Commun. Math. Phys. 263, 535-552 (2006) Communications in
Digital Object Identifier (DOI) 10.1007/s00220-005-1517-0 Mathematical

Physics

A Tomography of the GREM:
Beyond the REM Conjecture *

Anton Bovier' 2, Irina Kurkova?

1 WeierstraB-Institut fiir Angewandte Analysis und Stochastik, Mohrenstrasse 39, 10117 Berlin,
Germany. E-mail: bovier @wias-berlin.de

2 Institut fiir Mathematik, Technische Universitit Berlin, Strasse des 17. Juni 136, 12623 Berlin, Germany

3 Laboratoire de Probabilités et Modeles Aléatoires, Université Paris 6, 4, place Jussieu, B.C. 188,
75252 Paris, Cedex 5, France. E-mail: kourkova@ccr.jussieu.fr

Received: 29 March 2005 / Accepted: 13 September 2005
Published online: 23 February 2006 — © Springer-Verlag 2006

Abstract: In a companion paper we proved that in a large class of Gaussian disordered
spin systems the local statistics of energy values near levels N!/2*% with @ < 1/2 are
described by a simple Poisson process. In this paper we address the issue as to whether
this is optimal, and what will happen if « = 1/2. We do this by analysing completely
the Gaussian Generalised Random Energy Models (GREM). We show that the REM
behaviour persists up to the level 8. N, where B. denotes the critical temperature. We
show that, beyond this value, the simple Poisson process must be replaced by more and
more complex mixed Poisson point processes.

1. Introduction

In a companion paper [4] we proved (for a large class of models) a conjecture by Bau-
ke and Mertens [1] on the universality of the local energy level statistics in disordered
systems, the so-called local REM conjecture. While in the original form this conjecture
concerns the distribution of the values, Hy (), of the (random) Hamiltonian, Hy, near
energies Ey = E \/N (where N is the volume of the system), we could show that, at least
in the case of Gaussian couplings, the result still holds for energies Ey = EN'/2*% with
o > 0. In the case of short range spin glasses, it is true for all « < 1/4, and in the case
of the p-spin SK models it holds foro < 1/4if p = 1, and evenfora < 1/2,if p > 2.

It is natural to ask whether these are true thresholds, and also what should happen for
larger values of the energy. As we have noted in [4], the thresholds cannot be surpassed
with the method of proof that was used there.! In this paper we hope to provide some

* Research supported in part by the DFG in the Dutch-German Bilateral Research Group “Mathemat-
ics of Random Spatial Models from Physics and Biology” and by the European Science Foundation in
the Programme RDSES.

1 After this paper had been submitted, Borgs et al [2] published a preprint that recovers our results on
the p-spin model with p = 1, 2, and extends them to non-Gaussian couplings. They also prove via the
estimates on moments, that if Ey = ¢N3/4 and p =1, [resp. Exy = c¢N and p = 2] with ¢ small, con-
vergence to a Poisson process cannot hold. No explicit analysis of what happens then is, however, given.
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insight into these questions by studying a model that allows more explicit computa-
tions and hence lets us provide the full picture for all energies, the Generalised Random
Energy Model (GREM) of Derrida.

The result we obtain gives a somewhat extreme microcanonical picture of the GREM,
exhibiting in a somewhat tomographic way the distribution of states in a tiny vicinity of
any value of the energy.

Let us briefly recall the definition of the GREM. We consider parameters ¢ = 1 <
o, .osop < 2with [[l_ji =2,a0 =0 < ay,...,ap < 1,> 1 ;a = 1. Let
Xy ={-1, l}N be the space of 2N spin configurations o. Let X4,..5;, [ = 1,...,n,be
independent standard Gaussian random variables indexed by configurations o7 ... 07 €
{—1, 1}V In(@i-a)/In2 \We define the Hamiltonian of the GREM as Hy (o) = /N Xy,
with

Xo =Va1Xo, + -+ VanXo ..o, (1.1)

Then cov (X4, X,/) = A(dn (0, 0”)), where dy (o, 6’) = N~ [min{i : o; # o/} — 11,
and A(x) is a right-continuous step function on [0, 1], such that, foranyi =0, 1, ..., n,
A(x)=ao+ -+ a;, forx € [In(wparq, ---a;)/In2, In(xpary, - - - jg1)/In2).

Set Jop = 0, and, define, for/ > 0,

ln a .u-a ln .« ..
J; = min {an>Jl_1: @)1 ---@y) In@y+1---am) szj+1}, (1.2)
an_Hitetay ajpitetam

up to Jy = n. Then, the k segments connecting the points (ag + --- + ay,
In(oo -+ - aey;)/In2), for I = 0,1, ..., k form the concave hull of the graph of the
function A(x). Let

le =aj_+1 + aj_+2 +- aj, &l =010y 42 (13)
Then
Ina In o In o
_051 < _0[2 << _ak (1.4)
aj ap ay
Moreover, as it is shown in Proposition 1.4 of [3], for any / = 1, ..., k, and for any

Ji-1+1=<i < J,wehaveln(oy_,41---a;)/(@j_y+1+--+a;) > In(a)/a;. Hence

In oy . In(ay,_y41- - o)
— = min -] ey (1.5)
a JEh-1 L2, Ay 4 +~--+aj

To formulate our results, we also need to recall from [3] (Lemma 1.2) the point
process of Poisson cascades P! on R!. It is best understood in terms of the following
iterative construction. If [ = 1, P! is the Poisson point process on R! with the intensity
measure Kje *dx. To construct P!, we place the process P/~! on the plane of the first
[ — 1 coordinates and through each of its points draw a straight line orthogonal to this
plane. Then we put on each of these lines independently a Poisson point process with
intensity measure K;e *dx. These points on R/ form the process P!. The constants
K1, ..., K; > 0 (that are different from 1 only in some degenerate cases) are defined in
the formula (1.14) of [3].
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We will also need the following facts concerning P! from Theorem 1.5 of [3]. Let
y1 > y2 > --- > y; > 0. There exists a constant 4 > 0, such that, for all y > 0,

Py, ..., x) eP 3j=1,....L:yixi +yx2+ - Fyix; > i+ +v)y)
< exp(—hy). (1.6)

Here and below we identify the measure 7 with its support, when suitable. Furthermore,
forany y € R,

#Hxr, ..., x) eP! XYL+ iy >y < o0 a.s. (1.7)
Moreover, let 8 > 0 be such that By; > --- > By; > 1. The integral
Ay = /eﬁ(yl"l+'"m>7>l(dx1,...,dxl) (1.8)
R!

is understood as limy_, _ o I;(y) with

[
no) = / PR NPl (G, | dy)
(xl,.“,xl)E]Rl:
i, 1<i<liypx)+-+y;xp>(yp+-+y)y
1
=> / POt DPl gy dxg,). (1.9)
j: (xlﬂ..,xl)e]Rl:
Vi=l,..,j—Liypxp+-+yix <1 ++y)y

VIX ety x > (v et y)y

It is finite, a.s., by Proposition 1.8 of [3]. To keep the paper self-contained, let us recall
how this fact can be established by induction starting from [/ = 1. The integral (1.8),
in the case / = 1, is understood as limy_, _ o, I1(y). Here /1 (y) = fyoo ePNXIP (dx) is
finite, a.s., since P contains a finite number of points on [y, oo, a.s. Furthermore, by [5]
or Proposition 1.8 of [3], limy_, _ o I1(y) is finite, a.s., since sup,/ <, (L) = I1L(y)
converges to zero exponentially fast, as y — —oo, provided that ,By1 > 1.Ifl > 1,
each term in the representation (1.9) is determined and finite, a.s., by induction. In
fact, to see this for the j™ term, given any realization of P/ in R/, take its projection
on the plane of the first j coordinates. Then by (1.7), there exists only a finite num-
ber of points (x1,...,x;) of PJ, such that vixy+ -+ yix; > v+ -+ vy,
a.s. Whenever the first j coordinates of a point of P! in R are fixed, the remaining
I — j coordinates are distributed as '~/ on R/~/. Then the integral over the function
ePj1xjr1t4¥3) gyer these coordinates is defined by induction and is finite, a.s., pro-
vided that By;;1 > --- > By; > 1. Thus the 7™ term in (1.9) is the sum of an a.s.
finite number of terms and each of them is a.s. finite. Finally, again by Proposition 1.8
of [3], limy, o /;(y) is finite, a.s., since [E supy/sy(ll(y/) —L(y)) > 0asy > —o0
exponentially fast provided that 8y > --- > By; > 1.
Let us define the constants d;, [ =0, 1, ..., k, where dy = 0 and

1

d EZ,/aizln&i. (1.10)

i=1
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Finally, we define the domains Dy, for/ =0, ...,k — 1, as

_ k
2Inca _
D=1yl <d+ |——= 3 a¢. (1.11)
aj+1 =it

It is not difficult to verify that Doy C Dy C --- C Di—_1. We are now ready to formulate
the main result of this paper.

Theorem 1.1. Leta sequencecy € Rbesuchthatlim sup cy € Doandlim inf cy €
N—o0 N— o0

Do. Then, the point process

0 _
My = Z 6{2N+1(2”)_]/26_C%N/2|X07CN\/N|} (1.12)

ogeEXy

converges to the Poisson point process with intensity measure the Lebesgue measure.
Let, forl =1,...,k — 1, c € D; \ D;—1 (where D;_1 is the closure of D;_1). Define

¢ =lc| —dj, (1.13)

f=— T = a/Cha), i=1,....1, (1.14)

e+t ax

and

1 - ap)N exp(—Né !

V2r (@ + -+ ar)

Jj=1
Then, the point process

My = 8 1.16

v= D {RiW) | VaT X o, +4anX o, ..on—c/N |} (1.16)
oeEXy

converges to mixed Poisson point process on [0, co[: given a realization of the random

variable Ay, its intensity measure is Ajdx. The random variables A are defined in terms

of the Poisson cascades P; via

Al = /e/’l<ylx1+"'m>7>l(dx1, o dx). (1.17)

R!

a
temperature in the GREM. Thus the first part of the theorem asserts that the REM conjec-
ture holds for exactly those energies that satisfy Ex < Np.. It is tempting to conjecture
that this model independent formulation of the result might be true more generally.

Remark. Note that dg + ,/ %16‘1 Z’;: 14j = 2hna B (see [3]), the inverse critical

The next section will be devoted to the proof of this result. Before doing this, we
conclude the present section with a heuristic interpretation of the main result.

Let us first look at (1.12). This statement corresponds to the REM-conjecture of Bau-
ke and Mertens [1]. It is quite remarkable that this conjecture holds in the case of the
GREM for energies of the form ¢N (namely for ¢ € Dy).
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In the REM [7], X, are 2V independent standard Gaussian random variables and
a statement (1.12) would hold for all ¢ with |c| < +/21n2: it is a well known result
from the theory of independent random variables [9]. The value ¢ = +/2In2 corre-
sponds to the maximum of N independent standard Gaussian random variables, i.e.,
max,exy N71/2X, — +/2In2 as. Therefore, at the level ¢ = +/21n2, one has the
emergence of the extremal process. More precisely, the point process

Z 8{\/2Nln2(X07«/2Nln2+ln(47rN1n2)/\/8Nln2)}’ (1.18)
TEXN
that is commonly written as 3, cx, d,-1(x_, With
N o
In(47 N 1n2
uy() = VINTnZ — nérNIn2)  x (1.19)

2V2NIn2  2Nh2’

converges to the Poisson point process P! defined above (see e.g. [9]). For ¢ > +/21In2,
the probability that one of the X, will be outside of the domain {|x| < cvV/N}, goes to
zero, and thus it makes no sense to consider such levels.

In the GREM, N~1/2 maxsexy Xo converges to the value dy € dDg—1 (1.10) (see
Theorem 1.5 of [3]) that is generally smaller than /2 In 2. Thus it makes no sense to
consider levels with ¢ € Dj_1. However, the REM-conjecture is not true for all levels
in Dy_1, but only in the smaller domain Dy.

To understand the statement of the theorem outside D, we need to recall how the
extremal process in the GREM is related to the Poisson cascades introduced above. Let
us set Xy, = {—1, [}V, where

w; =1In(a@---0q)/In2 (1.20)
with the notation (1.3). Let us also define the functions

1
Un&x)=N"Y2d — N~1/2 Z viln(@rNIna;)/2 + N~%x (1.21)

i=1

with the notations (1.3), (1.10), (1.14), and set

J n
X =Y VaiXe. o, Xi= Y VaiXo .o (1.22)
i=1 i=j+1
From what was shown in [3], forany / = 1, ..., k, the point process,
Gv= ), Sy (1.23)

6'62Nw1

converges in law to the Poisson cluster process, &, given in terms of the Poisson cascade,
Pl as

& = f P(l)(dx1, ces dxl)azl_
R!

(1.24)

—1 YiXi®
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In view of this observation, we can re-write the definition of the process Mﬂv as follows:

Lo
My= 2, 2. MR |32, —V v -v @] |} 32

6 €Ty N G EX(1—uy)N

with the abbreviation

!
Ty = Zy,» In(47 N In@;)/2 (1.26)
i=1
(c is replaced by |c| due to the symmetry of the standard Gaussian distribution). The

normalizing constant, R;(N), is chosen such that, for any finite value, U, the point
process

Z S{R/(N)M;/(;—\/N[\Cl—dl-ﬁ-/\’_'(Fz,N—U)]H, (1.27)

GEX(1—w)N

converges to the Poisson point processes on R, with intensity measure given by eV
times Lebesgue measure, which is possible precisely because ¢ € Dy \ D;_1, that is
lc| — d; is smaller than the a.s. limit of N~1/2 X(i’a This is completely

max&EE(l—wl)N
analogous to the analysis in the domain Dy. Thus each term in the sum over & in (1.25)

that gives rise to a “finite” Uf]\l,(f(\ ff ), i.e., to an element of the extremal process of X fj s

gives rise to one Poisson process with a random intensity measure in the limit of Mé\,
This explains how the statement of the theorem can be understood, and also shows what
the geometry of the configurations realizing these mixed Poisson point processes will
be.

Let us add that, if ¢ € 9Dy_1, i.e. |c| = d, then one has the emergence of the extre-
mal point process (1.23) with I =k, ie. X 5, S /N (Xy —di/ N+N-112Ty y)) CODVETges
to (1.24) with [ = k, see [3].

2. Proof of Theorem 1.1

Note that (1.17) is finite a.s. since y; > --- > y; by (1.4) and B;y; > 1 by the definition
of B;. Note also that ¢ can be replaced by |c| in (1.12) and (1.16) due to the symmetry
of the standard Gaussian distribution.

Let /\/llN(A) be the number of points of M’N in a Borel subset A C R;. We will

show that for any finite disjoint union of intervals, A = U;’: 1lag, by), the avoidance
function converges

P(MIN(A) =0) —> Eexp(—|A|A)D), (2.1)

where of course A9 = 1 in the case / = 0. Note that in that case, the right-hand side
is the avoidance function of a Poisson point process with intensity 1, while in all other
cases, this is the avoidance function of a mixed Poisson point process.

To conclude the proof in the case [ = 0, it is enough to show that for any segment
A =1la,b),

EMS(A) = (b —a), N — occ. (2.2)
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Then the result (1.12) would follow from Kallenberg’s theorem, see [10] or [9].

In the cases [ = 1, ...,k — 1 we will prove that the family {/\/lé\,}‘]’v":1 is uniformly
tight: by Proposition 9.1V of [6], this is equivalent to the fact that, for any compact
segment, A = [a, b], and for any given € > 0, one can find a large enough integer, R,
such that

PMA(A) > R) <€, VN =>1. (2.3)

Finally, we will show that the limit of any weakly convergent subsequence of ./\/liV isa
simple point process, that is without double points (see Definition 7.11V in [6]). Theorem
7.311 of [6] asserts that a simple point process is uniquely characterized by its avoidance
function, which then implies the result (1.16) claimed in Theorem (1.1).

To prove (2.1), we need the following lemma.

Lemma 2.1. Let A = Uszl[aq,bq), 0<air <by <ay<by <---<ay < by, with
|A| = 25=1(bq —ay). Let0 < f < 1, K(N) > 0 be a polynomial in N. We write
KN fNA=UP_[IK(N) fNag, K(N) fNby).

Foranyi = 1,2,...,n, any € > 0, § > 0 small enough, and M > 0, there exists
No, such that, for all N > Ny and for all y, such that

(ai+-+a,)2lna,+--+2Ina,4+21In f+e€)
max ( m:?-}-%)i_,n Amttan s
(2lnai+1+---+21nan+21nf+e)>§y2§M, 2.4)
the probability,
xi-1
IP’(V& € (=1, YNn@ian/m2) | ___T6 y\/ﬁ‘ p K(N)fNA), 2.5)

with )V(g_l defined by (1.22), is bounded from above and below, respectively, by
exp ( — (1 x8Alen) 2Kk N oMol - -a,’;’e—yzN/z). (2.6)
Proof. Let us define the quantity
PxG, v, f, K(N))EIP(EI& (-1, 1)naista)/n2, X yWNeK (N) N A).
2.7

We will show that, for any € > 0 small enough and M > 0 large enough, we have

n

Py, y, £, K(N)~ @) 22K (N) FV | Alay e e N2, as N — o0,
(2.8)

uniformly for the parameter y in the domain

@+ +a)Chay,+---+2Ina, +2In f +¢€) -

Z< M. (29
m=i+1,..., n am +---+ay, Yy = ( )
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N
Then, the probability (2.5) equals (1 — Py(G,y, f,K(N )))a" , where the asymptotics
of the quantity Py (i, y, f, K(N)) is established in (2.8). Moreover, by the assumption
(2.4),

Pyn(i,y, f, K(N)) < 27)"V/22K (N)|A| exp(—eN/2) — 0. (2.10)

Then the elementary inequality, —x — x? < In(1 — x) < —x, that holds for |x| < 1/2,
leads to (2.6).

Therefore we concentrate on the proof of the asymptotics (2.8). Let X be a standard
Gaussian random variable. Then

PN(’%)% f,K(N))
—P(X — yWN| € K(N) fNA) ~ @)~ V22K (N) V| Ale N2, N = o0,
@.11)

uniformly for y2> < M. This implies (2.8) for i = n. Note also that
PGy, f.K(N) <o) PAX —yV/Nl e KN fYA), (212

so that the upper bound for (2.8) is immediate. We will establish the lower bound by
induction downwards from i = n to i = 1, using the identity

00 2
Putioy £ kW) = [ S (1= [Py (41, X Fay N Jat
27 VN(@ip1+- - +ay)
50
T N
gt 1r<(N))]°"+I . (2.13)
By the induction hypothesis fori + 1,
PN<I.+L«/My—\/Et’f, ai ¥ Fa K(N))
VN@isi+-+ay) 7 Naixr o+ an
/a; +- - +a _(«/a,‘+~~~+any~/ﬁfﬁf)2
~ (2 71/2#2[{ N N A N N .gN 2(aj 41 ++an) ,
(@) Jait o ta, (N fT Al a5y e
(2.14)
uniformly for all y, ¢ that satisfying
ma @iy1+---+a)Rhnoy +---+2Ina, +2In f +€41)
m=i+2,...,n am +---+a,
\/7 N — N2
o (Yot T e Ny, @.15)

VN(@iy1 + - +ay)

for any €;4+1 > 0 small enough and M;; > 0 large enough. The right-hand side of this
inequality reads

m¢4i+' . +any—jﬁﬁ+1+' ot agMi <
a;

S\/N«/amL +any+://;+1+ +an '+1=x/NT1+(y). (2.16)
1

VNT () =
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Obviously, the left-hand side of (2.15) holds for all € (—o00, 00), if Inet,, + --- +
Inoj1o +21In f < 0 and €41 is small enough. Otherwise, it holds, if either

N :
Z‘Z£ max ( ai+...+any+u
i lnmn+'~r-l--:¢—lln+2;«,.1:—r;ln f=0 m + o + An
\/21nam+-~-+2lnan+21nf+6,~+1) = VNT; (). 2.17)
or
N :
t§£ mln ( ai+...+any_w
\/a_i lnan+f'-’-jlln+§;r'l.¥glﬂ f=0 e n
\/Zln()lm+"'+21I10ln+21nf+65+1)E\/NTZ_()/). (2.18)
Let us put for convenience T2+ (y) =—o0cand T, (y) = o0,if 2Ina,+---+2Inai o+

21In f < 0. Finally,
My—ﬁtf ai+- - +an
\/N(ai+1+-~-+a,,) ' ’\/ai—&-l‘i‘""‘f‘an

uniformly in the domain where
(«/ai+~ —FanyV'N—Jait
\/N(ai—H + -t an)

This domain is equivalent to —oo <t < 400, if 2Ine,, +---+2Ine;11 +2Inf <0
and €;41 > 0 is small enough. Otherwise, it is reduced to the union of the domains

aﬁlPN(i +1, K) -0, (2.19)

2
) >2Inaiqy 4+ -+ 2Inay+21In ftepr. (2.20)

VN
‘> ﬁ(«/aﬂr- Sany @+ a) Cina 2w, + 200 fre)
1

;" (VN (2.21)

and

VN
t < _<\/ai+’ “any—+/(@iy1+-+a,)2lnejyi++2Ina, +21n f+€i+l))

Jai

= T;"(»)V'N. (2.22)
Then, using the elementary inequalities
—x—x2<In(l—x)<—x, l4x<e" <l4+x+x>for|x| <1/2, (2.23)

itis easy to deduce from (2.13), (2.14), and (2.19) the following asymptotic lower bound,
if2lne, +---+2Inajy; +2In f > 0:

qaNa+ - t+a N N N _N N

PGy, KN = Qo) ' X T ok (N) Ve o ol

@i, y, f, K(N)) > 2m) TR (N) a0 n
min(7, (y),T5" YNVN T1+ VN

S
T WVN max(T,F (), T, ()N

(JaF—FanyN-ya?
xe = Zertotan o =1/2qy (2.24)
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If2lnejty; + -+ 2lne, + 2In f < 0, then from the same assertions we deduce
the same bound, but with the domain of integration ranging over the entire interval

[T, (y)\/ﬁ, Tﬁ (y)\/ﬁ]. By the change of variables,

ai +---+ant — Jaiy

s = , (2.25)
the right-hand side of (2.24) equals
2K(N) v N N N N —y*N/2
Tom fraiepieisa, e YN/
min(S; (y).55 ()N SFVN
x / + / 5224, (2.26)
Sy VN max(Sy (v),57 VN

where

Va1 + - Fany £ai + -+ anMiq

ST, SF(y) = ’ 227
1 1 Vai
;M= min @+ ta)/a
In a,,+---7+lno}}‘4'—2‘lnf20
X(y_;\/lnam_{_..._}_lnan—l—ln f+€i+]), (2.28)
am + e + ay
SToy= max Vi@t an/a

Inap +“‘Iln 0(m+2-1n f=0
/ai + . .+an
x(y+ Y——soutt
/am+. . .+an

if Tzi(y) are finite, and, of course, S;r(y) = —o0, if T2+(y) = —00, 8, (y) = +o0, if
T, (y) = +o0, and finally

\/1n o+ +Ina,+1In f—l—e,-+1), (2.29)

Vairi+--tany £ ai+ - Fap/Inai+- - +Ino, +HIn f €40
Jai .

S5 =
(2.30)

Now letustake any € > ¢;1 and M = M;;1.Then, thereexist§ > Oand Q > 0, such
that, for all y > 0 satisfying (2.9), we have §; (y) < —Q and min(S, (y), S5 (¥)) > 3;
and for all y < O satisfying (2.9), we have Sl+(y) > Q and max(S2+ ), S;L (y)) < —6.
Hence

min(S; (),S3 GHVN STmVN
Qm)~ 12 / + / e 2ds
STOIWN max(S; (1,55 VN
8N
> ()12 / e 2ds — 1, 2.31)

~oVN



Beyond the REM Conjecture 545

as N — oo.Inthecase when2In, +---+2Ine;11+21In f < 0, we have the analogue
of (2.24) with the integral over [T} ()VN, Tl+ (y)+/N1, and by the same change we
get the bound

STVN OvVN
Qm)~!/? / e 2ds > (27)" /2 / e Pds > 1, N — co. (2.32)
Sy VN —0VN

Since €41 [resp. M;1] could be chosen arbitrarily small [resp. large], by the induction
hypothesis, the estimates (2.24), (2.26), and (2.31), (2.32) show that, for any € > 0 small
enough, and M > 0 large enough, the assertion (2.8) holds uniformly in the domain
(2.9). This finishes the proof of the lemma. O

Lemma (2.1) implies the next lemma.

Lemma 2.2. Letl € {0, ...,k — 1}, ¢ be with |c| < \/21n6q+1(071+1 + -4 ar)/a+1.
For any €,6 > 0 small enough, and M > 0, there exists Ny = No(€, §, M), such that,
forall N > Ny, the probability

)
X!
P(V& e {—1, ja—wN . ’—" — (le| +z)~/ﬂ
¢ KN NG a7 A) (2.33)
is bounded from above and below, respectively, by
exp ( — 1+ 5)(2n)_1/22K(N)|A|e_(2“'|Z+ZQ)N/2> (2.34)

forany —e <z < M.

Proof If |c| < 2In& 11141+ -~ + a)/ars1, then by (1.5) we have e“"/2(&4
@)~ < 1 and with some €y > 0 small enough:

( (@gpr+- - +an) oy, +- - -+2Ina, +2(c*/2—In(@y, - - @) +€o)
maxj max s
m=J;+2,...,n am4ﬂ..+an
QInag4---+2Ina, + 2(c2/2—1n(65,l+1 .. '&Jk))+60) <2,
(2.35)

This last inequality remains true with ¢? replaced in the left-hand side by (|c| + z)? if
z > —e with € > 0 small enough. Then Lemma (2.1) applies with i = J; + 1 and

f= e’/ (@141 - --ax) ! and gives the asymptotics (2.34). O

Lemma (2.2) with! = 0, z = 0, K(N) = +/27 /2 implies immediately the conver-
gence of the avoidance function (2.1) in the case / = 0. To conclude the proof of (1.12),
let us note that

EM(4) = Y P(1Xe — env/N| € 27V @n)ehV/2 4) (2.36)

oeXy
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is the sum of 2 identical terms, each of them being 2~V |A|(1 4 o(1)) by the trivial
estimate for standard Gaussian random variables (2.11). Then (2.36) converges to |A|
and the proof of (1.12) is finished.

To prove the convergence of the avoidance function (2.1) in the case / > 1, let us
write the event {M (A) = 0} in terms of the functions U; x defined in (1.21) as

(Miy(4) =0} = {¥6 € Euyn. & € Zgupn

& VNN Oy Uy X)) G/RI(N)_IA} (2.37)

with the abbreviations (1.20), (1.22), (1.26). Let us introduce the following event with
a parameter y > 0:

BL(y) = [Vj =1,....1,¥6 € Sy : 2Ty — 2Nd;
1,57
—On+ )y <UNRD <yt @38)

By the convergence (1.23) to (1.24), the property (1.6) and the symmetry of the standard
Gaussian distribution, the probability of the complementary event satisfies the following
bound:

lim sup P(BY(y)) < 2exp(—hy), (2.39)

N—o00

with some constant 7 > 0. Now, let us fix any arbitrarily large y > 0 and consider

P(MYy(A) =0) = E[I 8, o0 Bl 41—y | XA ] 1, VG € Zyn)]

+E[11{B, (y)}E(II{M =0 | xd, i Yo ETyN)]. (240

Due to the representation (2.37), the conditional expectation ]E(]I{ M, (A)=0) | )?:’ ,

Vl/ 1» Y& € Zy,n) can be viewed as the product over & € X,y of the quantities (2.33)
with
- I
o= —— gy =T ]_[ AN a2, (241
aj41 + - -+ ax 2 i<l
and

2 =26) = Gt + -+ @) AN Dy = UWED), 6 € Sun. 242)

2d; A .
y m + €e)Vo € EwlN (Wlth
some small enough ¢ > 0), so that Lemma (2.2) applies to ]I{Bf\,(y)}E(]I{M’N(A):O}

| X v Vo € Xy ~)- Hence, by (2.40) and by Lemma (2.2), for any § > 0 small

Furthermore, on va(y), we have z(0) € (—e

j=1
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enough, there exists No(8, y) such that for all N > Ny,

]E[ [T e ( (- 5)(2n)*1/22K(N)|A|e*(2|C‘Z<&>+zz<&>)N/2)]+P(B5V(y))

&6):,,,[1\1

> Efl 0y [] exp(— (-8 P2k ()| aje =@M
6EEU)[N
+P(BY ()
> P(Mh, (4) = 0)

_ |2(6 206
Z E[]I{Bﬁv(y)} l_[ eXp ( _ (1 + 6)(27T)_1/22K(N)|A|€ (2|L|Z(O’)+Z (0'))N/2):|

&EE,,_,[N
B[ [T e (— 0 +8)@0 P2k Al Cee@ @)
‘;ezqu
—P(By (). (2.43)

Using the convergence (1.23) to (1.24), we derive that for any y > 0 large enough and
& > 0 small enough,

E [ exp(=1—8)Ajef@t47) 4 lim sup P(Bj(y))

N—o0
(X1, x1)EPY
> lim sup P(My(A) =0) > lim inf P(My(A) =0)
N—o0 N—o0

>E ]_[ exp(—(1 + 8)|A[efr ¥ty _lim sup P(BL (y)). (2.44)

(¥1seens X)) E€P N=oo

Thus (2.44) and (2.39) imply the following bounds:

Eexp(—(1 —8)|A|A;) + 2exp(—hy) > lim sup IP’(M?V(A) =0)

N—o0

> lim Ninf IP’(MIN(A) =0) > Eexp(—(1 +8)|A|A})) — 2exp(—hy). (2.45)

Since y > 0 can be chosen arbitrarily large and § > 0 fixed arbitrarily small, this
finishes the proof of the convergence of the avoidance function (2.1) in the case of
I=1,2,...,k—1.

To proceed with the proof of tightness (2.3), we need the following lemma.

Lemma23.Let | € {0,....k — 1}, |lc| < 2Inas1(@s1 + -+ +ax)/as,
K(N) > 0 is polynomial in N, z € R. For any segment B C R, let us define an
integer-valued random variable
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IR

= #{ 5 € X(1— e— VN
o (1—w)N N e YT (el +2)
e K(N)e N2 - -&k)—NB}. (2.46)

(i) For any bounded segment A C R, any €,8 > 0 small enough and M > 0
there exists No = No(8, M, €) such that for all N > Ny, for any B C A and any
z €] — €, M[ we have:

P(T KN (B) 2 1) < (14 8)|BIK(N)(2/v/2m)e” CLltN2 - (2.47)

(ii) For any bounded segment A C Ry, any 6 > 0 small enough, K > 0 large enough
and M > 0 there exists No = No(8, M, K) suchthat for all N > Ny, for any segment
B C A with |B| < K=" and for any

]m(zK(N)/\/E) —InkK
IcIN

1=zy € , M[ (2.48)

we have:

BTy (B) 2 2)

< 8|BIK (N)(2/~/2m )¢~ Clele+aIN/2 (IB|K(N)(2/@)6_(2|C|Z+ZZ)N/2)2/2.
(2.49)

Remark. The bound (2.49) is far from being the optimal one, but it is enough for our
purpose. Therefore, we do not prove a precise bound that requires much more tedious
computations.

Proof. The right-hand side of (2.47) is bounded from above by
@41+ @)VP(IX = VN (el +2)] € KN)e 2@ +-a)7VB)  (2.50)

with X a standard Gaussian random variable. Since by the assumption of the lemma

and by (1.5) we have 12 (041 -+ -a@r)~! < 1, then (2.47) is obvious from the trivial
estimate (2.11).

To prove (ii), note that ET KM (BY just equals (2.50), whence
ET KN (B) < (14 8)|BIK (V) 2/v/2m)e CllHON2, 251)
Finally

P(TE KM () > 2) < ETlf}j’K(N)(B) _ (1 —P(Tf5 RNy = )) (2.52)

where by Lemma 2.2 P(T KM (B) = 0) is bounded from above by the exponent
(2.34). The assumpt10n (2. 48) and the fact that | B| < 1/K assure that the argument of
this exponent is smaller than 1 by absolute value, i.e.

0 < (1 — 8)|BIK (N)(2/v/2m)e  FleltDN/2 ) 5. (2.53)
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Then (2.52), (2.51), the bound (2.34) with (2.53) and the elementary fact that e™* <
1 —x+x%/2for0 < x < 1 yield the estimate (2.49). O

We are now ready to prove the tightness (2.3) of the family {/\/lll\,}lo\,o:l for | =
1,...,k— 1. Foragiven € > 0, let us first fix y large enough and N (y) such that

P(By(y)) < €/4 VN = Ni = Ni(y), (2.54)

which is possible due to (2.39). Now let us split the segment A = [a, b] into R disjoint
segments Ay, ..., Ag of size (b —a)/R, R > 1. Then

R
P(M,(A) > R} N By () < Y PUMY(A) =2} N By (y)

i=1

R
<Y > P(C\(A,B) N By(,5))

i=l1 6‘62w1N

R
+3 > POY(ALD N DY (ALD

i=1 ‘E’ﬁegwlNaf?éﬁ
NBY (. ) N By (y, M), (2.55)
where

Ch (A &) ={30 F € Samuyy. 1 # £:| X = VN[G + N7 Ty = Uy RD)]|

e RI(N)'A; fors =i, & = f},
Dy(A1.8) = {36 € Sy | X2 —V/N[& + N7 Chy = Uy (R
e RN Ai (2.56)
and
Bl &) = {¥j =1, 1227y —2Nd; — i+ + vy < U (R
<30+l 2.57)

Each term in the first sum of (2.55) equals

s
E[H{Bﬁv(yﬁ)}E(]I{Cgv(A,-,&)} | X&I’Vj=1)]

_ . oI\l
= ]E[]I{ij(y,&)}E(H{Tfﬁ(‘”"’“”)(A,-)zz} | X5 ,ijl)] (2.58)
with the random variables Tlfﬁ’K(N) defined in Lemma (2.3) and with parameters

¢, K(N), z(0) defined by (2.41) and (2.42). Furthermore, on va (y,0), the parame-

ter z(&) satisfies the condition (2.48) with the constant K = ¢/ ++1)y and M =
2d;(aj41 + - - -+ ax)~'/? + € with some small € > 0. Therefore, if |A;| = (a — b)/R <
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e~ Pini++1)y then the assertion (ii) of Lemma (2.3) applies to the conditional expec-
tation in (2.58). Next, each term of the second sum of (2.55) equals
i\l i\l
E[H{va(»ﬁ),va(y,f)}E(H{DQ(A.-@} | X5 Vf:l)]E(]I{D’N(Ai,f)} | X3 Vf:l)]
_ R vli ol
B ]E[]I{Bw,ﬁ),%(y,f)}]E(]I{T,f‘,é(’”’m’(m-)zl} | X5 Vi)

XE(H{Tiﬁ“”“”’(A,-)zl} | Xf”Vj=1)]’ (2.59)
where on va(y, AN B (v, £) wehave —e < 2(), 2() < 2d; @41+ - -+ax) " 1/* +e
with some small € > 0. Then the assertion (i) of Lemma 2.3 applies to the conditional
expectations in (2.59). Thus by Lemma 2.3, for any 6 > 0, there exists N2(y, §) such
that for all N > N»,

R
> PUMY (A =2} N By (1))
i=1

R
gga(z/«/ﬂ)K(N)(b—a)R—llE( 3 Iy

&EEIUIN

1 e—(2|c|z<&>+z2<&))N/2)
By (v,6)

R
+3 @2 K (N (b — a)*R™>
i=1
l —(2lclz(6)+22(8))N
<E(; H{Bév(y’&)}e( )

&GZU,IN
—@Mdﬂ+¥ﬁH&Mdm+f@DNﬂ>
T 2. - Moo}
£AE Sy Nt

=80 —a)Iy(y) + R b —a)In()/2,

where
YN —(Z\Clz(3)+z2(&))N/2)
V) = CIVIDKWE( 35 Ty e ,
(TEEwlN
—(21c12(6)+22(6 2
N = @/OENKWNE( 30 Ty e (et @)’
&EEwlN N
Here, the quantity Iy (y) converges to
I(y)=E PIIT NPy (dxy ., dxi)
vi<j<l:
YIX Hedyjxj<(vp vy
= ePrxiteyix)=xi===xigy, - dx; < 0.

Vi<j<l:
VX ety X <(rp vy
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Therefore, one can fix N3 = N3(y) large enough and then § = §(y) so small that
8(b— a)]},(y) < €/4,VN > N3(y). The term Jy (y) converges to

2

J(y)=E / ePrxit D plgy, odx) |, (2.60)
Vj=1,..I:
ixp+tyjx p<r+-+rjy

which is finite. In fact, J(y) is the sum of [ 4 1 terms, the k™ of them being

2 Lzt 2BI(V1X 14 FViXk) o B (Vi 1Vt 1447100 Bt (Vi 1 Whe 1V w1)

Vi<i<k:(yyxy+-yixp)<p+-+v)y
Vh+1<i<l:(ypxp+-tygxp+-vivp) <(vi+-+v)y
Vi+1<i<l:(y1x)+-+ygxp+-yi wi) <y +-+v;)y

X e TR T T T W T T W ey d g d vy - - dupd wgg ) -+ - dwp < 00,

(2.61)

Then for any € > 0, one can choose N4 = N4(y) such that for all N > Na4(y) |In(y) —
J(y)| < €/4.Next, let us choose Ry = Ro(y) > K = P+ (b —a) such that (b —
a)?Ry" < 1and also such that (b —a)?Ry ' J (y) < €/4. Thus (b —a)>R™"In(y)/2 <
€/2VN > Na(y) and VR > Ry. Hence,

R
> PUMS(A) = 2) N By (y) < 3€/4 VR = Ry, and
i=1
VN = Na(8(y), ), N3(y), Na(y). (2.62)

Taking into account (2.54), we obtain that
IP(MIN(A) > R) <€ VR > Rpand VN > max(Ny, N2, N3, Ng), (2.63)
whence
P(Mb (A) > max(Rog, 2™, 2V2 2N 2Niyy < ¢ VN > 1, (2.64)

then Mé\, is tight.

It remains to show that the limit M! of any weakly convergent subsequence of {Mé\,}
is a simple process, that is very easy. Consider any segment A = [a, b) and its dissect-
ing system {A,;,i =1,2,...,2",r =1,2,...} such that A1 1 = [a, (a + b)/2) and
A1 = [(a + b)/2, b) are obtained by splitting [a, b) in the middle and the system of
disjoint intervals {A,;,i = 1,2,...,2"} is obtained from {A,_1;,i = 1,2, ..., 2’_1}
by splitting similarly each segment of the latter system into two parts in the middle. It
follows from the estimates (2.54) and (2.62) that for any € > 0 there exists Ng and rg
such that

P@i=1,...,2" : My(A,;) > 2) <€ YN > Ny, ¥r > ro. (2.65)
Then for any € > 0 there exists ry such that
PEi=1,...,2" : M'(A.)) =2) <€ Vr=>r. (2.66)

Then M’ can have double points within A with probability smaller than €. Since € > 0
is arbitrary, it follows that M’ is simple. Thus the proof of the theorem is complete. O
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