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2 Section 11. Introduction.In a series of papers [BK1,BK2] we have recently taken up the analysis of a class ofmean �eld spin glass models introduced by Derrida and Gardner in the 1980's [D,DG1,DG2].In purely mathematical terms, these models can be described as follows. Consider the Ndimensional hypercube SN � f�1; 1gN endowed with the (normalized) ultrametric distance1� dN , where dN(�; �) � N�1(min(i : �i 6= �i)� 1). De�ne a normal Gaussian processes X�indexed by SN with covariance functionEX�X� = A(dN(�; �)) (1:1)for some nondecreasing function A : [0; 1] ! [0; 1]. The principal object of interest is theanalysis of the asymptotic behavior of the Gibbs measures��;N(�) � e�pNX�Z�;N (1:2)where the partition function Z�;N assures that ��;N is a probability measure.1.1. History of the models. Let us brie
y dwell on the history of this problem. Themodel was introduced and analyzed by Derrida and Gardner [D,DG1,DG2] in the case whenA is a step function with �nitely many steps (the corresponding models are called GREMs,or Derrida's GREMs) in the sense that the limit of the free energyF�;N � � 1�N lnZ�;N (1:3)and some further thermodynamics functions were computed. The computation of the freeenergy was later done rigorously in [CCP]. Derrida and Gardner then also considered limitsof their results as the number of steps tended to in�nity, and interpreted these results ascorresponding to continuous functions A [DG1]. These results were then also comparedto those of the more commonly studied (and more diÆcult) class of Sherrington-Kirkpatrickmodels (which essentially di�ers from the class studied here in that the covariance is a functionof the Hamming distance rather than our hierarchical distance).While there were very few further rigorous results on these models (but see [GMP]), Ruellein a seminal paper of 1988 [Ru] introduced a new class of models based on Poisson cascades(to which we will henceforth refer to as \Ruelle's GREM") which he apparently understoodto be the appropriate asymptotic models to describe the limiting Gibbs measures of Derrida'sGREMs. Ruelle noted a number of remarkable features of these models, and in particular



CREM and CSB 3observed that it was possible to construct limits as the number of steps went to in�nity interms of projective limits. Surprisingly, his paper at no point contains a precise hint on howhis models are to be related to the original spin glass models of Derrida.Shortly after that, Neveu [Ne] noted a connection between Ruelle's models and continuousstate branching processes. This paper also outlined a proof of the convergence of the rescaledpartition function of the REM and GREM to a functional of the Poisson process, respec-tively Poisson cascades of Ruelle. Unfortunately, these observations are only contained in aninternal report that was never published and that contains these ideas only in a somewhatembryonic form. Following a much later paper by Bolthausen and Sznitman [BoS], where itwas explained how the results of replica theory of spin glasses can be interpreted in termsof a coalescent process (now known as the Bolthausen-Sznitman coalescent), Bertoin and LeGall [BeLG] �nally gave a precise and complete form of the relation between continuous statebranching processes, the Ruelle's GREM and the Bolthausen-Sznitman coalescent.Around the time when these fascinating results appeared, we began to investigate moreclosely the link to the original spin glass models with Ruelle's models. In the REM, thisconnection was then made in a paper with M. L�owe [BKL] which was elaborated on inthe lecture notes by one of us [B] (see also [T3,T4, BoS2]). These results were extendedto the GREMs in the paper [BK1], using essentially elementary methods (see also [BoS2],Ch. 9 for related results). We observed, however, that the use of the so-called Ghirlanda-Guerra identities [GG] allowed a di�erent approach that circumvented parts of these explicitcomputations (this fact was �rst observed in the REM by Talagrand [T3] who also exploitedthese identities heavily in his work on the p-spin SK models [T1,T2,T3,T4]). In fact, theseidentities impose structural constraints on any limit point that allow to prove convergenceof the Gibbs measure (in a suitable sense) only on the basis of the convergence of the freeenergy, and that, moreover, allow to characterize the limit. These observations allowed us in[BK2] to extend our convergence results to the general class of models de�ned above (whichwe call CREM in case the function A is not a step function).In the present paper we want to conclude this investigation by linking our result up tothe continuous state branching model, i.e. by identifying the limit proven to exist in [BK2]explicitly in terms of Neveu's branching process. This requires in fact little more than com-bining our results from [BK2] with those of Bertoin and Le Gall [BeLG], but we feel that theemerging complete picture is well worth to be put in evidence.



4 Section 11.2. Geometry of Gibbs measures. Let us recall the central problem one is faced withwhen analyzing mean �eld spin glasses. What we want to do is to describe the geometricstructure of a random probability measure on a set SN . One expects that this measure willconcentrate (at low temperatures) on a relatively very small subset with rather complicatedstructure. Since due to randomness and symmetries there are no external references, weneed a way to describe the structural geometric properties of such measures in an intrinsic,reference-free way. On the other hand, we need to allow suÆcient compactness for limits toexist.To resolve this problem, we introduced in [BK2] what we called the empirical distancedistribution function, i.e. the random measureK�;N � X�2SN ��;N(�)Æm�(�) (1:4)where, for t 2 [0; 1], m�(t) � ��;N (�0 : dN (�; �0) > t) : (1:5)This object describes the probability of a mass distribution around a randomly (accordingto the Gibbs measure) drawn point on SN . A key object is the mean �rst moment of thisrandom measure, Z K�;N(dm)m(t) � 1� f�;N(t) (1:6)which is nothing but the probability that two con�gurations, �; �0, drawn independently fromthe Gibbs sample satisfy dN(�; �0) > t. The functionf�;N(t) � �
2�;N (dN(�; �0) � t) (1:7)is now the analogue of Parisi's order parameter4. In [BK3] we proved thatEf�;N (t)! Ef� (t) = ( p2 ln 2�p�a(t) ; if t < t�1; if t � t� (1:8)where �a is the right-derivative of the concave hull of the function A, t� = sup(t : p2 ln2�p�a(t) < 1):We also showed that K�;N D! K� : (1:9)4In the context of the SK models, this function is usually de�ned with dN replaced by the \overlap"parameter RN (�; �0) � N�1Pi �i�0i. In [BK2] we have shown that in the GREM, the choice of the distanceused in the de�nition of f�;N does not a�ect the result in the limit N " 1.



CREM and CSB 5The limit is uniquely determined by Ghirlanda-Guerra relations, which give recursive formulasto compute all moments of K� starting from the function Ef� that determines the secondmoment.In fact, while the random measures K�;N may look somewhat unfamiliar, their momentsare closely linked and even equivalent to the more conventional n-replica distance distributionQ(n)�;N. These are measures on the space [0; 1]n(n�1)=2Q(n)�;N(A) � E�
n�;N ��dN(�i; �j)�1�i<j�N 2 A� (1:10):Note that these measures do of course give full measure to sets that respect the ultrametrictriangle relations. In [BK2] we proved their convergence to a limiting distribution Q(n)� . TheGhirlanda-Guerra identities (together with the fact that 1 � dN is an ultrametric distance)allow to compute Q(n+1)� in terms of Q(n)� recursively, while Q(2)� has distribution functionEf� (t). On the other hand, the full set of distributions Q(n)� determines the limiting randommeasures K� through its moments.The measures Q(n)� are the marginals of the probability distribution of an ultrametric(\genealogical") distance distribution on the positive integers. It is not diÆcult (and will beexplained in Section 6) to show that the Ghirlanda-Guerra relations allow to relate these tothe coalescent process introduced by Bolthausen and Sznitman [BS]. The work of Bertoinand Le Gall [BeLG] allows then to link this to Neveu's branching process. Implicitly, thisalso determines the limit of K�;N .1.3. Aim of the paper. In this paper we want to close what we feel is a small �nal gap in ourunderstanding. This is related to the question whether we can identify a limiting measure towhich our Gibbs measures converge and that encodes the full geometric information containedin K�. As we will explain in some detail at the beginning of Section 2, this is not immediatelypossible. What will however be possible, is the following. We will introduce the notion ofa 
ow of compatible probability measures on [0; 1] indexed by pairs of parameters s � t 2I and with distribution functions satisfying the compatibility assumption (2.2). Next, wewill associate to each of such 
ows a certain genealogical structure on [0; 1] described by agenealogical map KT 2M1(M1([0; 1])) which is an empirical distribution of family sizes of allindividuals as functions of degree of relatedness. Then we will provide a 
ow of compatibleprobability measures for each �niteN with the genealogy describing eÆciently the geometry ofthe Gibbs measure of the CREM: its genealogical map K�;NT will equal the empirical distancedistribution function K�;N . Finally, we will show that this 
ow of probability measures



6 Section 1converges asN !1 to the 
ow of compatible random probability measures with distributionfunctions that are normalized stable subordinators associated to Neveu's continuous statebranching process via an appropriate deterministic time change. This convergence of 
owsis understood in the sense that their genealogical maps K�;N = K�;NT converge. Thus thelimiting geometry of the Gibbs measure of the CREM will be expressed in terms of thegenealogy of Neveu's continuous state branching process modulo a time change determinedonly by Ef� (y) of (1.9).1.4. Organization of the paper. The remainder of the paper is organized as follows. InSection 2 we de�ne the notion of a 
ow of compatible probability measures in De�nition 2.1and associate to it a genealogical structure: a genealogical map KT 2 M1(M1([0; 1])) and acoalescent process on the integers. We show that KT is determined by its moments that canbe expressed as distances between integers of the corresponding coalescent.In Section 3 we provide for all �nite N a 
ow of compatible probability measures with thegenealogical map K�;NT that equals the empirical distance distribution function K�;N .In section 4 we describe the 
ow of compatible probability measures associated to Neveu'scontinuous state branching process. Their probability distribution functions are normalizedstable subordinators verifying the compatibility condition. The coalescent associated withthis 
ow is the one of Bolthausen-Sznitman by [BeLG].In Section 5 we formulate our main theorem. It states that the empirical distance distri-bution function K�;N (which is the genealogical map of the 
ow of Section 3) converges tothe genealogical map of the 
ow of measures associated with Neveu's branching process ofSection 4 via an appropriate time change.In Sections 6 and 7 we prove this theorem. As it was established in Section 2, it suÆces toshow the convergence of moments, that is that the n-replica distance distribution functions(1.10) of our spin glass model converge to the genealogical distance distribution functions ofthe Bolthausen-Sznitman coalescent under an appropriate time change. One way (short butindirect) to prove this is indicated in Section 6 and relies on the connection between Neveu'sbranching process and Ruelle's probability cascades established in [BeLG].The second way (more direct) is given in Section 7: it consists in showing that theBolthausen-Sznitman coalescent satis�es Ghirlanda-Guerra identities. For that purpose weuse the Chinese restaurant process of J. Pitman [P].



CREM and CSB 7We hope that the results presented in this class of models elucidate in a mathematicallycomprehensible context the fundamental and universal role played by Neveu's continuousstate branching process as a universal random mechanism governing the extremal processesfor a wide class of Gaussian processes. If one accepts the common belief of theoreticalphysicists, its role goes well beyond the class of models we discuss here. Even on a slightlyless speculative level, Neveu's process will emerge in any model for which the Ghirlanda-Guerra relations hold in their strong form, which means in particular that this will be thecase if not for the actual SK model, then at least for models where weak additional �elds havebeen added to the Hamiltonians (see [GG,Le,T2]). Recent progress on the validity of Parisi'ssolution by Guerra [G02], Aizenman-Sims-Starr [ASS], and Talagrand [T5] on the level ofthe free energy makes it very credible that this will indeed be the case. Moreover, we alsohope that these examples help to explain to a mathematical audience what physicist describewhen they talk about \continuous replica symmetry breaking", and how such a phenomenoncan actually arise.Acknowledgements: We are grateful for numerous enlightening discussions with JeanBertoin on continuous state branching, subordinators, and coalescents. A.B. also acknowl-edges inspiring discussions with Anton Wakolbinger. I.K. thanks Ph. Marchal for helpfuldiscussions. Part of this work was done while A.B. was resident at the Erwin-SchroedingerInstitute for Mathematical Physics (ESI) in Vienna in the programme \Mathematical popula-tion genetics and statistical physics". He thanks the organisers, Ellen Baake, Michael Baake,and Reinhard B�urger for the kind invitation and the ESI for �nancial support. I.K. thanksthe Weierstrass Institute for Applied Analysis and Stochastics, Berlin, for its hospitality and�nancial support.2. Genealogy of a 
ow of probability measuresIn [B] one of us proposed to describe the in�nite volume limit of the Gibbs measure inthe Random Energy Model by considering its image on the unit interval through the maprN : SN ! (0; 1] de�ned as rN(�) � 1� NXi=1 2�i(1 + �i)=2: (2:1)It was shown that the phase transition in the REM manifests itself by the fact that theresulting image measure converges to Lebesgue measure in the high temperature phase (� �p2 ln 2) and towards a dense pure point measure in the low-temperature phase (� > p2 ln 2).



8 Section 2While this shows the existence of a phase transition, the limiting measure does not describethe geometry of the Gibbs measure. In the REM this is no problem, since the geometryis trivial. But in the GREMs a nontrivial geometry emerges, and our purpose would be toidentify a measure on [0; 1] that represents the limiting Gibbs measure. It will be instructiveto explain how a naive approach to do so fails. On the hypercube we are interested in themasses of sets f�0 : dN(�; �0) > tg (1.5). If we map such sets on the unit interval via rN , weobtain intervals (r[Nt] � 2�[tN]; r[Nt]] of length 2�[tN]. In fact there is no diÆculty to expresse.g. K�;N for N �xed in terms of de�ned quantities with respect to the image measure onthe hypercube. However, the construction involves masses of intervals of exponentially smallsize (in N). So what should one do in the limit when N is in�nite? We cannot analyst thestructure by looking at intervals of the size 2�t1.What is needed is clearly a construction that does not refer explicitly to masses of intervalsof exponentially small size while still revealing the �ne structure of the measure at such ascale. In this section we show that a canonical construction exists when we consider a 
owof probability measures on [0; 1].2.1. Genealogical map of a 
ow of probability measures.De�nition 2.1: A two-parameter family of measures with probability distribution functionsS(s;t) on [0; 1], s � t, s; t 2 I � R, is called a 
ow of compatible probability measures on I,if and only if for any collection t1 � t2 � � � � � tn � IS(t1;tn) = S(tn�1;tn) Æ S(tn�2;tn�1) Æ : : :S(t2;t3) Æ S(t1;t2) (2:2)holds.Let us admit the following terminology. We say that each point a 2 [0; 1] is an individualin generation s and its image S(s;t)(a) 2 [0; 1] is its o�spring in generation t. Let us de�nefor any distribution function �(x) its inverse function��1(x) = inffa j �(a) � xg: (2:3)Then each individual x 2 [0; 1] in generation t has an ancestor a in generation s which isa = (S(s;t))�1(x).Given an individual x 2 [0; 1] in generation t, let us look for individuals x0 having the sameancestor as x in generation s:mx(s; t) � fx0 : (S(s;t))�1(x0) = (S(s;t))�1(x)g: (2:4)



CREM and CSB 9Two situations are possible. In the �rst case S(s;t) is continuous at a = (S(s;t))�1(x).Then any individual x0 6= x has a di�erent ancestor from the one of x, i.e. (S(s;t))�1(x0) 6=(S(s;t))�1(x), mx(s; t) = fxg. (In fact, by de�nition of (S(s;t))�1 it should be Ss;t(a � �) <Ss;t(a) for any � > 0. Then for any x0 < x (S(s;t))�1(x0) < a. If S(s;t) is strictly in-creasing at a, then clearly (S(s;t))�1(x0) > a for any x0 > x. If Ss;t is constant on [a; b)and continuous at a, then (Ss;t)�1(x0) � b > a for any x0 > x.) In the second caseS(s;t) makes a jump at a = (S(s;t))�1(x). Thus Ss;t(a) > x. In this case any indi-vidual x0 2 (lim�#0 S(s;t)(a � �); S(s;t)(a)] has the same ancestor as x in generation s i.e.(S(s;t))�1(x0) = a. Hence, the family (2.4) of the individual x having the same ancestor as xin generation s is the following interval :mx(s; t) = lim�#0 �S(s;t)�(S(s;t))�1(x)� �� ; S(s;t) Æ (S(s;t))�1(x)i :
1
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In Figure 2.1 the individual x in generation t has a family of "cousins" mx(s; t) havingthe same "grand-father" in generation s, while the individual y is the unique "grand-child"of his ancestor in generation s. We are mainly interested in a nontrivial case when functionsS(s;t) make jumps.The next lemma justi�es our terminology. It says that any individual having an ancestorin common with x in generation s has necessarily an ancestor in common with x in anygeneration s0 < s. In other words, if we partition the interval [0; 1] into families mx(s0; t)



10 Section 2having the same ancestor in generation s0, then the partition into families mx(s; t) havingthe same ancestor in generation s > s0 is a re�nement of the previous one.Lemma 2.2: Let S(s;t) be distribution functions of a 
ow of measures according to De�ni-tion 2.1. Then for all x 2 [0; 1]mx(s; t) � mx(s0; t) 8s0 < s � t 2 I: (2:5)Proof: From one hand, by de�nition (2.3) and compatibility (2.2) we have the inequality(S(s;t))�1(x) � S(s0;s) Æ (S(s0;s))�1 Æ (S(s;t))�1(x) = S(s0;s) Æ (S(s0;t))�1(x) (2:6)leading to the upper boundS(s;t) Æ (S(s;t))�1(x) � S(s;t) Æ S(s0;s) Æ (S(s0;t))�1(x) = S(s0;t) Æ (S(s0;t))�1(x): (2:7)From the other hand, for any � > 0 by de�nition (2.3) x > �(��1(x)� �). Then(S(s;t))�1(x) > S(s0;s) Æ �(S(s0;s))�1 Æ (S(s;t))�1(x)� �� = S(s0;s) Æ �(S(s0;t))�1(x)� ��: (2:8)Then for any � > 0 one can �nd Æ(�) > 0 such that Æ(�) # 0 as � # 0 and(S(s;t))�1(x)� Æ(�) > S(s0;s) Æ �(S(s0;t))�1 � ��: (2:9)ThusS(s;t)�(S(s;t))�1(x)� Æ(�)� > S(s;t) Æ S(s0;s)�(S(s0;t))�1(x)� �� = S(s0;t)�(S(s0;t))�1(x)� ��:(2:10)Letting � # 0 in the inequality (2.10) yields the necessary lower bound, which together with(2.7) proves the lemma. }.Whenever t = T is �xed, the function jmx(�; T )j is the family size of the individual xin generation T as a function of the degree of relatedness. By Lemma 2.2 it is a decreas-ing function on I . Finally, we de�ne the associated empirical distribution of the functionsjmx(�; T )j KT = 1Z0 dxÆjmx(�;T )j: (2:11)



CREM and CSB 11This construction (2.11) allows to associate to any 
ow of probability measures in the senseof De�nition 2.1 an empirical distribution KT .If we assume in addition that [0; T ] � I and jmx(�; T )j are right-continuous, then 1 �jmx(�; T )j are probability distribution functions. Then we will think of KT as a map from
ows of probability measures into M1(M1([0; 1])) which we call the genealogical map.2.2 Coalescent associated with a 
ow of probability measures.Now, let us de�ne the exact degree of relatedness between two individuals x; y 2 [0; 1] withrespect to a 
ow of measures (2.2) as
T (x; y) � sup (s 2 I : y 2 mx(s; T )) : (2:12)Lemma 2.3: 1� 
T de�nes an ultrametric distance on the unit interval.Proof: By Lemma 2.2, for all x; y 2 [0; 1], if s = 
T (x; y), theny 2 mx(s0; T ) 8s0 < s; s0 2 I: (2:13)It follows from (2.13) that for any x; y; z 2 [0; 1] if 
T (x; y) 6= 
T (x; z), then 
T (y; z) =minf
T (x; z); 
T(x; y)g. In fact, let e.g. 
T (x; z) > 
T (x; y). Then z 2 mx(s; T ) for alls 2 I such that s � 
T (x; y) and then 
T (y; z) � 
T (x; y). From the other point of view,if 
T (y; z) > 
T (x; y), then either 
T (x; z) � 
T (y; z) > 
T (x; y) or 
T (y; z) > 
T (x; z) >
(x; y). In the �rst case by (2.13) x 2 mz(s; T ) for all s 2 I such that s < 
T (y; z) andthen 
T (x; y) � 
T (y; z) which is impossible. In the second y 2 mz(s; T ) for all s 2 Isuch that s � 
T (x; z) from where 
T (x; y) � 
T (x; z), which is again impossible. Thus
T (y; z) = 
T (x; y).Note also that if 
T (x; y) = 
T (x; z), then 
T (y; z) � 
T (x; y) = 
T (x; z). These observa-tions imply that 1� 
T is an ultrametric distance on [0; 1]. }The function 
T is trivial if S(s;t) are all continuous, for then 
T (x; y) = T if x = y and
T (x; y) = �1 if x 6= y, and in a strict sense nobody has any relatives. On the other hand,in the discontinuous case, rather large families exist, and the ultrametric structure of theinterval can be very rich.We will be interested in cases where the 
ow S(s;t) of De�nition 2.1 is random. We willnow describe a useful way of characterizing a random genealogical map KT in this case.



12 Section 2Having de�ned a distance 1�
T on [0; 1], we can de�ne in a very natural way the analogousdistance on the integers. To do this, consider a family of i.i.d. random variables fUigi2Ndistributed according to the uniform law on [0; 1]. Given such a family, we set�T (i; j) = 
T (Ui; Uj): (2:14)Due to the ultrametric property of the 
T and the independence of the Ui, for �xed T ,the sets Bi(s) � fj : �T (i; j) � sg form an exchangeable random partition of the integers.Moreover, the family of these partitions as a function of T � s is a stochastic process onthe space of integer partitions with the property that for any s > s0, the partition Bi(s0)is a coarsening of the partition Bi(s). Such a process is called a coalescent process (see e.g.[Be1,Be2,BeLG,BePi,BeYo,BoS,P,Pi1,PPY]).The key observation for our purposes is the possibility to express the moments of KT interms of this coalescent [Be1]. Namely, it is plain by the law of large numbers thatlimn"1n�1 nXj=1 1Ij2Bk(s) = jmUi(s; T )j a.s. (2:15)for any i such that i 2 Bk(s). This implies, for instance, as shown in [Be1] thatE Z dxjmx(s; T )j = P[2 2 B1(s)] (2:16)and more generally thatE Z dxjmx(s; T )jk = P[2; 3; : : : ; k+ 1 2 B1(s)]: (2:17)Here the expectation E is with respect to the randomness of the family of measures S(s;t), andP is the law with respect to the random genealogy (depending both on the random measuresand the i.i.d. r.v. Ui). We will need slightly more general expressions, namely a familyof moments that determine the law of KT . These can be written as follows. Let take anypositive integer p, a collection of positive real numbers 0 < t1 < � � � < tp � T , a positiveinteger `, and non-negative integers k11; : : : ; k1p; k21; : : : ; k2p; : : : ; k`1; : : : ; k`p. Then we needM(p; t; k) � E �Z dxjmx(t1; T )jk11 : : : jmx(tp; T )jk1p� : : :�Z dxjmx(t1; T )jk`1 : : : jmx(tp; T )jk`p� :(2:18)By (2.15) we have thatZ dxjmx(t1; T )jk11 : : : jmx(tp; T )jk1p= limn"1n�1�k11�����k1p nXi=1 nXj11 ;:::;j1k11 ;:::;jp1 ;:::;jpk1p 1Ij11 ;:::;j1k112Bk(i;t1 )(t1) : : :1Ijp1 ;:::;jpk1p2Bk(i;tp )(tp)(2:19)



CREM and CSB 13where k(i; tp) is the smallest integer such that k(i; tp) 2 Bi(tp). Let us note �rst that in theseexpressions contributions from terms where two indices are equal can be neglected. Second,since Bk(i;tp)(tp) � Bk(i;tp�1)(tp�1) � � � � � Bk(i;t1)(t1) (2:20)the summand in (2.19) is the same as1Ij11 ;:::;j1k11 ;:::;jp1 ;:::;jpk1p2Bk(i;t1 )(t1) : : :1Ijp1 ;:::;jpk1p2Bk(i;tp )(tp) (2:21)ThenM(p; t; k) = limn"1n�`�k11�����k`pE Xi1 ;:::;i` Xj1;11 ;:::;j1;1k11 ;:::;jp;11 ;:::;jp;1k1p � � � Xj1;`1 ;:::;j1;`k`1 ;:::;jp;`1 ;:::;jp;`k`p1Ij1;11 ;:::;j1;1k11 ;:::;jp;11 ;:::;jp;1k1p2Bk(i1 ;t1)(t1) : : : : : :1Ij1;`1 ;:::;j1;`k`1 ;:::;jp;`1 ;:::;jp;`k`p2Bk(i`;t1)(t1): : :1Ijp;11 ;:::;jp;1k1p2Bk(i1 ;tp)(tp) : : : : : :1Ijp;`1 ;:::;jp;`k`p2Bk(i` ;tp)(tp)= P[J11 2 B1(t1); : : : ; J1p 2 B1(tp); : : :J`1 2 B`(t1); : : : ; J`p 2 B`(tp)] (2:22)where(i) J11; : : : ; J`1 is a disjoint partition of f`+ 1; `+ 2; : : : ; k11 + � � �+ k`p + `g,(ii) For all j = 1; : : : ; `, i = 1; : : : ; p, Jji � Jji+1, and(iii) jJjij = kji + kji+1 + � � �+ kjp.By exchangeability, the choice of the partition and the subsets is irrelevant. The proba-bilities (2.22) can be expressed alternatively in the formP(�T(i; j) � tm(i;j); 8i 2 f`+ 1; : : : ; k11 + � � �+ k`p + `g; j 2 f1; : : : ; `g) (2:23)where m(i; j) 2 f1; : : : ; pg. Thus the genealogical map KT is completely determined bythe probabilities (2.22) or (2.23) of the corresponding coalescent through the family of itsmoments.3. Finite N setting for the CREM.We will now show that for �nite N we can use the general construction from the precedingsection to relate the geometric description of the Gibbs measure on SN to the genealogicaldescription of a family of embedded measures on [0; 1].



14 Section 3Recall that our basic objects are con�gurations � 2 SN � f�1; 1gN equipped withdN(�; �) � N�1 (min (i : �i 6= �i)� 1). For non-decreasing function A : [0; 1] ! [0; 1], wehave a Gaussian process X� with mean zero and covarianceEX�X� = A(dN(�; �)): (3:1)We can map the corresponding Gibbs measure ��;N(�) = e�pNX�P� e�pNX� on SN to a measure~��;N on the unit interval through the map rN de�ned in (2.1) viae��;N � X�2SN Ær[N](�)��;N(�): (3:2)Let ��;N be the probability distribution function of e��;N :��;N(x) = ��;N(� : r[N](�) � x): (3:3)Let us take a parameter s 2 [0; 1] and consider the map r[sN] : SN ! [0; 1]. Clearly, its imageconsists of 2[sN] points, and for any �; �0 with dN(�; �0) > s we have r[sN](�) = r[sN](�0).Now we de�ne a family of compatible distribution functions in the sense of De�nition 2.1:S(s;t)�;N (a) =X� ��;N(�)1If�(r[sN](�))�ag (3:4)as states the following lemma.Lemma 3.1: The functions (3.4) verify the assumptions of De�nition 2.1 with I = [0; 1].Proof: To understand better the construction of (3.4), let us take con�gurations �1; �2; : : : ; �2[sN]having the �rst [sN ] spins di�erent, i.e. with dN(�i; �j) � s and arrange them in order suchthat 0 < r[sN](�1) < r[sN](�2) < � � � < r[sN](�2[sN] ) = 1:Let xsi = ��;N(�0 : dN(�0; �i) > s); i = 1; : : : ; 2[sN]; x0 = 0: (3:5)De�ne ysi � xs0 + xs1 + � � �+ xsi = �(r[sN](�i)); i = 0; 1; : : : ; 2[sN]: (3:6)Then we may write the representationS(s;t)�;N (a) = 2[sN]Xi=0 ysi 1Ifa2[ysi ;ysi+1)g: (3:7)



CREM and CSB 15Thus S(s;t)�;N is a right-continuous step function that makes jumps at points ys1; ys2; : : : ; 1 forthe values xs1; xs2; : : : ; xs2[sN] .If we denote by Y s�;N = fys0; ys1; : : : ; 1g, thenS(s;t)�;N (y) = y 8y 2 Y s�;N : (3:8)The function S(s;t)�;N does not depend on the second parameter t. For any s0 > s, Y s0�;N � Y s�;N ,any segment [ys0i ; ys0i+1) contains 2[sN]�[s0N] points of Y s�;N and S(s0;t)�;N is a coarse-grainedversion of S(s;t)�;N . Now it is straightforward to verify the assumption (2.2): for any s0 < s � tS(s;t)�;N Æ S(s0;s)�;N = S(s0;t)�;N : (3:9)In fact, for any a 2 [0; 1] S(s0;s)�;N (a) 2 Y s0�;N � Y s�;N , then by (3.8) S(s;t)�;N (S(s0;s)�;N (a)) =S(s0;s)�;N (a) = S(s0;t)�;N (a) since S(s0;t)�;N does not depend on t. }Since the functions (3.4) satisfy De�nition 2.1, we are entitled to apply to them the con-struction of the previous section. Their genealogy ismx(s; t) = (ysi�1; ysi ] with jmx(s; t)j = jxsi j; if x 2 (ysi�1; ysi ]; i = 1; : : : ; 2[sN]: (3:10)We may associate to this genealogy the genealogical map (2.11)KT and the coalescent processon the integers. The next lemma expresses the geometry of the Gibbs measure of the CREMcontained in the empirical distance distribution function (1.4) K�;N in terms of the genealogyinduced by the functions (3.4).Lemma 3.2: We have K�;N = K�;N1 ;where the empirical distance distribution function K�;N is de�ned in (1.4) and K�;N1 is thegenealogical map (2.11) with T = 1 of the 
ow of measures with probability distributionfunctions (3.4).Proof: For any � 2 SN one could �nd i = 1; : : : ; 2[sN] such that dN (�; �i) > s, thenxsi = ��;N(�0 : dN (�0; �) > s): (3:11)Then rN(�) 2 �r[sN](�i)� 2[sN]; r[sN](�i)� and consequently�(rN(�)) 2 ���;N(�0 : rN(�0) � r[sN](�i)� 2[sN]); ��;N(�0 : rN(�0) � r[sN](�i))� = (ysi�1; ysi ]:



16 Section 3It follows from (3.10) that for any � 2 SNm�(r[N](�))(s; t) = (ysi�1; ysi ]; 8s � t: (3:12)Then by (3.11) jm�(r[N](�))(s; t)j = xsi = ��;N(�0 : dN(�0; �) > s):Hence, in terms of the quantity m�(s) de�ned in (1.5)jm�(r[N](�))(s; t)j = m�(s): (3:13)This implies the statement of the lemma }.Remark: If we would like to construct non-decreasing step functions compatible in thesense (2.2) with the genealogy (3.12), then for all t � s it should be S(s;t)([0; 1]) = Y s�;N .By compatibility necessarily S(s;t)(S(s;s)(x)) = S(s;t)(x), from where S(s;t)(Y s�;N) = Y s�;N .Since S(s;t) is non-decreasing, it must be S(s;t)(y) = y for all y 2 Y s�;N . There are only twopossibilities to construct a 
ow of non-decreasing functions such that S(s;t)(y) = y for ally 2 Y s�;N and S(s;t)([0; 1]) = Y s�;N . The one is (3.4) or equivalently (3.7). The other isŜ(s;t)�;N (a) = 2[sN]�1Xi=0 ysi+11Ifa2(ysi ;ysi+1 ]g: (3:14)These non-decreasing functions are not probability distribution functions in a strict sense asthey are left-continuous. They verify the compatibility (2.2). Since in the previous sectionwe never used the right-continuity of the functions S(s;t) of De�nition 2.1, we may apply to(3.14) the genealogical construction as well. Of course, the genealogical map associated with(3.14) coincides with the one of (3.7) and then with K�;N by Lemma 3.2.Remark: The functions (3.14) are in fact an example of a more general construction of a 
owof functions always verifying (2.2). Let f�tgt2I�R be a one-parameter family of probabilitydistribution functions on (0; 1]. Let It denote the set of points of increase of the function �t.We say that the family is re�ning, if for any s < t 2 I , Is � It. Let �t be a re�ning family.Let us de�ne the functions S(s;t) = �t((�s)�1): (3:15)Then the functions S(s;t) verify the compatibility (2.2). In fact, by de�nition S(s;t)ÆS(s0;s)(x) =�t(��1s (�s(��1s0 (x)))): Since y = ��1s0 (x) is the smallest value for which �s0(y) � x, for anyy0 < y it must be true that �s0(y0) < �s0(y). Thus ��1s0 (x) 2 Is0 . But if y is a point of



CREM and CSB 17increase of �s0 , by assumption, y is also a point of increase of �s, hence ��1s (�s(y)) = y andtherefore S(s;t) Æ S(s0;t)(x) = �t(y) = S(s0;t)(x):Now de�ne for the GREM the measures e�s�;N indexed by the parameter s 2 [0; 1] whichare coarse-grained versions of ~��;N : ~�s�;N =P�2SN ��;N(�)Ær[sN](�): Their probability distri-bution functions e��;N;s = ��;N(�0 : r[sN](�0) � x) jump at points r[sN](�) and form a re�ningfamily depending on the parameter s 2 [0; 1]. Then we may de�ne compatible left-continuousstep functions (3.15) ��;N;t(��1�;N;s) which equal precisely the functions (3.14).4. Genealogy of a continuous state branching process.Another example of 
ows of probability measures satisfying De�nition 2.1 arises in thecontext of continuous state branching process [BeLG]. The basic object here is a continuousstate branching process X(t) on R+ characterized by its Laplace exponent ut(�). The processstarted in a � 0 will be denoted by X(�; a). This can be extended to a genuine two parameterprocess (X(t; a); t; a� 0) using the fundamental branching property that states that ifX 0(�; b)and X(�; a) are independent copies, then X(�; a+ b) has the same law as X 0(�; b) + X(�; a).The process X(t; a) is characterized by the property that for any a; b � 0, X(�; a+b)�X(�; a)is independent of the processes X(�; c), for all c � a, and its law is the same as that of X(�; b).The right continuous version of X(t; �) is a subordinator. Bertoin and Le Gall [BeLG] provethe following proposition, based on the Markov property of this process.Proposition 4.1:On some probability space there exists a process (eS(s;t)(a); 0 � s � t; a �0), such that(i) For any 0 � s � t, eS(s;t) is a subordinator with Laplace exponent ut�s(�).(ii) For any integer p � 3 and 0 � t1 � t2 � � � � � tp, the subordinators eS(t1;t2); eS(t2;t3); : : : ; eS(tp�1;tp)are independent, andeS(t1;tp)(a) = eS(tp�1;tp) Æ eS(tp�1;tp) Æ � � � Æ eS(t2;t3) Æ eS(t1;t2)(a); 8a � 0; a.s. (4:1)(iii) The processes eS(0;t)(a) and X(t; a) have the same �nite dimensional marginals.The process eS(s;t) allows to construct a 
ow of probability distribution functions by settingS(s;t)(x) � 1X(t; 1) eS(s;t)(X(s; 1)x); 0 � s � t � 1: (4:2)Given I any countable subset of R+, they verify the assumptions of De�nition 2.1 a.s.



18 Section 4We are interested in a particular case of Neveu's continuous state branching process Xtwith E(e��Xt j X0 = a) = e�ut(�)a; ut(�) = �e�t : (4:3)In this case eS(s;t) are stable subordinators with index es�t. Then the normalized stablesubordinators S(s;t) of (4.2) is a family of random probability distribution functions verifyingDe�nition 2.1. Thus the genealogical construction of Section 2 applies to them.Finally, note that if we take an increasing function t(y) � 0 for y 2 [0; 1], then we mayconsider the time-changed 
ow �S(y;z) = S(t(y);t(z)), 0 � y � z, satisfying again De�nition 2.1and therefore allowing the genealogical construction of Section 2.Bertoin and Le Gall [BeLG] showed that the coalescent process on the integers inducedby S(s;t) of (4.2) associated to Neveu's process (4.3) coincides with the coalescent processconstructed by Bolthausen and Sznitman [BoS]. They also proved the following remarkableresult connecting the collection of subordinators to Ruelle's Generalized Random EnergyModel. Let us state this result for our convenience. Take the parameters 0 < x1 < � � � <xp < 1 and 0 < t1 < � � �< tp linked by the identitiestk = ln xk+1 � ln x1 (4:4)for k = 0; : : : ; p� 1, and tp = � ln x1. Then the law of the family of jumps of the normalizedsubordinators S(tk;tp), for k = 0; : : : ; p � 1, is the same as the law of Ruelle's probabilitycascades with parameters xi, i = 1; : : : ; p.Now consider a GREM with �nitely many hierarchies and parameters such that the pointsy0 = 0 and 0 < y1 < : : : < yp � 1 are the extremal points of the concave hull of A. Let usremind that limN!1 Ef�;N (y) = Ef� (y) can be computed by (1.8) for any y 2 [0; 1]. Nowset Ef� (yi�1) = xi; i = 1; : : : ; p; (4:5)where all of the xi < 1. In Theorem 1.9 of [BK1] we proved that the point processX� Æf��;N (�0:dN (�;�0)>y1);::: ;��;N (�0:dN (�;�0)>yp)g (4:6)in [0; 1]p converge to Ruelle's probability cascades with parameters xi, i = 1; : : : ; p. (Theconvergence of the marginals of the process (4.6) for the GREM under the assumption that forany given hierarchy i = 1; : : : ; p and N > 0 the number of con�gurations f�0 : dN(�; �0) > yigis the same for all � 2 �N , has been also established in Proposition 9.6 of [BoS2].)



CREM and CSB 19Combining these two results yieldsProposition 4.2: Let ��;N be the Gibbs measure associated to a GREM with �nitelymany hierarchies satisfying (4.5) at the extremal points yi, i = 1; : : : ; p of the concave hullof the function A. Then the family of distribution functions S(yk;yp)�;N , k = 1; 2; : : : ; p de�nedaccording to (3.4) converges in law, and the limit has the same distribution as the family ofnormalized stable subordinators (4.2) S(tk;tp), k = 0; 1; : : : ; p� 1 in the sense that the jointdistribution of their jumps has the same law, provided tk are chosen according to (4.4), (4.5).5. Main result.From the preceding proposition we expect that Neveu's process will provide the universallimit for all of our CREMs. The dependence on the particular model (i.e. the function A)and on the temperature must come from a rescaling of time. Setx(y) � Ef� (y) = ( p2 ln2�p�a(t) ; if t < t�1; if t � t� (5:1)where �a is the right-derivative of the convex hull of the function A, t� = sup(t : p2 ln2�p�a(t) < 1)(here Ef� (y) is de�ned by the function A through (1.8)). Set alsoT = � ln x(0); t(y) = T + ln x(y): (5:2)De�ne the 
ow of probability distribution functions�S(y;z)(x) � S(t(y);t(z))(x) (5:3)where S(s;t) is the 
ow of functions (4.2) associated to Neveu's process (4.3). Let �Kt(y)T bethe genealogical map (2.11) associated to this 
ow.Theorem 5.1: Consider Continuous Random Energy Model with general function A suchthat A does not touch its convex hull �A in the interior of any interval where �A is linear. ThenK�;N = K�;N1 D! �Kt(y)1 : (5:4)Here K�;N is the empirical distance distribution function (1.4), K�;N1 is the genealogicalmap (2.11) of the 
ow of probability distribution functions (3.4) and the equality K�;N =K�;N1 holds by Lemma 3.2. Theorem 5.1 is the main result of this paper. It expressesthe geometry of the limiting Gibbs measure contained in K�;N in terms of the genealogy ofNeveu's branching process via the deterministic time change (5.2).



20 Section 66. Coalescence and Ghirlanda-Guerra identities.In this section we prove Theorem 5.1. As it was remarked in Section 2, KT associated witha 
ow of measures is completely determined by its moments (2.18) which can be expressedvia genealogical distance distributions of the corresponding coalescent (2.23). So, we willprove that the moments of K�;N , which are the n-replica distance distributions in our spinglass model (1.10), converge to the genealogical distance distributions on the integers (2.23)constructed from the 
ow of compatible measures with distribution functions �S(y;z) (5.3).But the 
ow �S(y;z) is the time changed 
ow (4.2) of Neveu's branching process (4.3) thatby [BeLG] corresponds to the coalescent of Bolthausen-Sznitman. Therefore, its genealogicaldistance distributions on the integers are those of Bolthausen-Sznitman coalescent under thistime change (5.2). Then the proof of Theorem 5.1 is reduced to the following Theorem 6.1that gives in addition the connection between the n-replica distance distribution function ofthe CREM with the genealogical distance distribution function of the Bolthausen-Sznitmancoalescent.Theorem 6.1: Under the same assumptions as in Theorem 5.1, for any n 2 N,limN"1E�
n�;N �dN(�1; �2) � y1; ; : : : ; dN(�n�1; �n) � yn(n�1)=2�= P��T (1; 2) � t(y1); : : : ; �T (n� 1; n) � t(yn(n�1)=2)� (6:1)where t(y) is de�ned in (5.2) via (5.1). The distance �T is the distance on integers for theBolthausen-Sznitman coalescent, induced through (2.14) by the genealogical distance 
T of the
ow of measures S(s;t) (4.2) of Neveu's branching process (4.3).Proof: The fact that in Bolthausen-Sznitman coalescent P(�T(1; 2) � t) = et�T and theconvergence (1.8) imply the statement of the theorem for n = 2:E�
2�;N (dN(�; �0) � y)! x(y) = et(y)�T = P(�T(1; 2)� t(y)):The proof of the theorem for n > 2, and in fact the entire identi�cation of the limitingprocesses with objects constructed from Neveu's branching process, relies on the Ghirlanda-Guerra identities [GG] that were derived for the models considered here in [BK2]. We restatethis result in a slightly modi�ed form. Let us remind that the family of measures (1.10)Q(n)�;Nis determined on the space [0; 1]n(n�1)=2 as E�
nN;� (dN 2 �) where dN denotes the vector ofreplica distances dN(�k; �l), 1 � k < l � n. Denote by Bk the vector of the �rst k(k � 1)=2coordinates.



CREM and CSB 21Theorem 6.2: [BK3]The family of measures Q(n)�;N converge to limiting measures Q(n)� forall �nite n, as N " 1. Moreover, these measures are uniquely determined by the distancedistribution functions Ef� (y) = x(y) (1.8). They satisfy, for any y 2 [0; 1], n 2 N and k � n,Q(n+1)� (d(k; n+ 1) � yjBn) = x(y)n + 1n nXl6=k Q(n)� (d(k; l)� yjBn) : (6:2)Let us recall that due to the ultrametric property of dN , these identities determine themeasures Q(n)� uniquely. Thus, we must show that the right-hand side of (6.1) satis�es, fort < T , P(�T (k; n+ 1) � t j Bn) = 1net�T + 1n Xl�n;l6=k P(�T (k; l) � t j Bn) (6:3)that can be equivalently written asP(�T (k; n+ 1) > t j Bn) = jl 2 f1; : : : ; ng : �T (k; l)> tj � et�Tn (6:4):There are two ways to verify that (6.3) holds for the Bolthausen-Sznitman coalescent.The �rst one is to observe that relation (6.3) involves only the marginals of the coalescentat a �nite set of times. By Theorem 5 of Bertoin-Le Gall [BeLG], these can be expressedin terms of Ruelle's probability cascades modulo the appropriate time change. Thus, byTheorem 1.9 of [BK1] these probabilities can be expressed as limits of a suitably constructedGREM (with �nitely many hierarchies) for which the Ghirlanda-Guerra relations do hold byProposition 1.12 of [BK1]. Thus (6.3) is satis�ed. }The second way is to verify directly that Ghirlanda-Guerra relations (6.4) hold for theBolthausen-Sznitman coalescent. This is the subject of the next Section 7.7. Ghirlanda-Guerra identities and Chinese restaurant processesLet us �rst give the following de�nition. Given the sequence of normalized jumps of thestable subordinator (�i=T ) with index x and given U1; U2; : : : independent uniform randomvariables on [0, 1], the partition of positive integers � distributed as a partition of blocks ofindices of Ui belonging to the same intervals �i=T 2 [0; 1] is called (x; 0)-partition, see [P].Let us introduce an operation of coagulation on partitions, see [Pi1]: for a partition � =(A1; A2; : : : ; ) and � = (B1; B2; : : :), the �-coagulation of � consists of blocks of the formSj2Bi Aj .



22 Section 7By [BS] the Markov kernels (e�t; 0)-coagulation, t � 0, on partitions of N form a semi-group. The Markov processP�(�(t+) 2 �) = (et�T ; 0)� coagulation of � (7:1)is distributed as the Bolthausen-Sznitman coalescent. It starts from a partition of singletons attime T and �nishes by a partition of one block N at time �1. (The semi-group property canbe also seen from the fact that the limiting frequencies of (e�t; 0)-partitions are distributedas normalized jumps of stable subordinators and from their matching condition (4.1).)Next, consider exchangeable random partitions � on N, introduced by J. Pitman underthe name of Chinese restaurant processes. For each parameter 0 < x < 1 this partition canbe constructed as follows. Let �n denote the restriction of � to the �rst n positive integers.Then, conditionally given �n = fA1; : : : ; Akg for any particular partition of f1; 2; : : : ; ng intok subsets (tables) Ai of sizes ni, i = 1; : : : ; k, the partition �n+1 is an extension of �n suchthat the number n + 1 (new customer) is attached to the class (table) Ai with probability(ni� x)=n, and forms a new class (sits at a new table) with probability kx=n. Let us denoteby p(n1; : : : ; nk) the probability of partitions � with �n a particular partition of k classes ofsizes n1; : : : ; nk respectively. Thenp(n1 + 1; n2; : : : ; nk) = n1 � xn p(n1; : : : ; nk) (7:2):The crucial fact it that the partition � of the Chinese restaurant process with parameter xis (x; 0)� partition. This fact noticed in [P] follows from the combination of the resultsof [Pi1] and [PPY]. To see this, it should be said �rst that � is a partially exchangeablerandom partition in the sense of [Pi1]. Then, given the sequence of its a.s. limiting relativefrequencies of classes Pi in order of appearance, the conditional distribution of � given thewhole sequence (Pi) is as follows: for each n conditionally given Pi and �n = fA1; : : : ; Akgwhere Ai are in order of appearance, �n+1 is an extension of �n in which n+ 1 attaches toclass Ai with probability Pi, 1 � i � k and forms a new class with probability 1�Pki=1 Pi.In other words p(n1; :::; nk) = Eh kYi=1Pni�1i k�1Yi=1 �1� iXj=1 Pj�i (7:3)In the case of the Chinese restaurant processp(n1; :::; nk) = x� 2x� � � � � kxn! kYi=1(1� x)(2� x) � � �(ni � x) (7:4)



GREM, part 4 23The function p(n1; :::; nk) being symmetric, � is an exchangeable random partition accordingto [Pi1]. Furthermore, again due to [Pi1], computing the moments from (7.3) and (7.4) onechecks that the limiting relative frequencies in order of appearance in the Chinese restaurantprocess are Pi = (1 �W1)(1�W2) � � �(1�Wi�1)Wi with Wi independent beta (1� x; ix).From the other point of view it has been shown in [PPY] that if T = Pi�i has a stabledistribution with index x, with �1 > �2 > : : : being points of the Poisson point processon (0;1), then the sequence �(i)=T in size-biased order (this means, that given the wholesequence �i=T , and Ui independent random variables uniform on [0; 1], then U1 2 �(1)=T ,Uminfj:Uj 62�(1)=Tg 2 �(2)=T etc) has the same distribution of products of independent betarandom variables. It follows, that the limiting frequencies of the Chinese restaurant process� ranked by size are distributed as �i=T , i.e. they have Poisson-Dirichlet distribution withparameter x. Hence, the Chinese restaurant process is (x; 0)� partition.Thus, by (7.1) the marginals of Bolthausen-Sznitman coalescent �(t) at times 0 = t0 <t1 < � � � < tp�1 < tp = T can be constructed as the following sequence of Chinese restaurantprocesses. Let xi = eti�1�tp , 0 < x1 < x2 < � � � < xp < 1. Then �(tp�1+) is distribut-ed as (xp; 0)� partition, i.e. as the Chinese restaurant process with parameter xp. Next,we de�ne the partition �(tp�2+) as the Chinese restaurant process on the classes of par-tition �(tp�1+) with parameter xp�1=xp = etp�2�tp�1 : this means that given already theclasses Ap�11 ; : : : ; Ap�1k obtained from Ap1; : : : ; Apl , where Ap�1i consists of li blocks of �p,i = 1; : : : ; k, l1 + � � �+ lk = l, the block Apl+1 joins Ap�1i with probability (lp�1i � xp�1=xp)=land forms a new class with probability kxp�1=(xpl). One iterates this procedure with pa-rameters xp�2=xp�1; : : : ; x1=x2 to construct the partitions �(tp�3+); : : : ;�(t0+). By thesemi-group property of (e�t; 0)� coagulations, �(ti+) is distributed as a Chinese restaurantprocess with parameter xi+1 = eti�tp for all i = 0; 1; : : : ; p� 1 verifying (7.2). Now (6.4) isimmediate from the Chinese restaurant property (7.2).Recently Ph. Marchal found another beautiful way to identify the Chinese restauran-t process with (x; 0)-partitions and also the iterated Chinese restaurant process with theBolthausen-Sznitman coalescent, see [M].References[AC] M. Aizenman and P. Contucci, On the stability of the quenched state in mean �eld spin-glass models, J.Statist. Phys. 92, 765-783 (1998).[ASS] M. Aizenman M, R. Sims, S.L. Starr, (2003) An Extended Variational Principle for the SK Spin-GlassModel. preprint, cond-mat/0306386 (2003).
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