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Abstract. We continue the analysis of the problem of metastability for reversible diffusion pro-
cesses, initiated in [BEGK3], with a precise analysis of the low-lying spectrum of the generator.
Recall that we are considering processes with generators of the form−ε1+∇F(·)∇ onRd or sub-
sets ofRd , whereF is a smooth function with finitely many local minima. Here we consider only
the generic situation where the depths of all local minima are different. We show that in general
the exponentially small part of the spectrum is given, up to multiplicative errors tending to one, by
the eigenvalues of the classical capacity matrix of the array of capacitors made of balls of radiusε
centered at the positions of the local minima ofF . We also get very precise uniform control on the
corresponding eigenfunctions. Moreover, these eigenvalues can be identified with the same preci-
sion with the inverse mean metastable exit times from each minimum. In [BEGK3] it was proven
that these mean times are given, again up to multiplicative errors that tend to one, by the classical
Eyring–Kramers formula.
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1. Introduction

In this paper we continue the investigation of reversible diffusion processes initiated in
[BEGK3]. Recall that we are interested in processesXε(t) that are given as solutions of
an Itô stochastic differential equation

dXε(t) = −∇F(Xε(t))dt +
√

2εdW(t) (1.1)
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on a regular domain� ⊆ Rd , where the drift∇F is generated by a potential function
that is sufficiently regular, and that bothF(x) and‖∇F(x)‖ tend to∞ at infinity. We
are interested in the case when the functionF(x) has several local minima. We always
assume thatXε is killed on�c if it exists.

For a general introduction to the topic and its history we refer to the introduction
of [BEGK3]. In that paper we have studied the so-called metastable exit times from at-
tractors of local minima ofF and we have given a precise asymptotic estimate for the
mean value of these times. These estimates were in turn based on precise estimates of
certainNewtonian capacitiesof sets containing small balls centered at the locations of
the minima ofF .

In the present paper we turn to the investigation of the low-lying spectrum of the
generators of the process defined by (1.1), i.e.

Lε ≡ −ε1+ ∇F(x) · ∇ (1.2)

with Dirichlet boundary conditions on�c (if � 6= Rd ). Under our assumptions onF ,
given below, the spectrum of this operator will be discrete. Moreover, it is well known
that the spectrum of such operators has precisely one exponentially small eigenvalue for
each local minimum of the functionF , and more or less rough estimates of their precise
values are known [FW, Ma, Mi]. Wentzell [W2] and Freidlin and Wentzell [FW] obtain
an estimate for the exponential rate, i.e. they identify limε↓0 ε

−1 ln λi(ε) using large devi-
ation methods. Sharper estimates, with multiplicative errors of orderε±kd , were obtained
for principal eigenvalues by Holley, Kusuoka, and Strook [HKS] using a variational prin-
ciple; these methods were extended to the full set of exponentially small eigenvalues by
Miclo [Mi] (see also [Ma]).

Our purpose here is to getsharpestimates, i.e. we seek upper and lower bounds with
multiplicative errors that tend to one asε tends to zero. Such estimates are known in the
one-dimensional case (see e.g. [BuMa1, BuMa2] and references therein), whereas in the
multi-dimensional case only heuristic results based on formal power series expansions of
WKB type exist (see e.g. [Kolo] for an analysis of the situation). This is due to the fact
that the stochastic tunneling problem leads to a particularly degenerate form of the general
tunnelling problem in the context of Schrödinger operators in which classical results [Si1,
Si2, HS1–HS4] are not immediately applicable. While the methods introduced in the
third paper on quantum mechanical tunneling by Helffer and Sjöstrand [HS3] should in
principle allow one to justify such expansions, their implementation seems rather tedious
and has not been carried out to our knowledge.1

Here we will resort to a different approach that combines ideas already suggested in
[W1] with potential-theoretic ideas. In fact, this approach was developed in [BEGK2] in
the setting of discrete Markov chains, where indeed many technical problems we will be
facing here disappear, and that may serve as a nice introduction.

1 After submission of this paper, B. Helffer realised that under stronger regularity assumptions
(C∞) complete asymptotic expansions of the low-lying eigenvalues should be obtainable using
methods developed in [HS4] in the context of the Witten complex. This was then carried out in
[HN] in the case of a two-well potential, and the treatment of the general case is in progress [HKN].
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We will work under the same assumptions onF as in [BEGK3] throughout this paper,
namely:

Assumptions (H.1)

(i) F ∈ C3(�),� ⊆ Rd open and connected.
(ii) If � is unbounded, then

(ii.1) lim inf x→∞ |∇F(x)| = ∞, and
(ii.2) lim inf x→∞ (|∇F(x)| − 21F(x)) = ∞.

For any two setsA,B ⊂ �, define theheight of the saddle betweenA andB by

F̂ (A,B) ≡ inf
ω :ω(0)∈A,ω(1)∈B

sup
t∈[0,1]

F(ω(t)), (1.3)

where the infimum is over all continuous pathsω in �.

Remark. Condition (H.1) ensures that the resolvent of the generatorLε is compact for
ε sufficiently small. Moreover, it implies thatF has exponentially tight level sets in the
sense that for alla ∈ R, ∫

y :F(y)≥a
e−F(y)/εdy ≤ Ce−a/ε, (1.4)

whereC = C(a) < ∞ is uniform inε ≤ 1.

In the following, the notion of saddle points ofF will be crucial. The set of saddle
points is intuitively the subset of the setG(A,B) = {z : F(z) = F̂ (A,B)} that cannot be
avoided by any pathsω that try to stay as low as possible. In general we have to define
this set as follows:

Definition 1.1. LetP(A,B) denote the set ofminimal paths fromA toB,

P(A,B) ≡ {ω ∈ C([0,1], �) : ω(0) ∈ A, ω(1) ∈ B, sup
t∈[0,1]

F(ω(t)) = F̂ (A,B)}

(1.5)
A gateG(A,B) is a minimal subset ofG(A,B) with the property that all minimal paths
intersectG(A,B). Note thatG(A,B) is in general not unique. Then the setS(A,B) of
saddle pointsis the union over all gatesG(A,B).

To avoid complications that are not our main concern here, we will make the general
assumption that all saddle points we will deal with are non-degenerate in the following
sense:

Assumption (ND)

(o) The set,M, of local minima ofF is finite and for any two local minimax, y ∈ M, the
setG(x, y) is uniquely defined and consists of a finite set of isolated pointsz∗i (x, y).

(i) The Hessian matrix ofF at all local minimaxi ∈ M and all saddle pointsz∗i is
non-degenerate (i.e. has only non zero-eigenvalues).
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When dealing with domains�with non-empty boundary we will encounter situations
where saddle points in∂� are relevant. While this does not lead to serious problems per
se, there appears rather naturally a great variety of cases that makes the formulation of
general results rather cumbersome. We prefer to avoid having to discuss these issues by
dealing exclusively with situations in which the boundary is never reached by the process,
i.e. we make the further

Assumption (IB). For any sequence of pointsxi ∈ � such that limi↑∞ xi ∈ ∂�,
limi↑∞ F(xi) = ∞.

Our main interest is in the distribution of stopping times

τA ≡ inf {t > 0 :X(t) ∈ A} (1.6)

for the process starting at one minimum, sayx ∈ M, of F , whenA = Bρ(y) is a small
ball of radiusρ around another minimum,y ∈ M. It will actually become apparent that
the precise choice of the hitting set is often not important, and that the problem is virtually
equivalent to considering the escape from a suitably chosen neighborhood ofx, provided
this neighborhood contains the relevantsaddle pointsconnectingx andy.

Let us now state the main results of this paper.
Given two disjoint closed setsA,D, we will denote byhA,D(x) the equilibrium po-

tential, byeA,D(dy) the equilibrium measure, and by capA(D) the Newtonian capacity
corresponding to the Dirichlet problem with boundary conditions 1 onA and 0 onD. The
precise definitions of these classical quantities (see e.g. [BluGet, Doo, Szni]) are recalled
in Section 2 of [BEGK3].

Theorem 1.2. Assume thatF hasn local minima,x1, . . . , xn, and that for someθ > 0
the minimaxi of F can be labeled in such a way that, withMk ≡ {x1, . . . , xk} and
M0 ≡ �c,

F(z∗(xk,Mk−1))− F(xk) ≤ min
i<k
(F (z∗(xi,Mk \ xi))− F(xi))− θ (1.7)

for all k = 1, . . . , n. SetBi ≡ Bε(xi), Sk ≡
⋃k
i=1Bi , andhk(y) ≡ hBk,Sk−1(y). Assume

moreover that all saddle pointsz∗(xk,Mk−1) are unique, and that the Hessian ofF is
non-degenerate at all these saddle points and at all local minima. Then there existsδ > 0
such that then exponentially small eigenvaluesλ1 < · · · < λn ofLε satisfy:

λ1 = 0 (1.8)

and fork = 2, . . . , n,

λk =
capBk (Sk−1)

‖hk‖
2
2

(1 +O(e−δ/ε)) =
1

ExkτSk−1

(1 +O(e−δ/ε))

=
|λ∗

1(z
∗(xk,Mk−1))|

2π

√
det(∇2F(xk))

|det(∇2F(z∗(xk,Mk−1)))|
e−[F(z∗(xk,Mk−1))−F(xk)]/ε

× (1 +O(ε1/2
|ln ε|)), (1.9)

whereλ∗

1(z
∗) denotes the unique negative eigenvalue of the Hessian ofF at the saddle

point z∗.
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Remark. The theorem can be seen as containing three results: First, an asymptotically
sharp identification of the exponentially small eigenvalues with the inverse mean exit
times from local minima; this is a general feature of metastable systems (see e.g. [D1,
D2, D3, GS, GM] for earlier results). Second, it relates these eigenvalues precisely to
Newtonian capacities; this is the key difference from our results to e.g. the approach
of Kolokoltsov and Makarov [KoMak, Kolo], since it allows thirdly to get an explicit
expression for the eigenvalues in terms of the potentialF .

Remark. Conditions (1.7) state that“all valleys ofF have different depths”, which is in
some sense the generic situation. In this case a number of simplifications take place, in
particular we do not have to deal with degenerate eigenvalues. These conditions are com-
pletely analogous to the conditions imposed in [BEGK2]. Our general approach does,
however, in principle also allow us to treat degenerate situations. We postpone the treat-
ment of such cases to future work.

In the course of the proof of Theorem 1.2 we will also gain rather detailed control on
the eigenfunctions ofLε corresponding to its small eigenvalues.

Theorem 1.3. Under the assumptions of Theorem1.2, if φk denotes the normalized
eigenfunction corresponding to the eigenvalueλk, then there existsδ > 0 such that

φk(y) =
hBε(xk),Sk−1(y)

‖hBε(xk),Sk−1‖2
(1 +O(e−δ/ε))+O(e−δ/ε), (1.10)

wherehBε(xk),Sk−1(y) = Py [τBε(xk) < τSk−1].

Remark. We give even more precise expressions for the eigenfunctions in the course of
the proofs later on. Note that there is considerable interest in the knowledge of eigen-
functions in the context of numerical schemes designed to recover metastable sets from
the computation of eigenfunctions. See in particular references [S, SFHD, HMS]. Let us
emphasise that, using the bounds on equilibrium potentials obtained in Corollary 4.8 of
[BEGK3], Theorem 1.3 implies that the eigenfunction corresponding to a minimumxi is
exponentially close to a constant (∼ eF(xi )/2ε) in the connected component of the level set
{y : F(y) < F(z∗(xi,Mi−1))} that containsxi (i.e. in the valley below the saddle point
that connectsxi to the set that lies belowxi), while it drops exponentially in the other con-
nected components of the level set of this saddle; below the level ofxi it is exponentially
small in absolute terms. Note that this implies that the zeros ofφ are generally not in the
neighborhood of the saddle points, but much closer to the minima inMi−1. This fact was
also observed in [HMS]. We would like to stress that the fact that the eigenfunctions drop
sharply at the saddle points makes them very good indicators of the actual valley structure
of the potentialF , i.e. they become excellent approximations to the indicator functions of
the metastable sets corresponding to the metastable exit time 1/λi .

Finally, it is almost a corollary from the results obtained above that metastable exit
times are asymptotically exponentially distributed, when appropriate non-degeneracy
conditions are met.
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Theorem 1.4. Assume that the Hessian ofF is non-degenerate at all local minima and
saddle points. Letxi be a minimum ofF and letD be any closed subset ofRd such that:

(i) if Mi ≡ {y1, . . . , yk} ⊂ M enumerates all those minima ofF such thatF(yj ) ≤

F(xi), then
⋃k
j=1Bε(yj ) ⊂ D, and

(ii) dist (z∗(xi,Mi),D) ≥ δ > 0 for someδ independent ofε.

Assume further that the conditions of Theorem1.2 are satisfied. Then there existsδ > 0
independent ofε and oft such that for allt > 0,

Pxi [τD > tExkτD] = (1 +O(e−δ/ε))e−t (1+O(e−δ/ε))

+

∑
j>i

O(e−δ/ε)e−tλjExi τD +O(1)e−tO(ε
d−1)Exi τD . (1.11)

The results of this paper together with those of [BEGK3] show that the methods to anal-
yse metastable behaviour in discrete Markov chains introduced in [BEGK1, BEGK2]
can be naturally extended to continuous diffusion processes. In particular we see that the
metastable behaviour of continuous and discrete diffusions is virtually identical, and that
all results for the discrete chains treated in [BEGK1] carry over to the corresponding dif-
fusion approximations. In fact, our results in the diffusion case are sharper, since we were
able to identify the constants in the prefactors of exponentially small or large terms (we
expect, however, that with some extra work this improvement can also be carried over to
the discrete chains, at least under certain conditions). There are a number of generaliza-
tions of these results that can be investigated: First, one can naturally consider diffusion
processes on more general Riemannian manifolds. Second, one can consider extensions
to locally infinitely divisible processes with mixed diffusion and jump components. Such
extensions will require some extra work, but in principle our approach appears applica-
ble, and qualitatively similar results should be obtainable. Another potentially interesting
generalization concerns non-reversible diffusion processes. Here the main difficulty is the
determination of the invariant measure, which our methods do not address at all. How-
ever, it is to be expected that at least in uniquely ergodic situations, some of our results
can still be carried over. We hope to address these issues in future publications.

The remainder of this paper is organized as follows: In Section 2 we prove an a priori
estimate on the spectrum of the generator when Dirichlet conditions are applied to small
neighborhoods of all the local minima ofF . In Section 3 we then show that the eigenval-
ues of the full generator are asymptotically close to those of the capacity matrix, which in
turn are then evaluated in the generic situation. In the course of the proof we also identify
the eigenvalues of the generator with the principle eigenvalues of appropriate Dirichlet
operators. Finally, we derive from these results the exponential distribution of the mean
exit times.

2. A priori spectral estimates

Most of the preparatory background and necessary technical a priori estimates were intro-
duced in [BEGK3] and will be imported from there. In this section we give an additional
a priori estimate on the spectrum of certain Dirichlet operators associated toLε . More
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precisely, we derive a priori lower bounds on principal eigenvalues and for the Dirichlet
problem in (regular) open setsD ⊂ � ⊆ Rd with closureD̄. We denote by∂D the
boundary ofD̄. We denote bȳλ(D) ≡ λ̄1(D) the principal eigenvalue of the Dirichlet
problem

(Lε − λ)f (x) = 0, x ∈ D,

f (x) = 0, x ∈ Dc,
(2.1)

whereDc ≡ Rd\D, and sometimes use the notationLD
c

ε to indicate the Dirichlet operator
corresponding to the problem (2.1).

The following lemma is a classical result of Donsker and Varadhan [DV]:

Lemma 2.1. The principal eigenvaluēλ(D) satisfies

λ̄(D) ≥
1

supx∈D ExτDc
. (2.2)

In the case when we consider diffusions on a compact set, Lemma 2.1 will yield a suffi-
ciently good estimate. IfD is unbounded, the supremum on the right may be infinite and
the estimate becomes useless. However, it is easy to modify the proof of Lemma 2.1 to
yield an improvement.

Lemma 2.2. LetφD denote the normalized eigenfunction corresponding to the principal
eigenvalue ofLDε . LetA ⊂ D be any compact set. Then

λ̄(D) ≥
1

supx∈A ExτDc

(
1 −

∫
D\A

dy e−F(y)/ε |φD(y)|
2
)
. (2.3)

Moreover, for anyδ > 0, there exists a bounded setA ⊂ D (independent ofε) such that

λ̄(D) ≥
1

supx∈A ExτDc (1 + δ)
. (2.4)

Proof. Letw(x) denote the solution of the Dirichlet problem

Lεw(x) = 1, x ∈ D,

w(x) = 0, x ∈ Dc.
(2.5)

Note thatw(x) = ExτDc (see e.g. Eq. (2.22) of [BEGK3]). Now,∫
D

dx e−F(x)/εφ(x)(Lεφ)(x) =

∫
D

dx e−F(x)/ε∇φ(x) · ∇φ(x)

= lim
h↓0

h−2
∫
D

dx e−F(x)/ε
d∑
i=1

(φ(x + hei)− φ(x))2 .

(2.6)
Sinceab ≤

1
2(Ca

2
+ b2/C) for anyC > 0, takinga = φ(x + hei), b = φ(x) and

C = w(x)/w(x + hei), one sees that

(φ(x + hei)− φ(x))2 ≥

(
φ(x + hei)

2

w(x + hei)
−
φ(x)2

w(x)

)
(w(x + hei)− w(x)). (2.7)
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Inserting this inequality into (2.6) yields∫
D

dx e−F(x)/εφ(x)(Lεφ)(x) ≥

∫
D

dx e−F(x)/ε
φ(x)2

w(x)
(Lεw)(x)

=

∫
D

dx e−F(x)/ε
φ(x)

w(x)
φ(x)

≥
1

supx∈Aw(x)

∫
A

dx e−F(x)/εφ(x)2. (2.8)

Choosingφ as the normalized eigenfunction with maximal eigenvalue yields (2.3).
We may assume without loss of generality thatF(x) ≥ 0 everywhere. We now claim

that for anyγ > 0, ∫
dy e−γ F̃ (y)/ε |φD(y)|

2 < Cγ < ∞, (2.9)

whereF̃ (y) ≡ minx∈M (F (y)− F(x)). This clearly implies (2.4).
To see this it is convenient to introducev(y) ≡ e−F(y)/2εφD(y), which is the corre-

sponding ground-state eigenfunction of the operator

Hε ≡ e−F(·)/2εLεe
F(·)/2ε

= −ε1+
1

4ε
|∇F(x)|2 −

1

2
1F(x), (2.10)

which is a symmetric operator onL2(D, dy). The estimate (2.9) follows from a semi-
classical Agmon estimate for the ground-state eigenfunction,v, that can be found in
[HS1]. In our case this yields∫

dy e(1−γ )F̃ (y)/ε
|v(y)|2 < Cγ < ∞, (2.11)

which in turn implies (2.9). This completes the proof of the lemma. ut

We will first establish that̄λ(D) is at most polynomially small inε if D does not contain
local minima, more precisely, define

Mε ≡ {z ∈ � : dist(z,M) ≤ ε}. (2.12)

Remark. The choice of balls of radiusε is somewhat arbitrary, but works.

Lemma 2.3. Assume thatD ∩Mε = ∅. Then there is a finite positive constantC such
that

sup
x∈D

ExτDc ≤ C sup
x∈D

|{y : F(y) ≤ F(x)}|ε−d+1. (2.13)

Proof. The starting point of the proof is the relation (which is an immediate consequence
of [BEGK3, Eq. (2.27)])∫

D

dy e−F(y)/εhBρ (x),Dc (y) ≥ inf
z∈∂Bρ (x)

EzτDc capBρ (x)(D
c) (2.14)



Metastability in reversible diffusion processes 77

between mean time, equilibrium potential and capacities. It follows from the well known
relation

ExτDc =

∫
D

GD(x, y) dy (2.15)

between mean time and Green function that the Harnack inequality of [BEGK3, Lem-
ma 4.1] carries over toEzτDc , implying that, ifρ = cε, then

sup
z∈∂Bρ (x)

EzτDc ≤ C inf
z∈∂Bρ (x)

EzτDc . (2.16)

Combining this with (2.14) gives

sup
z∈∂Bρ (x)

EzτDc ≤ C

∫
D
dy e−F(y)/εhBρ (x),Dc (y)

capBρ (x)(D
c)

. (2.17)

We now distinguish the regions{y : F(y) > F(x)} and{y : F(y) ≤ F(x)} in the integral.
In the former, we just use the fact thathBρ (x),Dc (y) ≤ 1, while in the latter we invoke the
upper bound from Proposition 4.3 in [BEGK3]. This gives

sup
z∈∂Bρ (x)

EzτDc ≤ C

∫
y∈D :F(y)>F(x) dy e

−F(y)/ε

capBρ (x)(D
c)

+ C
1

capBρ (x)(D
c)

∫
y∈D :F(y)≤F(x)

dy e−F(y)/ε
capBρ (y)(Bρ(x))

capBρ (y)(D
c)

. (2.18)

Using the upper and lower bounds on the capacities from Proposition 4.7 of [BEGK3],
we get

sup
z∈∂Bρ (x)

EzτDc ≤ C′ερ−d+2e+F(x)/ε
∫
y∈D :F(y)>F(x)

dy e−F(y)/ε

+ C′ερ−d+2
∫
y∈D :F(y)≤F(x)

dy. (2.19)

By our assumption onF , the first integral is bounded by a constant times exp(−F(x)/ε)

and the second is equal to the volume of the level set{F(y) ≤ F(x)}. This implies the
claimed bound. ut

Combining our results yields

Corollary 2.4. If D ∩ Mε = ∅, then there exists a finite positive constantC < ∞,
independent ofε, such that

λ̄(D) ≥ Cεd−1. (2.20)

We can generalize the bounds obtained so far to setsD containing some of the local
minima ofF . That is, letN ⊂ M be non-empty and let

Nε = {y ∈ Rd : dist(y,N ) ≤ ε}. (2.21)

Assume thatD ⊃ Nε and set

A(x) = {y : hBε(x),Dc\Bε(x)(y) = max
y∈M

hBε(x),Dc \Bε(x)(y)}.

Then
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Lemma 2.5. Under the assumptions of Lemma2.2,

1

λ̄(D)
≤

∑
i : xi∈Nε

∫
A(xi )

e−F(y)/ε dy

capBε(xi )(D \ Bε(xi))
. (2.22)

Proof. The proof is similar to that of the preceding corollary combined with the estimate
on mean times given in Theorem 6.2 of [BEGK3]. We leave the details to the reader.ut

Remark. The key fact we need to extract from Lemma 2.5 is that

λ̄(D) & min
i:xi∈N

e−[F(z∗(xi ,Mk)−F(xi )]/ε] . (2.23)

3. Principal Dirichlet eigenvalues

It is a well known fact that ifF hasn local minima, thenLε hasn eigenvalues that are
exponentially small inε and that the next largest eigenvalue is of the order of a constant
[FW, Kolo]. It is also known ([Kolo, Chapter 8, Proposition 2.2]) that the eigenspace of
these eigenfunctions is exponentially close in theL2(exp(−F(y)/ε)dy)-distance to the
linear hull of then indicator functionsχi of the attractors of the minimaxi under the
deterministic dynamical systeṁy(t) = −∇F(y(t)).

In this section and the next we will derive a precise characterization of these eigen-
values that together with the estimates on capacities of [BEGK3] will ultimately yield the
exact asymptotic formulae of Theorem 1.2. This is the analogue of Section 4 of [BEGK2]
for the diffusion case. Our approach can to some extent be seen as an application of the
ideas of Wentzell’s remarkable paper from 1973 [W2]. As we will see, the application of
these ideas is not as straightforward as in the discrete case, but in principle very similar.

Before we turn to the details of this construction, it is useful to explain the general
strategy.

Let us now consider a set of disjoint compact setsBi ≡ Bε(xi), i = 1, . . . , k. Let λ̄k
denote the principal eigenvalue of the Dirichlet operatorLε with Dirichlet conditions on
∂Sk ≡

⋃k
i=1 ∂Bi (and on∂�, if this is not empty). Consider, forλ < λ̄k, the solution of

the Dirichlet problem

(Lε − λ)f λ(x) = 0, x ∈ � \ ∂Sk,
f λ(x) = φ(x), x ∈ ∂Sk,
f λ(x) = 0, x ∈ ∂�

(3.1)

(i.e. we consider the Dirichlet problems in the exterior and the interior of the balls si-
multaneously; note that the principal eigenvalue ofLε within a ball will always be larger
than λ̄k and so plays no rôle). In what follows, when specifying the Dirichlet problems
the conditions of vanishing of the solution on the boundary of� will be understood and
not mentioned anymore. The basic idea is now to construct an eigenfunction of the full
operatorLε as a solution of the problem (3.1) with suitably chosenφ. Indeed, ifλ is an
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eigenvalue ofLε and if we chooseφ(x) as the eigenfunction corresponding to this eigen-
value, thenf λ(x) is equal toφ everywhere. To see this, note that sinceφ(x) = f λ(x) on
∂Sk, for x ∈ Sck we have

(Lε − λ)Sk (f λ − φ)(x) = (Lε − λ)(f λ − φ)(x) = 0. (3.2)

But sinceλ is not in the spectrum ofLSkε , this implies thatf λ(x) = φ(x) onSck as well.
The same argument applies in the interior ofSk. This means thatλ < λ̄k is an eigenvalue
of Lε if and only if we can find a functionφ on∂Sk such that the solution of the Dirichlet
problem (3.1) is actually an eigenfunction ofLε with eigenvalueλ. In other words, any
eigenfunction corresponding to eigenvalues below the principal Dirichlet eigenvalue can
be represented as a solution of (3.1).

Thus the eigenvalue problem reduces to finding out for which values ofλ for suit-
ableφ on the boundaries ofBi , (Lε − λ)f λ = 0 everywhere. In fact,(Lε − λ)f λ is in
general a measure concentrated on the surface∂Sk; demanding that this surface measure
be zero yields in general an integral equation forφ(x) on ∂Sk, which is not particularly
easy to handle. In the case of discrete Markov processes, we have considered a very sim-
ilar problem in [BEGK2]. There, the ballsBi were, however, simply the pointsxi . The
measure(Lε − λ)f λ was then a simple measure on the finite setMk, and the boundary
condition reduced to thek numbersφ(xi), and the integral equation was reduced to a
simple linear equation for the unknown vectorφ(xi), i = 1, . . . , k. The condition forλ
to be an eigenvalue was thus simply that a certain determinant vanishes. It would be more
than nice if we could reduce ourselves to a similarly simple condition in the present case.
Indeed this would be so if we knew beforehand thatφ(x) is constant on each surface∂Bi .
While this cannot be truly the case, ifε is small we may expect thatφ varies little. In
that case, we could, as we shall see, use perturbation arguments to arrive at the desired
conclusion. Unfortunately, to obtain such control on eigenfunctions looks rather difficult.
While the Harnack and Ḧolder inequalities will give us the desired control if we know
that the eigenfunction does not change sign in a suitable neighborhood of the minimum,
one cannot exclude that some minima are close to such zeros. We will see, however, that
eigenfunctions do not change sign near a minimum, unless they are very small there. This
will be enough to carry through our arguments.

We begin this program in this section with the somewhat simpler problem of the
computation of the principal eigenvalues in domainsD ⊂ �. The main application will be
later to the case whereD is� with some small balls around local minima ofF removed.
This problem is considerably simpler because principle eigenfunctions are positive.

Regularity properties of harmonic functions. We first state a simple application of the
Harnack and Ḧolder inequalities (see [GT, Corollaries 9.25 and 9.24]) that we have stated
as Lemmata 4.1 and 4.2 in [BEGK3].

Lemma 3.1. Assume thatx is a local minimum ofF . Letφ be a positive strong solution
of (Lε − λ)φ = 0, |λ| ≤ 1, on a ballB4

√
ε(x). Then there exists a constantC < ∞ and

α > 0, both independent ofε, such that

oscy∈Bε(x)φ(y) ≤ Cεα/2 min
y∈Bε(x)

φ(x). (3.3)
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Proof. We can use Lemmata 4.1 and 4.2 stated in [BEGK3] with3 = λ = ε, γ = 1,
c = λ, and

ν = ε−2 sup
y∈B4

√
ε(x)

‖∇F(y)‖2
∞ ≤ const· ε−1. (3.4)

Then, withR = 2
√
ε, we deduce first from Lemma 4.2 of [BEGK3] that

sup
y∈B2

√
ε(x)

φ(y) ≤ C inf
y∈B2

√
ε(x)

φ(y) (3.5)

and then from Lemma 4.1 that

oscy∈Bε(x)φ(x) ≤ Cεα/2 sup
y∈B2

√
ε(x)

φ(y)(1 +
√
ε
d+1

|λ|). (3.6)

This implies the lemma ifλ is not too large. ut

Principal eigenvalues revisited.We will now improve on the estimates on principal
eigenfunctions̄λ(D) obtained in Section 2 by showing that in the case whenD contains
a local minimum ofF , these estimates are essentially exact.

Proposition 3.2. Assume thatD containsl ≥ 1 local minima of the functionF and that
there is a single minimumx ∈ D that realizes

F(z∗(x,Dc))− F(x) =
l

max
i=1

[F(z∗(xi,D
c))− F(xi)]. (3.7)

We writeB ≡ Bε(x). Then there existα > 0, C < ∞, andδ > 0, independent ofε, such
that the principal eigenvaluēλ(D) of the Dirichlet problem onD satisfies

capB(D
c)

‖hB,Dc‖
2
2

(1−Cεα/2)(1− e−δ/ε) ≤ λ̄(D) ≤
capB(D

c)

‖hB,Dc‖
2
2

(1+Cεα/2)(1+ e−δ/ε); (3.8)

here and henceforth‖ · ‖2 denotes theL2 norm with respect to the measuree−F(y)/εdy.

Proof. SetD0
= D \ B. Then we know by Lemma 2.5 that there existsδ > 0 such that

λ̄(D0) ≥ e−[F(z∗(x,Dc))−F(x)]/εeδ/ε, (3.9)

while we know thatλ̄(D) < λ̄(D0) (and expect̄λ ∼ e−[F(z∗(x,Dc))−F(x)]/e, i.e. much
smaller). By the general philosophy outlined above, we know that the principal eigen-
function can be represented as the solution of the Dirichlet problem (both inside and
outsideB)

(Lε − λ)f λ(y) = 0, y ∈ D \ ∂B,

f λ(y) = φD(y), y ∈ ∂B,

f λ(y) = 0, y ∈ Dc,

(3.10)

where the boundary conditionsφD are given by the actual principal eigenfunction. We
will assume that dist(x,Dc) ≥ δ > 0, independent ofε. ThenB4

√
ε(x) ⊂ D, and since
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φD is the principal eigenfunction, it may be chosen positive onD. Therefore Lemma 3.1
applies and shows that

inf
y∈∂B

φD(y) ≡ c ≤ sup
y∈∂B

φD(y) ≤ (1 + Cεα/2)c. (3.11)

We will normalize the eigenfunction such thatc = 1 Thus we can writef λ(x) =

hλB,Dc (x)+ ψλ(x), wherehλB,Dc ≡ hλ is theλ-equilibrium potential (see [BEGK3, Sec-
tion 2]) that solves

(Lε − λ)hλ(y) = 0, y ∈ D \ ∂B,

hλ(y) = 1, y ∈ ∂B,

hλ(y) = 0, y ∈ Dc,

(3.12)

whileψλ solves

(Lε − λ)ψλ(y) = 0, y ∈ D \ ∂B,

ψλ(y) = φD(y)− 1, y ∈ ∂B,

ψλ(y) = 0, y ∈ Dc.

(3.13)

We want that(Lε − λ)f λ(x) = 0 on all ofD. Here we have to interpret(Lε − λ)f λ

as a surface measure on∂B. That is, ifg is a smooth test function that vanishes onDc,∫
D

dy e−F(y)/εg(y)(Lε − λ)f λ(y) ≡

∫
D

dy e−F(y)/εf λ(y)(Lε − λ)f λ(y)g(y)

=

∫
D\B

dy e−F(y)/εf λ(y)(Lε − λ)g(y)+

∫
intB

dy e−F(y)/εf λ(y)(Lε − λ)g(y)

= ε

∫
∂B

e−F(y)/ε(g(y)∂n(y)f
λ(y)− f λ(y)∂n(y)g(y)) dσB(y)

+ ε

∫
∂B

e−F(y)/ε(g(y)∂−n(y)f
λ(y)− f λ(y)∂−n(y)g(y)) dσB(y)

= ε

∫
∂B

e−F(y)/ε(g(y)∂n(y)f
λ(y)+ g(y)∂−n(y)f

λ(y)) dσB(y), (3.14)

wheredσB(y) denotes the Euclidean surface measure on∂B, and∂±n(y) denote the nor-
mal derivatives aty ∈ ∂B from the exterior and interior ofB, respectively. Thus we can
identify

dy e−F(y)/ε(Lε − λ)f λ(y) = εe−F(y)/ε(∂n(y)f
λ(y)+ ∂−n(y)f

λ(y)) dσB(y). (3.15)

To get control on̄λ, we can ask at least that the total mass of this measure on∂B vanishes,
i.e. that

0 =

∫
∂B

e−F(y)/ε(∂n(y)f
λ(y)+ ∂−n(y)f

λ(y)) dσB(y). (3.16)

To evaluate this expression it will be convenient to observe that on∂B, hB,Dc (y) = 1
for y ∈ ∂B (wherehB,Dc ≡ hλ=0

B,Dc is the Newtonian potential; see [BEGK3, Section 2]).
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Moreover, onB, hB,Dc (y) ≡ 1, so that∂−n(y)hB,Dc (y) vanishes on∂B. Using these facts
together with Green’s second identity (see [BEGK3, Eq. (2.8)]), we get from (3.15) the
condition

0 =

∫
∂B

e−F(y)/ε∂n(y)hB,Dc (y)f
λ(y)−

λ

ε

∫
D

dy e−F(y)/εhB,Dc(y)f
λ(y)

=

∫
∂B

e−F(y)/ε∂n(y)hB,Dc (y)−
λ

ε

∫
D

dy e−F(y)/εhB,Dc (y)h
λ
B,Dc (y)

+

∫
∂B

e−F(y)/ε∂n(y)hB,Dc (y)ψ
λ(y)−

λ

ε

∫
D

dy e−F(y)/εhB,Dc (y)ψ
λ(y). (3.17)

(Note that the derivative∂n(y) is in the direction of the interior ofB.) The two terms
involving ψλ will be naturally treated as error terms. In fact, since∂n(y)hB,Dc (y) > 0,
using Lemma 3.1, we get

0 ≤

∫
∂B

e−F(y)/ε∂n(y)hB,Dc(y)ψ
λ(y) ≤ Cεα/2

∫
∂B

e−F(y)/ε∂n(y)hB,Dc (y). (3.18)

If we defineδψλ = ψλ − ψ0, we see thatδψλ solves the Dirichlet problem

(Lε − λ)δψλ(y) = λψ0(y), y ∈ D \ ∂B,

δψλ(y) = 0, y ∈ ∂B,

δψλ(y) = 0, y ∈ Dc,

(3.19)

and thus
δψλ(y) = λ(LD

c
∪B

ε − λ)−1ψ0(y) (3.20)

and so

‖δψλ‖2 ≤
λ

λ̄(D0)− λ
‖ψ0

‖2. (3.21)

By the same argument we also have

‖hλB,Dc − hB,Dc‖2 ≤
λ

λ̄(D0)− λ
‖hB,Dc‖2. (3.22)

On the other hand, by the Poisson kernel representation ofψ0,

ψ0(z) = −ε

∫
∂B

(φD(y)− 1)∂n(y)GD\B(x, y) dσB(y), (3.23)

whereGD\B(x, y) denotes the Green function for the Dirichlet problem inD \ B (see
[BEGK3, Section 2]). Since the normal derivative of the Green function is negative on
∂B, we get

0 ≤ ψ0(z) ≤ Cεα/2hB,Dc (z). (3.24)

With

ε

∫
∂B

e−F(y)/ε∂n(y)hB,Dc (y) = capB(D
c), (3.25)
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(3.17) implies that

0 ≥ capB(D
c)− λ‖hB,Dc‖

2
2(1 − Cεα/2)(1 − λ/(λ̄(D0)− λ)),

0 ≤ capB(D
c)(1 + Cεα/2)− λ‖hB,D‖

2
2.

(3.26)

This implies the claimed bound on̄λ(D). Note that while we have only used a necessary
condition forλ̄(D), the fact that there must be such an eigenvalue implies that it actually
lies within the bounds given by (3.26). ut

Remark. In the case when several of the minima withinD satisfy (3.7) (i.e. ifD contains
several minima that are “equally deep”), one has to remove ballsBε(xi) for each of these
minima. Then one may proceed as before. The only difference is that now there appears
one valueci for each of the minima that is yet to be determined. One sees that in such a
caseλ̄(D) is determined by a variational formula

λ̄(D) = min
c1,...,cl≥0

∫
D
e−F(y)/ε‖∇h(c1, . . . , cl)‖

2
2

‖h(c1, . . . , cl)‖
2
2

(1 +O(εα/2, e−δ/α)) (3.27)

where

Lεh(x1, . . . , cl)(y) = 0, y ∈ D \

l⋃
i=1

∂Bε(xi),

h(c1, . . . , cl)(y) = ci, y ∈ ∂Bε(xi).

(3.28)

It is easy to see that the result differs only by a constant factor from that in the non-
degenerate case stated in the proposition.

Uniform estimates on principal eigenfunctions. The proof of Proposition 3.2 has al-
ready provided us with an approximation for the principal eigenfunction, namelyhB,Dc .
We have seen that inL2 this approximation is good on the orderεα/2. We will now show
that this approximation is also uniformly good.

Proposition 3.3. Under the hypothesis of Proposition3.2, the principal eigenfunction,
φD, ofLD

c

ε , normalized so thatinfy∈∂B φD = 1, satisfies

hB,Dc (y) ≤ φD(y) ≤ hB,Dc (y)(1 + Cεα/2)(1 + e−δ/ε). (3.29)

Proof. Let us first assume thatD is bounded. Setδf λ = f λ − f 0. Thenδf λ satisfies the
Dirichlet problem

Lεδf
λ(y) = λψλ(y), y ∈ D \ ∂B,

δf λ(y) = 0, y ∈ ∂B,

δf λ(y) = 0, y ∈ Dc.

(3.30)

Thus we can write

δf λ(y)

hB,Dc (y)
=

∫
D\B

1

hB,Dc (y)
GD\B(y, z)hB,Dc (z)

δf λ(z)

hB,Dc (z)
. (3.31)
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Assume thatM ≡ supy∈D\B f
λ(y)/hB,Dc (y) < ∞. Then (3.31) together with (3.24)

implies that

M ≤ 1 + Cεα/2 + λM sup
y∈D\B

∫
D\B

1

hB,Dc(y)
GD\B(y, z)hB,Dc (z)

= 1 + Cεα/2 + λM sup
y∈D\B

Ey [τB | τB ≤ τDc ] . (3.32)

Using the representation of the conditional mean time from Proposition 6.1 of [BEGK3],
one shows that

sup
y∈D\B

Ey [τB | τB ≤ τDc ] = 1/λ̄(D \ B) (3.33)

so that

M ≤
1 + Cεα/2

1 − λ̄(D)/λ̄(D \ B)
≤ (1 + Cεα/2)(1 + e−δ/ε). (3.34)

Since by constructionhB,Dc (y) ≤ φD(y), the assertion of the proposition follows.
It remains to justify the assumptionM < ∞. However, this is easy. First,φD is

bounded andC2(D). Thus,φD(y)/hB,Dc (y)may only diverge whenhB,Dc (y) ↓ 0. How-
ever, sincehB,Dc is harmonic and non-negative on the boundary, it is strictly positive on
D by the strong maximum principle. Thus its explosion can occur only at the boundary
of D, wherehB,Dc(y) tends to zero. Moreover, its normal derivative on∂D is strictly
(and sinceD̄ is compact, uniformly) positive (see e.g. [Tay, Section 5, Proposition 2.2]).
ThereforeφD(y)/hB,Dc (y) remains bounded also wheny → ∂D.

Therefore the proposition is proven if̄D is compact.
In the non-compact case, we can obtain a similar result for the supremum over com-

pact subsets0 ⊂ Rd , using the rapid decay of the Green function in regions whereF(y)

is getting very large. ut

4. Exponentially small eigenvalues and their eigenfunctions

We now generalize the analysis from the previous section to the construction of all small
eigenvalues ofLε . To do this we need first to establish some a priori estimates on the
behavior of eigenfunctions near the local minima ofF .

A priori estimates on eigenfunctions near local minima.For the analysis of harmonic
functions that are not necessarily positive, we need an application of an estimate for sub-
harmonic functions that allows relating the oscillation to theL2 norm.

Lemma 4.1. Letφ be a strong solution of(Lε − λ)φ = 0 on a ballBc√ε(x). Then there
exists a constantC < ∞, independent ofε, such that

oscBc√εφ ≤ Cε−d/4
( ∫

B2c
√
ε

|φ(x)|2 dx

)1/2

. (4.1)

Proof. This is just a specialization of Theorem 9.20 in [GT] (that gives upper bounds on
the supremum for subharmonic functions in terms ofp-norms) to our case, choosing the
balls involved in such a way that the constants are uniform inε. ut
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Our aim is now to show that in the vicinity of order
√
ε, eigenfunctions corresponding to

the exponentially small eigenvalues ofLε either have a constant sign, or are irrelevantly
small. That this should be the case is suggested by the following result that we cite (in
slightly adapted form) from ([Kolo], Chapter 8, Proposition 2.2):

Proposition 4.2. Letφ be a normalized eigenfunction ofLε corresponding to one of the
|M| smallest eigenvalues. Letγ < γ̂ ≡ minx,y∈M(F̂ (x, y)−F(y)). LetDi be the set of
points iny ∈ � such that the solution of the differential equationd

dt
y(t) = −∇F(y(t))

with initial conditiony(0) = y converges toxi ∈ M. Then there exist constantsci such
that ∥∥∥φ −

∑
i

ci1Di

∥∥∥
2,µε

≤ C exp(−γ /ε) (4.2)

for some constantC ≡ Cγ < ∞.

Remark. The proposition is stated in [Kolo] for smoothV , but it is easy to see that the
proof carries through forV ∈ C3(�).

Unfortunately this estimate is not quite enough to conclude thatφ does not change
sign near any minimum. We will show that this is the case if the contribution ofφ coming
from a neighborhood of a given minimum is significant. ForD ⊂ �, set‖f ‖2,µε ,D ≡

(
∫
D

|f (x)|2µε(dx))
1/2.

For a given eigenfunctionφ define

J ≡ {j : ‖φ‖2,µε ,Dj ≥ exp(−γ /2ε)}. (4.3)

Lemma 4.3. If φ is one of the eigenfunctions of Proposition4.2, j ∈ J , then there exists
a constantcj , a finite,ε-independent constantC and a positive,ε-independent constant
α, such that for allx ∈ B√

ε(xj ), |φ(x)− cj | ≤ Cεα/2cj .

Proof. We will first show that the weightedL2 estimate on the deviation ofφ from a
constant implies a local unweightedL2 estimate on balls of radiusr ∼

√
ε near the

minimaxj , j ∈ J .
Note first that from (4.2) it follows that

‖φ − cj‖2,µε ,Dj ≤ C exp(−γ /ε). (4.4)

Setφ̂(x) ≡ φ(x)/‖φ‖2,µε ,Dj , andĉj ≡ cj/‖φ‖2,µε ,Dj . Then due to the definition ofJ ,
for this locally normalized function we get the estimate

‖φ̂ − ĉj‖2,µε ,Dj ≤ C exp(−γ /2ε). (4.5)

Note that this estimate is now unchanged if we add a constant toF(x), so that we can
pretend for the moment thatF(xi) = 0. LetR > 0 be such thatBR(xj ) ∈ Dj . Sincexj is
a quadratic minimum, there exists a finite positive constantb such thatF(x) ≤ b(x−xj )

2

for x ∈ BR(xj ). Hence (4.5) implies in particular that∫
BR(xj )

(φ̂(x)− ĉj )
2 dx ≤ CebR

2/ε exp(−γ /2ε). (4.6)

Note that also ∫
BR(xj )

|φ̂(x)|2 dx ≤ ebR
2/ε

‖φ̂‖2,µε ,Dj = ebR
2/ε . (4.7)
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Now letx ∈ B√
ε(xj ). Then Lemma 4.1 implies that

oscB2
√
ε
φ̂ ≤ Cε−d/4 (4.8)

for some (new) finite,ε-independent constantC. Now we can use the Ḧolder estimate
(Corollary 9.24 in [GT] as specialized in Lemma 4.1 of [BEGK3]), to deduce that for
r <

√
ε,

oscBr φ̂ ≤ Cε−d/4
(
r

ε1/2

)α
(4.9)

for a new constant andα > 0, independent ofε. If we chooser ∼ εd/4α+1, we can
achieve that oscBr (x) ≤ Cεα/2 < ĉi/2 if ε is small enough. But by the estimate (4.6), then
φ̂ must be close tocj , uniformly onBr(x). Since this argument holds for allx ∈ B√

ε(xj ),

we have|φ̂ − ĉj | ≤ Cεα/2 in this ball. ut

Remark. We will see later that this estimate grossly overestimates the possible fluctua-
tions ofφ.

Lemma 4.1 is also the appropriate tool to show that near the minima where theL2

norm is very small, a similar estimate holds uniformly. Namely, we have

Lemma 4.4. Letxi ∈ M, i 6∈ J . Then

sup
x∈B√

ε(xj )

|φ(x)| ≤ Cε−d/2e−γ /2εe+F(xi )/2ε . (4.10)

Proof. By Lemma 4.1,

sup
x∈B√

ε(xj )

|φ(x)| ≤ Cε−d/4‖φ‖2,dx,B2
√
ε(xj )

≤ C′ε−d/4‖φ‖2,µε ,B2
√
ε(xj )

≤ C′ε−d/4e+F(xi )/2ε‖φ‖2,µε ,Dj ≤ C′ε−d/4e−γ /2εe+F(xi )/2ε, (4.11)

which proves the lemma. ut

Characterization of the eigenvalues.Let us now order all minimaxi of F in such a way
that

F(z∗(xi+1,Mi))− F(xi+1) ≤ F(z∗(xi,Mi−1))− F(xi) (4.12)

for i = 1, . . . , n − 1, whereMi = {x1, . . . , xi}. We put moreoverM0 ≡ �c. We also
setBi ≡ Bε(xi) andSi ≡

⋃i
j=1Bi . Note that considerable simplifications occur when

all inequalities in (4.12) are strict, and we will only consider this case here.
Suppose that we want to compute eigenvalues belowλ̄(� \ Sk) ≡ λ̄k. We know that

if φλ is an eigenfunction withλ < λ̄k, then it can be represented as the solution of the
Dirichlet problem

(Lε − λ)f λ(y) = 0, y ∈ � \ ∂Sk,
f λ(y) = φλ(y), y ∈ ∂Sk.

(4.13)

Thus, as in the analysis of principal eigenvalues above, the condition onλ will be the
existence of a non-trivialφλ on ∂Sk such that the surface measure

dy e−F(y)/ε(Lε − λ)f λ(y) = e−F(y)/ε(∂n(y)f
λ(y)+ ∂−n(y)f

λ(y)) dσSk (y) (4.14)

vanishes. A necessary condition for this to happen is of course the vanishing of the total
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mass on each of the surfaces∂Bi , i ≤ k, i.e.∫
∂Bi

e−F(y)/ε(∂n(y)f
λ(y)+ ∂−n(y)f

λ(y)) dσSk (y) = 0. (4.15)

In view of Lemmata 4.3 and 4.4 we have the following dichotomy: Letci= infy∈Bi φ
λ(y).

Theneither

(i) supy∈Bi |φ
λ(y)/ci − 1| ≤ Cεα/2, or

(ii) supy∈Bi |φ
λ(y)| ≤ Cε−d/4e−γ /2εe+F(xi )/2ε

We now consider all possible cases: LetJ ⊂ {1, . . . , k} be the set of indices where (i)
holds, andJ c ≡ {1, . . . , k} \ J . Given such a partition, we set

f λ =

∑
j∈J

cj (h
λ
Bj ,Sk\Bj + ψλj )+

∑
i∈J c

ψλi , (4.16)

where thehλj ≡ hλ
Bj ,Sk\Bj are theλ-equilibrium potentials (see [BEGK3, Section 2]), i.e.

solutions of(Lε − λ)hj = O with boundary conditions 1 on∂Bj and 0 on∂(Sk \ Bj ).
Thenψλj satisfies, forj ∈ J ,

(Lε − λ)ψλj (y) = 0, y ∈ � \ ∂Sk,

ψλj (y) = φλ(y)/cj − 1, y ∈ ∂Bj ,

ψλj (y) = 0, y ∈ ∂Bi, i 6= j,

(4.17)

and forj ∈ J c,
(Lε − λ)ψλj (y) = 0, y ∈ � \ ∂Sk,

ψλj (y) = φλ(y), y ∈ ∂Bj ,

ψλj (y) = 0, y ∈ ∂Bi, i 6= j.

(4.18)

We now proceed as in the analysis of principal eigenvalues, i.e. we write as necessary
condition forλ to be an eigenvalue that for alli = 1, . . . , k,

0 =

∫
∂Bi

e−F(y)/εhi(y)
(
∂n(y)f

λ(y)+ ∂−n(y)f
λ(y)

)
dσ∂Sk (y)

=

∫
∂Sk

e−F(y)/ε∂n(y)hi(y)f
λ(y) dσ∂Sk (y)−

λ

ε

∫
dy e−F(y)/εhi(y)f

λ(y)

=

∑
j∈J

cj

[ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y)(1 + ψλj (y)) dσ∂Sk (y)

−
λ

ε

∫
dy e−F(y)/εhi(y)(h

λ
j (y)+ ψλj (y))

]
+

∑
j∈J c

[ ∫
∂Bl

e−F(y)/ε∂n(y)hi(y)ψ
λ(y) dσ∂Sk (y)−

λ

ε

∫
dy e−F(y)/εhi(y)ψ

λ
j (y)

]
.

(4.19)
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Note that by the bounds (i) and (ii), we see that forj ∈ J ,∣∣∣∣ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y)ψ
λ
j (y) dσ∂Sk (y)

∣∣∣∣
≤ Cεα/2

∣∣∣∣ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y) dσ∂Sk (y)

∣∣∣∣, (4.20)

and forj ∈ J c,∣∣∣∣ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y)ψ
λ
j (y) dσ∂Sk (y)

∣∣∣∣
≤ Cε−d/4e−γ /2εeF(xj )/2ε

∣∣∣∣ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y) dσ∂Sk (y)

∣∣∣∣. (4.21)

At this point it is convenient to realize that Green’s first identity and the fact that thehi
are harmonic imply that, fori 6= j ,∣∣∣∣ ∫

∂Bj

e−F(y)/ε∂n(y)hi(y) dσBj (y)

∣∣∣∣ =

∣∣∣∣ ∫
∂Bj

e−F(y)/εhj (y)∂n(y)hi(y) dσBj (y)

∣∣∣∣
= ε−1

∣∣∣∣ ∫
extSk

dy e−F(y)/ε(∇hj (y),∇hi(y))

∣∣∣∣
≤ ε−1

√
capBi (Sk \ Bi) capBj (Sk \ Bj ), (4.22)

where the last inequality uses the Cauchy–Schwarz inequality. Thus, forj ∈ J \ {i},∣∣∣∣ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y)ψ
λ
j dσ∂Sk (y)

∣∣∣∣
≤ Cεα/2ε−1

√
capBi (Sk \ Bi) capBj (Sk \ Bj ), (4.23)

and forj ∈ J c \ {i},∣∣∣∣ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y)ψ
λ
j dσ∂Sk (y)

∣∣∣∣
≤ Cε−d/4e−γ /2εeF(xj )/2εε−1

√
capBi (Sk \ Bi) capBj (Sk \ Bj ). (4.24)

For the diagonal termsi = j ∈ J , this simplifies to∣∣∣∣ ∫
∂Bj

e−F(y)/ε∂n(y)hi(y)ψ
λ
j dσ∂Sk (y)

∣∣∣∣ ≤ Cεα/2 capBj (Sk \ Bj ). (4.25)

For the remaining terms involvingψλ in (4.19), we conclude, in complete analogy to
the derivation of the bounds (3.20) and (3.21), that forj ∈ J ,∫

dy e−F(y)/εhi(y)(h
λ
j (y)− hj (y)+ ψλj (y))

= O(εα/2)(1 +O(e−δ/ε))

∫
dy e−F(y)/εhi(y)hj (y), (4.26)
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and forj ∈ J c,∫
dy e−F(y)/εhi(y)ψ

λ
j (y) = O(ε−d/4e−γ /2εeF(xj )/2ε)

∫
dy e−F(y)/εhi(y)hj (y).

(4.27)
To control all off-diagonal terms, we still need to show that the normalized functions

hi andhj are almost orthogonal.

Lemma 4.5. (i) There is a constantC < ∞ such that, fori 6= j ,∫
dy e−F(y)/εhj (y)hi(y) ≤ Cε−(d+1)/2 min(e−F̂ (xi ,Sk\Bi )/ε, e−F̂ (xj ,Sk\Bj )/ε). (4.28)

(ii) For all i, ∫
dy e−F(y)/εhj (y)

2
≥ Cεd/2e−F(xj )/ε . (4.29)

Proof. We first prove (i). Fori 6= j ,∫
dy e−F(y)/εhj (y)hi(y) =

∫
y :F(y)≤max(F̂ (xi ,Sk\Bi ),F̂ (xj ,Sk\Bj ))

dy e−F(y)/εhj (y)hi(y)

+

∫
y :F(y)>max(F̂ (xi ,Sk\Bi ),F̂ (xj ,Sk\Bj ))

dy e−F(y)/εhj (y)hi(y) (4.30)

In the second integral we just use the elementhi(y) ≤ 1; by our general assumptions
onF , this gives a boundCe− max(F̂ (xi ,Sk\Bi ),F̂ (xj ,Sk\Bj ))/ε . In the first integral we use the
bounds on the equilibrium potential from Corollary 4.8 of [BEGK3]. Note that for anyy,
at most one of the factorshi(y) or hj (y) can be close to one. Thus even the roughest
estimate yields2∫

y :F(y)≤max(F̂ (xi ,Sk\Bi ),F̂ (xj ,Sk\Bj ))
dy e−F(y)/εhj (y)hi(y)

≤

∫
y :F(y)≤max(F̂ (xi ,Sk\Bi ),F̂ (xj ,Sk\Bj ))

dy e−F(y)/ε

× Cε−1/2e− max(F̂ (xi ,Sk\Bi ),F̂ (xj ,Sk\Bj ))

≤ Cε−1/2
|{y : F(y) ≤ max(F̂ (xi,Sk \ Bi), F̂ (xj ,Sk \ Bj ))}|

× e− max(F̂ (xi ,Sk\Bi ),F̂ (xj ,Sk\Bj ))/ε . (4.31)

Combining this upper bound with the lower bound we arrive at assertion (i).
To prove (ii), note that∫
dy e−F(y)/εhj (y)

2
≥

∫
B√

ε(xj )

dy e−F(y)/ε(1 − Cε−1/2e−[F(z∗(xj ,Sk\Bj ))]/ε)2

= Cεd/2e−F(xj )/ε . (4.32)

This concludes the proof of the lemma. ut

2 See the proof of (4.55) for more details.
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Let us define the capacity matrix3 C with elements

Cij ≡ C(k)ij ≡ ε

∫
∂Bj

e−F(y)/εhj (y)∂n(y)hi(y) dσBj (y)

and its normalized version

Kij ≡ K(k)ij ≡
C(k)ij

‖hi‖2‖hj‖2
. (4.33)

Note that this matrix is symmetric and satisfies, by (4.22),

Kij ≤
√
KiiKjj . (4.34)

If we introduce the matrices

Aij ≡

ε
∫
∂Bj

e−F(y)/ε∂n(y)hi(y)ψ
λ
j (y) dσ∂Sk (y)

‖hi‖2‖hj‖2
(4.35)

Bij ≡


(1 − δij )

∫
dy e−F(y)/εhi(y)(h

λ
j (y)+ ψλj (y))

‖hi‖2‖hj‖2
if i ∈ J,

(1 − δij )

∫
dy e−F(y)/εhi(y)ψ

λ
j (y)

‖hi‖2‖hj‖2
if j ∈ J c,

(4.36)

and

Dij ≡ δij

∫
dy e−F(y)/εhj (y)(h

λ
j (y)− hj (y)+ ψλj )

‖hj‖
2
2

, (4.37)

then the conditions (4.19) forλ can be written as

0 =

∑
j∈J

ĉj
(
Kij − λδij + Aij − λ(Dij + Bij )

)
+

∑
j∈J c

‖hj‖(Aij + λBij ), (4.38)

whereĉj = ‖hj‖2cj .
We can now collect the estimates on these matrix elements:

Lemma 4.6. The following bounds hold:

(i) For i 6= j ∈ J ,

|Bij | ≤ Cε−d
√
KiiKjj , (4.39)

|Djj | ≤ Cεα/2, (4.40)

and for all i, j ,
|Aij | ≤ |Kij |Cεα/2. (4.41)

3 The matrixC is a classical object in electrostatics, the diagonal elements being called capacities,
and the off-diagonal ones coefficients of induction [Jack]. The off-diagonal coefficients represent
the charge induced in thei-th ball when thej -th has potential one and all others are at potential
zero.
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(ii) For i 6= j ∈ J c,

‖hj‖2|Aij | ≤ Cε−3d/4
|Kij |, (4.42)

‖hj‖2|Bij | ≤ Cε−de−γ /ε
√
KiiKjj . (4.43)

We collect the results obtained so far as

Theorem 4.7. Let Sk ≡
⋃k
i=1Bε(xi) and letλ̄k denote the principal eigenvalue of the

operatorLε with Dirichlet conditions on∂Sk (and∂�). Then a numberλ < λ̄k may be
an eigenvalue of the operatorLε if there exists a nonempty setJ ⊂ {1, . . . , k}, constants
c, ĉj , j ∈ J , such that

∑
j∈J ĉ

2
j = 1, and numbersAij , Bij ,Dij satisfying the constraints

given in Lemma4.6, such that for alli ∈ J , Eq.(4.38)holds.

One would expect that Eq. (4.38) has a solution only whenλ is close to an eigenvalue of
the matrixK, and that indeed all eigenvalues of that matrix are close to the eigenvalues of
Lε . We will not prove this directly. In fact, we will restrict our attention in this article to
the non-degenerate situation when all “depths” of the valleysxi are distinct, i.e. when for
all i < k the inequalities (4.12) are strict.

Lemma 4.8. LetKij be the normalized capacity matrix and assume that

max
i<k

Kii ≤ e−δ/εKkk. (4.44)

Thenk ∈ J , and the largest eigenvalue,µk, ofK satisfies

µk = Kkk(1 +O(e−δ/2ε)), (4.45)

while all other eigenvalues are smaller thanCe−δ/ελk. Moreover, the eigenvector,v =

(v1, . . . , vk), corresponding to the largest eigenvalues normalized so thatvk = 1 satisfies
|vi | ≤ Ce−δ/ε for i < k.

Proof. This is a simple perturbation argument. Note that we can write

K = K̂ + Ǩ, (4.46)

whereK̂ij = Kkkδjkδik. Now we estimate the norm of̌K as in the proof of Lemma 4.5.
Recall that

|Kji | ≤ KiiKjj . (4.47)

Hence by assumption (4.44),

‖Ǩ‖ ≤ Kkk
√
e−δ/εk + e−δ

2/ε2
k2. (4.48)

Since obviouslyK̂ has one eigenvalueKkk with the obvious eigenvector and all other
eigenvalues are zero, the announced result follows from standard perturbation theory.ut

SinceKkk = capBk (Sk−1)/‖hk‖
2
2 ≈ λ̄k−1, this is precisely the value we expect.
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Corollary 4.9. Under the hypothesis(4.44), suppose that there exists an eigenvalueλk
ofLε in the interval(λ̄k, λ̄k−1].

(i) We have
λk = capBk (Sk−1)/‖hk‖

2
2(1 +O(εα/2, e−δ/ε)). (4.49)

(ii) The eigenvalueλk is simple and the corresponding eigenfunctionf λk can be written
as

φλk (y) =
hk(y)

‖hk‖2
(1 +O(εα/2))+

k−1∑
j=1

dj (y)
hj (y)

‖hj‖2
, (4.50)

where|dj (y)| ≤ e−δ/ε for someδ > 0 (uniformly on compact subsets if� is un-
bounded).

Proof. First, if k 6∈ J , and if λk is as assumed, then in each of the|J | equations there
is one term(Kii + Aii − λ)ĉi ∼ Kkk d̂i while all other terms are at most of order
exp(−δ/2ε)|Kkk|cj . Thus no normalized solution̂c can be found. Assume thus thatk ∈ J .
Considering all equations withi 6= k, the same argument as before shows that|ĉi | ≤

Ce−δ/2ε . Looking instead at the equation numberk, since nowĉk ≈ 1, it implies that

|(Kkk + Akk − λk)| ≤ C|Kkk|e−δ/εεα/2, (4.51)

which yields (i).
As we have just seen that a solution of (4.38) withĉk = 1 must satisfy|ĉj | ≤ e−δ/ε

for all j 6= k, by (4.16), this implies that

φλk (y) =
hλk (y)+ φλk (y)

‖hk‖2
+

∑
j∈J\k

ĉj
hλj (y)+ φλk (y)

‖hj‖2
. (4.52)

Using the same arguments as in the proof of Proposition 3.3, and the bounds onφλ − cj
on the boundaries∂Bj , we see that forj ∈ J ,

|φλj (y)− hj (y)|

‖hj‖2
≤ Cεα/2

hj (y)

‖hj‖2
+

∑
l∈Jj

capBl (Bj )‖hl‖2

‖hj‖2

hl(y)

‖hl‖2

≤ Cεα/2
hj (y)

‖hj‖2
+

∑
l∈Jj

e−δ/ε
hl(y)

‖hl‖2
. (4.53)

Combining these estimates we arrive at (4.50). Note that this final estimate does not actu-
ally depend on the choice ofJ . Since two functions satisfying (4.50) cannot be orthogo-
nal, it follows thatλk is a simple eigenvalue. ut

Now we can further explore the eigenvalues belowλ̄k−1, etc., with the same results.
Thus at the end of the procedure we arrive at the conclusion thatLε can have at most
then simple eigenvalues given by the values of the preceding corollary below the values
Cεd−1. But since we know that there must ben such eigenvalues, we conclude that all
these candidates are in fact eigenvalues. This yields the following proposition:
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Proposition 4.10. Assume that all inequalities(4.12)are strict for all i = 1, . . . , n. Then
the spectrum ofLε belowεd−1 consists ofn simple eigenvalues that satisfy

λk =
capBk (Sk−1)

‖hk‖
2
2

(1 +O(εα/2 + e−δ/ε))

= capBk (Sk−1)

√
det(∇2F(xk))

√
2πε

d
eF(xk)/ε(1 +O(ε1/2

|ln ε|, εα/2, e−δ/ε))

=
1

ExkτSk−1

(1 +O(εα/2 + e−δ/ε)), k = 1, . . . , n. (4.54)

The corresponding eigenfunctions satisfy(4.50).

Proof. We have seen in fact thatλk = K(k)kk (1+O(e−θ/ε, εα/2)), which provides the first
assertion of Proposition 4.10. It remains to identify the eigenvalues with the inverse mean
times. This follows from Proposition 6.1 in [BEGK3], provided we can show that∫

dy e−F(y)/εhk(y)
2

∼

∫
dy e−F(y)/εhk(y). (4.55)

In fact, we will show more, namely that both sides of (4.55) are asymptotically equal to

e−F(xk)/ε

√
2πε

d√
det(∇2F(xk))

. (4.56)

We must show that the main contribution of the integrals comes from a small neighbor-
hood ofxk, which yields the contribution (4.56). It is clear that all contributions from
the set{y : F(y) > F(xk) + ε|ln ε|} give only sub-leading corrections. To treat the
complement of this set, we use the bounds on the equilibrium potential of Eq. (4.27) in
[BEGK3]. Up to polynomial factors inε, this implies that the integrand on the right-hand
side of (4.55) (and a fortiori on the left-hand side) in the connected components of this
level set that do not containxk is smaller than

e−[F(y)+F(z∗(y,Bk))−F(z∗(y,Sk−1))]/ε . (4.57)

If y is in the component of the level set that contains the minimumxj , andj < k, we see
that this is equal to

e−F(z
∗(xj ,Bk))/ε, (4.58)

which is exponentially smaller than exp(−F(xk)/ε), independent ofy. If j > k, we still
get the same result ifF(y) ≥ F(z∗(xj ,Sk−1)). Otherwise, we can write (4.57) as

e−[F(y)−F(xj )]/εe−[F(xk)+(F (z∗(xj ,Bk))−F(xk))−(F (z∗(xj ,Sk−1))−F(xj ))]/ε . (4.59)

We will argue that

F(z∗(xj , Bk))− F(xk) > F(z∗(xj ,Sk−1))− F(xj ). (4.60)

Assume the contrary. Note that trivially

F(z∗(xj ,Sk−1)) ≥ F(z∗(xj ,Sj−1)), (4.61)
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while
F(z∗(xj , Bk)) = F(z∗(xk, Bj )) ≤ F(z∗(xk,Sj \ Bk)). (4.62)

Therefore, our assumption implies that

F(z∗(xj ,Sj−1))− F(xj ) ≤ F(z∗(xk,Sj \ Bk))− F(xk), (4.63)

which a moment’s reflection shows to be in contradiction with the conditions (4.12) at
stagej . In other words, if our assumption were true, then the setBk would yield the
largest eigenvalue at stagej , i.e. it would have had to be labeledBj . Thus (4.60) must
hold.

Since by assumption the inequalities are strict (which is more than we need), it follows
that indeed∫

dy e−F(y)/εhk(y) = e−F(xk)/ε

√
2πε

d√
det(∇2F(xk))

(1 +O(ε1/2
|ln ε|)) (4.64)

and of course the same bound holds whenhk is replaced byh2
k. This concludes the proof

of the theorem. ut

Improved error estimates.To conclude the proofs of Theorems 1.2 and 1.3 we only need
to improve the error estimates. In the proofs of this section we have produced error terms
from two sources: the exponentially small errors resulting from the perturbation around
λ = 0 and the non-perfect orthogonality of the functionshi , and the much larger errors
of orderεα/2 that resulted from the a priori control on the regularity of the eigenfunctions
obtained from the Ḧolder estimate of Lemma 4.3. In the light of the estimates obtained on
the eigenfunctions these can now be improved successively (as in the proof of Theorem
3.1 of [BEGK3]). Notice first that the eigenfunction corresponding to the minimumxk
is small enough at all the minimaxl , l < k, so that we can actually takeJ = {k} and
Jk = {1, . . . , k − 1} in (4.17), (4.19). Then we know from Corollary 4.9 that

oscy∈B4
√
ε(xk)

φk(y) ≤ Cεα/2 sup
y∈B4

√
ε(xk)

φk(y), (4.65)

which improves the a priori estimate (3.5). Then the Hölder estimate stated in Lemma 4.1
of [BEGK3] gives the improvement

oscy∈Bε(xk)φk(y) ≤ Cεα/2(Cεα/2 + λkε
(d+1)/2) sup

y∈B4
√
ε(xk)

φk(y)

≤ Cεα sup
y∈B4

√
ε(xk)

φk(y) (4.66)

over the estimate (3.3). This allows us to replace all errors of orderεα/2 by errors of
orderεα. This procedure can be iteratedm times to get errors of orderεmα/2 until these
are as small as the exponentially small errors.

Finally, we would like to improve the precision with which we relate the eigenvalues
to the inverse mean exit times. This precision is so far limited by the precision with which

ExkτSk−1 ≈
capBk (Sk−1)

‖hk‖2
(4.67)
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holds. From Proposition 6.1 of [BEGK3] we know that this precision is limited only by
the variation ofExτSk−1 onBk. To improve this, we need to control

capBk (Sk−1)

‖hk‖2
−

capBε(x)(Sk−1)

‖hBε(x),Sk−1‖2
. (4.68)

Now it is very easy to see that ifx ∈ B√
ε(xk), then

|hBε(x),Sk−1(y)− hk(y)| ≤ e−δ/εhk(y). (4.69)

Namely,

|hBε(x),Sk−1(y)− hk(y)| ≤ Py [{τBk < τSk−1} ∩ {τSk−1 < τBε(x)}]

+ Py [{τBε(x) < τSk−1} ∩ {τSk−1 < τBkτBε(x)}]. (4.70)

But by the Markov property

Py [{τBk < τSk−1} ∩ {τSk−1 < τBε(x)}]

≤ Py [τBk < τSk−1] max
z∈Bk

P[τSk−1 < τBε(x)] ≤ e−δ/εPy [τBk < τSk−1]. (4.71)

The second summand in (4.70) is bounded in the same way.
This implies of course that

‖hBε(x),Sk−1‖2 − ‖hk‖2 ≤ e−δ/ε‖hk‖2. (4.72)

We only need a similar estimate for capacities. While this may appear more difficult at
first sight, we can take advantage of the fact that as long asλ̄((Bε(x)∪Sk−1)

c) � λk, we
can replaceBk in the proof of Proposition 4.10 without further changes byBε(x). Thus

λk =
capBε(x)(Sk−1)

‖hBε(x),Sk−1‖
2
2

(1 +O(e−δ/ε)) =
capBk (Sk−1)

‖hk‖
2
2

(1 +O(e−δ/ε)), (4.73)

which implies together with (4.72) that

|capBε(x)(Sk−1)− capBk (Sk−1)| ≤ e−δ/ε capBk (Sk−1). (4.74)

Based on (4.74) and (4.71), one can improve Proposition 6.1 of [BEGK3] iteratively as
above to get

ExkτSk =
capBk Sk−1

‖hk‖2
(1 +O(e−δ/ε)), (4.75)

which together with the capacity estimate given in Theorem 1.1 of [BEGK3] implies the
first equality of Theorem 1.2. Thus all error terms of orderεα/2 can be removed in (4.54)
and (4.50), completing the proofs of Theorems 1.2 and Theorem 1.3. ut

Exponential distribution of exit times. We conclude this section with a result that will
imply Theorem 1.4 on the exponential distribution of exit times. LetLDε denote the
Dirichlet operator with Dirichlet conditions inD. To avoid confusion, we assume that
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D = Sk−1. Note that Proposition 4.10 (and its improvement) also applies to the operator
LDε , and if we denote bȳλik thei-th eigenvalue ofLDε , we see that within our usual errors,

λ̄ik ∼ λk+i (4.76)

for i = 1, . . . , n− k, and the corresponding eigenfunctionφik satisfies

φik(y) =
hk+i(y)

‖hk+i‖2
(1 +O(e−δ/ε))+

n∑
j=k

dj (y)hj (y)‖hj‖2 (4.77)

with |dj (y)| ≤ e−δ/ε . Let us denote henceforth bȳφik the corresponding normalized eigen-
functions (e.g.‖φ̄ik‖2 = 1). Note thatφ̄ik = φik(1 + O(e−δ/ε)), so in fact they can be
represented in the same way as (4.77) with redefineddj satisfying the same bounds.

Denote byPk−i the projector on the subspace generated byφik−1 and byP⊥ the pro-

jector to the subspace orthogonal to span(φ̄1
k−1, . . . , φ̄

n−k
k−1). Note that

Pxk [τD > T ] = (δxk , e
−T LDε 1Dc)

=

n−k∑
i=1

(δxk , e
−T LDε Pk−i1Dc )+ (δxk , e

−T LDε P⊥1Dc)

=

n−k∑
i=1

e−λ̄
i
k−1T φ̄ik−1(xk)

∫
Dc
dy e−F(y)/ε φ̄ik−1(y)+O(e−T λ̄n). (4.78)

Given the precise control on the eigenfunctions, it is not difficult to infer that

Pxk [τD > T ] = (δxk , e
−T LDε 1Dc)

=

n−k∑
i=1

e−λ̄
i
k−1T φ̄ik−1(xk)

∫
Dc
dy e−F(y)/ε φ̄ik−1(y)+O(e−T λ̄n). (4.79)

Now using (4.55), (4.56), we get

φ̄ik−1(xk)

∫
Dc
dy e−F(y)/ε φ̄ik−1(y)

= hk−1+i(xk)

∫
Dc
dy e−F(y)/εhk−1+i(y)

‖hk−1+i‖
2
2

+

∑
(j,j ′)6=(k−1+i,k−1+i)

djdj ′hj (xk)

∫
Dc
dy e−F(y)/εhj ′(y)

‖hj‖2‖hj‖2

= hk−1+i(xk)(1 +O(e−δ/ε))

+

∑
(j,j ′)6=(k−1+i,k−1+i)

djdj ′hj (xk)cj,j ′e
−[F(x′

j )−F(xj )]/2ε . (4.80)
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Now if j = k, the term in the last sum is

dkdj ′ck,j ′e
−[F(x′

j )−F(xk)]/2ε ≤ e−δ/ε (4.81)

sinceF(xj ′) > F(xk) for j ′′ > k; in all other cases,

hj (xk) ≈ e−[F(z∗(xj ,Mk+i\xj )−F(xk))]/ε < e−[F(xj )−F(xk)]/ε (4.82)

so that

hj (xk)e
−[F(x′

j )−F(xj )]/2ε < e−[F(xj )−F(xk)]/2εe
−[F(x′

j )−F(xk)]/2ε < ε−δ/ε . (4.83)

This shows that

Pxk [τD > T ] = e−λ̄k−1T (1+O(e−δ/ε))+

n−k∑
i=2

e−λ̄
i
k−1O(e−δ/ε)+O(1)e−T λ̄

n−k
k−1 . (4.84)

This proves Theorem 1.4. ut
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