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Abstract

Recently, Bauke and Mertens conjectured that the local statistics
of energies in random spin systems with discrete spin space should in
most circumstances be the same as in the random energy model. We
review some rigorous results confirming the validity of this conjecture.
In the context of the SK models, we analyse the limits of the validity
of the conjecture for energy levels growing with the volume of the
system. In the case of the Generalised Random energy model, we give
a complete analysis for the behaviour of the local energy statistics at
all energy scales. In particular, we show that, in this case, the REM
conjecture holds exactly up to energies EN < βcN , where βc is the
critical temperature. We also explain the more complex behaviour
that sets in at higher energies.

1 Introduction

The canonical formalism has become the favorite tool to analyse models
of statistical mechanics. The main reason for preferring it over the micro-
canonical formalism is presumably its computational convenience; even in
simple examples, the computation of the phase space volume of all states
with a given energy appears as a rather complicated problem. In the case
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of disordered systems the advantages of the canonical approach are even
more apparent, and the recent advances in particular in the theory of mean-
field spin-glasses highlight the computational power that this formalism can
bring to the analysis of high-dimensional random processes (see these pro-
ceedings!).

Rather recently, however, Bauke and Mertens [1] have proposed a new
and original look back at the micro-canonical scenario in precisely the case of
disordered spin systems. This point of view consists studying very precisely
the statistics of configurations whose energy is very close to a given value. In
fact, in discrete spin systems, for a given system size, the Hamiltonian will
take on a finite number of (random) values, and, at least if the distribution
of the disorder is continuous, the probability that a given value E is attained
will in fact be zero. One may, however, ask how close the “best” approximant
to E will come when the system size grows. More generally, one may ask
what the distribution of the energies that come closest to E is, and how the
values of the corresponding configurations are distributed in configuration
space.

The original motivation for this viewpoint came from a reformulation of
a problem in combinatorial optimisation, the number partitioning problem,
in terms of a spin system Hamiltonian [14, 15]. In the randomized version
of this problem one is interested in finding an optimal partition of a set
{1, . . . , N} into (two) subsets, A,B, such that, for a given assignment of
independent identically distributed random variables, Xi, I = 1, . . . , N , the
sums

∑
i∈A Xi and

∑
i∈B Xi, are as close to each other as possible. It is easy

to see that this problem is equivalent to considering the random Hamiltonian

HN (σ) =

N∑

i=1

Xiσi (1)

with σi ∈ {−1, 1}, and searching for the configuration σ such that HN (σ)
is as close as possible to the value 0. In this context, Mertens conjectured,
that the distributions of the close to optimal values is the same as one
would obtain if the random variables HN (σ) were replaced by the random
variables

√
NXσ where Xσ are independent standard Gaussian random vari-

ables. This conjecture was proven to be correct in [2].
Some time later, [1], Bauke and Mertens generalised this conjecture in

the following sense: Let HN (σ) be the Hamiltonian of any disordered spin
system with discrete spins and with continuously distributed couplings, and
let E be any given real number, then the distribution of the close to optimal
approximants of the level

√
NE is the same as if HN (σ) are replaced by
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independent Gaussian random variables with the same mean and variance
as HN(σ). Moreover, they conjectured that the spin configurations realising
these approximants are uniformly distributed on configuration space.

All these problems can naturally be considered as extreme value prob-
lems for random variables |N−1/2HN(σ)−E|, more precisely the minima of
these random variables. The main statement of the Bauke-Mertens conjec-
ture can then be formulated in the following form: For suitable normalisation
constants C(N,E), the sequence of point processes

∑

σ∈SN

δ{C(N,E)|N−1/2HN (σ)−E|}

converges, as N ↑ ∞, to the Poisson point process P in IR+ whose intensity
measure is the Lebesgue measure.

Such types of results are quite well-known in the context of correlated
random sequences, in particular in the case of stationary processes, where
such results hold under certain mixing conditions [13]. In the present con-
text, it appears rather surprising that such a result should hold in great
generality. Indeed, it is quite well known that the correlations of the ran-
dom variables are strong enough to modify, e.g. the behaviour of the maxima
of the Hamiltonian. Thus there are two questions beyond the original con-
jecture that naturally pose themselves: (i) assume we consider instead of
fixed E, N -dependent energy levels, say, EN = cNα, c ∈ IR. How fast can
we allow EN to grow for the REM-like behaviour to hold? and (ii) what
type of behaviour can we expect once EN grows faster than this value? In
this note we discuss some rigorous results around these questions.

Acknowledgements: We would like to thank Stephan Mertens for in-
teresting discussions. AB also thanks the organisers of the workshop “Math-
ematical Physics of Spin Glasses”, M. Aizenmann, P. Contucci, S. Graffi,
and F. Guerra, for the kind invitation and excellent organisation.

2 Criteria for REM behaviour.

Our approach in [8, 9], and essentially also that of [2, 3, 4, 5] to the proof
of the REM conjecture is based on the following general fact about random
variables. Let Vi,M ≥ 0, i ∈ IN , be a family of positive random variables
with identical distributions, that are normalized, s.t.

IP (Vi,M < b) ∼ b

M
. (2)

3



In the case of independent random variables, it would follow, that the num-
ber of Vi,M that are smaller than b will have Binomial distribution with
parameters M and (approximately) b/M . Assume that (2) holds for all
b ∈ IR+. If we plot the set of all points Vi,M , the number of points within
any subset, A ⊂ IR+\{0} will converge to a random variable with Poisson
distribution, with parameter the volume of the set A. Moreover, if A and B
are two disjoint subsets, then the numbers of points within each respective
set will be independent. This means that the random set of points Vi,M con-
verges to a Poisson point process on IR+\{0}. The question is: under which
conditions this is still true, if the random variables Vi,M are correlated? It
turns out that a very useful sufficient condition is the following:

Lemma 1 If for any fixed number, `, and any collection of bi ≥ 0,

lim
M↑∞

∑

(i1,...,i`)⊂{1,...,M}
IP (∀`

j=1 Vij ,M < bj) →
∏̀

j=1

bj , (3)

where the sum is taken over all sequences of different indices (i1, . . . , i`),
then

M∑

i=1

δVi,M
→ P (4)

where P is the Poisson point process on IR with intensity measure the
Lebesgue measure.

A proof of this result can be found in Chapter 13 of [6]. Naturally, we
would apply this theorem with Vi,M given by |N−1/2HN (σ)−EN |, properly
normalised.

Remark 1 As remarked in [5], these conditions are also almost necessary
in the following sense. Since we are dealing with random variables, we may
always find a proper normalisation c(N,EN ), such that for the random vari-
ables Vi,M = c(N,EN )|N−1/2HN (σ)−EN |, (3) holds with ` = 1. This term
is also equal to the mean of the number of the Vi,M that are smaller than

b, i.e. the random variable NM (b) ≡ ∑M
i=1 1IVi,M <b. Now note that, if we

have convergence to a Poisson process, i.e. if
∑M

i=1 δVi,M
→ P, then NM (b)

must converge to a Poisson random variable with parameter b. In particu-
lar, if a kth moment of NM (b) converges to a finite value as M → ∞, then
all lower-order moments must converge to those of the Poisson distribution
with parameter b. It is trivial to check that this is equivalent to saying that,
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if for some `0 ∈ N , the left-hand side of (3) converges to a finite value, than
for all ` < `0, (3) must hold. In particular, to disprove the REM conjecture,
it is enough to check that (3) does not hold for ` = 2 while the left-hand side
converges to some value for ` = 3.

To understand how this lemma can be applied, it is useful to think of the
random variables N−1/2HN (σ) as Gaussian random variables with variance
one. This holds, if the couplings are Gaussian. Otherwise, it is one of the
main steps of the proof to show that they converge, in a strong sense, to
Gaussians. If EN = E independently of N , this requires some continuity
assumptions on the distributions of the couplings, otherwise it holds in great
generality. If energies EN that go to infinity are considered, this problem is
much harder.

Our general setting is the following. We consider a product space SN

where S is a finite set. We define on SN a real-valued random process,
N−1/2HN (σ), σ ∈ SN , where we assume that IEHN (σ) = 0, IE(HN (σ))2 =
N .

One problem we have to deal with from the outset are symmetries. We
will not discuss this here in any detail and just replace in all considerations
the state space SN by the space ΣN of residual classes modulo the group
of automorphisms, G, of SN , that leave HN (σ) invariant. Let us consider
energies

EN = cNα, c, α ∈ IR, 0 ≤ α < 1/2, (5)

and define the sequence

δN =
√

π
2 eE2

N /2|ΣN |−1. (6)

Note that δN is exponentially small in N ↑ ∞, since α < 1/2. This sequence
is chosen such that for any b ≥ 0,

lim
N↑∞

|ΣN |IP (|Z − EN | < bδN ) = b, (7)

where Z is standard Gaussian random variable.
In [9] we have formulated a set of geometric conditions in this set-

ting that imply that the hypothesis of Lemma 1 hold with Vi,M given by
δ−1
N |N−1/2HN(σ) − EN | (and i → σ, M → |ΣN |), that is

∑

(σ1,...,σ`)∈ΣN
σ1,...,σ` different

IP
(
∀`

i=1 : |N−1/2HN (σi) − EN | < biδN

)
→ b1 · · · b`. (8)
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These assumptions of our theorem are verified in a wide class of physi-
cally relevant models. The examples we verified explicitly in [9] are: 1) the
Gaussian p-spin SK models and 2) Gaussian short-range spin-glasses. One
finds that there are two threshold values for the allowed growth of EN .

(i) For short-range models and SK-models with p = 1 (which is essentially
the number-partitioning problem), the REM-conjecture can be verified
for EN ∼ cNα, with α < 1/4. In the number-partitioning problem, [5]
showed that this also holds for non-Gaussian couplings and suitable
conditions on the finiteness of exponential moments.

(ii) In the SK-models with p ≥ 2, the conjecture is valid for EN ∼ cNα,
with α < 1/2.

As pointed out in [5], these thresholds are sharp in the SK-models with
p = 1 and p = 2, in the sense that the REM conjecture fails if EN = cN1/4,
respectively EN = cN1/2, with c small. This can be verified by checking
that the conditions (3) fail for ` = 2 in these cases, while the left-hand
side converges to some finite number for ` = 3. As pointed out above, this
implies that Poisson convergence cannot hold. For p ≥ 3 we strongly believe
that the REM conjecture is still true at the level EN = cN1/2 with c small
enough. In this paper we add the discussion of this case.

We have also proved the REM conjecture for short-range spin glass mod-
els or p-spin SK models with non-Gaussian couplings, p ≥ 1, and/or non-zero
mean, under assumption α = 0, see [9].

3 The REM conjecture in the SK models.

Let us now turn in more details to the REM conjecture in the context of the
Sherrington-Kirkpatrick models. Here SN = {−1, 1}N , and the Hamiltonian
is given by

HN (σ) =

√
N

Np/2

∑

1≤i1,i2,...,ip≤N

Ji1,...,ipσi1σi2 · · · σip (9)

where Ji1,...,ip are independent standard Gaussian random variables.

3.1 p-spin Sherrington-Kirkpatrick models, 0 ≤ α < 1/2

In [9] we have derived the following theorem.
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Theorem 1 If p = 1 and α ∈ [0, 1/4[, or, if p ≥ 2, and α ∈ [0, 1/2[, then,
for any constant c ∈ IR \ {0} the sequence of point processes

PN ≡
∑

σ∈SN

δ{δ−1
N |N−1/2HN (σ)−cNα|} (10)

where δN = 2−Ne+c2N2α/2
√

π
2 converges weakly to the standard Poisson

point process, P, on IR+.

3.2 p-spin Sherrington-Kirkpatrick models, α = 1/2

The obvious question is to know whether the bound on the growth of EN

in the preceding theorem is sharp. In particular, one would want to know
whether in the case p ≥ 2, the REM-conjecture can hold for extensive ener-
gies, i.e. for EN = cN1/2.

As we will see, there will be a difference between the cases p = 2 and
p ≥ 3. As noted in [5], the answer is negative in the former case (see below),
while we will show here that it is probably yes in the case p ≥ 3. Below we
give a proof of this fact modulo a technical conjecture.

Let σ1, . . . , σ`, be ` spin configurations. We denote by mij ≡ σi·σj

N =

N−1
∑N

k=1 σi
kσ

j
k. Consider the product space S⊗`

N endowed with the uniform
measure. Let I(m) ≡ I(m1,2, . . . ,m`−1,`) be the entropy of the overlaps
σ1 · σ2/N, . . . , σ`−1 · σ`/N , i.e.

I(m1,2, . . . ,m`−1,`) = ln 2 − lim
N↑∞

1

N`
ln#

{
σ1, . . . , σ` :

σi · σj

N
= mij ,∀i<j

}
.

(11)
It is useful to note that

I(m1,2, . . . ,m`−1,`) = −`−1 inf
hi,j≥0

1≤i<j≤`

ln IEη exp
( ∑

1≤i<j≤`

(ηiηj − mi,j)hi,j

)

(12)
where the ηi are i.i.d. random variables taking the values plus and minus
one with equal probability. Let B`,p ≡ B`,p(m) be the ` × ` the symmetric
matrix with the elements mp

i,j, for i < j, and mi,i = 1 on the diagonal. We
define the set

M`
N ≡

{
m ∈ [−1, 1]`(`−1)/2 : ∃(σ1, . . . , σ`) ∈ S`

N : mi,j =
σi · σj

N
,∀i<j

}

and
M` ≡ lim

N↑∞
M`

N .
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Note that the matrix B`,p(m) ≥ 0, for all m ∈ M`. We set

M̃` ≡ {m ∈ M` : B`,p(m) > 0}.

For m ∈ M̃`, we denote by B−1
`,p ≡ B−1

`,p (m) the inverse of this matrix and

we write b−1
i,j = b−1

i,j (m) for its elements.
Define

ρp ≡ sup
`≥2

sup
m∈

�

M`

1 − `−1
∑`

i,j=1 b−1
i,j

I(m)
. (13)

Conjecture 1 For any p ≥ 3, ρp < ∞. Moreover, limp↑∞ ρp = 1/ ln 2.

Remark 2 It is not difficult to derive from (12) that

I(m) =
1

2`

∑

1≤i<j≤`

m2
i,j + o(‖m‖2), (14)

as
‖m‖ ≡ max

1≤i<j≤`
|mi,j| → 0.

It is also easy to see from the construction of the inverse matrix that

b−1
i,j = −mp

i,j(1 + o(1)), i 6= j, b−1
i,i = 1 + O(‖m‖2p), ‖m‖ → 0. (15)

Consequently,

1 − `−1
∑̀

i,j=1

b−1
i,j =

2

`

∑

1≤i<j≤`

mp
i,j(1 + o(1)) + O(‖m‖2p). (16)

Moreover, det B`,p = 1 + O(‖m‖2p). It follows form (14) and (16) that, for
p ≥ 3,

1 − `−1
∑`

i,j=1 b−1
i,j

I(m)
≤ 5max

i<j
|mij|p−2 → 0, ‖m‖ → 0

(we put 5 instead of 4 to absorb the extra error terms). Let us also note
that, since B−1

`,p is a positively defined matrix, 1 − `−1
∑`

i,j=1 b−1
i,j ≤ 1, for

m ∈ M`. These arguments imply that for any value of ` ≥ 2 and any p ≥ 3

ρ`,p ≡ sup
m∈

�

M`

` − ∑`
i,j=1 b−1

i,j

I(mi,j)
< ∞.
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One also can see that

ρ2,p = sup
−1<m<1

mp/(1 + mp)

(1/4)[(1 + m) ln(1 + m) + (1 − m) ln(1 − m)]
≥ 1

ln 2
,

thus ρp ≥ 1/ ln 2. Moreover, we expect ρp to tend to 1/ ln 2, as p ↑ ∞. In
fact, in the formal limit, when the matrix B`,∞ has only elements zero and
±1, depending on whether |mi,j | < 1, or mi,j = ±1, one may show easily
that ρ∞ = 1/ ln 2.

We will now show the validity of the REM conjecture for p ≥ 3 for

energies EN <
√

2ρ−1
p N if ρp < ∞.

Theorem 2 Let HN (σ) be given by (9), p ≥ 3. The assertion (10) holds
true for EN = c

√
N with c2/2 < ρ−1

p .

Remark 3 The theorem is of course void for any p for which Conjecture 1
is false.

Proof. We have to prove that the limit of the sum

∑

σ1,...,σ`∈SN
σ1,...,σ` different

IP (∀`
i=1 : |N−1/2HN(σi) − cN | ≤ δN bi) (17)

as N ↑ ∞ converges to b1 · · · b`.
The elements of the matrix B`,p = B`,p,N(σ1, . . . , σ`) are:

cov(N−1/2HN (σi), N−1/2HN(σj)) =
(σi · σj

N

)p
= mp

i,j.

First, let us consider a part of the sum (17) over σ1, . . . , σ` such that
the matrix B`,p,N(σ1, . . . , σ`) is non-degenerate. From the representation
of the matrix elements, detB`,p,N(σ1, . . . , σ`) is a finite polynomial in the
variables σi·σj/N , thus its inverse can grow at most polynomially. Hence, for
any σ1, . . . , σ` with B`,p,N(σ1, . . . , σ`) non-degenerate, we have the estimate
detB`,p,N(σ1, . . . , σ`)−1 ≤ Nd with some constant d > 0 depending on ` and
p only. Since, in addition to this, under the assumption c2/2 < ρ−1

p ≤ ln 2,
δN is exponentially small in N and HN (σ) are Gaussian random variables
with zero mean and covariance matrix B`,p,N(σ1, . . . , σ`), it follows that this
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part of the sum (17) equals

∑

σ1,...,σ` different

det Bl,p,N (σ1,...,σ`)>0

(2δN )`b1 · · · b`(2π)−`/2(det B`,p,N(σ1, . . . , σ`))−1/2

× exp
(
− (~c ~N)B−1

`,p,N(σ1, . . . , σ`)(~c ~N)/2
)
(1 + o(1))

=
∑

σ1,...,σ` different

det Bl,p,N (σ1,...,σ`)>0

|SN |`(b1 · · · b`)(det B`,p,N(σ1, . . . , σ`))−1/2

× exp
(
c2N

(
` −

l∑

i,j=1

b−1
i,j

)
/2

)
(1 + o(1)) (18)

where (~c ~N) is the vector of ` coordinates equal to cN , (o(1)) is uniform over
σ1, . . . , σ` with detB`,p,N(σ1, . . . , σ`) > 0 as N ↑ ∞.

We split the sum (18) into two sums I1
N and I2

N : the first one is over
(σ1, . . . , σ`) with ‖m‖ < N−ζ and the second one with ‖m‖ > N−ζ for some
fixed 1/3 < ζ < 1/2. Then by (16)

I1
N =

∑

σ1,...,σ`: ‖m‖<N−ζ

|SN |−`b1 · · · b`(1+o(1)) exp
(
c2N

∑

1≤i<j≤`

mp
i,j(1+o(1))

)
.

(19)
Since ζ > 1/3 and p ≥ 3, we have that Nmp

i,j = o(1) as N ↑ ∞. So,

each term in the sum (19) is of the order |SN |−`b1 · · · b`(1 + o(1)), where
|SN |−` = 2−N`. Since ζ < 1/2, the number of terms in I1

N is bounded from
below by 2N`(1 − exp(−hN1−2ζ)) with some h > 0 and from above by 2N`.
Hence, I1

N converges to b1 · · · b`.
To treat the sum I2

N over ‖m‖ > N−ζ , let us estimate it as

I2
N ≤ constNd

∑

m∈
�

M`
N

:

‖m‖>N−ζ

exp
(
c2N(` −

l∑

i,j=1

b−1
i,j )/2

)
exp(−N`I(m)). (20)

Here M̃`
N is a part of M`

N where B`,p,N(m) is non-degenerate.
Again, by (16), for any θ > 0 one can choose δ > 0 so small that for all

(σ1, . . . , σ`) with ‖m‖ < δ we have ` − ∑
i,j b−1

i,j ≤ (2 + θ)
∑

1≤i<j≤` mp
i,j. It

follows then from (14), that each term in the sum (20) with N−ζ < ‖m‖ < δ
is of the order at most exp(−hN1−2ζ) with some constant h > 0. Now, each
term in I2

N with ‖m‖ > δ is bounded by exp(−hN) with some h > 0 due
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to the Conjecture 1, ρp < ∞, and the fact that c2/2 < ρ−1
p . The number

of terms in (20) being polynomial, this completes the analysis of the part of
the sum (17) over σ1, . . . , σ` with det B`,p,N(σ1, . . . , σ`) > 0.

It remains to consider parts of the sum (17) where the rank of the matrix
B`,p,N(σ1, . . . , σ`) equals r < ` for r = 1, 2, . . . , `− 1. This means that there
exists an r-tuple of spin configurations, such that the covariance matrix of
their Hamiltonians Br,p,N is non-degenerate and, moreover, the Hamiltoni-
ans of the remaining ` − r spin configurations can be represented as linear
combinations of the Hamiltonians of these r configurations. It is well-known
[12, 2] that the N × r matrix of these r spin configurations of the basis can
not contain all 2r different rows, but at most 2r − 1 : otherwise one of the
remaining ` − r configurations would be equal to one of those r, which is
impossible since the sum in (17) is taken over different ` configurations.
Moreover, it is also known, [2], that there exists an N -independent number
of possibilities to complete it by `−r appropriate configurations up to N ×`
matrix. Thus, the part of the sum (17) where rankB`,p,N(σ1, . . . , σ`) = r < `
is bounded by

(
r

`

) ∑

σ1,...,σ` different

det Br,p,N (σ1,...,σr)>0

det Bk,p,N (σ1,...,σk)=0, k=r+1,...,`

IP (∀r
i=1 : |N−1/2HN (σi) − cN | ≤ δN bi)

(21)
where the number of terms in the sum is O((2r −1)N ). The part of this sum
over maxi,j∈{1,...,r} |mi,j| > N−ζ converges to zero by the same arguments as
in the case of B`,p,N non-degenerate. The part over maxi,j∈{1,...,r} |mi,j| <

N−ζ have terms of order 2−Nr(1 + o(1)) by the same arguments as in the
case of B`,p,N non-degenerate as well. But since the number of terms in
this the sum is O((2r − 1)N ), it converges to zero exponentially fast. This
completes the proof.

Let us finally turn to the negative results in the cases p = 2 and p = 1.

Case p = 2. We proceed along the lines of the proof of the previous
theorem. Using (14) and (16), the sum I1

N is

I1
N = (2πN)−`(`−1)/4

∑

mi,j∈M`
N

:

|m|<N−ζ

(b1 · · · b`) exp
(
c2N

∑

1≤i<j≤`

m2
i,j(1 + o(1))

)

× exp
(
− N

∑

1≤i<j≤`

m2
i,j(1 + o(1))/2

)
. (22)

11



The change of variables si,j = mi,j

√
N shows that when 2c2 < 1, I1

N con-
verges to the integral

∫

IR`(`−1)/2
(2π)−`(`−1)/4(b1 · · · b`)

∏

1≤i<j≤`

exp
(
s2
i,j(2c

2 − 1)/2
)
dsi,j

which is (b1 · · · b`)(1 − 2c2)−`(`−1)/4. In addition, for given `, if c2/2 < ρ−1
2,`

where ρ2,` = sup
m∈

�

M`

1−`−1
� `

i,j=1 b−1
i,j

I(m) , then the same arguments as in the

case p ≥ 3 prove that the remaining part of the sum (17) converges to
0. Hence, in the case p = 2, for c2 < 2ρ−1

2,` , the sum (17) converges to

(b1 · · · b`)(1−2c2)−`(`−1)/4. In view of the remark after Lemma 1, this implies
that for small enough c, we cannot have convergence to a Poisson point
process. This was first observed in [5].

Case p = 1. The case p = 1 is the simplest one. Here we can exclude
Poisson convergence for EN = cN1/4, for any c < ∞, not just for small
enough c. Using (14) and (16), the sum I1

N is

I1
N = (2πN)−`(`−1)/4

∑

m∈M`
N

|m|>N−ζ

(b1 · · · b`) exp
(
c2
√

N
∑

1≤i<j≤`

mi,j(1 + o(1))
)

× exp
(
− N

∑

1≤i<j≤`

m2
i,j(1 + o(1))/2

)
. (23)

The same change of variables si,j = mi,j

√
N shows that I1

N converges to the
integral

∫

IR`(`−1)/2
(2π)−`(`−1)/4(b1 · · · b`)

∏

1≤i<j≤`

∏

1≤i<j≤`

exp(si,jc
2 − s2

i,j/2)dsi,j

which is (b1 · · · b`) exp(c4/2)`(`−1)/2. Using (14) for ‖m‖ small enough and
the fact that α = 1/4 for ‖m‖ bounded from below, it is easy to see that
the remaining part of the sum (17) converges to 0.

In both cases we see that the probability that ` variables are small is
larger by a quickly increasing factor const`(`−1) over the Poisson case, which
indicates that “good approximants of EN” will tend to “lump” together,
which is the effect we should expect from the increasing importance of cor-
relations. It would be very nice to have a more complete and explicit descrip-
tion of the limiting process. Unfortunately, it seems that even in the case
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p = 1, where we have all moments, these grow too fast with ` to determine
e.g. the distribution of the number of points in an interval.

In the next section we turn to another class of models, where we are able
to get a complete picture of what happens after the REM conjecture fails.

4 Beyond REM behaviour

In the particular case of the Generalised Random Energy models (GREMs),
it is possible to analyse completely not only what the precise threshold for
the validity of the REM-conjecture is, but also what happens for higher
energy levels. We briefly summarize these results now. As we will see, in
these models there will be a rather clear link between properties of the local
energy statistics and the properties of the Gibbs measures, quite in contrast
to the findings on the SK models or in short-range models, where non-REM
behaviour sets in already at energy levels that are not linked to equilibrium
phase transitions.

Let us briefly recall the definition of the GREM. We consider parame-
ters α0 = 1 < α1, . . . , αn < 2 with

∏n
i=1 αi = 2, a0 = 0 < a1, . . . , an < 1,∑n

i=1 ai = 1. Let Xσ1···σ`
, ` = 1, . . . , n, be independent standard Gaussian

random variables indexed by σ1 . . . σ` ∈ {−1, 1}N ln(α1···α`)/ ln 2. The Hamil-
tonian of the GREM is HN (σ) ≡

√
NXσ, with

Xσ ≡ √
a1Xσ1 + · · · + √

anXσ1···σn . (24)

Then cov (Xσ ,Xσ′) = A(dN (σ, σ′)), where dN (σ, σ′) = N−1[min{i : σi 6=
σ′

i} − 1], and A(x) is a right-continuous step function on [0, 1] with A(x) =
a0 + · · · + ai, if x ∈ [ln(α0α1, · · ·αi)/ ln 2 , ln(α0α1, · · ·αi+1)/ ln 2). We will
assume here for simplicity that the linear envelope of the function A is
convex.

To formulate our results, we also need to recall from [7] (Lemma 1.2) the
point process of Poisson cascades P` on IR`. It is best understood in terms
of the following iterative construction. If ` = 1, P1 is the Poisson point
process on IR1 with the intensity measure e−xdx. To construct P`, we place
the process P`−1 on the plane of the first ` − 1 coordinates and through
each of its points draw a straight line orthogonal to this plane. Then we put
on each of these lines independently a Poisson point process with intensity
measure e−xdx. These points on IR` form the process P`.

Let us define the constants d`, ` = 0, 1, . . . , n, where d0 = 0 and

d` ≡
∑̀

i=1

√
ai2 ln αi. (25)
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Finally, set, for ` = 0, . . . , k − 1, as

D` ≡ d` +

√
2 ln α`+1

a`+1

k∑

j=`+1

aj . (26)

It is not difficult to verify that D0 < D1 < · · · < Dn−1. Interestingly, the
border of D0 is the point βc, that is the critical temperature of the respective
model. We are now ready to formulate the main result.

Theorem 3 If |c| < D0 = βc, then, the point process

M0
N =

∑

σ∈SN

δ{
2N+1(2π)−1/2e

−c2
N

N/2
∣∣Xσ−cN

√
N

∣∣} (27)

converges to the Poisson point process with intensity measure the Lebesgue
measure.

Theorem 4 If for ` = 1, . . . , n − 1, D`−1 ≤ c < D`, set

c̃` = |c| − d`, (28)

β` =
c̃`

a`+1 + · · · + an
, γi =

√
ai/(2 ln αi), i = 1, . . . , `, (29)

and

R`(N) =
2(α`+1 · · ·αk)

N exp(−Nc̃`β`/2)√
2π(a`+1 + · · · + ak)

∏̀

j=1

(4Nπ ln αj)
−β`γj/2. (30)

Then, the point process

M`
N =

∑

σ∈SN

δ{
R`(N)

∣∣√a1Xσ1+···+√
anXσ1...σn−c

√
N

∣∣} (31)

converges to mixed Poisson point process on [0,∞[: given a realization of the
random variable Λ`, its intensity measure is Λ`dx. The random variables
Λ` is defined in terms of the Poisson cascades P` via

Λ` =

∫

IR`

eβ`(γ1x1+···γ`x`)P`(dx1, . . . , dx`). (32)

14



The proof of these theorems is given in [10]. Here we give a heuristic
interpretation of the main result.

Let us first look at (27). This statement corresponds to the REM-
conjecture of Bauke and Mertens [1]. It is quite remarkable that this con-
jecture holds in the case of the GREM for energies of the form cN (namely
for c ∈ D0).

In the REM [11], Xσ are 2N independent standard Gaussian random
variables and a statement (27) would hold for all c with |c| <

√
2 ln 2: it

is a well known result from the theory of independent random variables
[13]. The value c =

√
2 ln 2 corresponds to the maximum of 2N independent

standard Gaussian random variables, i.e., maxσ∈SN
N−1/2Xσ →

√
2 ln 2 a.s.

Therefore, at the level c =
√

2 ln 2, one has the emergence of the extremal
process. More precisely, the point process

∑

σ∈ΣN

δ{√
2N ln 2

(
Xσ−

√
2N ln 2+ln(4πN ln 2)/

√
8N ln 2

)}, (33)

that is commonly written as
∑

σ∈SN
δu−1

N (Xσ) with

uN (x) =
√

2N ln 2 − ln(4πN ln 2)

2
√

2N ln 2
+

x√
2N ln 2

, (34)

converges to the Poisson point process P1 defined above (see e.g. [13]). For
c >

√
2 ln 2, the probability that one of the Xσ will be outside of the domain

{|x| < c
√

N}, goes to zero, and thus it makes no sense to consider such
levels.

In the GREM, N−1/2 maxσ∈SN
Xσ converges to the value dk ∈ ∂Dk−1

(25) (see Theorem 1.5 of [7]) that is generally smaller than
√

2 ln 2. Thus
it makes no sense to consider levels with c 6∈ Dk−1. However, the REM-
conjecture is not true for all levels in Dk−1, but only in the smaller domain
D0.

To understand the statement of the theorem outside D0, we need to recall
how the extremal process in the GREM is related to the Poisson cascades
introduced above. Let us set SNw`

≡ {−1, 1}Nw` where

w` = ln(α1 · · ·α`)/ ln 2 (35)

and define the functions

U`,N(x) ≡ N1/2d` − N−1/2
∑̀

i=1

γi ln(4πN ln αi)/2 + N−1/2x (36)
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Set

X̂j
σ ≡

j∑

i=1

√
aiXσ1...σi , X̌j

σ ≡
n∑

i=j+1

√
aiXσ1...σi . (37)

From what was shown in [7], for any ` = 1, . . . , n, the point process,

E`,N ≡
∑

σ̂∈SNw`

δ
U−1

`,N ( �X
J`
σ̂ )

(38)

converges in law to the Poisson cluster process, E`, given in terms of the
Poisson cascade, P`, as

E` ≡
∫

IR`

P(`)(dx1, . . . , dx`)δ� `
i=1 γixi

. (39)

In view of this observation, we can re-write the definition of the process M`
N

as follows:

M`
N =

∑

σ̂∈Sw`N

∑

σ̌∈S(1−w`)N

δ{
R`(N)

∣∣X̌J`
σ̂σ̌−

√
N

[
|c|−d`−N−1(Γ`,N−U−1

`,N ( �X
J`
σ̂ ))

]∣∣},

(40)
with the abbreviation

Γ`,N ≡
∑̀

i=1

γi ln(4πN ln αi)/2 (41)

(c is replaced by |c| due to the symmetry of the standard Gaussian distrib-
ution). The normalizing constant, R`(N), is chosen such that, for any finite
value, U , the point process

∑

σ̌∈S(1−w`)N

δ{
R`(N)

∣∣X̌J`
σ̂σ̌−

√
N

[
|c|−d`−N−1(Γ`,N−U)

]∣∣},
(42)

converges to the Poisson point processes on IR+, with intensity measure
given by eU times Lebesgue measure, which is possible because c ∈ D`\D`−1,
that is |c| − d` is smaller that the limit of N−1/2 maxσ̌∈S(1−w`)N

X̌J`
σ̂σ̌. This

is completely analogous to the analysis in the domain D0. Thus each term
in the sum over σ̂ in (40) that gives rise to a “finite” U−1

`,N (X̂`
σ̂), i.e., to an

element of the extremal process of X̂`
σ̂, gives rise to one Poisson process

with a random intensity measure in the limit of M`
N . This explains how
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the statement of the theorem can be understood, and also shows what the
geometry of the configurations realizing these mixed Poisson point processes
will be.

Let us add that, if c ∈ ∂Dk−1, i.e. |c| = dk, then one has the emergence
of the extremal point process (38) with ` = k, i.e.

∑

σ∈SN

δ{
√

N(Xσ−dk

√
N+N−1/2Γk,N )} → Ek, (43)

see [7].
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Probab. Statist., 40:439–480, 2004.

[8] A. Bovier and I. Kurkova. Poisson convergence in the restricted k-
partitioning problem. WIAS preprint 964, cond-mat/0409532, to ap-
pear in Random Structures & Algorithms.

17



[9] A. Bovier and I. Kurkova. Local energy statistics in disordered sys-
tem: a proof of the local REM conjecture. WIAS preprint 1023 ,
cond-mat/0504366, to appear in Commun. Math. Phys. (2006).

[10] A. Bovier and I. Kurkova. A tomography of the GREM: beyond the
REM conjecture. WIAS preprint 1024, cond-mat/0504363, to appear
in Commun. Math. Phys. (2006).

[11] B. Derrida. Random-energy model: an exactly solvable model of dis-
ordered systems. Phys. Rev. B (3), 24(5):2613–2626, 1981.

[12] H. Koch and J. Piasko, “Some rigorous results on the Hopfield neural
network model”, J. Stat. Phys. 55, 903-928 (1989).

[13] M.R. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and related
properties of random sequences and processes. Springer Series in Sta-
tistics. Springer-Verlag, New York, 1983.

[14] St. Mertens. Phase transition in the number partitioning problem.
Phys. Rev. Lett., 81:4281–4284, 1998.

[15] St. Mertens. A physicist’s approach to number partitioning. Phase
transitions in combinatorial problems (Trieste, 1999), Theoret. Com-
put. Sci. 265, 79–108 (2001).

18


