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We show how coupling techniques can be used in some metastable sys-
tems to prove that mean metastable exit times are almost constant as functions
of the starting microscopic configuration within a “meta-stable set.” In the ex-
ample of the Random Field Curie Weiss model, we show that these ideas can
also be used to prove asymptotic exponentiallity of normalized metastable
escape times.

1. Introduction.

1.1. The problem. Metastable systems are characterized by the fact that the
state space can be decomposed into several disjoint subsets, with the property
that transition times between subspaces are long compared to characteristic mix-
ing times within each subspace. The mathematically rigorous analysis of Markov
processes exhibiting metastable behavior was first developed in the large deviation
theory of Freidlin and Wentzell [8, 14]. This approach yields logarithmic asymp-
totics of transition times and other quantities of interest. Over the last decade,
a potential theoretic approach [2, 5] to metastability was developed that in many
instances yields more precise asymptotics, and in particular the exact prefactors of
exponential terms.

In this work we study metastability for a class of stochastic Ising models. The
main objective is to extend the potential theoretical approach for deriving asymp-
totics of transition times for processes starting from individual microscopic config-
urations, and, subsequently, for studying exponential scaling laws for these transi-
tion times.

So far the existing methods work well in the following situations:

(1) The process is strongly recurrent in the sense that it visits an individual
atom of the state space in each metastable state many times with overwhelming
probability before a metastable transition happens. This situation occurs, for ex-
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ample, in Markov chains with finite state space, and on discrete state space, such
as Z

d , in the presence of a confining potential.
(2) In models where strong symmetries allow the analysis of the dynamics

through a lumped chain that satisfies the requirements of (1). This situation oc-
curs, for example, in mean field models such as the Curie–Weiss model [7] and
the Curie–Weiss model with random magnetic fields that take only finitely many
values [4, 12].

(3) In situations where the process returns often to small neighborhoods, Oε(x)

of points, x, in a metastable state where the oscillations of harmonic functions on
these neighborhoods can be made arbitrarily small. This is the case in finite and
some infinite-dimensional diffusion processes [6, 10].

One would expect that situation (3) also arises in a wide variety of stochastic
Ising models or stochastic particle systems exhibiting metastable behavior. Proving
the respective regularity properties of microscopic harmonic functions appears,
however, to be a difficult issue in general.

The purpose of the present paper is to develop an approach to this problem via
coupling techniques that allow to cover at least some interesting situations.

A key idea of the potential theoretic approach is to express quantities of physi-
cal interest in terms of capacities and to use variational principles to compute the
latter. A fundamental identity used systematically in this approach is a represen-
tation formula for the Green’s function, gB(x, y), with Dirichlet conditions in a
set B , that reads (in the context of arbitrary discrete state space)

gB(x, y) = μ(y)
hx,B(y)

cap(x,B)
,(1.1)

where B is a subset of the configuration space, hx,B(y) = h{x},B and hA,B is the
equilibrium potential, that is,

hA,B(y) =
⎧⎨⎩

1, if y ∈ A,
0, if y ∈ B,
Py(τA < τB), otherwise.

(1.2)

We use

τC = min{t > 0 :x(t) ∈ C}
for the first hitting times of sets C, and cap(A,B) is the capacity between the sets
A and B; cap(x,B) = cap({x},B).

Equation (1.1) immediately leads to a formula for the mean hitting time ExτB

of B , for the process starting in x. However, the resulting expression for ExτB is
useful as long as the ratio appearing in (1.1) is under control and is not seriously
of the form 0/0.

To be more precise, it may happen that hx,B(y) = f (A)hA,B(y) and cap(x,

B) = f (A) cap(A,B), for “macroscopic” sets A � x. Then

hx,B(y)

cap(x,B)
= hA,B(y)

cap(A,B)
,(1.3)
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but except in cases where (1.3) is manifest by some symmetry, it will be very
hard to establish such relations by a direct pointwise estimation of numerator and
denominator in (1.1).

Examples where this problem occurs are diffusion processes in d > 1, Glauber
dynamics in the case of finite temperature, etc. In such cases, a useful version can
be extracted by averaging equation (1.1) with respect to x after multiplying both
sides by cap(x,B) over as suitable neighborhood A ≡ Ax . This yields the formula

EνA
τB = 1

cap(A,B)

∑
y

hA,B(y)μ(y),(1.4)

where νA is a specific probability distribution on A. Actually (1.4) can be derived
without a recourse to (1.1): if P is the transition kernel of a reversible Markov
chain x(t), then the equilibrium potential hA,B is harmonic outside A ∪ B; (I −
P)hA,B = LhA,B = 0. Thus,

hA,B(y) = ∑
x∈A

gB(y, x)LhA,B(x)(1.5)

for all y /∈ B . By reversibility μ(y)gB(y, x) = μ(x)gB(x, y), and it follows that∑
y /∈A∪B

μ(y)hA,B(y) = ∑
x∈A

μ(x)LhA,B(x)ExτB,(1.6)

which is (1.4) with νA(x) = μ(x)LhA,B(x)/ cap(A,B).
The point is that the right-hand side of (1.4) can be evaluated in many cases of

interest when formula (1.1) suffers from the problem discussed above. This has
been demonstrated recently in two examples, the Glauber dynamics of the random
field Curie–Weiss model at finite temperature [1], and the Kawasaki dynamics in
the zero temperature limit on volumes that diverge exponentially with the inverse
temperature [3].

An obvious question is whether the mean hitting time of B really depends on
the specific initial distribution νA or whether, for all z ∈ A, EzτB is equal to EνA

τB

up to a small error. This question, and related one concerning other functions of
initial conditions is of much further reaching importance. In particular, it is rel-
evant for proving the asymptotic exponentiallity of the transition time using ap-
proximate renewal arguments. Let us mention that the same issue also arises in the
case of diffusion equations in the Wentzell–Freidlin regime. Here, Martinelli and
Scoppola [11], Martinelli, Olivieri and Scoppola [10] showed that solutions of the
stochastic differential equation starting at two different points in a neighborhood
of a stable equilibrium and driven by the same noise are converging exponentially
fast to each other with probability tending to one. From this, they deduced regular-
ity of exit probabilities Px[τB > tEτB] as functions of x and hence exponentiallity
of τB and asymptotic independence of ExτB of the starting point x ∈ A. Such a
strong contraction property is, however, not available in stochastic Ising models on
the level of microscopic paths.
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In the present paper, we will develop a method that allows us to obtain similar
results, at least in some cases, with an alternative and, weaker input. It is based
on coupling techniques and allows us to turn the following simple heuristic argu-
ment into a rigorous proof: the Markov chain should mix quickly before it leaves
a substantial neighborhood of the starting point x; since the mixing time is short
compared to the hitting time τB , the mean of τB should be the same for all starting
configuration in A. Moreover, the chain will return many times to A before reach-
ing B; by rapid mixing, the return times will be essentially i.i.d., hence the number
of returns will be geometric, and the scaled hitting time will be exponential.

To demonstrate the usefulness of this approach, our key example will be the
Random Field Curie–Weiss model with continuous distribution of the random
fields. In that sense, the present result is also a completion of our previous pa-
per [1]. Technically, the coupling construction we employ is based on [9] and still
contains model dependent elements. However, the basic ideas are more general
and will be of relevance for the treatment of a wider range of metastable systems.

The remainder of this paper is organized as follows. In the next subsection,
we describe a general setting of Markov chains to which our method applies. In
Section 1.3, we state our two main theorems. In Section 2, we recall the definition
of Glauber dynamics for the random field Curie–Weiss model and recall the main
result from [1]. In Section 3, we recall the coupling constructed by Levin, Luczak
and Peres for the standard Curie–Weiss model and show how this can be modified
to be useful in the random field model. We then prove Theorem 1.1. In Section 4,
we show how to prove the asymptotic exponentiallity of the transition times and
give the proof of Theorem 1.2.

1.2. Setting. In this subsection, we describe a general setting in which our
methods can be applied.

In the sequel, N will be a large parameter. We consider (families of) Markov
processes, σ(t), with finite state space, SN ≡ {−1,1}N , and transition probabilities
pN that are reversible w.r.t. a (Gibbs) measure, μN . Transition probabilities pN

always have the following structure: at each step, a site x ∈ � is chosen with
uniform probability 1/N . Then the spin at x is set to ±1 with probabilities p±

x (σ );
p+

x (σ ) + p−
x (σ ) ≡ 1. In the sequel, we shall assume that there exists α ∈ [1/2,1)

such that

max
x,σ,±p±

x (σ ) ≤ α.(1.7)

A key hypothesis is the existence of a family of “good” mesoscopic approxi-
mations of our processes. By this, we mean the following: there is a sequence
of disjoint partitions, {�n

1, . . . ,�
n
kn

}, of � ≡ {1, . . . ,N}, and a family of maps,

m(n) : SN → �n ⊂ R
n, given by

mn
i (σ ) = 1

N

∑
x∈�n

i

σx.(1.8)



EXPONENTIAL LAWS VIA COUPLING 343

We will always think of these partitions as nested, that is, {�n+1
1 , . . . ,�n+1

kn+1
} is a

refinement of {�n
1, . . . ,�

n
kn

}. On the other hand, to lighten the notation, we will
mostly drop the superscript and identify kn = n, and refer to the generic partition
�1, . . . ,�n. It will be convenient to introduce the notation

S n[m] ≡ (mn)−1(m) = {σ :mn(σ) = m}
for the set-valued inverse images of mn. We think of the maps mn as some block
averages of our “microscopic” variables σi over blocks of decreasing (in n) “meso-
scopic” sizes.

As is well known, the image process, mn(σ(t)), is in general not Markovian.
However, there is a canonical Markov process, mn(t), with state space �n and
reversible measure Qn ≡ μN ◦(mn)−1, that is a “best” approximation of mn(σ(t)),
in the sense that if mn(σ(t)) is Markov, then mn(t) = mn(σ(t)) (in law). For all
m,m′ ∈ �n, the transition probabilities of this chain are given by

rN(m,m′) ≡ 1

Qn(m)

∑
σ∈S n[m]
σ ′∈S n[m′]

μN(σ)pN(σ,σ ′).(1.9)

In the models, we consider here the following two assumptions are satisfied:

(A.1) The sequence of chains mn(t) approximates mn(σ(t)) in the strong sense
that there exists ε(n) ↓ 0, as n ↑ ∞, such that for any m,m′ ∈ �n,

max
σ∈Sn[m],σ ′∈Sn[m′]

rN (m,m′)>0

∣∣∣∣pN(σ,σ ′)|S n[m′]|
rN(m,m′)

− 1
∣∣∣∣ ≤ ε(n).(1.10)

(A.2) The microscopic flip rates satisfy: if mn(σ) = mn(η) and σx = ηx , then
p±

x (σ ) = p±
x (η).

Note that our assumption (A.1) is much stronger then the maybe more natural
looking

max
σ∈Sn[m]

∣∣∣∣
∑

σ ′∈Sn[m′] p(σ,σ ′)
rN(m,m′)

− 1
∣∣∣∣ ≤ ε(n).

Finally, we need to place us in a “metastable” situation. Specifically, we will
assume that there exist two disjoint sets A = {σ ∈ SN :mn0(σ ) ∈ A} and B = {σ ∈
SN :mn0(σ ) ∈ B}, for some n0 and sets A,B ⊆ �n0 , a constant C > 0 and a se-
quence an < ∞, such that, for all n ≥ n0 and for all σ,η ∈ A,

Pσ

[
τB < τmn(η)

] ≤ ane
−CN,(1.11)

where, with a little abuse of notation, we denote by τmn(η) the first hitting time of
the set S n[mn(η)].
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1.3. Main results. In the setting outlined above, we will prove the following
theorem.

THEOREM 1.1. Consider a Markov process as described above, and let A,B

be such that (1.11) holds. Then

max
σ,η∈A

∣∣∣∣Eσ τB

EητB

− 1
∣∣∣∣ ≤ e−CN/2.(1.12)

REMARK. Assumptions (A1) and (A2) are formulated in the context in which
we will prove our results. The restriction to the state space {−1,1}N is mainly
done because we need to construct an explicit coupling. It is rather straightforward
to generalize everything to the case of Potts spins (SN ≡ {1, . . . , q}N) and maps
mn whose components are permutation invariant functions of the spin variables
on �n

i .

The claim of Theorem 1.1 is trivial whenever Pσ (τη < τB) is exponentially
close to one, as N ↑ ∞. However, in the context of stochastic Ising models it is
reasonable to expect that, for fixed σ,η ∈ A, Pσ (τη < τB) is exponentially small.
That is, despite the fact that a chain starting at σ spends an exponentially large
amount of time in A, this time is not long enough for visiting more than a small
fraction of the exponentially large number of microscopic points in A. An alterna-
tive approach is to try to construct a coupling between σ and η chains. In the case
of the Curie–Weiss model (without random fields), a useful coupling algorithm
was suggested in the recent paper [9]. This algorithm ensures that:

(a) If mn(σs) = mn(ηs), then mn(σt ) = mn(ηt ) for all t ≥ s.
(b) The Hamming distance between σt and ηt is nonincreasing in time.

In a way, this is reminiscent of the stochastic stability results of [11]. It is
straightforward to adjust the construction of [9] to the general context we con-
sider here. But both (a) and (b) above would be lost, and it is not clear that such a
coupling would work globally.

Instead, our strategy is to use (1.11) and to keep trying to couple the σ -chain
with a typical η-chain each time when σt enters S n(m(η)). In the sequel, we call
this the basic coupling attempt. Clearly, in view of a possible biased sampling,
basic coupling attempts should be designed with care, which explains the relatively
complicated construction in Section 3.2. It is based on [9], but we need to enlarge
the probability space in order to achieve sufficient independence between decision
making and properties of the eventually chosen η-path. In particular, the fact that
σ -chain and η-chain meet will not automatically imply coupling.

A second and related problem that tends to arise in the situation that we are
interested in is the breakdown of strict renewal properties. This is a well-known
issue in the theory of continuous space Markov processes where methods such
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as Nummelin splitting [13] were devised to prove ergodic theorem for the Harris
recurrent chains. Here we would like to use renewal arguments, for example, to
prove asymptotic exponentiallity of the law of τB . We will show that again cou-
pling arguments can be used to solve such problems.

As an example, we will prove the following theorem.

THEOREM 1.2. In the random field Curie–Weiss model, for A and B chosen
to satisfy the hypothesis of Theorem 1.1,

Pσ (τB/Eσ τB > t) → e−t as N ↑ ∞(1.13)

for all σ ∈ A and for all t ∈ R+.

Theorem 1.2 is proven in Section 3. The basic idea is to use our iterative cou-
pling procedure for deriving a renewal-type equation for the Laplace transform
of τB .

2. The random field Curie–Weiss model. The results of this paper are mo-
tivated by the study of the Glauber dynamics of the random field Curie–Weiss
model (RFCW). We will show that the assumptions of the two theorems above can
be verified in that model. In this section, we briefly recall results for this model
obtained recently in [1] and prove an elementary local recurrence estimate.

2.1. The model and equilibrium properties. In the RFCW model, the state
space is SN ≡ {−1,1}N , the Gibbs measure is given by

μN(σ) = Z−1
N exp(−βHN(σ)),(2.1)

and the random Hamiltonian, HN , is defined as

HN(σ) ≡ −N

2

(
1

N

∑
i∈�

σi

)2

− ∑
i∈�

hiσi,(2.2)

where � ≡ {1, . . . ,N} and hi , i ∈ �, are i.i.d. random variables on some probabil-
ity space (�, F ,Ph).

The total magnetization

mN(σ) ≡ 1

N

∑
i∈�

σi(2.3)

is an effective order parameter of the model, and the sets of configurations where
the magnetization takes particular values play the rôle of metastable states. More
specifically, we introduce the law of mN through

Qβ,N ≡ μβ,N ◦ m−1
N(2.4)
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on the set of possible values �N ≡ {−1,−1 + 2/N, . . . ,1}. Qβ,N satisfies a large
deviation property, in particular

Zβ,N Qβ,N(m) =
√

2I ′′
N(m)

Nπ
exp(−NβFβ,N(m))

(
1 + o(1)

)
(2.5)

with IN being the Legendre transform of

t �→ 1

N

∑
i∈�

log cosh(t + βhi),(2.6)

and with an explicit form for the rate function (“free energy”), Fβ,N . The
metastable states correspond to multiple local minima of Fβ,N , whenever they
exist.

A crucial feature of the model is that we can introduce a family of mesoscopic
variables in such a way that the dynamics on these mesoscopic variables is well
approximated by a Markov process. Let us briefly describe these mesoscopic vari-
ables.

2.2. Coarse graining. Let I denote the support of the distribution of the ran-
dom fields. Let I, with  ∈ {1, . . . , n}, be a partition of I such that, for some
C < ∞ and for all , |I| ≤ C/n ≡ ε.

Each realization of the random field {hi}i∈N induces a random partition of the
set � ≡ {1, . . . ,N} into subsets

�k ≡ {i ∈ � :hi ∈ Ik}.(2.7)

We may introduce n order parameters

mk(σ) ≡ 1

N

∑
i∈�k

σi.(2.8)

We denote by m the n-dimensional vector (m1, . . . ,mn). m takes values in the set

�n
N ≡ n×

k=1

{
−ρN,k,−ρN,k + 2

N
, . . . , ρN,k − 2

N
,ρN,k

}
,(2.9)

where

ρk ≡ ρN,k ≡ |�k|
N

.(2.10)

Note that the random variables ρk concentrate exponentially (in N ) around their
mean value EhρN,k = Ph[hi ∈ Ik] ≡ pk . The Hamiltonian can be written as

HN(σ) = −NE(m(σ)) +
n∑

=1

∑
i∈�

σih̃i,(2.11)
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where E : Rn → R is the function

E(x) ≡ 1

2

(
n∑

k=1

xk

)2

+
n∑

k=1

h̄kxk(2.12)

with

h̄ ≡ 1

|�|
∑
i∈�

hi and h̃i ≡ hi − h̄.(2.13)

The equilibrium distribution of the variables m(σ) is given by

Qβ,N(x) ≡ μβ,N

(
m(σ) = x

)
(2.14)

= 1

ZN

eβNE(x)
Eσ1{m(σ)=x}e

∑n
=1

∑
i∈�

σi(hi−h̄).

For a mesoscopic subset, A ⊆ �n
N , we define its microscopic counterpart, A, as

A = S n[A] = {σ ∈ SN :m(σ) ∈ A}.(2.15)

Note that, as in the one-dimensional case, we can express the right-hand side of
(2.14) as

Zβ,N Qβ,N(x) =
n∏

=1

√
(I ′′

N,(x/ρ)/ρ)

Nπ/2
exp(−NβFβ,N(x))

(
1 + o(1)

)
(2.16)

with an explicit expression for the function Fβ,N ,

Fβ,N(x) ≡ −1

2

(
n∑

=1

x

)2

−
n∑

=1

xh̄ + 1

β

n∑
=1

ρIN,(x/ρ).(2.17)

The key point of the construction above is that it places the RFCW model in
the context described in Section 1.2. Namely, defining the mesoscopic rates,
rN(m,m′), in (1.9) for the functions m defined in (2.8), one can easily verify that
the estimates (1.10) hold, as was exploited in [1]. In the next subsection, we will
show that the recurrence hypothesis (1.11) also holds in this model.

In [1], we proved the following.

THEOREM 2.1. Assume that β and the distribution of the magnetic field are
such that there exist more than one local minimum of Fβ,N . Let m∗ be a local
minimum of Fβ,N , M ≡ M(m∗) be the set of minima of Fβ,N such that Fβ,N(m) <

Fβ,N(m∗), and z∗ be the minimax between m and M , that is, the lower of the
highest maxima separating m from M to the left, respectively, right. Then, Ph-
almost surely,

EνS[m∗],S[M]τS[M] = C(β,m∗,M)N exp
(
βN [Fβ,N(z∗) − Fβ,N(m∗)])

(2.18)
× (

1 + o(1)
)
,

where C(β,m∗,M) is a constant that is computed explicitly in [1].
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Here the initial measure, νS[m∗],S[M], is the so-called last exit biased distribution
on the set S[m∗] ≡ {σ ∈ SN :mN(σ) = m∗}, given by the formula

νA,B(σ ) = μβ,N(σ )Pσ [τB < τA]∑
σ∈A μβ,N(σ )Pσ [τB < τA] .(2.19)

Although the theorem is stated in [1] for the starting measure in a set defined
with respect to the one-dimensional order parameter, the estimates given there im-
mediately imply that the same formulas hold replacing m∗ with a local minimum,
m∗, in the n-dimensional order parameter space.

Theorem 2.1 implies that the estimate (2.18) holds for Eσ τS[M] for any σ in a
neighborhood of S[m∗], for n large enough.

2.3. Local recurrence. Before starting the proof of (1.12), let us verify that
the hypothesis (1.11) holds for the RFCW model. Specifically, let us define the
metastable set Aδ ⊂ �n as the ball, with respect to the Hamming distance, of fixed
radius δN , δ > 0, centered on a local minimum m∗ of Fβ,N . Let Aδ ⊂ SN be the
corresponding microscopic metastable set and denote by τm the first hitting time
of the set S n[m]. With this notation, we have the following lemma.

LEMMA 2.2. There exist δ > 0 and c1 > 0 such that, for all n large enough,
σ,σ ′ ∈ Aδ ,

Pσ

[
τB < τm(σ ′)

] ≤ e−c1N.(2.20)

PROOF. We first notice that if σ ′ ∈ S n[m∗], then the assertion of the lemma
holds for all n sufficiently large with a constant c0 independent of n, as has been
proven in [1] (see Proposition 6.12).

Moreover, for all σ,σ ′ ∈ Aδ ,

Pσ

[
τm(σ ′) < τm∗

] ≥ e−cδN(2.21)

for some positive constant c. To see this, notice that, due to the property of Aδ ,
one can find a mesoscopic path from m(σ) to m(σ ′) with length at most δN .
Implementing the argument that is used in the proof of Lemma 6.11 of [1], one
gets (2.21).

To prove (2.20), we use a renewal argument. Let us consider a configuration
σ ∈ S n[m∗] and a generic σ ′ ∈ Aδ , and set m ≡ m(σ ′). Then

Pσ (τB < τm) ≤ Pσ (τB < τm ∧ τm∗) + Pσ (τm∗ < τB < τm)

≤ Pσ (τB < τm∗) + max
η∈S n[m∗] Pη(τB < τm)Pσ (τm∗ < τm)(2.22)

≤ e−c0N + max
η∈S n[m∗] Pη(τB < τm)(1 − e−cδN),

where in the second line we used the Markov property, and in the last line we
used the inequality (2.20) and (2.21). Taking the maximum over σ ∈ S n[m∗] on
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both sides of (2.22) and rearranging the summation, we get the inequality (2.20)
for σ ∈ S n[m∗], with a constant c1 = c0 − cδ which is strictly positive for small
enough δ.

Now let us consider the general case when σ,σ ′ ∈ Aδ and set again m ≡ m(σ ′).
As before, we have

Pσ (τB < τm) ≤ Pσ (τB < τm ∧ τm∗) + Pσ (τm∗ < τB < τm)

≤ Pσ (τB < τm∗) + max
η∈S n[m∗]Pη(τB < τm)Pσ (τm∗ < τB)(2.23)

≤ e−c0N + e−c1N = e−c1N
(
1 + o(1)

)
,

where in the third line we used the fact that the inequality (2.20) was already
established for η ∈ S n[m∗]. This concludes the proof of the lemma. �

Lemma 2.2 shows that, for all n large enough, the RFCW model parameterized
by the variables m ∈ �n

N satisfies the hypothesis (1.11) with A = Aδ as defined
above.

3. Construction of the coupling.

3.1. The coupling by Levin, Luczak and Peres. Recall that we consider a par-
tition, {�1, . . . ,�n}, of � ≡ {1, . . . ,N} and let m = (m1(σ ), . . . ,mn(σ )) be the
vector of partial magnetizations as defined in (2.8).

We begin by explaining a coupling that was used by Levin, Luczak and Peres [9]
in the usual Curie–Weiss model. In that case, the transition rates have the following
properties: whenever x, y and σ,η are such that:

(i) m(σ) = m(η), and
(ii) σx = ηy ,

then

pN

(
σ,σ (x)) = pN

(
η,η(y)).(3.1)

We continue to employ the notation p±
x (σ ),

p−σx
x (σ ) ≡ NpN

(
σ,σ (x)) and p+

x (σ ) + p−
x (σ ) = 1,(3.2)

where, as usual, σ (x) is the configuration obtained from σ by setting σx
x = −σx

and leaving all other components of σ unchanged.
The coupling of Levin, Luczak and Peres is constructed as follows. Let σ and η

be two initial conditions such that m(σ) = m(η). Let It , t = 0,1,2, . . . , be a family
of independent random variables that are uniformly distributed on �. Assume that
at time t , m(σ(t)) = m(η(t)) and do the following:

(O1) Draw the random variable It ;
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(O2) Set ηIt (t + 1) = ±1 with probabilities p±
It

(η(t)), respectively, and set ηx(t +
1) = ηx(t) for all x �= It ;

(A) Then do the following:
(i) If σIt (t) = ηIt (t), then set:

∗ σIt (t + 1) = ηIt (t + 1);
∗ σx(t + 1) = σx(t), for all x �= It .

(ii) If σIt (t) �= ηIt (t), then let �k be the element of the partition such that
It ∈ �k and choose y uniformly at random on the set {z ∈ �k :σz(t) �=
ηz(t) �= ηIt (t)}. Note that this set is not empty, since m(σ(t)) = m(η(t))

and σ(t) and η(t) differ in one site of �k . Then set:
∗ σy(t + 1) = ηIt (t + 1);
∗ σx(t + 1) = σx(t), for all x �= y.

Note that this construction has the virtue that m(σ(t + 1)) = m(η(t + 1)), so that
the assumption inherent in the construction is always verified, if it is verified at
time zero.

Moreover, if σ(t) = η(t) for some t , then σ(t + s) = η(t + s), for all s ≥ 0.
Finally, one easily checks that the marginal distributions of σ(t) and η(t) coincide
and are given by the law of the original dynamics. This latter fact depends crucially
on the fact that the flip rates do not depend on which site in a given subset �i the
spin is flipped, provided they are flipped in the same direction.

3.2. Coupling attempt in the general case. In the general case, we consider
here, including the RFCW, (3.1) does not hold unless x = y. All we assume is
(A.2) and (1.10). The problem is now that the probabilities to update the σ -chain
in a chosen point y are typically not the same as those of the η-chain in the original
point It . However, by (1.10), these probabilities are still close to each other, in the
sense that there exists ν = ν(n) with ν ↓ 0 as n ↑ ∞, for example, ν(n) = 3ε(n),
such that for any k, for any x, y ∈ �k and for any σ and η with m(σ) = m(η) and
σx = ηy ,

p±
x (η)

p±
y (σ )

≤ 1 + ν.(3.3)

Thus, in order to maintain the correct marginal distribution for the processes, we
have to change the updating rules in such a way that the σ -chain will sometimes not
maintain the same magnetization as the η-chain, which implies that the coupling
cannot be continued.

The basic strategy to overcome this difficulty is to use iterated coupling at-
tempts. We shall decompose the σ -path on [0, τ σ

B ) into cycles and during each
cycle we shall attempt to couple it with an independent copy of the η-chain. In the
case of success, both chains will run together until τB . Such procedure necessarily
involves a sampling of η-paths. In order to control its bias, it will be important to
separate the path properties of η-chains with which we try to couple from the prob-
ability of whether a subsequent coupling attempt is successful or not. This will be
achieved by constructing a coupling on an extended probability space.
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Basic coupling attempt. There are two parameters c2 > 0 and κ < ∞ whose
values will be quantified in the sequel.

Let η and σ satisfy m(η) = m(σ). We shall try to couple a σ -path with an η-
path during the first Nκ -steps of their life. Let M = c2N and let Vi, i = 1, . . . ,M ,
be a family of i.i.d. Bernoulli random variables with

P[Vi = 1] = 1 − P[Vi = 0] = 1 − ν(n).(3.4)

We now describe how the coupling construction is adjusted using the random vari-
ables Vi, i = 1, . . . ,M . Let m(η(0)) = m(σ(0)).

As before, let It , t = 0,1,2, . . . ,Nκ , be a family of independent random vari-
ables that are uniformly distributed on �. Let M0 = 0 and χ0 = 0, η(0) = η,
σ(0) = σ . At time t ≥ 1, do the following:

(O1) Draw the random variable It ;
(O2) Set ηIt (t + 1) = ±1 with probability p±

It
(ηIt (t)) and set ηx(t + 1) = ηx(t)

for all x �= It ;
(A) If at time 1 ≤ t ≤ Nκ , χt = 0 and Mt < M , then do the following:

(i) If σIt (t) = ηIt (t), then set:
∗ σIt (t + 1) = ηIt (t + 1);
∗ σx(t + 1) = σx(t), for all x �= It ;
∗ Mt+1 = Mt .

(ii) If σIt (t) �= ηIt (t), let �k be the element of the partition such that It ∈ �k

and, as before, choose y uniformly at random on the set {z ∈ �k :σz(t) �=
ηz(t) �= ηIt (t)}. Then set:

∗ σy(t + 1) = ηIt (t + 1) with probability⎧⎪⎨⎪⎩
1, if VMt = 1,
p±

It
(η(t)) ∧ p±

y (σ (t)) − (1 − ν)p±
It

(η(t))

νp±
It

(η(t))
, if VMt = 0,(3.5)

and σy(t + 1) = −ηIt (t + 1) with probability⎧⎪⎨⎪⎩
0, if VMt = 1,
p±

It
(η(t)) − p±

It
(η(t)) ∧ p±

y (σ (t))

νp±
It

(η(t))
, if VMt = 0;(3.6)

∗ σx(t + 1) = σx(t), for all x �= y;
∗ If VMt = 0, then set χs = 1 for s = t + 1, . . . ,Nκ , otherwise set

χt+1 = χt ;
∗ Set Mt+1 = Mt + 1;

(B) If at time t , either χt = 1 or Mt = M , then update σ independently of η,
that is:
(i) draw I ′

t independently with the same law as It , and
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(ii) set σI ′
t
(t + 1) = ±1 with probability p±

I ′
t
(σ (t)), and σx(t + 1) = σx(t),

for all x �= I ′
t .

The process Mt is a counter that increases by one each time a new coin Vi is used
by the coupling. The value χt = 1 of the variable χt indicates that a zero coin was
used by time t .

The following lemma collects the basic properties of the process constructed
above.

LEMMA 3.1. Let P̃ denote the joint distribution of the processes σ,η,V de-
fined above. Then the above is a good coupling in the sense that the marginal
distributions of both η(t), t ≤ Nκ , and σ(t), t ≤ Nκ , under the law P̃ are Pσ(0)

and Pη(0), respectively.

PROOF. The assertion is obvious for the process η(t). It is also clear for the
σ(t) process if updates are done according to case B. Therefore, we only need to
check that it holds for process σ(t) at such times t ≤ Nκ when χt is still 0 and Mt

is still less than M = c2N . In other words, we have to compute

P̃[σ(t + 1) = σ+
x (t)|σ(t);χt = 0; Mt < c2N ],(3.7)

where σ+
x

�= (σ1, . . . , σx−1,+1, . . . , σN). First, it is clear that, given that It = x

and σIt (t) = ηIt (t), we get the desired result, that is,

P̃
[
σ(t + 1) = σ+

x (t)|It = x;σx(t) = ηx(t);σ(t);χt = 0; Mt < c2N
)

(3.8)
= p+

x (η(t)) = p+
x (σ (t)).

In the case It = y �= x, we get a contribution to (3.7) only if:

(i) x, y are in the same set �i ,
(ii) σy(t) �= ηy(t),

(iii) σx(t) �= ηx(t), and
(iv) σx(t) = ηy(t).

If these conditions are satisfied, the probability to flip σx to +1 is

(1 − ν)p+
y (η(t)) + νp+

x (η(t))
p+

y (η(t)) ∧ p+
x (σ (t)) − (1 − ν)p+

y (η(t))

νp+
y (η(t))

+ νp−
y

p−
y (η(t)) − p−

y (η(t)) ∧ p−
x (σ (t))

νp−
y (η(t))

(3.9)
= p+

y (η(t)) ∧ p+
x (σ (t)) + p−

y (η(t)) − p−
y (η(t)) ∧ p−

x (σ (t))

= p+
x (σ (t)).
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The last line is easily verified by distinguishing cases. It follows that the probability
in (3.7) is equal to N−1p+

x (σ (t)), as desired. This proves the lemma. �

The construction above tries to merge the processes η(t) and σ(t) only as long
as χt = 0 and Mt < M . Note that if for some t < Nκ both these conditions still
hold and, in addition, η(t) = σ(t), then the two dynamics automatically stay to-
gether until Nκ and, indeed, stay coupled forever. Naively, one would want to
classify such situation as “successful coupling.” However, this would involve an
implicit sampling of η-trajectories which may lead to distortion of their statistical
properties. For example, it is not clear whether the correct value of EητB would
survive such a procedure.

In order to circumvent this obstacle, we use a more restrictive definition of what
a “successful coupling” should be. Namely, we say that our basic coupling attempt
is successful if the following two independent events A and B simultaneously
happen on the enlarged probability space:

(1) The event

A ≡
{

M∨
i=1

Vi = 1

}
(3.10)

is the event that all M random variables Vi should be equal to 1.
(2) The event B depends only on the random variables η(t), t ≤ Nκ . To define

it, we introduce two stopping times, S and N . Let

Sx = inf{t :ηx(t + 1) = −ηx(0)}(3.11)

and set S ≡ max1≤x≤N Sx . Clearly, Sx is the first time the spin at site x has been
flipped and S is the first time all coordinates of η have been flipped. N is defined
as

N ≡
S∑

t=0

N∑
x=1

1{It=x}1{t≤Sx},(3.12)

which is the total number of flipping attempts until time S. Finally,

B ≡ {τη
B ≥ Nκ} ∩ {S < Nκ} ∩ {N ≤ M}.(3.13)

The important observation is the following.

LEMMA 3.2. On A ∩ B, the coupling is successful in the sense that

A ∩ B ⊂ {η(Nκ) = σ(Nκ)}.(3.14)

PROOF. On the event B ∩ A, by time Nk η(t) has not reached B , all spins have
been flipped once, and each flip that involved a site where η(t) �= σ(t) was done
when the coin Vi took the value +1. Therefore, on each first flip the corresponding
η and σ spins became aligned, hence η(Nκ) = σ(Nκ). �
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REMARK. Note that the inclusion (3.14) is in general strict. The rationale for
the introduction of the events A and B is that the unlikely event A does not affect
the η-chain at all and that the (likely) event B does not distort the hitting times of
the η-chain in the sense that Eη(τB1B) ≥ EητB(1 − e−cN). This will be part of the
content of Lemma 3.3 which we formulate and prove below.

3.3. Construction of a cycle and cycle decomposition of σ -paths. We have
seen that B ∩ A indicates that our coupling is successful and η(t) and σ(t) arrive
together in B . However, the probability of A ∩ B is very small, essentially due to
the fact that the probability of A is small, namely P(A) = (1 − ν)M . What will
be essential is that the probability of B is otherwise close to one, and therefore
the η-paths (which are independent of the Vi) will be affected very little by the
occurrence of A ∩ B.

We then have to decide what to do on (A ∩ B)c at time Nκ . Define the stopping
time

� = min{t > Nκ :σ(t) ∈ S n[m(η)]}.(3.15)

If

D = {� < τσ
B }(3.16)

happens, then we initiate a new basic coupling attempt at time � for a new, in-
dependent copy of the η-chain and a chain starting from σ(�). Otherwise, on the
event Dc ∩ (A ∩ B)c, the process stops and coupling has not occurred.

The cycle decomposition of σ [0, τ σ
B ) is based on a collection {η[0, τ

,η
B )} of

independent copies of η-chains and on a collection {V  = (V 
0 , . . . , V 

Nκ )} of i.i.d.
stacks of coins. The events {A, B} are well defined and independent. The events
{D} are defined iteratively as follows: the event D0 is simply the above event
D defined with respect the coupling attempt based on {η0,V 0}. If D0 occurs, we
denote by θ0 = �0 the random time at which the first cycle ends. Assume now that⋂k−1

0 D ∩ ⋂
(A ∩ B)c happened and that the (k − 1)st cycle was finished at a

random time θk−1 and at some random point σ(θk−1) ∈ S n[m(η)]. Let us initiate
a new basic coupling attempt using a new independent copy {ηk,V k} for a chain
starting at η and a chain starting from σ(θk−1). The event Dk , and accordingly the
cycle length �k , are then defined appropriately. If Dk happens and

⋂
(A ∩ B)c

then θk ≡ θk−1 + �k , σ(θk) ∈ S n[m(η)] is well defined as well, and the iterative
procedure goes on.

In light of the above definitions, the enlarged probability space �̃ has the fol-
lowing disjoint decomposition:

1 =
∞∑

k=0

1Ak1Bk

k−1∏
=0

(1 − 1A1B)1D

(3.17)

+
∞∑

k=0

(1 − 1Ak1Bk )(1 − 1Dk )

k−1∏
=0

(1 − 1A1B)1D .
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As a consequence, we arrive at the following decomposition of the hitting time τσ
B

in terms of the (independent ) hitting times {τ k,η
B }:

τσ
B =

∞∑
k=0

{
k−1∏
=0

1D(1 − 1A1B)

}
(θk−1 + τ

k,η
B )1Ak1Bk

(3.18)

+ τσ
B

∞∑
k=0

{
k−1∏
=0

1D(1 − 1A1B)

}
(1 − 1Dk )(1 − 1Ak1Bk ).

(In both formulas above, we use the convention that products with a negative num-
ber of terms are equal to 1 and set θ−1 ≡ 0.) Note that the first terms in (3.17) and
(3.18) correspond to the cases when the iterative coupling eventually succeeds,
whereas the second term corresponds to the case when it eventually fails.

3.4. Upper bounds on probabilities and proof of Theorem 1.1.

LEMMA 3.3. The following estimates hold uniformly in σ,η ∈ A:

(i) There is a constant c > 0, independent of n, such that, for N large enough,

P(Bc) ≤ e−cN(3.19)

and

Eη(τB1B) ≥ EητB(1 − e−cN ).(3.20)

(ii) If N is large enough,

Pσ (D) ≥ 1 − e−cN .(3.21)

PROOF. Item (ii) follows from Lemma 2.2 with, for example, c = c1/2. To
prove item (i), we write Bc = {τη

B ≤ Nκ} ∪ {S ≥ Nκ} ∪ {N > M}. Thus,

1Bc = 1{τη
B≤Nκ } + 1{τη

B>Nκ }1{S≥Nκ } + 1{τη
B>Nκ }1{S<Nκ }1{N >M}.(3.22)

Inserting this into (3.19) and (3.20), there are three terms to bound. The first term
is easy:

Pη(τB ≤ Nκ) ≤ Nκ max
σ ′ : m(σ ′)=m

Pσ ′(τB < τm) ≤ Nκe−c1N.(3.23)

The first inequality used the fact that in order to reach B , the process has to make
one final excursion to B without return to the starting set m, and that there are
at most Nκ attempts to do so. The last inequality uses (2.20). The corresponding
term for (3.20) is

Eη

(
τB1{τη

B<Nκ }
) ≤ N2κe−c1N.(3.24)
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The second term is also easy: first,

Pη({τB > Nκ} ∩ {S ≥ Nκ}) ≤ Pη(S ≥ Nκ)(3.25)

and

Eη

(
τB1{τB>Nκ }1{S≥Nκ }

) ≤ ∑
σ ′

(Nκ + Eσ ′τB)Pη(ηNκ = σ ′;S ≥ Nk)

(3.26)
≤

(
Nκ + max

σ ′ Eσ ′τB

)
Pη(S ≥ Nκ).

Using the formula (1.4) with A = {σ ′}, and bounding the corresponding capacity
cap(σ ′,B) ≥ e−c3N from below in the crudest way (e.g., retaining a single one-
dimensional path from σ ′ to B; see [2]), one gets that

Nκ + max
σ ′ Eσ ′τB ≤ e2c3N,(3.27)

where c3 does not depend on n.
Next, we show that if κ > 2 the probability Pη(S ≥ Nκ) is super-exponentially

small. Indeed, since at each step the probability to flip each particular spin is
bounded from below by (1 − α)/N ,

Pη(S ≥ Nκ) ≤ N

(
1 − 1 − α

N

)Nκ

≤ e−c4N
κ−1

.(3.28)

Finally, even the third term is easy:

Eη

(
1{τB>Nκ }1{S<Nκ }1{N >M}

) ≤ Pη(N > M)(3.29)

and, as in (3.26),

Eη

(
τB1{τB>Nκ }1{S<Nκ }1{N >M}

) ≤
(
Nκ + max

σ ′ Eσ ′τB

)
Pη(N > M)

(3.30)
≤ e2c3NPη(N > M).

It remains to bound Pη(N > M). In order to do this, we split the time interval
[0, S] into epochs

[0, S] = [0, Si1] ∪ (Si1, Si2] ∪ · · · ∪ (SiN−1, S],(3.31)

where i = {i1, . . . , iN } is a permutation of {1, . . . ,N} which is fixed by the order
in which spins are flipped for the first time,

Si1 < Si2 < · · · < SiN = S.(3.32)

Fix a particular permutation i and let E [i] be the event that (3.32) happens. Let
us first derive a lower bound on Pη(E [i]). It is convenient to decompose E [i] =⋂N−1

k=0 Ek[i], where

E0[i] = {No spin was flipped on [0, Si1 − 1)}
(3.33)

∩ {Spin i1 was flipped on Si1-t step}
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and

Ek[i] = {No spin was flipped for the first time during [Sik , Sik+1 − 1)}
(3.34)

∩ {Spin ik+1 was flipped on Sik+1-t step}.
Let Nk be the number of times previously unflipped spins were attempted to flip
during the interval (Sik , Sik+1]. Clearly N = ∑N−1

k=0 Nk .
In view of (1.7),

Pη(E0[i]; N0 = 0) ≤ α0

N
.(3.35)

To give an upper bound on the probability of the events {Ek[i]; Nk = k}, for
k > 0, we distinguish between two types of trials, which happen during the in-
tervals (Sik , Sik+1). First, one might choose yet unflipped spins from {ik+1, . . . , iN }
but then fail to flip them. On the event {Nk = k} this happens exactly k − 1
times. Second, one might choose already flipped spins from the set {i1, . . . , ik}.
The probability of the latter is k/N , whereas, according to (1.7), a uniform upper
bound for the probability of the former option is α(N − k)/N . Thus, if Gk is the
σ -field generated by η[0,Sk], then

Pη(Ek; Nk = k|Gk) ≤ α

N

(
α(N − k)

N

)k−1
( ∞∑

j=0

(
k

N

)j
)k

(3.36)

= αk

N − k
.

Therefore,

Eη

(
k∏

=0

1E
1{Nk=k}|Gk

)
≤ αk

N − k

k−1∏
=0

1E[i](3.37)

and, consequently,

Pη(E [i]; N0 = 0; . . . ; NN−1 = N−1) ≤ 1

N !α
∑

k .(3.38)

As a result, we get that

Pη(N > M) ≤ ∑
L>M

αL

(
N + L

L

)
≤ ∑

L>M

e− ln(1/α)LeN(ln(1+L/N)+1).(3.39)

For M ≡ c2N and providing that c2 is large enough, we finally obtain that

Pη(N > M) ≤ e−c5N(3.40)

for a constant, c5, increasing linearly with c2. Putting all estimates together con-
cludes the proof of the lemma. �
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Notice that if A ∩ B happens, then m(ηt ) ≡ m(σt ). In particular, A ∩ B ⊂ {τσ
B ≥

Nκ} and hence τσ
B = τ

η
B on A ∩ B.

Let us go back to the cycle decomposition (3.18). Using Ẽ for the expectation
on the enlarged probability space,

Eτσ
B ≥

∞∑
k=0

Ẽ

{
k−1∏
=0

1D(1 − 1A1B)

}
τ

k,η
B 1Ak1Bk .(3.41)

Let Fθk
be the σ -algebra generated by all the events and trajectories A, B, D,

η and σ(θ−1, θ],  ≤ k. In view of the independence of the copies {η,V },
Ẽ(τ

η
B1Ak1Bk |Fθk−1) = P(A)Eη(τB1B) = (1 − ν)MEη(τB1B).(3.42)

On the other hand,

Ẽ
(
1D(1 − 1A1B)|Fθ−1

) ≥ Ẽ(1 − 1A1B) − max
σ ′∈S n[m]

(
1 − Pσ ′(D)

)
(3.43)

≥ 1 − (1 − ν)M − e−cN .

Altogether (recall that M = c2N ),

Eσ τB ≥ Eη(τB1B)(1 − ν)c2N
∞∑

k=0

(
1 − (1 − ν)c2N − e−cN )k

(3.44)

≥ EητB

1 − e−cN

1 + (1 − ν)−c2Ne−cN
,

which tends to EητB if ν < c/c2. This concludes the proof of Theorem 1.1.

3.5. Extension to the case m(σ) �= m(η). Very little has to be changed if we
replace the condition that we start in a configuration σ that has the same meso-
scopic magnetization as η, but for which (1.11) still holds. In that case, we cannot
start the coupling in the first cycle, so we simply have to wait until time �0 (pro-
vided D0 occurs, i.e., σt does not hit B before that time). This means that we
replace (3.18) by

τσ
B =

∞∑
k=1

{
1D0

k−1∏
=1

1D()(1 − 1A1B)

}
(θk−1 + τ

k,η
B )1Ak1Bk + τσ

B 1(D0)c

(3.45)

+ τσ
B

∞∑
k=1

{
1D0

k−1∏
=1

1D(1 − 1A1B)

}
(1 − 1Dk )(1 − 1Ak1Bk ).

We then proceed exactly as before to get

Eσ τB ≥ Eη(τB1B)(1 − ν)c2N
∞∑

k=0

(1 − e−c2N)
(
1 − (1 − ν)c1N − e−c2N

)k
(3.46)

≥ EητB

(1 − e−cN)(1 − e−c2N)

1 + (1 − ν)−c1Ne−c2N
,
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which is virtually equivalent to the previous case.

3.6. The Laplace transform. Next, we show that the same coupling can also
be used to show that the Laplace transform of τB depends very little on the initial
conditions within a set A. Set T ≡ EνA

τB .

PROPOSITION 3.4. If A,B satisfy the hypothesis of Theorem 1.1, then, for
every configurations σ,η ∈ A and λ ≥ 0,

Rσ (λ) ≡ Eσ

(
e−(λ/T )τB

) = Eη

(
e−(λ/T )τB

)(
1 + o(1)

)
.(3.47)

The proof of Proposition 3.4 involves some estimates and computations that we
collect in the following lemmas.

LEMMA 3.5. There exists a constant, c > 0, independent of n, such that, for
any η ∈ A,

Eη

(
1Be−(λ/T )τB

) ≥ Eη

(
e−(λ/T )τB

)
(1 − e−cN ).(3.48)

PROOF. The proof is similar to that of (3.20) and uses some of the estimates
given there. The aim is to prove that

Eη

(
1Bce−(λ/T )τB

) ≤ Eη

(
e−(λ/T )τB

)
e−cN .(3.49)

By Jensen’s inequality, for every η ∈ A,

Eη

(
e−(λ/T )τB

) ≥ e−(λ/T )EητB = e−λ(
1 + o(1)

)
,(3.50)

where the second line follows form the pointwise estimate on EητB that was
proven in the previous subsections. To prove (3.49), it is enough to notice that,
by Lemma 3.3,

Eη

(
1Bce−(λ/T )τB

) ≤ e−cN .(3.51) �

PROOF OF PROPOSITION 3.4. For simplicity, we consider the case when
m(σ) = m(η) ≡ m. Analogously to (3.18), we obtain

Eσ

(
e−(λ/T )τB

)
= Ẽ

( ∞∑
k=0

e−(λ/T )(θk−1+τ
k,η
B )1Ak1Bk

k−1∏
=0

1D(1 − 1A1B)

)

+ Ẽ

(
e−(λ/T )τσ

B

∞∑
k=0

(1 − 1Dk )(1 − 1Ak1Bk )

k−1∏
=0

1D(1 − 1A1B)

)
(3.52)

≤
∞∑

k=0

Ẽ

(
e−(λ/T )τ

k,η
B 1Ak1Bk

k−1∏
=0

1D(1 − 1A1B)

)

+
∞∑

k=0

Ẽ

(
(1 − 1Dk )(1 − 1Ak1Bk )

k−1∏
=0

1D(1 − 1A1B)

)
.
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Now, for every k,  ≥ 0, as in (3.42),

Ẽ
(
1Ak1Bk e

−(λ/T )τ
k,η
B |Fθk−1

) ≤ (1 − ν)MEη

(
e−(λ/T )τB

)
.(3.53)

Moreover, as in (3.43),

Ẽ
(
1D()(1 − 1A()1B)|Fθ−1

) ≤ Ẽ(1 − 1A()1B |Fθ−1)

= 1 − P(A)P(B)(3.54)

≤ 1 − (1 − ν)M(1 − e−cN ).

This last estimate, together with (3.21) of Lemma 3.3, shows that the term in
the last line of (3.52) is smaller than

∞∑
k=0

e−cN (
1 − (1 − ν)M(1 − e−cN)

)k ≤ 2e−N(c−c2ν).(3.55)

Combining these estimates, we arrive at

Eσ

(
e−(λ/T )τB

) ≤ Eη

(
e−(λ/T )τB

)
(1 − ν)c2N

∞∑
k=0

(
1 − (1 − ν)c2N(1 − e−cN )

)k
≤ Eη

(
e−(λ/T )τB

)
(1 − e−cN) + 2e−N(c−c2ν)(3.56)

= Eη

(
e−(λ/T )τB

)(
1 + 3e−N(c−c2ν)),

which tends to Eη(e
−(λ/T )τB ) if ν < c/c2. �

4. Renewal and the exponential distribution for the RFCW. We will use
the results of Section 2 and the notation introduced therein. In particular, for each
n fixed, we set A = S n[m∗] and Aδ = S n[Aδ], where Aδ is the mesoscopic δ-
neighborhood of m∗. In the sequel we choose n appropriately large and δ appro-
priately small.

In the case of the RFCW model, we prove the convergence of the law of the
normalized metastable time, τB , to an exponential distribution, via convergence of
the Laplace transform, Rσ (λ), defined in (3.47). The proof of the latter is based on
renewal arguments.

4.1. Renewal equations. By Proposition 3.4, instead of studying the process
starting in a given point, σ , for which no exact renewal equation will hold, it is
enough to study the process starting on a suitable measure on A, for which such a
relation will be shown to hold. For λ ≥ 0, let ρλ denote the probability measure on
A that satisfies the equation∑

σ∈A

ρλ(σ )Eσ

(
e−(λ/T )τA1τA<τB

1σ(τA)=σ ′
) = C(λ)ρλ(σ

′)(4.1)
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for all σ ′ ∈ A, where

C(λ) = Eρλ

(
e−(λ/T )τA1τA<τB

)
.(4.2)

Existence and uniqueness of such a measure follow in a standard way from the
Perron–Frobenius theorem.

The usefulness of this definition comes from the fact that the Laplace transform
of τB started in this measure satisfies an exact renewal equation.

LEMMA 4.1. Let Rρλ(λ) = ∑
σ ρλ(σ )Rσ (λ). Then

Rρλ(λ) = Eρλ(e
−(λ/T )τB 1τB<τA

)

1 − Eρλ(e
−(λ/T )τA1τA<τB

)
.(4.3)

PROOF. Using that 1 = 1τB<τA
+ 1τA<τB

and the strong Markov property, we
see that

Rρλ(λ) = Eρλ

(
e−(λ/T )τB1τB<τA

)
+ ∑

σ ′∈A

Eρλ

(
e−(λ/T )τA1τA<τB

1σ(τA)=σ ′
)
Eσ ′e−(λ/T )τB(4.4)

= Eρλ

(
e−(λ/T )τB1τB<τA

) + ∑
σ ′∈A

C(λ)ρλ(σ
′)Eσ ′e−(λ/T )τB .

Equation (4.3) is now immediate. �

4.2. Convergence. As a result of the representation (4.3), Theorem 1.2 will
follow from (3.47) once we prove the following lemma.

LEMMA 4.2. With the notation from Lemma 4.1, for any λ ≥ 0,

lim
N→∞

Eρλ(e
−(λ/T )τB1τB<τA

)

1 − Eρλ(e
−(λ/T )τA1τA<τB

)
= 1

1 + λ
.(4.5)

PROOF. The proof of this lemma comprises seven steps.
STEP 1. Define Tλ = Eρλ . We claim:

LEMMA 4.3. There exists c6 > 0, such that, for any λ ≥ 0 fixed,

Tλ = EρλτA∪B

Pρλ(τB < τA)

(
1 + o(e−c6N)

)
.(4.6)

Indeed,

Tλ = Eρλ

(
τB1{τB<τA}

) + Eρλ

(
τB1{τA<τB }

)
= EρλτA∪B + Eρλ

(
1{τA<τB }Eσ(τA)τB

)
(4.7)

= EρλτA∪B + TλPρλ(τA < τB) + Eρλ

(
1{τA<τB }

(
Eσ(τA)τB − Tλ

))
.
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However, by the invariance of ρλ,

Eρλ

(
1{τA<τB }e−(λ/T )τA

(
Eσ(τA)τB − Tλ

)) = 0.(4.8)

It follows that the absolute value of the last term in (4.7) is bounded above as

Eρλ

((
1 − e−(λ/T )τA

)
1{τA<τB }

)
max
σ∈A

|Eσ τB − Tλ|

≤ λmax
σ∈A

∣∣∣∣Eσ τB − Tλ

T

∣∣∣∣Eρλ

(
τA1{τA<τB }

)
(4.9)

= o(e−CN/2)Eρλ

(
τA1{τA<τB }

)
,

where we used (1.12) in the last step. This implies the claim of the lemma.
STEP 2. Control of ρλ-measure.

LEMMA 4.4. There exists c7 < ∞, such that for any n [and hence ε = ε(n)]
fixed,

max
σ∈A

ρλ(σ )

μ(σ)/μ(A)
≤ ec7εN(4.10)

as soon as N is large enough.

PROOF. In order to prove (4.10), first of all, note that by reversibility∑
σ ′∈A

μ(σ ′)Pσ ′
(
τ r
A < τB;σ(τ r

A) = σ
) = μ(σ)Pσ (τ r

A < τB),(4.11)

where τ r
A is the r th hitting time of A. Assume now that we are able to prove that

there exists r and M such that

Pη

(
τ r
A < τB;σ(τ r

A) = σ
) ≤ (1 − ε)−M

Pσ ′
(
τ r
A < τB;σ(τ r

A) = σ
)
,(4.12)

uniformly in η,σ,σ ′ ∈ A. In view of (4.1), this would imply

ρλ(σ ) ≤ 1

C(λ)r

∑
η

ρλ(η)Pη

(
τ r
A < τB;σ(τ r

A) = σ
)

(4.13)

≤ (1 − ε)−M

C(λ)r
Pσ ′

(
τ r
A < τB;σ(τ r

A) = σ
)
.

Multiplying both sides above by μ(σ ′) and applying (4.11), we conclude that
(4.12) implies that

ρ(σ) ≤ (1 − ε)−M

C(λ)r

μ(σ)

μ(A)
Pσ (τ r

A < τB),(4.14)

uniformly in σ ∈ A. The target (4.10), therefore, will be a consequence of the
following two claims: there exists c > 0, such that, independently of the coarse
graining parameter n,

C(λ) ≥ 1 − e−cN(4.15)
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as soon as N is sufficiently large. Furthermore, for sufficiently large c2 and κ ,
(4.12) holds with M = c2N and r = Nκ .

We first show that (4.15) holds. By the uniform bound (2.21) and Jensen’s in-
equality, it follows that

C(λ) ≥ (1 − e−cN )
∑
σ

ρλ(σ )Eσ

(
e−(λ/T )τA |τA < τB

)
≥ (1 − e−cN ) exp

{
− λ

T

∑
σ

ρλ(σ )Eσ (τA|τA < τB)

}
(4.16)

≥ (1 − e−cN ) exp
{
−λEρλ(τA1{τA<τB })

T (1 − e−cN)

}
.

By (4.6),

Eρλ

(
τA1{τA<τB }

) ≤ TλPρλ(τB < τA)

1 + o(e−c8N)
,(4.17)

and (4.15) follows by (2.21) and (1.12).
Next, we show that (4.12) holds. There exists c8 < ∞ such that

Pη(τ
r
A < τB;στr

A
= σ) ≥ e−c8NPη(τ

r
A < τB),(4.18)

uniformly in σ,η ∈ A. This is a rough estimate: by the Markov property,

Pη(τ
r
A < τB;στr

A
= σ) ≥ Pη(τ

r
A < τB) min

η′∈A
Pη′(τA < τB;στA

= σ).(4.19)

Let η′ ∈ A and let the Hamming distance between σ and η′ be K . Then we can
reach σ from η′ by flipping exactly K spins; since this can be done in K! orders,
and each flip has probability at least ((1 − α)/N) by (1.7), we see that

Pη′(τA < τB;στA
= σ) ≥ K!

NK
(1 − α)K,(4.20)

and (4.18) follows.
Next, let η ∈ A and consider a dynamics starting from η. We shall try to couple it

with a dynamics starting from σ ′ using just one basic coupling attempt. Employing
the same notation as in Section 3.2, we know [see (3.28) and (3.40)] that for κ > 2
and M = c2N ,

Pη(S > Nκ, N > M) ≤ e−c9N,(4.21)

where c9 grows linearly with c2. In the sequel, we choose c2 so large that c9 be-
comes larger than the constant c8 in (4.18).

Let us redefine the event B in (3.13) as B = {S ≤ Nκ} ∩ {N ≤ M}. The coins
V1, . . . , VM and the event A = {∨M

i=1 Vi = 1} remain the same. Consider the en-
larged probability space (�̃, P̃) which corresponds to a single basic coupling at-
tempt to couple a dynamics σ(t) from σ ′ to the dynamics η(t) which starts at η.



364 A. BIANCHI, A. BOVIER AND D. IOFFE

The coupling is successful if and only if the event A ∩ B, which depends on at
most Nκ steps, happens. Therefore,

Pσ ′
(
τ r
A < τB;σ(τ r

A) = σ
)

≥ P̃
(
Nκ ≤ τ r

A < τB;η(τ r
A) = σ ; A; B

)
(4.22)

= Pη

(
Nκ ≤ τ r

A < τB;η(τ r
A) = σ ; B

)
P̃(A)

= Pη

(
Nκ ≤ τ r

A < τB;η(τ r
A) = σ ; B

)
(1 − ε)M.

Now, let us choose r = Nκ . In particular, the constraint Nκ ≤ τ r
A becomes redun-

dant. By (2.21) and in view of (4.18) and our choice of M which leads to a large
c9 in (4.21), there exists c10 > 0 such that

Pη

(
τ r
A < τB;η(τ r

A) = σ ; B
)

≥ Pη

(
τ r
A < τB;η(τ r

A) = σ
) − Pη(Bc)(4.23)

≥ Pη

(
τ r
A < τB;η(τ r

A) = σ
)
(1 − e−c10N).

Equation (4.12) follows. �

STEP 3. The following crucial bound, to which we refer to a uphill lemma, will
be proven in the next subsection.

LEMMA 4.5. There exists c11 > 0 such that

Eρλ(τB1τB<τA
) ≤ e−c11NEρλ(τA1τA<τB

).(4.24)

REMARK. Intuitively, the bound (4.24) should follow from the decomposition

Eσ τA∪B = Pσ (τA < τB)Eσ (τA|τA < τB)
(4.25)

+ Pσ (τB < τA)Eσ (τB |τB < τA)

since the first probability on the right-hand side is close to one, the second is expo-
nentially small, and the two conditional expectations should be of the same order.
It seems, however, remarkably difficult to establish such a result uniformly in the
starting point σ ∈ A, for the same reasons why the pointwise control of mean exit
times is difficult.

We shall proceed with the proof assuming that (4.24) holds.
STEP 4. In view of (4.6), a look at (4.24) reveals that the conditional expectation

Eρλ(τB |τB < τA)

T
= o(e−c11N).(4.26)

Using that, for x ≥ 0, 1 ≥ e−x ≥ 1 − x, it follows that the numerator in (4.3)
satisfies

Eρλ

(
e−(λ/T )τB 1τB<τA

) = Pρλ(τB < τA)
(
1 + o(e−c11N)

)
.(4.27)
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STEP 5. Let us turn now to the denominator in (4.3). We rewrite it as

Pρλ(τB < τA)

(
1 + λ

Eρλ((1 − e−(λ/T )τA)1{τA<τB })
λPρλ(τB < τA)

)
.(4.28)

Using (4.6) for 1/Pρλ(τB < τA), we are left with the computation of

T

λEρλ(τA1{τA<τB })
Eρλ

((
1 − e−(λ/T )τA

)
1{τA<τB }

)
.(4.29)

Since,

Eρλ

((
1 − e−(λ/T )τA

)
1{τA<τB }

) = λ

T

∫ 1

0
Eρλ

(
e−(sλ/T )τAτA1{τA<τB }

)
ds,(4.30)

we deduce that the expression in (4.29) belongs to the interval[
Eρλ(e

−(λ/T )τAτA1{τA<τB })
Eρλ(τA1{τA<τB })

,1
]
.(4.31)

The target (4.5) follows once we show that

lim
N→∞

Eρλ(e
−(λ/T )τAτA1{τA<τB })

Eρλ(τA1{τA<τB })
= 1.(4.32)

It is clear that (4.32) follows as soon as we check that there exists a sequence
αN ↓ 0, such that

lim
N→∞

Eρλ(τA1{τA<τB }1{τA<αNT })
Eρλ(τA1{τA<τB })

= 1.(4.33)

This will be our next goal.
Let Bδ = SN \Aδ . Our proof of (4.33) is based on the following decomposition:

Eρλ

(
τA1{τA<τB }1{τA>αNT }

) ≤ Eρλ

(
τA1{τA<τBδ

}1{τA>αNT }
)

+ Eρλ

(
τA1{τBδ

<τA<τB }
)

(4.34)

≡ Iδ + IIδ.

The logic behind this decomposition should be transparent: the conditional (on
τA < τB ) landscape should have the global mesoscopic minima at A. The term Iδ
is a local one and should be small, since the dynamics cannot spend too much time
inside a local well Aδ without hitting A. On the other hand, the term IIδ should be
small because of the price paid for the uphill run toward Bδ before hitting A. We
claim that there exists αN ↓ 0 and c > 0 such that

max{Iδ, IIδ} ≤ e−cN
Eρλ

(
τA1{τA<τB }

)
.(4.35)

Evidently, (4.33) is a consequence of (4.35).
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STEP 6. Bound on Iδ . The term Iδ is bounded above as

Iδ ≤ max
σ∈A

Eσ

(
τA∪Bδ1{τA∪Bδ

>αNT }
)
.(4.36)

The right-hand side of (4.36) depends on the dynamics in a δ-neighborhood of a
nondegenerate local minimum A = S n[m∗]. We try to formalize an intuitive idea
that such dynamics mixes up on time scale much shorter than T and cannot afford
spending αNT units of time without hitting A ∪ Bδ . This is a somewhat coarse
estimate. Let us start with estimating hitting times from equilibrium measure over
mesoscopic slots:

LEMMA 4.6. Let Aδ and Bδ be as defined above. Then there exists c(δ), sat-
isfying c(δ) ↓ 0, as δ ↓ 0, such that, for all m′ ∈ Aδ \ m∗,

Eνm′ τA∪Bδ ≤ ec(δ)N ,(4.37)

where νm′ is the probability measure on S n[m′], which we referred to in (1.4).

PROOF. By formula (1.4), we have that

Eνm′ τA∪Bδ = 1

cap(m′,A ∪ Bδ)

∑
σ∈Aδ\A

μβ,N(σ )hS n[m′],S[A∪Bδ](σ )

(4.38)

≤ 1

cap(m′,A)

∑
σ∈Aδ\A

μβ,N(σ ) = μβ,N(A \ Aδ)

cap(m′,A)
.

Note that we used here only the crudest possible estimate on the harmonic func-
tion hS n[m′],A∪Bδ

(σ ), but the results of [1] do not give us anything much better. It
remains to bound the capacity cap(m′,A) from below. However, this is relatively
easy using the methods explained in Section 5 of [1], to which we refer for further
details. One gets that

cap(m′,A) ≥ e−cδεNμβ,N(m′).(4.39) �

As a consequence we obtain the following lemma.

LEMMA 4.7. Let Aδ and Bδ be as defined above. Then there exists c(δ) satis-
fying c(δ) ↓ 0 as δ ↓ 0, such that, for all η ∈ Aδ \ A,

Pη

(
τA∪Bδ ≤ 2ec(δ)N ) ≥ (1 − ν(n))M

3
,(4.40)

where 1−ν(n) is the probability (3.4) of a successful single coin-flip and M = c2N

is the number of coins.
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PROOF. As the formulation of the lemma suggests, we use the basic coupling
as described in the preceding section: let m′ ∈ Aδ and η,σ ∈ S n[m′]. Define the
event B as in (3.13). In fact, since we are interested in τA∪Bδ , the first constraint in
(3.13) becomes redundant and we can redefine B simply as

B = {S < Nκ} ∩ {N < M}.(4.41)

Then, performing our basic coupling attempt we infer that, for any η,σ ∈ S[m′],
Pη

(
τA∪Bδ ≤ 2ec(δ)N ) ≥ (

1 − ν(n)
)M

Pσ

(
τA∪Bδ ≤ ec(δ)N ; B

)
.(4.42)

By Lemma 4.6 and Chebyshev’s inequality

Pνm′
(
τA∪Bδ ≤ 2ec(δ)N ) ≥ 1

2(4.43)

and, in view of the bound (3.19), (4.40) follows. �

Let us go back to (4.36). By Lemma 4.7,

max
σ∈A

Pσ

(
τA∪Bδ > k2ec(δ)N ) ≤

(
1 − (1 − ν(n))M

3

)k

.(4.44)

Therefore, as follows by a straightforward application of the tail formula,

Iδ ≤ e−c12N(4.45)

as soon as

αNT > 3c13Ne(c(δ)+ν(n))N .(4.46)

Since T ∼ eCN with C > 0 being, of course, independent of our choice of δ and n,
it is always possible to tune the parameters δ, n and αN ↓ 0 in such a way that
(4.46) holds.

STEP 7. Bound on IIδ . Note that

Eρλ

(
τA1{τBδ

<τA<τB }
) = Eρλ

(
τBδ1{τBδ

<τA}
)

(4.47)
+ Eρλ

(
1{τBδ

<τA}Eσ(τBδ
)

(
τA1{τA<τB }

))
.

By the Uphill lemma [see (4.24) above] the first term in (4.47) is negligible with
respect to EρλτA1{τA<τBδ

}. Therefore, the bulk of the remaining work is to find an
appropriate upper bound on the second term in (4.47).

By the Downhill lemma [see (4.61) below] we would be in good shape if we
would have the original reversible measure μ instead of the ρλ eigen-measure
defined in (4.1). Namely, as it is explained in the end of Section 4.3, (4.61) implies
that, independently of n, there exists cδ > 0 such that

1

μ(A)

∑
σ∈A

μ(σ)Eσ

(
1{τBδ

<τA}Eσ(τBδ
)

(
τA1{τA<τB }

)) ≤ e−cδN(4.48)
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as soon as N is large enough. However, since we have already established in (4.10)
that ρλ is, up to arbitrary small exponential corrections, controlled by μ, it follows
that the second term in (4.47) is exponentially small and hence also negligible with
respect to Eρλ(τA1{τA<τBδ

}).
The proof of Lemma 4.2 is now complete. �

4.3. Uphill and Downhill lemmas. In this subsection, we shall prove (4.24)
and (4.48).

PROOF OF LEMMA 4.5. Instead of proving (4.24) directly, we will first show
the (more natural) estimate∑

σ∈A

μ(σ)Eσ (τB1τB<τA
) ≤ e−cNμ(A)(4.49)

for some c > 0. To do so, we use the fact that

Eσ τA∪B = Eσ (τA1τA<τB
) + Eσ (τB1τB<τA

).(4.50)

Define the function

wA,B(σ ) ≡
{

Eσ (τA1τA<τB
), if σ /∈ A ∪ B,

0, else,
(4.51)

wA,B solves the Dirichlet problem

LwA,B(σ ) = hA,B(σ ), σ /∈ A ∪ B,(4.52)

wA,B(σ ) = 0, σ ∈ A ∪ B,(4.53)

where L ≡ 1 − P . Notice that, for σ ∈ A,

Eσ (τA1τA<τB
) = Pσ (τA < τB) − LwA,B(σ ).(4.54)

Next, using reversibility,∑
σ

μ(σ)hA,B(σ )LwA,B(σ ) = ∑
σ

μ(σ)LhA,B(σ )wA,B(σ ).(4.55)

By the properties of the functions hA,B and wA,B , this equation reduces to

− ∑
σ∈A

μ(σ)LwA,B(σ ) = ∑
σ /∈A∪B

μ(σ)hA,B(σ )2.(4.56)

Hence, ∑
σ∈A

μ(σ)Eσ (τA1τA<τB
) = ∑

σ∈A

μ(σ)Pσ (τA < τB)

(4.57)
+ ∑

σ /∈A∪B

μ(σ)hA,B(σ )2.
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Using a completely similar procedure, one shows that∑
σ∈A

μ(σ)Eσ (τA∪B) = ∑
σ∈A

μ(σ) + ∑
σ /∈A∪B

μ(σ)hA,B(σ ).(4.58)

Therefore, taking into account (4.50),∑
σ∈A

μ(σ)Eσ (τB1τB<τA
) = ∑

σ∈A

μ(σ)Pσ (τB < τA)

(4.59)
+ ∑

σ /∈A∪B

μ(σ)hA,B(σ )hB,A(σ ).

The first term on the right-hand side is exponentially small compared to μ(A) by
Lemma 2.2. The same holds true for the second term, by the same estimates that
were used in the proof of Lemmas 6.1 and 6.2 in [1]. Thus (4.49) holds. By Lemma
4.4, it follows that for a slightly smaller constant c′, Eρλ(τB1τB<τA

) ≤ e−c′N . Fi-
nally, EρλτA∪B ≥ 1 and so Eρλ(τA1τA<τB

) ≥ 1− e−c′N , and we can deduce (4.24).
This concludes the proof of the lemma. �

The microscopic harmonic function h(σ) ≡ P(τA < τB) gives rise to the so-
called h-transformed chain with transition probabilities

ph
N(σ,σ ′) = h(σ)−1pN(σ,σ ′)h(σ ′).(4.60)

This h-transformed chain lives on {σ :h(σ) > 0} and it is reversible with respect
to μh ≡ h2μ. The following Downhill lemma holds.

LEMMA 4.8. With the notation introduced before,∑
σ∈A

μ(σ)Eσ

(
1{τBδ

<τA}EστBδ

(
τA1{τA<τB }

))
(4.61)

≤ ∑
σ ′∈Aδ\A

μh(σ ′)Ph
σ ′(τBδ < τA).

PROOF. By reversibility,

μ(σ)Eσ

(
1{τBδ

<τA}1{σ(τBδ
)=η}

) = μ(η)Eη

(
1{τA<τBδ

}1{σ(τA)=σ }
)
.(4.62)

Hence, ∑
σ∈A

μ(σ)Eσ

(
1{τBδ

<τA}Eσ(τBδ
)

(
τA1{τA<τB }

))
(4.63)

= ∑
η∈Bδ

μ(η)Pη(τA < τBδ)Eη

(
τA1{τA<τB }

)
.
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Since the only nonzero contribution to the latter sum comes from η in the exte-
rior boundary of Aδ , we can bound it from above in terms of the h-transformed
quantities as ∑

η∈Bδ

μh(η)Ph
η(τA < τBδ)E

h
ητA.(4.64)

Applying the representation formula (1.4) for hitting times for the h-transformed
dynamics, we can represent the above sum as∑

σ ′∈Aδ\A
μh(σ ′)Ph

σ ′(τBδ < τA),(4.65)

and (4.61) follows. �

Let us go back to (4.48). Using an estimate completely analogous to Lemma 2.2,
one sees that∑

σ ′∈Aδ\A
μh(σ ′)Ph

σ ′(τBδ < τA) ≤ ∑
σ ′∈Aδ\A

μ(σ ′)h(σ ′)Pσ ′(τBδ < τA)

(4.66)
≤ μ(Aδ \ A)e−cδN

for some cδ > 0. This allows us to deduce (4.48) from (4.61).

Acknowledgments. We thank Malwina Luczak for stimulating discussions on
[9] and coupling methods in general. We are grateful to Martin Slowik for pointing
out an error in a previous version and for suggesting the proof of Lemma 4.5.

The kind hospitality of the Technion, Haifa, the Weierstrass-Institute for Ap-
plied Analysis and Stochastics, and the Institute of Applied Mathematics at Bonn
University is gratefully acknowledged.

REFERENCES

[1] BIANCHI, A., BOVIER, A. and IOFFE, D. (2009). Sharp asymptotics for metastability in the
random field Curie–Weiss model. Electron. J. Probab. 14 1541–1603. MR2525104

[2] BOVIER, A. (2009). Metastability. In Methods of Contemporary Mathematical Statistical
Physics. Lecture Notes in Math. 1970 177–221. Springer, Berlin. MR2581606

[3] BOVIER, A., DEN HOLLANDER, F. and SPITONI, C. (2010). Homogeneous nucleation for
Glauber and Kawasaki dynamics in large volumes and low temperature. Ann. Probab. 38
661–713.

[4] BOVIER, A., ECKHOFF, M., GAYRARD, V. and KLEIN, M. (2001). Metastability in stochastic
dynamics of disordered mean-field models. Probab. Theory Related Fields 119 99–161.
MR1813041

[5] BOVIER, A., ECKHOFF, M., GAYRARD, V. and KLEIN, M. (2002). Metastability and low
lying spectra in reversible Markov chains. Comm. Math. Phys. 228 219–255. MR1911735

[6] BOVIER, A., ECKHOFF, M., GAYRARD, V. and KLEIN, M. (2004). Metastability in reversible
diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc.
(JEMS) 6 399–424. MR2094397

http://www.ams.org/mathscinet-getitem?mr=2525104
http://www.ams.org/mathscinet-getitem?mr=2581606
http://www.ams.org/mathscinet-getitem?mr=1813041
http://www.ams.org/mathscinet-getitem?mr=1911735
http://www.ams.org/mathscinet-getitem?mr=2094397


EXPONENTIAL LAWS VIA COUPLING 371

[7] CASSANDRO, M., GALVES, A., OLIVIERI, E. and VARES, M. E. (1984). Metastable behavior
of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35 603–634. MR0749840

[8] FREIDLIN, M. I. and WENTZELL, A. D. (1984). Random Perturbations of Dynamical Systems.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences] 260. Springer, New York. MR0722136

[9] LEVIN, D. A., LUCZAK, M. J. and PERES, Y. (2010). Glauber dynamics for the mean-field
Ising model: Cut-off, critical power law, and metastability. Probab. Theory Related Fields
146 223–265. MR2550363

[10] MARTINELLI, F., OLIVIERI, E. and SCOPPOLA, E. (1989). Small random perturbations of
finite- and infinite-dimensional dynamical systems: Unpredictability of exit times. J. Stat.
Phys. 55 477–504. MR1003525

[11] MARTINELLI, F. and SCOPPOLA, E. (1988). Small random perturbations of dynamical sys-
tems: Exponential loss of memory of the initial condition. Comm. Math. Phys. 120 25–69.
MR0972542

[12] MATHIEU, P. and PICCO, P. (1998). Metastability and convergence to equilibrium for the ran-
dom field Curie–Weiss model. J. Stat. Phys. 91 679–732. MR1632726

[13] NUMMELIN, E. (1978). A splitting technique for Harris recurrent Markov chains. Z. Wahrsch.
Verw. Gebiete 43 309–318. MR0501353

[14] OLIVIERI, E. and VARES, M. E. (2005). Large Deviations and Metastability. Encyclopedia of
Mathematics and Its Applications 100. Cambridge Univ. Press, Cambridge. MR2123364

A. BIANCHI

WEIERSTRASS-INSTITUTE FOR APPLIED ANALYSIS

AND STOCHASTICS

MOHRENSTRASSE 39
10117 BERLIN

GERMANY

E-MAIL: alessandra.bianchi7@unibo.it

A. BOVIER

INSTITUT FÜR ANGEWANDTE MATHEMATIK

RHEINISCHE FRIEDRICH–WILHELMS-UNIVERSITÄT

ENDENICHER ALLEE 60
53115 BONN

GERMANY

E-MAIL: bovier@uni-bonn.de

D. IOFFE

FACULTY OF INDUSTRIAL ENGINEERING

AND MANAGEMENT

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA 32000
ISRAEL

E-MAIL: ieioffe@technion.ac.il

http://www.ams.org/mathscinet-getitem?mr=0749840
http://www.ams.org/mathscinet-getitem?mr=0722136
http://www.ams.org/mathscinet-getitem?mr=2550363
http://www.ams.org/mathscinet-getitem?mr=1003525
http://www.ams.org/mathscinet-getitem?mr=0972542
http://www.ams.org/mathscinet-getitem?mr=1632726
http://www.ams.org/mathscinet-getitem?mr=0501353
http://www.ams.org/mathscinet-getitem?mr=2123364
mailto:alessandra.bianchi7@unibo.it
mailto:bovier@uni-bonn.de
mailto:ieioffe@technion.ac.il

	Introduction
	The problem
	Setting
	Main results

	The random field Curie-Weiss model
	The model and equilibrium properties
	Coarse graining
	Local recurrence

	Construction of the coupling
	The coupling by Levin, Luczak and Peres
	Coupling attempt in the general case
	Basic coupling attempt

	Construction of a cycle and cycle decomposition of sigma-paths
	Upper bounds on probabilities and proof of Theorem 1.1
	Extension to the case m(sigma)<>m (eta)
	The Laplace transform

	Renewal and the exponential distribution for the RFCW
	Renewal equations
	Convergence
	Uphill and Downhill lemmas

	Acknowledgments
	References
	Author's Addresses

