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Metastability in reversible diffusion processes Il.
Precise asymptotics for small eigenvalues
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Abstract. We continue the analysis of the problem of metastability for reversible diffusion pro-
cesses, initiated in_[BEGKS3], with a precise analysis of the low-lying spectrum of the generator.
Recall that we are considering processes with generators of the-ferm+ V F(-)V onRR¢ or sub-

sets ofR?, whereF is a smooth function with finitely many local minima. Here we consider only

the generic situation where the depths of all local minima are different. We show that in general
the exponentially small part of the spectrum is given, up to multiplicative errors tending to one, by
the eigenvalues of the classical capacity matrix of the array of capacitors made of balls otradius
centered at the positions of the local minimarafWe also get very precise uniform control on the
corresponding eigenfunctions. Moreover, these eigenvalues can be identified with the same preci-
sion with the inverse mean metastable exit times from each minimurn._ In [BEGK3] it was proven
that these mean times are given, again up to multiplicative errors that tend to one, by the classical
Eyring—Kramers formula
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1. Introduction

In this paper we continue the investigation of reversible diffusion processes initiated in
[BEGK3]. Recall that we are interested in procesie&) that are given as solutions of
an It stochastic differential equation

dXc(t) = —VF(Xc(t)dt + v 2edW (t) (1.1)
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on a regular domai® < R?, where the driftV F is generated by a potential function
that is sufficiently regular, and that bof(x) and |V F(x)| tend tooco at infinity. We
are interested in the case when the functiopx) has several local minima. We always
assume thak. is killed on Q¢ if it exists.

For a general introduction to the topic and its history we refer to the introduction
of [BEGK3]. In that paper we have studied the so-called metastable exit times from at-
tractors of local minima o' and we have given a precise asymptotic estimate for the
mean value of these times. These estimates were in turn based on precise estimates of
certainNewtonian capacitiesf sets containing small balls centered at the locations of
the minima ofF.

In the present paper we turn to the investigation of the low-lying spectrum of the
generators of the process defined[by](1.1), i.e.

L.=—-€A+VF(x)-V (1.2)

with Dirichlet boundary conditions of¢ (if @ # R<). Under our assumptions af,

given below, the spectrum of this operator will be discrete. Moreover, it is well known
that the spectrum of such operators has precisely one exponentially small eigenvalue for
each local minimum of the functiofl, and more or less rough estimates of their precise
values are knowrl [FW, Ma, Mi]. Wentzell [W2] and Freidlin and WentZell |[FW] obtain

an estimate for the exponential rate, i.e. they identif)glm—l In ; (¢) using large devi-

ation methods. Sharper estimates, with multiplicative errors of ertfér, were obtained

for principal eigenvalues by Holley, Kusuoka, and Strook [HKS] using a variational prin-
ciple; these methods were extended to the full set of exponentially small eigenvalues by
Miclo [Mi] (see also [Ma]).

Our purpose here is to gsharpestimates, i.e. we seek upper and lower bounds with
multiplicative errors that tend to one agends to zero. Such estimates are known in the
one-dimensional case (see elg. [BuMal, BuMa?] and references therein), whereas in the
multi-dimensional case only heuristic results based on formal power series expansions of
WKB type exist (see e.g. [Kalo] for an analysis of the situation). This is due to the fact
that the stochastic tunneling problem leads to a particularly degenerate form of the general
tunnelling problem in the context of Sdidinger operators in which classical results [Sil,
Si2,[HS1-HSK] are not immediately applicable. While the methods introduced in the
third paper on quantum mechanical tunneling by Helffer arii&nd [HSB] should in
principle allow one to justify such expansions, their implementation seems rather tedious
and has not been carried out to our knowleffge.

Here we will resort to a different approach that combines ideas already suggested in
[W1] with potential-theoretic ideas. In fact, this approach was developed in [BEGK?2] in
the setting of discrete Markov chains, where indeed many technical problems we will be
facing here disappear, and that may serve as a nice introduction.

1 After submission of this paper, B. Helffer realised that under stronger regularity assumptions
(C°°) complete asymptotic expansions of the low-lying eigenvalues should be obtainable using
methods developed i [HS4] in the context of the Witten complex. This was then carried out in
[HN] in the case of a two-well potential, and the treatment of the general case is in progress [HKN].
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We will work under the same assumptionsBas in [BEGK3] throughout this paper,
namely:

Assumptions (H.1)

(i) F e C3), < R open and connected.
(iiy If @ is unbounded, then

(ii.1) liminf,_ o |[VF(x)| = o0, and

(ii.2) liminf, o (IVF(x)| — 2AF (x)) = oo.

For any two setsl, B C 2, define theheight of the saddle betweehand B by

F(A,B) = nf sup F(w()), (1.3)

[
w:w(0)eA, w(l)eB t€[0,1]
where the infimum is over all continuous pathé €.

Remark. Condition (H.1) ensures that the resolvent of the genetatds compact for
e sufficiently small. Moreover, it implies that has exponentially tight level sets in the
sense that for all € R,

/ e FW/egqy < cem/e, (1.4)
yiF()za

whereC = C(a) < oo is uniformine < 1.

In the following, the notion of saddle points &f will be crucial. The set of saddle
points is intuitively the subset of the 98tA, B) = {z : F(z) = f(A, B)} that cannot be
avoided by any paths that try to stay as low as possible. In general we have to define
this set as follows:

Definition 1.1. Let’P(A, B) denote the set ahinimal paths fromA to B,
P(A,B)={we C(0,1],2) : w(0) € A, (1) € B, sup F(w(t)) = F(A, B)}

t€[0,1]
(1.5)
A gateG(A, B) is a minimal subset af (A, B) with the property that all minimal paths
intersectG (A, B). Note thatG(A, B) is in general not unique. Then the s&tA, B) of
saddle pointss the union over all gate§ (A, B).

To avoid complications that are not our main concern here, we will make the general
assumption that all saddle points we will deal with are non-degenerate in the following
sense:

Assumption (ND)

(o) The setM, of local minima ofF is finite and for any two local minime, y € M, the
setG(x, y) is uniquely defined and consists of a finite set of isolated pejits y).

(i) The Hessian matrix of" at all local minimax; € M and all saddle points; is
non-degenerate (i.e. has only non zero-eigenvalues).
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When dealing with domain@ with non-empty boundary we will encounter situations
where saddle points ifi2 are relevant. While this does not lead to serious problems per
se, there appears rather naturally a great variety of cases that makes the formulation of
general results rather cumbersome. We prefer to avoid having to discuss these issues by
dealing exclusively with situations in which the boundary is never reached by the process,
i.e. we make the further

Assumption (IB). For any sequence of pointg €  such that lify,x; € 9<,
IimiToo F(x;) = oc.
Our main interest is in the distribution of stopping times
a=inf{r>0:X(®) € A} (1.6)

for the process starting at one minimum, sag M, of F, whenA = B,(y) is a small

ball of radiusp around another minimurny, € M. It will actually become apparent that
the precise choice of the hitting set is often not important, and that the problem is virtually
equivalent to considering the escape from a suitably chosen neighborhepgrof/ided

this neighborhood contains the relevaatdle point€onnectinge andy.

Let us now state the main results of this paper.

Given two disjoint closed sets, D, we will denote byk 4 p(x) the equilibrium po-
tential, byea p(dy) the equilibrium measure, and by cgD) the Newtonian capacity
corresponding to the Dirichlet problem with boundary conditions A@mnd 0 onD. The
precise definitions of these classical quantities (seele.q. [BIuGet| Doo, Szni]) are recalled
in Section 2 of [BEGKS3].

Theorem 1.2. Assume thaf hasn local minima,x, ..., x,, and that for som& > 0
the minimax; of F can be labeled in such a way that, witht; = {x1,..., xx} and
Mo = Q°,

F (2" (xx, Mg—1)) — F(xx) < l;_rli][l(F(z*(x,-, M\ x) — F(x;)) — 6 (1.7)

forall k =1,...,n. SetB; = Bc(x;), Sy = U'_; B;, andhi(y) = hp, s, ,(y). Assume
moreover that all saddle points‘(xx, My_1) are unique, and that the Hessian Bfis
non-degenerate at all these saddle points and at all local minima. Then theredexiis
such that the: exponentially small eigenvaluasg < - -- < A, of L, satisfy:

=0 (1.8)
and fork=2,...,n,

capg, (Sk— 1

(= BB 4 o) = (14 0@ )
17k 115 Eyts, .,
= MEG M)l deVEF(i)) (re M)~ Fal/e
2n |det(V2F (z* (xg, Mi—1)))|
x (1+ 0(Y?|Ine€))), (1.9)

whereAj(z*) denotes the unique negative eigenvalue of the Hessidhaifthe saddle
pointz*.
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Remark. The theorem can be seen as containing three results: First, an asymptotically
sharp identification of the exponentially small eigenvalues with the inverse mean exit
times from local minima,; this is a general feature of metastable systems (see e.g. [D1,
D2, [D3,[GS [ GM] for earlier results). Second, it relates these eigenvalues precisely to
Newtonian capacities; this is the key difference from our results to e.g. the approach
of Kolokoltsov and Makarovi [KoMakK, Kolo], since it allows thirdly to get an explicit
expression for the eigenvalues in terms of the poteftial

Remark. Conditions[(1.]7) state th&all valleys of F have different depths'which is in

some sense the generic situation. In this case a number of simplifications take place, in
particular we do not have to deal with degenerate eigenvalues. These conditions are com-
pletely analogous to the conditions imposedlin [BEGK2]. Our general approach does,
however, in principle also allow us to treat degenerate situations. We postpone the treat-
ment of such cases to future work.

In the course of the proof of Theor¢m 1.2 we will also gain rather detailed control on
the eigenfunctions of . corresponding to its small eigenvalues.

Theorem 1.3. Under the assumptions of Theor¢h®, if ¢, denotes the normalized
eigenfunction corresponding to the eigenvalyethen there exists > 0 such that

hp (x B
¢k(y) = M

s ||2(1+ 0(e7%€)) + 0(e79), (1.10)
e (XK ), Ok—1

WherehBE(xk),sk,l(y) = IP>y['f}.‘?€(xk) < ":Skfl]'

Remark. We give even more precise expressions for the eigenfunctions in the course of
the proofs later on. Note that there is considerable interest in the knowledge of eigen-
functions in the context of numerical schemes designed to recover metastable sets from
the computation of eigenfunctions. See in particular referencés [S, SEHD, HMS]. Let us
emphasise that, using the bounds on equilibrium potentials obtained in Corollary 4.8 of
[BEGK3], Theorenj 1.3 implies that the eigenfunction corresponding to a minimusn
exponentially close to a constant ¢ *1)/2€) in the connected component of the level set

{y: F(y) < F(z*(x;, M;_1))} that contains; (i.e. in the valley below the saddle point

that connects; to the set that lies below), while it drops exponentially in the other con-
nected components of the level set of this saddle; below the lewglibis exponentially

small in absolute terms. Note that this implies that the zer@sare generally not in the
neighborhood of the saddle points, but much closer to the minimd;in;. This fact was

also observed in [HMS]. We would like to stress that the fact that the eigenfunctions drop
sharply at the saddle points makes them very good indicators of the actual valley structure
of the potentialF, i.e. they become excellent approximations to the indicator functions of
the metastable sets corresponding to the metastable exit fipe 1

Finally, it is almost a corollary from the results obtained above that metastable exit
times are asymptotically exponentially distributed, when appropriate non-degeneracy
conditions are met.
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Theorem 1.4. Assume that the Hessian Bfis hon-degenerate at all local minima and
saddle points. Let; be a minimum of” and letD be any closed subset &f such that:

(i) if M; = {y1,..., )} C M enumerates all those minima &f such thatF (y;) <
F(x;), thenJ\_; Be(y;) € D, and

(i) dist (z*(x;, M;), D) > & > 0for somes independent of.

Assume further that the conditions of TheofE@are satisfied. Then there exigts> 0

independent of and ofz such that for allr > 0,

Pyltp > 1By 1p] = (14 O(e~Y/))e 0D
+Y 09 MiE 4 0@y 0TI (1.11)

Jj>i
The results of this paper together with those of [BEGK3] show that the methods to anal-
yse metastable behaviour in discrete Markov chains introduced in [BEGK1, BEGK2]
can be naturally extended to continuous diffusion processes. In particular we see that the
metastable behaviour of continuous and discrete diffusions is virtually identical, and that
all results for the discrete chains treated in [BEGK1] carry over to the corresponding dif-
fusion approximations. In fact, our results in the diffusion case are sharper, since we were
able to identify the constants in the prefactors of exponentially small or large terms (we
expect, however, that with some extra work this improvement can also be carried over to
the discrete chains, at least under certain conditions). There are a number of generaliza-
tions of these results that can be investigated: First, one can naturally consider diffusion
processes on more general Riemannian manifolds. Second, one can consider extensions
to locally infinitely divisible processes with mixed diffusion and jump components. Such
extensions will require some extra work, but in principle our approach appears applica-
ble, and qualitatively similar results should be obtainable. Another potentially interesting
generalization concerns non-reversible diffusion processes. Here the main difficulty is the
determination of the invariant measure, which our methods do not address at all. How-
ever, it is to be expected that at least in uniquely ergodic situations, some of our results
can still be carried over. We hope to address these issues in future publications.

The remainder of this paper is organized as follows: In Section 2 we prove an a priori
estimate on the spectrum of the generator when Dirichlet conditions are applied to small
neighborhoods of all the local minima &f. In Section 3 we then show that the eigenval-
ues of the full generator are asymptotically close to those of the capacity matrix, which in
turn are then evaluated in the generic situation. In the course of the proof we also identify
the eigenvalues of the generator with the principle eigenvalues of appropriate Dirichlet
operators. Finally, we derive from these results the exponential distribution of the mean
exit times.

2. A priori spectral estimates

Most of the preparatory background and necessary technical a priori estimates were intro-
duced in[BEGKS3] and will be imported from there. In this section we give an additional
a priori estimate on the spectrum of certain Dirichlet operators associated tdore
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precisely, we derive a priori lower bounds on principal eigenvalues and for the Dirichlet
problem in (regular) open sef8 c @ < R? with closureD. We denote by D the
boundary ofD. We denote by.(D) = x1(D) the principal eigenvalue of the Dirichlet
problem
(Le=2)f(x)=0, xeD,
f(x)=0, xeD°

whereD¢ = R?\ D, and sometimes use the notatibﬁ” to indicate the Dirichlet operator
corresponding to the problein (2.1).
The following lemma is a classical result of Donsker and Varadhan [DV]:

(2.1)

Lemma 2.1. The principal eigenvalug(D) satisfies

WDy s+ (2.2)
SUR.cp Extpe
In the case when we consider diffusions on a compact set, L¢mina 2.1 will yield a suffi-
ciently good estimate. 1D is unbounded, the supremum on the right may be infinite and
the estimate becomes useless. However, it is easy to modify the proof of Liemjma 2.1 to
yield an improvement.

Lemma 2.2. Let¢p denote the normalized eigenfunction corresponding to the principal
eigenvalue oL.”. LetA ¢ D be any compact set. Then

- 1
MD) > —(1—/ dy e FOVe g p( )2>. 2.3
ST A y lép ()| (2.3)
Moreover, for any > 0, there exists a bounded sétc D (independent of) such that
- 1
A(D) > . (2.4)
SUR.cq Extpe (14 6)

Proof. Let w(x) denote the solution of the Dirichlet problem

Lcwkx)=1 xeD,
wkx)=0, xeD".

Note thatw (x) = E,tpc (see e.g. Eq. (2.22) df [BEGKS]). Now,

(2.5)

/ dx e TP () (Leg) (1) = f dx e " VG () - Vg (x)
D D

d
=i h_Z/d —F@/e +hei) — p(x)).
im | dxe ;(W e) — ¢(x))

110

(2.6)
Sinceab < 3(Ca? + b?/C) for any C > 0, takinga = ¢(x + he;), b = ¢(x) and
C = w(x)/w(x + he;), one sees that

p(x +he)®  $(x)?
w(x + he;) w(x)

(@ (x + hep) — ¢ (x))% > ( >(w(x + he;) — w(x)). (2.7)
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Inserting this inequality intd (2]6) yields

2
[ dxe T o = [ are O LI @

w(x)

— /D dx e FW/e Md)(x)

w(x)

1 —F(x)/e 2
> —SUQ(GA s, dee o (x)“. (2.8)

Choosingp as the normalized eigenfunction with maximal eigenvalue yi€lds$ (2.3).
We may assume without loss of generality thak) > 0 everywhere. We now claim
that for anyy > 0,

f dy e " FOV (012 < €, < 0, (2.9)

whereF (y) = minecpq (F(y) — F(x)). This clearly implies|(2J4).
To see this it is convenient to introdueéy) = ¢~ F)/2¢¢(y), which is the corre-
sponding ground-state eigenfunction of the operator

1 1
Ho=e FORp PO — _en 4 Z|VF(x)|2 — 5AF (), (2.10)

which is a symmetric operator ab?(D, dy). The estimat9) follows from a semi-
classical Agmon estimate for the ground-state eigenfunctipnhat can be found in
[HS1]. In our case this yields

/dy e(l—y)f(y)/e|v(y)|2 <C, < o0, (2.11)

which in turn implies[(2.p). This completes the proof of the lemma. O

We will first establish thak (D) is at most polynomially small ie if D does not contain
local minima, more precisely, define

M, ={z € Q:dist(z, M) < €}. (2.12)
Remark. The choice of balls of radiusis somewhat arbitrary, but works.

Lemma 2.3. Assume thaD N M, = @. Then there is a finite positive constaftsuch
that
SUPE, tpe < C sup|(y : F(y) < F(x)}le "+, (2.13)

xeD xeD

Proof. The starting point of the proof is the relation (which is an immediate consequence
of [BEGKS, Eq. (2.27)])

/Ddy eiF(y)/éth(x),Df ) = zeaigf( )EzTD(' capg, () (D) (2.14)

o (x
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between mean time, equilibrium potential and capacities. It follows from the well known
relation

Eitpe = / Gp(x,y)dy (2.15)
D

between mean time and Green function that the Harnack inequality of [BEGK3, Lem-
ma 4.1] carries over t&, tpc, implying that, if p = ce, then

sup E;tpe <C inf E,tpe. (2.16)
2€3B,(x) 2€0By (x)
Combining this with[(2.T4) gives

dy e FW/ep .
sup E.rpe < CfD y B, (x),0¢(¥)
Z2€0B,(x) Capo(x)(Dc)
We now distinguish the regiofs : F(y) > F(x)}and{y : F(y) < F(x)}inthe integral.
In the former, we just use the fact thiag, () p<(y) < 1, while in the latter we invoke the
upper bound from Proposition 4.3 in [BEGK3]. This gives

(2.17)

—F(y)/e
sup E.tpe < nyeD:F(y)>F(x) dye
zUD¢ = ;
2€0B,(x) capg () (D)
C; dy e FW/e w (2.18)
capg, () (D) Jyep: Fy)<F(x) capg, () (D)

Using the upper and lower bounds on the capacities from Proposition 4.7 of [BEGK3],
we get

sup E,tpe < C’ep_d+ze+F(")/€/ dy e FO)/e
2€0B,(x) yeD: F(y)>F(x)

+ Clepd+? / dy. (2.19)
yeD:F(y)=F(x)
By our assumption o, the first integral is bounded by a constant times(exp(x)/¢)

and the second is equal to the volume of the level 8é) < F(x)}. This implies the
claimed bound. O

Combining our results yields

Corollary 2.4. If D N M, = @, then there exists a finite positive constaht< oo,
independent of, such that )
MD) > Ced 1. (2.20)

We can generalize the bounds obtained so far to Bet®ntaining some of the local
minima of F. That is, let\" € M be non-empty and let

Ne = {y e RY : dist(y, N) < €}. (2.21)
Assume thaD > A, and set

A(x) ={y : hp.(x),p\B.(x)(y) = n;%h&(x),nf \Be(x) (M)}
y

Then
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Lemma 2.5. Under the assumptions of Lem({&2&]

1 B fA(Xi)e—F(y)/é dy
MD) T CaPg () (D \ Be(xi))

(2.22)

Proof. The proof is similar to that of the preceding corollary combined with the estimate
on mean times given in Theorem 6.2 lof [BECKS3]. We leave the details to the reader.

Remark. The key fact we need to extract from Lemma 2.5 is that

AM(D) > min e FE @ M—F@il/e] (2.23)

1.X; €

3. Principal Dirichlet eigenvalues

It is a well known fact that ifF hasn local minima, thenL. hasn eigenvalues that are
exponentially small ire and that the next largest eigenvalue is of the order of a constant
[FW, [Kolq]. It is also known ([Kolo, Chapter 8, Proposition 2.2]) that the eigenspace of
these eigenfunctions is exponentially close in fHfgexp(— F (y) /€)dy)-distance to the
linear hull of then indicator functionsy; of the attractors of the minima& under the
deterministic dynamical systes(r) = —VF (y(2)).

In this section and the next we will derive a precise characterization of these eigen-
values that together with the estimates on capacities of [BEGK3] will ultimately yield the
exact asymptotic formulae of Theorém|1.2. This is the analogue of Sectioh 4 of [BEGK2]
for the diffusion case. Our approach can to some extent be seen as an application of the
ideas of Wentzell's remarkable paper from 1973 [W2]. As we will see, the application of
these ideas is not as straightforward as in the discrete case, but in principle very similar.

Before we turn to the details of this construction, it is useful to explain the general
strategy.

Let us now consider a set of disjoint compact s&ts= B, (x;),i = 1,..., k. Let i
denote the principal eigenvalue of the Dirichlet operdtpmith Dirichlet conditions on
oS, = Ule dB; (and ond <, if this is not empty). Consider, for < A, the solution of
the Dirichlet problem

(Le — 1) f*(x) =0, x €Q\ S,

@) =¢x), xedS, (3.1)
) =0, x €93Q

(i.e. we consider the Dirichlet problems in the exterior and the interior of the balls si-
multaneously; note that the principal eigenvalud.pfwithin a ball will always be larger
thani; and so plays nodle). In what follows, when specifying the Dirichlet problems
the conditions of vanishing of the solution on the boundargafill be understood and

not mentioned anymore. The basic idea is now to construct an eigenfunction of the full
operatorL, as a solution of the problerp (3.1) with suitably chogerndeed, ifa is an
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eigenvalue of. and if we choose (x) as the eigenfunction corresponding to this eigen-
value, thenf” (x) is equal tap everywhere. To see this, note that sigge) = f*(x) on
08k, forx € S; we have

(Le — M3 (f* — )(x) = (Le — M (f* — ¢)(x) = 0. (3.2)

But sincea is not in the spectrum oltfk, this implies thatf* (x) = ¢ (x) on Sy as well.
The same argument applies in the interioSpf This means that < A is an eigenvalue
of L. if and only if we can find a functiogh on S, such that the solution of the Dirichlet
problem [3.1) is actually an eigenfunction bf with eigenvaluex. In other words, any
eigenfunction corresponding to eigenvalues below the principal Dirichlet eigenvalue can
be represented as a solution|[of {3.1).

Thus the eigenvalue problem reduces to finding out for which valuesfof suit-
able¢ on the boundaries aB;, (L. — 1) f* = 0 everywhere. In factL. — A) f* is in
general a measure concentrated on the sud&gedemanding that this surface measure
be zero yields in general an integral equationdox) on dS;, which is not particularly
easy to handle. In the case of discrete Markov processes, we have considered a very sim-
ilar problem in [BEGKZ2]. There, the ballB; were, however, simply the poinis. The
measurgL, — ) f* was then a simple measure on the finite.s¢t, and the boundary
condition reduced to thé numbersg (x;), and the integral equation was reduced to a
simple linear equation for the unknown vectptx;),i = 1, ..., k. The condition forx
to be an eigenvalue was thus simply that a certain determinant vanishes. It would be more
than nice if we could reduce ourselves to a similarly simple condition in the present case.
Indeed this would be so if we knew beforehand that) is constant on each surfag;.
While this cannot be truly the case,dfis small we may expect that varies little. In
that case, we could, as we shall see, use perturbation arguments to arrive at the desired
conclusion. Unfortunately, to obtain such control on eigenfunctions looks rather difficult.
While the Harnack and &lder inequalities will give us the desired control if we know
that the eigenfunction does not change sign in a suitable neighborhood of the minimum,
one cannot exclude that some minima are close to such zeros. We will see, however, that
eigenfunctions do not change sign near a minimum, unless they are very small there. This
will be enough to carry through our arguments.

We begin this program in this section with the somewhat simpler problem of the
computation of the principal eigenvalues in domaing: 2. The main application will be
later to the case whei® is 2 with some small balls around local minima Bfremoved.
This problem is considerably simpler because principle eigenfunctions are positive.

Regularity properties of harmonic functions. We first state a simple application of the
Harnack and ldlder inequalities (se€ [GT, Corollaries 9.25 and 9.24]) that we have stated
as Lemmata 4.1 and 4.2 in [BEGK3].

Lemma 3.1. Assume that is a local minimum of. Let¢ be a positive strong solution
of (Le — )¢ =0, |A| < 1, onaball B, ;(x). Then there exists a constafit< oo and
a > 0, both independent ef, such that

0SGes. (0@ (y) < Ce*/ min ¢ (x). (3.3)
YEBe(x)
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Proof. We can use Lemmata 4.1 and 4.2 stated in [BEGK3] with= A = ¢, y = 1,
¢ =A,and

v=¢2 sup |VF(]|?3 <conste L (3.4)
YEBy /e (x)
Then, withR = 2,/¢, we deduce first from Lemma 4.2 ¢f [BEGK3] that
sup ¢(y) <C inf  ¢(y) (3.5)
YEBy /2 (x) Y€By e (x)

and then from Lemma 4.1 that

0SG e, (P (x) < Ce¥2 sup p(y)(L+ /e

YEBy /e (x)

D). (3.6)

This implies the lemma if is not too large. O

Principal eigenvalues revisited. We will now improve on the estimates on principal
eigenfunctions.(D) obtained in Section 2 by showing that in the case wBetontains
a local minimum ofF, these estimates are essentially exact.

Proposition 3.2. Assume thaD contains/ > 1 local minima of the functio and that
there is a single minimum € D that realizes

F(*(x, D) = F(x) = M F (" (xp, D) = F(x)]. 3.7

We write B = Be(x). Then there exist > 0, C < oo, and$ > 0, independent of, such
that the principal eigenvalug(D) of the Dirichlet problem orD satisfies

capz (D°) capg (D)

(1—Ce¥?)(1—e7%¢) < M(D) < "2 (14 Ce*?) (1 +e7%¢); (3.8)

2 2
7B, Dell5 B, Dells

here and henceforth - ||» denotes thd.2 norm with respect to the measure” ")/¢gy.
Proof. SetD® = D \ B. Then we know by Lemna 2.5 that there exists 0 such that

X(DO) > e*[F(Z*(XsD(.))fF()C)]/Ee‘S/G7 (39)

while we know thati(D) < A(D%) (and expech ~ ¢ [F@®.DN=F]/e je much
smaller). By the general philosophy outlined above, we know that the principal eigen-
function can be represented as the solution of the Dirichlet problem (both inside and
outsideB)

(Le — M) f*(y) =0, yeD\JB,
) =¢p(y), yedB, (3.10)
f*(y) =0, y € D,

where the boundary conditiors, are given by the actual principal eigenfunction. We
will assume that digk, D) > § > 0, independent of. ThenB4ﬁ(x) C D, and since
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¢p is the principal eigenfunction, it may be chosen positiveorTherefore Lemmp 31
applies and shows that

inf ¢p(y) =c < supgp(y) < (1+ Ce*/?)c. (3.11)
y€EIB yeoB

We will normalize the eigenfunction such that= 1 Thus we can writef*(x) =
R pe(x) + ¥ (x), whereh), , = h* is the-equilibrium potential (seé [BEGK3, Sec-
tion 2]) that solves

(Le =Mh*(y) =0, yeD\dB,

W (y)=1, yedB, (3.12)
h*(y) =0, ye D,

while y* solves

(Le — MY (y) =0, yeD\dB,
Y () =¢p(y) —1, yedB, (3.13)
Yt (y) =0, y e D°.

We want thai(L, — 1) f*(x) = 0 on all of D. Here we have to interpréL. — 1) f*
as a surface measure dB. That is, ifg is a smooth test function that vanishesipf

fD dy e FOVeg(y)(Le — 2) f2(y) = /D dy e FOVEF1 () (Le — 1) (1) g(y)

= A\B dy e_F()’)/efA(y)(Le _ )\‘)g(y) +/ dy e—F(y)/ef)L(y)(Le _)\‘)g(y)

int B

—e /d O () £40) = £V dn )
te /a OG0 £5) = -850 ()

=¢ faB OV (G (1)) £+ () + 8-y £+ () do (), (3.14)

wheredop(y) denotes the Euclidean surface measuré Bnando,(,, denote the nor-
mal derivatives ay € d B from the exterior and interior aB, respectively. Thus we can
identify

dy e FOVE(Le —2) () = €e TV @) F2 () + 8—n(y 2 () dop(y).  (3.15)

To get control ork, we can ask at least that the total mass of this measud@aanishes,
i.e. that

0= [ OV @) £20) + 0o £ 00 drs (), (3.16)

To evaluate this expression it will be convenient to observe thaét®ig pc(y) = 1
for y € B (wherehp pc = hj}fgr is the Newtonian potential; s€e [BEGK3, Section 2]).
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Moreover, onB, hp pc(y) = 1, so thab_, ()i 3, pc(y) vanishes o B. Using these facts
together with Green’s second identity (see [BEGK3, Eq. (2.8)]), we get from|(3.15) the
condition
A
0= [ T b 0) =2 [ dye O b e £ 0)
B D
, A
= / e FOG, g pe(y) — = / dy e " pe (M pe(y)
9B €Jp '
A ,
+ /3 O By DY) = = / dy e " hg peY*(). (3.17)
B D

(Note that the derivativ@,(,, is in the direction of the interior oB.) The two terms

involving y* will be naturally treated as error terms. In fact, sifgg,hg pe(y) > O,
using Lemma 311, we get

0< / e FOVEg 0 g pe (DY (v) < Ce/? / eFOVY hppe(y).  (3.18)
0B oB

If we definesy?* = y* — ¢0, we see thady/* solves the Dirichlet problem

(Le — 08v™(») = 2y°(y), ye D\ 3B,

sy (y) =0, y € 0B, (3.19)
syt (y) =0, y € D°,
and thus
Syt (y) = ALPVE — 01y (3.20)
and so
15912 < mnwonz. (3.21)

By the same argument we also have

Ih% pe — hp,pellz < I8, pe ll2- (3.22)

A(DO) — A

On the other hand, by the Poisson kernel representatigt? of

¥O@) = —¢ /3 @00) = D G s, ) drs(y), (3.23)

whereG p\p(x, y) denotes the Green function for the Dirichlet problemZin, B (see
[BEGK3, Section 2]). Since the normal derivative of the Green function is negative on
9B, we get
0 < ¥%() < Ce*’?hp pe(2). (3.24)
With
€ f e ey, ) hp pe(y) = capg (D), (3.25)
3B
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(3.17) implies that
0> capg(D°) — Allhp, pell3(L — Ce*/?) (L — 1/ ((D°) — 1)),

(3.26)
0 < capy (D) (1 + Ce*/?) — A|hp.pl5.

This implies the claimed bound orn(D). Note that while we have only used a necessary
condition forA(D), the fact that there must be such an eigenvalue implies that it actually
lies within the bounds given by (3.6). o

Remark. Inthe case when several of the minima wittiirsatisfy [3.7) (i.e. ifD contains
several minima that are “equally deep”), one has to remove Balls ) for each of these
minima. Then one may proceed as before. The only difference is that now there appears
one valuer; for each of the minima that is yet to be determined. One sees that in such a
case\(D) is determined by a variational formula

5oy = min A "UTREL el

14 0(e2,e7%) 3.27
c1,...,c;>0 ”h(C]_, e Cl)”% ( ( ) ( )

where

!

Lch(xq, ..., =0, D 0B (x;),

(1. e () ye \i=U1 (xi) (3.28)
h(ct,...,c)(y) =ci, y € 0Be(x;).

It is easy to see that the result differs only by a constant factor from that in the non-
degenerate case stated in the proposition.

Uniform estimates on principal eigenfunctions. The proof of Propositiop 3]2 has al-
ready provided us with an approximation for the principal eigenfunction, namgh.
We have seen that ih? this approximation is good on the orde¥2. We will now show
that this approximation is also uniformly good.

Proposition 3.3. Under the hypothesis of Propositifhg the principal eigenfunction,
ép, of LP°, normalized so thaitf,cyp ¢p = 1, satisfies

hp.pe(y) < ¢p(y) < hp,pe(P)(L+ Ce¥/?) (L4 e7/¢). (3.29)

Proof. Let us first assume thdd is bounded. Setf* = f* — 0. Thensf* satisfies the
Dirichlet problem
Ledf*(») = 2y™(»), y €D\ 3B,

8f*(y) =0, y € B, (3.30)
8f*(y) =0, y e DC.
Thus we can write
8f*(y) / 1 SFH(2)
—— = —— G . 2)hp pe(r) L2 3.31
50 g ppe(y) O VB D@ m (3:31)
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Assume thatVl = sup,cp g f*(3)/hg,pe(y) < oo. Then [3.31) together wit (3.p4)

implies that

1
M <14 Ce*? £ 1M sup ————Gp\3(y. 2hp pe(2)
yeD\B JD\B hB D (Y)

=1+Ce*? 4 1M sup E,[tp|tp < tpc]. (3.32)
yeD\B
Using the representation of the conditional mean time from Proposition 6.1 of [BEGK3],
one shows that
sup E, [tp |75 < tpe] = 1/A(D \ B) (3.33)
yeD\B
so that
- 14 Ce%/?
~ 1-A(D)/MD\ B)

Since by constructiong pc(y) < ¢p(y), the assertion of the proposition follows.

It remains to justify the assumptiold < oo. However, this is easy. Firstyp is
bounded and’?(D). Thus.¢p(y)/ k. pc(y) may only diverge whehp pe(y) | 0. How-
ever, sincéi g pe is harmonic and non-negative on the boundary, it is strictly positive on
D by the strong maximum principle. Thus its explosion can occur only at the boundary
of D, wherehp p<(y) tends to zero. Moreover, its normal derivative &b is strictly
(and sinceD is compact, uniformly) positive (see e.g. [Tay, Section 5, Proposition 2.2]).
Thereforepp (y)/ h g pe(y) remains bounded also when— 9D.

Therefore the proposition is proveniif is compact.

In the non-compact case, we can obtain a similar result for the supremum over com-
pact subsets' ¢ R?, using the rapid decay of the Green function in regions wifghe
is getting very large. O

< (A4 Ce*2) A+ 79, (3.34)

4. Exponentially small eigenvalues and their eigenfunctions

We now generalize the analysis from the previous section to the construction of all small
eigenvalues of .. To do this we need first to establish some a priori estimates on the
behavior of eigenfunctions near the local minimarof

A priori estimates on eigenfunctions near local minima. For the analysis of harmonic
functions that are not necessarily positive, we need an application of an estimate for sub-
harmonic functions that allows relating the oscillation to fifenorm.

Lemma 4.1. Let¢ be a strong solution ofL — A)¢ = 0on a baIIBcﬁ(x). Then there
exists a constant < oo, independent of, such that

0S¢ < Ce‘d/“(/
BZ(\E

Proof. This is just a specialization of Theorem 9.20(in [GT] (that gives upper bounds on
the supremum for subharmonic functions in termgaforms) to our case, choosing the
balls involved in such a way that the constants are unifore in O

1/2
|¢(x)|2dx> ) (4.1)
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Our aim is now to show that in the vicinity of ordgfe, eigenfunctions corresponding to

the exponentially small eigenvalues bf either have a constant sign, or are irrelevantly
small. That this should be the case is suggested by the following result that we cite (in
slightly adapted form) from|([Kolo], Chapter 8, Proposition 2.2):

Proposition 4.2. Let¢ be a normalized eigenfunction bt corresponding to one of the
| M| smallest eigenvalues. Let< p = min, yepm(F(x, y) — F(y)). Let D; be the set of
points iny € Q such that the solution of the differential equatigfry(t) = —VF@u(@))
with initial condition y(0) = y converges ta; € M. Then there exist constantssuch
that
- 1 H < Cexp(— 4.2
6= etnl,, <con-ye (42

for some constant’ = C,, < occ.

Remark. The proposition is stated in [Kdlo] for smooth, but it is easy to see that the
proof carries through fov e C3().

Unfortunately this estimate is not quite enough to conclude ¢hdbes not change
sign near any minimum. We will show that this is the case if the contributighazfming
from a neighborhood of a given minimum is significant. BorC 2, set|| fll2,u..p =
(fp 1P e (dx))M2,

For a given eigenfunctios define

J={j  1$l2uc.n;, = eXp—y/26)}. (4.3)
Lemma 4.3. If ¢ is one of the eigenfunctions of Propositléd, j € J, then there exists
a constant;, a finite,e-independent constaidt and a positivee-independent constant
a, such that for allx € B jz(x)), [¢(x) — ¢;| < Ce*/?c;.

Proof. We will first show that the weighted? estimate on the deviation @f from a
constant implies a local unweightdd® estimate on balls of radius ~ /€ near the
minimax;, j € J.
Note first that from[(4]2) it follows that

¢ = cjllz.pe.p; = CeXP(—y/e). (4.4)
Set$(x) = ¢)/19l2,pc.p;» andé; = ¢;/lPll2, .. p; - Then due to the definition of,
for this locally normalized function we get the estimate

16 — &jllzue.n; < CEXP(—y/26). (4.5)
Note that this estimate is now unchanged if we add a constaf(it®, so that we can
pretend for the moment thét(x;) = 0. LetR > 0 be such thaBr(x;) € D;. Sincex; is

a quadratic minimum, there exists a finite positive congdiamnich thatF'(x) < b(x —Xj)z
for x € Br(x;). Hence[(4.p) implies in particular that

/ G(x) — &) dx < CePR/e exp(—y /2€). (4.6)
Br(xj)

Note that also

/ B 2dx < R Bl p, = RS .7)
Br(xj)
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Now letx € B (x;). Then Lemm@l implies that

0SGs, ¢ < Ce /4 (4.8)

for some (new) finiteg-independent constaiit. Now we can use the délder estimate
(Corollary 9.24 in[[GT] as specialized in Lemma 4.1 lof [BEGK3]), to deduce that for

r < /e, R o\
0SG, ¢ < Ce‘d/“(m) (4.9)

for a new constant and > 0, independent of. If we chooser ~ €?/%*1 we can
achieve that 0 x) < Ce®/2 < ¢ /21f € is small enough. But by the estlmq@4 6), then
¢ must be close to;, uniformly on B, (x). Since this argument holds for alle B /e(x)),

we havelg — ¢| < Ce®/? in this ball. O

Remark. We will see later that this estimate grossly overestimates the possible fluctua-
tions of¢.

Lemma 4.1 is also the appropriate tool to show that near the minima wheie? the
norm is very small, a similar estimate holds uniformly. Namely, we have
Lemma 4.4. Letx; € M,i ¢ J. Then
sup |¢(x)| < Ce 4/2ev/2¢oTFi)/2€ (4.10)
XEBﬁ(Xj)
Proof. By Lemmd 4.1,
sup  1p() < Ce " pll2.ax,8, vy < C' €V N2 e B, )
AGBf(x/)
< C/E—d/4e+F(x,')/2€ ||¢||2,u6,Dj < C/E_d/4e_y/2€e+F(xi)/2€, (411)

which proves the lemma. O

Characterization of the eigenvalues.Let us now order all minima; of F in such a way
that
F(Z*(xi41, M;)) = F(xiy1) < F(2"(xi, Mi—1)) — F(x;) (4.12)

fori =1,...,n—1, whereM; = {x1, ..., x;}. We put moreoveMy = Q°. We also
setB; = B.(x;) andS; = U _1 Bi. Note that considerable simplifications occur when
all inequalities in[(4.12) are strlct and we will only consider this case here.

Suppose that we want to compute eigenvalues bal@\ S;) = i;. We know that
if ¢* is an eigenfunction with. < Xz, then it can be represented as the solution of the
Dirichlet problem

(Le =M f () =0, y e\ S,

f) =¢*), ye€dS.
Thus, as in the analysis of principal eigenvalues above, the conditionvati be the
existence of a non-triviab* on Sy such that the surface measure

dy e "W (Le =) [ () = O @) 2 0) + 8-y 1 () dos, () (4.14)
vanishes. A necessary condition for this to happen is of course the vanishing of the total

(4.13)
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mass on each of the surfaceB;, i <k, i.e.
/B OBy £10) o 400 dors (3) =0 (4.15)

In view of Lemmat a@A we have the following dichotomy:d; etinf,cp, ().
Theneither

() supyeg, 1¢*(v)/c;i — 1 < Ce/2, or
(i) supyep, |p* (v)| < Ce=4/e=v /26 o+ F(xi)/2¢

We now consider all possible cases: LietC {1, ..., k} be the set of indices where (i)
holds, and/¢ = {1, ..., k} \ J. Given such a partition, we set

Fr= iy, som, H YD+ v (4.16)
jeJ ieJ¢
where thd@ = h/};j.sk\B,- are thex-equilibrium potentials (seé [BEGK3, Section 2)), i.e.
solutions of(L. — 1)h; = O with boundary conditions 1 o#\B; and 0 ond (S \ Bj).
ThempjA satisfies, forj € J,

(Le = MY} (y) =0, yeQ\ S,
Y =¢"(/c; =1, yedB;, (4.17)
¥ () =0, y€dB;, i # j.
and forj € J¢,
(Le = MY (y) =0, yeQ\ S,
v () =¢"(y), yeiB, (4.18)
¥l () =0, y€B;, i # .

We now proceed as in the analysis of principal eigenvalues, i.e. we write as necessary
condition forx to be an eigenvalue that for al= 1, .. . | k,

0= [ eTFOIR0) @i )+ 8 0)) dos, ()
A
= /a o ¢ i) () doas, () — 2 / dy e " hi () f4()
k

= ch[ / e POV 0,0 hi (A + ¥ (1)) dos, (¥)
jel dB;
A
- = / dy e "OVeni () () (3) + w}(y»}

€

A
w0 [ e o dns o -2 [ e O mowio)|
jelJ< /
] (4.19)
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Note that by the bounds (i) and (ii), we see that fot J,

[ O 510 () doss,
9B

S Ce(l/z

/ e”y)/fan(y)h,»(y)daask(y)', (4.20)
dB;

and forj € J¢,

/a e~ F)/e Iy hi (y)wjA (y)doys, () ‘
B;

< Ce—d/4e—y/2€eF(x_,-)/2€

/ e—””/fan(y)hxy)doask@)’. (4.21)
dB;
At this point it is convenient to realize that Green'’s first identity and the fact thai;the
are harmonic imply that, far £ j,

fa e—F@)/fanmhi(y)dag,<y>‘=' /a e‘””“h;(y)an@)hi(y)dasf@)‘
B; Bj

=€_l

/ dye_F(y)/e(th()’),Vhi(y))’
extSy

< efl\/capB[ (S \ Bi) capg, (S \ By), (4.22)
where the last inequality uses the Cauchy—Schwarz inequality. Thuggof \ {i},

fd e PG, yhi Y} doys, ()
25,

< Ce"‘/ze‘l\/capgi (S \ Bi)cap, (Sc\ B),  (4.23)

and forj € J°\ {i},

/{;B eilr(y)/ean(y)hi(y)w}L dGBSk (y)'
J

< Ce™UAgmv/2 o Fxj)/2¢ ~1 \/capB[_ (S \ Bi)capy, (Sk\ B)).  (4.24)

For the diagonal termis= j € J, this simplifies to

/a e FOG, 0 hi(V} dogs, (y)| < Ce*/?capy (Sk\ B)).  (4.25)
Bj

For the remaining terms involving* in (4.19), we conclude, in complete analogy to
the derivation of the bounds (3]20) afd (3.21), thatjfer J,

/ dy e POy () () = by (39) + ()

= 0?1+ 0(e7V9)) / dy e FO e (»hi(y),  (4.26)
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and forj € J¢,

/ dy e TV (Y] () = O(e7 W er/2eF0NI2) / dy =" hi(y)hj ().

(4.27)
To control all off-diagonal terms, we still need to show that the normalized functions
h; andh; are almost orthogonal.

Lemma4.5. (i) Thereis a constanf < oo such that, fori # j,
/dy e POV (y)hi (y) < Ce=@HD/2 min(e=FeiS\B)/e =F(5.S\Bp/e) (4 28)

(i) Foralli,
/dy e_F(y)/ehj (y)? = Ce¥/?e=FL/e, (4.29)

Proof. We first prove (i). Fot # j,

/ dy e R(y)hi(y) = / A A dy e h;(y)hi (y)
y: F(y)<max(F(x;,Sk\B;),F(x;,Sk\B)))

+ / _ _ dye "0 hi(yhi(y) (430
¥ F(y)>max(F (x;,S\B;). F (xj,Sk\Bj))

In the second integral we just use the elemeriy) < 1; by our general assumptions
on F, this gives a bound’¢™ M (xi.Sc\Bi). F(x;.Sk\Bj))/€ |n the first integral we use the
bounds on the equilibrium potential from Corollary 4.8[of [BEGKS3]. Note that for gny
at most one of the factors; (y) or ;(y) can be close to one. Thus even the roughest
estimate yield3

f ~ ~ dy e FOVep; (y)hi(y)
v F(y)<max(F(x;,Si\Bi), F (xj .Sk \B)))

< dy e~ F)/e

/y L F(y)<max(F (x;,Si\Bi), F (x;, S\ B)))

% Ce—Y2,—max(F(xi, S\B), F(xj,Sc\B))

< Ce™Y2|{y : F(y) < max(F(x;, Sk \ Bi), F(xj, Sk \ B))}|
¢~ Max(F(xi.Si\By).F (x;.Sc\B)))/e (4.31)

Combining this upper bound with the lower bound we arrive at assertion (i).
To prove (ii), note that

/ dy e*F(y)/Ehj (y)2 > / dy e F/e (1-— Ce*1/26*[F(Z*(xj:Sk\Bj))]/e)Z
B je(xj)

= Ce¥2eF/e, (4.32)
This concludes the proof of the lemma. O

2 seethe proof 05) for more details.
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Let us define the capacity maﬁ]ﬁf with elements

k _F(y
Cj=C =e / e TV (1) hi (v) dog,; (v)

3B;
and its normalized version

(k)
K:ij = IC(k) = Cij

=t 4.33
Yoo hill2llRg iz (4.33)

Note that this matrix is symmetric and satisfies, by (4.22),

Kij < VKiK;j;. (4.34)
If we introduce the matrices
€ fyg, €O Ouhi Y] () dogs, ()

Ajj = (4.35)
N Ihill2llhj 12
1 &--)f dy e "I () G) +YFOD _

B = / 1hill2llhj 2 ’ (4.36)
= , .

J 0o )fdy e—F(})/ehi(y)l//j?‘(y) e e

Y c e
g EIE /

and
Hfdy €_F(y)/5hj(y)(h}(y) —hj(y) + 1//})

l1n;15
then the conditiong (4.19) farcan be written as

0= Zé] (/C,'j —A8ij + Ajj — M(Dij + B,’j)) + Z Rl (Aij + ABij), (4.38)
jelJ jeJe

(4.37)

whereé; = ||hjll2¢;.
We can now collect the estimates on these matrix elements:

Lemma 4.6. The following bounds hold:

() Fori#jel,
|Bij| < Ce™*/KiiKj;, (4.39)
|Djj| < Ce*/?, (4.40)

and for alli, j,
|Aij] < IKij|Ce2, (4.41)

3 The matrixC is a classical object in electrostatics, the diagonal elements being called capacities,
and the off-diagonal ones coefficients of induction [Jack]. The off-diagonal coefficients represent
the charge induced in theth ball when thej-th has potential one and all others are at potential
zero.
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(i) Fori £ jeJe,
Ihjll2lAijl < Ce 34451, (4.42)
;121 Bij| < Ce e "¢\ /KiiK;j. (4.43)
We collect the results obtained so far as

Theorem 4.7. Let S, = Uf-‘zl B (x;) and leti; denote the principal eigenvalue of the
operator L, with Dirichlet conditions oS, (and3<2). Then a numbek < i; may be
an eigenvalue of the operatdr, if there exists a nonempty sétc {1, ..., k}, constants
¢, &, j € J,suchthay”; ;¢ = 1, and numbers;;, B;;, D;; satisfying the constraints
given in Lemm@.§ such that for all € J, Eq.(4.38)holds.

One would expect that Eq. (4]38) has a solution only whésclose to an eigenvalue of

the matrix/C, and that indeed all eigenvalues of that matrix are close to the eigenvalues of
L. We will not prove this directly. In fact, we will restrict our attention in this article to
the non-degenerate situation when all “depths” of the valleyse distinct, i.e. when for

alli < k the inequalities(4.12) are strict.

Lemma 4.8. LetK;; be the normalized capacity matrix and assume that
maxk;; < e %€ KCx. (4.44)
i<k

Thenk € J, and the largest eigenvalugy, of K satisfies
1k = K (L+ 0(e™°/%)), (4.45)

while all other eigenvalues are smaller thate—%/¢);. Moreover, the eigenvectar, =
(v1, ..., vr), corresponding to the largest eigenvalues normalized southat 1 satisfies
lvi| < Ce™¥/<fori < k.

Proof. This is a simple perturbation argument. Note that we can write
K=K+K, (4.46)

wherel@i,- = Kii8;18ix. Now we estimate the norm @f as in the proof of Lemn@.&
Recall that

|’Cji| < ICi,"ij. (4.47)
Hence by assumptiof (4}44),

IKI < Kkk\/e_a/ek + e=8/Pk2, (4.48)

Since obviouslyK has one eigenvaluky, with the obvious eigenvector and all other
eigenvalues are zero, the announced result follows from standard perturbation theory.

Sincey, = capg, (Sk—1)/ A5 = *i—1, this is precisely the value we expect.
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Corollary 4.9. Under the hypothesi§t.44) suppose that there exists an eigenvalye
of L¢ in the interval(Ag, Ar—1].

(i) We have
A = capg, (Sk—1)/Ilhel|5(1+ O(e*/?, e7%€)). (4.49)

(i) The eigenvalugy is simple and the corresponding eigenfunctiﬁ{ncan be written
as

hi(y)
A2

k-1 h.
) = 1O (4 1 o2y 13 a2 (4.50)
J

= 12

where|d; (y)| < e~%/¢ for somes > 0 (uniformly on compact subsets&f is un-
bounded).

Proof. First, if k ¢ J, and if A is as assumed, then in each of {bié¢ equations there
is one term(KC;; + A;; — A)¢ ~ Kied; while all other terms are at most of order
exp(—3/2¢)| i cj. Thus no normalized solutiahcan be found. Assume thus tiiae J.
Considering all equations with # k, the same argument as before shows that <
Ce~%2¢_ Looking instead at the equation numliesince nowé, ~ 1, it implies that

|(Kik + Ark — M) < ClKrele™%/€e?/?, (4.51)

which yields (i).
As we have just seen that a solution[of (4.38) with= 1 must satisfy¢;| < e~/
forall j # k, by (4.16), this implies that

) + & 0) 3 S O+ 6D

(4.52)
Ak ll2 T P

o) =

Using the same arguments as in the proof of Propoditign 3.3, and the bourds-ory
on the boundariesB;, we see that foy € J,

9700 — DL oy ) capg, (B))llhull2 hy(y)
172112 B Ihjllz -~ {7 172112 lhill2
hj h
< Ce?/2 J()’) +Ze_6/€ l(y). (4.53)
Ihjllz (= lAzll2

Combining these estimates we arrive[at (#.50). Note that this final estimate does not actu-
ally depend on the choice df. Since two functions satisfyin§ (4.50) cannot be orthogo-
nal, it follows thati; is a simple eigenvalue. O

Now we can further explore the eigenvalues belqw;, etc., with the same results.
Thus at the end of the procedure we arrive at the conclusion/thagn have at most
then simple eigenvalues given by the values of the preceding corollary below the values
Ce?~1. But since we know that there must besuch eigenvalues, we conclude that all
these candidates are in fact eigenvalues. This yields the following proposition:



Metastability in reversible diffusion processes 93

Proposition 4.10. Assume that all inequalitigg.12)are strictforalli = 1, ..., n. Then
the spectrum of.. belowe?~! consists of: simple eigenvalues that satisfy

Sk—
= O (1 | g (ear2 4 o3l

7113
VAet(V2ZF (x1))
= capy, (S0 YLD re0le 1 1 0P nel, 2, )
2me
1
——— 1A+ 0+ 7)), k=1,...,n. (4.54)

B Ey, 75,4
The corresponding eigenfunctions sati@h50)

Proof. We have seen in fact that = IC,((’;()(l + 0(e~?/¢, €%/2)), which provides the first

assertion of Propositign 4.J10. It remains to identify the eigenvalues with the inverse mean
times. This follows from Proposition 6.1 in [BEGK3], provided we can show that

/ dy e "hy(y)? ~ / dy e " <hy(y). (4.55)
In fact, we will show more, namely that both sides[of (4.55) are asymptotically equal to
> d
e Fw/e V€ (4.56)

Vet V2F (xp))

We must show that the main contribution of the integrals comes from a small neighbor-
hood of x¢, which yields the contributiori (4.56). It is clear that all contributions from
the set{y : F(y) > F(xx) + €|lne|} give only sub-leading corrections. To treat the
complement of this set, we use the bounds on the equilibrium potential of Eq. (4.27) in
[BEGK3]. Up to polynomial factors i, this implies that the integrand on the right-hand
side of [4.5b) (and a fortiori on the left-hand side) in the connected components of this
level set that do not contair), is smaller than

e LFOMFFE* (3, BO))—F (@ (y.Sk-1)]/e (4.57)

If y is in the component of the level set that contains the minimyrand;j < k, we see

that this is equal to
e*F(Z*(ijBk))/S’ (458)

which is exponentially smaller than e&pF (x;)/¢), independent of. If j > k, we still
get the same result if (y) > F(z*(x;, Sx—1)). Otherwise, we can writ7) as

e LEM—F&pl/e p=F ) +(F (2" (xj, Bi) = F () = (F (2 (¥}, Sp-1)) = F (x))] /€ (4.59)
We will argue that
F(Z*(xj, Br)) — F(xx) > F(Z*(xj, Sk-1)) — F(x)). (4.60)
Assume the contrary. Note that trivially
F(Z*(xj, Sk—1) = F(2*(x}, Sj-1)), (4.61)
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while
F(z*(xj, By)) = F(z"(xk, Bj)) < F(z*(xx, Sj \ By)). (4.62)
Therefore, our assumption implies that
F(z*(xj, Sj—1) — F(xj) < F(Z*(xx, S; \ Br)) — F(x), (4.63)

which a moment’s reflection shows to be in contradiction with the conditjons](4.12) at
stagej. In other words, if our assumption were true, then the Betvould yield the
largest eigenvalue at stagei.e. it would have had to be labelgg}. Thus [4.6D) must
hold.

Since by assumption the inequalities are strict (which is more than we need), it follows
that indeed

d
. 2
/ dy e "0 ey (y)y = e Pl YT (14 0(2lIne))) (4.64)
det(V2F (x¢))
and of course the same bound holds wheiis replaced byz,f. This concludes the proof
of the theorem. O

Improved error estimates. To conclude the proofs of Theorefs]1.2 1.3 we only need
to improve the error estimates. In the proofs of this section we have produced error terms
from two sources: the exponentially small errors resulting from the perturbation around
A = 0 and the non-perfect orthogonality of the functidgnsand the much larger errors

of ordere®/? that resulted from the a priori control on the regularity of the eigenfunctions
obtained from the Blder estimate of Lemnja 4.3. In the light of the estimates obtained on
the eigenfunctions these can now be improved successively (as in the proof of Theorem
3.1 of [BEGKZ3]). Notice first that the eigenfunction corresponding to the minimum

is small enough at all the minima, [ < k, so that we can actually take = {k} and

Je={L ...,k =1} in @.17), [4.19). Then we know from Corolldry #.9 that

0SGen, Pk (¥) < Ce?  sup (), (4.65)
YEBy, se(x1)
which improves the a priori estimafe (B.5). Then thi#dér estimate stated in Lemma 4.1
of [BEGK3] gives the improvement

0SGeB, (i) Pk () < Ce¥/2(Ce®/? 4 )4 @TD/2)  sup g (y)
YEBy se(xk)
<Ce" sup  ¢i(y) (4.66)
YEBy /e (xi)

over the estimat@.S). This allows us to replace all errors of artiérby errors of
ordere®. This procedure can be iteratedtimes to get errors of ordef*/2 until these
are as small as the exponentially small errors.

Finally, we would like to improve the precision with which we relate the eigenvalues
to the inverse mean exit times. This precision is so far limited by the precision with which

__ capg, (Sk-1)

Eyts,., ~ il (4.67)
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holds. From Proposition 6.1 df [BEGK3] we know that this precision is limited only by
the variation ofE, s, , on By. To improve this, we need to control

caps, (Sk-1)  Cap, (x)(Sk-1)

. (4.68)
lhkll2 7B (x), 8112
Now it is very easy to see thatif € B . (xx), then
118, 5e1 () = kO] < €= (). (4.69)

Namely,
1B, (x).501 (V) — W] < Py[{rp, < t5,_ ) N{Ts,_; < TB.0)}]
+]Py[{TBg(x) < tSkfl} N {‘[,5,(71 < TBkTBG(x)}]- (4.70)
But by the Markov property

P)’[{TBk < 7:51(_1} N {TSk_l < TBg(x)}]
<Py[tp, < 15,,] rzTé%kX]P’[rSkfl < 1B (n)] < e_‘s/e]P’y[er <15, (A7)

The second summand in (4]70) is bounded in the same way.
This implies of course that

175, o).5c_1ll2 — Iill2 < e/ €|| g 2. (4.72)

We only need a similar estimate for capacities. While this may appear more difficult at
first sight, we can take advantage of the fact that as long@s (x) U Sg_1)¢) > A, We
can replaceBy in the proof of Propositiop 4.10 without further changeshyx). Thus

ca Si— capg, (Si—
— M(l_'_ 0(6—5/6)) — Lﬁl)(l_{_ 0(6_8/6)), (4.73)
128, (x),Si_1 15 2xll5
which implies together wittj (4.72) that
—8/e

Icapg, (v (Sk—1) — capg, (Sk-1)| < e capg, (Sk—1)- (4.74)

Based on[(4.794) anfl (4]71), one can improve Proposition 6/1 of [BEGK3] iteratively as

above to get

capg, Sk-1
Akll2

which together with the capacity estimate given in Theorem 1.1 of [BEGK3] implies the

first equality of Theore2. Thus all error terms of orefe? can be removed in (4.54)

and [4.5D), completing the proofs of Theorgmg 1.2 and Thepregm 1.3. O

Ey s, = (14 0(™")), (4.75)

Exponential distribution of exit times. We conclude this section with a result that will
imply Theorem|[ 14 on the exponential distribution of exit times. Lé& denote the
Dirichlet operator with Dirichlet conditions i. To avoid confusion, we assume that
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D = ;1. Note that Proposition 4.10 (and its improvement) also applies to the operator
LP, and if we denote by} thei-th eigenvalue oL, we see that within our usual errors,

M~ Mgy (4.76)
fori =1,...,n —k, and the corresponding eigenfunctmpsatisfies
i _ Riei () —8/€ < ) ) )
PLy) = (L 0T + > di (i) 1hll2 (4.77)
+i j=k

with |dj (y)| < e~%/¢. Letus denote henceforth B the corresponding normalized eigen-

functions (e.gJi¢ill2 = 1). Note thatp] = ¢i (1 + O(e~%¢)), so in fact they can be

represented in the same way [as (§.77) with redefihesditisfying the same bounds.
Denote byP;_; the projector on the subspace generategpy, and byP, the pro-

jector to the subspace orthogonal to s@ggh,, . . ., o7 —+). Note that
Pultp > T = (. e T 1pe)

n—k
_ D _ D
= @y TP iTpe) + By e TEPLI D)
i=1

n _

-k _ ) _. 3
D¢ i G ) /D dy ™ VG () + 0. (478)
=l ¢

Given the precise control on the eigenfunctions, it is not difficult to infer that

Pyltp > T = (8. e T 1pe)
n—k . _
=Y TG0 [ aye OG0+ 0. (479
i=1 D¢
Now using [(4.5p),[(4.56), we get

P (x0) fD dye TG ()

dye FOVep_1.:(y)

2
hr—1+ill5

= Mg () =2

cdy e FOVen(y)
+ > djdj’hj(xk)fD Tl /
(G, j) £ Gk—1+i k—1+i) 2012

= hi—14i () (L + O(e %))

+ ) djdjohj (), jre 1 OPFODIZ  4.80)
(J,j")#k—14i,k—1+i)
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Now if j = k, the term in the last sum is

didjrcy e FOD=FE2e o =3/ (4.81)

sinceF (xj:) > F(xi) for j” > k; in all other cases,

hj(x) ~ o LF @ (. Miyi\xj)—F (xi))l/e _ ,—[F (x))—F ()l /e (4.82)
so that
hj(Xk)ef[F(x_;)fF(xj)]/k < e—[F(xj-)—F(xk)]/Zee*[F(xJ/-)*F(Xk)]/ZG < e (4.83)
This shows that

- nk .
Py [tp > T] = e—kkflT(1+0(e—8/€))+Ze**k—l0(e‘5/6)+0(1)e*“k—f. (4.84)
i=2

This proves Theorein 1.4. o
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