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Abstract. We develop a potential theoretic approach to the problem of metastability for reversible
diffusion processes with generators of the form−ε1+∇F(·)∇ onRd or subsets ofRd , whereF is
a smooth function with finitely many local minima. In analogy to previous work on discrete Markov
chains, we show thatmetastable exit timesfrom the attractive domains of the minima ofF can be
related, up to multiplicative errors that tend to one asε ↓ 0, to the capacities of suitably constructed
sets. We show that these capacities can be computed, again up to multiplicative errors that tend to
one, in terms of local characteristics ofF at the starting minimum and the relevantsaddle points.
As a result, we are able to give the first rigorous proof of the classicalEyring–Kramers formulain
dimension larger than 1. The estimates on capacities make use of their variational representation
and monotonicity properties of Dirichlet forms. The methods developed here are extensions of our
earlier work on discrete Markov chains to continuous diffusion processes.
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1. Introduction

In this paper and a follow-up paper [BGK] we investigate reversible diffusion processes
Xε(t), given as solutions of an Itô stochastic differential equation

dXε(t) = −∇F(Xε(t))dt +
√

2εdW(t) (1.1)
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on leave from: Centre de Physique Théorique, CNRS, Luminy, Case 907, F-13288 Marseille,
Cedex 9, France
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on a regular domain� ⊆ Rd , where the drift∇F is generated by a potential function that
is sufficiently regular. We are interested in the case when the functionF(x) has several
local minima. We always assume thatXε is killed on�c if it exists.

This problem is a special case of the more general class ofsmall random perturba-
tions of dynamical systemsstudied since the early 1970s by Freidlin and Wentzell (see
their standard text [FW]) using large deviation methods. However, investigations into this
problem can be traced back much further in the physical and chemical literature [Ey, Kra].
One of the earliest textbook sources is the book by Eyring et al. [GLE]. Typical questions
related to this problem are:

• What are the typical times to reach the neighborhoods of minimuma starting from a
minimumb of the functionF? (average, distribution).

• What are typical paths for such a process?
• What is the nature of the low-lying spectrum of the generator of this process? What are

the eigenfunctions associated to small eigenvalues?

It should come as no surprise that these questions are well understood on a qualitative
level. However, there is at present still a considerable gap betweenmathematically rigor-
ousandheuristicresults. Rigorous results are mostly based on the theory of large devia-
tions developed in this context by Freidlin and Wentzell. They are very flexible and apply
in a variety of situations well beyond the setting of (1.1). However, they yield generally
only rough asymptotic estimates in the parameterε (“logarithmic equivalence”) for expo-
nentially small (or large) quantities such as escape times or small eigenvalues. A second,
very natural approach that was initiated very early in the physical and chemical literature
is based on what is calledsemi-classical analysisor WKB-theory(for a very recent re-
view on these methods, see e.g. [Kolo]). These methods provideformalasymptotic series
expansions inε and can be seen as an infinite-dimensional version of the saddle point
method. In many cases, such expansions can today be justified by what has become to
be calledmicrolocal analysis, which was mainly developed to solve quantum mechanical
tunneling problems [HS1, HS2, HS3, HS4]. Unfortunately, the stochastic tunneling prob-
lem between potential wells corresponds to a particularly intricate quantum mechanical
problem, called “tunneling through non-resonant wells”. In this situation, classical WKB
theory breaks down, since it is not possible to find a global solution based on a single
power-series ansatz. On a formal level, these problems can be solved using matched se-
ries expansions where different ansätze in different domains are matched in overlapping
regions to determine coefficients (see in particular [MatSch1, BuMa1, BuMa2, MS1]).
Justifying these expansions is, however, far from trivial and constitutes, as Kolokoltsov
[Kolo] points out, “one of the main and still open questions of the theory”, except in the
cased = 1 where considerable simplifications occur [KoMak, BuMa1, BuMa2, KN].
Indeed, while it appears clear that the methods introduced in the third paper on quantum
mechanical tunneling by Helffer and Sjöstrand [HS3] should in principle allow solving
this problem, this program has not been carried out in this context yet.

Here we take a new look at this old problem using neither large deviations nor semi-
classical expansions, but some rather classical ideas frompotential theory. The deep con-
nection between Markov processes and potential theory has been well known since at
least the work of Kakutani [Kaku] and is the subject of numerous textbooks (see in par-
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ticular the fundamental monograph by Doob [Doo]). This connection has found numerous
and widespread applications (see e.g. [DS, Szni] and references therein).

The particular approach we present here is distinguished by the fact that it largely
avoids the attempt to solve the boundary value problems that arise in this connection by
straightforward PDE methods, but tries to reduce most problems to that of the computa-
tion of Newtonian capacitieswhich are then estimated usingvariational principlesand
monotonicity properties. In this, it is close in spirit to the “electric network” approach
used extensively in the study of recurrence and transience properties of Markov chains
[NS, DS]. This approach to the metastability problem was initiated in fact in two pre-
ceding papers [BEGK1, BEGK2] in the context ofdiscreteMarkov chains, including, in
particular (in [BEGK1]), discrete versions of (1.1). In fact, the discrete setting offers (as
we shall point out in due place) several advantages for this approach and makes it appear
probabilistically much more transparent than in the diffusion setting. We suspect that this
may have been the reason why the ideas to study the spectral problem of generators of
Markov chains presented in the 1973 paper of Wentzell [Wen] and that are somewhat
similar to our approach have apparently not been developed in the direction we are go-
ing. While the diffusion case makes probabilistic interpretations more complicated, the
present paper may clarify our approach as it forces us to develop in much more detail the
fundamental potential theoretic background from a purely analytic point of view. Let us
mention that in our view the approach presented here offers two main advantages over the
microlocal approach. First, it is technically considerably simpler, as we hope these papers
will demonstrate, and second, it is more flexible and can be applied in a broad range of
discrete and continuous Markov processes. Its drawback, on the other hand, is that it may
not readily be extended to yield systematic asymptotic expansions to all orders inε. Also,
we make strong use of the fact that we are investigating a stochastic (or substochastic)
operator, and our method cannot be extended to arbitrary elliptic operators.

We will now formulate our assumptions onF in a precise way.

Assumptions (H.1)

(i) F ∈ C3(�),� ⊆ Rd open and connected.
(ii) If � is unbounded, then

(ii.1) lim inf x→∞ |∇F(x)| = ∞, and
(ii.2) lim inf x→∞ (|∇F(x)| − 21F(x)) = ∞.

For any two setsA,B ⊂ �, define theheight of the saddle betweenA andB by

F̂ (A,B) ≡ inf
ω :ω(0)∈A,ω(1)∈B

sup
t∈[0,1]

F(ω(t)), (1.2)

where the infimum is over all continuous pathsω in �.

Remark. Condition (H.1) ensures that the resolvent of the generatorLε is compact for
ε sufficiently small. Moreover, it implies thatF has exponentially tight level sets in the
sense that for alla ∈ R, ∫

y :F(y)≥a
e−F(y)/ε dy ≤ Ce−a/ε, (1.3)

whereC = C(a) < ∞ is uniform inε ≤ 1.
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In the following, the notion of saddle points ofF will be crucial. The set of saddle
points is intuitively the subset of the setG(A,B) = {z : F(z) = F̂ (A,B)} that cannot be
avoided by any pathsω that try to stay as low as possible. In general we have to define
this set as follows:

Definition 1.1. LetP(A,B) denote the set ofminimal pathsfromA toB,

P(A,B) ≡ {ω ∈ C([0,1], �) : ω(0) ∈ A, ω(1) ∈ B, sup
t∈[0,1]

F(ω(t)) = F̂ (A,B)}.

(1.4)
A gateG(A,B) is a minimal subset ofG(A,B) with the property that all minimal paths
intersectG(A,B). Note thatG(A,B) is in general not unique. Then the setS(A,B) of
saddle pointsis the union over all gatesG(A,B).

To avoid complications that are not our main concern here, we will make the general
assumption that all saddle points we will deal with are non-degenerate in the following
sense:

Assumption (ND)

(o) The set,M, of local minima ofF is finite, and for any two local minimax, y of F , the
setG(x, y) is uniquely defined and consists of a finite set of isolated pointsz∗i (x, y).

(i) The Hessian matrix ofF at all local minimaxi ∈ M and all saddle pointsz∗i is
non-degenerate (i.e. has only non-zero eigenvalues).

When dealing with domains�with non-empty boundary we will encounter situations
where saddle points in∂� are relevant. While this does not lead to serious problems per
se, there appears rather naturally a great variety of cases that makes the formulation of
general results rather cumbersome. We prefer to avoid having to discuss these issues by
dealing exclusively with situations in which the boundary is never reached by the process,
i.e. we make the further

Assumption (IB). For any sequence of pointsxi ∈ � such that limi↑∞ xi ∈ ∂�,
limi↑∞ F(xi) = ∞.

Assumptions (H1), (ND), and (IB) will be assumed to hold throughout this paper.

Remark. For many of the results of this paper, these conditions can be relaxed consid-
erably. In particular, one may consider functionsF = Fε depending onε, and one may
also consider cases with infinitely many minima. This may, however, lead to different
questions and different results, and we prefer to explain our methods in a simple and
well-confined setting.

Our main interests are the distribution of stopping times

τA ≡ inf {t > 0 :X(t) ∈ A} (1.5)

for the process starting at one minimum, sayx ∈ M, of F , whenA = Bρ(y) is a small
ball of radiusρ around another minimum,y ∈ M. It will actually become apparent that
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the precise choice of the hitting set is often not important, and that the problem is virtually
equivalent to considering the escape from a suitably chosen neighborhood ofx, provided
this neighborhood contains the relevantsaddle pointsconnectingx andy.

In this paper we will study the mean values of such stopping times. Our approach will
consist of two distinct steps:

(i) Using variational principles, we will give very sharp estimates on some relevantca-
pacities.

(ii) We will then show that the expected times of interest can be expressed in terms of
these capacities andequilibrium potentials.

In the follow-up paper [BGK] we will consider the associated spectral problems. A corol-
lary will then show that metastable exit times have an asymptotically exponential distri-
bution.

To be able to state our results, we need to recall a number of key concepts from
potential theory which will allow us to establish some notation.

2. Some basic background on potential theory

In this section we collect notations and formulas from potential theory that will be used
throughout the paper. All of these results are standard and can be found in the classical
textbooks on potential theory, e.g. [BluGet, Doo, Szni].

The generators of our diffusion processes are linear elliptic operatorsLε of the form

Lε = −εeF(·)/ε∇e−F(·)/ε∇ = −ε1+ (∇F(·),∇) (2.1)

defined (a priori) onC2(�), where� ⊆ Rd , andF ∈ C2(�). The set�, and in fact
all subsets ofRd that we will consider in this paper will be regular (a setA ⊂ Rd is
calledregular if its complement is a region with continuously differentiable boundary).
By construction,Lε is symmetric onL2(�, e−F(x)/εdx) with Dirichlet boundary condi-
tions on�c.

Green’s function. Consider forλ ∈ C the Dirichlet problem

(Lε − λ)f (x) = g(x), x ∈ �,

f (x) = 0, x ∈ �c.
(2.2)

The associated Dirichlet Green functionGλ�(x, y) is the kernel of the inverse of the oper-
atorLε − λ, i.e. for anyg ∈ C0(�),

f (x) =

∫
�

Gλ�(x, y)g(y) dy. (2.3)

Note that the Green function is symmetric with respect to the measuree−F(x)/εdx, i.e.

Gλ�(x, y) = e−F(y)/εGλ�(y, x)e
F(x)/ε . (2.4)
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Recall that the spectrum ofLε (more precisely the Dirichlet spectrum of the restriction of
Lε to�, which we will sometimes denote byL�ε ) is the complement of the set of values
λ for whichGλ� defines a bounded operator.

Poisson kernel. Consider forλ ∈ C the boundary value problem

(Lε − λ)f (x) = 0, x ∈ �,

f (x) = φ(x), x ∈ �c.
(2.5)

We denote byH λ
� the associated solution operator which can be represented in the form

f (x) = (H λ
�φ)(x) = −ε

∫
∂�

e−[F(y)−F(x)]/εφ(y)∂n(y)G
λ
�(y, x) dσ�(y), (2.6)

wheredσ� denotes the Euclidean surface measure on∂�, and∂n(y) denotes the derivative
in the direction of theexteriornormal vector to∂� at y, acting on the first argument of
the functionGλ�(y, x).

The relation between the operatorH λ
� and the Green function (2.6) is a consequence

of the two Green identities that here take the form∫
�

dx e−F(x)/ε(ε∇φ(x) · ∇ψ(x)− ψ(x)(Lεφ)(x))

= ε

∫
∂�

e−F(x)/εψ(x)∂n(x)φ(x) dσ�(x) (2.7)

(first Green identity) and∫
�

e−F(x)/ε dx (φ(x)(Lε − λ)ψ(x)− ψ(x)(Lε − λ)φ(x))

= ε

∫
∂�

e−F(x)/ε(ψ(x)∂n(x)φ(x)− φ(x)∂n(x)ψ(x)) dσ�(x) (2.8)

(second Green identity), whereφ,ψ ∈ C2(�).

Equilibrium potential and equilibrium measure. LetA,D ⊂ Rd be regular and such
that(A∪D)c ⊂ dom(F ). Then theequilibrium potential(of thecapacitor(A,D)), hλA,D,
is defined as the solution of the Dirichlet problem

(Lε − λ)hλA,D(x) = 0, x ∈ (A ∪D)c,

hλA,D(x) = 1, x ∈ A,

hλA,D(x) = 0, x ∈ D.

(2.9)

Note that (2.9) has a unique solution providedλ is not in the spectrum ofL(A∪B)c

ε .
Theequilibrium measure, eλA,D, is defined as the unique measure on∂A such that

hλA,D(x) =

∫
∂A

GλDc (x, y) e
λ
A,D(dy). (2.10)
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If we considerLε as a map fromH n(�) toH n−2(�), (2.10) may also be written as

eλA,D(dy) = (Lε − λ)hλA,D(y). (2.11)

where of course both sides are to be interpreted as measures equipped with the weak
topology. A simple computation using the second Green identity and the Poisson kernel
representation (2.6) allows us to compute the right hand side of (2.11) as

(Lε − λ)hλA,D(x) = ε∂n(x)h
λ
A,D(x)dσA∪D(x)− λ1A dx. (2.12)

Capacity.Given a capacitor,(A,D), andλ ∈ R, theλ-capacityof the capacitor is defined
as

capλA(D) ≡

∫
∂A

e−F(y)/εeλA,D(dy). (2.13)

Using (2.12) and the second Green identity, one deduces from (2.13) that

capλA(D) = ε

∫
(A∪D)c

dx e−F(x)/ε
[
‖∇hλA,D(x)‖

2
2 −

λ

ε
(hλA,D(x))

2
]

≡ 8λ(A∪D)c (h
λ
A,D).

(2.14)
8λ� is called theDirichlet form (or energy) for the operatorLε − λ on�.

A fundamental consequence of (2.14) is the variational representation of the capacity
if R 3 λ ≤ 0, namely

capλA(D) = inf
h∈HA,D

8λ(A∪D)c (h), (2.15)

whereHA,D denotes the set of functions

HA,D ≡ {h ∈ W1,2(�) : h(x) = 0 for x ∈ D, h(x) = 1 for x ∈ A}. (2.16)

whereW k,n(�) denotes the space ofk-times weakly differentiable functions whose deriv-
atives of order≤ k are inLn(�).

Probabilistic interpretation: equilibrium potential. Note thatLε generates a Markov
diffusion processXε(t) on� (killed on ∂�). If λ = 0, the equilibrium potential has a
natural probabilistic interpretation in terms of hitting probabilities of this process, namely,

hA,D(x) ≡ h0
A,D(x) = Px [τA < τD]. (2.17)

The equilibrium measure also has an interpretation, namely

eA,D(dy) = lim
t↓0
t−1EyPXε(t)[τD < τA]dy (2.18)

(see e.g. [Szni, Section 2.3]). While this gives in principle a probabilistic interpretation
of the capacity as well, this is much less useful than in the discrete space, discrete time
setting (see [BEGK2]).

If λ < 0, the equilibrium potential still has a probabilistic interpretation in terms of
the substochastic processXλε (t) obtained by killing the processXε(t) with rate−λ (and
on ∂�). If τ denotes the time whenXλε is killed, we have

hλA,D(x) = Pλx [τA < τD ∧ τ ]. (2.19)
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More importantly, for generalλ we have

hλA,D(x) = ExeλτA1τA<τD (2.20)

for x ∈ (A ∪ D)c, whenever the right-hand side exists, so thathλ can be seen as the
Laplace transform of the hitting timeτA of the process starting atx and killed inD.

Note that (2.20) implies that

d

dλ
hλ=0
A,D(x) = ExτA1τA<τD . (2.21)

Differentiating the defining equation ofhλA,D then implies that the function

wA,D(x) =

{
ExτA1τA<τD , x ∈ (A ∪D)c,
0, x ∈ A ∪D,

(2.22)

solves the inhomogeneous Dirichlet problem (to simplify notation, we set from now on
hA,D ≡ h0

A,D, etc.)

LεwA,D(x) = hA,D(x), x ∈ (A ∪D)c,

wA,D(x) = 0, x ∈ A ∪D.
(2.23)

Therefore, the mean hitting time inA of the process killed inD can be represented in
terms of the Green function as

ExτA1τA<τD =

∫
(A∪D)c

dy G(A∪D)c (x, y)hA,D(y). (2.24)

Note that in the particular case whenD = ∅, we get the familiar Dirichlet problem

LεwA(x) = 1, x ∈ Ac,

wA(x) = 0, x ∈ A,
(2.25)

and the representation

ExτA =

∫
Ac
dy GAc (x, y). (2.26)

The full beauty of all this comes out when combining (2.10) with (2.24), resp. (2.26).
Namely, letBρ(x) be the ball of radiusρ centered atx. Then, by Fubini’s theorem,∫

∂Bρ (x)

e−F(z)/ε EzτAeBρ (x),A(dz) =

∫
Ac
dy e−F(y)/ε

∫
∂Bρ (x)

GAc (y, z) eBρ (x),A(dz)

=

∫
Ac
dy e−F(y)/εhBρ (x),A(y) (2.27)
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and∫
∂Bρ (x)

e−F(z)/εEzτA1τA<τD eBρ (x),A∪D(dz)

=

∫
(A∪D)c

dy e−F(y)/εhBρ (x),A∪D(y)hA,D(y). (2.28)

Notice that in the case of discrete Markov processes, we can replace the ballBρ(x) by
the single pointx. In that case (2.27) and (2.28) yield directly formulae for mean hitting
times in terms of capacities and equilibrium potentials. In this context they provided the
basis for connecting in a precise way capacities and mean exit times, and, ultimately,
eigenvalues ofLε [BEGK2]. In the diffusion case, the usefulness of these equations will
become apparent only when we have some a priori regularity estimates for the mean times
as functions of the starting point.

3. Results

We are now ready to state the main results of this paper. The basis for the success of our
approach is the fact that capacities can be estimated very sharply.

Theorem 3.1. Assume thatA,B ⊂ Rd are closed and

(i) dist(S(A,B),A ∪ B) ≥ δ > 0 for someδ independent ofε,
(ii) bothA andB contain a closed ball of radius at leastε.

Then, ifS(A,B) = {z∗1, . . . , z
∗
n},

capA(B) = e−F(z
∗(x,y))/ε (2πε)

d/2

2π

k∑
i=1

|λ∗

1(z
∗

i )|√
|det(∇2F(z∗i ))|

(1 +O(
√
ε |ln ε|)), (3.1)

whereλ∗

1(z
∗

i ) denotes the negative eigenvalue of the Hessian atz∗i .

Remark. In cases when some saddle points are degenerate, one can also obtain precise,
but somewhat less explicit expressions, as will be clear from the proof.

Our next result concerns the mean metastable exit times from a minimumxi .

Theorem 3.2. Letxi be a minimum ofF and letD be any closed subset ofRd such that:

(i) if Mi ≡ {y1, . . . , yk} ⊂ M enumerates all those minima ofF such thatF(yj ) ≤

F(xi), then
⋃k
j=1Bε(yj ) ⊂ D,

(ii) dist(S(xi,Mi),D) ≥ δ > 0 for someδ independent ofε.

Then

Exi τD =
2πe[F(z∗)−F(xj )]/ε√

det(∇2F(xi))
∑k
j=1

|λ∗

1(z
∗
j )|√

|det(∇2F(z∗j ))|

(1 +O(
√
ε |ln ε|)) (3.2)
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Remark. In the case when there is a single saddle pointz∗, this reduces to the classical
Eyring formula [GLE, MS1]

Exi τD =
2π

|λ1(z
∗

i )|

√
|det(∇2F(z∗))|√
det(∇2F(xi))

e[F(z∗)−F(xj )]/ε(1 +O(ε1/2
|ln ε|)). (3.3)

Note that the coefficient 2π differs from theπ that is found in [MS1] by a factor 2 since
we consider the transition through, and not just the arrival at the saddle point.

4. Some useful tools and a priori estimates

This section collects a number of tools and a priori estimates that extend the simple prob-
abilistic instruments used in the discrete context of [BEGK2] to the diffusion setting.

Regularity estimates. To be able to pass from the discrete setting of [BEGK1, BEGK2]
to the setting of diffusion processes, we will need some a priori control on the regular-
ity properties of solutions of the Dirichlet problems introduced before. Fortunately, this
theory is well developed in the general setting of second order linear elliptic differential
equations, and we can draw on standard results.

The following two key lemmata are taken from [GT], more precisely Corollaries 9.24
and 9.25. They concern second order elliptic operatorsL = aij (x)Dij + bi(x)Di + c(x),
whereaij ∈ C0(�), bi, c ∈ L∞(�). Assume that

3(ξ, ξ) ≥ (ξ, a(x)ξ) ≥ λ(ξ, ξ) > 0 ∀ξ ∈ Rd , (4.1)

let moreoverγ = 3/λ, and chooseν such that(‖b‖/λ)2 ≤ ν, and |c|/λ ≤ ν. Let
W2,n(�) denote the Banach space of two-times (weakly) differentiable functions whose
derivatives of order≤ 2 are inLn(�).

Lemma 4.1 (Corollary 9.25 in [GT]). If u ∈ W2,n(�) is positive and satisfiesLu = 0
in �, then for any ballB2R(y) ⊂ �,

sup
z∈BR(y)

u(z) ≤ C inf
z∈BR(y)

u(z), (4.2)

where the constantC = C(n, γ, νR2) < ∞ depends only onγ andνR2.

Lemma 4.2 (Corollary 9.24 in [GT]). If u ∈ W2,n(�) is positive and satisfiesLu = f

in a ballBR0(x), then for any ballBR(x), R ≤ R0,

oscBR(x) u ≤ C

(
R

R0

)α
(oscBR0(x)

u+ R0‖f − cu‖n,BR0(x)
), (4.3)

whereoscA u ≡ supA u − infA u and the constantsα = α(n, γ, νR2
0) > 0 andC =

C(n, γ, νR2
0) < ∞ depend only onγ andνR2

0.
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The way we will use these lemmata is to consider domains depending onε chosen in
such a way that the numerical constantsC andα are independent ofε. Since for the
operatorLε we have3 = λ = ε, it follows that γ = 1, and we can chooseν =

ε−2 supy∈� ‖∇F(y)‖2
∞.

An analytic renewal estimate.In this section we consider only the caseλ ≡ 0 and we
omit the superscript 0. One of the most useful formulas applied in our analysis of discrete
Markov chains is therenewal equation

Px [τA < τD] =
Px [τA < τD∪x ]

Px [τA∪D < τx ]
(4.4)

obtained from decomposing the event{τA < τD} according to whether the process visits
x before going toA or not and using the Markov property. While this formula is still true
in the diffusion case (ifd > 1), it is useless, since the denominator equals one and the nu-
merator equals the left-hand side. A natural idea in this situation would be to decompose
not according to whether the starting pointx is revisited, but whether a suitably chosen
small neighborhood ofx is revisitedafter a suitably chosen short time, or not (in analogy
to the probabilistic representation of capacity). However, any such procedure runs quickly
into problems, as it is impossible to obtain an exact renewal argument.

Fortunately, it is rather easy to obtain a useful analogue of (4.4) by purely analytic
considerations. In fact we will prove the following proposition:

Proposition 4.3. Let A,D be disjoint closed sets whose complements are regular, and
let x ∈ (A ∪ D)c be such thatdist(x,A ∪ D) > cε. LetBρ(x) denote the ball of radius
ρ centered atx. Then for anyρ ≤ cε, c < ∞, there exists a finite positive constant
(depending only onc and on the value of‖∇F(x)‖∞) such that

hA,D(x) ≤ C
capBρ (x)(A)

capBρ (x)(D)
. (4.5)

Proof. We begin by proving the following lemma.

Lemma 4.4. With the notation of the proposition,

hA,D(x) ≤ sup
z∈∂Br (x)

G(A∪D)c (z, x)e
F(x)/ε

∫
∂Bρ (x)

e−F(y)/εeD∪Bρ (x),A(dy),

hA,D(x) ≥ inf
z∈∂Br (x)

G(A∪D)c (z, x)e
F(x)/ε

∫
∂Bρ (x)

e−F(y)/εeD∪Bρ (x),A(dy),

(4.6)

whereeA∪D,Br (x) is the equilibrium measure defined in(2.10).

Proof. Let� be a regular domain, and letf be a function defined on∂�. Recall that the
operatorH� ≡ H λ=0

� defined in (2.6) can be seen as mapping a functionf defined on∂�
to a harmonic function (with respect to the operatorLε) on�. We callH�f theharmonic
extensionof f .
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Choosing� ≡ (A ∪ D)c, we see that the equilibrium potentialhA,D has the mean-
value property

hA,D(x) = H(A∪D)chA,D(x). (4.7)

Now letC ⊂ (A∪D)c be a regular neighborhood ofx. SincehA,D∪C andhA,D coincide
on ∂(A ∪D), it is obvious that

hA,D = H(A∪D)chA,D∪C (4.8)

on (A ∪ D ∪ C)c. Using the first Green identity (2.7) for� = 0 ≡ (A ∪ D ∪ C)c,
φ ≡ G(A∪D)c(x, ·) andψ ≡ hA,D∪C , we get

H(A∪D)chA,D∪C(x)

= −ε

∫
∂(A∪D)

e(F (x)−F(y))/εhA,D∪C(y)∂n(y)G(A∪D)c (y, x) dσA∪D(y)

= −ε

∫
∂C

e(F (x)−F(y))/εG(A∪D)c (y, x)∂n(y)hA,D∪C(y) dσC(y)

= −

∫
∂C

e(F (x)−F(y))/εG(A∪D)c(y, x) eA,D∪C(dy), (4.9)

wheren(y) is the inner unit normal aty ∈ ∂(A∪D ∪C). Here we have used the fact that
hA,D∪C vanishes on∂C and that the Green function vanishes whenx ∈ ∂(A ∪ D). The
last equality follows from (2.12) together with (2.11).

We now chooseC ≡ Bρ(x). If we could replaceG(A∪D)c (y, x) by a constant value
on ∂Bρ(x), we could extract this value from the integral; the remaining integral would
then be some partial capacity. In fact, in the discrete case we could choose instead of the
ball Bρ(x) just the pointx, and then this problem was absent, and we would readily get
(4.4). In the present situation we still get two bounds, namely

hA,D(x) ≥ − sup
z∈∂Bρ (x)

G(A∪D)c (z, x)e
F(x)/ε

∫
∂Bρ (x)

e−F(y)/ε eA,D∪Bρ (x)(dy),

hA,D(x) ≤ − inf
z∈∂Bρ (x)

G(A∪D)c (z, x)e
F(x)/ε

∫
∂Bρ (x)

e−F(y)/ε eA,D∪Bρ (x)(dy).

(4.10)

But, trivially, hA∪B,C = 1 − hC,A∪B , and hence, by (2.11) withλ = 0, −eA∪B,C =

eC,A∪B , which implies (4.6). ut

At this point it is clear that we will need to be able to control the Green function near the
diagonal. Before turning to these estimates, we bring (4.10) in a slightly more suitable
form. Namely we will show that

Lemma 4.5. In the situation of the previous lemma,

hA,D(x) ≤ sup
z∈∂Bρ (x)

G(A∪D)c (z, x)e
F(x)/ε capBρ (x)(A). (4.11)
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Proof. By (2.18), it is obvious thateD∪Bρ (x),A(dy) ≤ eBρ (x),A(dy). But then∫
∂Bρ (x)

e−F(y)/ε eD∪Bρ (x),A(dy) ≤

∫
∂Bρ (x)

e−F(x)/ε eBρ ,A(dy) = capBρ (x)(A). (4.12)

Thus the upper bound in (4.6) implies (4.11). ut

At this point we also want to express the Green function in the bounds of Lemma 4.4 in
terms of capacities. We proceed as in (2.27) to get this time

eF(x)/ε
∫
∂Bρ (x)

e−F(z)/εG(A∪D)c(x, z) eBρ (x),A∪D(dz)

=

∫
∂Bρ (x)

G(A∪D)c(z, x) eBρ (x),A∪D(dz) = hBρ (x),A∪D(x) = 1. (4.13)

This implies that

1 ≥ eF(x)/ε inf
z∈Bρ (x)

G(A∪D)c (x, z)

∫
Bρ (x)

dz e−F(z)/ε eBρ (x),A∪D(dz)

= eF(x)/ε inf
z∈Bρ (x)

G(A∪D)c (x, z)capBρ (x)(A ∪D), (4.14)

i.e.

eF(x)/ε inf
z∈Bρ (x)

G(A∪D)c (x, z) ≤
1

capBρ (x)(A ∪D)
. (4.15)

It is clear at this point that we cannot continue unless we can compare the infimum and
the supremum ofG(A∪D)c(z, x) with z ∈ Bρ(x). But such a result is provided by the
Harnack inequalities.

Lemma 4.6. If ρ = cε for somec < ∞, then there exists a constantC depending only
on c such that

sup
z∈Bρ (x)

G(A∪D)c (z, x) ≤ C inf
z∈Bρ (x)

G(A∪D)c(z, x). (4.16)

Proof. We will apply Lemma 4.1. If we chooseR ≤ ε, we can use (4.2) with a constant
that does not depend1 on ε.

Note thatu(z) ≡ G(A∪D)c (z, x) is harmonic in(A ∪D)c\x. Thus ifρ > 2R, thenu
is harmonic inB2R(z) for anyz ∈ ∂Bρ(x). Now leta, b ∈ ∂Bρ(x). Assume thata is such
that supz∈∂Bρ (x) u(z) = u(a), and infz∈∂Bρ (x) u(z) = u(b). Then we can findk ≤ πρ/R

pointsx1, . . . , xk ∈ ∂Bρ(x) such thatx1 = a, b ∈ BR(xk), andBR(xi) ∩ BR(xi+1) 6= ∅.

1 If x is a (quadratic) critical point ofF , then we can even chooseR = ε1/2.
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Clearly then

u(a) ≤ C inf
z∈BR(a)

≤ C inf
z∈BR(a)∩BR(x2)

u(z) ≤ C sup
z∈BR(x2)

u(z) ≤ C2 inf
z∈BR(x2)

u(z)

≤ · · · ≤ Ck−1 sup
z∈BR(xk)

u(z) ≤ Ck inf
z∈BR(xk)

u(z) = u(b). (4.17)

Thusu(a) ≤ Cρ/Ru(b). Therefore, ifρ = cε for some finite constantc, andR = ε,
then sup and inf are related by at most a finiteε-independent constant. This proves the
lemma. ut

Combining now Lemma 4.6 with Lemma 4.5 and (4.14), we arrive at the assertion of the
proposition. ut

A priori bounds on capacities. To make use of the renewal estimate (4.5) we need of
course some bounds on the capacities. The next proposition provides a first set of rough
bounds, which provide the necessary estimates in the equilibrium potential that will later
be used to get sharp bounds on capacities.

Proposition 4.7. LetD be a closed set, andx ∈ Dc. Denote byz∗ = z∗(x,D) a point
such that

F(z∗) = inf
γ : γ (0)=x, γ (1)∈D

sup
t∈[0,1]

[FN (γ (t))], (4.18)

where the infimum is over all continuous paths leading fromx to D. Suppose thatρ ≤

cε/‖∇F(z∗)‖∞. Then there is a constantC > 0 such that

capBρ (x)(D) ≥ C(‖∇F(z∗)‖∞ +
√
ε)ρd−1e−F(z

∗)/ε, (4.19)

capBρ (x)(D) ≤ εCρd−2e−F(z
∗)/ε . (4.20)

Proof. To prove the lower bound we use the variational representation of capacities (2.15)
and some obvious monotonicity properties. We begin by choosing a smooth pathω going
from x to D in such a way that it remains in the level setF(z) ≤ F(z∗), with equality
holding only when passingz∗. In fact, the canonical path can be constructed using pieces
of the deterministic trajectory of the unperturbed equationdXε(t) = −∇F(Xε(t)) dt
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in rather obvious manner, but this is not important at the moment. Given this path, we
parametrize it by arc-length, so that‖ω̇(t)‖2 = 1 for all time.

Givenω(t), we construct the tube of widthρ aroundω(t),

ωρ ≡ {z ∈ Rd : ∃t∈[0,|ω|] ‖ω(t)− z‖2 ≤ ρ}. (4.21)

Let us denote byDρ thed − 1-dimensional disk of radiusρ centered at the origin. The
important point to notice is that

‖∇h(ω(t)+ z⊥)‖
2
2 ≥

[
d

dt
h(ω(t)+ z⊥)

]2

. (4.22)

Therefore we may bound the Dirichlet form by

8�(h) ≥ ε

∫
Dρ

dz⊥

∫
|ω|

0
dt eF(ω(t)+z⊥)/ε

[
d

dt
h(ω(t)+ z⊥)

]2

. (4.23)

The minimization problem is now trivial, i.e. it decomposes for each fixedz⊥ into a one-
dimensional problem whose solution is well known. In fact, the minimizerhz⊥(t) is the
solution of the 1-dimensional Dirichlet problem[

−ε
d

dt
+
d

dt
F (ω(t)+ z⊥)

]
d

dt
hz⊥(t) = 0,

hz⊥(0) = 1,

hz⊥(|ω|) = 0,

(4.24)

whose solution is readily found to be

hz⊥(t) =

∫
|ω|

t
ds eF(ω(s)+z⊥)/ε∫

|ω|

0 ds eF(ω(s)+z⊥)/ε
. (4.25)

Inserting this solution into the lower bound (4.23) yields

capBρ (x)(D) ≥ ε

∫
Dρ

dz⊥

[∫
|ω|

0
dt eF(ω(t)+z⊥)/ε

]−1

. (4.26)

Now the stated lower bounds results follow from simple saddle point evaluations of the
integral in the denominator.

To prove the upper bound, just note that in the case whenz∗ = x, we can always
choose a functionh that is equal to one onBρ(x) and that decays to zero over a distanceρ.
Then ‖∇h‖2 ≤ 1/ρ on a set of volumeCρd , and zero elsewhere. The upper bound
(4.20) follows immediately. Ifz∗ 6= x, we choose a trial function that changes from 0
to 1 in aρ-neighborhood of the saddlez∗; away fromz∗ the change takes place in a set
whereF(y) > F(z∗), so that the resulting additional contribution to the Dirichlet form is
exponentially suppressed. This also yields (4.20). ut
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Remark. This estimate is in general quite poor, in particular whenz∗ 6= x. We will prove
sharp results in that case in Section 6. The crude bounds serve two purposes: 1) to yield
an a priori bound on the equilibrium potential (in conjunction with Proposition 4.3) that
will then be used to prove a sharp estimate on capacities, and 2) to get an a priori estimate
on the spectrum of certain Dirichlet operators.

Bounds on the equilibrium potential. Combining the renewal bound on the equilibrium
obtained in Proposition 4.5 with the bound on capacities from Proposition 4.7 yields very
sharp estimates on the equilibrium potential in the level set of the saddle between the sets
A andD.

Corollary 4.8. LetA andD be closed sets and assume thatz∗(A,D) 6∈ A ∪ D. Then
there is a finite positive constantC such that, forx 6∈ A ∪D, andz∗(x,D) 6= x,

hA,D(x) ≤ Cε−1/2e−[F(z∗(x,A))−F(z∗(x,D))]/ε . (4.27)

Remark. This bound is useful only whenF(z∗(x,D)) > F(x). If this is not the case
one may use the fact thathA,D(y) = 1 − hD,A(y) and apply (4.27) onhD,A(y). This
yields good control wheneverx is below the level set of the saddlez∗(A,D).

Proof of Corollary 4.8. The proof is straightforward. We just insert the bounds on capaci-
ties of Proposition 4.7 into the renewal bound on the equilibrium potential of Lemma 4.5,
choosingρ = Cε. ut

5. Sharp estimates on capacities

In this section we show how to get coinciding upper and lower bounds on the relative
Newtonian capacity of two balls of radiusρ centered at the local minimax, y of the
functionF . We assume thatρ is so small thatz∗(x, y) is not contained in these balls2,
and that the radii are at leastε. Let us denote these sets byBx andBy , respectively.

We denote bySx,y the set of points that realize the minimax in the definition of
F̂ (x, y) (cf. (1.2)). We will assume thatSx,y is a (finite) set of points.

Theorem 5.1. Let s∗1, . . . , s
∗

k denote the saddle points connectingx to y, and suppose
that Assumption(ND) holds forSx,y . Let λ∗

1(s
∗

i ) denote the unique negative eigenvalue
of the Hessian ofF at s∗i . Then, under the above hypothesis on the functionF ,

capBx (By) = e−F̂ (x,y)/ε
(2πε)d/2

2π

k∑
i=1

|λ∗

1(s
∗

i )|√
|det(∇2F(s∗i ))|

(1 +O(
√
ε |ln ε|)). (5.1)

2 It will become clear from the proof that the precise form of these sets is irrelevant for the result.
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Proof. The capacity capBx (By) satisfies the Dirichlet principle (2.15),

capBx (By) = inf
h∈Hx

y

8(h) (5.2)

(for simplicity we abbreviate8 ≡ 8(Bx∪By )c ), whereHxy is the function space

Hxy ≡ {h ∈ W1,2(Rd , e−F(x)/ε dy) : h(z) ∈ [0,1], h|Bx ≡ 1, h|By ≡ 0}. (5.3)

For simplicity we consider the case of a single saddle point,s∗, first. Without restric-
tion of generality we can choose coordinates such thats∗ = 0 and

F(z) = F(0)−
|λ∗

1|

2
z2

1 +

d∑
i=2

λ∗

i

2
z2
i +O(‖z‖3

2) (5.4)

for small‖z‖2. Define a neighborhood of zero by

Cδ ≡

[
−δ/

√
|λ∗

1|, δ/

√
|λ∗

1|

]
×

d∏
i=2

[
−2δ/

√
λ∗

i ,2δ/
√
λ∗

i

]
. (5.5)

Since we have assumed that there is a single saddle point at the communication height
betweenx andy, it is possible to chooseδ > 0 so small that there exists a stripSδ of
width 2δ/

√
|λ∗

1| containing 0 and separatingx andy in the sense that any path connecting
these points must crossSδ, and that for allz ∈ Sδ\Cδ, F(z) ≥ δ2. LetDx andDy be the
connected components ofRd \ Sδ containingx andy, respectively.

The upper bound. To prove an upper bound on the capacity we just choose a function
h+ for our convenience. We will make the choice

h+(z) = 1, z ∈ Dx, h+(z) = 0, z ∈ Dy,

h+ on Sδ\Cδ arbitrary, except‖∇h+
‖2 ≤ c

√
|λ∗

1|/δ,

h+(z) = f (z1) for z ∈ Cδ,

(5.6)

wheref is the solution of the one-dimensional Dirichlet problem(
−ε

d

dz1
+

d

dz1
F(z1; 0, . . . ,0)

)
d

dz1
f (z1) = 0,

f
(
−δ/

√
|λ∗

1|

)
= 1,

f
(
+δ/

√
|λ∗

1|

)
= 0.

(5.7)

The solution of this problem is obviously

f (z1) =

∫ δ/√|λ∗

1|

z1
eF(t,0)/ε dt∫ δ/√|λ∗

1|

−δ/
√

|λ∗

1|
eF(t,0)/ε dt

. (5.8)
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Inserting this function into (5.2), we see that

capBx (By) ≤ ε

∫ 2δ/
√
λ∗

2

−2δ/
√
λ∗

2

dz2 . . .

∫ 2δ/
√
λ∗
d

−2δ/
√
λ∗
d

dzd

( ∫ δ/
√

|λ∗

1|

−δ/
√

|λ∗

1|

dz1 e
−F(z)/ε

‖f ′(z1)‖
2
)

+ εcδ−2
∫
Sδ\Cδ

dz e−F(z)/ε . (5.9)

The second term is bounded byεcδ−2e−δ
2/ε

· const by assumption onF .
The first term is given by

8Cδ (h
+) = ε

∫
Cδ
dz e−F(z)/εe2F(z1,0)/ε( ∫ δ/√|λ∗

1|

−δ/
√

|λ∗

1|
eF(t,0)/ε dt

)2
. (5.10)

Now onCδ we have

F(z) = F(0)+
−|λ∗

1|z
2
1 + λ∗

2z
2
2 + · · · + λ∗

dz
2
d

2
+O(‖z‖3

2) (5.11)

and thus

F(z)− 2F(z1,0) = −F(0)+
|λ∗

1|z
2
1 + λ∗

2z
2
2 + · · · + λ∗

dz
2
d

2
+O(‖z‖3

2). (5.12)

But on Cδ, ‖z‖2 ≤ C′δ and if we chooseδ = K
√
ε|ln ε| for some constantK, the

numerator in (5.10) satisfies the bound∫
Cδ

dz e−F(z)/εe2F(z1,0)/ε ≤ e−F(0)/εeCε
1/2

|ln ε|3/2
∫

Rd
exp

(
−

|λ∗

1|z
2
1 + · · · + λ∗

dz
2
d

2ε

)
dz

= e−F(0)/ε
(2πε)d/2∏d
i=1

√
|λ∗

i |
(1 +O(ε1/2

|ln ε|3/2)). (5.13)

Similarly, the integral in the denominator is bounded from below by∫ δ/
√

|λ∗

1|

−δ/
√

|λ∗

1|

eF(t,0)/ε dt ≥ e−Cε
1/2

|ln ε|3/2e+F(0)/ε
(
(2πε)1/2√

|λ∗

1|
− 2

∫
∞

δ/
√

|λ∗

1|

dt e−|λ∗

1|t2/ε

)

≥ e−Cε
1/2

|ln ε|3/2e+F(0)/ε
(
(2πε)1/2√

|λ∗

1|
−
e−δ

2/ε

δε−1/2

)
= e+F(0)/ε

√
2πε√
|λ∗

1|
(1 +O(ε1/2

|ln ε|3/2)). (5.14)

Combining the estimates (5.13), (5.14), and (5.9), we arrive at the upper bound

8Cδ (h
+) ≤ e−F(0)/ε(2πε)d/2

|λ∗

1|

2π
√

|det(∇2F(0))|
(1 +O(ε1/2

|ln ε|3/2)). (5.15)
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Since this results coincides with the heuristic results, we may expect to get a correspond-
ing lower bound.

The lower bound. For the lower bound we will consider a different domain

Ĉδ ≡

[
−2δ/

√
|λ∗

1|,2δ/
√

|λ∗

1|

]
×

d∏
i=2

[
−δ/

√
(d − 1)λ∗

i , δ/

√
(d − 1)λ∗

i

]
≡

[
−2δ/

√
|λ∗

1|,2δ/
√

|λ∗

1|

]
× Ĉ⊥

δ . (5.16)

Leth∗ denote the minimizer of the variational problem (5.2), i.e. the equilibrium potential
of the capacitor(Bx, By). Then

inf
h∈Hx

y

8(h) = 8(h∗) ≥ 8Ĉδ (h
∗). (5.17)

Obviously,

8Ĉδ (h) ≥ 8̄Ĉδ (h) ≡ ε

∫
Ĉδ

dz e−F(z)/ε
(
∂h(z)

∂z1

)2

= ε

∫
Ĉ⊥
δ

dz⊥

( ∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|

dz1 e
−F(z)/ε

∥∥∥∥∂h(z1, z⊥)

∂z1

∥∥∥∥2)

≥ ε

∫
Ĉ⊥
δ

dz⊥

(
inf

f : f (±δ/
√

|λ∗

1|)=h∗(±δ/
√

|λ∗

1|)

∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|

dz1 e
−F(z)/ε

‖f ′(z1)‖
2
)
. (5.18)

The minimization problem for fixed values ofz⊥ is of course the solution of the Dirichlet
problem (

− ε
d

dz1
+

d

dz1
F(z1, z⊥)

)
d

dz1
f (z1) = 0,

f
(
−2δ/

√
|λ∗

1|

)
= h∗

(
−2δ/

√
|λ∗

1|, z⊥

)
, (5.19)

f
(
+2δ/

√
|λ∗

1|

)
= h∗

(
2δ/

√
|λ∗

1|, z⊥

)
.

The solution of this Dirichlet problem is readily obtained: seta = h∗(−2δ/
√

|λ∗

1|, z⊥)

andb = h∗(2δ/
√

|λ∗

1|, z⊥), andg(z1) = F(z1, z⊥). The general solution of the differen-
tial equation in (5.19) is

f (z1) = c

∫ s

z1

eg(t)/ε dt, (5.20)

where the constantsc ands are determined by the boundary conditions, i.e.

c

∫ s

−2δ/
√

|λ∗

1|

eg(t)/ε dt = a,

c

∫ s

2δ/
√

|λ∗

1|

eg(t)/ε dt = b,

(5.21)
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from which we get

c =
a∫ s

−2δ/
√

|λ∗

1|
eg(t)/ε dt

. (5.22)

while s is determined through the equation∫ s
2δ/

√
|λ∗

1|
eg(t)/ε dt∫ 2δ/

√
|λ∗

1|

−2δ/
√

|λ∗

1|
eg(t)/ε dt +

∫ s
2δ/

√
|λ∗

1|
eg(t)/ε dt

=
b

a
(5.23)

or ∫ s

2δ/
√

|λ∗

1|

eg(t)/ε dt =
b

a − b

∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|

eg(t)/ε dt, (5.24)

and thus ∫ s

−2δ/
√

|λ∗

1|

eg(t)/ε dt =
a

a − b

∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|

eg(t)/ε dt. (5.25)

Inserting this solution into (5.18) yields

8Ĉδ (h
∗) ≥ ε

∫
Ĉ⊥
δ

dz⊥

∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|

dz1
e−F(z1,z⊥)/ε(h∗(−2δ/

√
|λ∗

1|, z⊥))
2e2F(z1,z⊥)/ε

(
∫ s(z⊥)
−2δ/

√
|λ∗

1|
eF(t,z⊥)/ε dt)2

= ε

∫
Ĉ⊥
δ
dz⊥ (h

∗(−2δ/
√

|λ∗

1|, z⊥)− h∗(2δ/
√

|λ∗

1|, z⊥))
2

∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|
eF(t,z⊥)/ε dt

. (5.26)

But using again (5.4), we see that

∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|

eF(t,z⊥)/ε dt = (e+
∑d
i=2 λ

∗
i z

2
i /(2ε) +O(δ3/ε))

∫ 2δ/
√

|λ∗

1|

−2δ/
√

|λ∗

1|

dt e−|λ∗

1|t2/(2ε)

≤

√
2πε√
|λ∗

1|
e+

∑d
i=2 λ

∗
i z

2
i /(2ε) +O(δ3/ε) (5.27)

and so

8Ĉδ (h
∗) ≥

√
ε|λ∗

1|
√

2π
exp

(
−

d∑
i=2

λ∗

i z
2
i

2ε
+O(δ3/ε)

)
×

∫
Ĉ⊥
δ

dz⊥

(
h∗

(
−2δ/

√
|λ∗

1|, z⊥

)
− h∗

(
2δ/

√
|λ∗

1|, z⊥

))2
. (5.28)

Now we use the fact thath∗(z) = Pz[τBx < τBy ] = hBx ,By (z). Then Corollary 4.8 implies
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Lemma 5.2. Uniformly in z⊥ ∈ Ĉ⊥
δ ,

1 − h∗

(
−2δ/

√
|λ∗

1|, z⊥

)
≤ Cε−1/2e−δ

2/(4ε),

h∗

(
2δ/

√
|λ∗

1|, z⊥

)
≤ Cε−1/2e−δ

2/(4ε).

(5.29)

As an immediate consequence, we see that

8Ĉδ (h
∗) ≥ (1 − Cε−1/2e−δ

2/(4ε))2e−O(δ
3/ε)

·
(2πε)d/2

2π

√
|λ∗

1|∏d−1
i=2

√
λ∗

i

(
1 −

√
ε(d − 1)

δ
e
−

δ2
2(d−1)ε

)d−1

. (5.30)

Choosing as beforeδ2
= Cε|ln ε|, we see that to leading order (5.30) coincides with the

upper bound (5.15), which proves the theorem in the casek = 1.
The generalization of this estimate to the case when several saddle points exist on the

communication height is completely straightforward and will be left to the reader. The
result is the formula stated in the theorem. ut

6. Metastable exit times and capacities

In this section we compute the mean value of certainmetastable exit timesin terms of
capacities. This will be largely analogous to the results on mean transition times obtained
in [BEGK1, BEGK2]. The only new ingredient needed is the following sharpening of
(2.27), resp. (2.28) when a process starts at a local minimum ofF .

Proposition 6.1. Let x be a (non-degenerate quadratic) critical point ofF and letA,D
be closed sets. Then there existsα > 0 such that

ExτD =

∫
Dc
dy e−F(y)/εhBε(x),D(y)

capBε(x)(D)
(1 +O(εα/2)) (6.1)

and

ExτD1τD<τA =

∫
(A∪D)c

dy e−F(y)/εhBε(x),D∪A(y)hD,A(y)

capBε(x)(A ∪D)
(1 +O(εα/2)). (6.2)

Proof. The proofs of (6.1) and (6.2) are completely analogous, and we will only consider
the former. Let us writewD(y) ≡ EyτD, y ∈ Dc. Recall thatwD(y) solves the inho-
mogeneous Dirichlet problem (2.25) (withA = ∅). We will consider this function on
a ballBR0(x), wherex is a critical point ofF . This implies that for some constantK,
supy∈BR0(x)

‖∇F(y)‖∞ ≤ KR0 (if R0 is small). Thus the Ḧolder and Harnack inequali-

ties Lemmata 4.2 and 4.1 have uniform constants ifR0 ≤
√
ε.

Now note first that due to (2.26),wD(y) inherits from Lemma 4.6 the uniform Har-
nack bound

sup
y∈B√

ε(x)

wD(y) ≤ C inf
y∈B√

ε(x)
wD(y). (6.3)



420 Anton Bovier et al.

Now use Lemma 4.1 withR = ε, sincewD solvesLεwD = 1. This yields

oscBε(x)wD ≤ Cεα/2( sup
y∈BR0(x)

wD(y)+ R0). (6.4)

This implies immediately that

sup
y∈Bε(x)

wD(y) ≤ wD(x)+ C2eα/2wD(x)+ Cε1/2+α/2,

inf
y∈Bε(x)

wD(y) ≥ wD(x)− C2eα/2wD(x)− Cε1/2+α/2.
(6.5)

Using these estimates in (2.27) withρ = ε resp. (2.28) proves the proposition. ut

By the preceding proposition, all we need to know in order to compute the mean arrival
times are the capacities and the equilibrium potential. The latter is quite well controlled
by Proposition 4.3 and the rough estimates on capacities (Proposition 4.7), and this will
allow us to get already quite remarkable formulae.

Theorem 6.2. Let xj , j = 1, . . . , n, be the local minima ofF . LetSk =
⋃k
i=1Bρ(xi)

be the union of a collection of ballsBρ(xi) whereρ ≥ ε and no ball contains any other
minimum or saddle point ofF . Assume moreover that for a givenj , and all i > k, i 6= j ,
either

F(z∗(xi, xj ))− F(xj )F (z
∗(xi,Sk))− F(xi) (6.6)

or

F(z∗(xi, xj )) < F(z∗(xi,Sk)). (6.7)

Then, forj > k,

Exj τSk =
1

capBε(xj )(Sk)
∑

i :F(z∗(xi ,Sk))>F(z∗(xi ,xj ))

(2πε)d/2√
det(∇2F(xi))

e−F(xi )/ε

· (1 +O(ε1/2
|ln ε|, εα/2)), , (6.8)

whereO(A,B) ≡ O(max(A,B)). Note that the sum always includes the termi = j . In
particular, if F(xi) > F(xj ) for all i > k, then

Exj τSk =
1

capBε(xj )(Sk)
(2πε)d/2√

det(∇2F(xi))
e−F(xj )/ε(1 +O(ε1/2

|ln ε|, εα/2)). (6.9)

Remark. A transition to a setD for which (6.9) holds will be called ametastable exit
and the formula (6.9) is the mean metastable exit time from the minimumj .

Proof. Consider the set0j ≡ {y : F(y) > F(z∗(xj ,M))+δ} for some sufficiently small
δ > 0. Let0j (i) denote the connected component of0j that containsxi . Note that some
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of these sets may be empty, and some may coincide. Let{0j (ι̃)}ι̃ be an enumeration of
the distinct non-empty members of this collection. Let us write∫

Sck
dy e−F(y)/εhBε(xj ),Sk (y) =

∫
0cj

dy e−F(y)/εhBε(xj ),Sk (y)

+

∑
ι̃

∫
0j (ι̃)\Sk

dy e−F(y)/εhBε(xj ),Sk (y). (6.10)

The first integral is bounded byC exp(−[F(z∗(xj ,M)) + δ]/ε) and will be negligi-
ble. The remaining contributions will be split into those for whichF(z∗(xι̃,Sk)) >
F(z∗(xι̃, xj )) and those for which the contrary is true. The point is that for the for-
mer hBε(xj ),Sk (y) is close to one, while for the latter, it is typically very small. Here
we make use of the fact that ify ∈ 0j (ι̃), andF(z∗(xι̃,Sk)) > F(z∗(xι̃, xj )), then
z∗(y,Sk) = z∗(xι̃,Sk) andz∗(y, xj ) = z∗(xι̃, xj ). Then∑

ι̃ :F(z∗(xι̃,Sk))>F(z∗(xι̃,xj ))

∫
0j (ι̃)\Sk

dy e−F(y)/εhBε(xj ),Sk (y)

=

∑
ι̃ :F(z∗(xι̃,Sk))>F(z∗(xι̃,xj ))

∫
0j (ι̃)\Sk

dy e−F(y)/ε(1 − hSk,Bε(xj )(y)) (6.11)

Now by Corollary 4.8,

0 ≤ hBε(xj ),Sk (y) ≤ Cε−1/2e−[F(z∗(xι̃,Sk))−F(z∗(xι̃,xj ))]/ε, (6.12)

which by assumption is exponentially small. On the other hand, ifxι̃ is the absolute mini-
mum ofF within 0j (ι̃), and if the Hessian,∇2F(xι̃), at this minimum is non-degenerate,
then ∫

0j (ι̃)\Sk
dy e−F(y)/ε =

(2πε)d/2√
det(∇2F(xι̃))

e−F(xι̃)/ε(1 +O(ε1/2
|ln ε|)) (6.13)

by standard Laplace asymptotics. Thus∑
ι̃ :F(z∗(xι̃,Sk))>F(z∗(xι̃,xj ))

∫
0j (ι̃)\Sk

dy e−F(y)/εhBε(xj ),Sk (y)

=

∑
ι̃ :F(z∗(xι̃,Sk))>F(z∗(xι̃,xj ))

(2πε)d/2√
det(∇2F(xι̃))

e−F(xι̃)/ε(1 +O(ε1/2
|ln ε|)). (6.14)

The remaining terms cannot be computed as precisely; however, often the upper bound
will show that they are totally negligible (but this is not always the case). Using again
Corollary 4.8, whenF(z∗(xι̃,Sk)) ≤ F(z∗(xι̃, xj )), we obtain∫
0j (ι̃)\Sk

dy e−F(y)/εhBε(xj ),Sk (y)

≤ Cε−1/2
∫
0j (ι̃)\Sk

dy e−F(y)/εe−[F(z∗(y,xj ))−F(z∗(y,Sk))]/ε
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= Cε−1/2
∫
0j (ι̃)\Sk : z∗(y,Sk)=y

dy e−F(z
∗(xι̃,xj ))/ε + Cε−1/2e−F(xj )/ε

·

∫
0j (ι̃)\Sk :z∗(y,Sk) 6=y

dy e−[F(y)−F(xι̃)]/εe−[F(z∗(xι̃,xj ))−F(xj )−F(z
∗(xι̃,Sk))+F(xι̃)]/ε

= Cε−1/2e−F(z
∗(xι̃,xj ))/ε |{0j (ι̃)\Sk : z∗(y,Sk) = y}|

+Cε−1/2e−F(xj )/εe−[F(z∗(xι̃,xj ))−F(xj )−F(z
∗(xι̃,Sk))+F(xι̃)]/ε

·
(2πε)d/2√

det(∇2F(xι̃))
(1 +O(ε1/2

|ln ε|)). (6.15)

The first summand is always exponentially negligible compared to the principle terms,
since of courseF(z∗(xι̃, xj )) > F(xj ). The second summand is negligible only when
(6.6) holds, which will be the case in the main applications. This implies (6.8); and (6.9)
is an immediate consequence. ut

Proof of Theorem 3.2.The proof of Theorem 3.2 is immediate by inserting the formula
for the capacity of Theorem 3.1 into (6.8), except for the error terms of orderεα/2 which
we will now show can be removed easily. Namely, note that nothing changes in the proof
of Theorem 6.2 if we replace the starting pointxj by some pointx ∈ B√

ε(y). Also,
inspecting the proof of Theorem 5.1 one sees that the difference between capBε(xj )

(Sk)
and capBε(x)(Sk) for x ∈ B√

ε(y) is in fact much smaller than the error terms. Thus in
fact we get

oscx∈B√
ε(xj )

ExτSk ≤ C(εα/2 + ε1/2
|ln ε|)Exj τSk , (6.16)

which improves the input in the Ḧolder estimate by a factorεα/2, which in turn allows us
to improve the error estimates in Theorem 6.2 fromεα/2 to εα. Iterating these procedure,
we can reduce these errors until they are of the same order as theε1/2

|ln ε| terms. This
proves Theorem 3.2. ut
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