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2 Section 1
1. Introduction.

In a series of papers [BK1,BK2] we have recently taken up the analysis of a class of
mean field spin glass models introduced by Derrida and Gardner in the 1980’s [D,DG1,DG2].
In purely mathematical terms, these models can be described as follows. Consider the N
dimensional hypercube Sy = {—1,1}" endowed with the (normalized) ultrametric distance
1 —dp, where dy(o,7) = N~1(min(i : 0; # 7;) — 1). Define a normal Gaussian processes X,

indexed by Sy with covariance function
EX, X, = A(dn(o,T)) (1.1)

for some nondecreasing function A : [0,1] — [0,1]. The principal object of interest is the

analysis of the asymptotic behavior of the Gibbs measures

eBVNX,

(1.2)

pe,N(0) = Zon

where the partition function Zg n assures that pg n is a probability measure.

1.1. History of the models. Let us briefly dwell on the history of this problem. The
model was introduced and analyzed by Derrida and Gardner [D,DG1,DG2]in the case when
A is a step function with finitely many steps (the corresponding models are called GREMs,
or Derrida’s GREMs) in the sense that the limit of the free energy

1

Fan=-—1InZ 1.
8,N aN M Zew (1.3)

and some further thermodynamics functions were computed. The computation of the free
energy was later done rigorously in [CCP]. Derrida and Gardner then also considered limits
of their results as the number of steps tended to infinity, and interpreted these results as
corresponding to continuous functions A [DG1]. These results were then also compared
to those of the more commonly studied (and more difficult) class of Sherrington-Kirkpatrick
models (which essentially differs from the class studied here in that the covariance is a function

of the Hamming distance rather than our hierarchical distance).

While there were very few further rigorous results on these models (but see [GMP]), Ruelle
in a seminal paper of 1988 [Ru] introduced a new class of models based on Poisson cascades
(to which we will henceforth refer to as “Ruelle’s GREM”) which he apparently understood
to be the appropriate asymptotic models to describe the limiting Gibbs measures of Derrida’s

GREMs. Ruelle noted a number of remarkable features of these models, and in particular
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observed that it was possible to construct limits as the number of steps went to infinity in
terms of projective limits. Surprisingly, his paper at no point contains a precise hint on how

his models are to be related to the original spin glass models of Derrida.

Shortly after that, Neveu [Ne| noted a connection between Ruelle’s models and continuous
state branching processes. This paper also outlined a proof of the convergence of the rescaled
partition function of the REM and GREM to a functional of the Poisson process, respec-
tively Poisson cascades of Ruelle. Unfortunately, these observations are only contained in an
internal report that was never published and that contains these ideas only in a somewhat
embryonic form. Following a much later paper by Bolthausen and Sznitman [BoS], where it
was explained how the results of replica theory of spin glasses can be interpreted in terms
of a coalescent process (now known as the Bolthausen-Sznitman coalescent), Bertoin and Le
Gall [BeLG] finally gave a precise and complete form of the relation between continuous state

branching processes, the Ruelle’s GREM and the Bolthausen-Sznitman coalescent.

Around the time when these fascinating results appeared, we began to investigate more
closely the link to the original spin glass models with Ruelle’s models. In the REM, this
connection was then made in a paper with M. Lowe [BKL] which was elaborated on in
the lecture notes by one of us [B] (see also [T3,T4, BoS2]). These results were extended
to the GREMSs in the paper [BK1], using essentially elementary methods (see also [BoS2],
Ch. 9 for related results). We observed, however, that the use of the so-called Ghirlanda-
Guerra identities [GG] allowed a different approach that circumvented parts of these explicit
computations (this fact was first observed in the REM by Talagrand [T3] who also exploited
these identities heavily in his work on the p-spin SK models [T1,T2,T3,T4]). In fact, these
identities impose structural constraints on any limit point that allow to prove convergence
of the Gibbs measure (in a suitable sense) only on the basis of the convergence of the free
energy, and that, moreover, allow to characterize the limit. These observations allowed us in
[BK2] to extend our convergence results to the general class of models defined above (which

we call CREM in case the function A is not a step function).

In the present paper we want to conclude this investigation by linking our result up to
the continuous state branching model, i.e. by identifying the limit proven to exist in [BK2]
explicitly in terms of Neveu’s branching process. This requires in fact little more than com-
bining our results from [BK2] with those of Bertoin and Le Gall [BeLG], but we feel that the

emerging complete picture is well worth to be put in evidence.
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1.2. Geometry of Gibbs measures. Let us recall the central problem one is faced with
when analyzing mean field spin glasses. What we want to do is to describe the geometric
structure of a random probability measure on a set Sy. One expects that this measure will
concentrate (at low temperatures) on a relatively very small subset with rather complicated
structure. Since due to randomness and symmetries there are no external references, we
need a way to describe the structural geometric properties of such measures in an intrinsic,
reference-free way. On the other hand, we need to allow sufficient compactness for limits to

exist.

To resolve this problem, we introduced in [BK2] what we called the empirical distance

distribution function, i.e. the random measure

ICI@,NE Z ,U',B,N(o-)(smc,(-) (14)
ocESN
where, for ¢t € [0, 1],
mq(t) = pgn (¢’ :dy(o,0') > 1). (1.5)

This object describes the probability of a mass distribution around a randomly (according
to the Gibbs measure) drawn point on Sy. A key object is the mean first moment of this

random measure,
/Kﬂ,N(dm)m(t) =1- fgn(t) (1.6)

which is nothing but the probability that two configurations, o, ¢’, drawn independently from

the Gibbs sample satisfy dy (o, 0') > t. The function
fo.n(t) = ugy (dn(o,0") < 1) (1.7)

is now the analogue of Parisi’s order parameter®. In [BK3] we proved that

LVEOK (1.8)

1, ift >tg

v2Zln2 - if ¢ < tg
Efsn(t) = Efg(t) =

:

where @ is the right-derivative of the concave hull of the function A, tg = sup(t : 3 2 1_1th < 1).
We also showed that

3

Kon > Kg. (1.9)

4In the context of the SK models, this function is usually defined with dy replaced by the “overlap”
parameter Ry(o,0') = N1 El o;0:. In [BK2] we have shown that in the GREM, the choice of the distance
used in the definition of fg x does not affect the result in the limit N T oo.
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The limit is uniquely determined by Ghirlanda-Guerra relations, which give recursive formulas
to compute all moments of g starting from the function Efs that determines the second

moment.

In fact, while the random measures Kg y may look somewhat unfamiliar, their moments
are closely linked and even equivalent to the more conventional n-replica distance distribution

Q%"gv These are measures on the space [0, 1]™"~1)/2

QYN (A) = Eu§y ((dN(ai, o)1 cicicn € A) (1.10).

Note that these measures do of course give full measure to sets that respect the ultrametric
triangle relations. In [BK2] we proved their convergence to a limiting distribution Q%"). The
Ghirlanda-Guerra identities (together with the fact that 1 — dy is an ultrametric distance)
allow to compute Qgﬂ_l) in terms of Q%") recursively, while Qg) has distribution function
Efs(t). On the other hand, the full set of distributions Q%") determines the limiting random

measures Kg through its moments.

The measures Q%") are the marginals of the probability distribution of an ultrametric
(“genealogical”) distance distribution on the positive integers. It is not difficult (and will be
explained in Section 6) to show that the Ghirlanda-Guerra relations allow to relate these to
the coalescent process introduced by Bolthausen and Sznitman [BS]. The work of Bertoin
and Le Gall [BeLG] allows then to link this to Neveu’s branching process. Implicitly, this

also determines the limit of Xg n.

1.3. Aim of the paper. In this paper we want to close what we feel is a small final gap in our
understanding. This is related to the question whether we can identify a limiting measure to
which our Gibbs measures converge and that encodes the full geometric information contained
in Kg. As we will explain in some detail at the beginning of Section 2, this is not immediately
possible. What will however be possible, is the following. We will introduce the notion of
a flow of compatible probability measures on [0, 1] indexed by pairs of parameters s < ¢ €
I and with distribution functions satisfying the compatibility assumption (2.2). Next, we
will associate to each of such flows a certain genealogical structure on [0, 1] described by a
genealogical map K € M;(M;([0,1])) which is an empirical distribution of family sizes of all
individuals as functions of degree of relatedness. Then we will provide a flow of compatible
probability measures for each finite N with the genealogy describing efficiently the geometry of
the Gibbs measure of the CREM: its genealogical map Kg’N will equal the empirical distance

distribution function Kg n. Finally, we will show that this flow of probability measures
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converges as N — oo to the flow of compatible random probability measures with distribution
functions that are normalized stable subordinators associated to Neveu’s continuous state
branching process via an appropriate deterministic time change. This convergence of flows
is understood in the sense that their genealogical maps Kg n = Kg’N converge. Thus the
limiting geometry of the Gibbs measure of the CREM will be expressed in terms of the

genealogy of Neveu’s continuous state branching process modulo a time change determined

only by Efg(y) of (1.9).

1.4. Organization of the paper. The remainder of the paper is organized as follows. In
Section 2 we define the notion of a flow of compatible probability measures in Definition 2.1
and associate to it a genealogical structure: a genealogical map K7 € M;(M1([0,1])) and a
coalescent process on the integers. We show that K7 is determined by its moments that can

be expressed as distances between integers of the corresponding coalescent.

In Section 3 we provide for all finite N a flow of compatible probability measures with the

genealogical map Kg’N that equals the empirical distance distribution function Kg n.

In section 4 we describe the flow of compatible probability measures associated to Neveu’s
continuous state branching process. Their probability distribution functions are normalized
stable subordinators verifying the compatibility condition. The coalescent associated with

this flow is the one of Bolthausen-Sznitman by [BeLG].

In Section 5 we formulate our main theorem. It states that the empirical distance distri-
bution function g n (which is the genealogical map of the flow of Section 3) converges to
the genealogical map of the flow of measures associated with Neveu’s branching process of

Section 4 via an appropriate time change.

In Sections 6 and 7 we prove this theorem. As it was established in Section 2, it suffices to
show the convergence of moments, that is that the n-replica distance distribution functions
(1.10) of our spin glass model converge to the genealogical distance distribution functions of
the Bolthausen-Sznitman coalescent under an appropriate time change. One way (short but
indirect) to prove this is indicated in Section 6 and relies on the connection between Neveu’s

branching process and Ruelle’s probability cascades established in [BeLG].

The second way (more direct) is given in Section 7: it consists in showing that the
Bolthausen-Sznitman coalescent satisfles Ghirlanda-Guerra identities. For that purpose we

use the Chinese restaurant process of J. Pitman [P].
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We hope that the results presented in this class of models elucidate in a mathematically
comprehensible context the fundamental and universal role played by Neveu’s continuous
state branching process as a universal random mechanism governing the extremal processes
for a wide class of Gaussian processes. If one accepts the common belief of theoretical
physicists, its role goes well beyond the class of models we discuss here. Even on a slightly
less speculative level, Neveu’s process will emerge in any model for which the Ghirlanda-
Guerra relations hold in their strong form, which means in particular that this will be the
case if not for the actual SK model, then at least for models where weak additional fields have
been added to the Hamiltonians (see [GG,Le,T2]). Recent progress on the validity of Parisi’s
solution by Guerra [G02], Aizenman-Sims-Starr [ASS], and Talagrand [T5] on the level of
the free energy makes it very credible that this will indeed be the case. Moreover, we also
hope that these examples help to explain to a mathematical audience what physicist describe
when they talk about “continuous replica symmetry breaking”, and how such a phenomenon

can actually arise.

Acknowledgements: We are grateful for numerous enlightening discussions with Jean
Bertoin on continuous state branching, subordinators, and coalescents. A.B. also acknowl-
edges inspiring discussions with Anton Wakolbinger. [.K. thanks Ph. Marchal for helpful
discussions. Part of this work was done while A.B. was resident at the Erwin-Schroedinger
Institute for Mathematical Physics (ESI) in Vienna in the programme “Mathematical popula-
tion genetics and statistical physics”. He thanks the organisers, Ellen Baake, Michael Baake,
and Reinhard Biirger for the kind invitation and the ESI for financial support. I.LK. thanks
the Weierstrass Institute for Applied Analysis and Stochastics, Berlin, for its hospitality and

financial support.

2. Genealogy of a flow of probability measures

In [B] one of us proposed to describe the infinite volume limit of the Gibbs measure in
the Random Energy Model by considering its image on the unit interval through the map
ry : Sy — (0, 1] defined as

N
rn(o)=1-) 271+ 0y)/2. (2.1)

=1
It was shown that the phase transition in the REM manifests itself by the fact that the
resulting image measure converges to Lebesgue measure in the high temperature phase (8 <

v/21n 2) and towards a dense pure point measure in the low-temperature phase (6 > v21n 2).
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While this shows the existence of a phase transition, the limiting measure does not describe
the geometry of the Gibbs measure. In the REM this is no problem, since the geometry
is trivial. But in the GREMs a nontrivial geometry emerges, and our purpose would be to
identify a measure on [0, 1] that represents the limiting Gibbs measure. It will be instructive
to explain how a naive approach to do so fails. On the hypercube we are interested in the
masses of sets {o' : dy(0,0') > t} (1.5). If we map such sets on the unit interval via ry, we
obtain intervals (r[n¢ — o-[tN] rin¢] of length 2-[tN] In fact there is no difficulty to express
e.g. Kg,n for N fixed in terms of defined quantities with respect to the image measure on
the hypercube. However, the construction involves masses of intervals of exponentially small
size (in N). So what should one do in the limit when N is infinite? We cannot analyst the

structure by looking at intervals of the size 27,

What is needed is clearly a construction that does not refer explicitly to masses of intervals
of exponentially small size while still revealing the fine structure of the measure at such a
scale. In this section we show that a canonical construction exists when we consider a flow

of probability measures on [0, 1].

2.1. Genealogical map of a flow of probability measures.

Definition 2.1: A two-parameter family of measures with probability distribution functions
51 on [0,1], s < ¢, s,t € I CR, is called a flow of compatible probability measures on I,
if and only if for any collection t; <ty <---<t, CI

S(ttn) = Gltnnin) o Gltnntn=1) o Gliats) o Glirst2) (2.2)

holds.

Let us admit the following terminology. We say that each point a € [0,1] is an individual
in generation s and its image S(s’t)(a) € [0, 1] is its offspring in generation ¢. Let us define
for any distribution function ©(z) its inverse function

8_1(33) = inf{a | ©(a) > z}. (2.3)
Then each individual z € [0,1] in generation ¢ has an ancestor a in generation s which is

a = (S0~ 1(z).

Given an individual z € [0, 1] in generation ¢, let us look for individuals z’ having the same

ancestor as z in generation s:

ma(s,t) = {z' : (S®9) 7 (a') = (59) 7 ()}. (2.4)
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Two situations are possible. In the first case S(**) is continuous at a = (S(&1)~1(z).
Then any individual z' # z has a different ancestor from the one of z, i.e. (S(58))~1(z') #£
(8" (z), my(s,t) = {z}. (In fact, by definition of (S(**))~1 it should be S**(a —¢) <
S%t(a) for any € > 0. Then for any z' < z (S(&)71(z') < a. If S8 is strictly in-
creasing at a, then clearly (S(*%))~1(z') > a for any z' > z. If S®! is constant on [a,b)
and continuous at a, then (S*!)7'(z') > b > a for any ¢’ > z.) In the second case
S(t) makes a jump at a = (S(&9)~!(z). Thus S%*(a) > . In this case any indi-
vidual z' € (limeo S(**(a — €),5(*%)(a)] has the same ancestor as z in generation s i.e.
(86 ~1(2") = a. Hence, the family (2.4) of the individual z having the same ancestor as z

in generation s is the following interval :

ma(s,t) = ling (S(s,t)((s(s,t))—l(m) _ 6) St g (S(s,t))—l(m) ‘

el

mx(s,t)

RO

In Figure 2.1 the individual z in generation ¢ has a family of "cousins” my(s,t) having
the same ”grand-father” in generation s, while the individual y is the unique ”grand-child”
of his ancestor in generation s. We are mainly interested in a nontrivial case when functions

S(s:t) make jumps.

The next lemma justifies our terminology. It says that any individual having an ancestor
in common with z in generation s has necessarily an ancestor in common with z in any

generation s’ < s. In other words, if we partition the interval [0, 1] into families m,(s',t)
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having the same ancestor in generation s’, then the partition into families m,(s,t) having

the same ancestor in generation s > s’ is a refinement of the previous one.

Lemma 2.2: Let 5() be distribution functions of a flow of measures according to Defini-
tion 2.1. Then for all z € [0, 1]

mg(s,t) C mg(s',t) Vs <s<tel. (2.5)

Proof: From one hand, by definition (2.3) and compatibility (2.2) we have the inequality
(8N (2) < 8¢ o (8N o (5N (a) = SV o (SN @) (26)
leading to the upper bound
S50 o (871 (g) < §(58) o §(579) o (§(":0)~1(z) = §(":8) o (S(s" 1)~ 1( ). (2.7)
From the other hand, for any € > 0 by definition (2.3) z > ©(@~!(z) — ¢). Then
(S (@) > S o ((810) o (S (@) — ) = S0 ((SU) H(a) — o). (28)
Then for any € > 0 one can find é(¢) > 0 such that é(¢) | 0 as € | 0 and
($19) (@) = 8(€) > S 0 (SE) 7 — o). (2.9)
Thus

SED((SM) 7 (2) = 5(e)) > 5 0 SEHI((SEHD) M (a) — ) = SCHI((SCD) T (m) — ¢).
(2.10)
Letting € | 0 in the inequality (2.10) yields the necessary lower bound, which together with
(2.7) proves the lemma. ¢.

Whenever t = T is fixed, the function |my(-,T)| is the family size of the individual z
in generation T as a function of the degree of relatedness. By Lemma 2.2 it is a decreas-

ing function on I. Finally, we define the associated empirical distribution of the functions

|ma (-, T

1
]CT = /d35|mm(-,T)|- (2.11)
0
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This construction (2.11) allows to associate to any flow of probability measures in the sense

of Definition 2.1 an empirical distribution K.

If we assume in addition that [0,7] C I and |my(-,T)| are right-continuous, then 1 —
|mg (-, T)| are probability distribution functions. Then we will think of K7 as a map from

flows of probability measures into M; (M ([0, 1])) which we call the genealogical map.
2.2 Coalescent associated with a flow of probability measures.

Now, let us define the exact degree of relatedness between two individuals z,y € [0, 1] with

respect to a flow of measures (2.2) as

yr(z,y) =sup(s €l :y € my(s,T)). (2.12)

Lemma 2.3: 1— g defines an ultrametric distance on the unit interval.

Proof: By Lemma 2.2, for all z,y € [0,1], if s = yr(z,y), then
yemy(s,T) Vs'<s, s el (2.13)

It follows from (2.13) that for any z,y,z € [0,1] if vr(z,y) # vyr(z,z), then yr(y,2) =
min{yr(z,z),yr(z,y)}. In fact, let e.g. yr(z,2) > yr(z,y). Then z € my(s,T) for all
s € I such that s < yp(z,y) and then vyr(y,z) > vyr(z,y). From the other point of view,
if y7(y,2) > yr(z,y), then either yr(z,2) > yr(y,2) > vr(z,y) or yr(y,2) > yr(z,2) >
v(z,y). In the first case by (2.13) z € m,(s,T) for all s € I such that s < yr(y, 2) and
then yr(z,y) > vr(y,z) which is impossible. In the second y € m,(s,T) for all s € I
such that s < yp(z,2) from where yr(z,y) > yr(z,z), which is again impossible. Thus

vr(y,2) = v7(2, Y)-

Note also that if yr(z,y) = yr(z, 2), then yr(y,2) > vr(z,y) = yr(z, z). These observa-

tions imply that 1 — yr is an ultrametric distance on [0, 1]. {

The function 7 is trivial if S(*) are all continuous, for then yr(z,y) =T if £ = y and
yr(z,y) = —oo if ¢ # y, and in a strict sense nobody has any relatives. On the other hand,
in the discontinuous case, rather large families exist, and the ultrametric structure of the

interval can be very rich.

We will be interested in cases where the flow S(¢:¢) of Definition 2.1 is random. We will

now describe a useful way of characterizing a random genealogical map K in this case.
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Having defined a distance 1—v7 on [0, 1], we can define in a very natural way the analogous
distance on the integers. To do this, consider a family of i.i.d. random variables {U;};en

distributed according to the uniform law on [0, 1]. Given such a family, we set

pr(1,3) = vr (Ui, Uj). (2.14)
Due to the ultrametric property of the yr and the independence of the U;, for fixed T,
the sets B;(s) = {j : pr(¢,7) > s} form an exchangeable random partition of the integers.
Moreover, the family of these partitions as a function of T — s is a stochastic process on
the space of integer partitions with the property that for any s > s, the partition B;(s)

is a coarsening of the partition B;(s). Such a process is called a coalescent process (see e.g.

[Bel,Be2,BeL.G,BePi,BeYo,BoS,P,Pil,PPY]).

The key observation for our purposes is the possibility to express the moments of Kr in
terms of this coalescent [Bel]. Namely, it is plain by the law of large numbers that
n
lim n~* Z Lie.(s) = Imu, (s, T)| as. (2.15)

nj|oco
T e

for any 7 such that ¢ € Bg(s). This implies, for instance, as shown in [Bel] that
]E/ de|m (s, T)| = P[2 € By(s)] (2.16)
and more generally that

JE/ dz|mg(s, T)|* =P[2,3,...,k+ 1€ Bi(s)]. (2.17)

Here the expectation I is with respect to the randomness of the family of measures S(**), and
P is the law with respect to the random genealogy (depending both on the random measures
and the iid. r.v. U;). We will need slightly more general expressions, namely a family

of moments that determine the law of Kp. These can be written as follows. Let take any

positive integer p, a collection of positive real numbers 0 < t; < --- < t, < T, a positive

integer £, and non-negative integers k11,...,kip, k21,...,k2p, ..., kg1, ..., kgp. Then we need

M(p,1, k) = E (/dmlmz(tl,:f’)wn N |mz(tp,T)|k1P) (/ dz|mq(ty, T ..|mz(tp,T)|k‘P) |
(2.18)

By (2.15) we have that

/al:c|m,,;(t1,T)|k11 Mg (tp, T)|Fr

— [ —l—kyy——kip Z Z . . . .
=limn ]IJ]]:""’Jill EBk(i,tl)(tl) te ]I]f,...,J:lp EBk(i,tp)(tp)

nfoo =
=1 J1 ,".,Jkll yeennJq ,.",Jklp

(2.19)



CREM and CSB 13

where k(%,tp) is the smallest integer such that k(7,t,) € B;(¢,). Let us note first that in these
expressions contributions from terms where two indices are equal can be neglected. Second,

since

Bk(i,tp)(tp) C Bk(i,tp_l)(tp—l) c.---C Bk(i,tl)(tl) (2.20)

the summand in (2.19) is the same as

]Ij]]:y"'yjill 7"'7jfy"'7j:1p EBk(i,tl )(tl) U ]ij,."’j:lp EBk(i,tp)(tp) (2'21)
Then
M(p,t, k) = lim n= ¢k ="k E E e E
nloo 21 .00 4Li1 ;L1 :p,1 -p,1 .1,4 1,2 .p,L .p,L
T FRRTR PR £ ""’Jklp I1' Ty e ""’Jktp
| 1,1 .p,1 B T 1. . . .
I 7"'7Jk117"'7jf 7"'7.7:1? EBk(il,tl)(tl) J]]:’ty"'yji’;l7"'7.7]1_:"7"'7.7522EBk(it,tl)(tl)
B | S R T Moot oo
Jf 7"'7.7:1? EBk(il,tp)(tP) Jf ""’J:tpeBk(il’tP)(tp)
=P [J11 S Bl(tl), ceey le S Bl(tp), ...dpn € Bg(tl), ceey Jgp S Bg(tp)]
(2.22)
where

(i) J11,...,Jn is a disjoint partition of {£+ 1,8+ 2,..., k11 + -+ kgp + £},
(ii) Forall y=1,...,¢,¢=1,...,p, Jji D Jjit1, and
(iif) |Jjil = kji + jiga + -+ Kjp.

By exchangeability, the choice of the partition and the subsets is irrelevant. The proba-

bilities (2.22) can be expressed alternatively in the form

where m(i,j) € {1,...,p}. Thus the genealogical map Kr is completely determined by
the probabilities (2.22) or (2.23) of the corresponding coalescent through the family of its

moments.

3. Finite N setting for the CREM.

We will now show that for finite N we can use the general construction from the preceding
section to relate the geometric description of the Gibbs measure on Sy to the genealogical

description of a family of embedded measures on [0, 1].
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Recall that our basic objects are configurations ¢ € Sy = {—1,1}" equipped with
dy(o,7) = N7 (min (4 : 0; # 7;) — 1). For non-decreasing function A : [0,1] — [0, 1], we

have a Gaussian process X, with mean zero and covariance

EX, X, = A(dy(o,7)). (3.1)

e,e\/ﬁxt,

W on Sy to a measure

We can map the corresponding Gibbs measure pg n(c) =

fig,n on the unit interval through the map ry defined in (2.1)Uvia

BeN= Y brp(oytisn(0). (32)
ocESN

Let 63, n be the probability distribution function of fig n:

0p,n(z) = pg,n(0o : (o) < 2). (3.3)

Let us take a parameter s € [0, 1] and consider the map r,n) : Sy — [0, 1]. Clearly, its image
consists of 2(*N points, and for any 0,0’ with dy(o,0') > s we have rj,nj(0) = rjonj(c”).

Now we define a family of compatible distribution functions in the sense of Definition 2.1:
S (@) = D 16,8 () Lfo(r,my(e)) <a) (34)

as states the following lemma.

Lemma 3.1: The functions (3.4) verify the assumptions of Definition 2.1 with I = [0, 1].

Proof: To understand better the construction of (3.4), let us take configurations o1, o2, . . . | o2

having the first [sN] spins different, i.e. with dy(c?, 07) < s and arrange them in order such
that

glsN]

0 < iy (07) < reny(0?) < - < v (0 ) = 1.

Let

2! = pgn(o' 1 dy(o’,at) > s), i=1,...,26N g, =0. (3.5)
Define

y=zi+tzi+---+z = G(T[SN](O'i)), i=0,1,...,20N, (3.6)
Then we may write the representation

glsN]

SSR(a) =3 yilacyr e, )1 (3.7)

1=0
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Thus Sés}f,) is a right-continuous step function that makes jumps at points yi,y;5,...,1 for
the values z{,z3,..., 25,5 -
If we denote by Y ny = {y§,y7,...,1}, then
t
SEV () =y Yy e Y5y (3.8)

The function Sés}f,) does not depend on the second parameter . For any s’ > s, Yﬂ‘:N C Y5 s

any segment [yf’,yf_ll_l) contains 2[sN=[s'N] points of Yg n and Séf]\’,t) is a coarse-grained

version of Sg}f,) Now it is straightforward to verify the assumption (2.2): for any s’ < s <¢
s,t s',s s',t
S,E-'},N) °© S:(ByN) = S:(ByN)‘ (3'9)

In fact, for any a € [0,1] Sg’b’,&)(a) € Yﬂs,’N C Y4y, then by (3.8) ng;f,)(sgf;;;‘)(a)) =
ng’]\’,s)(a) = ng’b’,t)(a) since ng’b’,t) does not depend on t.

Since the functions (3.4) satisfy Definition 2.1, we are entitled to apply to them the con-

struction of the previous section. Their genealogy is
my(s,t) = (y;_1,y;] with [mg(s,t)| = |27, if z € (y/_1, %), 1=1,... :2[SN]' (3.10)

We may associate to this genealogy the genealogical map (2.11) K7 and the coalescent process
on the integers. The next lemma expresses the geometry of the Gibbs measure of the CREM
contained in the empirical distance distribution function (1.4) Kg n in terms of the genealogy

induced by the functions (3.4).

Lemma 3.2: We have
IC,B,N = Kl’ﬁ’N,

where the empirical distance distribution function Kg n is defined in (1.4) and Kf N s the
genealogical map (2.11) with T = 1 of the flow of measures with probability distribution
functions (3.4).

Proof: For any o € Sy one could find i = 1,...,2*N such that dy (o, %) > s, then
z; = pg n(c’ 1 dn(d',0) > s). (3.11)
Then ry(0) € (reny(0?) — 20N, r a1 (0?)] and consequently

0(rn(0)) € (pa,n(0" i rn(0") < rony(0f) — 2UM), g w (o’ s 7 (0”) < vy (0%))] = (w51, %)
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It follows from (3.10) that for any o € Sy

Me(rxy (o)) (S:8) = (¥i—1, ¥i], Vs <t (3.12)

Then by (3.11)
|mg(T[N](,))(s,t)| =z =pgn(c' :dn(c’,0) > s).

Hence, in terms of the quantity m,(s) defined in (1.5)

|Ma(ri(2)) (8:8)] = Mo (s). (3.13)
This implies the statement of the lemma <.

Remark: If we would like to construct non-decreasing step functions compatible in the
sense (2.2) with the genealogy (3.12), then for all ¢ > s it should be S(*¥([0,1]) = Y5 N
By compatibility necessarily S(+:9(5(=#)(z)) = S(=)(z), from where S(=O(Y3 \) = Y3 .
Since S(**) is non-decreasing, it must be S("t)(y) =y forall y € Y5 . There are only two
possibilities to construct a flow of non-decreasing functions such that S("t)(y) = y for all

y € Yg v and S8 ([0,1]) = Yj n- The one is (3.4) or equivalently (3.7). The other is

2lsNl_q

~(s,t s

S5 (@) = 3"yt Taequs we, 13- (3.14)
1=0

These non-decreasing functions are not probability distribution functions in a strict sense as
they are left-continuous. They verify the compatibility (2.2). Since in the previous section
we never used the right-continuity of the functions S(*) of Definition 2.1, we may apply to
(3.14) the genealogical construction as well. Of course, the genealogical map associated with

(3.14) coincides with the one of (3.7) and then with Kg x by Lemma 3.2.

Remark: The functions (3.14) are in fact an example of a more general construction of a flow
of functions always verifying (2.2). Let {©;}:crcr be a one-parameter family of probability
distribution functions on (0, 1]. Let Z; denote the set of points of increase of the function ©;.
We say that the family is refining, if for any s <t € I, Z, C Z;. Let ©; be a refining family.
Let us define the functions

St = 0,((0,)7Y). (3.15)

Then the functions S(*:*) verify the compatibility (2.2). In fact, by definition S(s’t)oS(sl’s)(m) =
0:(0;1(0,(0,(z)))). Since y = O, (z) is the smallest value for which @, (y) > z, for any

8 g

y' < y it must be true that ©,(y') < @4 (y). Thus ©,'(z) € Z,. But if y is a point of
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increase of O, by assumption, y is also a point of increase of ©,, hence ©;1(0,(y)) = y and

therefore S(s:*) o S(s”t)(m) = O(y) = S(s”t)(m)-

Now define for the GREM the measures ,ZZE,N indexed by the parameter s € [0, 1] which
are coarse-grained versions of fig Nt fi3 v = >, csy #8,N(0)0r, (o). Their probability distri-
bution functions 83 n,s = g, N (0" : rsn)(0') < ) jump at points r[,n) (o) and form a refining
family depending on the parameter s € [0, 1]. Then we may define compatible left-continuous

step functions (3.15) Hﬂ,N,t(HglN ,) which equal precisely the functions (3.14).

4. Genealogy of a continuous state branching process.

Another example of flows of probability measures satisfying Definition 2.1 arises in the
context of continuous state branching process [BeLG]. The basic object here is a continuous
state branching process X (¢) on R characterized by its Laplace exponent u;()). The process
started in @ > 0 will be denoted by X (-, a). This can be extended to a genuine two parameter
process (X (t,a),t,a > 0) using the fundamental branching property that states that if X'(-, b)
and X (-, a) are independent copies, then X (-,a + b) has the same law as X'(-,b) + X (-, a).
The process X (¢, a) is characterized by the property that for any a,b > 0, X(-,a+b)— X (-,a)
is independent of the processes X (-, ¢), for all ¢ < a, and its law is the same as that of X (-, ).
The right continuous version of X (¢,-) is a subordinator. Bertoin and Le Gall [BeLG] prove
the following proposition, based on the Markov property of this process.

Proposition 4.1:0n some probability space there ezists a process (S(=9)(a),0< s < t,a >
0), such that

(i) For any 0 < s < t, 5(>*) is a subordinator with Laplace ezponent u,_,()).

(i) For any integerp > 3 and0 < ¢; <ty < --- < t,, the subordinators S(titz) Gltaita) | Gltp—1.t)

are independent, and

§(t17tp)(a) — §(tp—17tp) o §(tp—l7tp) 0:-+0 §(t27t3) o §(t17t2)(a’), V(L Z 0, a.s. (41)

(i) The processes S(%)(a) and X (t, a) have the same finite dimensional marginals.

The process S(:1) allows to construct a flow of probability distribution functions by setting

1 Senx(s,1)2), 0<s<t<l. (4.2)

5+9(a) X, 1)

Given I any countable subset of R™, they verify the assumptions of Definition 2.1 a.s.
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We are interested in a particular case of Neveu’s continuous state branching process X;
with
13

E(e | Xo=a) =7 () =27 (4:3)

In this case S(5t) are stable subordinators with index e®~%.

Then the normalized stable
subordinators S(*:*) of (4.2) is a family of random probability distribution functions verifying

Definition 2.1. Thus the genealogical construction of Section 2 applies to them.

Finally, note that if we take an increasing function ¢(y) > 0 for y € [0, 1], then we may
consider the time-changed flow §(#:2) = §(#¥).%32)) 0 < y < 2, satisfying again Definition 2.1

and therefore allowing the genealogical construction of Section 2.

Bertoin and Le Gall [BeLG] showed that the coalescent process on the integers induced
by S(st) of (4.2) associated to Neveu’s process (4.3) coincides with the coalescent process
constructed by Bolthausen and Sznitman [BoS]. They also proved the following remarkable
result connecting the collection of subordinators to Ruelle’s Generalized Random Energy
Model. Let us state this result for our convenience. Take the parameters 0 < z; < --- <

zp, < land 0 <t <---<tplinked by the identities
ty =Inzgr, —Ilnzy (4.4)

fork=0,...,p—1,and t, = —Inz;. Then the law of the family of jumps of the normalized
subordinators S(ts:t2) for k = 0,...,p — 1, is the same as the law of Ruelle’s probability

cascades with parameters z;, 1 =1,...,p.

Now consider a GREM with finitely many hierarchies and parameters such that the points
yo =0and 0 < y; < ... < yp <1 are the extremal points of the concave hull of A. Let us
remind that limy_,. Efg,n(y) = Efg(y) can be computed by (1.8) for any y € [0,1]. Now
set

Efﬂ(yi_l)::ci, ’l,: 1,... ' Dy (45)

where all of the z; < 1. In Theorem 1.9 of [BK1] we proved that the point process
D Sup (o dn(o,0)>5 ) i (o e (0,07) 55,0} (4.6)

in [0, 1] converge to Ruelle’s probability cascades with parameters z;, ¢ = 1,...,p. (The
convergence of the marginals of the process (4.6) for the GREM under the assumption that for
any given hierarchy ¢ = 1,...,pand N > 0 the number of configurations {¢’ : dn(o,0") > y;}
is the same for all ¢ € ¥, has been also established in Proposition 9.6 of [BoS2].)
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Combining these two results yields

Proposition 4.2: Let ugn be the Gibbs measure associated to a GREM with finitely
many hierarchies satisfying (4.5) at the extremal points y;, 1 = 1,...,p of the concave hull
of the function A. Then the family of distribution functions Sg}’v’y”), k=1,2,...,p defined
according to (3.4) converges in law, and the limit has the same distribution as the family of
normalized stable subordinators (4.2) S(teote) | =0,1,...,p— 1 in the sense that the joint

duistribution of their jumps has the same law, provided ti are chosen according to (4.4), (4.5).

5. Main result.

From the preceding proposition we expect that Neveu’s process will provide the universal
limit for all of our CREMs. The dependence on the particular model (i.e. the function A)

and on the temperature must come from a rescaling of time. Set

v
z(y) = Efs(y) ={ sva’ LIS (5.1)

1 if &> tg
where @ is the right-derivative of the convex hull of the function A, tg = sup(¢ : ﬂz_\/?tz) <1)
(here Efg(y) is defined by the function A through (1.8)). Set also
T=—-Inz(0), t(y) =T +1nz(y). (5.2)
Define the flow of probability distribution functions
52 (z) = §HW)H2) () (5.3)

where S(#%) is the flow of functions (4.2) associated to Neveu’s process (4.3). Let Iaégy) be
the genealogical map (2.11) associated to this flow.

Theorem 5.1: Consider Continuous Random Energy Model with general function A such

that A does not touch its convez hull A in the interior of any interval where A is linear. Then
IC,B,N = KE’N 2) Iﬁi(y) (5.4)

Here K, n is the empirical distance distribution function (1.4), Kf’N is the genealogical
map (2.11) of the flow of probability distribution functions (3.4) and the equality Kg n =
Kf’N holds by Lemma 3.2. Theorem 5.1 is the main result of this paper. It expresses
the geometry of the limiting Gibbs measure contained in g n in terms of the genealogy of

Neveu’s branching process via the deterministic time change (5.2).
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6. Coalescence and Ghirlanda-Guerra identities.

In this section we prove Theorem 5.1. As it was remarked in Section 2, K7 associated with
a flow of measures is completely determined by its moments (2.18) which can be expressed
via genealogical distance distributions of the corresponding coalescent (2.23). So, we will
prove that the moments of Kg n, which are the n-replica distance distributions in our spin
glass model (1.10), converge to the genealogical distance distributions on the integers (2.23)
constructed from the flow of compatible measures with distribution functions 5(¥2) (5.3).
But the flow S(¥2) is the time changed flow (4.2) of Neveu’s branching process (4.3) that
by [BeLG] corresponds to the coalescent of Bolthausen-Sznitman. Therefore, its genealogical
distance distributions on the integers are those of Bolthausen-Sznitman coalescent under this
time change (5.2). Then the proof of Theorem 5.1 is reduced to the following Theorem 6.1
that gives in addition the connection between the n-replica distance distribution function of
the CREM with the genealogical distance distribution function of the Bolthausen-Sznitman

coalescent.

Theorem 6.1: Under the same assumptions as in Theorem 5.1, for any n € N,

Jim Fpgy (dn(o'0%) <yiyyo s dn(0™Y, 0™) < Ynino1))2)

=P (PT(l; 2) < t(yl): - ':pT('n’ - 1:7") < t(yﬂ("—l)/2))

(6.1)

where t(y) is defined in (5.2) via (5.1). The distance pr is the distance on integers for the
Bolthausen-Sznitman coalescent, induced through (2.14) by the genealogical distance yr of the
flow of measures S(*t) (4.2) of Neveu’s branching process (4.3).

Proof: The fact that in Bolthausen-Sznitman coalescent P(pp(1,2) < t) = /=T and the

convergence (1.8) imply the statement of the theorem for n = 2:
Euy (dn(0,0) < 4) = a(y) = 97 = Ppr(L,2) < 1(y)).

The proof of the theorem for n > 2, and in fact the entire identification of the limiting
processes with objects constructed from Neveu’s branching process, relies on the Ghirlanda-
Guerra identities [GG] that were derived for the models considered here in [BK2]. We restate
this result in a slightly modified form. Let us remind that the family of measures (1.10) Qggv
is determined on the space [0, 1]"~1)/2 as E,u,f?,’fﬂ (dny € -) where dy denotes the vector of
replica distances dy(o*,0!), 1 < k < 1 < n. Denote by By the vector of the first k(k — 1)/2

coordinates.
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Theorem 6.2: [BK3]The family of measures Q%"gv converge to limiting measures Q%") for
all finite n, as N T co. Moreover, these measures are uniquely determined by the distance

distribution functions Efg(y) = z(y) (1.8). They satisfy, for anyy € [0,1], n € Nand k < n,

Qe+ (k. n+ 1) <ulB) = 2 L LS QP @k <uiB). (62)
£k

Let us recall that due to the ultrametric property of dp, these identities determine the
measures Q%") uniquely. Thus, we must show that the right-hand side of (6.1) satisfies, for
t<T,

P(pr(k,n+1) < t|By) = %et_T + 15 Plor(k <t B (6.3)

1<n,l£k
that can be equivalently written as
le{l,...,n}: kD>t —et T
P(or(k,n+1)>t|B,) = ted bipr(k,D) > ¢ (6.4).

n

There are two ways to verify that (6.3) holds for the Bolthausen-Sznitman coalescent.

The first one is to observe that relation (6.3) involves only the marginals of the coalescent
at a finite set of times. By Theorem 5 of Bertoin-Le Gall [BeLG], these can be expressed
in terms of Ruelle’s probability cascades modulo the appropriate time change. Thus, by
Theorem 1.9 of [BK1] these probabilities can be expressed as limits of a suitably constructed
GREM (with finitely many hierarchies) for which the Ghirlanda-Guerra relations do hold by
Proposition 1.12 of [BK1]. Thus (6.3) is satisfied. ¢

The second way is to verify directly that Ghirlanda-Guerra relations (6.4) hold for the

Bolthausen-Sznitman coalescent. This is the subject of the next Section 7.

7. Ghirlanda-Guerra identities and Chinese restaurant processes

Let us first give the following definition. Given the sequence of normalized jumps of the
stable subordinator (A;/T) with index z and given Uy, Uy, ... independent uniform random
variables on [0, 1], the partition of positive integers II distributed as a partition of blocks of

indices of U; belonging to the same intervals A,;/T € [0, 1] is called (z, 0)-partition, see [P].

Let us introduce an operation of coagulation on partitions, see [Pil]: for a partition m =

(A1, A,,...,) and II = (B, By, ...), the II-coagulation of 7 consists of blocks of the form
UjEBi Aj'
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By [BS] the Markov kernels (e™*,0)-coagulation, t > 0, on partitions of N form a semi-
group. The Markov process

P™(TI(t+) € -) = (¢!~ 7, 0) — coagulation of m (7.1)

ts distributed as the Bolthausen-Sznitman coalescent. 1t starts from a partition of singletons at
time 7" and finishes by a partition of one block N at time —oo. (The semi-group property can
be also seen from the fact that the limiting frequencies of (e~?, 0)-partitions are distributed

as normalized jumps of stable subordinators and from their matching condition (4.1).)

Next, consider exchangeable random partitions II on N, introduced by J. Pitman under
the name of Chinese restaurant processes. For each parameter 0 < z < 1 this partition can
be constructed as follows. Let II,, denote the restriction of II to the first n positive integers.
Then, conditionally given II,, = {A1, ..., Ax} for any particular partition of {1,2,...,n} into
k subsets (tables) A; of sizes n;, 1 = 1,...,k, the partition I, is an extension of II,, such
that the number n + 1 (new customer) is attached to the class (table) A; with probability
(n; — z)/mn, and forms a new class (sits at a new table) with probability kz/n. Let us denote
by p(n1, ..., nk) the probability of partitions IT with II,, a particular partition of k classes of

sizes mq, ..., ni respectively. Then

mny —

p(n1+ 1,n2,...,n%) = p(ni,...,nk) (7.2).

The crucial fact it that the partition 11 of the Chinese restaurant process with parameter
is (z,0)— partition. This fact noticed in [P] follows from the combination of the results
of [Pil] and [PPY]. To see this, it should be said first that II is a partially exchangeable
random partition in the sense of [Pil]. Then, given the sequence of its a.s. limiting relative
frequencies of classes P; in order of appearance, the conditional distribution of II given the
whole sequence (P;) is as follows: for each n conditionally given P; and II,, = {44,..., Ax}
where A; are in order of appearance, II,, 1 is an extension of II,, in which n 4+ 1 attaches to
class A; with probability P;, 1 < i < k and forms a new class with probability 1 — Ele F;.

In other words

1=

p(n, ooy ) :E[ﬁpi"i—llﬁ (1—2:13]-)] (7.3)

In the case of the Chinese restaurant process

T X2z X---Xkz

p(ny, ..., ng) = [[a-2)@2-2)-(ni-2) (7.4)

n!
=1
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The function p(n4, ..., ng) being symmetric, I is an exchangeable random partition according
to [Pil]. Furthermore, again due to [Pil], computing the moments from (7.3) and (7.4) one
checks that the limiting relative frequencies in order of appearance in the Chinese restaurant
process are P, = (1 — W1)(1 — W) --- (1 — W;_1)W,; with W, independent beta (1 — z,iz).
From the other point of view it has been shown in [PPY] that if T = ) . A; has a stable
distribution with index z, with A; > A, > ... being points of the Poisson point process
on (0,00), then the sequence A(;)/T in size-biased order (this means, that given the whole
sequence A;/T, and U; independent random variables uniform on [0, 1], then Uy € Agy/T,
Unmin{j:U; ¢01,/T} € A(2y/T etc) has the same distribution of products of independent beta
random variables. It follows, that the limiting frequencies of the Chinese restaurant process
IT ranked by size are distributed as A;/T, i.e. they have Poisson-Dirichlet distribution with

parameter z. Hence, the Chinese restaurant process is (z,0)— partition.

Thus, by (7.1) the marginals of Bolthausen-Sznitman coalescent II(¢) at times 0 = 5 <
t1 < -+ <tp_1 <tp =T can be constructed as the following sequence of Chinese restaurant
processes. Let z; = et-17% 0 < 77 < 3 < -+ < Tp < 1. Then I[I(¢p_1+) is distribut-
ed as (zp,0)— partition, i.e. as the Chinese restaurant process with parameter z,. Next,
we define the partition II(t,_2+) as the Chinese restaurant process on the classes of par-
tition II(¢tp—1+) with parameter z,_1/z, = el»—27'»—1: this means that given already the
classes AP, ... ,Ai_l obtained from A},..., A?, where AP™" consists of [; blocks of IIP,
i=1,...,k I+ -+l =L, the block A?,, joins AP~ with probability (¥' — z,_1/z,)/!
and forms a new class with probability kz,_1/(z,l). One iterates this procedure with pa-
rameters &,_3/Zp_1,...,¢1/C2 to construct the partitions II(¢,_3+),...,II(¢c+). By the
semi-group property of (e, 0)— coagulations, II(¢;+) is distributed as a Chinese restaurant
process with parameter z;,1 = e* 7% for all 1 = 0,1,...,p — 1 verifying (7.2). Now (6.4) is

immediate from the Chinese restaurant property (7.2).

Recently Ph. Marchal found another beautiful way to identify the Chinese restauran-
t process with (z,0)-partitions and also the iterated Chinese restaurant process with the

Bolthausen-Sznitman coalescent, see [M].
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