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Anton Bovier

Abstract Kramer’s equation of a diffusion in a double well potential has been the
pardigm for a metastable system since 1940. The theme of this note is to partially
explain, why and in what sense this is a good model for metastable systems. In the
process, I review recent progress in a variety of models, ranging from mean field
spin systems to stochastic partial differential equations.

1 Introduction

Metastability is in essence the dynamical signature of a first order phase transition in
statistical mechanics. In equilibrium statistical mechanics, a first order phase tran-
sition is said to occur if a systems is very sensitive to the change of a parameter
(resp. boundary conditions), in the sense that an extensive variable (e.g. density or
magnetization) shows a discontinuity as functions of some intensive variable (e.g.
pressure or magnetic field), in the thermodynamics limit. Dynamically, for a finite
system, this fact manifests itself in that as the parameter is varied across the phase
transition line, the system will remain a considerable (and mostly random) amount
of time in the “wrong phase” before suddenly changing into the true equilibrium
phase (in other words, the sensitive variable will change its value as a function of
time with a random delay).

Metastability is a very widespread phenomenon that occurs in a large variety of
systems, both natural and artificial. In many instances, it has important effects that
are crucial for the proper functioning of the system and there has been great interest
in understanding metastability in quantitative terms over at least the last century.
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Most metastable systems of practical relevance are many-body systems whose dy-
namics is very hard to analyze, both analytically and numerically. This is partic-
ularly true with respect to metastability, due to the very long time scales that are
involved.

One of the first mathematical models for metastability was proposed in 1940 by
Hendrik Anthony Kramers [25]. It consists of the simple, one-dimensional diffusion
equation

dXt = b(Xt)dt +
√

2εdBt , (1)

where b(x) = −V ′(x), with V (x) a double well potential, i.e. a function with two
local minima that tends to infinity at ±∞, and Bt is Brownian motion. In fact, this
equation emerged as a special case of the more general equations he considered,
namely

µ
−1X ′′t =−X ′t +b(Xt)+

√
2εB′t , (2)

in the limit µ ↑∞. Thus Kramers’ equation (1) can be seen as the equation of motion
of a particle moving under the influence of a gradient force and a random force with
friction in the limit where the friction becomes infinitely strong.

Kramers’ equation (1) has become the paradigm of metastability. Kramers had
been able to solve all interesting questions in the context of this model. In particular,
he derived the so called Kramers-formula for the average transition time, Eaτb, from
a minimum at a, via the maximum, z∗, to the minimum, b, as

Eaτb =
2π√

V ′′(a)V ′′(z∗)
exp
(
ε
−1 (V (z∗)−V (a))

)
(1+o(1)) . (3)

The multi-dimensional generalization of this formula is attributed to Eyring and
called Eyring-Kramers formula (see also [39]). Note that Eyring’s so-called reac-
tion rate theory [22] is based on quantum mechanical considerations and quite dif-
ferent from the classical theory of Kramers, although it appears to have the idea of
interpreting V as a restricted (quantum mechanical) free energy in it. For a historical
discussion, see the recent paper by Pollak and Talkner [35].

The question I want to discuss in this paper is how one may understand that
indeed this simple equation can reflect quite properly the metastable behavior of the
complex dynamics of many-body systems.

Before entering into any further discussion, we need to talk about the dynamics
of many-body systems we want to discuss.

1.1 Stochastic Ising models

To analyse in any sense of rigour the microscopic dynamics of many-body systems
as given by Newton’s laws or even by the many-body Schrödinger equation is ana-
lytically beyond today’s technology. A reasonable compromise, to which I will stick
here, are stochastic Ising models. Here the setting is the following: we consider a
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state space SΛ ≡ {−1,+1}Λ , with Λ ⊂ Zd a finite subset of a lattice. A configura-
tion σ ∈SΛ describes the values of the magnetic moments of the atoms placed at
the sites of Λ , in the magnetic interpretation. Alternatively, one my think of a lattice
gas in which case the variables (1+σi)/2 represent the number of particles on the
site i.

The interaction of the model is described by a Hamiltonian, HΛ : SΛ →R, which
is a real valued function on configuration space representing the energy of a config-
uration.

By Glauber dynamics I will mean a Markov chain (in continuous or discrete
time) with transitions rates p(σ ,σ ′) that are reversible with respect to the Gibbs
measure, µβ ,Λ , given by1

µβ ,Λ (σ)≡ 1
Zβ ,Λ

exp(−βHΛ (σ)) . (4)

I will assume the dynamics to be local, in the sense that p(σ ,σ ′) are non-zero only
if σ and σ ′ differ in at most one site. One may of course think of many similar, but
different, situations.

In this context, the extensive variable one would like to consider is the magneti-
sation,

mΛ (σ)≡ 1
|Λ | ∑i∈Λ

σi. (5)

Under reasonable assumptions on the Hamiltonian, the random variable mΛ satisfies
a large deviation principle under the Gibbs measure, i.e.

µβ ,Λ (mΛ (σ) = m)∼ exp
(
−Λβ fβ (m)

)
, (6)

where the rate function fβ is called the free energy. A first order phase transition
occurs when fβ is not strictly convex. Can we interpret Kramers’ equation as an
approximation of the behavior of mΛ (σ(t)), when σ(t) is a Glauber dynamics for
our model? This is loosely speaking the issue around which this note will turn.

2 The Curie-Weiss model

There is a simple model where all works well, the Curie-Weiss model of a ferro-
magnet. Here the Hamiltonian is very simple, namely

HΛ (σ)≡−|Λ |
2

(mΛ (σ))2 =− 1
2|Λ | ∑

i, j∈Λ

σiσ j. (7)

1 Note that I will not seriously enter the discussion of infinite volume dynamics and so I also do
not enter the formalism of infinite volume Gibbs measures.
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Since the form of Λ does not enter here, let us fix Λ = {1, . . . ,N}. Let us for defi-
niteness opt for a discrete time dynamics and fix the transition rates as Metropolis
rates

p(σ ,σ ′) =


N−1 exp

(
− [HΛ (σ

′)−HΛ (σ)]+
)
, if ‖σ −σ ′‖1 = 2,

0, if ‖σ −σ ′‖1 > 2,
1−∑η 6=σ p(σ ,η), if σ = σ ′.

(8)

Now let us look at the time evolution of mΛ (t)≡ mΛ (σ(t)). Clearly, in each step it
can only increase or decrease by 2/N, and one easily checks that the probability of
increasing resp. decreasing depends only on the value of HΛ at the starting config-
uration and on the number of −1’s resp. +1’s present in the configuration σ . But
these are known once mΛ (σ) is given. In other words,

P
[
mΛ (t +1) = m′|Ft

]
= r(mΛ (σ(t)),m′) (9)

is a function of mΛ (t) only. From this one deduces readily that mΛ (t) is itself a
Markov chain with transition rates r(m,m′) on the state space

ΓN ≡ {−1,−1+2/N, . . . ,1−2/N,1}, (10)

which is reversible with respect to the measure

Qβ ,Λ (m)≡ µβ ,Λ (mΛ (σ) = m) . (11)

Now it is well known that

Qβ ,Λ (m)∼ exp
(
−βN fβ (m)

)
(12)

with

fβ (m) =−m2

2
+β

−1I(m), (13)

where
I(m)≡ 1+m

2
ln(1+m)+

1−m
2

ln(1−m) (14)

is Cramér’s entropy function. fβ is a double well whenever β > 1. Thus mN(t) is a
random walk with reversible measure (close to) exp(−βN fβ (m)) on a lattice with
spacing 2/N in [−1,1]; this is quite close to the diffusion equation of Kramers if
we chose V (x) = β fβ (x) and ε = (βN)−1. So in the dynamics of the Curie-Weiss
model, Kramers’ equation can be interpreted as a diffusion approximation of the
actual dynamics of the magnetisation! This is definitely a strong point in favor of
Kramers’ ideas.

The weak point of this observation is that it is very unstable under modifications.
We are using the full permutation symmetry of this special model which is necessary
to ensure that mΛ (t) is even a Markov process.
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Let us mention that the knowledge of the behaviour of mΛ (t) a priori does not
answer all questions on the dynamics of σ(t). This issue has been addressed quite
recently by Levin et al. [27].

There are a number of generalized mean field models that permit a similar reduc-
tion to a multi-dimensional diffusive Markov chain, see e.g. [10].

3 Large deviations

The mention of the word metastability often triggers the immediate reaction to think
about large deviations. This is undoubtedly due to the seminal work of Freidlin and
Wentzell [23], that pioneered the rigorous analysis of stochastic dynamics exhibiting
metastability through the use of large deviations on path space. It is also the basis
of the so-called pathwise approach to metastability, that was initiated by Cassandro,
Galves, Olivieri, and Vares [14] in 1984. The recent monograph on metastability by
Olivieri and Vares [34] gives an in-depth overview from this angle.

Let us look at this in a slightly abstract way. Let us assume that we are working
with a family, Xε , of Markov processes on a state space S , which we may assume
to be a complete separable normed space. Let us denote by Γ the set of all paths,
γ : [0,T ]→ S , with T arbitrary. We may naturally equip Γ with the supremum
norm inherited from the norm on S . By a large deviation principle on path space
we mean that we have a non-negative, lower semi-continuous function, I : Γ →R+,
with compact level sets, such that for some ε small, for any set A⊂ Γ ,

− inf
γ∈intA

I(γ)≤ ε lnP(Xε ∈ A)+o(1)≤− inf
γ∈clA

I(γ) (15)

In a way more speaking for us is the essentially equivalent formulation that for any
small enough δ > 0, and any γ ∈ Γ ,

ε lnP(‖Xε − γ‖ ≤ δ ) =−I(γ)+o(1) (16)

In the presence of such a formulation, metastability will arise if we can identify two
(or more) sets A,B⊂S , such that

inf
γ:A→B

I(γ)> 0, (17)

and
inf

γ:B→A
I(γ)> 0, (18)

whereas there exists paths γ : A→ A and γ ′ : B→ B, of striclty positive lenght, such
that

I(γ) = I(γ ′) = 0. (19)

Here the notation γ : A→ B means the set of curves (of arbitrary length) that begin
in A and end in B.
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Clearly in such a situation one can the state space into two parts, one containing
A and the other B, such that the process will stay exponentially (in 1/ε) long in
one of the parts before going to the other; this is clearly what we understand by
metastable behavior. Also, the minimizer in the variational problems (17) and (18)
are clearly the most likely strategies to realize the unlikely transitions, in the sense
that with probability tending to one, the process conditioned to move from A to B
in finite time2 will do this by remaining in an arbitrarily small neighborhood of a
minimizer γ; if the minimizers are unique, then they represent the optimal transition
strategy.

In this latter case, we may again see a confirmation of the one-dimensional model
of Kramer: it suggests that we may replace the entire process by one that is confined
into an arbitrarily thin, properly chosen, tube around the optimal path and obtain the
same result. But there are two difficulties: first, one would have to identify this path,
and second, the equivalence would hold only on the level of precision that is given
by the large deviation theory.

Before commenting on this latter aspect, let us comment on the question of where
a large deviation principle on path space can be expected.

3.1 Diffusions with small diffusivity.

The multi-dimensional analog of Kramers’ equation was the main example in the
original work of Wentzell and Freidlin [23]. In that case the rate function is given
by

I(γ) =
1
2

∫ T

0
‖γ̇(t)−b(γ(t))‖2 dt. (20)

The rate, ε , is simply the ε from the coefficient in front of the Brownian motion. We
see that zero-action curves are only those that follow the drift field, b, almost all the
time. Thus the analysis of the vector field b provides the full picture of metastable
states. In the case when b is the gradient of a potential function V , this analysis boils
down to the analysis of the valley structure of the landscape given by V .

3.2 Jump processes under rescaling.

Markov jump processes with non-heavy tailed increments in finite dimensional
spaces will often satisfy a large deviation principle under suitable rescaling of space
and time, e.g.

Xε(t)≡ εXε−1t . (21)

2 I am not very careful with time here. We may assume that our sets are big enough so that the
optimal connecting paths do so in ε-independent time.
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One may then expect a large deviation principle for Xε , with rate function of the
form

I(γ) =
∫ T

0
L (γ(t), γ̇(t))dt. (22)

with a certain Lagrange function that can be computed as a Legendre transform of
the log-moment generating function of the laws of the increments of the process X .
We see that the rate, ε , arises here from the rescaling of the process.

3.3 Markov processes with exponentially small transition
probabilities.

Markov processes on finite state space where some transitions occur with prob-
abilities that are exponentially small in some parameter were considered first by
Freidlin and Wentzell [23] as they occur naturally as effective processes describing
the jumps of a metastable systems between its metastable states (or “cycles” as they
were called). They found renewed interest in the context of stochastic dynamics of
Ising type models in the limit as the inverse temperature, β , tends to infinity. It is
clear that in that case, all moves that will increase the value of the energy, HΛ , will
have an exponentially small probability. These models were intensely studied in re-
cent years by various groups, such as Catoni and Cerf [15], Cerf and Ben Arous [2],
and Neves and Schonmann [30, 31], Olivieri, Scoppola, den Hollander, Nardi, etc.
[32, 33, 21, 20]. In this situation, individual microscopic path can realize the mini-
mizers of the variational principles, since path entropy plays not role in comparison
to the probabilities of individual paths. One should view this as a very singular and
atypical situation.

3.4 Large deviations by massive entropy production.

The stochastic Ising models we said we are interested in do not fall into any of the
settings above. The dimension of state space is very high, and individual paths have
not only very small probability, but even very small probability to stay “close” so
a prescribed path. Thus in order to get to a large deviation description, we must
seriously “lump” paths together to transform entropy into probability. One way to
do this we have seen at work in the Curie-Weiss model. Passing to the variables
mΛ (t) = mΛ (σ(t)) identifies all path that follow the same magnetisation pattern.
Typically, one path in m-space will correspond to exponentially many paths in σ -
space. Through this map we obtain a large deviation principle in the sense of our
second example above. Of course in the Curie-Weiss model, all is quite simple again
due to the fact that the Hamiltonian depends only on the variables mΛ . In the general
case, the computation of the rate function will be a far more difficult problem, to say
the least.
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The choice of the map used in the entropy production procedure leaves of course
a lot of freedom. One can in fact think of any coarse graining method familiar from
equilibrium statistical mechanics, such as block-spin averages over boxes of some
“mesoscopic” size. In principle this appears robust, but hard to carry out in practice.
The most impressive example where this was done remains the seminal paper [36]
by Schonmann and Shlosman on the two-dimensional Ising model under Glauber
dynamics.

Another class of models that have been considered in this sense are again mean
field type interaction diffusions in Rd . Here one considers a system of n stochastic
differential equations,

dXk = σ(Xk)dBk +b(Xk,νn(X)dr, (23)

where Bk are independent d-dimensional Brownian motions and νn(X) is the em-
pirical measure

νn(X)≡ n−1
n

∑
k=1

δXk . (24)

Dawson and Gärtner [18, 19, 24] proved that the trajectories of the empirical mea-
sure converge do solutions of the McKean-Vlasov equation

d
dt

µ(t) = L (µ(t))∗µ(t), (25)

where L (µ)∗ is the adjoint generator of the diffusion equation (23) with νn(X)
replaced by µ . They also proved a large deviation principle for the trajectories of
the empirical measure and studied the metastable behaviour of the this system.

Similar results were also obtained for a class of spin systems with long range
interactions by Comets [16].

4 Limitations of the large deviation approach and alternatives

The large deviation method is certainly very versatile and may, in principle at least,
be employed in any model context. Its main drawback is the limited precision it
makes available. Indeed, all physical quantities, such as escape probabilities and
transition times are computed up to multiplicative errors of the form exp(±δ/ε),
with δ arbitrarily small but independent of ε . Partly this is due to the fact that we ob-
tain too much information: we localise the optimal path and then calculate the prob-
ability that the process follows that path, then in reality we are interested in much
less, e.g. the law of an exit time. On the other hand, even in the one-dimensional
case, we fail to see the fine details of the behavior of the process near the critical
saddle points that are crucial for the precise behavior of the relevant probabilities.

Since we are mostly interested in reversible Markov chains, the approach via
potential theory and capacity estimates presents a convenient alternative. I have pre-
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sented this at length in various occasions [7, 8] and thus give just a very short sketch
of the key elements here.

I consider a general Markov chain (in discrete time for definiteness) with discrete
state space S and transition matrix P. I like to call P−1 ≡ L the generator. Note
that the entire formalism carries over (under some suitable regularity conditions) to
the continuous setting, of course.

For two disjoint sets A,B ⊂ S, the equilibrium potential, hA,B, is the harmonic
function, i.e. the solution of the equation

(LhA,B)(σ) = 0, σ 6∈ A∪B, (26)

with boundary conditions

hA,B(σ) =

{
1, if σ ∈ A
0, if σ ∈ B

. (27)

The equilibrium measure is the function

eA,B(σ)≡−(LhA,B)(σ) = (LhB,A)(σ), (28)

which clearly is non-vanishing only on A and B. The capacity, cap(A,B) is defined
as

cap(A,B)≡ ∑
σ∈A

µ(σ)eA,B(σ). (29)

By the discrete analog of the first Green’s identity, we get that alternatively,

cap(A,B) =
1
2 ∑

σ ,σ ′∈S
µ(σ)p(σ ,σ ′)[hA,B(σ)−hA,B(σ

′)]2 = Φ(hA,B), (30)

where the right-hand side is The functional appearing on the left-hand sides of these
relations is called the Dirichlet form or energy. As a consequence of the maximum
principle, the function hA,B is the unique minimizer of Φ with boundary conditions
(27), which implies the Dirichlet principle:

cap(A,B) = inf
h∈HA,B

Φ(h), (31)

where HA,B denotes the space of functions satisfying (27).
An important observation is that equilibrium potentials and equilibrium measures

also determine the Green’s function. In fact (see e.g. [11, 8]),

hA,B(σ) = ∑
σ ′∈A

GS\B(σ ,σ ′)eA,B(σ
′) (32)

(32) can be used to give the following representation for mean hitting times

∑
σ∈A

µ(σ)eA,B(σ)Eσ τB = ∑
σ ′∈S

µ(σ ′)hA,B(σ
′), (33)
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or, after normalizing the left-hand side to be an expectation,

EνA,BτB =
1

cap(A,B) ∑
σ ′∈S

µ(σ ′)hA,B(σ
′). (34)

The point to retain for us is that estimates in hitting times can be obtained once
we have control over capacities and the equilibrium potential. Note that of course,
knowing the equilibrium potential alone is good enough, since we hen can get the
capacity by just plugging it into the Dirichlet form. The point, however, is that it
is easier to estimate the capacity then to find the equilibrium potential: we will see
why.

Note that computing the equilibrium potential amounts to solving a boundary
value problem for a finite difference operator, which is the discrete analogue of
solving a boundary value problem for an elliptic pde. The only case when this is
easily doable is when S has the structure of a one-dimensional set and the transition
matrix connects only nearest neighbors. In that case equation (26) can be solved by
recursion and we obtain an explicit solution it terms of a sum. This is analogous
to the case of a one-dimensional diffusion, where we can solve the boundary value
problem in terms of an explicit integral. This is the second important fact that we
will keep in mind.

5 Capacity estimates

The first pleasant surprise is that the Dirichlet principle is perfectly suited for the
idea of (imperfect) lumping or coarse graining. Let m map S to some lower dimen-
sional space, Γ . Let us for simplicity assume that two sets A,B are adapted to the
map m in the sense that A = m−1(m(A)), and likewise for B.

Then we have the following obvious bound:

cap(A,B) = inf
h∈HA,B

1
2 ∑

σ ,σ ′∈S
µ(σ)p(σ ,σ ′)

[
h(σ)−h(σ ′)

]2
≤ inf

u∈Gm(A),m(B)

1
2 ∑

σ ,σ ′∈S
µ(σ)p(σ ,σ ′)

[
u(m(σ))−u(m(σ ′))

]2
= inf

u∈Gm(A),m(B)

1
2 ∑

x,x′∈Γ

[
u(x)−u(x′)

]2
∑

σ∈m−1(x)

µ(σ) ∑
σ ′∈m−1(x′)

p(σ ,σ ′)

≡ inf
u∈Gm(A),m(B)

1
2 ∑

x,x′∈Γ

Q(x)r(x,x′)
[
u(x)−u(x′)

]2
≡ CAP(m(A),m(B)). (35)

with
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r(x,x′)≡ 1
Qβ ,N [ω](x) ∑

σ∈m−1(x)

µ(σ) ∑
σ ′∈m−1(x′)

p(σ ,σ ′). (36)

Here
HA,B ≡ {h : S→ [0,1] : ∀σ ∈ A,h(σ) = 1,∀σ ∈ B,h(σ) = 0} (37)

and

Gm(A),m(B) ≡ {u : Γ → [0,1] : ∀x ∈ m(A), u(x) = 1,∀x ∈ m(B), u(x) = 0}. (38)

Thus the map introduces always new transition rates and a new Dirichlet form, thus
a new, “lumped”, Markov process. Equality in the above relation holds if and only
if the equilibrium potential corresponding to the original chain is in fact a function
of the new variables m only. This is exactly the case when lumping in the original
sense works, i.e. when the image of the chain under the map m is Markov.

But note now that we are in a much better shape as before. In particular, we
understand that the quality of the upper bound will not depend on the global quality
of the approximation of the equilibrium potential by a function depending only on
m(σ), but only on the quality of this approximation in the region of phase space
where the main contribution to the capacity is expected to come from. In practice,
we tend to believe that the best way to get a good estimate for the capacity is to find
a good mapping, m, and then to find an almost optimal solution for the new Dirichlet
form. Of course, to justify such a believe, we must in the end have a way to prove a
lower bound.

5.1 Random path representation and lower bounds on capacities.

The canonical way to get lower bounds on capacities, first exploited in [6] and then
in [9], is to exploit a dual variational representation of capacities in terms of flows,
due to Berman and Konsowa [4].

It will be convenient to think of the quantities µ(σ)pN(σ ,σ ′) as conductances,
c(σ ,σ ′), associated to the edges e = (σ ,σ ′) of the graph of allowed transitions of
our dynamics.

Definition 1. Given two disjoint sets, A,B⊂ S, a non-negative, cycle free unit flow,
f , from A to B is a function f : E → R+ ∪{0}, such that the following conditions
are verified:

(i) if f (e)> 0, then f (−e) = 0;
(ii) f satisfies Kirchoff’s law, i.e. for any vertex a ∈ S\ (A∪B),

∑
b

f (b,a) = ∑
d

f (a,d); (39)

(iii)
∑
a∈A

∑
b

f (a,b) = 1 = ∑
a

∑
b∈B

f (a,b); (40)
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(iv)any path, γ , from A to B such that f (e)> 0 for all e ∈ γ , is self-avoiding.

We denote the space of non-negative, cycle free unit flows from A to B by UA,B.

An important unit flow is the harmonic flow, associated to the equilibrium poten-
tial, hA,B. It is defined as

f ∗(a,b)≡ 1
cap(A,B)

c(a,b)(hA,B(a)−hA,B(b))+ . (41)

One can easily verify, using that hA,B is a harmonic function, f ∗ is a non-negative
unit flow.

The key observation is that any f ∈ UA,B gives rise to a lower bound on the
capacity cap(A,B), and that this bound becomes sharp for the harmonic flow. To see
this we construct from f a stopped Markov chain X= (X0, . . . ,Xτ) as follows: For
each a ∈ S\B define F(a) = ∑b f (a,b).

We define the initial distribution of our chain as P f (a) = F(a), for a ∈ A, and
zero otherwise. The transition probabilities are given by

q f (a,b) =
f (a,b)
F(a)

, (42)

for a 6∈ B, and the chain is stopped on arrival in B.
Thus, given a trajectory X = (a0,a1, . . . ,ar) with a0 ∈ A, ar ∈ B and a` ∈ S \

(A∪B) for `= 0, . . . ,r−1,

P f (X= X ) =
∏

r−1
`=0 f (e`)

∏
r−1
`=0 F(a`)

, (43)

where e` = (a`,a`+1) and we use the convention 0/0 = 0. Note that, with the above
definitions, the probability that X passes through an edge e is

P f (e ∈ X) = ∑
X

P f (X )1{e∈X } = f (e). (44)

Consequently, we have a partition of unity,

1{ f (e)>0} = ∑
X

P f (X )1{e∈X }
f (e)

. (45)

We are ready now to derive our f -induced lower bound: For every function h with
h|A = 0 and h|B = 1,

1
2 ∑

e
c(e)(∇eh)2 ≥ ∑

e: f (e)>0
c(e)(∇eh)2

= ∑
X

∑
e∈X

P f (X )
c(e)
f (e)

(∇eh)2 .
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As a result, interchanging the minimum and the sum,

cap(A,B) ≥∑
r

∑
X =(a0,...,ar)

P f (X ) min
h(a0)=0, h(ar)=1

r−1

∑
0

c(a`,a`+1)

f (a`,a`+1)
(h(a`+1)−h(a`))

2

= ∑
X

P f (X )

[
∑

e∈X

f (e)
c(e)

]−1

. (46)

Since for the equilibrium flow, f ∗,

∑
e∈X

f ∗(e)
c(e)

=
1

cap(A,B)
, (47)

with P f ∗ -probability one, the bound (46) is sharp.
Thus we have proven the following result from [4]:

Proposition 1. Let A,B⊂ S. Then, with the notation introduced above,

cap(A,B) = sup
f∈UA,B

E f

[
∑

e∈X

f (e)
c(e)

]−1

(48)

One should note that the rather intricate character of the lower bound through
these flows is particular to the discrete graph structure of discrete models. In the
case of diffusions, this trivialises to the replacement of gradients by optimally choses
directional derivatives in the Dirichlet form.

So these are our basic tools. The next step is to show that all will work on the
level of the mesoscopic approximations.

5.2 Capacity estimates for mesoscopic chains and the return of
d = 1.

We have said before that we believe that by choosing good coarse grainings we will
get good upper bounds. The can make this more precise: under reasonable assump-
tions, we can find optimal upper bounds amongst the class of test-functions that
depend only on the coarse grained variables.

Now we must be more specific. We will assume that our coarse graining goes
through functions

m : SΛ → Γ ⊂ Rn (49)

where in principle we may allow n to depend on Λ .
We will also assume that the induced equilibrium measure on m,

Q(m)≡ µ ◦m−1, (50)
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will be of the form
Q(m)∼ exp(−NFΛ (m)) , (51)

where of course FΛ depends on everything, but is of order unity. Computing F will
be hard problem in equilibrium statistical mechanics, well known from the theory
of renormalisation. There are instances, however, when this has been achieved com-
pletely [26]. The parameter N can be made large depending on the choice of the
coarse graining (in fact it corresponds to the volume of blocks in the case of block
spin variables).

On the level of such a mesoscopic description, metastable states correspond to
local minima of the function F . One will then expect that the essential contributions
from the Dirichlet form small neighborhoods of the essential saddle points over
which two such minima can be connected. Saddle points may in some cases be
numerous, in particular if they correspond to localised structures which then, by
symmetry, may entail volume factors.

Basically, we expect to be able to identify a neighborhood, D, of the essential
saddle points with the following properties:

(i) F is well approximated by a quadratic3 function, F̂ , on D, in the sense that on B,
|F(m)− F̂(m)|= o(1/N).

(ii)The contributions from Dc to the Dirichlet form can be neglected.

The latter request may sound strange: for part of the complement of D, one may be
able to show this simply because the integral over exp(−NF) becomes negligible.
However this only concerns the region where F(m)> F(z∗) (F(z∗) being the value
of F at the saddle. To control the rest, we must effectively know that the harmonic
potential is almost a constant.

Let us postpone the discussion how point (ii) can be verified for a moment. The
first point to note is that, if F̂ is quadratic, with possibly some zero-eigenvalues
corresponding to symmetries, we should expect that D extends in the directions
of non-zero eigenvalues by something of order N−1/2 lnN. This means that under
plausible continuity assumptions on the transition rates r(m,m′), we can assume
that without introducing significant errors, we can replace the Dirichlet form on D
by the simplified one (assuming also the rates are such that only one coordinate can
be changed by an amount of order 1/N, which is reasonable if they are derived from
Glauber dynamics),

Φ̂(h)≡∑
m

n

∑
`=1

r` exp
(
−N

2
(m,Am)

)
[h(m+ e`/N)−h(m)]2 . (52)

This, on the other hand is very close to its continuum approximation,

Φ̃(h)≡
∫

exp
(
−N

2
(x,Ax)

)
(∇h(x),∇h(x))r dx, (53)

3 This may be general forms, see [3] for examples.
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where ( f ,g)r ≡ ∑
n
`=1 f`g`r`. The point is that for such a functional, one can readily

find a family of harmonic functions. Namely, a harmonic function for (53) solves

∑
`

r` (∂`h(x)− (e`,Ax)∂`h(x)) = 0. (54)

Now let f (t) be a solution of f ′′− γNt f ′ = 0. Set h(x) = f ((x,v)), for some vector
v. Inserting this ansatz into (54) yields

∑
`

r`v` (v`γ(x,v)− (e`,Ax)) = 0. (55)

In the case r` = 1, we see that this is satisfied if v is an eigenvector of A with
eigenvalue γ; in the general case, v should satisfy

r`∑
k

A`kvk = γv`. (56)

The point is that the solutions of this equation form a orthonormal basis for the
inner product (·, ·)r. Choosing such a vector with negative γ (this will be unique),
we can construct f that goes from 0 to 1. Using this, to construct a sufficiently good
approximation to the minimizer everywhere to get the desired bound on the capacity
is just patchwork.

This is basically good news. On the level of the mesoscopic model, we can expect
to get sharp results. Thus we may hope to get to sharp estimates for the full model by
just refining the coarse graining. The only non-trivial example so far where this pro-
gramme has been pushed through and shown to be successful is the Random Field
Curie Weiss model [6]. The problems in verifying the result lies in the application
of the Berman Konsowa principle, i.e. in the construction of an optimal flow for the
lower bound. We do not yet have a canonical way of doing this and this is clearly
still place where more work will be needed.

6 Stochastic partial differential equations

From the point of view of the discussion before, a natural class of intermediate mod-
els to study are stochastic partial differential equations, to be seen e.g. as heuristic
diffusion limits of block spin approximations. However, spde’s with small noise
arise in any other modeling contexts and are certainly interesting models in their
own right.

The simplest spde of interest is the stochastic Allen-Cahn equation,

dX(x, t) =
γ

4π2 ∆X(x, t)dt−∇ f (X(x, t))dt +
√

2εdB(x, t) (57)

with x ∈ D⊂ Rd and t ∈ R+. f is a double well potential,
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f (s) =
x4

4
− x2

2
. (58)

In the case when d = 1, the noise term B can be chosen as space-time white noise.
It is well-known that in that case this equation admits classical solutions [17]. In
higher dimensions this is not the case, and some regularisation of the noise term is
needed.

Eq. (57) arises as the limit of a system of ordinary stochastic differential equa-
tions (for simplicity we write only the case of one spatial dimension)

dXN(t) =−∇Fγ,N(XN(t))dt +
√

2εdBN(t) (59)

where BN(t) is an N-dimensional vector of Brownian motions and

Fγ,N(X) =
1
N ∑

i∈ΛN

(
1
4

X4
i −

1
2

X2
i +N2 γ

2π2 (Xi+1−Xi)
2
)

(60)

Then X̂N(x, t) = XN
i (tN), for x ∈ [i/N,(i+1)/N) converges to a solution of (57), as

N goes to zero.
For any finite N, one can now use the results of [12] and obtain precise formu-

lae for the mean hitting time of e.g. a neighborhood of the minimum X ≡ 1 when
starting from X ≡−1. In the simpler case, when γ > 1, there are only three critical
points ±1 and the saddle 0, and one gets (see [1])

E−1[τB+ ] =
2πe

N
4ε

√
|det(∇2Fγ,N(O))|√

det(∇2Fγ,N(−1))
(1+O(

√
ε| lnε|3)). (61)

The determinants can be computed explicitly and one gets√
|det(∇2Fγ,N(O))|√
det(∇2Fγ,N(I−))

=

[
1− 3

2+2γ

] e(N)
2 bN−1

2 c

∏
k=1

[
γN2 sinh2(kπ/N)/π2−1
γN2 sinh2(kπ/N)/π2 +2

]
(62)

where e(N) = 1 if N is even and 0 if N is odd. One readily sees that this latter
expression converges, as it should, to

V (µ) =
+∞

∏
k=1

[
γk2−1
γk2 +2

]
(63)

This fact will be quite general and holds also for smaller values of γ , see e.g. [28].
The main issue it thus to prove the uniformity of the error estimates in N. This

may look difficult in view of our discussion above on capacity estimates, which
required uniformly good quadratic approximations on a neighborhood of the saddle
point. The point is, however, that the the second derivative of the function Fγ,N as an
operator has eigenvalues of order k2. Hence the invariant measure concentrates very
rapidly in the directions of the higher eigenvalues, making the problem effectively
finite dimensional.
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7 Open issues

To conclude this brief review, let me mention some of the open issues that I feel
need to be addressed in the coming years.

7.1 Initial distributions and regularity theory

The key equation linking capacities to physical quantities is (34). While as an equa-
tion it is perfectly true, it is useful only if the sets A,B are chosen “not too small”.
Otherwise, both numerator and denominator will be excessively small, and the cal-
culation of the ratio becomes an issue of subtle second order corrections, which will
in most situations be next to impossible to achieve.

In many examples, this does not cause to much of a problem. Functions such as
ExτB should be relatively constant on “small” sets A of interest. This can be proven
either by analytic means (see [12] using Hölder estimates in the setting of diffusion
processes, or coupling arguments, see [29] for the case of stochastic (partial) dif-
ferential equations, or [5] for a stochastic spin system. In the last case, the absence
of contracting drifts on the level of the microscopic variables made the analysis al-
ready rather cumbersome and rather model dependent. It would clearly be desirable
to have more universally applicable tools at our disposal.

A similar issue arises in the context of spectral theory. In a number of contexts
(finite dimensional diffusions [13], (essentially) finite state space [11]), there is a
very sharp link between metastable states and small eigenvalues of of the generator.
One would clearly expect this to be true in much more generality. The method used
in [13], essentially an application of an old idea of Wentzell [37, 38] is again based
on regularity properties, this time of eigenfunction of the generator. One should
again expect this to be true in more generality, but a good theory seems to be missing
so far.

7.2 Canonical constructions of flows

In [6] we have proven a lower bound on capacities by constructing a specific micro-
scopic flow for the Berman-Konsowa principle. The fact that this worked out well
was due to self-averaging resp. homognization effects, and both the construction
and the proofs relied quite heavily on specific properties of the model. Whenever
we want to control a model of microscopic spin- or particle dynamics, we will have
to be able to do the same. Is there some generic way of doing and proving this? This
is clearly one of the most pressing issues to be resolved in the coming years.
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