncountable topological space, do not usually allow to define

measures with nice properties on them.

One says that the Borel-σ-algebra is generated by the open sets of E.

This notion will be used quite frequently. We say in general that a class,

A, of a space Ω generates a σ-Algebra, σ(A), defined as the smallest

σ-algebra that contains A,

σ (A) ≡
⋂

F⊃A

F isσ−algebra

F .

Even more structure appears if we work on so-called metric spaces.

Definition 1.1.8 Let E be a set. A map, ρ : M ×M :→ [0,+∞], is

called a metric, if

(i) ρ(x, y) = 0, if and only if x = y;

(ii) ρ(x, y) = ρ(y, x);

(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z), for all x, y, z ∈ E.

1 The closure of a subset, A, of a topological space is the intersection of all closed
subsets containing A.
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The set Br(x) ≡ {y ∈ E : ρ(x, y) < r} is called the (open) ball of radius

r.

The set of neighborhoods obtained from the open balls associated to

a metric, ρ, is called the metric topology. A topological space endowed

with a metric and its metric topology is called a metric space.

A sequence xn ∈ E, n ∈ N is called a Cauchy sequence, if for any

ǫ > 0, there exists n0 ∈ N, such that for all n,m ≥ n0, ρ(xn, xm) < ǫ.

A metric space, E, is called complete, if any Cauchy sequence in E

converges.

A further useful specialisation is the restriction to so called Pol-

ish spaces, that is separable, completely metrisable spaces.A completely

metrisable space is a space that it homeomorphic to a complete metric

space. That is, a Polish space is essentially a complete, separable metric

space up to the fact that the metric may not have been fixed. Recall

that Rd is a Polish space, and so is RN when equipped with the product

topology.

Note that in many cases, different families of sets generate the same

σ-algebra. For instance, if E is not only a topological space, but a

metric space with the topology given by the metric topology, then the

set of open balls generates the Borel-σ-algebra. But also the set of closed

balls will generate. If E is the real line, the half-lines also generate the

Borel-σ-algebra.

An advantage in Ω being a Polish space lies in the fact that one can

choose as a generator of the Borel-σ-algebra a countable collection of sets.

E.g., in the case of the real line, the Borel-σ-algebra is already generated

by the half-lines (−∞, q], with q ∈ Q (just observe that if x is any real

number, there exists a sequence qn ↓ x, and the set
⋂

n∈N(−∞, qn] =

(−∞, x] is also contained in the σ-algebra generated by these half-lines.

A related, but more general class of spaces are sometimes useful.

These are called Lousin spaces. These are spaces that are homeomorphic

to a Borel subset of a compact metric space.

Two notions of special types of classes are very useful in this context.

Definition 1.1.9 Let Ω be a space. A class of Ω, T , is called a Π-

system, if T is closed under finite intersections; a class, G, is called a

λ-system, if

(i) Ω ∈ G,
(ii) If A,B ∈ G, and A ⊃ B, then A \B ∈ G,
(iii) If An ∈ G and An ⊂ An+1, then limn↑∞An ∈ G.
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The following useful observation is called Dynkin’s theorem.

Theorem 1.1.1 If T is a Π-system and G is a λ-system, then G ⊃ T
implies that G contains the smallest σ-algebra containing T .

The most useful application of Dynkin’s theorem is the observation

that, if two probability measures are equal on a Π-system that generates

the σ-algebra, then they are equal on the σ-algebra. (since the set on

which the two measures coincide forms a λ-system containing T ).

Examples. The general setup allows allows to treat many important

examples on the same footing.

Countable spaces. If Ω is a countable space, the natural topology is

the discrete topology. Here the set of neighborhoods of a point p is just

the set {p} itself. Clearly this is a topology, and all sets are open and

closed with respect to it. The Borel-σ-algebra consists of the power set

of Ω.

Euclidean space. Rd equipped with the Euclidean metric is a met-

ric space. Choosing as sets of neighborhoods the set of all open balls,

Br(p) ≡ {x ∈ Rd : ‖x − p‖ < r} turns this into a topological space.

The corresponding Borel-σ-algebra is the smallest σ-algebra containing

all these balls.

Note that, since on Rd the Euclidean norm and the sup-norm are

equivalent, the Borel-σ-algebra is also generated by open (or closed)

rectangles.

Infinite product spaces. If E is a topological space, then the infinite

Cartesian product space, E∞, can also be turned into a topological space

through the product topology. Here the set of neighborhoods of a point

p ≡ (p1, p2, p3, . . . ) is given by the collection of sets

Up1
× Up2

× Upk
× E × E × . . . , (1.3)

where k ∈ N, and Upi ∈ Upi . If B(E) is the Borel-σ-algebra of E,

then the Borel-σ-algebra of E∞ is the product σ-algebra, B(E∞) =

B(E)⊗∞, i.e. the σ-Algebra that is generated by the family of sets

A1 × · · · × Ak × E × . . . , k ∈ N, Ai ∈ B(E) (where of course it also

suffices to choose the sets E × · · · × E × Ak × E × . . . , k ∈ N, and Ak

running through a generator of B(E)).

If E is a metric space, then one can also turn E∞ into a metric space,

such that the associated metric topology is equivalent to the product

topology. This is done, e.g. by setting
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‖p− q‖ ≡
∞∑

n=1

2−n‖pn − qn‖. (1.4)

Note that this implies that, if E is a Polish space, then the infinite

product space E∞ equipped with the product topology is also polish.

Infinite product spaces will be the scenario to discuss stochastic pro-

cesses with discrete time, the main topic of this course.

Function spaces. Important examples of metric spaces are normed

function spaces, such as the space of bounded, real-valued functions on

R (or subsets I ⊂ R), equipped with the supremum norm

‖f − g‖∞ ≡ sup
t∈I

|f(t)− g(t)|.

We will begin to deal with such examples in the later parts of this course,

when we introduce Gaussian random processes with continuous time.

Spaces of measures. Another space we are often encountering in

probability theory is that of measures on a Borel-σ-algebra. There are

various ways to introduce topologies on spaces of measures, but a very

common one is the so-called weak topology. Let E be the topological

space in question, and C0(E,R) the space of real-valued, bounded, and

continuous functions on E. We denote by M+(E,B(E)) the set of all

positive measures on (E,B(E)). One can then define neighborhoods of

a measure µ of the form

Bǫ,k,f1,...,fk(µ) ≡
{
ν ∈ M+(E,B(E)) :

k
max
i=1

|µ(fi)− ν(fi)| < ǫ
}
,

(1.5)

where ǫ > 0, k ∈ N, and fi ∈ C0(E,R).

If E is a Polish space, then the weak topology can also be derived

from a suitably defined metric.

1.2 Construction of measures

The problem of the construction of measures in the general context of

topological spaces is not entirely trivial. This is due to the richness of a

Borel-σ-algebra and the hidden subtlety associated with the requirement

of σ-additivity. The general strategy is to construct a “measure” first on

a simpler set, an algebra or a semi-algebra, and then to use a powerful

theorem ensuring the unique extendibility to the σ-algebra.

To do this we first define the notion of a σ-additive set function.
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Definition 1.2.1 Let A be a class of subset of some set Ω. A function

ν : A → [0,∞] is called a positive, σ- additive (or countably additive)

set function, if

(i) ν(∅) = 0;

(ii) For any sequence, Ak, k ∈ N, of mutually disjoint elements of A such

that
⋃

k∈NAk ∈ A,

ν

(⋃

k∈N

Ak

)
=
∑

k∈N

ν(Ak) (1.6)

The aim of this section is to prove the following version of Carathéodory’s

theorem.

Theorem 1.2.2 Let Ω be a set and let S be an algebra on Ω. Let µ0 be

a countably additive map S → [0,∞]. Then there exists a measure, µ,

on (Ω, σ(S)), such that µ = µ0 on S.
If µ0 is σ-finite, then µ is unique.

Proof. We begin by defining the notion of an outer measure.

Definition 1.2.2 Let Ω be a set. A map µ∗ : P(Ω) → [0,∞] is called

an outer measure if,

(i) µ∗(∅) = 0;

(ii) If A ⊂ B, then µ∗(A) ≤ µ∗(B) (increasing);

(iii) for any sequence An ∈ P(Ω), n ∈ N,

µ∗
(⋃

n∈N

An

)
≤
∑

n∈N

µ∗ (An) (1.7)

(σ-sub-additivity).

Note that an outer measure is far less constraint than a measure; this

is why it can be defined on any set, not just on σ-algebras.

Example. If (Ω,F , µ) is a measure space, we can define an extension

of µ that will be an outer measure on P(Ω) as follows: For any D ⊂ Ω,

let

µ∗(D) ≡ inf{µ(F ) : F ∈ F ;F ⊃ D}. (1.8)

This is of course not how we want to proceed when constructing a

measure. Rather, we will construct an outer measure from a σ-additive

function on an algebra (that is also a Π-system), and then use this to

construct a measure.

Next we define the notion of µ∗-measurability of sets.
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Definition 1.2.3 A subset B ⊂ Ω is called µ∗-measurable, if, for all

subsets A ⊂ Ω,

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc). (1.9)

The set of µ∗-measurable sets is called M(µ∗).

Theorem 1.2.3 (i) M(µ∗) is a σ-algebra that contains all subsets

B ⊂ Ω such that µ∗(B) = 0.

(ii) The restriction of µ∗ to M(µ∗) is a measure.

Proof. Note first that in general, by sub-additivity,

µ∗(A) ≤ µ∗(A ∩B) + µ∗(A ∩Bc). (1.10)

If µ∗(B) = 0, we have also that

µ∗(A) ≥ µ∗(A ∩Bc) = µ∗(A ∩B) + µ∗(A ∩Bc). (1.11)

Thus, M(µ∗) contains all set B with µ∗(B) = 0. This implies in partic-

ular that ∅ ∈ M(µ∗). Also, by the symmetry of the definition, M(µ∗)
contains all its sets together with their complements. Thus the only

non-trivial thing to show (i) is the stability under countable unions. Let

B1, B2 be in M(µ∗). Then

µ∗(A ∩ (B1 ∪B2)) = µ∗(A ∩ (B1 ∪B2) ∩B1) + µ∗(A ∩ (B1 ∪B2) ∩Bc
1)

= µ∗(A ∩B1) + µ∗(A ∩B2 ∩Bc
1), (1.12)

where we used that B1 ∈ M(µ∗) for the first equality. Then

µ∗(A ∩ (B1 ∪B2)) + µ∗(A ∩ (B1 ∪B2)
c) (1.13)

= µ∗(A ∩B1) + µ∗(A ∩B2 ∩Bc
1) + µ∗(A ∩Bc

1 ∩Bc
2)

= µ∗(A ∩B1) + µ∗(A ∩Bc
1) = µ∗(A).

Thus B1 ∪B2 ∈ M(µ∗). This implies that M(µ∗) is closed under finite

union. Since it is also closed under passage to the complement, it is

closed under finite intersection. Thus it is enough to show that countable

unions of pairwise disjoint sets, Bk ∈ M(µ∗), k ∈ N, are in M(µ∗). To

show this, we show that, for all m ∈ N,

µ(A) =

m∑

n=1

µ∗(A ∩Bn) + µ∗
(
A ∩

m⋂

n=1

Bc
n

)
. (1.14)

This holds for m = 1 by definition, and if it holds for m, then
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µ∗
(
A ∩

m⋂

n=1

Bc
n

)
= µ∗

(
A ∩

m⋂

n=1

Bc
n) ∩Bm+1

)
+ µ∗

(
A ∩

m+1⋂

n=1

Bc
n

)

= µ∗ (A ∩Bm+1) + µ∗
(
A ∩

m+1⋂

n=1

Bn

)
,

so, inserting this into (1.14), it holds for m+ 1. Hence, by induction, it

is true for all m ∈ N.

From (1.14) we deduce further that

µ(A) ≥
m∑

n=1

µ∗(A ∩Bn) + µ∗
(
A ∩

∞⋂

n=1

Bc
n

)
. (1.15)

Now we let m tend to infinity, and use sub-additivity:

µ(A) ≥
∞∑

n=1

µ∗(A ∩Bn) + µ∗
(
A ∩

∞⋂

n=1

Bc
n

)
(1.16)

≥ µ∗
(
A ∩

( ∞⋃

n=1

Bn

))
+ µ∗

(
A ∩

∞⋂

n=1

Bc
n

)
.

Since the converse inequatlity follows by sub-additivity, equality holds

in (1.16) and thus the union
⋃∞

n=1Bn ∈ M(µ∗).

It remains to prove that µ∗ restricted to M(µ∗) is a measure. We know

already that µ∗(∅) = 0. Let now Bn be disjoint as above. Let us choose

in the first line of (1.16) A =
⋃∞

n=1Bn. This gives

µ∗
( ∞⋃

n=1

Bn

)
≥

∞∑

n=1

µ∗ (Bn) . (1.17)

Since the converse inequality holds by sub-additivity, equality holds and

the result is proven.

The preceding theorem provides a clear strategy for proving Carathéodory’s

theorem. All we need is to prescribe a σ-additive function, µ, on the

algebra. Then construct an outer measure µ∗. This can be done in the

following way: If S is an algebra, set

µ∗(D) = inf{µ(A) : A ∈ S;A ⊃ D} (1.18)

One needs to show that this is sub-additive and defines an outer measure.

Once this is done, it remains to show that M(µ∗) contains σ(S). This

is done by showing that it contains S, since M(µ∗) is a σ-algebra.

Let us now conclude our proof by carrying out these steps.
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Lemma 1.2.4 Let S be an algebra, µ a σ-additive function on S, and
µ∗ defined by (1.18). Then µ∗ is an outer measure.

Proof. First, note that the first two conditions for µ∗ to be an outer

measure are trivially satisfied. To prove sub-additivity, let An, n ∈ N

be a family of subsets of Ω. For each n, we can choose sets Fn ∈ S,
such that An ⊂ Fn, and µ(Fn) ≤ µ∗(An) + ǫ2−n, for any ǫ > 0 (since

µ∗(An) = inf{µ(F ) : F ∈ S;F ⊃ An}. Then, since
⋃

n Fn ⊃ ⋃
nAn,

and µ is σ-additive,

µ∗
(⋃

n∈N

An

)
≤ µ

(⋃

n∈N

Fn

)
≤
∑

n∈N

µ (Fn) ≤
∑

n∈N

µ∗(An) + 2ǫ, (1.19)

which proves the claim since ǫ > 0 is arbitrary.

Lemma 1.2.5 Let µ∗ be the outer measure defined by (1.18). LetM(µ∗)
be the σ-algebra of µ∗-measurable sets. Then σ(S) ⊂ M(µ∗).

Proof. We must show that M(µ∗) contains a family that generates

σ(S). In fact, we will show that it contains all the elements of the

algebra S. To see this, let A ⊂ Ω be arbitrary. Then (if µ∗(A) <∞), for

any ǫ > 0, there is a set F ∈ S, such that A ⊂ F and µ∗(A) ≥ µ(F )− ǫ.

But then, for B ∈ S,
µ∗(A ∩B) ≤ µ(F ∩B) (1.20)

and also

µ∗(A ∩Bc) ≤ µ(F ∩Bc) (1.21)

But the two sets on the right-hand sides are disjoint and in S. Thus

µ∗(A ∩B) + µ∗(A ∩Bc) ≤ µ(F ∩B) + µ(F ∩Bc) = µ(F ) ≤ µ∗(A) + ǫ.

(1.22)

This proves

µ∗(A) ≥ µ∗(A ∩B) + µ∗(A ∩Bc) (1.23)

and since the opposite inequality follows by sub-additivity, B ∈ M(µ∗).

Thus we have in fact constructed an outer measure that is a measure

on σ(S) and that extends µ on S. The uniqueness of the extension in the

finite case follows from Dynkin’s theorem. Assume that there are two

extensions, µ and ν that coincide on S. One verifies easily that the class

of sets where µ(B) = ν(B) is a λ-system which contains the Π-system
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S; by Dynkin’s theorem this λ-system must be σ(S). Finally, if µ is

σ-finite, one uses the following standard argument (that allows to carry

many results form finite to σ-finite measures): By σ-finiteness, there

exists a sequence of increasing sets, Ωn ↑ Ω, with µ(Ωn) <∞. Then the

measure µn ≡ µ1IΩn ↑ µ. So if there are two extensions of a given σ-

additive set function, then their restrictions to all Ωn are finite measures

and must coincide. But then so must their limits. This concludes the

proof of Carathéodory’s theorem.

Remark 1.2.1 Carathéodory’s theorem should appear rather striking

at first by its generality. It makes no assumptions on the nature of the

space Ω whatsoever. Does this mean that the construction of a measure

is in general trivial? The answer is of course no, but Caratherodory’s

theorem separates clearly the topological aspects form the algebraic as-

pects of measure theory. Namely, it shows that in a concrete situation,

to construct a measure one needs to construct a σ-additive set function

on an algebra that contains a Π-system that will generate the desired σ-

algebra. The proof of Carathéodory’s theorem shows that the extension

to a measure is essentially a matter of algebra and completely general.

We will see later how topological aspects enter into the construction

of additive set functions, and why aspects like separability and metric

topologies become relevant.

Remark 1.2.2 The σ-algebra M(µ∗) is in general not equal to the σ-

algebra generated by S. In particular, we have seen that M(µ∗) contains
all sets of µ∗-measure zero, all of which need not be in σ(S). This ob-

servation suggests to consider in general extensions of a given σ-algebra

with respect to a measure that ensures that all sets of measure zero are

measurable. Let (Ω,F , µ) be a measure space. Define the outer measure,

µ∗, as in (1.8), and define the inner measure, µ∗, as

µ∗(D) ≡ sup{µ(F ) : F ∈ F ;F ⊂ D}. (1.24)

Then

M(µ) ≡ {A ⊂ Ω : µ∗(A) = µ∗(A)}. (1.25)

One can easily check that M(µ) is a σ-algebra that contains F and all

sets of outer measure zero.

Terminology. A measure, µ, defined on a Borel-σ-algebra is sometimes

called a Borel measure. The measure space (Ω,M(µ), µ) is called the

completion of (Ω,F , µ).
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It is a nice feature of null-sets that not only can they be added, but

they can also be gotten rid off. This is the content of the next lemma.

Lemma 1.2.6 Let (Ω,F , µ) be a probability space and assume that G ⊂
Ω is such that µ∗(G) = 1. Then for any A ∈ F , µ∗(G ∩ A) = µ(A) and

if G ≡ F ∩ G (that is the set of all subsets of G of the form G ∩ A,

A ∈ F), then (G,G, µ∗) is a probability space.

Proof. Exercise.

Lebesgue measure. The prime example of the construction of a

measure using Carathéodory’s theorem ist the Lebesgue measure on

R. Consider the algebra, S, of all sets that can be written as finite

unions of semi-open, disjoint intervals of the form (a, b], and (a,+∞),

a ∈ R ∪ {−∞}, b ∈ R. Clearly, the function λ, defined by

λ

(⋃

i

(ai, bi]

)
=
∑

i

(bi − ai) (1.26)

provides a countably additive set function (this needs a proof!!). Then

we know that this can be extended to σ(S) = B(Ω); more precisely,

one actually constructs a measure on the σ-algebra M(λ∗), and strictly

speaking it is this measure on the complete measure space (R,M(λ), λ)

that is called the Lebesgue measure.

Of course the same construction can be carried out on any finite non-

empty interval, I ⊂ R; the corresponding measures are finite and thus

unique. It is easy to see that λ as a measure on R is σ-finite and hence

also unique.

The construction carries over, with obvious modificatons, to Rd: just

replace half-open intervals by half-open rectangles. The key is that we

have a natural notion of volume for the elementary objects, and that

this provides a σ-additive function an the corresponding algebra.

On topological spaces, one can ask for a number of continuity related

properties of measures that occasionally will come very handy.

Definition 1.2.4 Let Ω be a Hausdorff space and B(Ω) the correspond-
ing Borel-σ-algebra. A measure, µ, on (Ω,B(Ω)), is called Then:

(0) Borel measure, if for any compact set, C ∈ F , µ(C) <∞;

(i) inner regular or tight, if, for all B ∈ F , µ(B) = supC⊂B µ(C), where

the supremum is over all compact sets contained in B;

(ii) outer regular, if for all B ∈ F , µ(B) = infO⊃B µ(O), where the infi-

mumum is over all open sets containing B.
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(iii) locally finite, if any point in Ω contains a neighborhood, U , such that

µ(U) <∞.

(iv) Radon measure, if it is inner regular and locally finite.

A very important result is that on a compact metrisable spaces, all

probability measures are inner regular.

Theorem 1.2.7 Let Ω be a compact metrisable space, and let P be a

probability measure on (Ω,B(Ω)). Then P is inner regular.

Proof. Let A be the class of elements, B, of B(Ω), such that, for all

ǫ > 0, there exists a compact set, K ⊂ B, and an open set, G ⊃ B,

such that P(B\K) < ǫ, and P(G\B) < ǫ. We want to show that A
is an algebra. First, if B ∈ A, then its complement, Bc, will also be

in A (for Gc is closed, Bc ⊃ Gc, and Bc\Gc = G\B, and vice versa).

Next, if B1, B2 ∈ A. Then there are Ki ⊂ Bi and Gi ⊃ Bi, such

that P(Bi\Ki) < ǫ/2 and P(Gi\Bi) < ǫ/2. Then K = K1 ∪ K2 and

G = G1 ∪G2 are the desired sets for B. Thus A is an algebra.

Now let Bn be an increasing sequence of elements of A such that⋃
n∈NBn = B. Choosing setKn and Gn as before, but with ǫ/2 replaced

by ǫ2−n−1. Then there will be N < ∞ such that P
(
B\⋃N

n=1Kn

)
< ǫ.

Namely, P
(
B\⋃n∈NKn

)
< ǫ/2, while P

(⋃
n∈NKn\

⋃N
n=1Kn

)
< ǫ/2.

Therefore, there exists a compact setK ≡ ⋃N
n=1Kn such that P(B\K) <

ǫ. The same construction works for the corresponding open sets, and so

B ∈ A. Thus A is a σ-algebra.

Now Ω is metrisable, so there exists a metric, ρ, such that the topology

of Ω is equivalent to the metric topology. Then, if K is a closed and

thus compact subset of Ω, then K is the intersection of a sequence of

open sets Gn ≡ {ω ∈ Ω : ρ(ω,K) < 1/n},

K =
⋂

n∈N

Gn (1.27)

Since Gn ↓ K, and P is finite, it follows that P[Gn] ↓ P[K] (recall that

Gn\K ↓ ∅, and hence P[Gn\K] ↓ 0, due to the σ-additivity. This means

that K ∈ A. Since A is a σ-algebra that contains all closed sets, B(Ω)
contains A. But since B(Ω) is the smallest σ-algebra that contains all

closed sets, B(Ω) = A.

Now for any B ∈ B(Ω), andK ⊂ B compact, P(B) = P(K)+P(B\K).

But since, for any B ∈ A, and for any ǫ > 0, by definition, there exists
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K such that P(B\K) < ǫ. Thus sup{P(K) : K ⊂ B} = P(B), so P is

inner regular.

Remark 1.2.3 Note that the proof shows that P is also outer regular.

Measures that are both inner and outer regular are sometimes called

regular.

1.3 Random variables

Definition 1.3.1 Let (Ω,F) and (E,G) be two measurable spaces. A

map f : Ω → E is called measurable from (Ω,F) to (E,G), if, for all

A ∈ G, f−1(A) ≡ {ω ∈ Ω : f(ω) ∈ A} ∈ F .

The notion of measurability implies that a measurable map is capa-

ble of transporting a measure from one space to another. Namely, if

(Ω,F ,P) is a probability space, and f is a measurable map from (Ω,F)

to (E,G), then
Pf ≡ P ◦ f−1

defines a probability measure on (E,G), called the induced measure.

Namely, for any B ∈ G, by definition

Pf (B) = P
[
f−1(B)

]

is well defined, since f−1(B) ∈ F .

The standard notion of a random variable refers to a measurable func-

tion from some measurable space to the space (R,B(R)). We will gener-

ally extend this notion and call any measurable map from a measurable

space (Ω,F) to a measurable space (E,B(E)), where E is a topologi-

cal, respectively metric space, a E-valued random variable or a E-valued

Borel function. Our privileged picture is then that we have an unspec-

ified, so called abstract probability space (Ω,F ,P) on which all kinds of

random variables, be it, reals, infinite sequences, functions, or measures,

are defined, possibly simultaneously.

An important notion is then that of the σ-algebra generated by ran-

dom variables.

Definition 1.3.2 Let (Ω,F) be a measurable space, and let (E,B(E))

be a topological space equipped with its Borel-σ-algebra. Let f be an

E-valued random variable. We say that σ(f) is the smallest σ-algebra

such that f is measurable from (Ω, σ(f)) to (E,B(E)).
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Note that σ(f) depends on the set of values f takes. E.g., if f is real

valued, but takes only finitely many values, the σ-algebra generated by

f has just finitely many elements. If f is the constant function, then

σ(f) = {Ω, ∅}, the trivial σ-algebra. This notion is particularly useful,

if several random variables are defined on the same probability space.

Dynkin’s lemma has a sometimes useful analogue for so-called mono-

tone classes of functions.

Theorem 1.3.8 Let H be a class of bounded functions on Ω to R. As-

sume that

(i) H is a vector space over R;

(ii) 1 ∈ H;

(iii) if fn ≥ 0 are in H, and fn ↑ f , where f is bounded, then f ∈ H.

Then, if H contains the indicator functions of every element of a Π-

system S, then H contains any bounded σ(S)-measurable function.

Proof. Let D be the class of subsets D of Ω such that 1ID ∈ H. Then D
is a λ-system. Since by hypothesis it contains S, by Dynkin’s theorem, D
contains the σ-algebra generated by S. Now let f be a σ(S)-measurable

function s.t. 0 ≤ f ≤ K <∞. Set

D(n, i) ≡ {ω ∈ Ω : i2−n ≤ f(ω) < (i + 1)2−n}, (1.28)

and set

fn(ω) ≡
K2n∑

i=0

i2−n1ID(n,i)(ω). (1.29)

Every D(n, i) is σ(S)-measurable, and so 1ID(n,i) ∈ H, and so by (i),

fn ∈ H. Since fn ↑ f , f ∈ H.

To conclude, we take a general σ(S)-measurable function and decom-

pose it into the positive and negative part and treat each part as before.

An important property of measurable functions is that the space of

measurable functions if closed under limit procedures.

Lemma 1.3.9 Let fn, n ∈ N, be real valued random variables. Then

the functions

f+ ≡ lim sup
n↑∞

fn, and f− ≡ lim inf
n↑∞

fn (1.30)

are measurable. In particular, if the fn → f pointwise, than f is mea-

surable.
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The proof is left as an exercise.

If Ω is a topological space, we have the natural class of continuous

functions from Ω to R. It is easy to see that all continuous functions

are measurable if Ω and R are equipped with their Borel σ-algebras.

Thus, all functions that are pointwise limits of continuous functions are

measurable, etc..

Remark 1.3.1 Instead of introducing the Borel-σ-algebra, one could go

a different path and introduce what is called the Baire-σ-algebra. Here

one proceeds form the idea that on a topological space one naturally

has the notion of continuous functions. One certainly will want all of

these to be measurable functions, but certainly one will want more: any

pointwise limit of a continuous function should be measurable, as well

as limits of sequences of such functions. In this way one arrives at a

class of functions, called Baire-functions, that is defined as the smallest

class of functions that is closed under pointwise limits and that contains

the continuous functions. One can then define the Baire-σ-algebra as

the smallest σ-algebra that makes all Baire-functions measurable. It is

in general true that the Borel-σ-algebra contains the Baire-σ-algebra,

but in general they are not the same. However, on most spaces we will

consider (Polish spaces), the two concepts coincide.

1.4 Integrals

We will now recall the notion of an integral of a measurable function

(respectively expectation value of random variables).

To do this one first introduces the notion of simple functions :

Definition 1.4.1 A function, g : Ω → R, is called simple if it takes

only finitely many values, i.e. if there are numbers, w1, . . . , wk, and a

partition of Ω, Ai ∈ F with
⋃k

i=1Ai = Ω, such that Ai = {ω ∈ F :

g(ω) = wi}. Then we can write

g(ω) =

k∑

i=1

wi1IAi(ω).

The space of simple measurable functions is denoted by E+.

It is obvious what the integral of a simple function should be.

Definition 1.4.2 Let (Ω,F , µ) be a measure space and g =
∑k

i=1 wi1IAi

a simple function. Then
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∫

Ω

gdµ =
k∑

i=1

wiµ(Ai). (1.31)

The integral of a general measurable function is defined by approxi-

mation with simple functions.

Definition 1.4.3(i) Let f be non-negative and measurable. Then∫

Ω

fdµ ≡ sup
g≤f,g∈E+

∫

Ω

gdµ (1.32)

Note the the value of the integral is in R ∪ {+∞}.
(ii) If f is measurable, set

f(ω) = 1If(ω)≥0f(ω) + 1If(ω)<0f(ω) ≡ f+(ω)− f−(ω)

If either
∫
Ω f+(ω) <∞ or −

∫
Ω f−(ω)dµ <∞, define∫

Ω

fdµ ≡
∫

Ω

f+(ω)dµ−
∫

Ω

f−(ω)dµ (1.33)

(iii) We call a function f integrable or absolutely integrable, if
∫

Ω

|f |dµ <∞.

We state the key properties of the integral without proof.

The most fundamental property is the monotone convergence theorem,

which to a large extent justifies the (otherwise strange) definition above.

Theorem 1.4.10 Let (Ω,F , µ) be a measure space and f a real valued

non-negative measurable function. Let f1 ≤ f2 ≤ · · · ≤ fk ≤ fk+1 ≤
· · · ≤ f be a monotone increasing sequence of non-negative measurable

functions that converge pointwise to f . Then∫

Ω

fdµ = lim
k↑∞

∫

Ω

fkdµ (1.34)

The monotone convergence theorem allows to provide an “explicit”

construction of the integral as originally used by Lebesgue as a definition.

Lemma 1.4.11 Let f be a non-negative measurable function. Then
∫

Ω

fdµ ≡ lim
n↑∞

[
n2n−1∑

k=0

2−nkµ
(
ω : 2−nk ≤ f(ω) < 2−n(k + 1)

)

+nµ (ω : f(ω) ≥ n)

]
(1.35)



18 1 A review of measure theory

The following lemma is known as Fatou’s lemma:

Lemma 1.4.12 Let fn be a sequence of measurable non-negative func-

tions. Then ∫
lim inf

n
fndµ ≤ lim inf

n

∫
fndµ. (1.36)

Equally central is Lebesgue’s dominated convergence theorem:

Theorem 1.4.13 Let fn be a sequence of absolutely integrable func-

tions, and let f be a measurable function such that

lim
n
fn(ω) = f(ω), for µ-almost all ω.

Let g ≥ 0 be a positive function such that
∫
gdµ <∞ and

|fn(ω)| ≤ g(ω), for µ-almost all ω.

Then f is absolutely integrable with respect to µ and

lim
n↑∞

∫
fndµ =

∫
fdµ. (1.37)

In the case when we are dealing with integrals with respect to a proba-

bility measure, there exists a very useful improvement of the dominated

convergence theorem that leads us to the important notion of uniform

integrability.

Let us first make the following observation.

Lemma 1.4.14 Let (Ω,F ,P) be a probability space and let X be an

integrable real valued random variables on this space. Then, for any

ǫ > 0, there exists K <∞, such that

E
[
|X |1I|X|>K

]
< ǫ. (1.38)

Proof. This is a direct consequence from the monotone convergence

theorem. We leave the details to the reader.

When dealing with families of random variables, one problem is that

this property will in general not hold uniformly. A nice situation occurs

if it does:

Definition 1.4.4 Let (Ω,F ,P) be a probability space. A class, C, of
real valued random variables, X , is called uniformly integrable, if, for

any ǫ > 0, there exists K <∞, such that, for all X ∈ C,
E
[
|X |1I|X|>K

]
< ǫ. (1.39)
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Note that, in particular, if C is uniformly integrable, then there exists

a constant, C <∞, such that, for all X ∈ C, E|X | ≤ C.

Remark 1.4.1 The simplest example of a class of random variables

that is not uniformly integrable is given as follows. Take Xn such that

P[Xn = 1] = 1− 1/n and P[Xn = n] = 1/n. (1.40)

Clearly, for any K, limn↑∞ E|X |1I|x|>K = 1. One should always keep

this example in mind when reflecting upon uniform integrability.

Note that on the other hand the class of functions, Yn, with

P[Xn = 1] = 1− 1/n and P[Xn =
√
n] = 1/n (1.41)

is unifomrly integrable.

Theorem 1.4.15 Let Xn, n ∈ N and X be integrable random variables

on some probability space (Ω,F ,P). Then limn↑∞ E|Xn−X | = 0, if and

only if

(i) Xn → X in probability, and

(ii) the family Xn, n ∈ N is uniformly integrable.

Proof. We show the “if” part. Define

φK(x) ≡





K, ifx > K,

x, if |x| ≤ K,

−K, ifx < −K.
(1.42)

We have obviously from the uniform integrability that

E|φK(Xn)−Xn| ≤ ǫ, (1.43)

for n ≥ 0 (where for convenience we set X ≡ X0). Moreover, since

|φK(x) − φK(y)| ≤ |x − y|, (i) implies that φK(Xn) → φK(X) in prob-

ability. Since, moreover, φK(Xn) is bounded, we may choose n0 such

that, for n ≥ n0, P[|φK(Xn)− φK(X)| > δ] ≤ ǫ/K. Then

E|φK(Xn)− φK(X)| ≤ δ + 2ǫ

and so limn↑∞ E|φK(Xn)− φK(X)| = 0. In view of the fact that (1.43)

holds for any ǫ, it follows that E|Xn −X | → 0.

Let us uow show the converse (“only”) direction: When E|Xn−X | →
0, then by Chebychev’s inequality, P[|Xn −X | > ǫ] ≤ E|Xn−X|

ǫ → 0, so

Xn → X in probability. Moreover, X is absolutely integrable.

Now wite Xn = Xn −X +X and use that, by the triangle inequality,

E|Xn| ≤ E|X |+ E|Xn −X |. (1.44)
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Now for any ǫ > 0, there exists n0 such that, for all n ≥ n0, E|Xn−X | <
ǫ. Since all Xi and X are integrable, there exists K such that, for all

n ≤ n0, E|Xn|1I|Xn|>K < ǫ. Hence

E|Xn|1I|Xn|>2K ≤
{
ǫ, ifn ≤ n0

E|X |1I|Xn|>2K + ǫ.
(1.45)

Finally we use that

E|X |1I|Xn|>2K ≤ E|X |1I|X|>2K−|X−Xn| (1.46)

≤ E|X |1I|X|>K + E|X |1I|X|≤K1I|X−Xn|>K

≤ ǫ+KP (|X −Xn| > K) ≤ 2ǫ.

This concludes the proof.

The importance of this result lies in the fact that in probability theory,

we are very often dealing with functions that are not really bounded, and

where Lebesgue’s theorem is not immediately applicable either. Uniform

integrability is the the best possible condition for convergence of the

integrals. Note that the simple example (1.41) of a uniformly integrable

family given above furnishes a nice example where E|Xn − X | → 0,

but where Lebegues dominated convergence theorem cannot be applied.

(Exercise: show this!)

Exercise: Use the previous criterion to prove Lebegue’s dominated

convergence theorem in the case of probability measures.

1.5 Lp and Lp spaces

I will only rather briefly summarize some frequently used notions con-

cerning spaces of integrable functions. Given a measure space, (Ω,F , µ),
one defines, for p ∈ [1,∞] and measurable functions, f ,

‖f‖p,µ ≡ ‖f‖p ≡ (E|f |p)1/p =

(∫

Ω

|f |pdµ
)1/p

. (1.47)

The set of functions, f , such that ‖f‖p,µ <∞ is denoted by Lp(Ω,F , µ) ≡
Lp.

There are two crucial inequalities. The Minkowski inequality:

Lemma 1.5.16 For f, g ∈ Lp,

‖f + g‖p ≤ ‖f‖p + ‖g‖p, (1.48)

and the Hölder inequality
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Fig. 1.1. Convex funktion

G

G(c)
c

Lemma 1.5.17 For measurable f, g, if p, q ∈ [1,∞] are such that 1
p +

1
q = 1, then

|Efg| ≤ ‖f‖p‖g‖q, (1.49)

Both inequalities follow from one of the most important inequalities

in integration theory, Jensen’s inequality.

Theorem 1.5.18 Let (Ω,F , µ) be a probability space, let X be an ab-

solutely integrable random variable, and let G : R → R be a convex

function. Then, for any c ∈ R,

EG(X − EX + c) ≥ G(c), (1.50)

and in particular

EG(X) ≥ G(EX). (1.51)

Proof. If G is convex, then for any y there is a straight line below G

that touches G at (y,G(y), i.e. there exists m ∈ R such that G(x) ≥
G(y) + (x − y)m. Choosing x = X − EX + c and y = c and taking

expectations on both sides yields (1.5.18).

Exercise: Prove the Hölder inequalties using Jensen’s inequality.

Since Minkowski’s inequality is really a triangle inequality and linear-

ity is trivial, we would be inclined to think that ‖ · ‖p is a norm and

Lp is a normed space. In fact, the only problem ist that ‖f‖p = 0 does

not imply f = 0, since f maybe non-zero on sets of µ-measure zero.

Therefore to define a normed space, one considers equivalence classes

of functions in Lp by calling two functions, f, f ′ equivalent, if f − f ′ is
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non-zero only on set of measure zero. The space of these equivalence

classes is called Lp ≡ Lp(Ω,F , µ).
The following fact about Lp spaces will be usefull to know.

Lemma 1.5.19 The spaces Lp(Ω,F ;µ) are Banach spaces (i.e. com-

plete normed vector space).

Proof. The by now only non-trivial fact that needs to be proven is the

completeness of Lp. Let fi ∈ Lp, i ∈ N be a Cauchy sequence. Then

there are nk ∈ N, such that, for all i, j ≥ nk, ‖fi − fj‖p ≤ 2−k−k/p. Set

gk ≡ fnk
, and

F ≡
∑

k∈N

2kp|gk − gk+1|p. (1.52)

Then

EF =
∑

k∈N

2kpE|gk − gk+1|p =
∑

k∈N

2kp‖gk − gk+1‖pp <
1

2
. (1.53)

Therefore, F is integrable and hence finite except possibly on a set of

measure zero. It follows that, for all ω s.t. F (ω) is finite, |gk(ω) −
gk+1(ω)| ≤ 2−kF (ω)1/p. It follows further, using telescopic expansion

and the triangle inequality, that gk(ω) is a Cauchy sequence of real

numbers, and hence convergent. Set f(ω) = limk↑∞ gk(ω). For the ω in

the null-set where F (x) = +∞, we set f(ω) = 0. It follows readily that

E|gk − f |p → 0, (1.54)

and using once more the Cauchy property of fn, that

E|fn − f |p → 0. (1.55)

The case p = 2 is particularly nice, in that the space L2 is not only

a Banach space, but a Hilbert space. The point here is that the Hölder

inequality, applied for the case p = 2, yields

Efg ≤
√
Ef2Eg2 = ‖f‖2‖g‖2. (1.56)

This means that on L2, there exists a quadratic form,

(f, g)µ ≡
∫
fgdµ ≡ Efg (1.57)

which has the properties of a scalar product. The L2-norm being the

derived norm, ‖f‖2 =
√
(f, g)µ. Although somehow L2 spaces are not

the most natural setings for probability, it is sometime quite convenient

to exploit this additional structure.
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1.6 Fubini’s theorem

An always important tool for the computation of integral on product

spaces is Fubini’s theorem. We consider first the case of non-negative

functions.

Theorem 1.6.20 [Fubini-Tonnelli] Let (Ω1,F1, µ1), and (Ω2,F2), µ2 be

two measure spaces , and let f be a real-valued, non-negative measurable

function on (Ω1 × Ω2,F1 ⊗ F2). Then the two functions

h(x) ≡
∫

Ω2

f(x, y)µ2(dy)

and

g(y) ≡
∫

Ω1

f(x, y)µ1(dx)

are measurable with respect to F1 resp. F2, and∫

Ω1×Ω2

fd(µ1 ⊗ µ2) =

∫

Ω1

hdµ1 =

∫

Ω2

gdµ2 (1.58)

Now we turn to the general case.

Theorem 1.6.21 [Fubini-Lebesgue] Let f : (Ω1×Ω2,F1⊗F2) → (R,B(R))
be absolutely integrable with respect to the product measure µ1⊗µ2. Then

(i) For µ1-almost all x, f(x, y) is absolutely integrable with respect to µ2,

and vice versa.

(ii) The functions, h(x) ≡
∫
Ω2
f(x, y)µ2(dy) and g(y) ≡

∫
Ω1
f(x, y)µ1(dx),

are well-defined except possibly on a set of measure zero with respect

to the measures µ1, resp. µ2, and absolutely integrable with respect to

these same measures.

(iii) The equation
∫

Ω1×Ω2

fd(µ1 ⊗ µ2) =

∫

Ω1

h(x)µ1(dx) =

∫

Ω2

g(y)µ2(dy) (1.59)

holds.

1.7 Densities, Radon-Nikodým derivatives
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In Probability 1 we have encountered the notion of

a probability density. In fact, we had constructed the

Lebesgue-Stieltjes measure on R by prescribing a dis-

tribution function, F , (i.e. a non-decreasing, right-continuous

function) in term of which any interval (a, b] had mea-

sure µ((a, b]) = F (b) − F (a). In the special case when

there was a positive function f , such that for all a < b,

F (b) − F (a) =
∫ b

a
f(x)dx, where dx indicates the standard Lebesgue

measure, we called f the density of µ and said that µ is absolutely con-

tinuous with respect to Lebesgue measure.

We now want to generalise these notions to the

general context of positive measures. In particular,

we want to be able to say when two measures are

absolutely continuous with respect to each other, and

define the corresponding relative densities.

First we notice that it is rather easy to modify a

given measure µ on a measurable space (Ω,F) with

the help of a measurable function f . To do so, we set, for any A ∈ F ,

µf (A) ≡
∫

A

fdµ. (1.60)

Exercise: Show that if f is measurable and integrable, but not nec-

essarily non-negative, µf , defined as in (1.60), defines an additive set-

function. Show that, if f ≥ 0, µf is indeed a measure on (Ω,F).

We see that in the case when µ is the Lebesgue measures, µf is the

absolutely continuous measure with density f . In the general case, we

have that, if µ(O) = 0, then it is also true that µf (O) = 0. The latter

property will define the notion of absolute continuity between general

measures.

Definition 1.7.1 Let µ, ν be two measures on a measurable space (Ω,F).

We say that ν is absolutely continuous with respect to µ, or ν ≪ µ, if

and only if, all µ-null sets, O (i.e. all sets O with µ(O) = 0), are ν-null

sets.

We say that two measures, µ, ν, are equivalent if µ≪ ν and ν ≪ µ.

We say that a measure ν is singular with respect to µ, if there exists

a set O ∈ F such that µ(O) = 0 and ν(Oc) = 0.

It is important to keep in mind that the notion of absolute continuity

is not symmetric.

The following important theorem, called the Radon-Nikodým theorem,
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asserts that relative absolute continuity is equivalent to the existence of

a density.

Theorem 1.7.22 Let µ, ν be two σ-finite measures on a measurable

space (Ω,F). Then the following two statements are equivalent:

(i) ν ≪ µ.

(ii) There exists a non-negative measurable function, f , such that ν = µf .

Moreover, f is unique up to null sets.

Definition 1.7.2 If ν ≪ µ, then a positive measurable function f such

that ν = µf is called the Radon-Nikodým derivative of ν with respect to

µ, denoted

f =
dν

dµ
. (1.61)

Proof. Note that the implication (ii) ⇒ (i) is obvious from the defini-

tion. The other direction is more tricky.

We consider for simplicity the case when µ, ν are finite measures. The

extension to σ-finite measures can then easily be carried through by

using suitable partitions of Ω.

We need a few concepts and auxiliary results. The first is the notion

of the essential supremum.

Definition 1.7.3 Let (Ω,F , µ) be a measurable space and T an arbi-

trary non-empty set. The essential supremum, g ≡ esupt∈T gt, of a class,

{gt, t ∈ T }, of measurable functions gt : Ω → [−∞,+∞], is defined by

the properties

(i) g is measurable;

(ii) g ≥ gt, almost everywhere, for each t ∈ T ;

(iii) for any h that satisfies (i) and (ii), h ≥ g a.e.

Note that by definition, if there are two g that satisfy this definition,

then they are a.e. equal.

The first fact we need to establish is that the essential supremum is

always equal to the supremum over a countable set.

Lemma 1.7.23 Let (Ω,F , µ) be a measure space with µ a σ-finite mea-

sure. Let {gt, t ∈ T } be a non-empty class of real measurable functions.

Then there exists a countable subset T0 ⊂ T , such that

sup
t∈T0

gt = esupt∈T gt. (1.62)
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Proof. It is enough to consider the case when µ is finite. Moreover,

we may restrict ourselves to the case when |gt| < C, for all t ∈ T (e.g.

by passing from gt to tanh−1(gt), which is monotone and preserves all

properties of the definition). Let S denote the class of all countable

subsets of T . Set

α ≡ sup
I∈S

E

(
sup
t∈I

gt

)
. (1.63)

Now let In ∈ S be a sequence such that

sup
n∈N

E

(
sup
t∈In

gt

)
= α, (1.64)

and set T0 =
⋃

n∈N In. Of course, T0 is countable, and α = E
(
supt∈T0

gt
)
.

Then, the function g ≡ supt∈T0
gt is measurable, since it is the supre-

mum over a countable set of measurable functions. To see that it also

satisfies (ii), assume that there exists t ∈ T , such that gt > g on a set

of positive measure. Then for this t, Emax(g, gt) > Eg = α. On the

other hand, T0 ∪ {t} is a countable subset of T , and so by definition

of α, Emax(g, gt) ≤ α, which yields a contradiction. Thus (ii) holds.

To show (iii), assume that there exists h satisfying (i) and (ii). By (ii),

h ≥ gt, a.e., for each t ∈ T , and thus also h ≥ supt∈T0
gt, a.e., since a

countable union of null-sets is a null set. Thus g satisfies property (iii),

too. Therefore, g = esupt∈T gt.

The notion of essential supremum is used in the next lemma, which is

the major step in the proof of the Radon-Nikodým theorem.

Lemma 1.7.24 Let (Ω,F , µ) be a measure space, with µ a σ-finite mea-

sure, and let ν be another σ-finite measure on (Ω,F). Let H be the

family of all measurable functions, h ≥ 0, such that, for all A ∈ F ,∫
A hdµ ≤ ν(A). Then, for all A ∈ F ,

ν(A) = ψ(A) +

∫

A

gdµ, (1.65)

where ψ is a measure that is singular with respect to µ and

g = esuph∈Hh. (1.66)

Proof. We again assume µ, ν to be finite, and leave the extension to

σ-finite measures as an easy exercise. We also exclude the trivial case

of µ = 0. From Lemma 1.7.23 we know that there exists a sequence

of functions hn ∈ H, such that g = supn∈N hn. Let us first note that

if h1, h2 ∈ H, then so is h ≡ max(h1, h2). To see this, note that the

disjoint sets



1.7 Densities, Radon-Nikodým derivatives 27

A1 ≡ {ω ∈ A : h1(ω) ≥ h2(ω)}, A2 ≡ {ω ∈ A : h2(ω) > h1(ω)}
(1.67)

are measurable and A1 ∪ A2 = A. But
∫

A

hdµ =

∫

A1

h1dµ+

∫

A2

h2dµ ≤ ν(A1) + ν(A2) = ν(A), (1.68)

which implies h ∈ H. We may therefore assume the sequence hn ordered

such that hn ≤ hn+1, for all n ≥ 1. Then g = limn↑∞ hn, and by

monotone convergence, for all A ∈ F ,∫

A

gdµ = lim
n↑∞

∫

A

hndµ ≤ ν(A). (1.69)

As a consequence, ψ defined by (1.65) satisfies ψ(A) ≥ 0, for all A ∈ F .

Moreover, trivially ψ(∅) = 0, as both ν and gdµ are measures, ψ defined

as their difference is σ-additive. Thus ψ is a measure.

It remains to show that ψ is singular with respect to µ. To this end

we construct a set of zero ψ-measure whose complement has zero µ-

measure. Of course, this can only be done through a delicate limiting

procedure. To begin we define collections of sets that whose ψ-measure

is much smaller than their µ-measure. More precisely, for n ∈ N and

A ∈ F with µ(A) > 0, let

Dn(A) ≡
{
B ∈ F : B ⊂ A,ψ(B) < n−1µ(B)

}
. (1.70)

The key fact is that for any set A of positive µ measure contains such

subsets, i.e. Dn(A) 6= ∅ whenever µ(A) 6= 0. This is proven by contra-

diction: assume that DN (A) = ∅. Then set h0 = n−11IA, and then, for

all B ∈ F ,
∫

B

h0dµ = n−1µ(A∩B) ≤ ψ(A∩B) ≤ ψ(B) = ν(B)−
∫

B

gdµ. (1.71)

But then
∫
B
(h0+g)dµ ≤ ν(B), for all B ∈ F , so that g+h0 ∈ H, which

contradicts the fact that g = esuph∈Hh.

Since any set of positive µ-measure contains ψ-tiny subsets, one may

expect that a set of full µ-measure is ψ-tiny. Below we show this by

successively collecting all the µ mass in such sets.

We can now choose B1,n ∈ Dn(Ω) with the property that

µ(B1,n) ≥
1

2
sup {µ(B) : B ∈ Dn(Ω)} ≡ α1,n. (1.72)

Morally, B1,n is our first attempt to pick up as much µ-mass as we can

from the ψ-tiny sets. If we were lucky, and µ(Bc
1,n) = 0, then we stop
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B1,n

B2,n

B3,n

B3,n

Bc
1,n

µ(B1,n) = α1,n, ψ(B1,n) ≤ n−1α1,n

µ(B2,n) = α2,n, ψ(B2,n) ≤ n−1α2,n

Fig. 1.2. Construction of the sets Bi,n

the procedure. Otherwise, we continue by picking up as much mass as

we can from what was left, i.e. we choose B2,n ∈ Dn(B
c
1,n) with

µ(B2,n) ≥
1

2
sup

{
µ(B) : B ∈ Dn(B

c
1,n)
}
≡ α2,n. (1.73)

If µ ((B2,n ∪B1,n)
c) = 0, we are happy and stop. Otherwise, we continue

and choose B3,n ∈ Dn ((B1,n ∪B2,n)
c) with

µ(B3,n) ≥
1

2
sup

{
µ(B) : B ∈ Dn(B

c
1,n ∩Bc

2,n)
}
≡ α3,n, (1.74)

and so on. If the process stops at some kn-th step, set Bj,n = ∅ for

j > kn.

It is obvious from the definition that Bj,n ∈ Dn(Ω), if Bj,n 6= ∅. Since

Dn(Ω) is closed under countable disjoint unions (both ψ and µ being

measures), also Mn ≡ ⋃∞
j=1 Bj,n ∈ Dn(Ω). We want to show that

µ(M c
n) = 0, that is we have picked up all the mass eventually. To do

this, note again that, if µ(M c
n) > 0, then there exists D ∈ Dn(M

c
n) with

µ(D) > 0.

On the other hand, for any m ∈ N,

2αm,n = sup



µ(B) : B ∈ Dn




m−1⋂

j=1

Bc
j,n





 (1.75)

≥ sup{µ(B) : B ∈ Dn(M
c
n)} ≥ µ(D).

Thus, if µ(D) > 0, then there exists some α > 0, such that αm,n =
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µ(Bm,n ≥ α, for all m. Since all Bj,n are disjoint, this would imply that

µ(Mn) = ∞, which contradicts the asumption that µ is a finite measure.

Thus we conclude that µ(M c
n) = 0, and so ψ(Mn) < n−1µ(Mn) =

n−1µ(Ω). Therefore,

ψ

(
lim inf
n↑∞

Mn

)
≤ lim inf

n↑∞
ψ (Mn) = 0, (1.76)

µ

((
lim inf
n↑∞

Mn

)c)
= µ

(
lim sup
n↑∞

M c
n

)
= lim

n↑∞
µ

( ∞⋃

k=n

M c
k

)
= 0.

This proves that ψ is singular with respect to µ.

As the first consequence of this lemma, we state the famous Lebesgue

decomposition theorem.

Theorem 1.7.25 If µ, ν are σ-finite measures on a measurable space

(Ω,F), then there exist two uniquely determined measures, λc, λs, such

that ν = λs+λc, where λc is absolutely continuous with respect to µ and

λs is singular with respect to µ.

Proof. Lemma 1.7.24 provides the existence of two measures λs and

λc with the desired properties. To prove the uniqueness of this decom-

position, assume that there are λ′s, λ
′
c with the same properties. Due

to the definition of singularity, there exists a set O such that µ(O) = 0

and λs(Oc) = 0. Hence λc is fully determined if we know it on all sets

of µ-measure zero. The same holds for λ′s. If λs 6= λ′s, then for some

A ∈ F with µ(A) = 0, λs(A) 6= λ′s(A). But then it must also be true

that λ′c(A) 6= λ′c(A). However, this is impossible since these measures

are both absolutely continuous w.r.t. µ, and so λ′c(A) = λc(A) = 0!

Hence λs and λ′s agree on null sets of µ and thus are identical.

The Radon-Nikodým theorem is now immediate: Assume that ν is

absolutely continuous with respect to µ. The decomposition (1.65) ap-

plied to µ-null sets A then implies that for all these sets, ψ(A) = 0.

But ψ is singular with respect to µ, so there should be a µ-null set, A,

for which ψ(Ac) = 0. But since for all A, ψ(A) = 0, it follows that

ψ(Ω) = ψ(A) + ψ(Ac) = 0, and so ψ is the zero-measure.

All that remains is to assert that the Radon-Nikodým derivative is

unique. To do this, assume that there exists another measurable func-

tion, g∗, such that

ν(A) =

∫

A

g∗dµ. (1.77)
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Now define the measurable set A = {ω : C > g∗ > g > −C}. Then, by

assumption, ∫

A

g∗dµ = ν(A) =

∫

A

gdµ. (1.78)

But since on A g∗ > g, this can only hold if µ(A) = 0, for all C < ∞.

Thus, µ(g∗ > g) = 0. In the same way one shows that µ(g∗ < g) = 0,

implying that g and g∗ differ at most on sets of measure zero.

Remark 1.7.1 We have said (and seen in the proof), that the Radon-

Nikodým derivative is defined modulo null-sets (w.r.t. µ). This is com-

pletely natural. Note that if µ and ν are equivalent, then 0 < dν
dµ < ∞

almost everywhere, and dν
dµ = 1

dµ
dν

.

The following property of the Radon-Nikodým derivative will be needed

later.

Lemma 1.7.26 Let µ, ν be σ-finite measures on (Ω,F), and let ν ≪ µ.

If X is F-measurable and ν-integrable, then, for any A ∈ F ,∫

A

Xdν =

∫

A

X
dν

dµ
dµ. (1.79)

Proof. We may assume that µ is finite and X non-negative. Appeal-

ing to the monotone convergence theorem, it is also enough to consider

boundedX (otherwise, approximate and pass to the limit on both sides).

Let H be the class of all bounded non-negative F -measurable functions

for which (1.79) is true. Then H satisfies the hypothesis of Theorem

1.3.8: for, clearly, (i) H is a vector space, (ii) the function 1 is contained

in H be definition of the Radon-Nikodým derivative, and the property

(1.79) is stable under monotone convergence by the monotone conver-

gence theorem. Also, H contains the indicator functions of all elements

of F . Then the assertion of Theorem 1.3.8 implies that H contains all

bounded F -measurable function, as claimed.
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Conditional expectations and conditional
probabilities

In this chapter we will generalise the notion of conditional expectations

and conditional probabilities from elementary probability theory con-

siderably. In elementary probability, we could condition only on events

of positive probability. This notion is too restrictive, as we have seen

in the context of Markov processes, where this limited us to consider

discrete state spaces. The new notions we will introduce is conditioning

on σ-algebras.

2.1 Conditional expectations

Definition 2.1.1 Consider a probability space (Ω,F ,P). Let G ⊂ F be

sub-σ-algebra of F . Let X be a random variable, i.e. a F -measurable

(real-valued) function on Ω such that |EX | ≤ ∞. We say that a function

Y is a conditional expectation of X given G, written Y = E(X |G), if

(i) Y is G-measurable, and

(ii) For all A ∈ G,
E1IAY = E1IAX. (2.1)

Remark 2.1.1 If two functions Y, Y ′ both satisfy the conditions of a

conditional expectation, then they can differ only on sets of probability

zero, i.e. P[Y = Y ′] = 1. One calls such different realisations of a

conditional expectation “versions”.

Remark 2.1.2 The condition |EX | ≤ ∞means that EX is well-defined,

in the sense that EX = EX+−EX− and either EX+ <∞ or EX− <∞.

It is the weakest possible under which a definition of conditional ex-

pectation can make sense. Existence of conditional expectations can

be established under just this condition (see [4]), however, we will in

31
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the sequel only treat the simple case when X is absolutely integrable,

E|X | <∞.

Intuitively, this notion of conditional expectation can be seen as “in-

tegrating” the random variable partially, i.e. with respect to all degrees

of freedom that do not affect the σ-algebra G. A trivial example would

be the case where Ω = R2, and G is the σ-algebra of events that depend

only on the first coordinate, say x. Then the conditional expectation

of a function f(x, y) is just the integral with respect of the variables

y (recall the construction of the integral in Fubini’s theorem), modulo

re-normalisation. What is left is, of course, a function that depends only

on x, and that also satisfies property (ii). The advantage of the notion of

a conditional expectation given a σ-algebra is that it largely generalises

this concept.

Before we discuss the existence of conditional expectations with re-

spect to σ-algebras, we want to discuss the relation to the more elemen-

tary notion of conditional expectations with respect to sets. Recall that

if A ∈ F has positive mass, P(A) > 0, we can define the conditional

expectation, given A, as

E[X |A] =
∫
AXdP

P(A)
. (2.2)

Recall that when we were studying Markov chains, we wanted to define

conditional expectations of the form

E[f(Xn+1)|Xn = x]. (2.3)

In the case of finite state spaces, we could do this using the definition

(2.2), because we could without loss generality assume that P[Xn = x]

was strictly positive. In the case of continuous state space, the canonical

situation would be that P[Xn = x] = 0, for any x ∈ S, and so the

definition (2.2) is not applicable. It is to overcome this difficulty that we

introduce our new notion of conditional expectation given a σ-algebra.

Note that, in fact, the objects (2.3) are precisely interpretable as such:

Let F be the product σ-algebra generated by the two random variables

Xn, Xn+1, and let G be the sub-σ-algebra generated by Xn. Then, if

we consider the expression in (2.3) as a function of x, we see that (in

the finite state space case, when it is well-defined) it is a G-measurable

function (to be precise, we should interpret it as a function on Ω that

depends on ω through the value of Xn(ω)). Moreover, we see that, by

the law of total probability,
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EE[f(Xn+1)|Xn = ·] =
∑

x∈S
P[Xn = x]E[f(Xn+1)|Xn = x] = Ef(Xn+1),

(2.4)

so that property (ii) holds (with X ≡ f(Xn+1)).

As we can see, the difficulty associated with constructing conditional

expectations in the general case relates to making sense of expressions of

the form 0/0. However, in view of our discussion of the Radon-Nikodým

derivative, we can give a precise interpretation of this ratio. Namely, in

the discrete case, define the measure PX on (Ω,G) through
PX(A) =

∫

A

XdP, (2.5)

for all A ∈ G. Then it is clear that PX is absolutely continuous with

respect to the restriction of P to G, and the Radon-Nikodým derivative

is precisely E[X |Xn = ·], since for all A ∈ G,
PX(A) =

∑

x∈A

E[X |Xn = x]P[Xn = x]. (2.6)

It is thus clear that the construction of the conditional expectation in

the general case will be done through our general concept of the Radon-

Nikodým derivative.

Theorem 2.1.1 Let (Ω,F ,P) be a probability space, let X be a random

variable such that E|X | < ∞, and let G ⊂ F be a sub-σ-algebra of F .

Then

(i) there exists a G-measurable function, E[X |G], unique up to within sets

of measure zero, the conditional expectation of X given G, such that

for all A ∈ G, ∫

A

E[X |G]dP =

∫

A

XdP. (2.7)

(ii) If X is absolutely integrable and Z is an absolutely integrable, G-
measurable random variable such that, for some Π-System D with

σ(D) = G,
EZ = EX, and∀A∈D

∫

A

ZdP =

∫

A

XdP, (2.8)

then Z = E[X |G], almost everywhere.

Proof. We begin by proving (i). Define the set functions λ, λ+, λ− as

λ±(A) ≡
∫

A

X±dP, λ ≡ λ+ − λ− (2.9)
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Now we can consider the restriction of λ to G, denoted by λG , and the

restriction of P to G, PG . Clearly, λ± are absolutely continuous with

respect to P, and their restrictions to G, λ±G , are absolutely continuous

with respect to the restriction of P to G, PG . But since X is assumed

to be absolutely integrable with respect to P and P is a probability

measure, it follows that also λ±G are finite measures. Therefore, the

Radon-Nikodým theorem 1.7.22 implies that there exist G-measurable

functions, Y ± =
dλ±

G

dPG
, such that, for all A ∈ G,
∫

A

Y ±dP = λ±(A) =

∫

A

X±dP, (2.10)

and hence Y = dλG

dPG
≡ Y + − Y −, such that
∫

A

Y dP = λ(A) =

∫

A

XdP. (2.11)

Thus, Y has the properties of a conditional expectation and we may set

E[X |G] = Y = dλG

dPG
. Note that Y is unique to within sets of measure

zero. Finally, to show that the conditional measure is unique in the same

sense, assume that there is a function Y ′ satisfying the conditions of the

conditional expectation that differs from Y on a set of positive measure.

Then one may set A± = {ω : ±(Y ′(ω)− Y (ω)) > 0}, and at least one of

these sets, say A+, has positive measure. Then
∫

A+

XdP =

∫

A+

Y ′dP >

∫

A+

Y dP =

∫

A+

XdP, (2.12)

which is impossible. This proves uniqueness and hence (i) is established.

To prove (ii), set

A ≡
{
A ∈ F :

∫

A

ZdP =

∫

A

XdP

}
. (2.13)

then Ω ∈ A, and D ⊂ A, by assumption. Also, A is a λ-system, and so

by Dynkin’s theorem, A ⊃ σ(D) = G, and so Z is the desired conditional

expectation.

In many cases that we will encounter, the σ-algebra, G, with respect

to which we are conditioning is the σ-algebra, σ(Y ), generated by some

other random variable, Y . In that case we will often write

E[X |σ(Y )] ≡ E[X |Y ] (2.14)

and call this the conditional expectation of X given Y .
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2.2 Elementary properties of conditional expectations

Conditional expectations share most of the properties of ordinary ex-

pectations. The following is a list of elementary properties:

Lemma 2.2.2 Let (Ω,F ,P) be a probability space and let G ⊂ F be a

sub-σ-algebra. Then:

(i) If X is G-measurable, then E[X |G] = X, a.s.;

(ii) The map X → E[X |G] is linear;

(iii) EE[X |G] = EX;

(vi) If B ⊂ G is a σ-algebra, then E[E[X |G]|B] = E[X |B], a.s..
(v) |E[X |G]| ≤ E[|X | |G], a.s.;
(vi) If X ≤ Y , then E[X |G] ≤ E[Y |G], a.s.;

Proof. Left as an Exercise!

The following theorem summarises the most important properties of

conditional expectations with regard to limits.

Theorem 2.2.3 Let Xn, n ∈ N and Y be absolutely integrable random

variables on a probability space (Ω,F ,P), and let G ⊂ F be a sub-σ-

algebra. Then

(i) If Y ≤ Xn ↑ X, a.s., then E[Xn|G] ↑ E[X |G], a.s..
(ii) If Y ≤ Xn a.s., then

E

[
lim inf

n
Xn|G

]
≤ lim inf

n
E [Xn|G] . (2.15)

(iii) If Xn → X, a.s., and |Xn| ≤ |Y |, for all n, then E[Xn|G] → E[X |G],
a.s..

Of course, these are just the analogs of the three basic convergence

theorems for ordinary expectations. We leave the proofs a exercises.

A useful, but not unexpected, property is the following lemma.

Lemma 2.2.4 Let X be integrable and let Y be bounded and G-measurable.

Then

E[XY |G] = Y E[X |G], a.s. (2.16)

Proof. We may assume that X,Y are non-negative; otherwise decom-

pose them into positive and negative parts and use linearity of the condi-

tional expectation. Moreover, it is enough to consider bounded random

variables; otherwise, consider increasing sequences of bounded random
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variables that converge to them and use the monotone convergence the-

orem.

Define, for any A ∈ F ,

ν(A) ≡
∫

A

XY dP, µ(A) ≡
∫

A

XdP. (2.17)

Both µ and ν are finite measures that are absolutely continuous with

respect to P. Then

dνG
dPG

= E[XY |G], dµG
dPG

= E[X |G], dµ

dP
= X. (2.18)

Then, using Lemma 1.7.26, for any A ∈ G,∫

A

Y dµG =

∫

A

Y
dµG
dPG

dPG =

∫

A

Y E[X |G]dPG , (2.19)

whereas for any A ∈ F ,∫

A

Y dµ =

∫

A

Y
dµ

dP
dP =

∫

A

Y XdP. (2.20)

Specialising the second equality to the case when A ∈ G, we find that

for those A, ∫

A

Y E[X |G]dP =

∫

A

XY dP. (2.21)

Now Z ≡ Y E[X |G] is G-measurable, and (2.21) is precisely the defining

property for Z to be the conditional expectation of XY . This concludes

the proof.

There should be a natural connection between independence and con-

ditional expectation, as was the case for the elementary notion of con-

ditional expectation. Here it is.

Theorem 2.2.5 Two σ-algebras, G1,G2, are independent, if and only

if, for all G2-measurable integrable random variables, X,

E[X |G1] = EX. (2.22)

Note that in the theorem we can replace “for all integrable G2 measurable

random variable” by “ for all random variables of the form X = 1IA,

A ∈ G2”.

Proof. Assume first that G1 and G2 are independent. Then, if Xi are

Gi measurable and integrable,

EX1X2 = EX1EX2 = E[X1E[X2]].
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Therefore, the constant EX2 satisfies the condition of the conditional

expectation E[X2|G1], which shows that (2.22) holds.

Now assume that (2.22) holds. Choose X = 1IA, A ∈ G2. Then

E[1IA|G1] = E1IA = P[A].

Then, for all B ∈ G1,

P[A ∩B] = E1IA1IB = E[E1IA|G1]1IB] = E[P[A]1IB] = P[A]P[B].

Thus G1 and G2 are independent.

2.3 The case of random variables with absolutely continuous

distributions

Let us consider some cases where conditional expectations can be com-

puted more “explicitly”. For this, consider two random variables, X,Y ,

with values in Rn and Rm (in the sequel, nothing but notation changes

if the assume n = m = 1, so we will do this). We will assume that

the joint distribution of X and Y is absolutely continuous with respect

to Lebesgue’s measure with density p(x, y). That is, for any function

f : Rm × Rn → R+,

Ef(X,Y ) =

∫
f(x, y)p(x, y)dxdy.

The density of the random variable Y is then

q(y) =

∫
p(x, y)dx.

(where we should modify the density to be zero, when
∫
p(x, y)dx = ∞).

Let now h : Rm → R+ be a measurable function. We want to compute

E[h(X)|Y ]. To do this, take a measurable function g : Rn → R+. Then

E[h(X)g(Y )] =

∫
h(x)g(y)p(x, y)dxdy (2.23)

=

∫ (∫
h(x)p(x, y)dx

)
g(y)dy

=

∫ (∫
h(x)p(x, y)dx

q(y)

)
g(y)q(y)1Iq(y)>0dy

≡
∫
φ(y)g(y)q(y)1Iq(y)>0dy

= E[φ(Y )g(y)].

From this calculation we can derive the following



38 2 Conditional expectations and conditional probabilities

Proposition 2.3.6 With the notation above, let ν(y, dx) be the measure

on Rm defined by

ν(y, dx) ≡
{

p(x,y)
q(y) dx, if q(y) > 0,

δ0(dx), if q(y) = 0.
(2.24)

Then for any measurable function h : Rm → R+,

E[h(X)|Y ] =

∫
h(x)ν(Y, dx). (2.25)

The function p(x,y)
q(y) as a function of x is called the conditional density

given Y = y. We see that in this context, we are formally quite close to

the discrete case and the intuitive notion of conditional expectations.

2.4 The special case of L2-random variables

Conditional expectations have a particularly nice interpretation in the

case when the random variable X is square-integrable, i.e. if X ∈
L2(Ω,F ,P) (since for the moment we think of conditional expectations

as equivalence classes modulo sets of measure zero, we may considerX as

an element of L2 rather than L2). We will identify that space L2(Ω,G,P)
as the subspace of L2(Ω,F ,P) for which at least one representative of

each equivalence class is G-measurable.

Theorem 2.4.7 If X ∈ L2(Ω,F ,P), then E[X |G] is the orthogonal pro-

jection of X on L2(Ω,G,P).

Proof. The Jensen-inequality applied to the conditional expectation

yields that E[X2|G] ≥ E[X |G]2, and hence EE[X |G]2 ≤ EE[X2|G] =

EX2 < ∞, so that E[X |G] ∈ L2(Ω,G,P). Moreover, for any bounded,

G-measurable function Z,

E[Z(X − E[X |G])] = E[XZ]− E[ZE[X |G]] = 0. (2.26)

Thus, X − E[X |G] is orthogonal to all bounded G-measurable random

variables, and using that these form a dense set in L2(Ω,G,P), it is

orthogonal to L2(Ω,G,P). This proves the theorem.

Note that this interpretation of the conditional expectation can be

used to define the conditional expectation for L2-random variables.
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2.5 Conditional probabilities and conditional probability

measures

From conditional expectations we now want to construct conditional

probability measures. These seems quite straightforward, but there are

some non-trivial technicalities that arise from the version business of

conditional expectations.

As before we consider a probability space (Ω,F ,P) and a sub-σ-

algebra G. For any A ∈ F , we can define

P[A|G] ≡ E[1IA|G], (2.27)

and call it the conditional probability of A given G. It is a G-measurable

function that satisfies∫

G

P[A|G]dP =

∫

G

1IAdP = P[A ∩G],

for any G ∈ F .

It clearly inherits from the conditional expectation the following prop-

erties:

(i) 0 ≤ P[A|G] ≤ 1, a.s.;

(ii) P[A|G] = 0, a.s., if and only if P[A] = 0; also P[A|G] = 1, a.s., if and

only if P[A] = 1;

(iii) If An ∈ F , n ∈ N, are disjoint sets, then

P

[⋃

n∈N

An|G
]
=
∑

n∈N

P [An|G] , a.s.; (2.28)

(iv) If An ∈ F , such that limn↑∞An = A, then

lim
n↑∞

P[An|G] = P[A|G], a.s.; (2.29)

These observations bring us close to thinking that conditional proba-

bilities can be thought of as G-measurable functions taking values in the

probability measures, at least for almost all ω. The problem, however,

is that the requirement of σ-additivity which seems to be satisfied due

to (iii) is in fact problematic: (iii) says, that, for any sequence An, there

exists a set of measure one, such that, for all ω in this set,

P

[⋃

n∈N

An|G
]
(ω) =

∑

n∈N

P [An|G] (ω). (2.30)

However, this set may depend on the sequence, and since that space is

not countable, it is unclear whether there exists a set of full measure on

which (2.30) holds for all sequences of sets.
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These considerations lead to the definition of so-called regular condi-

tional probabilities.

Definition 2.5.1 Let (Ω,F ,P) be a probability space and let G be a

sub-σ-algebra. A regular conditional probability measure or regular con-

ditional probability on F given G is a function, P (ω,A), defined for all

A ∈ F and all ω ∈ Ω, such that

(i) for each ω ∈ Ω, P (ω, ·) is a probability measure on (Ω,F);

(ii) for each A ∈ F , P (·, A) is a G-measurable function coinciding with

the conditional probability P[A|G] almost everywhere.

The point is that, if we have a regular conditional probability, then

we can express conditional expectations as expectations with respect

normal probability measures.

Theorem 2.5.8 With the notation form above, if Pω[A] ≡ P (ω,A) is

a regular conditional probability on F given G, then for a F-measurable

integrable random variable, X,

E[X |G](ω) =
∫
XdPωa.s. (2.31)

Proof. As often, we may assume X positive. The prove then goes

through the monotone class theorem 1.3.8, quite similar to the proof of

theorem 1.7.26. One defines the class of functions where (2.31) holds,

verifies that it satisfies the hypothesis of the monotone class theorem

and notices that it is true for all indicator functions of sets in F .

The question remains whether and when regular conditional proba-

bilities exist. A central result for us is the existence in the case when Ω

is a Polish space.

Theorem 2.5.9 Let (Ω,B(Ω),P) be a probability space where Ω is a

Polish space and B(Ω) is the Borel-σ-algebra. Let G ⊂ B(Ω) be a sub-

σ-algebra. Then there exists a regular conditional probability P (A,ω)

given G.

We will not give the proof of this theorem here.
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Stochastic processes

3.1 Definition of stochastic processes

We are finally ready to come to the main topic of this course, stochastic

processes.

There are various equivalent ways in which stochastic processes can

be defined, and it will be useful to always keep them in mind.

The traditional definition. The standard way to define stochastic

processes is as follows. We begin with an abstract probability space

(Ω,F ,P). Next we need a measurable space (S,B) (which in almost

all cases will be a Polish space together with its Borel σ-algebra). The

space S is called the state space. Next, we need a set I, called the index

set. Then a stochastic process with state space S and index set I is

a collection of (S,B)-valued random variables, {Xt, t ∈ I) defined on

(Ω,F ,P).
We call such a stochastic process also a stochastic process indexed by

I. The term stochastic process is often reserved to the cases when I is

either N,Z,R+, or R. The index set is then interpreted as a time param-

eter. Depending on whether the index set is discrete or continuous, one

refers to stochastic processes with discrete or continuous time. However,

there is also an extensive theory of stochastic processes indexed by more

complicated sets, such as Rd, Zd, etc.. Often these are also referred to as

stochastic fields. We will mostly be concerned with the standard case of

one-dimensional index sets, but I will give examples of the more general

case below.

From the point of view of mappings, we have the picture that for any

t ∈ I, there is a measurable map,

Xt : Ω → S,

41
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whose inverse maps B into F .

For this to work, we do want, of course, F to be so rich that it makes

all functions Xt measurable, that is, it should contain the σ-algebra that

is generated by the entire family of r.v.’s Xt,

σ(Xt; t ∈ I). (3.1)

An example of a stochastic process with discrete time are families of

independent random variables.

Sample paths. Given a stochastic process as defined above, we can

take a different perspective and view, for each ω ∈ Ω, X(ω) as a map

from I to S,

X(ω) : I → S

t→ Xt(ω)

We call such a function a sample path of X , or a realisation of X .

Clearly here we want to see the stochastic process as a random variable

with values in the space of functions,

X : Ω → SI

ω → X(ω),

where we view SI as the space of functions I → S. To complete this

image, we need to endow S with a σ-algebra, BI . How should we choose

the σ-algebra on SI? Our picture will be thatX maps (Ω,F) to (SI ,BI).

If this map is measurable, then the marginals Xt : Ω → S should be

measurable. This will be the case if the maps Xt, seen as maps from

SI → S, are measurable from BI to B.

Lemma 3.1.1 Let BI be the smallest σ-algebra that contains all subsets

of SI of the form

C(A, t) ≡
{
x ∈ SI : xt ∈ A

}
. (3.2)

with A ∈ B, t ∈ I. Then BI is the smallest σ-algebra such that all

the maps Xt : SI → S that map x → xt, are measurable, i.e. BI =

σ(Xt, τ ∈ I).

Proof. We first show that all Xt are measurable from

σ(C(A, t), A ∈ B, t ∈ I) → B.
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To do this, let A ∈ B, and chose t ∈ I. Then

X−1
t (A) = C(A, t).

Thus each Xt is measurable. On the other hand, assume that there is

some t and some A such that C(A, t) 6∈ BI . Then clearly X−1
t (A) 6∈ BI ,

and then Xt is not measurable! So all C(A, t) must be contained, but

none more have to. This proves the lemma.

Definition 3.1.1 If J ⊂ I is finite, and B ∈ BJ , we call a set

C(B, J) ≡ {x ∈ SI : xJ ≡ {xt}t∈J ∈ B} (3.3)

a cylinder set or more precisely finite dimensional cylinder sets. If B is

of the form B = ×t∈JAt, At ∈ B, we call such a set a special cylinder.

It is clear that BI contains all finite dimensional cylinder sets, but of

course it contains much more. We call BI the product σ-algebra, or the

algebra generated by the cylinder sets.

It is easy to check that the special cylinders form a π-system, and the

cylinders form an algebra; both generate BI .

Lemma 3.1.2 The map X : Ω → SI is measurable from F → BI, if

and only if, for each t, Xt is measurable from F → B.

Proof. Since a map, X , is measurable from a σ-algebra F → B, if
X−1(C) ∈ F for all C in a class that generates B, to check measurablility

it is enough to consider C of the form C(A, t). But

X−1(C(A, t)) = {ω ∈ Ω : Xt(ω) ∈ A},

which is in F whenever Xt is measurable. To prove the converse impli-

cation is equally trivial.

Thus we see that the choice of the σ-algebra BI is just the right one

to make the two points of view on stochastic processes equivalent from

the point of view of measurablility.

The law of a stochastic process. Once we view X as a map from Ω

to the S-valued functions on I, we can define the probability distribution

induced by P on the space (SI ,BI),

µX ≡ P ◦X−1 (3.4)

on (SI ,BI) as the distribution of the random variable X .
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Canonical process. Given a stochastic process with law µ, one can of

course realise this process on the probability space (SI ,BI , µ). In that

case the random variable X is the trivial map

X : SI → SI

x→ X(x) = x.

The viewpoint of the canonical process is, however, not terribly helpful,

since more often than not, we want to keep a much richer probability

space on which many other random objects can be defined.

3.2 Construction of stochastic processes; Kolmogorov’s

theorem

The construction of a stochastic process may appear rather formidable,

but we may draw encouragement from the fact that we have introduced

a rather coarse σ-algebra on the space SI . The most fundamental obser-

vation is that stochastic processes are determined by their observation

on just finitely many points in time. We will make this precise now.

For any J ⊂ I, we will denote by πJ the canonical projection from SI

to SJ , i.e. πJX ∈ SJ , such that, for all t ∈ J , (πJX)t = Xt. Naturally,

we can define the distributions

µJ
X ≡ P ◦ (πJX)−1

on SJ .

Definition 3.2.1 Let F (I) denote the set of all finite, non-empty sub-

sets of I. Then the collection of probability measures
{
µJ
X : J ∈ F (I)

}
(3.5)

is called the collection of finite dimensional distributions1 of X .

1 Alternative appellation are “finite dimensional marginal distributions” or “finite
dimensional marginals”.
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Note that the finite dimensional distributions deter-

mine µX on the algebra of finite dimensional cylinder

sets. Hence, by Dynkin’s theorem, they determine the

distribution on the σ-algebra BI . This is nice. What

is nicer, is that one can also go the other way and con-

struct the law of a stochastic process from specified fi-

nite dimensional distributions. This will be the content

of the fundamental theorem of Daniell and Kolmogorov.

Theorem 3.2.3 Let S be a compact metrisable space, and let B = B(S)
be its Borel-σ-algebra. Let I be a set. Suppose that, for each J ∈ F (I),

there exists a probability measure, µJ , on (SJ ,BJ), such that for any

J1 ⊂ J2 ∈ F (I),

µJ1 = µJ2 ◦ π−1
J1
, (3.6)

where πJ1
denotes the canonical projection from SJ2 → SJ1 . Then there

exists a unique measure, µ, on (SI ,BI), such that, for all J ∈ F (I),

µ ◦ π−1
J = µJ . (3.7)

Proof. It will not come as a surprise that we will use Carathéodory’s

theorem to prove our result. This means, that what we have to do

is to construct a σ-additive set function on an algebra that generates

the σ-algebra BI . Of course, this algebra will be the algebra of all

finite-dimensional cylinder events. It is rather easy to see what this set

function will have to be. Namely, if B is a finite dimensional cylinder

event, then there exists J ∈ F (I), andAJ ∈ BJ , such thatB = AJ×SI\J

(we call in such a case J the base of the cylinder). Then we can set

µ0(B) = µJ (AJ). (3.8)

Clearly µ0(∅) = 0, and µ0 is finitely additive: if B1, B2 are disjoint finite

dimensional cylinders with basis Ji, then we can write Bi, i = 1, 2, in

the form Ai × SI\J , where J = J1 ∪ J2, and Ai ∈ BJ are disjoint. Then

it is clear that

µ0(B1∪B2) = µJ(A1∪A2)+µJ (A1)+µ(A2) = µ0(B1)+µ0(B2). (3.9)

The usual way to prove σ-additivity is to use the fact that an additive

set-function, µ0, is σ-additive if and only if for any sequence Gn ↓ ∅,
µ(Gn) ↓ 0.

Therefore, the proof will be finished once we establish the following

lemma.
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Lemma 3.2.4 Let Bn, n ∈ N be a sequence of cylinder sets such that

Bn ⊃ Bn+1, for all n. If there exists ǫ > 0, such that for all n ∈ N,

µ0(Bn) ≥ 2ǫ, then limn↑∞Bn 6= ∅.

Proof. If Bn satisfies the assumptions of the lemma, then there exists

a sequence Jn ∈ F (I) and An ∈ BJn , such that Bn = An × SI\Jn , and

µ0(Bn) = µJn(An).

Since µJn is a probability measure on the compact metrisable space SJn ,

Theorem 1.2.7 implies that there exists a compact subset,Kn ⊂ An, such

that

µJn(Kn) ≥ µJn(An)− 2−nǫ,

or, with Hn ≡ Kn × SI\Jn ,

µ0(Hn) ≥ µ0(Bn)− 2−nǫ. (3.10)

Now, under the hypothesis of the lemma, for all n ∈ N,

µ(H1∩· · ·∩Hn) ≥ µ(B1∩· · ·∩Bn)−
n∑

i=1

µ0(Bn\Hn) ≥ 2ǫ−ǫ
∞∑

i=1

2−i = ǫ.

(3.11)

Hence, in particular, for any n, H1∩· · ·∩Hn 6= ∅. Now let xn ∈ H1∩· · ·∩
Hn, and hence πJk

xn ∈ K1 ∩ · · · ∩Kk, for any k ≤ n. By compactness

of this set, there exist a subsequence, ni, such that limi↑∞ πJk
xni = x ∈⋂k

j=1Kk.

Taking susequently sub-subsequences, we can construct in fact such a

sequence in such a way that πJk
xni → πJk

x ∈ ⋂k
j=1Kk for all k. Then

there exist an x ∈ ΣI whose projections are equal to these limits for all k

and hence x ∈ ∪k
n=1Bk for all k, hence x ⊂ ∪∞

n=1Bn and so
⋂

n∈NBn 6= ∅.
But this is the claim of the lemma.

So we are done: µ0 is σ-additive on the algebra of finite dimensional

cylinders, and so there exists a unique probability measure on the σ-

algebra BJ with the advertised properties.

Remark 3.2.1 Note that we have used the assumption on the space S
only to ensure that the measures µJ , for J ∈ F (I), are all inner regular.

Thus we can replace the assertion of the theorem by:

Theorem 3.2.5 Let S be a topological space space, and let B = B(S)
be its Borel-σ-algebra. Let I be a set. Suppose that, for each J ∈ F (I),

there exists an inner regular probability measure, µJ , on (SJ ,BJ), such

that for any J1 ⊂ J2 ∈ F (I),
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µJ1 = µJ2 ◦ π−1
J1
, (3.12)

where πJ1
denotes the canonical projection from SJ2 → SJ1 . Then there

exists a unique measure, µ, on (SI ,BI), such that, for all J ∈ F (I),

µ ◦ π−1
J = µJ . (3.13)

Finally, one can show that the assumption that Ω be compact and

metrisable in Theorem 1.2.7 can be replaced by assuming that Ω be

polish: in fact by inspecting the proof one sees that if we replace the

requirement “compact” by “closed”, then the compactness requirement

on Ω is no longer needed. Thus all what remains to be seen is that the

closed sets that approximate B well from within can be chosen bounded

on a seperable metric space. But this follows for instance since on a

metric space, P(Bn(x)) ↑ 1, where Bn(x) is the closed metric ball of

radius n around x and setting Kǫ = Fǫ/2 ∩Bnǫ(0) with nǫ chosen such

that P(Bnǫ) ≥ 1− ǫ/2.

Remark 3.2.2 Note that we have seen no need to distinguish cases

according to the nature of the set I.

3.3 Examples of stochastic processes

The Kolmogorov-Daniell theorem goes a long way in helping to construct

stochastic processes. However, one should not be deceived: prescribing

a consistent family of finite dimensional distributions (i.e. distributions

satisfying (3.7)) is by no means an easy task and in practise we want to

have a simpler way of describing a stochastic process of our liking.

In this section I discuss some of the most important classes of examples

without going into too much detail.

3.3.1 Independent random variables

We have of course already encountered independent random variables in

the first course of probability. We can now formulate the existence of

independent random variables in full generality and with full rigour.

Theorem 3.3.6 Let I be a set and let, for each t ∈ I, µt be a probability

measure on (S,B(S), where S is a polish space. Then there exists a

unique probability measure, µ, on (SI ,BI), such that, for J ∈ F (I), and

At ∈ B,
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µ

(⋂

t∈J

π−1
t (At)

)
=
∏

t∈J

µt(At). (3.14)

Proof. Under the hypothesis that S is polish, the proof is direct from the

Kolmogorov-Daniell theorem. Note that this hypothesis is not, however,

necessary.

Remark 3.3.1 Note that we don’t assume I to be countable. However,

in the uncountable case, the theorem is rather useless, since hardly any-

thing can be done with a genuine uncountable collection of independent

random variables. When we discuss seriously the issue of stochastic

processes with continuous time, we will see that we always will want

additional properties of sample paths that the theorem above does not

provide.

Independent random variables are a major building block for more

interesting stochastic processes. We have already encountered sums

of independent random variables. Other interesting processes are e.g.

maxima of independent random variables: If Xi, i ∈ N are independent

random variables, define

Mn = max
1≤k≤n

Xk. (3.15)

The study of such maxima is an interesting topic in itself.

Of course one can look at many more functions of independent random

variables.

3.3.2 Gaussian processes

Gaussian processes are one of the most important class of stochastic

process that can be defined with the help of densities. Let us proceed

in two steps.

First, we consider finite dimensional Gaussian vectors. Let n ∈ N be

fixed, and let C be a positive definite n×n matrix with real entries. We

denote by C−1 its inverse. Define the Gaussian density,

fC(x1, . . . , xn) ≡
1

(2π)n/2
√
detC

exp

(
−1

2
(x,C−1x)

)
. (3.16)

You see that the necessity of having C positive derives from the fact that

we want this density to be integrable with respect to the n-dimensional

Lebesgue measure.
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Definition 3.3.1 A family of n real random variables is called jointly

Gaussian with mean zero and covariance C, if and only if their distri-

bution is absolutely continuous w.r.t. Lebesgue measure on Rn with

density given by fC .

Remark 3.3.2 In this section I will always consider only Gaussian ran-

dom variables with mean zero. The corresponding expressions in the

general case can be recovered by simple computations.

The definition of Gaussian vectors is no problem. The question is,

can we define Gaussian processes? From what we have learned, it will

be crucial to be able to define compatible families of finite dimensional

distributions.

The following result will be important.

Lemma 3.3.7 Let X1, . . . , Xn be random variables whose joint distri-

bution is Gaussian with density covariance matrix C and mean zero.

Then

(i)

EXkXℓ = Ckℓ. (3.17)

(ii) If I ⊂ {1, . . . , } with |I| = m, then the random variables Xℓ, ℓ ∈ I are

jointly Gaussian with covariance given by the m ×m-matrix CI that

with elements CI
ℓk = Cℓk, if ℓ, k ∈ I.

Proof. For technical reasons it is very convenient to compute the mo-

ment generating function, of Laplace transform, of our jointly Gaussian

vector. We define, for u ∈ Cn,

φC(u) ≡ Ee(u,X) ≡ Ee
∑n

i=1
uiXi =

∫
dnxfC(x1, . . . , xn)e

∑n
i=1

uixi .

(3.18)

It is easy to see that this integral is alway finite. Its computation involves

a nice trick, that is well worth remembering! To understand it, recall

that a real positive matrix can always be written in the form C = AtA,

where At denotes the transpose of A, and A is itself invertible. Then

likewise C−1 = A−1(At)−1. For simplicity we will write B = (At)−1.
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φC(u) =
1

(2π)n/2
√
detC

∫
dnx exp

(
−1

2
(x,C−1x) + (u, x)

)
(3.19)

=
1

(2π)n/2
√
detC

∫
dnx exp

(
−1

2
(Bx,Bx) − (u, x)

)

=
1

(2π)n/2
√
detC

∫
dnx exp

(
−1

2
(Bx−Au,Bx−Au) +

1

2
(Au,Au)

)

=
exp

(
1
2 (u,Cu)

)

(2π)n/2
√
detC

∫
dnx exp

(
−1

2
(x− Cu,C−1(x− Cu))

)

= exp

(
1

2
(u,Cu)

)
,

where in the last line we used that the domain of integration in the

integral is invariant under translation (in the case when u is real; if u is

complex, we use in addition Cauchy’s theorem).

We set that the computation reduces to the completion of the square.

Now it is easy to compute the correlation function. Clearly,

EXkXℓ =
d2

dukduℓ
φC(u = 0) = Cℓ,k.

This establishes (i). (ii) is now quite simple. To compute the Laplace

transform of the vector Xℓ, ℓ ∈ I, we just need to set u = uI where uI ≡
0, if i 6∈ I. The result is precisely the Laplace transform of a Gaussian

vector with covariance CI . Since the Laplace transform determines the

distribution uniquely, (ii) follows.

This result if very encouraging for the prospect of defining Gaussian

vectors. If we can specify an infinite dimensional positive matrix, C then

all its finite dimensional sub-matrices, CI , I ∈ F (N), are positive and

the ensuing family of finite dimensional distributions are Gaussian dis-

tributions that do satisfy the consistency requirements of Kolmogorov’s

theorem! The result is:

Theorem 3.3.8 Let C be a positive quadratic form on RN. Then there

exists a unique Gaussian process with index set N, state space R, such

that, for all any finite J ⊂ N, the marginal distributions are |J |-dimensional

Gaussian vectors with covariance CJ .

Thus the trick is to construct positive quadratic forms. Of course

is easy to guess a few by going the other way, and using independent

Gaussian random variables as building blocks:
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E.g. Let Xn, n ∈ N be independent, identically distributed Gaussian

random variables with mean zero and variance σ2
n. Set Zn ≡∑n

k=1Xk.

Then

EZnZm =

n∑

i=1

EXi

m∑

j=1

Xj =

m∧n∑

i=1

EX2
j =

m∧n∑

i=1

σ2
j ≡ Cn,m.

Thus the quadratic form Cn,m =
∑m∧n

i=1 σ2
j is apparently positive. In

fact, if un ∈ RN,

(u,Cu) =
∑

n,m∈N

unum

m∧n∑

i=1

σ2
j

=
∑

i∈N

σ2
i

∑

m≥i

um
∑

n≥i

un

=
∑

i∈N

σ2
i


∑

m≥i

um




2

≥ 0.

Now we have seen that in the construction of stochastic processes,

the fact to have discrete time did not appear (so far) to much of an

advantage. Thus the above example may make us courageous to attempt

to define a Gaussian process on R+. To this end, define the function

C(t, s) ≡ t ∧ s. (3.20)

What we have to check is that, for any J ∈ F (R+), the restriction of C

to a quadratic form on RJ is positive. But indeed,

∑

t,s∈J

utus(t ∧ s) =
∑

t,s∈J

utus

∫ (t∧s)

0

dr =

∫ ∞

0

dr


 ∑

t∈J,t≥r

ut




2

≥ 0.

Thus all finite dimensional distributions exist as Gaussian vectors, and

the compatibility conditions are trivially satisfied. Therefore there exists

a Gaussian process on R+ with this covariance. This process is called

“Brownian motion”. Note, however, that this constructs this process

only in the product topology, which does not yet yield any nice path

properties. We will later see that this process can actually be constructed

on the space of continuous functions, and this object will then more

properly called Brownian motion.

Exercise. Let Xk, k ∈ N, be independent Gaussian random variables
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with mean zero and variance σ2 = 1. Define, for n ∈ N, and t ∈ [0, 1],

Zn(t) ≡
1√
n

[nt]∑

k=1

Xk,

where [·] denotes the largest integer smaller than ·. Show that

(i) Zn(t) is a stochastic process with indexset [0, 1] and state space R.

(ii) Compute the covariance, Cn, of Zn and show that for any I ∈ F ([0, 1]),

CI
n → CI , where C(s, t) = s ∧ t.

(iii) Show that the finite dimensional distributions of the processes Zn

converge, as n ↑ ∞, to those of the “Brownian motion” defined above.

(iv) Show that the results (i)−(iii) remain true if instead of requiring that

the Xk are Gaussian we just assume that their variance equals to 1.

Note that to prove (iv), you need to prove the multi-dimensional ana-

logue of the central limit theorem. This requires, however, little more

than an adaptation of the notation from the standard CLT in dimension

one.

3.3.3 Markov processes

Gaussian processes were build from independent random variables us-

ing densities. Another important way to construct non-trivial processes

uses conditional probabilities. Markov processes are the most prominent

examples. In the case of Markov processes we really think of the index

set, N or R+, as time. The process Xt then shall have two properties:

first, it should be causal, i.e. we want an expression for the law of Xt

given the σ-algebra Ft−1 ≡ σ(Xs, s < t); second, we want this law to be

forgetful of the past: if we know the position (value; we will think mostly

of a Markov process as a “particle” moving around in S) of X at some

time s < t, then the law of Xt should be independent of the positions of

Xs′ with s
′ < s. In a way, Markov processes are meant be the stochastic

analogues of deterministic evolution (differential equations).

To set such a process up, let us consider the (much simpler) case of

discrete time, i.e. I = N0 (we always want zero in our index set as). The

main building block for a Markov chain is then the so called (one-step)

transition kernel, P : N0 × S ×B → [0, 1], with the following properties:

(i) For each t ∈ N0 and x ∈ S, Pt(x, ·) is a probability measure on (S,B).
(ii) For each A ∈ B, and t ∈ N0, Pt(·, A) is a B-measurable function on S.
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Then, a stochastic process X with state space S and index set N0 is

a discrete time Markov process with law P , if, for all A ∈ B, t ∈ N,

P(Xt ∈ A|Ft−1)(ω) = Pt−1(Xt−1(ω), A),P− a.s.. (3.21)

The remarkable thing is that this requirement fixes the law P up to one

more probability measure on (S,B), the so-called initial distribution, p0.

Theorem 3.3.9 Let (S,B) be a Polish space, let P be a transition kernel

and p0 an probability measure on (S,B). Then there exists a unique

stochastic process satisfying (3.21) and P(X0 ∈ A) = p0(A), for all A.

Proof. In view of the Kolmogorov-Daniell theorem, we have to show

that our requirements fix all finite dimensional distributions, and that

these satisfy the compatibility conditions. This is more a problem of

notation than anything else. We will need to be able to derive formulas

for

P (Xtn ∈ An, . . . , Xt1 ∈ A1) .

To get started, we consider

P (Xt ∈ A|Fs) ,

s < t. To do this, we use that by the elementary properties of conditional

expectations (we drop the a.s.) that applies to all equations relating to

conditional expectations),

P (Xt ∈ A|Fs) = E [P (Xt ∈ A|Ft−1) |Fs] (3.22)

= E [Pt−1(Xt−1(ω), A)|Fs]

= E

[
E

[∫
Pt−1(xt−1, A)Pt−2(Xt−2(ω), dxt−1)|Ft−2

]
|Fs

]

=

∫
Pt−1(xt−1, A)Pt−2(xt−2, dxt−1) . . .

. . .Ps+1(xs+1, dxs+2)Ps(Xs(ω), dxs+1).

We will set

Ps,t(A, x)) ≡
∫

Pt−1(xt−1, A)Pt−2(xt−2, dxt−1) . . . (3.23)

. . .Ps+1(xs+1, dxs+2)Ps(x, dxs+1)

and call Ps,t the transition kernel from time s to time t. With this object

defines, we can now proceed to more complicated expressions:
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P (Xtn ∈ An, . . . , Xt1 ∈ A1)

= E
[
P(Xtn ∈ A|Ftn−1

)1IAn−1
(Xtn−1

) . . . 1IAn−1
(Xtn−1

)
]

= E
[
E
[
Ptn−1,tn(Xtn−1

, An)|Ftn−1

]
1IAn−1

(Xtn−1
) . . . 1IA1

(Xt1)
]

= E

[
E

[∫

An−1

Ptn−1,tn(xn−1, An)Ptn−1,tn−2
(Xtn−2

(ω), dxn−1)|Ftn−2

]
×

×1IAn−2
(Xtn−2

) . . . . . . 1IA1
(Xt1)

]

=

∫

An−1

Ptn−1,tn(xn−1, An)

∫

An−2

Ptn−1,tn−2
(xn−2, dxn−1) . . .

. . .

∫

A1

Pt1,t2(x1, dx2)

∫
Pt1,0(x0, dx1)P0(dx0). (3.24)

Thus, we have the desired expression of the marginal distributions in

terms of the transition kernel P and the initial distribution P0. The

compatibility relations follow from the following obvious, but important

property of the transition kernels.

Lemma 3.3.10 The transition kernels Pt,s satisfy the Chapman-Kolmogorov

equations: For any t > r > s,

Ps,t(A, x)) =

∫
Pr,t(y,A)Ps,r(x, dy). (3.25)

Proof. This is obvious from the definition.

The proof of the compatibility relations is now also obvious; if some

of the Ai are equal to S, we can use (3.25) and recover the expressions

for the lower dimensional marginals.

Exercise. Consider the Brownian motion process from the last sub-

section. Show that this process is Markov in the sense that all finite

dimensional distributions satisfy the Markov property. Hint: Let J =

tn > tn−1 > · · · > t1. Show that the family of random variables Yn ≡
Xtn −Xtn−1

, Xtn−1
, Xtn−2

, . . . , Xt1 are jointly Gaussian, and that Yn is

independent of the σ-algebra generated by Xtn−1
, . . . , Xt1 . To do this

compute the covariance matrix of the new family.
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3.3.4 Gibbs measures

As an aside, I will briefly explain another important way to construct

stochastic processes with the help of conditional expectations and den-

sities, that is central in statistical mechanics. It is particularly useful in

the setting where I is not an ordered set, the most prominent example

is I = Zd.

In order not to introduce too much notation, I will stick to a simple

example, the so-called Ising-model. In this case, S = {−1, 1}. The prin-
ciple object is family of functions, HΛ : SZd → R, called Hamiltonians,

that are defined for every finite Λ ⊂ Zd, and are given by

HΛ(X) = −β
∑

i,j:i∨j∈Λ

XiXjJij . (3.26)

Using this function, we will construct a family of probability kerners,

µΛ, that have the following properties:

(i) For each y ∈ SZd

, µΛ(·, τ) is a probability measure on SZd

;

(ii) For each A ∈ BZd

, µΛ(A, ·) is a FΛc-measurable function, where FΛc =

σ(Xi, i ∈ Λc);

(iii) for any pair of volumes, Λ,Λ′, with Λ ⊂ Λ′, and any A ∈ BZd

,∫
µΛ(z, A)µΛ′(x, dz) = µΛ′(x,A). (3.27)

We will indeed give an explicit formula for µΛ:

µΛ(A, y) =

∑
xi,i∈Λ 1I(xΛ,yΛc )∈Ae

−HΛ((xλ,yΛc ))

∑
xi,i∈Λ e

−HΛ((xΛ,yΛc))
. (3.28)

It is easily checked that this expression indeed defines a kernel with

properties (i) and (ii). An expresssion of this type is called a local Gibbs

specification.

Now we see that the properties of these kernels are reminiscent of

those of regular conditional probabilities.

One defines the notion of a Gibbs measure as follows:

Definition 3.3.2 A probability measure on SZd

is called a Gibbs mea-

sures, if and only if, for any finite Λ ⊂ Zd, the kernel µΛ is a regular

conditional probabilty for µ given FΛc .

More specifically, if the kernel is the Gibbs specification (3.28), it

will be called a Gibbs measures for the d-dimensional Ising model at

temperature β−1.

One can proof that such Gibbs measures exist; for this one shows that

any accumulation point of a sequence µΛn(·, x), where Λn ↑ Zd is any
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increasing sequence of volumes that converges to Zd (in the sense, that,

for any finite Λ, there exists n0, such that, for all n ≥ n0, Λ ⊂ Λn),

will be a Gibbs measure. This is relatively straightforward, by writing

euation (3.27) for a sequence of volumes Λn ↑ Zd:
∫
µΛ(z, A)µΛn(x, dz) = µΛn(x,A).

If µΛn conveges weakly to some measure µ, then the right-hand side con-

verges to µ(A). The left-hand side will converge to
∫
µΛ(z, A)µ(x, dz),

since one can easily see that µΛ(z, A) is a continuous function, if A is a

cylinder event (in fact, in our example, it is a local function on a discrete

space). But then µ satisfies the desired properties of a Gibbs measure.

The existence of accumulation points is then guaranteed by the fact

that SZd

is compact (Tychonov, since S = {−1, 1} is compact), and

that the set of probability measures over a compact space is compact.

What makes this setting interesting is that there is no general uniqueness

result. In fact, if d ≥ 2, and β > βc, for a certain βc, then it is known

that there exists more than one Gibbs measure. This mathematical fact

is connected to the physical phenomenon of a so-called phase transition,

and this is what makes the study of Gibbs measures so interesting. For

deeper material on Gibbs measures see [3, 12, 6].
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Martingales

In this chapter we introduce the fundamental con-

cept of martingales, which will keep playing a central

rôle in our investigation of stochastic processes. Mar-

tingales are “truly random” stochastic processes, in the

sense that their observation in the past does not allow

for useful prediction of the future. By useful we mean

here that no gambling strategies can be devised that

would allow for systematic gains. In this chapter we will always assume

that random variables take values in R, unless specified otherwise. The

treatment of martingales follows largely the book of Rogers and Williams

[11], with the exception of a section on the central limit theorem, which

is inspired by [2].

4.1 Definitions

We begin by formally introducing the notion of a filtration of a σ-algebra

that we have already briefly encountered in the context of Markov pro-

cesses. We remain in the context of discrete index sets.

Definition 4.1.1 Let (Ω,F) be a measurable space. A family of sub-

σ-algebras, {Fn, n ∈ N0} of F that satisfies

F0 ⊂ F1 ⊂ · · · ⊂ · · · F∞ ≡ σ

( ⋃

n∈N0

Fn

)
⊂ F , (4.1)

is called a filtration of the σ-algebraF . We call a quadruple (Ω,F ,P, {Fn, n ∈
N0}) a filtered (probability) space.

In this chapter we will henceforth always assume that we are given a

filtered space.

57
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Filtrations and stochastic processes are closely linked. We will see

that this goes in two ways.

Definition 4.1.2 A stochastic process, {Xn, n ∈ N0}, is called adapted

to the filtration {Fn, n ∈ N0}, if, for every n, Xn is Fn-measurable.

Now the other direction:

Definition 4.1.3 Let {Xn, n ∈ N0} be a stochastic process on (Ω,F ,P).
The natural filtration, {Wn, n ∈ N0} with respect to X is the smallest

filtration such that X is adapted to it, that is,

Wn = σ(X0, . . . , Xn). (4.2)

We see that the basic idea of the natural filtration is that functions of

the process that are measurable with respect to Wn depend only on the

observations of the process up to time n.

We now define martingales.

Definition 4.1.4 A stochastic process, X , on a filtered space is called

a martingale, if and only if the following hold:

(i) The process X is adapted to the filtration {Fn, n ∈ N0};
(ii) For all n ∈ N0, E|Xn| <∞;

(iii) For all n ∈ N,

E(Xn|Fn−1) = Xn−1, a.s.. (4.3)

If (i) and (ii) hold, but instead to (iii), it is only true that E(Xn|Fn−1) ≥
Xn−1, respectively E(Xn|Fn−1) ≤ Xn−1, then the process X is called a

sub-martingale, respectively a super-martingale.

It is clear that the property (iii) is what makes martingales special:

intuitively, it means that the best guess for what Xn could be, knowing

what happened up to time n− 1 is simply Xn−1. No prediction on the

direction of change is possible.

We will now head for the fundamental theorem concerning the impos-

sibility of winning systems in games build on martingales.

To put us into the gambling mood, we think of the increments of the

process, Yn ≡ Xn −Xn−1, as the result of (not necessarily independent

games (Examples: (i) Coin tosses, or (ii) the daily increase of the price

of a stock). We are allowed to bet on the outcome in the following way:

at each moment in time, n− 1, we choose a number Cn ∈ R. Then our

wealth will increase by the amount CnYn, i.e. the wealth process, Wn is

given by Wn =
∑n

k=1 CnYn (Example: (i) in the coin toss, case, chose
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Cn > 0 means to bet on head (= {Yn = +1}) an amount Cn, and Cn < 0

means to bet on the outcome tails (= {Yn = −1}) the amount −Cn; (ii)

in the stock case, Cn represents the amount of stock an investor decides

to hold at time n− 1 up to time n (here negative values can be realised

by short-selling).

The choice of the Cn is done knowing the process up to time n − 1.

This justifies the following definition.

Definition 4.1.5 A stochastic process {Cn, n ∈ N} is called previsible,

if, for all n ∈ N, Cn is Fn−1-measurable.

Given an adapted stochastic process, X and a previsible process C,

we can define the wealth process

Wn ≡
n∑

k=1

Ck(Xk −Xk−1) ≡ (C •X)n. (4.4)

Definition 4.1.6 The process (C•X) is called themartingale transform

of X by C or the discrete stochastic integral of C with respect to X .

Now we can formulate the general “no-system” theorem for martin-

gales:

Theorem 4.1.1(i) Let C be a bounded non-negative previsible process

such that there exists K < ∞, such that, for all n, and all ω ∈ Ω,

|Cn(ω)| ≤ K. Let X be a supermartingale. Then C • X is a super-

martingale that vanishes for n = 0.

(ii) Let C be a bounded previsible process (boundedness as above) and X

be a martingale. Then C •X is a martingale that vanishes at zero.

(iii) Both in (i) and (ii), the condition of boundedness can be replaced by

Cn ∈ L2, if also Xn ∈ L2.

Remark 4.1.1 In terms of gambling, (i) says that, if the underlying

process has a tendency to fall, then playing against the trend (“investing

in a falling stock”) leads to a wealth process that tends to fall. On the

other hand, (ii) says that, if the underlying process X is a martingale,

then no matter what strategy you use, the wealth process has mean zero.

Proof. The proofs are excessively simple. We have that Wn −Wn−1 =

Cn(Xn −Xn−1). Then

E(Wn −Wn−1|Fn−1) = CnE(Xn −Xn−1|Fn−1), (4.5)

by Lemma 2.2.4. If X is a martingale, the conditional expectation on

the right is zero, so E(Wn−Wn−1|Fn−1) = 0, andW is a martingale. If
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X is a supermartingale, the conditional expectation is non-positive and

this remains true for the product, if Cn is non-negative. This proves (i)

and (ii). We leave (iii) as an exercise.

The quantities Yn = Xn −Xn−1 are called martingale differences. A

sequence Sn ≡ ∑n
k=1 Yn where E(Yn|Fn−1) = 0 is called a martingale

difference sequence. If Yn are square integrable, then the variance of a

martingale difference sequence satisfies

ES2
n =

n∑

k=1

EY 2
k . (4.6)

Some examples. A canonical way to construct a martingale is to take

any random variable, X , on a filtered probability space, (Ω,F ,P), and

to define

Xn ≡ E[X |Fn].

Then, by the properties of conditional expectation,

E[Xn|Fn−1] = E[E[X |Fn]|Fn−1] = E[X |Fn−1] = Xn−1, a.s.

In this case, we should expect that limn↑∞Xn = X , a.s..

Another example is a Markov chain whose transition kernel has the

property that ∫
xP (y, dx) = y.

In particular, sums of iid random variables with mean zero are martin-

gales.

4.2 Upcrossings and convergence

Consider an interval [a, b]. We want to count the number of times a

process crosses this interval from below. We will say that an upcrossing

of [a, b] occurs between times s and t, if Xs < a,Xt > b, and ∀s <
r < t,Xr ∈ [a, b]. Given N and X , we denote by UN (X, [a, b])(ω) the

number of uprossings in the time interval [0, N ].

We will now consider a (obviously) previsible process constructed as

follows:

C1 = 1IX0<a; Cn = 1ICn−1=11IXn−1≤b + 1ICn−1=01IXn−1<a, for n ≥ 2.

(4.7)

This process represents a “winning” strategy: wait until the process
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(say, price of ....) drops below a. Buy the stock, and hold it until its

price exceeds b; sell, wait until the price drops below a, and so on. Our

wealth process is W = C •X .

Now each time there is an upcrossing of [a, b] we win at least (b− a).

Thus, at time N , we have

WN ≥ (b− a)UN (X, [a, b])− |XN − a|1IXN<a, (4.8)

where the last term count is the maximum loss that we could have

incurred if we are invested at time N and the price is below a.

Naive intuition would suggest that in the long run, the first term

must win. Our theorem above says that this is false, if we are in a fair

or disadvantageous game (that is, in practice, always).

Theorem 4.2.2 [Doob’s upcrossing lemma] Let X be a supermartingale

and UN as above. Then

(b− a)EUN (X, [a, b]) ≤ E (|XN − a|1IXN<a) . (4.9)

Proof. C is a bounded, non-negative previsible process, so (i) of Theo-

rem 4.1.1 implies that W is supermartingale with W0 = 0. This implies

immediately the claim.

The result has the following, quite remarkable consequence:

Corollary 4.2.3 Let Xn be a L1-bounded supermartingale, i.e. such

that supn E|Xn| <∞. Then, for any interval [a, b], define U∞(X, [a, b]) =

limn↑∞ Un(X, [a, b]). Then

(b − a)EU∞(X, [a, b]) ≤ a+ sup
n

E|Xn| <∞. (4.10)

In particular, P(U∞(X, [a, b])) = ∞) = 0.

Proof. Exercise!

This is quite impressive: a (super) martingale that is integrable cannot

cross any interval infinitely often. The next result is even more striking,

and in fact one of the most important results about martingales.

Theorem 4.2.4 [Doob’s supermartingale convergence theorem] Let Xn

be a L1-bounded supermartingale (i.e. supn E|Xn| < ∞). Then, almost

surely, X∞ ≡ limn↑∞Xn exists and is a finite random variable.
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Proof. Define

Λ ≡ {ω : Xn(ω) does not converge to a limit in [−∞,+∞]} (4.11)

= {ω : lim supXn(ω) > lim inf Xn(ω)}
=

⋃

a<b∈Q

{ω : lim supXn(ω) > b > a ≥ lim inf Xn(ω)} ≡
⋃

a<b∈Q

Λa,b.

But:

Λa,b ⊂ {ω : U∞(X, [a, b])(ω) = ∞}. (4.12)

Therefore, by Corollary 4.2.3, P(Λa,b) = 0, and thus also P(
⋃

a<b∈Q Λa,b) =

0, since countable unions of null-sets are null-sets.

Thus the limit of Xn exists in [−∞,∞] with probability one. It re-

mains to show that it is finite. To do this, we use Fatou’s lemma:

E|X∞| = E[lim inf
n

|Xn|] ≤ lim inf
n

E|Xn| ≤ sup
n

E|Xn| <∞. (4.13)

So X∞ is almost surely finite.

Doob’s convergence theorem implies that positive supermartingale al-

ways converge a.s.. This is because the supermartingale property ensures

in this case that E|Xn| = EXn ≤ EX0, so the uniform boundedness in

L1 is always guaranteed.

Our next result gives a sharp criterion for convergence that brings to

light the importance of the notion of the uniform integrability.

Theorem 4.2.5 Let X be a L1-bounded supermartingale, so that, by

Theorem 4.2.4 limnXn ≡ X∞ exists a.s.. Then Xn → X∞ in L1, if

and only if the sequence {Xn, n ∈ N0} is uniformly integrable. Then, for

n ∈ N0,

E(X∞|Fn) ≤ Xn, a.s. (4.14)

with equality holding if X is a martingale.

Proof. The first statement follows from Theorem 1.4.15. Now for

m ≥ n, and all F ∈ Fn, E(Xm|F ) ≤ E(Xn|F ). Letting m tend to infin-

ity, and using L1-convergence, limm↑∞E(Xm|F ) ≥ E(limm↑∞Xm|F ) =
E(X∞|F ), we obtain (4.14).

A martingale with the property that there exists integrable X∞ such

that Xn = E(X∞|Fn) is called a closed martingale. The same applies to

super (sub) martingales upon appropriate modification of the equality
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relation. The preceding theorem thus says in particular that (sup,super)

martingales that are uniformly integrable and converge a.s. are closed.

The martingales of our first example are by definition closed. The

next result implies that such martingales converge almost surely and in

L1. To show this, we need yet another result of Doob that implies the

uniform integrability of conditional expectations.

Theorem 4.2.6 Let X be an absolutely integrable random variable on

some probability space (Ω,F ,P). Then the family

{E(X |G) : G is a sub-σ-algebra ofF} (4.15)

is uniformly integrable.

Proof. Since X is absolutely integrable, for any ǫ > 0, we can find δ > 0

such that, if F ∈ F with P(F ) < δ, then E(X1IF ) < ǫ. Let such ǫ and

δ be given. Choose K such that K−1E|X | < δ. Let now G ⊂ F be a

σ-algebra, and let Y be a version of E(X |G). Then Jensen’s inequality

for conditional expectations implies that

|Y | ≤ E(|X ||G), a.s.

Now by Chebeychev, KP(|Y | > K) ≤ E|Y | ≤ E|X |. Thus P(|Y | >
K) ≤ δ. Moreover, since the event {|Y | > K} ∈ G, we can argue that

E(|Y |1I|Y |>K) ≤ E(E(|X ||G)1I|Y |>K) = E(E(|X |1I|Y |>K)|G))
= E(|X |1I|Y |>K)) < ǫ.

This is the uniform integrability property we want to prove.

Theorem 4.2.7 Let ξ be an absolutely integrable random variable on a

filtered probability space (Ω,F ,P, {Fn, n ∈ N0}). Define Xn ≡ E(ξ|Fn),

a.s.. Then Xn is a uniformly integrable martingale and

Xn → X∞ = E(ξ|F∞), (4.16)

almost surely and in L1.

Proof. Xn is a L1-bounded martingale by the properties of conditional

expectations. The proceedings Theorem 4.2.6 implies that Xn is uni-

formly integrable. Thus Xn converges almost surely and in L1. We

have to show the last equality in (4.16). For any n, and any F ∈ Fn,

E(E(ξ|F∞)1IF ) = E(Xn1IF ) = E(X∞1IF ),

and so E(E(ξ|F∞)1IF ) = E(X∞1IF ) for any F in the π-system
⋃

n∈N0
Fn
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that generates the σ-algebra F∞. The claim follows from the definition

of conditional expectation.

Note that, when F = F∞, the theorem says that E(X |Fn) → ξ.

An application of this result is Kolmogorov’s 0− 1 law.

Theorem 4.2.8 Let Xn, n ∈ N be a sequence of independent random

variables. Define Tn = σ(Xn+1, Xn+2, . . . ) and T ≡ ⋂n∈N Tn. Then, if

F ∈ T , P(F ) ∈ {0, 1}.

Proof. Let Fn ≡ σ(X1, . . . , Xn). Let F ∈ T , and η ≡ 1IF . Since η is

bounded and F∞-measurable, the preceding theorem tells us that

η = E(η|F∞) = lim
n

E(η|Fn), a.s.

Now η is Tn-measurable for each n and hence independent of Fn. Thus,

for any n

E(η|Fn) = Eη = P(F ), a.s.

and so η = P(F ), a.s.. But η takes only the values 0 and 1, being an

indicator function. Thus P(F ) ∈ {0, 1}, proving the theorem.

The next theorem relates to filtrations to the infinite past. It is called

the Lévy-Doob downward theorem. It is somehow an inverted version

of the upward theorem.

Theorem 4.2.9 Let (Ω,F ,P) be a probability space, and let {G−n, n ∈
N} be a collection of sub-σ-algebras of F such that, for all k, n ∈ N,

G−∞ ≡
⋂

k∈N

G−k ⊂ · · · ⊂ G−n−1 ⊂ G−n ⊂ · · · ⊂ G−1. (4.17)

Let {X−n, n ∈ N} be a supermartingale relative to {G−n, n ∈ N}, i.e.

E(X−n|G−m) ≤ X−m, a.s.

for m ≥ n. Assume that supn≥1 EX−n < ∞. Then the process X is

uniformly integrable and the limit

X−∞ = lim
n↑∞

X−n

exists a.s. and in L1. Moreover,

E(X−n|G−∞) ≤ X−∞, a.s.

with equality in the martingale case.
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Remark 4.2.1 Note that the limit we are considering here is really

quite different form the one in the previous convergence theorems. We

are really looking backward in time: as n tends to infinity, X−n is mea-

surable with respect to smaller and smaller σ-algebras, contrary to the

usual Xn, that depend on more information. Therefore, while a con-

vergent martingale Xn can converge to a constant only if the entire

sequence is a constant, but usually is a random variable, a convergent

X−n has a much better chance to converge to a real constant. We will

see shortly why this can be used to prove things like the strong law of

large numbers.

Proof. The nice thing about the upcrossing theorem is that it also

provides a proof of the convergence of X−n. In fact, just as before, if

E|X−1| is bounded, it follows that the number of upcrossings of any [a, b]

by the process X−n is a.s. finite. Therefore the limit exists in [−∞,∞].

The finiteness then follows since the condition supn EX−n <∞, and the

supermartingale property imply that ∞ > EX−∞ ≥ EX−1 > −∞. This

implies that X−∞ is finite almost surely.

Thus we just need to prove uniform integrability to obtain conver-

gence in L1. Now we know that EX−n is monotone increasing, and

limn↑∞ EX−n <∞. Thus, for any ǫ > 0, there is k ∈ N, such that

0 ≤ EX−n − EX−k ≤ ǫ/2, (4.18)

for all n ≥ k. Now, for such n, k, and λ > 0,

E(|X−n|1I|X−n|>λ) = −E(X−n1IX−n<−λ) + EX−n − E(X−n1IX−n≤λ)

≤ −E(X−k1IX−n<−λ) + EX−n − E(X−k1IX−n≤λ)

where we used the supermartingale property to replace n by k. Next we

can replace EX−n by EX−k with an error of at most ǫ/2, after which

the right-hand side reproduces the left hand one with n replaced by k

in the first place, i.e.

E(|X−n|1I|X−n|>λ) ≤ E(|X−k|1I|X−n|>λ) + ǫ/2. (4.19)

Since X−k is absolutely integrable, there exists δ > 0 such that for all

F with

P(F ) < δ ⇒ E(|X−k|1IF ) < ǫ/2. (4.20)

But P(|X−n| > λ) ≤ λ−1E|X−n|. To control E|X−n|, setX− ≡ max(−X, 0),
and write

E|X−n| = EX−n + 2EX−
−n.
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But X− is a submartingale, and so

E|X−n| ≤ sup
n

EX−n + 2EX−
−1. (4.21)

Thus we can choose K <∞ such that

P(|X−n| > K) ≤ δ, if n ≥ k, (4.22)

E(|X−j |1I|X−j |>K) < ǫ, if j < k.

(for the second we just use the integrability for the finitely many values

of i; for the first we use the uniform bound (4.21)). Then the first

inequalities imply that E(|X−n|1I|X−n|>K) ≤ ǫ for n ≥ k via (4.19) and

the implication (4.20). This proves the uniform integrability.

As an application we give a new proof of Kolmogorov’s Law of Large

Numbers.

Theorem 4.2.10 Let Xn, n ∈ N be iid random variables with E|Xn| <
∞. Let µ = EXn. Set Sn ≡∑n

i=1Xn. Then

n−1Sn → µ, (4.23)

a.s. and in L1.

Proof. Define G−n = σ(Sn, Sn+1, . . . , ). Then, for n ≥ 1,

E(X1|G−n) = E(X2|G−n) = · · · = E(Xn|G−n) = n−1E(Sn|G−n) = n−1Sn, a.s.

(4.24)

The reason for these equalities is simply that knowing something about

the sums Sn, Sn+1, etc. effects the expectation of the Xk, k ≤ n all in

the same way: we could simply re-label the first indices without chang-

ing anything. Thus L−n ≡ n−1Sn is a martingale as in the preceding

theorem, and thus L ≡ limn↑∞ L−n exists a.s.

But clearly we also have, for any finite k, that L = limn↑∞ n−1(Xk+1+

· · ·+Xn+k), which means that L is measurable with respect to Tk, for any
k. Now Kolmogorov’s zero-one law implies that, for any c, P(L ≤ c) ∈
{0, 1}. Since as a function of c this is monotone and right-continuous,

there must be exactly one c, such that P(L = c) = 1. Then EL = c. But

EL−n = µ, for all n, so c = µ.

The proof above shows some of the power of martingales!
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4.3 Inequalities

In this section we derive some fundamental inequalities for martingales.

One of the most useful ones is the following maximum inequality.

Theorem 4.3.11 Let Z be a non-negative submartingale. Then, for

c > 0, and n ∈ N,

cP

(
max
k≤n

Zk ≥ c

)
≤ E

(
Zn1Imaxk≤n Zk≥c

)
≤ EZn. (4.25)

Remark 4.3.1 You may recall a similar result for sums of iid random

variables as Kolmogorov’s inequality. The estimate is extremely power-

ful, since it gives the same estimate for the probability of the maximum

to exceed c as Chebeychev’s inequality would give for just the endpoint!

Proof. Define the sequence of disjoint events F0 ≡ {Z0 ≥ c},

Fk ≡
⋂

ℓ<k

{Zℓ < c} ∩ {Zk ≥ c} = {ω : min(ℓ ≤ n : Xℓ ≥ c) = k}.

(4.26)

Then

F ≡ {sup
k≤n

Zk ≥ c} =
n⋃

k=0

Fk. (4.27)

Clearly, the events Fk ∈ Fk. Moreover, on Fk; we know that Zk > c.

Thus

E(Zn1IFk
) ≥ E(Zk1IFk

) ≥ cP(Fk). (4.28)

Here the first inequality used of course the submartingale property of Z.

Thus

E(Zn1IF ) =

n∑

k=0

E(Zn1IFk
) ≥ c

n∑

k=0

P(Fk) = cP(F ). (4.29)

This implies the assertion of the theorem.

Note that ifMn is a martingale and f a convex function, then f(Mn) is

a submartingale. This allows to obtain many useful inequalities from the

oneof Theorem 4.3.11! In particular, Kolmogorov’s inequality follows by

chosing f(X) = X2. Other useful choices are the exponential function.

Our next target is Doob’s Lp inequality. The next lemma is a first

step in this direction.

Lemma 4.3.12 Let X and Y be non-negative random variables such

that, for all c > 0,
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cP(X ≥ c) ≤ E(Y 1IX≥c). (4.30)

Then, for p > 1 and q−1 = 1− p−1,

‖X‖p ≤ q‖Y ‖p. (4.31)

Proof. By our hypothesis, it holds that

L ≡
∫ ∞

0

pcp−1P(X ≥ c)dc ≤
∫ ∞

0

pcp−2E(Y 1IX≥c)dc ≡ R.

Using Fubini’s theorem for non-negative integrands, we can write

L =

∫ ∞

0

pcp−1

(∫

Ω

1IX≥c(ω)P(dω)

)
dc

=

∫

Ω

(∫ X(ω)

0

pcp−1dc

)
P(dω) =

∫

Ω

X(ω)pP(dω) = EXp.

Starting from the right-hand side, we can perform the same calculation,

and derive that

R = qE(Xp−1Y ) ≤ q‖Y ‖p‖Xp−1‖q,

where the second inequality is just Hölder’s inequality. Then

EXp ≤ q‖Y ‖p‖Xp−1‖q. (4.32)

Assume that ‖Y ‖p and ‖X‖q are finite. Clearly, (p− 1)q = p, and so

‖Xp−1‖q =
(
EXq(p−1)

)1/q
= (EXp)

1/q
.

Therefore (4.32) reads

‖X‖pp ≤ q‖Y ‖p‖X‖p/qp ,

or ‖X‖p ≤ q‖Y ‖p, as claimed. If ‖X‖p = ∞, one derives the inequality

first for X ∧ n, and then uses monotone convergence. This proves the

lemma.

We can now formulate Doob’s Lp-inequality.

Theorem 4.3.13 Let p > 1 and q−1 = 1−p−1. Let Z be a non-negative

submartingale bounded in Lp, and define

Z∗ ≡ sup
k∈N0

Zk. (4.33)

Then Z∗ ∈ Lp, and
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‖Z∗‖p ≤ q sup
n∈N0

‖Zn‖p. (4.34)

The limit, Z∞ ≡ limn↑∞ Zn, exists a.s. and in Lp, and

‖Z∞‖p ≤ sup
n∈N0

‖Zn‖p = lim
n↑∞

‖Zn‖p. (4.35)

If Z is of the form Z = |M |, where M is a martingale bounded in Lp,

then M∞ ≡ limn↑∞Mn exists a.s. and in Lp, and Z∞ = |M∞|, a.s..

Proof. Define Z∗
n ≡ supk≤n Zk. Theorem 4.3.11 and Lemma 4.3.12

imply that

‖Z∗
n‖p ≤ q‖Zn‖p ≤ q sup

k≤n
‖Zk‖p.

Using the monotone convergence theorem, we get (4.34). Now −Z is

a supermartingale bounded in Lp, and hence in L1, it follows that Z∞
exists a.s.. But

|Z∞ − Zn|p ≤ (max(Z∞, Zn))
p ≤ (Z∗)p ∈ L1,

so that, by Lebesgue’s dominated convergence theorem, E|Z∞−Zn|p →
0, i.e. Xn → X∞ in Lp.

The last assertion in (4.35) follows since by Jensen’s inequality and

the submartingale property

EZp
n ≥ E (E(Zp

n|Fn−1) ≥ E (E(Zn|Fn−1)
p ≥ EZp

n−1,

and so ‖Zn‖p is a non-decreasing sequence. The remaining assertions

are straightforward.

4.4 Doob decomposition

One of the games when dealing with stochastic processes is to “extract

the martingale part”. There are several such decompositions, but the

following Doob decomposition is very important and its continuous time

analogue will be fundamental for the theory of stochastic integration.

Theorem 4.4.14(i) Let {Xn, n ∈ N0} be an adapted process on a fil-

tered space (Ω,F ,P; {Fn, n ∈ N0}) with Xn ∈ L1 for all n. Then X

can be written in the form1

1 To make sure that there is no confusion about notation: the following equation is
to be understood in the sense that X0 = X0, and for n ≥ 1, Xn = X0 +Mn +An.
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X = X0 +M +A, (4.36)

where M is a martingale with M0 = 0 and A is a previsible process

with A0 = 0. This decomposition is unique modulo indistinguishabil-

ity, i.e. if for some other M ′, A′, X = X0 +M ′ +A′, then

P(Mn =M ′
n, An = A′

n, ∀n ∈ N) = 1.

(ii) The process X is a submartingale, if and only if A is an increasing

process in the sense that

P(An ≤ An+1, ∀n ∈ N) = 1.

Proof. The proof is unsurprisingly very easy. All we need to do is to

derive explicit formulae forM and A. Now assume that a decomposition

of the claimed form exists. Then

E((Xn −Xn−1)|Fn−1) = E((Mn −Mn−1)|Fn−1) + E((An −An−1)|Fn−1)

= 0 +An −An−1 (4.37)

by the martingale and predictability properties. Therefore

An =

n∑

k=1

E((Xk −Xk−1)|Fk−1), a.s. (4.38)

So now just define An by (4.38), and Mn by Mn ≡ Xn − X0 − An.

Clearly M is then a martingale, and A is by construction predictable.

This ends the proof of (i). The assertion of (ii) is obvious from (4.37).

An immediate application of the decomposition theorem is a maxi-

mum inequality without positivity assumption.

Lemma 4.4.15 If X is either a submartingale or a supermartingale

then, for n ∈ N and c > 0,

cP

(
sup
k≤n

|Xk| ≥ 3c

)
≤ 4E|X0|+ 3E|Xn|. (4.39)

Proof. We consider the case when X is a submartingale, the case of the

supermartingale is identical by passing to −X . Then there is a Doob

decomposition

X = X0 +M +A
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with A an increasing process. Thus

sup
k≤n

|Xk| ≤ |X0|+ sup
k≤n

|Mk|+ sup
k≤n

|Ak| = |X0|+ sup
k≤n

|Mk|+An.

Note that |M | is a non-negative submartingale, so for the supremum of

|Mk| we can use Theorem (4.3.11). We use the simple observation that,

if x+ y + z > 3c, then at least one of the x, y, z must exceed c. Thus,

cP

(
sup
k≤n

|Xk| ≥ 3c

)
≤ cP(|X0| ≥ c) + cP

(
sup
k≤n

|Mk| ≥ c

)
+ cP(An ≥ c)

≤ E|X0|+ E|Mn|+ EAn (4.40)

Now

E|Mn| = E|Xn −X0 −An| ≤ E|Xn|+ E|X0|+ EAn

and

EAn = E(Xn −X0 −Mn) = E(Xn −X0) ≤ E|Xn|+ E|X0|.

Inserting these two bounds into (4.40) gives the claimed inequality.

The Doob decomposition gives rise to two important derived processes

associated to a martingale, M , the bracket, 〈M〉, and [M ].

Definition 4.4.1 LetM be a martingale in L2 with M0 = 0. Then M2

is a submartingale with Doob decomposition

M2 = N + 〈M〉,

where N is a martingale that vanishes at zero and 〈M〉 is a previsible

process that vanishes at zero. The process 〈M〉 is called the bracket of

M .

Note that boundedness in L1 of 〈M〉 is equivalent to boundedness in

L2 of M .

From the formulas associated with the Doob decomposition, we derive

that

〈M〉n − 〈M〉n−1 = E((M2
n −M2

n−1)|Fn−1) = E((Mn −Mn−1)
2|Fn−1).

(4.41)

Definition 4.4.2 Let M be as before. We define

[M ]n ≡
n∑

k=1

(Mk −Mk−1)
2. (4.42)
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Lemma 4.4.16 If M is as before,

M2 − [M ] ≡ V = (C •M), (4.43)

where Cn ≡ 2Mn−1. V is a martingale. If M is bounded in L2, then V

is bounded in L1.

Proof. Exercise!

4.5 A discrete time Itô formula.

We will now give in some way a justification of the name “discrete

stochastic integral” for the martingale tranform. We consider a mar-

tingale M zero in zero and a function F : R → R. We want to consider

the process F (MT ) and ask whether we can represent F (Mt) − F (0)

as a “stochastic integral. Since we have called C •M a stochastic in-

tegral, we might expect that this formula could simply read F (MT ) =

(F ′ • X)T + F (M0), as in the usual fundamental theorem of calculus,

but this will not turn out to be the case in general.

Let us consider the situation when the increments of Mt are getting

very small; the idea here is that the spacings between consecutive times

are really small. So we introduce parameter ǫ > 0 that will later tend

to zero, while we think that T = ǫ−1C. We will also assume that

E(Mt − Mt−1)
2 = O(ǫ). In this situation we can expand in Taylor

series, assuming that F will be a smooth function:

F (Mt) = F (Mt−1) + (Mt −Mt−1)F
′(Mt−1) (4.44)

+
1

2
F ′′(MT−1)(MT −MT−1)

2 +O
(
(MT −MT−1)

3
)

where we assume that

EO
(
(MT −MT−1)

3
)
≤ Kǫ3/2,

and therefore TEO
(
(MT −MT−1)

3
)
≤ Kǫ1/2 ↓ 0, so that as ǫ ↓ 0

these error terms will be negligible (and will henceforth not be written

anymore). Now we may iterate this proceedure to obtain

F (MT ) = F (M0) +
T∑

t=1

F ′(Mt−1)(Mt −Mt−1) (4.45)

+
1

2

T∑

t=1

F ′′(Mt−1)(Mt −Mt−1)
2 +O(ǫ1/2).

This expression looks almost like the Doob decomposition of the process
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F (Mt), except that the last term is not exactly predictable. In fact, from

the Doob decomposition, we would instead expect a predictible term of

the form
T∑

t=1

F ′′(Mt−1)E
[
(Mt −Mt−1)

2|Ft−1

]
. (4.46)

However, under reasonable assumptions (on F and on the behaviour of

the increments of the martingale M), the martingale

∆T ≡
T∑

t=1

F ′′(Mt−1)
(
(Mt −Mt−1)

2 − E
[
(Mt −Mt−1)

2|Ft−1

])

satisfies E∆2
T = O(ǫ), and is therefore negligible in our approximation.

This implies the discrete version of Itô’s formula:

F (MT ) = F (M0) +

T∑

t=1

F ′(Mt−1)(Mt −Mt−1) (4.47)

+
1

2

T∑

t=1

F ′′(Mt−1)E
[
(Mt −Mt−1)

2|Ft−1

]
+O(ǫ1/2).

4.6 Central limit theorem for martingales

One important further result for martingales concerns central limit the-

orems. There are various different formulations of such theorems. We

will present one which emphasises the rôle of the bracket.

Theorem 4.6.17 Let M be a martingale with M0 = 0. Set s2n ≡
E[M ]n ≡∑n

i=1 E(Mi−Mi−1)
2. Assume that s−2

n maxk≤n E(Mk−Mk−1)
2 ↓

0, and that, for all ǫ > 0,

s−2
n

n∑

k=1

E
[
(Mk −Mk−1)

21I|Mk−Mk−1|>ǫsn

∣∣Fk−1

]
↓ 0, a.s. (4.48)

Then, if 〈M〉n/s2n → 1 in probability, then

s−1
n Mn → N (0, 1) (4.49)

in distribution.

Remark 4.6.1 Condition (4.48) is called the conditional Lindeberg con-

dition. In the case when Mn = Sn =
∑n

i=1Xi with independent cen-

tered random variables Xi, (4.48) reduces to the usual Lindeberg con-

dition
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s−2
n

n∑

k=1

E
[
X2

k1I|Xk|>ǫsn

]
↓ 0. (4.50)

Moreover, in that case E[M ]n =< M >n, and so condition (4.49) is triv-

ially verified. Thus the above theorem implies the usual CLT for sums

of independent random variables under the weakest possible conditions.

Proof. The proof will use characteristic functions. We know that (4.49)

will hold, if and only if, for all u ∈ R,

lim
n↑∞

Eeius
−1
n Mn = e−u2/2. (4.51)

Let us set Yk ≡Mk−Mk−1. Things are a little tricky, and the following

decomposition is quite helpful:
∣∣∣E
[
eius

−1
n Mn − e−

u2

2

]∣∣∣ (4.52)

=

∣∣∣∣E
[
eius

−1
n Mn

(
1− e

u2

2s2n
〈M〉n

e−
u2

2

)
+ e−

u2

2

(
eius

−1
n Mne

u2

2s2n
〈M〉n − 1

)]∣∣∣∣

≤ E

[∣∣∣∣1− e
u2

2s2n
〈M〉n

e−
u2

2

∣∣∣∣
]
+

∣∣∣∣E
[
eius

−1
n Mne

u2

2s2n
〈M〉n − 1

]∣∣∣∣

We want to show that both terms converge to zero as n ↑ ∞. For the first

one, this is quite clear from the fact that e
u2

2s2n
〈M〉n → e

u2

2 in probability,

provided that

〈M〉n/s2n ≤ C <∞ (4.53)

We will deal with this condition later. Let us now deal with the second

term.

Then we write

Ee
ius−1

n Mn+
u2

2s2n
〈M〉n

= E

[
e

∑n
k=1

(
ius−1

n Yk+
u2

2s2n
E[Y 2

k |Fk−1]

)]
(4.54)

= E

[
E

[
n∏

k=1

e

(
ius−1

n Yk+
u2

2s2n
E[Y 2

k |Fk−1]

)∣∣∣∣Fn−1

]]

= E

[
E

[
e
ius−1

n Yn+
u2

2s2n
E[Y 2

n |Fn−1]∣∣Fn−1

] n−1∏

k=1

e

(
ius−1

n Yk+
u2

2s2n
E[Y 2

k |Fk−1]

)]

Note that in the last lines we have inserted the conditional expectation

with respect to Fn−1 and pulled the Fn−1-measurable functions as far

as possible.
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Let us now work these conditional expectations up one after the other.

We use that

|eiux − 1− iux+ u2x2/2| ≡ |R1(ux)| ≤ min(u2x2, |u|3|x|3),

and

|eu2x2/2 − 1− u2x2/2| ≡ |R2(u
2x2)| ≤ u4σ4eu

2x2/2.

To keep notation tractable, define σ2
n ≡ E(Y 2

n |Fn−1). Then

E

[
e
ius−1

n Yn+
u2

2s2n
E[Y 2

n |Fn−1]
]
= E

[
1 + ius−1

n Yn − u2

2s2n
Y 2
n +R1(s

−1
n uYn)

+
u2

2s2n
σ2
n + iu3s−3

n + Ynσ
2
n − u4

4s4n
Y 2
n σ

2
n +

u2

2s2n
σ2
nR1(us

−1
n Yn)

+R2(u
2σ2

n/s
2
n)
(
1 + ius−1

n Yn − u2

2s2n
Y 2
n +R1(us

−1
n Yn)

)
∣∣∣∣∣Fn−1

]

= 1 + E

[
R1(s

−1
n uYn)−

u4

4s4n
Y 2
n σ

2
n +

u2

2s2n
σ2
nR1(us

−1
n Yn)

+R2(u
2σ2

n/s
2
n)
(
1− u2

2s2n
Y 2
n +R1(us

−1
n Yn)

)
∣∣∣∣∣Fn−1

]

= 1 + E
[
R1(s

−1
n uYn)|Fn−1

)(
1 +

u2σ2
n

2s2n
+R2(u

2σ2
n/s

2
n)

)

−u
2σ2

n

2s2n

(
u2σ2

n

2s2n
+R2(u

2σ2
n/s

2
n)

)
. (4.55)

Here we used that σ2
n is Fn−1-measurable and can be treated like a

constant in the conditional expectation. The term 1 is just what we

want. All other terms are are really small, even then summed up in the

course of the iteration later on. To see how to deal with them we use

the following properties:

(i) σ2
n ≤ ǫ2s2n +E[Y 2

n 1I|Yn|>ǫσn
|Fn−1]. Both these terms will be nice:

the first is order ǫ2, and the second is controlled by the Lindeberg

condition (4.48).

(ii) σ2
k/s

2
n is sumable over k. Thus this bound will be kept together

witn ǫ-terms produced using (i).

(iii) σ2
n/s

2
n ≤ C. This bound is applied where exp(u2σ2

n/2s
2
n) appears

in R2, as well as to replace any useless powers of σ2
n that may be

around.
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(iv) Finally, by a similar decomposition

min
(
|Y 3

n ||u|3/s3n|, u2Y 2
n /s

2
n

)
(4.56)

= min
(
|Y 3

n ||u|3/s3n, u2Y 2
n /s

2
n

) (
1I|Yn|≤ǫsn + 1I|Yn|>ǫsn

)

≤ |Y 3
n ||u|3/s3n|1I|Yn|≤ǫsn + u2Y 2

n /s
2
n1I|Yn|>ǫsn

≤ ǫ|u|3Y
2
n

s2n
+ u2Y 2

n /s
2
n1I|Yn|>ǫsn

and so

|E [R1(uYn/sn)|Fn−1]| ≤ ǫ
σ2
n

s2n
|u|3 + u2s−2

n E
[
Y 2
n 1I|Yn|≥ǫsn

∣∣Fn−1

]
.

(4.57)

Using these estimates, we arrive at the following result.

Lemma 4.6.18
∣∣∣∣Ee

ius−1
n Mn+

u2

2s2n
〈M〉n − Ee

ius−1
n Mn−1+

u2

2s2n
〈M〉n−1

∣∣∣∣ (4.58)

≤ u2
(
ǫσ2

n/s
2
n((1 + |u|ǫ) + E

[
Y 2
n 1I|Yn|≥ǫsn

∣∣Fn−1

])

×
(
1 + 2u2C + 2u4C2eu

2C/2
)
eCu2/2

Proof. Insert the estimate (4.55) into (4.54) The term “1” produces

the “n− 1”-term in (4.58). Use the estimates from the list above in the

error terms, and use the fact that
∣∣∣∣e

ius−1
n Mn−1+

u2

2s2n
〈M〉n−1

∣∣∣∣ ≤ eu
2C/2.

To conclude the proof under the hypothesis (4.53), we now have to just

iterate. This yields
∣∣∣∣Ee

ius−1
n Mn+

u2

2s2n
〈M〉n − 1

∣∣∣∣ (4.59)

≤
n∑

k=1

E
(
ǫ|u|σ2

k/s
2
n + E

[
Y 2
k 1I|Yk|≥ǫsn

∣∣Fk−1

])
|u2eu2CC′

≤
(
ǫC|u|+

n∑

k=1

E
[
Y 2
k 1I|Yk|≥ǫsn

∣∣Fk−1

]
)
u2C′eu

2C .

The Lindeberg type term tends to zero, as n goes to infinity, and the

other term can be made arbitrarily small by choosing ǫ as small as

desired. This shows proves the CLT under the hypothesis (4.53).
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Finally we deal with the boundedness assumption (4.53). Define

An,m ≡ {ω ∈ Ω : s−2
n

∑m
k=1 E [Yk|Fk−1] ≤ C. Of coures, P(An,n) bounds

the probabilities P(An,m), m ≤ n from below, and limn↑∞ P(An,n) = 1.

Notice that
∑m

k=1 E
[
Y 2
k |Fk−1

]
is Fm−1 measurable, and hence so is

1IAn,m . Thus, if we set Zn,m ≡ Ym1IAn,m , it holds that E [Zn,m|Fm−1] =

0 for all m ≤ n. Thus the variables {Zn,m,m ≤ n}, for fixed n, form a

martingale difference sequence (which can be extended to an infinite se-

quence by setting Zn,m = 0,m > n). Since |Zn,m| ≤ |Ym|, all the proper-
ties used in the calculations above carry over to the Zn,m. Therefore, re-

peating the calculations above with Mn replaced by M̂n ≡∑n
m=1 Zn,m,

we find that

lim
n↑∞

E

[
eiuM̂n

]
= e−u2/2. (4.60)

Finally,

lim
n↑∞

E
[
eiuMn

]
= lim

n↑∞
E
[
eiuMn1IAn,n

]
+ lim

n↑∞
E

[
eiuMn1IAc

n,n

]
(4.61)

= lim
n↑∞

E

[
eiuM̂n1IAn,n

]
+ 0

= lim
n↑∞

E

[
eiuM̂n

]
− lim

n↑∞
E

[
eiuM̂n1IAc

n,n

]

= e−u2/2 − 0.

This concludes the proof of the theorem.

Remark 4.6.2 It is obvious from the proof that the result has an imme-

diate extension to triangular arrays of martingale difference sequences,

like M̂ .

Very similar computations like those presented above play an impor-

tant rôle in what is called the concentration of measure phenomenon.

Without going into too many details, let me briefly describe this. The

setting one is considering is the following. We have n independent, iden-

tically distributed random variables, X1, . . . , Xn, assumed to have mean

zero, variance one, and to satisfy, e.g. EeuXi < ∞, for all u ∈ R. Let

f : Rn → R be a differentiable function that satisfies

n
sup
k=1

sup
x∈Rn

∣∣∣∣
∂f

∂xk
(x1, . . . , xn)

∣∣∣∣ ≤ 1.

Set F ≡ f(X1, . . . , Xn). Then one can show that for some constant,

C > 0,

P (|F − EF | > ρn) ≤ 2e−
nρ2

2C . (4.62)
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The proof relies on the exponential Markov inequality, that states that

P (F − EF > nρ) ≤ inf
t≥0

e−tnρEet(F−EF ).

The trick is to compute the Laplace transform, i.e. to show that

Eet(F−EF ) ≤ et
2nC/2.

(and not, as one might worry, of order exp(n2)!!).

To do this, one writes F − EF as a martingale difference sequence

with respect to the filtration generated by the random variables Xi:

F − EF =

n∑

k=1

(E(F |Fk)− E(F |Fk−1)) . (4.63)

The computations one has to do are quite similar to those we have

perfored in the proof of the central limit theorem. There is one small

trick that is useful to use: Set Fu ≡ f(X1, . . . , uXk, Xk+1, . . . Xn) .

Then

F − F 0 =

∫ 1

0

du
d

du
Fu =

∫ 1

0

duXk
∂

∂xk
f(X1, . . . , uXk, Xk+1, . . . Xn)

and

E[F |Fk]− E[F |Fk−1] =

∫ 1

0

du

(
E

[
d

du
Fu|Fk

]
− E

[
d

du
Fu|Fk−1

])

≡ E[Zk|Fk]− E[Zk|Fk−1], (4.64)

where |Zk| ≤ |Xk|. Hence

E

(
eλ(E(F |Fk)−E(F |Fk−1)) − 1− λ (E(F |Fk)− E(F |Fk−1))

∣∣∣Fk−1

)

≤ λ2E
[
(E(F |Fk)− E(F |Fk−1))

2
eλ|E(Zk|Fk)−E(Zk|Fk−1)|

∣∣∣Fk−1

]

≤ λ2C (4.65)

by the assumption on the law of Xk. We leave the remaining details of

the calculation as an exercise. For more on concentration of measure,

see e.g. [8, 9].

4.7 Stopping times, optional stopping

In a stochastic process we often want to consider random times that are

determined by the occurrence of a particular event. If this event depends

only on what happens “in the past”, we call it a stopping time. Stopping

times are nice, since we can determine there occurrence as we observe
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the process; hence, if we are only interested in them, we can stop the

process at this moment, hence the name.

Definition 4.7.1 A map τ : Ω → N0 ∪ {+∞} is called a stopping time

(with respect to a filtration {Fn, n ∈ N0}), if, for all n ∈ N0 ∪ {+∞},
{T = n} ∈ Fn. (4.66)

Example. The most important examples of stopping times are hitting

time. Let X be an adapted process, and let B ∈ B. Define

τB ≡ inf{t > 0 : Xt ∈ B}.

Then τB is a stopping time. To see this, note that, if n ∈ N.

{τB = n} = {ω : Xn(ω) ∈ B,Xk(ω) 6= B, ∀0 < k < n}.

This event is manifestly in Fn. The event {τB = ∞} occurs if {Xn 6∈
B, ∀n ∈ N} ⊂ F∞.

In principle all stopping times can be realised as first hitting times of

some process. To do so, define

I[T,∞)(n, ω) =

{
1, if n ≥ T (ω),

0, otherwise.

This process is adapted, and T = τ1.

It is sometimes very convenient to have the notion of a σ-algebra of

events that take place before a stopping time.

Definition 4.7.2 The pre-T -σ-algebra, FT , is the set of events F ⊂ Ω,

such that, for all n ∈ N0 ∪ {+∞},
F ∩ {T ≤ n} ∈ Fn. (4.67)

Pre-T -σ-algebras will play an important rôle in formulation the strong

Markov property.

There are some useful elementary facts associated with this concept.

Lemma 4.7.19 Let S, T be stopping times. Then:

(i) If X is an adapted process, then XT is FT -measurable.

(ii) If S < T , then FS ⊂ FT .

(iii) FT∧S = FT ∩ FS.

(iv) If F ∈ FS∨T , then F ∩ {S ≤ T } ∈ FT .

(v) FS∨T = σ(FT ,FS).

Proof. Exercise.
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We now return to our gambling mode. We consider a supermartingale

X and we want to play a strategy, C, that depends of a stopping time,

T : say, we keep one unit of stock until the random time T . Then

Cn ≡ CT
n ≡ 1In≤T .

Note that CT is a previsible process. Namely,

{CT
n = 0} = {T ≤ n− 1} ∈ Fn−1,

and since CT
n only takes the two values 0, 1, this suffices to show that

CT
n ∈ Fn−1. The wealth process associated to this strategy is then

(CT •X)n = XT∧n −X0.

If we define the stopped process XT , via

XT
n (ω) ≡ XT (ω)∧n(ω),

we have alternatively

CT •X = XT −X0.

Since CT is positive and bounded, Theorem 4.1.1, (i), implies the fol-

lowing:

Theorem 4.7.20(i) If X is a supermartingale and T is a stopping time,

then the stopped process, XT ≡ {XT∧n, n ∈ N0}, is a supermartingale.

In particular, for all n ∈ N,

EXT∧n ≤ EX0. (4.68)

(ii) If X is a martingale and T is a stopping time, then XT is a martin-

gale. In particular

EXT∧n = EX0. (4.69)

Proof. Immediate from Theorem 4.1.1, (i).

This theorem is disappointing news for whose who might have hoped

to reach a certain gain by playing until they have won a preset sum of

money, and stopping then. In a martingale setting, the sure gain that

will occur if this stopping time is reached before time n is offset by the

expected loss, if the target has not yet been reached.

Note, however, that the theorem does not assert that EXT ≤ EX0.

The following theorem, called Doob’s Optional Stopping Theorem, gives

conditions under which even that holds.
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Theorem 4.7.21(i) Let T be a stopping time, and let X be a super-

martingale. Then, XT is integrable and

EXT ≤ EX0, (4.70)

if one of the following conditions holds:

(a) T is bounded (i.e. there exists N ∈ N, s.t. ∀ω∈ΩT (ω) ≤ N);

(b) X is bounded, and T is a.s. finite;

(c) ET <∞, and, for some K <∞,

|Xn(ω)−Xn−1(ω)| ≤ K, (4.71)

for all n ∈ N, ω ∈ Ω.

(ii) If X is a martingale, then in any of the situations above EXT = EX0.

Remark 4.7.1 This theorem may look strange, and contradict the “no

strategy” idea: take a simple random walk, Sn, (i.e. a series of fair

games, and define a stopping time T = inf{n : Sn = 10}. Then clearly

XT = 10 6= EX0 = 0! So we conclude, using (c), that ET = +∞. In

fact, the “sure” gain if we achieve our goal is offset by the fact that on

average, it takes infinitely long to reach it (of course, most games will

end quickly, but chances are that some may take very very long!

Proof. We already know that EXn∧T −EX0 ≤ 0 for all n ∈ N. Consider

case (a). Then we know that T ∧N = T , and so EXT = EXT∧N ≤ EX0,

as claimed.

In case (b), we start from EXn∧T −EX0 ≤ 0 and let n ↑ ∞. Since T is

almost surely finite, limn↑∞Xn∧T = XT , a.s., and since Xn is uniformly

bounded,

lim
n↑∞

EXT∧n = E lim
n↑∞

XT∧n = EXT ,

which implies the result.

In the last case, (c), we observe that

|XT∧n −X0| =
∣∣∣∣∣
T∧n∑

k=1

(Xk −Xk−1)

∣∣∣∣∣ ≤ KT,

and by assumption EKT <∞. Thus, we can again take the limit n ↑ ∞
and use Lebesgue’s dominated convergence theorem to justify that the

inequality survives.

Finally, to justify (ii), use that if X is a martingale, then both X

and −X are supermartingales. The ensuing two inequalities imply the

desired equality.



82 4 Martingales

Case (c) in the above theorem is certainly the most frequent situation

one may hope to be in. For this it is good to know how to show that

ET < ∞, if that is the case. The following lemma states that this is

always the case, whenever, eventually, the probability that the event

leading to T is reasonably big.

Lemma 4.7.22 Suppose that T is a stopping time and that there exists

N ∈ N and ǫ > 0, such that, for all n ∈ N,

P(T ≤ n+N |Fn) > ǫ, a.s. (4.72)

Then ET <∞.

Proof. Consider P (T > kN). Clearly we can write

P (T > kN) = E
(
1IT>(k−1)N1IT>kN

)
(4.73)

= E
(
E
(
1IT>(k−1)N1IT>kN |F(k−1)N

))

= E
(
1IT>(k−1)NE

(
1IT>kN |F(k−1)N

))

≤ (1− ǫ)E
(
1IT>(k−1)N

)

≤ (1− ǫ)k,

by iteration. The exponential decay of the probability implies the finite-

ness of the expectation of T imediately.

Finally we state Doob’s supermartingale inequatlities for non-negative

supermartingales.

Theorem 4.7.23 Let X be non-negative supermartingale and T a stop-

ping time. Then

EXT ≤ EX0. (4.74)

Moreover, for any c > 0,

cP

(
sup
k
Xk > c

)
≤ EX0. (4.75)

Proof. We know that EXT∧n ≤ EX0. Using Fatou’s lemma allows to

pass to the limit n ↑ ∞. For (4.74), set T = inf{n : Xn > c}. Clearly

XT ≥ c, if supkXk > c, and zero else. Thus EXT ≥ cP (supkXk > c),

and (4.75) follows from (4.74).
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Markov processes

We have seen the definition and construction of discrete time Markov

chains already in Chapter 3. Markov chains are among the most im-

portant stochastic processes that are used to model real live phenomena

that involve disorder. This is because the construction of these processes

is very much adapted to our thinking about such processes. Moreover,

Markov processes can be very easily implemented in numerical algo-

rithms. This allows to numerically simulate even very complicated sys-

tems. We will always imagine a Markov process as a “particle” moving

around in state space; mind, however, that these “particles” can repre-

sent all kinds of very complicated things, once we allow the state space

to be sufficiently general. In this section, S will always be a complete

separable metric space.

5.1 Markov processes with stationary transition probabilities

In general, we call a stochastic process whose index set supports the

action of a group (or semi-group) stationary (with respect to the action

of this (semi) group, if all finite dimensional distributions are invariant

under the simultaneous shift of all time-indices. Specifically, if our index

sets, I, are R+ or Z, resp. N, then a stochastic process is stationary if

for all ℓ ∈ N, s1, . . . , sℓ ∈ I, all A1 . . . , Aℓ ∈ B, and all t ∈ I,

P [Xs1 ∈ A1, . . . , Xsℓ ∈ Aℓ] = P [Xs1+t ∈ A1, . . . , Xsℓ+t ∈ Aℓ] . (5.1)

We can express this also as follows: Define the shift θ, for any t ∈ I, as

(X ◦ θt)s ≡ Xt+s. Then X is stationary, if and only if, for all t ∈ I, the

processes X and X ◦ θt have the same finite dimensional distributions.

In the case of Markov processes, a necessary (but not sufficient) condi-

tion for stationarity is the stationarity of the transitions kernels. Recall

83
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that we have defined the one-step transition kernel Pt of a Markov pro-

cess in Section 3.3.

Definition 5.1.1 A Markov process with discrete time N0 and state

space S is said to have stationary transition probabilities (kernels), if

it’s one step transition kernel, Pt, is independent of t, i.e. there exists a

probability kernel, P (x,A), s.t.

Pt(x,A) = P (x,A), (5.2)

for all t ∈ N, x ∈ S, and A ∈ B.
Remark 5.1.1 With the notation Pt,s for the trantions kernel from

time s to time t, we could alternatively state that a Markov process has

stationary transition probabilities (kernels), if there exists a family of

transition kernels Pt(x,A), s.t.

Ps,t(x,A) = Pt−s(x,A), (5.3)

for all s < t ∈ N, x ∈ S, and A ∈ B. Note that there is a potental

conflict of notation between Pt and Pt which should not be confused.

A key concept for Markov chains with stationary transition kernels is

the notion of an invariant distribution.

Definition 5.1.2 Let P be the transition kernel of a Markov chain with

stationary transition kernels. Then a probability measure, π, on (S,B)
is called an invariant (probability) distribution, if∫

π(dx)P (x,A) = π(A), (5.4)

for all A ∈ B. More generally, a positive, Σ-finite measure, π, satisfying

(5.4), is called an invariant measure.

Lemma 5.1.1 A Markov chain with stationary probability kernels and

initial distribution P0 = π is a stationary stochastic process, if and only

if π is an invariant probability distribution.

Proof. Exercise.

In the case when the state space, S, is finite, we have seen that there

is always at least one invariant measure, which then can be chosen to be

a probability measure. In the case of general state spaces, while there

still will always be an invariant measure (through a generalisation of the

Perron-Frobenius theorem to the operator setting), there appears a new

issue, namely whether there is an invariant measure that is finite, viz.

whether there exists a invariant probability distribution.
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5.2 The strong Markov property

The setting of Markov processes is very much suitable for the application

of the notions of stopping times introduced in the last section. In fact,

one of the very important properties of Markov processes is the fact that

we can split expectations between past and future also at random times.

Theorem 5.2.2 Let X be a Markov process with stationary transition

kernels. Let Fn be a filtration such that X is adapted, and let T be a

stopping time. Let F and G be F-measurable functions, and let F in

addition be measurable with respect to the pre-T -σ-algebra FT . Then

E [1IT<∞FG ◦ θT |F0] = E
[
1IT<∞FE

′ [G|F ′
0] (XT )

∣∣F0

]
(5.5)

where E′ and refers to an independent copy, X ′, of the Markov chain X.

Proof. We have

E [1IT<∞FG ◦ θT |F0] (5.6)

= E [E [1IT<∞FG ◦ θT |FT ] |F0]

= E [1IT<∞FE [G ◦ θT |FT ] |F0] .

Now E [G ◦ θT |FT ] depends only on XT and by stationarity is equal to

E′ [G|F ′
0] (XT ), which yields the claim of the theorem.

5.3 Markov processes and martingales

We now want to develop some theory that will be more important and

more difficult in the continuous time case. First we want to see how the

transition kernels can be seen as operators acting on spaces of measures

respectively spaces of function.

If µ is a σ-finite measure on S, and P is a Markov transition kernel,

we define the measure µP as

µP (A) ≡
∫

S

P (x,A)dµ(x), (5.7)

and similarly, for the t-step transition kernel, Pt,

µPt(A) ≡
∫

S

Pt(x,A)dµ(x). (5.8)

By the Markov property, we have of course the

µPt(A) = µP t(A). (5.9)
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The action on measures has of course the following natural interpretation

in terms of the process: if P(X0 ∈ A) = µ(A), then

µ(Xt ∈ A) = µPt(A). (5.10)

Alternatively, if f is a bounded, measurable function on S, we define

(Pf)(x) ≡
∫

S

f(y)P (x, dy), (5.11)

and

(Ptf)(x) ≡
∫

S

f(y)Pt(x, dy), (5.12)

where again

Ptf = P tf. (5.13)

We say that Pt is a semi-group acting on the space of measures, respec-

tively on the space of bounded measurable functions. The interpretation

of the action on functions is given as follows.

Lemma 5.3.3 Let Pt be a Markov semi-group acting on bounded mea-

surable functions f . Then

(Ptf)(x) = E (f(Xt)|F0) (x) ≡ Exf(Xt). (5.14)

Proof. We only need to show this for t = 1. Then, by definition,

Exf(X1) =

∫

S

f(y)P[X1 ∈ dy|F0](x) =

∫

S

f(y)P (x, dy).

Notice that, by telescopic expansion, we have the elementary formula

Ptf − f =

t−1∑

s=0

Ps(P − 1I)f ≡
t−1∑

s=0

PsLf, (5.15)

where we call L ≡ P − 1I the (discrete) generator of our Markov process

(this formula will have a complete analogon in the continuous-time case).

An interesting consequence is the following observation:

Lemma 5.3.4 [Discrete time martingale problem]. Let L be the genera-

tor of a Markov process, Xt, and let f be a bounded measurable function.

Then

Mt ≡ f(Xt)− f(X0)−
t−1∑

s=0

Lf(Xs) (5.16)
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is a martingale.

Proof. Let t, r ≥ 0. Then

E(Mt+r|Ft) = E(f(Xt+r)|Ft)− E(f(X0)|Ft)−
t+r−1∑

s=0

E(Lf(Xs)|Ft)

= P rf(Xt)− f(Xt) + f(Xt)− f(X0)

−
t+r−1∑

s=t

E(Lf(Xs)|Ft)−
t−1∑

s=0

E(Lf(Xs)|Ft)

= f(Xt)− f(X0)−
t−1∑

s=0

(Lf(Xs)

+P rf(Xt)− f(Xt)−
r−1∑

s=0

P r(Lf(Xt)

= Mt + 0. (5.17)

This proves the lemma.

Remark 5.3.1 (5.16) is of course the Doob decomposition of the pro-

cess f(Xt), since
∑t−1

s=0 Lf(Xs) is a previsible process. One may check

that this can be obtained directly using the formula (4.38) [Exercise!].

What is important about this observation is that it gives rise to a

characterisation of the generator that will be extremely useful in the

general continuous time setting.

Namely, one can ask whether the requirement thatMt be a martingale

given a family of pairs (f, Lf) characterises fully a Markov process.

Theorem 5.3.5 Let X be a discrete time stochastic process on a fil-

tered space such that X is adapted. Then X is a Markov process with

transition kernel P ≡ 1I + L, if and only if, for all bounded measur-

able functions, f , the expression on the right-hand side of (5.16) is a

martingale.

Proof. Lemma 5.3.4 already provides the “only if” part, so it remains

to show the “if” part.

First, if we assume thatX is a Markov process, setting r = 1 above and

taking conditional expectations given F0, we see that Ef(X1)−f(X0) =

(Lf)(X0), implying that the transition kernel must be 1I + L.
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It remains to show that X is indeed a Markov process. To see this,

we just use the above calculation to see that

E(f(Xt+r)|Ft) = E(Mt+r|Ft) + f(X0)

+
t−1∑

s=0

(Lf)(Xs) +
t+r−1∑

s=t

E((Lf)(Xs)|Ft)

= Mt + f(X0) +
t−1∑

s=0

(Lf)(Xs) +
t+r−1∑

s=t

E((Lf)(Xs)|Ft)

= f(Xt) +
r−1∑

s=0

E((Lf)(Xt+s)|Ft) (5.18)

Now let again r = 1. Then

E(f(Xt+1)|Ft) = f(Xt) + (Lf)(Xt) = ((1I + L)f)(Xt) ≡ Pf(Xt),

(5.19)

In view of the definition of discrete time Markov processes, chosing f =

1IA, for A ∈ B(S), this gives (3.21), and hence X is a Markov process.

Thus the theorem is proven.

In view of continuous time Markov processes it is, however, instructive

to see that we can also derive easily the more general fomula

E(f(Xt+s)|Ft) = (1I + L)sf(Xt) ≡ P sf(Xt), (5.20)

from the martingale problem. We have seen that it holds for s = 1; Now

proceed by induction: assume that it holds for all bounded measurable

functions for s ≤ r− 1. We must show that it then also holds for s = r.

To do this, we use (5.18) and use the induction hypothesis for the terms

in the sum (where s ≤ r − 1) with f replaced by Lf . This gives

E(f(Xt+r)|Ft) = f(Xt) +

r−1∑

s=0

((1I + L)sLf)(Xt) (5.21)

= f(Xt) +

r−1∑

s=0

(((1I + L)s(L+ 1)f)(Xt)− ((1I + L)sf)(Xt))

= ((1I + L)rf) (Xt),

as claimed. Hence (5.20) holds for all s, by induction.

Remark 5.3.2 The full strength of this theorem will come out in the

continuous time case, where it remains valid. A crucial point is that it

will not be necessary to even consider all bounded functions, but just

sufficiently rich classes. This allows to formulate martingale problems
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even then one cannot write down the generator in a explicit form. The

idea of characterising Markov processes by the associated martingale

problem goes back to Stroock and Varadhan, see [13].

5.4 Harmonic functions and martingales

We have seen that measures that satisfy µL = 0 are of special impor-

tance in the theory of Markov processes. Also of central importance are

functions that satisfy Lf = 0. In this section we will assume that the

transition kernels of our Markov chains have bounded support, so that

for some K <∞, |Xt+1 −Xt| ≤ K <∞ for all t.

Definition 5.4.1 Let L be the generator of a Markov process. A mea-

surable function that satisfies

Lf(x) = 0, ∀x ∈ S, (5.22)

is called a harmonic function. A function is called subharmonic (resp.

superharmonic, if Lf ≥ 0, resp. Lf ≤ 0.

Theorem 5.4.6 Let Xt be a Markov process with generator L. Then,

a non-negative function f is

(i) harmonic, if and only if f(Xt) is a martingale;

(ii) subharmonic, if and only if f(Xt) is a submartingale;

(iii) superharmonic, if and only if f(Xt) is a supermartingale;

Proof. Simply use Lemma 5.3.4.

Remark 5.4.1 Theorem 5.4.6 establishes a profound relationship be-

tween potential theory and martingales. It also explains, the strange

choice of super and sub in martingale theory.

A nice application of the preceeding result is the maximum principle.

Theorem 5.4.7 Let X be a Markov process and let D be a bounded

open domain such that EτDc < ∞. Assume that f is a non-negative

subharmonic function on D. Then

sup
x∈D

f(x) ≤ sup
x∈Dc

f(x). (5.23)

Proof. Let us define T ≡ τDc . Then f(XT ) is a submartingale, and

thus
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E (f(XT )|F0) (x) ≥ f(x). (5.24)

Since XT ∈ Dc, it must be true that

sup
y∈Dc

f(y) ≥ E (f(XT )|F0) (x) ≥ f(x), (5.25)

for all x ∈ D, hence the claim of the theorem. Of course we used again

the Doob’s optional stopping theorem in case (i,c).

The theorem an be phrased as saying that (sub) harmonic functions

take on their maximum on the boundary, since of course the set Dc in

(5.23) can be replaced by a subset, ∂D ⊂ Dc such that Px(XT ∈ ∂D) =

1. The above proof is an example of how intrinsically analytic results

can be proven with probabilistic means. The next section will further

develop this theme.

5.5 Dirichlet problems

Let us now consider a connected bounded open subset of S. We define

the stopping time T ≡ τDc ≡ inf{t > 0 : Xt ∈ Dc}.
If g is a measurable function on D, we consider the Dirichlet problem

associated to a generator, L, of a Markov process, X :

−(Lf)(x) = g(x), x ∈ D, (5.26)

f(x) = 0, x ∈ Dc.

Theorem 5.5.8 Assume the ET <∞. Then (5.26) has a unique solu-

tion given by

f(x) = E

(
T−1∑

t=0

g(Xt)
∣∣F0

)
(x) (5.27)

Proof. Consider the martingale Mt from Lemma 5.3.4. We know from

Theorem 4.7.20 that MT is also a martingale. Moreover,

MT = f(XT )− f(X0)−
T−1∑

t=0

(Lf)(Xt) = 0− f(X0)−
T−1∑

t=0

(Lf)(Xt).

(5.28)

But we want f such that −Lf = g on D. Thus, (5.28) seen as a problem

for f , reads

MT = −f(X0) +

T−1∑

t=0

g(Xt). (5.29)
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Taking expectations conditioned on F0, yields

0 = −f(X0) + E

(
T−1∑

t=0

g(Xt)
∣∣F0

)
, (5.30)

or

f(x) = Ex

(
T−1∑

t=0

g(Xt)

)
(5.31)

Here we relied of course on Doob’s optimal stopping theorem for EMT =

0.

Thus any solution of the Dirichlet problem is given by (5.31). To

verify existence, we just need to check that (5.31) solves −Lf = g on D.

To do this we use the Markov property “backwards”, to see that

Pf(x) = PEx

(
T−1∑

t=0

g(Xt)

)
= Ex

[
T−1∑

t=1

g(Xt)

]
(5.32)

= Ex

[
T−1∑

t=0

g(Xt)

]
− g(x) = f(x)− g(x).

We see that the Markov process produces a solution of the Dirchlet

problem. We can express the solution in terms of an integral kernel,

called the Green’s kernel, GD(x, dy), as

f(x) =

∫
GD(x, dy)g(y) ≡ Ex

(
T−1∑

t=0

g(Xt)

)
, (5.33)

or, in more explicite terms,

GD(x, dy) =

∞∑

t=0

Px(T > t)P t
D(x, dy), (5.34)

where

P t
D(x, dy) =

∫

D

P (x, dz1)

∫

D

P (z1, dz2)

∫

D

. . .

∫

D

P (zt−1, dy). (5.35)

The preceding theorem has an obvious extension to more complicated

boundary value problems:

Theorem 5.5.9 Let D be as above, and let h be a bounded function on

Dc. Assume the ET <∞. Then

f(x) ≡ Ex

(
T−1∑

t=0

g(Xt)

)
+ Ex (h(XT )) . (5.36)
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Then f is the unique solution of the Dirichlet problem

−(Lf)(x) = g(x), x ∈ D, (5.37)

f(x) = h(x), x ∈ Dc.

Proof. Identical to the previous one.

Theorem 5.5.9 is a two way game: it allows to produce solutions

of analytic problems in terms of stochastic processes, and it allows to

compute interesting probabilistic problems analytically. As an example,

assume that Dc = A ∪ B with A ∩ B = ∅. Set h = 1IA. Then, clearly,

for x ∈ D,

Exh(XT ) = Px(XT ∈ A) ≡ Px(τA < τB), (5.38)

and so Px(XT ∈ A) can be represented as the solution of the boundary

value problem

(Lf)(x) = 0, x ∈ D, (5.39)

f(x) = 1, x ∈ A,

f(x) = 0, x ∈ B.

The is a generalisation of the ruin problem for the random walk that

we discussed in Probability 1.

Exercise. Derive the formula for Px(τA < τB) directly from the Markov

property without using Lemma 5.3.4.

5.6 Doob’s h-transform

Let us consider a discrete time Markov process, X , with generator P −
1 given. We may want to consider modification of the process. One

important type of conditioning is that to reach some set in particular

places (e.g. consider a random walk in a finite interval; we may be

interested to consider this walk conditioned on the fact that it exits on a

specific side of the interval; this may correspond to consider a sequence

of games conditioned on the player to win).

How and when can we do this, and what is the nature of the resulting

process? In particular, is the resulting process again a Markov process,

and if so, what is its generator?

As an example, let us try to condition a Markov process to hit a

domain B for the first time in a subset A ⊂ B. We may assume that

EτB <∞. Define h(x) ≡ Px[τA = τB ], if x 6∈ B. Let P be the law of X .
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Let us define a new measure, Ph, on the space of paths as follows: If Y

is a Ft-measurable random variable, then

Eh[Y |F0] =
1

h(X0)
E[h(Xt)Y |F0]. (5.40)

Lemma 5.6.10 With the notation above, if Y is a FτB−1-measurable

function,

Eh
x[Y ] = Ex[Y |τA = τB ]. (5.41)

Proof. This is an application of the strong Markov property. We have

by definition

Eh
x[Y ] =

1

h(x)
Ex[Y h(XτB−1)] (5.42)

=
1

h(x)
Ex [Y Ex[1IτA=τB |F ′

0](XτB−1)]

=
1

h(x)
Ex [Y 1IτA=τBθτB−1]

=
1

Px[τA = τB]
Ex [Y 1IτA=τB ]

= Ex[Y |τA = τB ].

Here the first equality is just the definition of h and reproduces the form

of the right-hand side of the strong Markov property; the second equality

is the strong Markov property; the last equality uses that fact that the

event {τA = τB} depends only on what happens after τB − 1, and so

1IτA=τBθτB−1 = 1IτA=τB .

Let us now look at the transformed measure Ph in the general case.

The first thing to check is of course whether this defines in a consistent

way a probability measure. Some thought shows that all that is to show

for this is the following lemma.

Lemma 5.6.11 Let Y be Fs-measurable. Then, for any t ≥ s,

Eh[Y |F0] ≡
1

h(X0)
E[h(Xs)Y |F0] =

1

h(X0)
E[h(Xt)Y |F0]. (5.43)

In particular, Ph[Ω|F0] = 1.

Proof. Just introduce a conditional expectation:

E[h(Xt)Y |F0] = E[E[h(Xt)Y |Fs]|F0] = E[Y E[h(Xt)|Fs]|F0], (5.44)
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and use that h(Xt) is a martingale

= E[Y h(Xs)|F0],

from which the result follows.

This lemma shows in particular, why it is important that h be a

harmonic function.

Now we turn to the question of whether the law Ph is a Markov chain.

To this end we turn to the martingale problem. We will show that there

exists a generator, Lh, such that

Mh
t ≡ f(Xt)− f(X0)−

t−1∑

s=0

(Lhf)(Xs) (5.45)

is a martingale under the law Eh, i.e. that, for t > t′,

Eh[Mh
t |Ft′ ] =Mh

t′ . (5.46)

Note first that, by definition

Eh[Mh
t |Ft′ ] =

1

h(Xt′)
E[h(Xt)f(Xt)|Ft′ ]− f(X0)−

t′−1∑

s=0

(Lhf)(Xs)

−
t−1∑

s=t′

1

h(Xt′)
E[h(Xs)L

hf(Xs)|Ft′ ]. (5.47)

The middle terms are part ofMh
t′ and we must consider E[f(Xt)h(Xt)|Ft′ ].

This is done by applying the martingale problem for P and the function

fh. This yields

E[f(Xt)h(Xt)|Ft′ ] = f(Xt′)h(Xt′) +

t−1∑

s=t′

E[(L(fh))(Xs)|Ft′ ]

Inserting this in (5.47) gives

Eh[Mh
t |Ft′ ] = f(Xt′)− f(X0)−

t′−1∑

s=0

(Lhf)(Xs)

+
1

h(Xt′)

t−1∑

s=t′

[
E[(L(fh))(Xs)|Ft′ ]− E[h(Xs)L

hf(Xs)|Ft′ ]
]

= Mh
t′

+
1

h(Xt′)

t−1∑

s=t′

[
E[(L(fh))(Xs)|Ft′ ]− E[h(Xs)L

hf(Xs)|Ft′ ]
]
.
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The second term will vanish if we choose Lh defined through Lf(x) =

h(x)−1(L(hf))(x), i.e.

Lhf(x) ≡ 1

h(x)

∫
P (x, dy)h(y)f(y)− f(x). (5.48)

Hence we see that under Ph, X solves the martingale problem corre-

sponding to the generator Lh, and so is a Markov chain with transition

kernel P h = Lh + 1. The process X under Ph is called the (Doob)

h-transform of the original Markov process.

Exercise. As a simple example, consider a simple random walk on

{−N,−N + 1, . . . , N}. Assume we want to condition this process on

hitting +N before −N . Then let

h(x) = Px[τN = τ{N}∪{−N}] = Px[τN < τ−N ].

Compute h(x) and use this to compute the transition rates of the h-

transformed walk? Plot the probabilities to jump down in the new

chain!

5.7 Markov chains with countable state space

The setting of discrete time Markov chains does in some sense not go

too well with general state spaces. In fact, in these cases, it is usually

more appropriate to consider continuous time. In this chapter we will

do three things. Here we provide some results on Markov chains with

countable state space, in particular introduce the notions of recurrence

and transience and disuss the existence and uniqueness of invariant dis-

tributions.

Much of the theory of Markov chains with countable state space is

similar to the case of finite state space. In particular, the notions of

communicating classes, irreducibility, and periodicity carry over. There

are, however, important new concepts in the case when the state space

is infinite. These are the notions of recurrence and transience. It will

be useful to use a notation close to the matrix notation of finite chains.

Thus we set

P (i, {j}) = p(i, j) (5.49)

We will place us in the setting of an irreducible Markov chain, i.e. the

all states in S communicate (i.e. for any i, j ∈ S, Pj(τj < ∞) > 0).

We may also for simplicity assume that our chain is aperiodic. In the

case of finite state space, we have seen that such chains are ergodic in

the sense that there exists a unique invariant probability distribution,
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and the marginal distributions at time t, converge to this distribution

independently of the starting measure. Essentially this is true because

the chain is trapped on the finite set. If S is infinite, a new phenomenon

is possible: the chain may run “to infinity”.

Definition 5.7.1 Let X be an irreducible aperiodic Markov chain with

countable state space S. Then:

(i) X is called transient, if for any i ∈ S,

Pi[τi <∞] < 1; (5.50)

(ii) X is called recurrent, if it is not transient.

(iii) X is called positive recurrent or ergodic, if, for all i ∈ S,

EiTi <∞. (5.51)

Remark 5.7.1 The notion of recurrence and transience can be defined

for states rather than for the entire chain. In the case of irreducible and

aperiodic chains, all states have the same characteristics.

Some simple consequences of the definition are the following.

Lemma 5.7.12 Let X be a Markov chain with countable state space,

irreducible and aperiodic. Then X is transient, iff

Pℓ [Xt = ℓ, i.o.] = 0. (5.52)

Positive recurrent chains are called ergodic, because they are ergodic

in the same sense as finite Markov chains.

Lemma 5.7.13 Let X positive recurrent Markov chain with countable

state space, S. Then, for any j, ℓ ∈ S,

µ(j) ≡ Eℓ [
∑τℓ

t=1 1IXt=j ]

Eℓτℓ
. (5.53)

is the unique invariant probability distribution of X.

Proof. Define νℓ(j) = Eℓ [
∑τℓ

t=1 1IXt=j ]. We show first that ν is an

invariant measure. Obviously, 1 =
∑

m∈S 1IXℓ−1=m, and hence, using

the strong Markov property,
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νℓ(j) ≡ Eℓ

[
τℓ∑

t=1

1IXt=j

]
= Eℓ

[∑

m∈S

τℓ∑

t=1

1IXt=j1IXt−1=m

]

=
∑

m∈S

Eℓ

[
τℓ∑

t=1

1IXt−1=mP[Xt = j|Ft−1](m)

]

=
∑

m∈S

Eℓ

[
τℓ∑

t=1

1IXt−1=m

]
p(m, j)

=
∑

m∈S

Eℓ

[
τℓ∑

t=1

1IXt=m

]
P (m, j)

=
∑

m∈S

νℓ(m).P (m, j)

Thus µℓ solves the invariance equation and thus is an invariant measure.

It remains to show that νℓ is normalizable. But
∑

j∈Σ

νℓ(j) = Eℓtℓ <∞,

by assumption. Thus νℓ(j)/
∑

i∈S νℓ(i) = µ(j) is an invariant probabil-

ity distribution.

Next we want to show uniqueness. Note first that for any irreducible

Markov chain (with discrete state space) it holds that, if µ is an invariant

measure and µ(i) = 0, for some i ∈ S, then µ ≡ 0. Namely, if for some

j,µ(j) > 0, then there exists t finite such that P t
ji > 0, and µ(i) ≥

µ(j)P t
ji > 0, in contradiction to the hypothesis.

We will now actually show that νℓ is the only invariant measure such

that νℓ(ℓ) = 1 (which implies the desired uniqueness result immediately).

To do so, we will show that for any other invariant measure, ν, such that

ν(ℓ) = 1, we have that ν(j) ≥ νℓ(j) for all j. For then, ν−νℓ is a positive

invariant measure as well, and being zero in ℓ, must vanish identically.

Hence ν = νℓ.

Now we clearly have that

ν(i) =
∑

j1 6=ℓ

(p(j1, i)ν(j) + p(ℓ, i), (5.54)

since ν(ℓ) = 1, by hypothesis. We want to think of p(ℓ, i) as

p(ℓ, i) = Eℓ (1Iτℓ≥11IXs=i) .

Now iterate the same relation in the first term in (5.54). Thus
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ν(i) =
∑

j1,j2 6=ℓ

p(j2, j1)p(j1, i)ν(j2) +
∑

j1 6=ℓ

p(ℓ, j1)p(j1, i) + Eℓ (1Iτℓ≥11IX1=i)

=
∑

j1,j2 6=ℓ

p(j2, j1)p(j1, i)ν(j2) + Eℓ

(
2∧τℓ∑

s=1

1IXs=i

)
. (5.55)

Further iteration yields for any n ∈ N

ν(i) =
∑

j1,j2,...jn 6=ℓ

p(jn, jn−1) . . . p(j2, j1)p(j1, i)ν(jn) + Eℓ

(
n∧τℓ∑

s=1

1IXs=i

)

≥ Eℓ

(
n∧τℓ∑

s=1

1IXs=i

)
. (5.56)

This implies ν(i) ≥ νℓ(i), as desired, and the proof is complete.

Corollary 5.7.14 An ergodic Markov chain satisfies

µ(j) =
1

Ejτj
. (5.57)

Proof. Just set ℓ = j in the definition of µ(j), and note that νj(j) =

Ej

∑τj
t=1 1IXt=x = 1.
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Random walks and Brownian motion

The goal of this chapter is to introduce Brownian motion as a contin-

uous time stochastic process with continuous paths and to explain its

connection to random walks through Donsker’s invariance principle.

6.1 Random walks

The innocent looking stochastic processes

Sn ≡
n∑

i=1

Xi, (6.1)

with Xi, i ∈ N iid random variables are generally called random walks

and receive a considerable attention in probability theory. A special

case is the so-called simple random walk on Zd, characterized by the fact

that the random variables Xi take values in the set of ± unit vectors

in the lattice Zd. Consequently, Sn ∈ Zd, is a stochastic process with

discrete state space. Obviously, Sn is a Markov chain, and, moreover, the

coordinate processes, Sµ
n , µ = 1, . . . d, are sub-, super-, or martingales,

depending on whether EXµ
0 is positive, negative, or zero.

Let us focus on the centered case, EX1 = 0. In this case we have seen

that Zn ≡ n−1/2Sn converges in distribution to a Gaussian random vari-

able. By considering the process coordinate wise, it will also be enough

to think about d = 1. We now want to extend this result to a conver-

gence result on the level of stochastic process. That is, rather saying

something about the position of the random walk at a time n, we want

to trace the entire trajectories of the process and try give a description of

their statistical properties in terms of some limiting stochastic process.

It is rather clear from the central limit theorem that we must consider

a rescaling somewhat like

99
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Fig. 6.1. Paths of
√
nZn(t) for various values of n.

Zn(t) ≡ n−1/2

[tk]∑

k=1

Xk. (6.2)

In that case we have from the central limit theorem, that for any t ∈
(0, 1],

Zn(t)
D→ Bt,

([x] denotes the lower integer part of x) where Bt is a centered Gaussian

random variable with variance t. Moreover, for any finite collection of

indices t1, . . . , tℓ, define Yn(i) ≡ Zn(ti) − Zn(ti−1). Then the random

variables Yn(i) are independent and it is easy to see that they converge,

as n ↑ ∞, jointly to a family of independent centered Gaussian variables

with variances ti−ti−1. This implies that the finite dimensional distribu-

tions of the processes Zn(t), t ∈ (0, 1], converge to the finite dimensional

distributions of the Gaussian process with covariance C(t, s) ≡ t ∧ s,

that we introduced in Section 3.3. and that we have preliminarily called

Brownian motion.

We now want to go a step further and discuss the properties of the

paths of our processes.

From looking at pictures, it is clear that the limiting process Bt should

have rather continuous looking sample paths. In the way we defined

Zn(t), for each n fixed these processes have discontinuous paths with
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Fig. 6.2. Paths of
√
nSn(t) for various values of n.

jumps of size n−1/2. This can easily be mended by considering the

piecewise linear continuous interpolation of Zn, to be written formally

as

Sn(t) ≡ n−1/2
n∑

k=0

1Ik/n<t≤(k+1)/n

((
t− k

n

)
)Sk+1 +

(
k + 1

n
− t

)
Sk

)
,

(6.3)

We have now a sequence of processes with continuous sample paths, and

we should hope that the limit shares this property. On the other hand,

it is simple to see that the finite dimensional distributions of Sn(t) have

the same limit as those of Zn(t).

6.2 Construction of Brownian motion

Before stating the desired convergence result, we have to define and

construct the limiting object, the Brownian motion.

Definition 6.2.1 A stochastic process {Bt ∈ Rd, t ∈ R+}, defined on a

probability space (Ω,F ,P), is called a d-dimensional Brownian motion

starting in 0, iff

(o) B0 = 0, a.s..

(i) For any p ∈ N, and any t0 < t1 < · · · < tp, the random variables
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Bt1 , Bt2 −Bt1 , . . . , Btp −Btp−1
, are independent and each Bti −Bti−1

is a centered Gaussian r.v. with variance ti − ti−1.

(ii) For any ω ∈ Ω, the map t→ Bt(ω) is continuous.

We now must proceed to the construction of B. The first property can,

as we have seen, be established with the help of Kolmogorov’s theorem.

The problem with this is that it constructs the process on the space

((Rd)R+ ,BR+(Rd)); but the second requirement, the continuity of the

sample paths, is not a measurable property with respect to the product

σ-algebra. Therefore, we have to proceed differently. In fact, we want

to construct Brownian motion as a random variable with values in the

space C(R+,R
d).

Theorem 6.2.1 Brownian motion exists.

Proof. We consider the case d = 1, the extension to higher dimensions

will be trivial. We consider a probability space (Ω,F ,P) on which an

infinite family of independent standard Gaussian random variables is

defined. We now define the so-called Haar-functions, hkn on [0, 1] via

h00(t) ≡ 1 (6.4)

hkn(t) ≡ 2n/2
[
1I[(2k)2−n−1,(2k+1)2−n−1)(t)− 1I[(2k+1)2−n−1,(2k+2)2−n−1)(t)

]

for k ∈ {0, . . . , 2n − 1}. The functions hkn, n ∈ N0, k ∈ {0, . . . , 2n − 1}
form a complete orthonormal system of functions in L2([0, 1]), as one

may easily check. Now set

fk
n(t) =

∫ t

0

hkn(u)du, (6.5)

and set

B
(n)
t ≡

n∑

m=0

2m−1∑

k=0

fk
m(t)Xm,k (6.6)

for t ∈ [0, 1], where Xm,k are our independent standard normal ran-

dom variables. We will show that (i) the continuous functions B(n)(ω)

converge uniformly, almost surely, and hence to continuous functions,

and (ii) that the covariances of B(n) converge to the correct limit. The

limit, modified to be Bt(ω) ≡ 0 when B
(n)
t (ω) does not converge to a

continuous function, will then be BM on [0, 1].

Let us now prove (i). The point here is that, of course, that the

functions fk
n(t) are very small, namely,

|fk
n(t)| ≤ 2−(n+1)/2.
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Therefore,

P

[
sup

0≤t≤1
|B(n)

t −B
(n−1)
t | > an

]
(6.7)

= P

[
2n−1
sup
k=0

|Xn,k| > 2(n+1)/2an

]

≤ 2nP
[
|Xn,1| > 2(n+1)/2an

]

≤ 2n
e−a2

n2
n

√
2πan2(n+1)/2

=
2n/2e−a2

n2
n

√
4πan

,

where we used the very useful bounds for Gaussian probabilities

1

u
√
2π
e−u2/2

(
1− 2u−2

)
≤ P[X > u] ≤ 1

u
√
2π
e−u2/2 (6.8)

Now we are close to being done: Chose a sequence an such that
∑∞

n=0 an <

∞ and

∞∑

n=1

P

[
sup

0≤t≤1
|B(n)

t −B
(n−1)
t | > an

]
<∞.

Clearly, the choice an = 2−n/4 will do. Then, by the Borel-Cantelli

lemma,

P

[
sup

0≤t≤1
|B(n)

t −B
(n−1)
t | > an i.o.

]
= 0,

which implies that the sequence B(n) converges uniformly in the interval

[0, 1] and since uniformly convergent sequences of continuous functions

converge to continuous functions, limn↑∞B
(n)
t ≡ Bt(ω) in C([0, 1],R),

for almost all ω.

To check (ii), we compute the covariances:
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EB
(n)
t B(n)

s =

n∑

m=0

2m−1∑

k=0

n∑

m′=0

2m
′−1∑

k′=0

fk
m(t)fk′

m′(s)E(Xm,kXm′,k′) (6.9)

=

n∑

m=0

2m−1∑

k=0

fk
m(t)fk

m(s)

=

∫ 1

0

dudv1I[0,t](u)1I[0,s](v)

n∑

m=0

2m−1∑

k=0

hkm(u)hkm(v)

→
∫ 1

0

dudv1I[0,t](u)1I[0,s](v)

∞∑

m=0

2m−1∑

k=0

hkm(u)hkm(v)

=

∫ 1

0

du1I[0,t](u)1I[0,s](u) = t ∧ s.

due to the ortho-normality of the system hkn.

This provides Bt on [0, 1]. To construct Bt for t ∈ (k, k+1], just take

k + 1 independent copies of the B we just constructed, via

Bt =

k∑

i=1

Bi,1 +Bk+1,t−k.

Finally, to construct d-dimensional Brownian motion, take d indepen-

dent copies of Bt, say Bt,1, . . . , Bt,d and let eµ, µ = 1, . . . , d, be a or-

thonormal basis of Rd. Then set

B̂t ≡
d∑

µ=1

eµBt,µ. (6.10)

It is easily checked that this process is a Brownian motion in Rd. This

concludes the existence proof.

Having constructed the random variable Bt in C(R+,R
d), we can now

define its distribution, the so-called Wiener measure.

For this is it useful to observe that

Lemma 6.2.2 The smallest σ-algebra, C, on C(R+,R
d) that makes all

coordinate functions, t → w(t), measurable coincides with the Borel-σ-

algebra, B ≡ B(C(R+,R
d)), of the metrisable space C(R+,R

d) equipped

with the topology of uniform convergence on compact sets.

Proof. First, C ⊂ B since all functions t → w(t) are continuous and

hence measurable with respect to the Borel-σ-algebra B. To prove that
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B ⊂ C, we note that the topology of uniform convergence is equivalent

to the metric topology relative to the metric

d(w,w′) ≡
∑

n∈N

2−n sup
0≤t≤n

(|w(t) − w′(t)| ∧ 1) . (6.11)

We thus have to show that any ball with respect to this distance is

measurable with respect to C. But since w are continuous functions,

sup
t∈[0,n]

(|w(t)− w′(t)| ∧ 1) = sup
t∈[0,n]∩Q

(|w(t) − w′(t)| ∧ 1) ,

we see that e.g. the set d(w, 0) < ρ is in fact in C.

Note that by construction, the map ω → B(ω) is measurable, since

the maps ω → Bt(ω) are measurable for all t, and by definition of C,
all coordinate maps B → Bt are are measurable. Thus the following

definition makes sense.

Definition 6.2.2 Let Bt a Brownian motion in Rd defined on a prob-

ability space (Ω,F ,P). The d-dimensional Wiener measure is the prob-

ability measure on (C(R+,R
d),B(C(R+,Rd))) that is the image of P

under the map ω → {Bt, t ∈ Rt}.

Note that uniqueness of the Wiener measure is a consequence of the

Kolmogorov-Daniell theorem, since we have already seen that the finite-

dimensional distributions are fixed by the prescription of the covariances,

(i).

6.3 Donsker’s invariance principle

We are now in the position to prove Donsker’s theorem.

Theorem 6.3.3 Let Xi be independent, identically distributed random

variables with mean zero and variance one. Let Sn(t) be as defined in

(6.3). Then

{Sn(t), t ∈ [0, 1]} D→ {Bt, t ∈ [0, 1]} (6.12)

Proof. We will give an interesting proof of this theorem which will

not use what we already know about finite dimensional distributions.

For simplicity we consider the case d = 1 only. It will be based on

the famous Skorokhod embedding. What this will do is to construct any

desired random walk from a Brownian motion. This goes a follows:

we assume that F is the common distribution function of our random
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variables Xi, assumed to have finite second moments σ2. We now want

to construct stopping times, T , for the Brownian motion, B, such that

(i) the law of BT is F , and (ii) ET = σ2. This is a little tricky. First, we

construct a probability measure on (−R+)× R+, from the restrictions,

F±, of F to the positive and negative axis:

µ(da, db) ≡ γ(b− a)dF−(a)dF+(b). (6.13)

where γ provides the normalization,i.e.

γ−1 =

∫ ∞

0

bdF+(b) = −
∫ 0

−∞
adF−(a). (6.14)

We need some elementary facts that follow easily once we know that

Bt is a Markov chain with continuous time and generator ∆/2:

Lemma 6.3.4 Let a < 0 < b, and τ ≡ inf{t > 0 : Bt 6∈ (a, b)}. Then

(i) P(Bτ = a) = b
b−a ;

(ii) Eτ = |ab|.

Proof. As we will discuss shortly, Bt is a martingale and let us anticipate

that we Doob’s optional stopping theorem also holds for Brownian mo-

tion. Then 0 = EBτ = bP[Bτ = b] + aP[Bτ = a] = b+ (a− b)P[Bτ = a],

which gives (i). To prove (ii) consider

Mt = (Bt − a)(b−Bt) + t,

which is a martingale with M0 = −ba. On the other hand (again as-

suming that we can use the optional stopping theorem,

EM0 = EMτ = Eτ + E(Bτ − a)(b−Bτ ) = Eτ + 0.

which gives the claimed result.

The Skorokhod embedding is now constructed by choosing α < 0 < β

at random from µ, and T = inf{t > 0 : Bt 6∈ (α, β)}. Then:

Theorem 6.3.5 The law of BT is F and ET = σ2.

Proof. Let b > 0. Then

P(BT ∈ db) =

∫ 0

−∞

−a
b− a

γ(b− a)dF+(b)dF−(a) = dF+(b).

Analogously, for a > 0, P(BT ∈ da) = dF−(a). This proves the first
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assertion. Finally, by a simple computation,

ET =

∫ ∞

0

∫ 0

−∞
µ(da, db)|ab| =

∫ ∞

−∞
x2F (dx) = σ2.

This proves (ii).

Exercise. Construct the Skorokhod embedding for the simple random

walk on Z.

We can now define a sequence of stopping times T1 = T , T2 = T1 +

T ′
2, . . . , where T

′
i are independent and constructed in the same way as T

on the Brownian motions BTi−1+t −BTi−1
. Then it follows immediately

from the preceding theorem that

Theorem 6.3.6 The process S̃n, n ∈ N where S̃n ≡ BTn , for all n ∈ N,

has the same distribution as the process Sn ≡ ∑n
i=1Xi, where Xi are

iid with distribution F .

The Skorokhod embedding now provides the means to prove Donsker’s

theorem. Namely, we will show that the process S̃n(t) converges uni-

formly to Bt in probability. This is possible, since it is coupled to Bt

realisationwise, unlike the original Sn(t) which would not know which

particular Bt(ω) it should stick with. We will set σ2 = 1.

Note first that by the continuity of Brownian motion, for any ǫ > 0,

we can find δ > 0 such that

P(∃s,t∈[0,1];|s−t|≤δ|Bs −Bt| > ǫ) ≤ ǫ/2.

Next, by the independence of the T ′
i , and the law of large numbers,

lim
n↑∞

Tn
n

= ET = 1, a.s..

Thus

lim
n↑∞

n−1 sup
k≤n

|Tk − k| = 0 a.s..

Therefore, there exists n1 such that for all n ≥ n1,

P

[
n−1 sup

k≤n
|Tk − k| ≥ δ/3

]
≤ ǫ/2. (6.15)

Finally, the interpolated process S̃n(t) will coincide for any t ∈ [k/n, (k+

1)/n] with n−1/2Bun for some nu ∈ [Tk, Tk+1]. Hence, if n is large

enough such that n ≥ 3/δ, for any t ∈ [0, 1], there exists u such that

|u − t| ≤ δ, such that S̃n(u) = n−1/2Bnu, on the event estimated in

(6.15). Therefore,
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P

[
sup

0≤t≤1

∣∣∣S̃n(t)− n−1/2Bnt

∣∣∣ ≥ ǫ

]

≤ P

[
sup

0≤t≤1

∣∣∣S̃n(t)− n−1/2Bnt

∣∣∣ ≥ ǫ, |Tk − k| ≤ nδ/3, ∀k≤n

]

+P

[
n−1 sup

k≤n
|Tk − k| ≥ δ/3

]

≤ P

[
∃u,t∈[0,1],|u−t|≤δ :

∣∣∣n−1/2Bun − n−1/2Bnt

∣∣∣ ≥ ǫ
]
+ ǫ/2

= P
[
∃u,t∈[0,1],|u−t|≤δ : |Bu −Bt| ≥ ǫ

]
+ ǫ/2 ≤ ǫ.

Here we used that n−1/2Bnt and Bt have the same law (this is an im-

portant fact, called Brownian scaling, which follows immediately from

the fact that both processes have the same covariance).

This implies that the difference between S̃n(t) and n
−1/2Bnt converges

uniformly in t ∈ [0, 1] to zero in probability. On the other hand, S̃n(t)

has the same law as Sn(t), and n
−1/2Bnt has the same law as Bt. This

implies weak convergence as claimed.

6.4 Martingale and Markov properties

Although we have not studied with full rigor the concepts of martingales

and Markov processes in continuous time, Brownian motion is a good

example to get provisionally acquainted with them. The nice thing here

is that we know already that it has continuous paths, so that we need not

worry about discontinuities; moreover, a path is determined by knowing

it on a dense set of times, say the rationals, so we also need not worry

about uncountabilities.

Proposition 6.4.7 Brownian motion is a continuous time martingale,

in the sense that, if Ft is a filtration such that Bt is adapted, for any

s < t,

E[Bt|Fs] = Bs. (6.16)

Proof. Of course we have not defined what a continuous time filtration

is, but we will not worry at this moment, and just take Ft as the σ-

algebra generated be {Bs}s≤t. Now we know that Bt = Bt − Bs + Bs,

where Bt −Bs and Bs are independent. Thus

E[Bt|Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs] = 0 +Bs,



6.4 Martingale and Markov properties 109

as claimed.

Next we show that Brownian motion is also a Markov-process. As

a definition of a continuous time Markov process, we adopt the obvi-

ous generalization of (3.21): A stochastic process with state space S

and index set R+ is called a continuous time Markov process, if there

exists a two-parameter family of probability kernels, Ps,t, satisfying

the Chapman-Kolmogorov equations (3.25), such that for all A ∈ B,
s < t ∈ R+,

P[Bt ∈ A|Fs](ω) = Ps,t(Bs(ω), A), a.s.. (6.17)

This definition may not sound abstract enough, because it stipulates

that we search for the kernels Ps,t; one may replace this by saying that

P[Bt ∈ A|Fs] (6.18)

is independent of the σ-algebras Fr, for all r < s; or in other words,

that P[Bt ∈ A|Fs](ω) is a function of Bs(ω), a.s.. You can see that we

will have to worry a little bit about these definitions in general, but by

the continuity of Brownian motion, we may just look at rational times

and then no problem arises. We come to these things in the next course.

We see that the two definitions are really the same, using the existence

of regular conditional probabilities: namely, Ps,t will be just the regular

version of P[Bt ∈ A|Fs].

Proposition 6.4.8 Brownian motion in dimension d is a continuous

time Markov process with transition kernel

Ps,t(x,A) =
1

(2π(t− s))d/2

∫

A

exp

(
−|y − x|2
2(t− s)

)
dy. (6.19)

Proof. The proof is next to trivial from the defining property (i) of

Brownian motion and left as an exercise.

We now come, again somewhat informally, to the martingale problem

associated with Brownian motion.

Theorem 6.4.9 Let f be a bounded twice differentiable function, and

let Bt be Brownian motion. Then

Mt ≡ f(Bt)− f(B0)−
1

2

∫ t

0

∆f(Bs)ds (6.20)

is a martingale.
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Proof. We consider for simplicity only the case d = 1; the general case

works the same way. We proceed as in the discrete time case.

E[Mt+r|Ft] = f(Bt)− f(B0)−
1

2

∫ t

0

f ′′(Bs)ds (6.21)

+E[f(Bt+r)− f(Bt)|Ft]−
1

2

∫ r

0

E[f ′′(Bt+s)|Ft]ds

= Mt +
1√
2πr

∫
f(y) exp

(
− (y −Bt)

2

2r

)
dy − f(Bt)

−1

2

∫ r

0

1√
2πr

∫
f ′′(y) exp

(
− (y −Bt)

2

2s

)
dyds

= Mt

The last inequality holds since, using integration by parts

1√
2πs

∫
f ′′(y) exp

(
− (y − x)2

2s

)
dy (6.22)

=

∫
f(y)

d2

dy2
1√
2πs

exp

(
− (y − x)2

2s

)
dy

=
1√
2π

∫
f(y)

[
−s−3/2 + (y − x)2s−5/2

]
exp

(
− (y − x)2

2s

)
dy

= 2

∫
f(y)

d

ds

1√
2πs

exp

(
− (y − x)2

2s

)
dy

Integrating the last expression over s yields

2√
2πr

∫
f(y) exp

(
− (x− y)2

2r

)
dy − f(x),

where we used that

lim
h↓0

2√
2πh

∫
f(y) exp

(
− (x− y)2

2h

)
dy = f(x).

Inserting this into (6.4.8) concludes the proof.

Note that we really used that the function

e(t, x) ≡ 1√
2πt

exp

(
−‖x‖2

2t

)
(6.23)

satisfies the (parabolic) partial differential equation
∂

∂t
e(x, t) =

1

2
∆e(x, t), (6.24)

with the (singular) initial condition

e(x, t) = δ(x), (6.25)



6.5 Sample path properties 111

(where δ here denotes the Dirac-delta function, i.e. for any bounded

integrable function
∫
δ(x)f(x)dx = f(0)). e(t, x) is called the heat kernel

associated to (one-dimensional) Brownian motion.

Remark 6.4.1 Let us note that if we rewrite (6.20) in the form

f(Bt) = f(B0) +Mt +
1

2

∫ t

0

∆f(Bs)ds, (6.26)

it formally resembles the Itô-formula, or the Doob decomposition. The

martingale Mt should then play the rôle of the stochastic integral, i.e.

we would like to think of

Mt =

∫ t

0

∇f(Bs) · dBs.

It will turn out that this is indeed a correct interpretation if and that

(6.26) is the Itô-formula for Brownian motion.

The preceding theorem justifies to call L = ∆
2 the generator of Brown-

ian motion, and to think of (6.21) as the associated martingale problem.

The connection between Markov processes and potential theory, estab-

lished for discrete time Markov processes, also carries over to Brownian

motion; in this case, this links to the classical potential theory associated

to the Laplace operator ∆.

6.5 Sample path properties

We have constructed Brownian motion on a space of continuous paths.

What else can we say about the properties of theses paths? The striking

feature is that Brownian paths are almost surely nowhere differentiable!

The following theorem shows that it is not even Lipshitz continuous

anywhere:

Theorem 6.5.10 For almost all ω, B(ω) is nowhere Lipshitz continu-

ous.

Proof. Let K > 0 and define

An ≡ {ω ∈ Ω : ∃s∈[0,1]∀|t−s|≤2/n|Bt −Bs| ≤ K|t− s|}. (6.27)

Clearly

An ⊂ ∪n
k=2

{
|Bj/n − B(j−1)/n| ≤ 4K/n, for j ∈ {k − 1, k, k + 1}

}
.

(6.28)

Now
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P[An] ≤ (n− 2)
(
P[|B1/n −B(0)/n| ≤ 4K/n]

)3
(6.29)

≤ (n− 2) (P[|B1| ≤ 4K/n])
3 ≤ Cn−1/2.

Now An ⊂ An+1, and so for all n and all K,

P[An] ≤ lim
k↑∞

P[Ak] = 0. (6.30)

Finally, by monotonicity of the Lipshitz property, it follows that

P[∃K<∞An] ≤
∑

K∈N

P[An(K)] = 0.

An important notion is that of the quadratic variation. Let tnk ≡
(k2−n) ∧ t and set

[B]nt ≡
∞∑

k=1

[Btn
k
−Btn

k−1
]2. (6.31)

Lemma 6.5.11 With probability one, as n ↑ ∞, [B]nt → t, uniformly

on compact intervals.

Proof. Note that all sums over k contain only finitely many non-zero

terms, and that all the summands in (6.36) are independent random

variables, satisfying

E

(
Btn

k
−Btn

k−1

)2
= 2−n, (6.32)

var

((
Btn

k
−Btn

k−1

)2)
= 22−2n. (6.33)

Thus

E[B]nt = t, var ([B]nt ) = 2−nt, (6.34)

and thus

lim
n↑∞

[B]nt = t, a.s.. (6.35)

By telescopic expansion,
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B2
t −B2

0 =

∞∑

k=1

(
B2

tkn
−B2

tn
k−1

)
(6.36)

=
∞∑

k=1

(
Btkn

−Btn
k−1

)(
Btkn

+Btn
k−1

)

=

∞∑

k=1

2Btnk−1

(
Btnk

−Btnk−1

)
+ [B]nt .

Now set

V n
t ≡ B2

t − [B]nt =

∞∑

k=1

2Btn
k−1

(
Btn

k
−Btn

k−1

)
. (6.37)

One can check easily that for any n, V n is a martingale. Then also

V n
t − V n+1

t = [B]n+1
t − [B]nt (6.38)

is a martingale. If we accept that Doob’s L2-inequality (Theorem 4.3.13)

applies in the continuous martingale case as well, we get that, for any

T <∞,
∥∥∥∥ sup
0≤t≤T

(
[B]n+1

t − [B]nt
)∥∥∥∥

2

≤ 2 sup
0≤t≤T

∥∥[B]n+1
t − [B]nt

∥∥
2
= 2

√
T 2−n−1,

(6.39)

where the last inequality is obtained by explicit computation. This im-

plies that [B]nt converges uniformly on compact intervals.

Remark 6.5.1 Lemma 6.5.11 plays a crucial rôle in stochastic calculus.

It justifies the claim that d[B]t = dt. If we go with this into our “discrete

Itô formula (Section 4.6), this means this justifies in a more precise way

the step from Eq. (4.45) to Eq. (4.47).

Remark 6.5.2 The definition of the quadratic variation we adopt here

via di-adic partitions is different from the “true” quadratic variation

that would be

sup

{
n∑

k=1

[Btk −Btk−1
]2, n ∈ N, 0 = t0 < t1 < · · · < tn = 1

}
,

which can be shown to be infinite almost surely (note that the choices of

the ti can be adapted to the specific realisation of the BM). The diadic

version above is, however, important in the construction of stochastic

integrals.
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Remark 6.5.3 The fact that the quadratic variation of BM converges

to t implies that the linear variation,

∞∑

k=1

∣∣∣Btn
k
−Btn

k−1

∣∣∣

is infinite on every interval. This means in particular that the length of

a Brownian path between any times t, t′ is infinite.

6.6 The law of the iterated logarithm

How precisely random phenomena can be controlled is witnessed by the

so-called law of the iterated logarithm (LIL) . It states (not in its most

general form) that

Theorem 6.6.12 Let Sn =
∑n

i=1Xi, where Xi are independent identi-

cally distributed random variables with mean zero and variance σ2. Then

P

[
lim sup
n↑∞

Sn

σ
√
2n ln lnn

= 1

]
= 1. (6.40)

Remark 6.6.1 Just as the CLT, the LIL has extensions to the case

of non-identically distributed random variables. For a host of results,

see [4], Chapter 10. Furthermore, there are extensions to the case of

martingales, under similar conditions as for the CLT.

The nicest proof of this result passes though the analogous result for

Brownian motion and then uses the Skorokhod embedding theorem. The

proof below follows [11].

Thus we want to first prove:

Theorem 6.6.13 Let Bt be a one-dimensional Brownian motion. Then

P

[
lim sup

t↑∞

Bt√
2t ln ln t

= 1

]
= 1, (6.41)

and

P

[
lim sup

t↓0

Bt√
2t ln ln(1/t)

= 1

]
= 1. (6.42)

Proof. Note first that the two statements are equivalent since the two

processes Bt and tB1/t have the same law (Exercise!).

We concentrate on (6.42). Set h(t) =
√
2t ln ln(1/t). Basically, the

idea is to use exponentially shrinking subsequences tn ≡ θn in such a way
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that the variables Btn are essentially independent. Then, for the lower

bound, it is enough to show that along such a subsequence, the h(tn)

is reached infinitely often: this will prove that the lim sup is as large as

claimed. For the lower bound, one shows that along such subsequences,

the threshold h(tn) is not exceeded, and then uses a maximum inequality

for martingales to control the intermediate values of t.

We first show that lim supt↓0 ≤ 1. For this we will assume that we

can use Doob’s submartingale inequality, Theorem (4.3.11) also in the

continuous time case. Define

Zt ≡ exp

(
αBt −

1

2
α2t

)
. (6.43)

A simple calculation shows that Zt is a martingale (with EZt = 1), and

so

P

[
sup
s≤t

Bs − αs/2 > β

]
] = P

[
sup
s≤t

eαBs−α2s/2 > e−αβ

]
≤ Ee−αβZt = eαβ .

Let θ, δ ∈ (0, 1), and chose tn = θn, αn = θ−n(1 + δ)h(θn), and βn =
1
2h(θ

n). Then

P

[
sup
s≤θn

Bs − αns/2 > β

]
≤ n−(1+δ)(ln 1/θ)−(1+δ),

since αnβn = (1 + δ) ln ln θn = (1 + δ)(lnn + ln ln θ−1). Therefore,

the Borel-Cantelli lemma implies that, almost surely, for all but finitely

many values of n,

sup
s≤θn

Bs −
s

2
(1 + δ)θ−nh(θn) ≤ 1

2
h(θn).

It follows that

sup
s≤θn

Bs ≤
θn

2
(1 + δ)θ−nh(θn)+ =

1

2
(2 + δ)h(θn) (6.44)

and so for any θn+1 ≤ t ≤ θn,

Bt ≤ sup
s≤θn

Bs ≤
1

2
(2 + δ)θ−1/2h(t), (6.45)

hence, almost surely,

lim sup
t↓0

Bt/h(t) ≤
1

2
θ−1/2(2 + δ). (6.46)

Since this holds for any δ > 0 and θ < 1 almost surely, it holds along

any countable subsequence δk ↓ 0, θk ↑ 1, almost surely, and
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lim sup
t↓0

Bt/h(t) ≤ 1, a.s.. (6.47)

To prove the converse inequality, consider the event

An ≡ {Bθn −Bθn+1 > (1− θ)1/2h(θn)}.

The events are independent, and their probability can be bounded easily

using (6.8):

P[An] =
1√

2π(θn(1− θ))

∫ ∞

(1−θ)1/2h(θn)

exp

(
− x2

2θn(1 − θ)

)
dx (6.48)

=
1√
2π

∫ ∞

θ−n/2h(θn)

exp

(
−x

2

2

)
dx

≥ exp
(
−θ−nh(θn)2/2

)
√
2πθ−n/2h(θn)

(
1− θnh(θn)−2

)
≡ γn.(

Now θ−nh(θn)2 = 2 lnn+ 2 ln ln(1/θ), and so

γn ≥ C
1

n
√
lnn

,

so that
∑

n γn = +∞; hence, the second Borel-Cantelli lemma implies

that, with probability one, An happens infinitely often, i.e. for infinitely

many n,

Bθn ≥ (1− θ)1/2(θn) +Bθn+1.

Now, the upper bound (6.47) also holds for −Bt, so that, almost surely,

for all but finitely many n,

Bθn+1 ≥ −h(θn+1).

But by some simple estimates,

h(θn+1) = θ1/2h(θn)

√
ln ln(θ−nθ−1)

ln ln(θ−n)
≤ θ−1/2h(θn)

(
1 +O(ln θ−1/n)

)
,

so that, for infinitely many n,

Bθn ≥
(
(1− θ)1/2 − 2θ1/2

)
h(θn).

This implies that

lim sup
n

Bθn/h(θn) ≥
(
(1− θ)1/2 − 2θ1/2

)
, (6.49)

for all θ > 0; hence,
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lim sup
t

Bt/h(t) ≥ 1, (6.50)

which completes the proof.

From the LIL for Brownian motion one can prove the LIL for random

walk using the Skorokhod embedding.

Proof. (of Theorem 6.6.12) From the construction of the Skorokhod em-

bedding, we know that we may choose Sn(ω) = BTn(ω). The strong law

of large numbers implies that Tn/n→ 1, a.s., and so also h(Tn)/h(n) →
1, a.s.. Thus the upper bound follows trivially:

lim sup
n

Sn

h(n)
= lim sup

n

BTn

h(Tn)
≤ lim sup

t

Bt

h(t)
= 1. (6.51)

To prove the complementing lower bound, note that by Kolmogorov’s

0−1-law, ρ ≡ lim supn
Sn

h(n) is almost surely a constant (since the limsup

is measurable with respect to the tail-σ-algebra. Assume ρ < 1; then,

there exists n0 < ∞, such that for all n ≥ n0,
BTn

h(Tn)
< ρ. We will

show that this leads to a contradiction with (6.41) of Theorem 6.6.13.

To show this, we must show that the Brownian motion cannot rise too

far in the intervals [Tn, Tn+1]. But recall that Tn+1 is defined as the

stopping time at the random interval [α, β] of the Brownian motion Bt.

We will want to show that in no such interval can the BM climb by more

than ǫ
√
2n ln lnn. An explicit computation shows that

φ(x) ≡ P

[
sup
t≤T1

Bt > x

]
= γ

∫ 0

−∞
dF−(a)

∫ ∞

x

dF+(b)(b− a)
−a
x− a

,

(6.52)

where the ratio −a
x−a is the probability that the BM reaches x before a

(i.e. before T1) (the logic of the formula is that for Bt to exceed x before

T1, the random variable β must be larger than x, and then Bt may not

hit the lower boundary before reaching x). Now we will be done by

Borel-Cantelli, if
∑

n

φ(ǫ
√
2n ln lnn) <∞,

or in fact the stronger but simpler condition
∑

n

φ(ǫ
√
n) <∞ (6.53)
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holds for all ǫ > 0. For than, except finitely often,

sup
Tn<t<Tn+1

Bt ≤ h(n)(ρ+ ǫ),

which implies

lim sup
t

Bt

h(t)
< ρ+ ǫ,

which can be made smaller than 1, thus contradicting the result for BM.

We are left we checking (6.53). We may decompose φ as

Φ(x) = γ

∫ 0

−∞
dF−(a)

∫ ∞

x

dF+(b)(b − x)
−a
x− a

(6.54)

+ γ

∫ 0

−∞
dF−(a)

∫ ∞

x

dF+(b)|a| ≡ φ1(x) + φ2(x).

Now
∑

n φ2(ǫ
√
n) < ∞ if

∫∞
0 φ2(ǫ

√
x) < ∞. Recalling the formula

for γ, (6.14), we see that
∫ ∞

0

φ2(ǫ
√
x)dx =

∫ ∞

0

(1−F (ǫ√x)dx = ǫ−2

∫ ∞

0

(1−F (t))tdt < EX2 <∞.

To deal with φ1, use that x− a > x, and then as before

φ1(x) ≤ x−1

∫ ∞

x

(b− x)dF+(x)

Comparing the sum to an integral, we must check the finiteness of
∫
dx

1

ǫ
√
x

∫ ∞

ǫ
√
x

dF+(b)(b− ǫ
√
x) = 2ǫ−2

∫
dt

∫ ∞

t

dF+(b)(b− t),

which again hold since F has finite second moment. This concludes the

proof.

On can show more than what we did. For one thing, not only is

lim suptBt/h(t) = +1 (and hence by symmetry lim inftBt/h(t) = −1,

a.s., it is also true that the set of limit points of the process Bt/h(t) is the

entire interval [−1, 1]; i.e., for any a ∈ [−1, 1], there exist subsequences

tn, such that limnBtn/h(tn) = a.
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Hölder inequality, 20
Haar functions, 102
harmonic function, 89
heat kernel, 111

independent random variables, 47
index set, 41
indicator function, 1
induced measure, 14
inequality
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