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Abstract: We investigate the long-time behavior of the Glauber dynamics for the ran-
dom energy model below the critical temperature. We give very precise estimates on the
motion of the process to and between the states of extremal energies. We show that when
disregarding time, the consecutive steps of the process on these states are governed by
a Markov chain that jumps uniformly on all possible states. The mean times of these
jumps are also computed very precisely and are seen to be asymptotically independent
of the terminal point. A first indicator of aging is the observation that the mean time of
arrival in the set of states that have waiting times of order T is itself of order T . The
estimates proven in this paper will furnish crucial input for a follow-up paper where
aging is analysed in full detail.

1. Introduction and Background

1.1. Introduction. The concept of “aging” has become one of the main paradigms in the
theory of the dynamics of disordered systems1. Roughly speaking, this term refers to a
particular way in which dynamic properties of a system change with time when relaxing
towards equilibrium: the time scale at which the process evolves slows down in propor-
tion to the elapsed time, the system “ages”. It is in fact believed that most disordered
systems, or at least those qualified as “glassy systems” do exhibit this phenomenon.
While this is so, almost no results concerning aging in “real” spin systems do exist. In
fact most existing results, even on the heuristic level, concern two types of dynamics:
1) Langevin dynamics in spherical models such as the spherical SK model [BDG, CD],
or the spherical p-spin SK model [BCKM]. 2) Trap models [B, BD, BCKM] that are

∗ Work partially supported by the Swiss National Science Foundation under contract 21-65267.01
�� On leave from CPT-CNRS, Luminy, Case 907, 13288 Marseille Cedex 9, France.

E-mail: veronique.gayrard@epfl.ch
1 The cond-mat archives in Trieste contain 263 papers containing this term in their abstracts, and 124

containing it even in the title. See also [Be] for a recent mathematical review.
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inspired by the structure of equilibrium states found in (mostly non-rigorous) analysis
of mean field spin-glasses. These dynamics are, however, introduced ad hoc without
any attempt to justify and derive them from an underlying Glauber dynamics on the
microscopic degrees of freedom.

In the context of the spherical models, a rigorous derivation of the aging phenomenon
has been given recently in [BDG]. This model lacks, however, many of the expected fea-
tures of spin glasses, in particular the existence of a complex energy landscape with many
“metastable states”. The simplest model showing these features is the random energy
model (REM) [D1, D2]. This model is indeed traded as one of the standard examples
where aging occurs in the physics literature; the arguments in the physics literature are
however, all based on the ad hoc introduction of an effective model (the REM-like trap
model [B, BD, BM]) inspired by known properties of the equilibrium distribution and
some heuristic arguments. The behaviour of the trap models can then be analysed in
detail.

In this and the companion paper [BBG] we prove the first rigorous results on the
Glauber dynamics of the REM that will justify in a suitable sense the predictions based
on the trap model heuristic. We feel that this is an important first step in showing that the
abundant literature on this model is of relevance for realistic disordered systems. The
key point of our analysis, and in fact a central problem of the entire subject, will be to
control the behaviour of a Markov chain on a very high-dimensional set on a relatively
small, but still asymptotically infinite subset of its “most recurrent” or “most stable”
states on appropriate time scales, and to describe the ensuing effective dynamics. While
we will have to use many of the particular features of the model we consider here, we
feel that the general methodology developed in this paper will be of use in many other
contexts of the dynamics of complex systems.

The REM. We recall that the REM [D1, D2] is defined as follows. A spin configura-
tion σ is a vertex of the hypercube SN ≡ {−1, 1}N . On an abstract probability space
(�, F, P ) we define the family of i.i.d. standard normal random variables {Xσ }σ∈SN

.
We set Eσ ≡ [Xσ ]+ ≡ (Xσ ∨ 0). We define a random (Gibbs) probability measure on
SN , µβ,N , by setting

µβ,N(σ ) ≡ eβ
√

NEσ

Zβ,N

, (1.1)

where Zβ,N is the normalizing partition function2. It is well-known [D1, D2] that this
model exhibits a phase transition at βc =

√
2 ln 2. For β ≤ βc, the Gibbs measures is

supported, asymptotically as N ↑ ∞, on the set of states σ for which Eσ ∼ √
Nβ, and

no single configuration has positive mass. For β > βc, on the other hand, the Gibbs
measure gives positive mass to the extreme elements of the order statistics of the family
Eσ ; i.e. if we order the spin configurations according to the magnitude of their energies
s.t.

Eσ(1) ≥ Eσ(2) ≥ Eσ(3) ≥ · · · ≥ E
σ(2N ), (1.2)

then for any finite k, the respective mass µβ,N

(
σ (k)

)
will converge, as N tends to infinity,

to some positive random variable νk; in fact, the entire family of masses µβ,N

(
σ (k)

)
, κ ∈

2 The standard model has Xσ instead of Eσ . This modification has no effect on the equilibrium
properties of the model, and will be helpful for setting up the dynamics.
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N will converge in a suitable sense to a random process {νk}k∈N, called Ruelle’s point
process [Ru]. We explain this in more detail below.

So far the fact that σ are vertices of a hypercube has played no rôle in our consider-
ations. It will enter only in the definition of the dynamics of the model. The dynamics we
will consider is a discrete time Glauber dynamics. That is we construct a Markov chain
σ(t) with state space SN and discrete time t ∈ N by prescribing transition probabilities
pN(σ, η) = P[σ(t + 1) = η|σ(t) = σ ] by

pN(σ, η) =






1
N

e−β
√

NEσ , if ‖σ − η‖2 = 2

1 − e−β
√

NEσ , if σ = η

0, otherwise

. (1.3)

Note that the dynamics is also random, i.e. the law of the Markov chain is a measure
valued random variable on � that takes values in the space of Markov measures on
the path space SN

N . We will mostly take a pointwise point of view, i.e. we consider the
dynamics for a given fixed realization of the disorder parameter ω ∈ � (dependence on
which we persistently suppress in the notation).

Remark. Let us comment on our choice of the dynamics. First, we chose discrete time
rather than continuous time as to be closer to computer simulations. Since we work on
a discrete space, there is no difficulty to treat the continuous time and all our results
hold also in continuous time. Second, the fact that we chose the rates to depend only
on the starting point allows us to avoid having to solve the problem of determining very
precisely the barrier heights between any pair of points σ (i), σ (j), which is a tremen-
dous geometrical problem to which we have no answer. Clearly our choice favours the
emergence of Bouchaud’s trap model.

It is easy to see that this dynamics is reversible with respect to the Gibbs measure
µβ,N . One also sees that it represents a nearest neighbor random walk on the hypercube
with traps of random depths (i.e. the probability to make a zero step is rather large when
Eσ is large)3. The idea suggested by the known behavior of the equilibrium distribu-
tion is that these dynamics, for β > βc, will spend long periods of time in the states
σ (1), σ (2), . . . etc. and will move “quickly” from one of these configurations to the next.
Based on this intuition, Bouchaud et al. proposed the “REM-like” trap model: the state
space is reduced to M points, representing the M “deepest” traps. Each of the states
is assigned a positive random energy Ek which is taken to be exponentially distributed
with rate one. The dynamics is now a continuous time Markov chain Y (t) taking values
in SM ≡ {1, . . . , M}. If the process is in state k, it waits an exponentially distributed
time with mean proportional to eEkα , where α = β/βc, and then jumps with equal prob-
ability in one of the other states k′ ∈ SM . This process is then analyzed using essentially
techniques from renewal theory. The essential point is that if one starts the process from
the uniform distribution, it is possible to show that if one only considers the times, Ti ,
at which the process changes its state, then the counting process, c(t), that counts the
number of these jumps in the time interval (0, t) is a classical renewal (counting) process
[KT]; moreover, as n ↑ ∞, this renewal process converges to a renewal process with
a deterministic law for the renewal time with a heavy-tailed distribution (in the sense
that the mean is infinite4) whose density is proportional to t−1−1/α . It is the emergence

3 We have chosen this particular dynamics for technical reasons. To study e.g. the Metropolis algorithm
would require some extra work, but we expect essentially the same results to hold.

4 This is clearly due to the fact that the average of the waiting time eαEi over the disorder is infinite.
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of such non-Markovian limit processes that is ultimately responsible for all the aging
phenomena observed in the abundant literature on this and related models. Mathemat-
ically, the analysis of this trap model presents no particular challenge and the analysis
presented e.g. in the review [BCKM] is essentially rigorous, or can be made so with
minor efforts.

Our purpose is to show, in a mathematically rigorous way, how and to what extent
the REM-like trap model can be viewed as an approximation of what happens in the
REM itself. Clearly the main difficulty in doing this will be to explain why the rather
complicated random walk on the hypercube between the most profound traps can be
interpreted as a simple jump process. This question has two aspects:

1) Why does the process jump with the uniform distribution on the extremal states?
2) Why can this process be seen as a Markov process, in particular, why are the times

between visits of two extreme points asymptotically exponentially distributed?

While these facts may appear “obvious” to most physicists, the reason why they are
not addressed in any serious way in the literature is that a) they are not at all easy to
solve and b) they are, strictly speaking, not even true. In fact, we will see in the course
of the analysis (including the follow-up paper [BBG]) that such properties can be only
established in a very weak asymptotic form, which is, however, just enough to imply
that the predictions of Bouchaud’s model apply to the long time asymptotics of the
process. While this fact will emerge here only through some very careful and tedious
computations, it is clearly desirable to develop a more profound understanding of the
phenomenon.

In this first paper we will essentially address the question 1). We will show that if
we look at the sequence of visits of the process on a selected set of the states of low-
est energy, disregarding the times of these visits, the law of the sequence can indeed
be described asymptotically by a simple discrete time Markov chain on this set, which
jumps from one point to the next with the uniform distribution. We will also consider
two more questions. First we will compute the mean entrance time and the entrance law
on this set starting from an arbitrary point on the hypercube. Second we will compute
the mean transition times between points in this set. It will turn out that these mean tran-
sition times do indeed depend, asymptotically, only on the starting point. Thus, modulo
the Markovian hypothesis, we come very close to the heuristic picture outlined above.
Moreover, we will see that the mean time to reach a set of extremes is proportional to
the smallest “waiting times” on that set (if β >

√
2 ln 2), which will be interpreted as a

first sign of the occurrence of aging. We will also show that in contrast, if β <
√

2 ln 2,
then the mean time to reach any such point is much longer (by an exponentially large
factor) than the waiting time in that point, independent of the starting point of measure.
This dichotomy is in fact the main dynamical signature of the transition in this model.
This resolves a question raised in an earlier attempt by Fontes et al. [FIKP] to analyse
the dynamics of the REM using estimates on the spectral gap. This analysis revealed
no sign of a phase transition in the behaviour of the spectral gap. Indeed, the spectral
gap in this model correponds in both the high and the low temperature case essentially
to the maximal mean waiting time in one site, which depends in a regular way on the
temperature. For a different approach to the high-temperature dynamics see also the
recent paper by Mathieu and Picco [MP, M].

The control of the property 2) and the more refined analysis of the aging phenome-
non will be left two a companion paper [BBG], which will strongly rely on the results
obtained here.
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Our analysis will draw heavily on methods introduced only recently in the analysis
of metastability in similar Markov chains in [BEGK1, BEGK2]. We note, however, that
the situation here is in some respects quite different than in the setting investigated in
these papers. In particular, the investigation of metastability concentrated on the sit-
uation where the time scales associated to each metastable state were sufficiently far
apart so that to each state corresponds a distinct scale. Moreover, these long, metastable
time-scales were assumed to be well separated from the shorter time scales on which the
process may stay away from the set of metastable states. In the present situation, and this
is a generic feature distinguishing aging from metastability, we have on the contrary an
infinity of states that communicate on the same time scale, and to complicate the issue,
there will be no “gap” between the time scales we are interested in and the “faster” times
scales that we try to ignore. Thus the present situation violates the conditions of the
setting investigated in [BEGK2] in a maximal way.

The remainder of the introduction is organized as follows. In the next subsection we
present some background results on the equilibrium properties of the REM. Based on this
information, we will discuss in Subsect. 1.3 some aspects of the metastable behaviour
of the model, and state precisely the results we alluded to above.

1.2. Equilibrium results for the REM. In this sub-section we give the necessary back-
ground on the (mostly well known, see e.g. [Ei, GMP, OP, Ru]) static aspects of the
REM, i.e. we give a precise description of the infinite volume asymptotics of the Gibbs
measures that will help to understand the heuristics of the model. A complete exposition
can be found in [Bo]. The basic result is the following theorem that characterizes the
precise behavior of the partition function:

Proposition 1.1 ([BKL]). Let P denote the Poisson point process on R with intensity
measure e−xdx. If β >

√
2 ln 2, then

e−N [β
√

2 ln 2−ln 2]+ α
2 [ln(N ln 2)+ln 4π ]Zβ,N

D→
∫ ∞

−∞
eαzP(dz) (1.4)

and

ln Zβ,N − E ln Zβ,N
D→ ln

∫ ∞

−∞
eαzP(dz)− E ln

∫ ∞

−∞
eαzP(dz). (1.5)

Remark. The right-hand side of (1.4) is the partition function of what is known as
Ruelle’s version of the random energy model [Ru]. The simple proof of this theorem
is given in [BKL]. It relies, of course, on the classical theorem on the convergence of
the point process of (properly rescaled) extremes of i.i.d. Gaussian r.v.’s to the Poisson
point process P (see e.g. [LLR]). Namely, if we set

uN(x) ≡
√

2N ln 2 + x√
2N ln 2

− 1

2

ln(N ln 2)+ ln 4π√
2N ln 2

(1.6)

and define the point process

PN ≡
∑

σ∈{−1,1}N
δ
u−1

N (Xσ )
(1.7)
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it is well-known that PN converges in distribution to the Poisson point process, P , with
intensity measure e−xdx on the real line. Since the left hand side of (1.4) can be written
as

∫
PN(dx)eαx, (1.8)

the theorem follows if the convergence (in law, as N ↑ ∞) of this integral can be proven,
which is the case if and only if α > 1. For this reason the Poisson point process P will
play a central rôle in all of our analysis.

Proposition 1.1 can be extended to obtain a precise description of the Gibbs measures
as well. To formulate this result, it will be convenient to compactify the space SN by
mapping it to the interval [−1, 1] via

SN � σ → rN(σ ) ≡
N∑

i=1

σi2
−i ∈ [−1, 1]. (1.9)

Define the pure point measure µ̃β,N on [−1, 1] by

µ̃β,N ≡
∑

σ∈SN

δrN (σ)µβ,N (σ ). (1.10)

Let us introduce the Poisson point process R on the strip [−1, 1] × R with intensity
measure 1

2dy × e−xdx. If (Yk, Xk) denote the atoms of this process, define a new point
process Wα on [−1, 1] × (0, 1] whose atoms are (Yk, wk), where

wk ≡ eαXk

∫
R(dy, dx)eαx

. (1.11)

With this notation we have that

Proposition 1.2 ([Bo]). If β >
√

2 ln 2, with α = β/
√

2 ln 2,

µ̃β,N
D→ µ̃β ≡

∫ 1

0
Wα(·, dw)w. (1.12)

Proof. Define the point process RN on [−1, 1] × R by

RN ≡
∑

σ∈SN

δ(rN (σ ),uN (Xσ )). (1.13)

A standard result of extreme value theory (see [LLR], Theorem 5.7.2) is easily adapted
to yield that

RN
D→ R, as N ↑ ∞, (1.14)

where the convergence is in the sense of weak convergence on the space of sigma-finite
measures endowed with the (metrizable) topology of vague convergence. Note that

µβ,N(σ ) = eαu−1
N (Xσ )

∑
σ eαu−1

N (Xσ )
= eαu−1

N (Xσ )

∫
RN(dy, dx)eαx

. (1.15)
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We can define the point process

WN ≡
∑

σ∈SN

δ(

rN (σ ),
exp(αu

−1
N

(Xσ ))
∫ RN (dy,dx) exp(αx)

) (1.16)

on [−1, 1] × (0, 1]. Then

µ̃β,N =
∫

WN(dy, dw)δyw. (1.17)

Of course we would like to show that this quantity converges to the same object with WN

replaced by W , as N ↑ ∞. The only non-trivial issue to be resolved is to see whether the
denominators

∫
RN(dy, dx) exp(αx) converge. But Theorem 1.1 asserts precisely that

this is the case whenever α > 1. Standard arguments then imply that first WN
D→ W ,

and consequently, (1.12). ��
Remark. Note that Theorem 1.2 contains in particular the convergence of the Gibbs mea-
sure in the product topology on SN , since cylinders correspond to certain subintervals
of [−1, 1].

Let us discuss the properties on the limiting process µ̃β . It is not hard to see that with
probability one, the support of µ̃β is the entire interval [−1, 1]. On the other hand, its
mass is concentrated on a countable set, i.e. the measure is pure point. This is quite easy
to see and the details of the argument can be found in [Bo].

1.3. Metastability and statement of the main results. The properties of the invariant dis-
tribution explained in the previous section clearly imply that at temperatures below the
critical one the dynamical process will spend most of its time on the extreme states. This
suggests that the long time behaviour of the dynamics can be read off from observations
of the process on visits to these states. More precisely, define the sets, for E ∈ R,

TN(E) ≡ {
σ ∈ SN

∣∣Eσ ≥ uN(E)
}
, (1.18)

where uN(E) is defined in (1.6). We will call the set TN(E) “the top”, and frequently
suppress indices, writing TN(E) = T (E) = T whenever no confusion is likely (the
single letter T will only be used within proofs and the change in the notation will always
be clearly signalled). Moreover, we will use the convention that M ≡ |TN(E)| denotes
the cardinality of the top, and d ≡ 2M . Let us introduce, for σ ∈ SN, I ⊂ SN , the
(slightly abusive) notation

τσ
I ≡ inf{n > 0|σ(n) ∈ I, σ (0) = σ } (1.19)

for the first positive time the process starting in σ reaches the set I , i.e. here and in the
following we will write

P[τσ
I = k] ≡ P[τσ

I = k|σ(0) = σ ]. (1.20)

Let us recall that in [BEGK1, BEGK2] a very similar program was carried out in a
situation that we consider generic for systems having “metastable states”. A key charac-
terization of the effective dynamics on such a set M involves the quantities P[τx

I < τx
x ]

(that, in potential theoretic language, are closely related to Newtonian capacities). There,
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as here, we identified certain subsets M of the state space, 
. They are called metastable
sets, if they satisfy the properties that

supx∈
 P[τx
M < τx

x ]

infz∈M P[τ z
M\z < τz

z ]
� 1. (1.21)

Equation (1.21) implies a separation of the time-scales of the motion towards the set M
(“fast scale”) and the motion within the set M (“slow scale”). Under some additional
“non-degeneracy” hypothesis, namely that

(i) for all pairsx, y ∈ M, and any set I ⊂ M\{x, y} either P[τx
I < τx

x ] � µ(y)P[τy
I <

τ
y
y ] or P[τx

I < τx
x ] � µ(y)P[τy

I < τ
y
y ], and

(ii) there exists m1 ∈ M, s.t. for all x ∈ M\m1, µ(x) � µ(m1),

it was shown in [BEGK2] that the motion on the set M can be described as a sequence
of exits with asymptotically exponentially distributed times (on distinct scales) towards
the more stable states, i.e. the equilibrium. It was also shown that the inverse mean exit
times from any point x ∈ M are asymptotically equal to the small eigenvalues of the
generator of the Markov chain.

In the random energy model we will find ourselves in a situation where all of these
hypotheses are not satisfied. When checking condition (1.21) with M ≡ T (E) we will
see that this is not satisfied, and that, rather,

supσ∈SN
P[τσ

T (E) < τσ
σ ]

infσ∈M P[τσ
T (E)\σ < τσ

σ ]
→ 1, as E ↓ −∞. (1.22)

Moreover, all the quantities P[τσ
T (E)\σ < τσ

σ ] for x ∈ T (E) will turn out to be com-
parable. Thus the situation is completely different than in [BEGK2], and we have to
expect a much more complicated behaviour of the process on T (E). Moreover, there is
no natural criterion for the choice of a particular value of E, and we will, in fact, see
later (in [BBG]) that it is somehow natural to consider limits as E ↓ −∞. In any case
our purpose is the description of the process observed on T (E).

Our first result concerns just the “motion” of the process disregarding time. To that
effect we consider the random times

θ0 ≡ min{n > 0|σ(n) ∈ T (E)},
(1.23)

θ� ≡ min{n > θ�−1|σ(n) ∈ T (E)\σ(θ�−1)}.
Let ξ1, . . . , ξ |T (E)| be an enumeration of the elements of T (E). Now define (for fixed
N and E), the stochastic process Y� with state space {1, . . . , |T (E)|} and discrete time
� ∈ N by

Y
(N)
� = i ⇔ σ(θ�) = ξ i . (1.24)

It is easy to see that Y� is a Markov process. Moreover, the transition matrix elements
can be expressed as

p(i, j) ≡ P

[
τ

ξi

ξj < τ
ξi

T (E)\{ξ i∪ξj }
]
. (1.25)

Note that this Markov chain has a state space whose size |T (E)| is a random variable.
To formulate our first theorem it will be convenient to fix the size by conditioning. Thus
set PM(·) ≡ P(·| |T (E)| = M).
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Theorem 1.3. Let σ(n) denote the Markov chain with transition matrix defined in (1.3)
and whose initial distribution is the uniform distribution on SN

5. Let Y (N) be the Markov
process defined by (1.24). Let Y� denote the Markov chain on {1, . . . , M} with transition
matrix p∗

M given by

p∗
M(i, j) =

{
1

M−1 , if i �= j

0, if i = j
(1.26)

and initial distribution p∗
M(i) = 1/M . Then, for all M ∈ N,

Y (N) D→ Y, PM -a.s. (1.27)

Remark. Note that the statement of the theorem also implies the convergence in law
(w.r.t. P ) of the probability distribution of Y (N) to that of Y .

The next results concern mean times.

Theorem 1.4. Assume that α ≡ β/
√

2 ln 2 > 1. Then there exists a subset Ẽ ⊂ � with
P(Ẽ) = 1, such that for all ω ∈ Ẽ , for all N large enough, the following holds:

i) For all η ∈ T (E),

E

(
τ

η

T (E)\η
)
= 1

1 − 1
|T (E)|

[
eβ

√
NEη +Wβ,N,T (E)

]
(1 +O(1/N)). (1.28)

ii) For all σ /∈ T (E),

E

(
τσ
T (E)

)
≤ 1

1 − 1
|T (E)|

[
eβ

√
NEσ +Wβ,N,T (E)

]
(1 +O(1/N))

E(τσ
T (E)) ≥

1

1 − 1
|T (E)|

[
eβ

√
NEσ + 1 − eE(α − 1)

1 + 1/|T (E)| Wβ,N,T (E)

]
(1 +O(1/N)).

(1.29)

iii) For all η, η̄ ∈ T (E), η �= η̄,

∣∣∣E
(
τ

η
η̄ | τ

η
η̄ ≤ τ

η

T (E)\η
)
− E

(
τ

η

T (E)\η
)∣∣∣ ≤ 1

1 − 1
|T (E)|

Wβ,N,T (E)O(1/N), (1.30)

where

Wβ,N,T (E) ≡ e(α−1)E+β
√

NuN(0)

|T (E)|(α − 1)

(
1 + VN,EeE/2 α − 1√

2α − 1

)
(1.31)

and VN,E is a random variable of mean zero and variance one.

Theorem 1.4 is complemented by a somewhat converse result in the case α < 1:

5 In fact it is enough, for the result to hold, that the initial distribution gives zero mass to an ε-neigh-
borhood of T (E).
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Theorem 1.5. Assume that α < 1. Then, with probability one, for all N large enough,
for all σ ∈ SN ,

Eτσ
T (E) =

1

|T (E)| − 1
eN(β2/2+ln 2)(1 +O(1/N)) � sup

η∈SN

Eτ
η

SN\η. (1.32)

Remark. Since asN ↑ ∞, E|T (E)| → e−E , we see that for−E very large,Wβ,N,T (E) ∼
eα(E+uN (0)). Thus (ii) of Theorem 1.4 implies that if α > 1, for all σ �∈ T (E), the mean
time of arrival in the top is proportional to eα(E+uN (0)). On the other hand, there exists
η ∈ T (E) such that

√
NEη ∼ E+uN(0)+O(eE), so that the slowest times of exit from

a state, Eτ
η

SN\η = eβ
√

NEη , in T (E) are just of the same order. This can be expressed
by saying that on the average the process takes a time t to reach states that have an
exit time t . This is a first, and weak, manifestation of the aging phenomenon that we
will investigate in much greater detail in [BBG]. In contrast, if α < 1, Theorem 1.5
Eτσ

T (E) � supη∈SN
Eτ

η

SN\η, and thus the time spent in top states is irrelevant compared
to the time between successive visits of such states. Thus we see a clear distinction
between the high and the low temperature phase of the REM on the dynamical level.

Remark. Statement iii) of Theorem 1.4 expresses the fact that the mean times of passage
from a state η ∈ T (E) to another state η̄ ∈ T (E) are asymptotically independent of
the terminal state η̄. This confirms to some extent the heuristic picture of Bouchaud.
Indeed, if we added the hypothesis that the process observed on the top is Markovian,
then the two preceding theorems would immediately imply that the waiting times must
be exponentially distributed with rates independent of the terminal state and given by
(1.30). We will see in [BBG] that this, however, cannot be justified.

The remainder of this paper is devoted to proving Theorems 1.3, 1.4, and 1.5. Section
2 will in fact prove a number of results that will not only imply Theorem 1.3, but will also
furnish basic input to both Sect. 3 and the follow-up paper [BBG]. Section 3 contains
the proof of Theorems 1.4 and 1.5.

2. Probability Estimates

In this section we provide estimates that will immediately allow to prove Theorem 1.3.
In fact we will prove much more, anticipating what will be needed in Sect. 3 as well
as in the follow-up paper [BBG]. These results are collected in the following proposi-
tion.

Proposition 2.1. Set M = |T (E)|, d = 2M and δ(N) ≡ (
d
N

)1/2
log N . There exists a

subset E ⊂ � with P(E) = 1, such that for all ω ∈ E , for all N large enough, the
following holds:

For ε > 0 a constant, define the sets

B√
εN (σ ) =

{
σ ′ ∈ SN | ‖σ ′ − σ‖2 ≤

√
εN

}
, σ ∈ SN (2.1)

and

Wε(I) ≡
⋂

σ∈I

Bc√
εN

(σ ), I ⊆ SN. (2.2)
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Then,

i) For all ε > 0 there exists a constant c > 0 such that, for all η ∈ T (E) and all
σ ∈ Wε(T (E)),

∣∣∣P
(
τσ
η < τσ

T (E)\η
)
− 1

M

∣∣∣ ≤ d
NM

(1 + cδ(N)). (2.3)

ii) There exists a constant c > 0 such that, for all η ∈ T (E) and η̄ ∈ T (E) with η �= η̄,

∣∣∣eβ
√

NEη̄P

(
τ η̄
η < τ

η̄

T (E)\η
)
− 1

M

∣∣∣ ≤ d
NM

(1 + cδ(N)). (2.4)

iii) There exists a constant c > 0 such that, for all η ∈ T (E) and η̄ ∈ T (E) with η �= η̄,

∣∣∣P
(
τ η̄
η < τ

η̄

T (E)\{η,η̄}
)
− 1

M−1

∣∣∣ ≤ d
N(M−1)

(1 + cδ(N)). (2.5)

iv) There exists a constant c > 0 such that, for all η ∈ T (E),

∣∣∣eβ
√

NEηP

(
τ

η

T (E)\η < τη
η

)
− (

1 − 1
M

)∣∣∣ ≤ (
1 − 1

M

)
d
N

(1 + cδ(N)). (2.6)

v) There exists a constant c > 0 such that, for all σ /∈ T (E),

(
1 − 1

M

) (
1 − d

N
(1 + cδ(N))

) ≤ eβ
√

NEσ P

(
τσ
T (E) < τσ

σ

)
≤ 1. (2.7)

vi) For all ε > 0 there exists a constant c > 0 such that, for all σ /∈ T (E) and all
σ̄ ∈ Wε(T (E) ∪ σ),

1
M+1 + d

NM
(1 − cδ(N)) ≤ P

(
τ σ̄
σ ≤ τ σ̄

T (E)

)
≤ 1

M
+ d

NM
(1 + cδ(N)). (2.8)

Proof of Theorem 1.3. Assuming the proposition, Theorem 1.3 follows immediately
from iii) and i), together with the fact that the mass of the set SN\Wε(T ) under the
uniform measure on SN tends to zero as N tends to infinity. ��

Let us briefly highlight the structure of the proof of Proposition 2.1. In Subsect. 2.1

we will show that, for I ⊂ SN , the probabilities P

(
τσ
η < τσ

I

)
can be expressed in terms

of a lumped chain through a lumping procedure that allows to reduce the high dimen-
sional state space SN to a much smaller one. In Subsect. 2.2 we analyse the lumped
chain and establish the probability estimates which will serve as basic input to the proof
of Proposition 2.1. The proof of the proposition is then carried out in Subsect. 2.3.
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2.1. Lumped chains: Definition and properties.

Lumping procedure. We begin with some preparatory notation and definitions. For M

an integer, let SM×N be the set of all M × N matrices whose elements belong to
S = {−1, 1}. A matrix ξ ∈ SM×N will be written either in terms of its matrix elements,
row vectors or column vectors according to the following notation. In terms of its matrix
elements we will write ξ = (ξ

µ
i )

µ=1,...,M
i=1,...,N , where ξ

µ
i ∈ S is the element lying at the

intersection of the µth row and ith column. The row and column vectors of ξ will be
denoted respectively by ξµ and ξi , and written, in terms of their elements, as:

ξµ = (ξ
µ
i )i=1,...,N ∈ SN, µ ∈ {1, . . . , M},

(2.9)
ξi = (ξ

µ
i )µ=1,...,M ∈ SM, i ∈ {1, . . . , N}.

Observe that, when carrying an index placed as a superscript, the letter ξ refers to an
element of the cube SN while, when carrying an index placed as a subscript, it refers to
an element of the cube SM .

As is usual, ξ may then be written as the N -tuple formed by its column vectors,

ξ = (ξ1, . . . , ξi , . . . , ξN) (2.10)

or, denoting by t ξ the transpose matrix, as the M-tuple formed by its row vectors,

t ξ = (ξ1, . . . , ξµ, . . . , ξM). (2.11)

Given a subset I ⊂ SN we define a partition of the index set � ≡ {1, . . . , i, . . . , N}
in the following way. Let ξ = (ξ1, . . . , ξi , . . . , ξN) ∈ S|I |×N be any matrix having the
property that

I =
{
ξ1, . . . , ξµ, . . . , ξ |I |

}
(2.12)

in other words, any matrix having the set I for a set of row vectors. Next, let {e1, . . . , ek,

. . . , ed} be an arbitrarily chosen labeling of all d = 2|I | elements of S|I | (this labeling
will be kept fixed throughout, whatever the choice of I is). Then ξ induces a partition
of � into d disjoint (possibly empty) subsets, �k(I), obtained by grouping together all
indices i having the property that ξi = ek:

� =
d⋃

k=1

�k(I), �k(I ) = {i ∈ � | ξi = ek}. (2.13)

We will write

PI (�) = {�k(I), 1 ≤ k ≤ d} . (2.14)

Remark. Observe that with the notation introduced above, we do not keep track of the
particular choice of the matrix ξ we made. The reason is that since any two matrices
satisfying (2.12) are obtained from each other by a permutation of their rows, the par-
titions they induce only differ through the labeling of the sets (2.13). As this labeling
will be irrelevant for our purposes we will as a rule forget the underlying matrix. It is
understood that in all statements involving PI (�), a choice has been fixed.
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Finally, this partition is used to define a many-to-one function, γI , that maps the
elements of SN into d-dimensional vectors,

γI (σ ) =
(
γ 1
I (σ ), . . . , γ k

I (σ ), . . . , γ d
I (σ )

)
, σ ∈ SN, (2.15)

where, for all k ∈ {1, . . . , d},

γ k
I (σ ) = 1

|�k(I)|
∑

i∈�k(I)

σi . (2.16)

A few elementary properties of γI are listed in the lemma below.

Lemma 2.2.
i) The range of γI , 
N,d(I ) ≡ γI (SN), is a discrete subset of the d-dimensional cube

[−1, 1]d and may be described as follows. Let {uk}dk=1 be the canonical basis of R
d .

Then,

x ∈ 
N,d(I ) ⇐⇒ x =
d∑

k=1

nk

|�k(I)|uk, (2.17)

where, for all 1 ≤ k ≤ d , |nk| ≤ |�k(I)| has the same parity as |�k(I)|.
ii)

|{σ ∈ SN | γI (σ ) = x}| =
d∏

k=1

( |�k(I)|
|�k(I)| 1+xk

2

)
, ∀x ∈ 
N,d(I ). (2.18)

In particular, the restriction of γI to I is a one-to-one mapping from I onto γI (I ).
iii) The elements of I are mapped onto corners of [−1, 1]d : for all σ ∈ I ,

γI (σ ) = (σi1 , . . . , σik . . . , σid ), for any choice of indices ik ∈ �k(I).

(2.19)

iv) Let σ ∈ SN be such that infη∈I\σ ‖σ − η‖2 ≥
√

εN for some ε > 0. Set x ≡ γI (σ )

and I ≡ γI (I ). Then

inf
y∈I\x

‖x − y‖2 ≥ εN

2
√

d maxk |�k(I)| . (2.20)

Proof of Lemma 2.2. Assertions i), ii), and iii) result from elementary observations. To
prove assertion iv) note that for any η ∈ I \ σ , setting y ≡ γI (η) and using 2.19, we
have:

εN ≤
N∑

i=1

(σi − ηi)
2 =

d∑

k=1

∑

i∈�k

(σi − yk)
2 = 2

d∑

k=1

|�k(I)|(1 − ykxk)

≤ 2 max
k

|�k(I)|(y, y − x), (2.21)

where we used in the last line that 1− ykxk = yk(yk − xk). But (y, y − x) ≤ ‖y‖2‖y −
x‖2 =

√
d‖y − x‖2, so that

‖x − y‖2 ≥ εN

2
√

d maxk |�k(I)| (2.22)

which, together with assertion ii) yields (2.20). ��
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The I -lumped chain. In the sequel we will denote by
{
σ ◦

N(t)
}
t∈N

the ordinary random
walk (ORW) associated to {σN(t)}t∈N, that is, the walk evolving on the edges of GN

according to the transition probabilities

p◦
N(σ, σ ′) =

{
1
N

, if ‖σ − σ ′‖2 =
√

2
0, otherwise

. (2.23)

All objects referring to the ORW will be distinguished from those referring to the chain
{σN(t)} by the superscript ◦. Note in particular that

{
σ ◦

N(t)
}

is reversible w.r.t. the mea-
sure

µ◦
N(σ) = 2−N, σ ∈ SN. (2.24)

We will denote by
{
XI,N(t)

}
t∈N

and call the I -lumped chain or the lumped chain
induced by I , the chain defined through

XI,N(t) ≡ γI (σ
◦
N(t)), ∀t ∈ N. (2.25)

To
N,d(I )we associate an undirected graph,G(
N,d(I )) = (V (
N,d(I )), E(
N,d(I ))),
with set of vertices V (
N,d(I )) = 
N,d(I ) and the set of edges:

E(
N,d(I )) =
{
(x, x′) ∈ 
N,d(I ) | ∃k∈{1,...,d}, ∃s∈{−1,1} : x′ − x = s 2

|�k(I)|uk

}
.

(2.26)

The properties of
{
XI,N(t)

}
are summarized in the lemma below.

Lemma 2.3. Given any subset I ∈ SN :

i) The process
{
XI,N(t)

}
is Markovian no matter how the initial distribution π◦ of

{σ ◦
N(t)} is chosen.

ii) Set Q
◦
N = µ◦

N ◦ γ−1
I . Then Q

◦
N is the unique reversible invariant measure for the

chain
{
XI,N(t)

}
. In explicit form, the density of Q

◦
N reads:

Q
◦
N(x) = 1

2N
|{σ ∈ SN | γI (σ ) = x}|, ∀x ∈ 
N,d(I ). (2.27)

iii) The transition function r◦N( . , . ) of
{
XI,N(t)

}
does not depend on the choice of π◦

and is given by:

r◦N(x, x′) =
{ |�k(I)|

N
1−sxk

2 if (x, x′) ∈ E(
N,d(I ))) and x′ − x = s 2
|�k(I)|uk

0, otherwise
.

(2.28)

Proof. The proof of this lemma is a direct application of the results of Burke and
Rosenblatt [BR] on Markovian functions of Markov Chains. ��
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Comparison lemmata. In order to make use of the above set-up we first need to establish
how the Markov chain σ(t) relates to the ORW. This is done in the next lemma.

Lemma 2.4. Let I ⊂ SN . Then,

i) for all σ /∈ I and η /∈ I ∪ σ

P

(
τσ
η < τσ

I

)
= P

◦
(
τσ
η < τσ

I

)
, (2.29)

ii) for all σ ∈ I and η /∈ I

P

(
τσ
η < τσ

I

)
= e−β

√
NEσ P

◦
(
τσ
η < τσ

I

)
. (2.30)

It finally remains to establish how the quantities P
◦
(
τσ
η < τσ

I

)
can be expressed in

terms of a lumped chain.

Lemma 2.5. Let I, J, K ⊂ SN be such that I ∩ J = ∅ and I ∪ J ⊆ K . Then, denoting
by R

◦ the law of the K-lumped chain,

P
◦ (τσ

I ≤ τσ
J

) = R
◦
(
τ

γK(σ)

γK(I) ≤ τ
γK(σ)

γK(J )

)
, for all σ /∈ I. (2.31)

Remark. Note that K in the above lemma does not necessarily contain σ if σ /∈ J .

We skip the proofs of Lemma 2.4 and 2.5 as they are nothing but elementary exercises.

2.2. Main ingredients of the proof of Proposition 2.1. Observe that the entropy pro-
duced by the lumping procedure gives rise through (2.27) to a potential, FN(x) ≡
− 1

N
ln Q

◦
N(x). It moreover follows from assertions ii) and iii) of Lemma 2.2 that this

potential is convex and takes on its global maximum at the corners of the cube [−1, 1]d .
This allows us to draw on the results of [BEGK1] where such processes were investi-
gated.

Throughout this section I denotes an arbitrary (non empty) subset of SN whose size,
|I |, does not depend on N . Given 0 < ε < 1 let K(I ) and K(I )c be the sets defined
through:

K(I ) ≡ Kε(I ) ≡ {
k ∈ {1, . . . , d} | |�k(I)| ≥ ε N

d

}
,

K(I )c ≡ Kε(I )c ≡ {1, . . . , d} \Kε(I ). (2.32)

Setκ = |K(I )|. Of courseκ ≥ 1 since supposingκ = 0, (2.32) implies that
∑d

k=1 |�k(I)|
< εN < N , contradicting (2.13). Let π : R

d → R
κ be the projection that maps

x = (x1, . . . , xd) into πx = (xi1 , . . . , xiκ ) where, for all 1 ≤ j ≤ κ , ij ∈ K(I ). Finally,
set

N∗ = min
k∈K(I )

|�k|. (2.33)

With this notation we have:
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Lemma 2.6. There exists a constant c > 0 such that, for all N large enough,

R
◦ (τx

0 < τx
x

) ≥
(

1 − 1

N

∑

µ∈K(I )c

|�µ|
)(

1 − 1

N∗
− c

N2∗

)
, for all x ∈ γI (I ).

(2.34)

Lemma 2.7. Let x ∈ γI (I ) and y ∈ γI (SN) be such that ‖πx − πy‖2 ≥ δ for some
constant 1

2 > δ > 0. Then there exist a constant h(δ, κ) > 0 such that, for all N large
enough,

R
◦ (τy

x < τ
y
0

) ≤ e−N∗h(δ,κ). (2.35)

As an important consequence of the previous two lemmata we may immediately state:

Lemma 2.8. Let x ∈ γI (I ) and J ⊆ γI (I ) be such that for all y, y′ ∈ J ∪ x, ‖πy′ −
πy‖2 ≥ δ for some δ > 0. Then, for all N large enough,

ϑ

|J | ≤ R
◦
(
τ 0
x ≤ τ 0

J

)
≤ 1

ϑ |J | , for all J ⊆ γI (I ), x ∈ γI (I ), (2.36)

where

ϑ =
(

1 − 1

N

∑

µ∈K(I )c

|�µ|
)(

1 − 1

N∗
− c

N2∗

)
. (2.37)

In particular, if K(I )c = ∅,

∣∣∣∣R
◦
(
τ 0
x ≤ τ 0

J

)
− 1

|J |
∣∣∣∣ ≤

1

|J |N∗

(
1 + c

N∗

)
(2.38)

for some constant c > 0.

Proof of Lemma 2.6. An L-steps path ω on 
N,d(I ), beginning at x and ending at y is
defined as a sequence of L sites ω = (ω0, ω1, . . . , ωL), with ω0 = x, ωL = y, and
ωl = (ωk

l )k=1,...,d ∈ V (
N,d(I )) for all 1 ≤ l ≤ L, that satisfies:

(ωl, ωl−1) ∈ E(
N,d(I )), for all l = 1, . . . , L. (2.39)

(We may also write |ω| = L to denote the length of ω.)
Recall from Lemma 2.2 that if x ∈ γI (I ), then a fortiori x ∈ {−1, 1}d . Without loss

of generality we may thus choose x in (2.34) as the point x = (xk)
d
k=1, xk = 1 for all

1 ≤ k ≤ d. There is no loss of generality either in taking K(I ) in (2.32) to be the set
K(I ) = {1, . . . , κ} and in assuming |�k(I)| to be even for all k ∈ K(I ). With this we
introduce κ one-dimensional paths in 
N,d(I ), each being of length L ≡ κN∗/2, and
connecting x to the endpoint y defined by

y = (yk)
d
k=1, yk =

{
1 − N∗

|�k | , if k ∈ K(I )

1, if k ∈ K(I )c
. (2.40)
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Definition 2.9. For each 1 ≤ µ ≤ κ , let ω(µ) = (ω0(µ), . . . , ωn(µ), . . . , ωL(µ)),
ωn(µ) = (ωk

n(µ))dk=1, be the path in 
N,d(I ) defined through

ωk
n(µ) =

{
ω

(k+µ−2) modκ+1
n , if k ∈ K(I )

1 if k ∈ K(I )c
, (2.41)

where ω = (ω0, . . . , ωn, . . . , ωL), ωn = (ωk
n)

d
k=1, is defined by

ω0 = x (2.42)

and, for 1 ≤ n ≤ L,

ωk
n =






1 − 2
|�k(I)|

[
n−1
κ

]− 2
|�k(I)| , if k ∈ K(I ) and k ≤ n− κ

[
n−1
κ

]

1 − 2
|�k(I)|

[
n−1
κ

]
, if k ∈ K(I ) and k > n− κ

[
n−1
κ

]

1 if k ∈ K(I )c

.

(2.43)

Here [x], x ∈ R, denotes the integer part of x. (The paths ω(µ) are in fact paths on the
subgraph {z ∈ 
N,d(I ) | zk = 1∀k ∈ K(I )c}.)

Let D be the subgraph of G(
N,d(I )) with a set of vertices V (D) = {x′ ∈ 
N,d(I ) |
‖x′‖2 ≤ ‖y‖2} and a set of edges E(D) = {(x′, x′′) ∈ E(
N,d(I )) | x′, x′′ ∈ V (D)}.
Denoting by �µ the subgraph of G(
N,d(I )) “generated” by the path ω(µ), i.e., with a
set of vertices V (�µ) = {x′ ∈ 
N,d(I ) | ∃0≤n≤L : x′ = ωn(µ)}, we set

� = D ∪
κ⋃

µ=1

�µ. (2.44)

Since both x and 0 belong to � it follows from Lemma (4.1) of the appendix that

R
◦ (τx

0 < τx
x

) ≥ R̃
◦
�

(
τx

0 < τx
x

)

= R̃
◦
�

(
τx
y < τx

x

)
R̃
◦
�

(
τ

y
0 < τ

y
x

)
, (2.45)

where the last equality is nothing but the Markov property. Again, the collection �µ,
1 ≤ µ ≤ κ , being easily seen to verify conditions (4.2) and (4.3) of Lemma 4.1 (w.r.t.

the event
{
τx
y < τx

x

}
), we have, applying the latter lemma twice in a row,

R̃
◦
�

(
τx
y < τx

x

)
≥ R̃

◦
∪κ

µ=1�µ

(
τx
y < τx

x

)
≥

κ∑

µ=1

R̃
◦
�µ

(
τ

ω0(µ)

ωL(µ) < τ
ω0(µ)

ω0(µ)

)
(2.46)

and combining (2.45) and (2.46), we have,

R
◦ (τx

0 < τx
x

) ≥ R̃
◦
�

(
τ

y
0 < τ

y
x

) κ∑

µ=1

R̃
◦
�µ

(
τ

ω0(µ)

ωL(µ) < τ
ω0(µ)

ω0(µ)

)
. (2.47)

The bound (2.45) is of course meaningless if it so happens that y = 0. In this special
case we only use (2.46) to write

R
◦ (τx

0 < τx
x

) ≥
κ∑

µ=1

R̃
◦
�µ

(
τ

ω0(µ)

ωL(µ) < τ
ω0(µ)

ω0(µ)

)
. (2.48)

Thus, in view of (2.47) and (2.48), Lemma 2.6 will be proven if we can establish that:
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Lemma 2.10. Under the assumptions of Lemma 2.6:

i) There exists a constant c > 0 such that, for large enough N , for each µ ∈ K(I ) and
with N∗ defined as in (2.33),

R̃
◦
�µ

(
τ

ω0(µ)

ωL(µ) < τ
ω0(µ)

ω0(µ)

)
≥ |�µ|

N

(
1 − 1

N∗
− c

N2∗

)
. (2.49)

ii) Assume that y �= 0. There exists a constant c > 0 such that, for all N large enough,

R̃
◦
�

(
τ

y
0 < τ

y
x

) ≥ 1 − cdN3/22−εN/d . (2.50)

Proof of Lemma 2.10 i). To simplify the presentation we will only treat the case µ = 1,
that is, with the notation of Definition 2.9, establish that

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) ≥ |�1|
N

(
1 − 1

N∗
− c

N2∗

)
. (2.51)

It is well known that (see e.g. [Sp] or [BEGK1], Lemma 2.5)

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) =
[

L∑

n=1

Q̃
◦
�µ

(ω0)

Q̃
◦
�µ

(ωn)

1

r̃◦�µ
(ωn, ωn−1)

]−1

(2.52)

which we may also write, using reversibility together with the definitions of r̃◦�µ
and

Q̃
◦
�µ

(see Appendix A),

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) =
[

L−1∑

n=0

QN(ω0)

QN(ωn)

1

rN(ωn, ωn+1)

]−1

=



N∗/2−1∑

m=0

κ∑

l=1

Am,l





−1

, (2.53)

where

Am,l ≡ QN(ω0)

QN(ωmκ+l−1)

1

rN(ωmκ+l−1, ωmκ+l )
. (2.54)

By (2.27) and (2.18),

A−1
m,l =

|�l | −m

N

κ∏

k=1

( |�k|
|�k| 1−ωk

mκ+l−1
2

)
, (2.55)

and by (2.43)

A−1
m,l =

|�l | −m

N

∏

k>l−1

(|�k|
m

) ∏

k≤l−1

( |�k|
m+ 1

)

= |�l | −m

N

κ∏

k′=1

(|�k′ |
m

) ∏

k≤l−1

|�k| −m

m+ 1
, (2.56)

where we use the convention that the second product above is one whenever the index
set k ≤ l − 1 is empty. From now on we distinguish two cases.



Aging in the REM. Part I 397

1) The case κ = 1. Here N∗ = |�1|. Inserting (2.56) in (2.53) yields

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) = |�1|
N




N∗/2−1∑

m=0

Cm





−1

, (2.57)

where

Cm ≡
(|�1|

m

)−1 |�1|
|�1| −m

=
(|�1| − 1

m

)−1

. (2.58)

Then, using the bound

(|�1|
m

)−1

≤ 6

(|�1| − 1)3 , 3 ≤ m ≤ N∗/2 − 1 (2.59)

easily yields

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) ≥ |�1|
N

(
1 − 1

N∗
− c

N2∗

)
(2.60)

for some constant c > 0.
2) The case κ > 1. Inserting (2.56) in (2.53) yields

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) =



N∗/2−1∑

m=0

[
κ∏

k′=1

(|�k′ |
m

)]−1

Bm





−1

, (2.61)

where

Bm ≡
κ∑

l=1

N

|�l | −m

∏

k≤l−1

m+ 1

|�k| −m

= N

|�1| −m

[

1 +
κ∑

l=2

l∏

l′=2

m+ 1

|�l′ | −m

]

≤ N

|�1| −m

[

1 +
κ∑

l=2

(
m+ 1

N∗ −m

)l−1
]

. (2.62)

Since (m+ 1)/(N∗ −m) < 1 for all 0 ≤ m ≤ N∗/2 − 1,

Bm ≤ N(N∗ −m)

(|�1| −m)(N∗ − 2m− 1)
. (2.63)

Inserting (2.63) in (2.61),

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) ≥ |�1|
N




N∗/2−1∑

m=0

Cm





−1

, (2.64)
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where

Cm =
[

κ∏

k′=1

(|�k′ |
m

)]−1
(N∗ −m)|�1|

(N∗ − 2m− 1)(|�1| −m)
. (2.65)

Finally, a few simple computations yield the bounds

C0 = 1 + 1
N∗−1 ,

C1 ≤ N−κ
∗ (1 + 5N−1

∗ ),

Cm ≤ 2κ−2N−2κ+1
∗ , 2 ≤ m ≤ N∗/2 − 1, (2.66)

from which we easily get

R̃
◦
�1

(
τω0
ωL

< τω0
ω0

) ≥ |�1|
N

(
1 − 1

N∗
− c

Nκ∗

)
(2.67)

for some constant c > 0. As (2.60) together with (2.67) give (2.51), the first assertion of
Lemma 2.10 is proven. ��
Proof of Lemma 2.10 ii). We first write

R̃
◦
�

(
τ

y
0 < τ

y
x

) = 1 − R̃
◦
�

(
τ

y
x < τ

y
0

)
(2.68)

and use the renewal identity (see e.g. Corollary 1.9 in [BEGK1]) to get

R̃
◦
�

(
τ

y
x < τ

y
0

) =
R̃
◦
�

(
τ

y
x < τ

y
y∪0

)

R̃
◦
�

(
τ

y
x∪0 < τ

y
y

) . (2.69)

By reversibility the numerator of (2.69) may be rewritten as

R̃
◦
�

(
τ

y
x < τ

y
y∪0

)
= Q̃

◦
�(x)

Q̃
◦
�(y)

R̃
◦
�

(
τx
y < τx

x∪0

)
. (2.70)

Thus, remembering that Q̃
◦
�(x′) = Q

◦
N(x′)/Q

◦
N(�) we have, by (2.27),

R̃
◦
�

(
τ

y
x < τ

y
y∪0

)
≤ Q

◦
N(x)

Q
◦
N(y)

= |{σ | γ (σ ) = x}|
|{σ | γ (σ ) = y}| =

1

|{σ | γ (σ ) = y}| (2.71)

which by (2.18), for y defined in (2.40), gives:

R̃
◦
�

(
τ

y
x < τ

y
y∪0

)
≤




∏

k∈K(I )

( |�k|
N∗/2

)



−1

≤
(

N∗
N∗/2

)−1

, (2.72)

where we used that there exists at least one index k ∈ K(I ) with the property that
|�k| = N∗. Since by (2.32) N ≥ N∗ ≥ ε N

d
, Stirling’s formula enables us to conclude

that, for large enough N ,

R̃
◦
�

(
τ

y
x < τ

y
y∪0

)
≤ c

√
N∗2−N∗ ≤ c

√
N2−εN/d (2.73)

for some constant c > 0.
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To bound the probability appearing in the denominator of (2.69) we again resort to the
path technique employed in the proof of assertion i). As we need only a rough estimate,
this probability will be estimated by means of a single path, ω̃. Setting

L = L0 + · · · + Ld,

Lk =






0, if k = 0
1
2 (|�k(I)| −N∗), if k ∈ K(I )
|�k(I)|

2 , if k ∈ K(I )c
, (2.74)

ω̃ = (ω̃0, . . . , ω̃L) is defined as follows

ω̃n =
{

y, if n = 0
ω̃n−1 − 2

|�k(I)|uk, if
∑k−1

l=0 Ll < n ≤ ∑k
l=0 Ll, 1 ≤ k ≤ d

. (2.75)

(Observe that ω̃L = 0.) Denoting by D̃ the subgraph of G(
N,d(I )) generated by the
path ω̃ (i.e., with a set of vertices V (D̃) = {x′ ∈ 
N,d(I ) | ∃0≤n≤L : x′ = ω̃n}), we
have

D̃ ⊂ D ⊂ � (2.76)

and thus, by Lemma 6.1, that

R̃
◦
�

(
τ

y
x∪0 < τ

y
y

) ≥ R̃
◦
�

(
τ

y
0 < τ

y
y

) ≥ R̃
◦
D̃

(
τ

y
0 < τ

y
y

)
. (2.77)

To bound the last probability in (2.77) note that, just as in (2.53),

R̃
◦
D̃

(
τ

ω̃0
ω̃L

< τ
ω̃0
ω̃0

)
=

[
L−1∑

n=0

QN(ω̃0)

QN(ω̃n)

1

rN(ω̃n, ω̃n+1)

]−1

. (2.78)

At this stage, simply observe that on the one hand, QN(ω̃n) increases as n increases from
0 to L, implying that QN(ω̃0)/QN(ω̃n) ≤ 1 for all 0 ≤ n ≤ L, while on the other hand,
for each 1 ≤ k ≤ d and all

∑k−1
l=0 Ll ≤ n <

∑k
l=0 Ll ,

rN(ω̃n, ω̃n+1) = |�k(I)|
2N

(1 + ω̃k
n) ≥

|�k(I)|
2N

. (2.79)

Therefore

R̃
◦
D̃

(
τ

ω̃0
ω̃L

< τ
ω̃0
ω̃0

)
≥




d∑

k=1

Lk−1∑

m=0

|�k(I)|
2N





−1

=
[

d∑

k=1

Lk

|�k(I)|
2N

]−1

≥ 1

Nd
, (2.80)

where the last inequality follows from (2.74). Putting (2.80) back in (2.77) finally gives

R̃
◦
�

(
τ

y
x∪0 < τ

y
y

) ≥ (Nd)−1. (2.81)

Inserting (2.81) and (2.73) in (2.69) and plugging the resulting bound in (2.68) yields
(2.50). The second assertion of Lemma 2.10 being proven, this concludes the proof of
Lemma 2.10. ��
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Inserting the bounds of Lemma 2.10 in 2.47 we obtain

R
◦ (τx

0 < τx
x

) ≥
(

1 − 1

N

∑

µ∈K(I )c

|�µ|
)(

1 − 1

N∗
− c

N2∗

)(
1 − c′N2−εN/d

)

≥
(

1 − 1

N

∑

µ∈K(I )c

|�µ|
)(

1 − 1

N∗
− c′′

N2∗

)
, (2.82)

where the last inequality holds true for some constant c′′ > 0, provided that N is large
enough. The first assertion of 2.6 is proven. ��
Proof of Lemma 2.7. For ρ ≥ 0 and x ∈ γI (I ) set



x,ρ
N,d(I ) = {

y′ ∈ 
N,d(I ) | ‖πx − πy′‖2 > ρ
}
. (2.83)

By hypothesis,

y ∈ 

x,δ
N,d(I ). (2.84)

Observe moreover that either y satisfies

i) ∀z ∈ {−1, 1}d ∩ 

x,δ/2
N,d (I ), ‖πz − πy‖2 > δ/2

or else
ii) ∃z ∈ {−1, 1}d ∩ 


x,δ
N,d(I ) such that ‖πz − πy‖2 ≤ δ/2.

We will first show that in case i), (2.35) is a direct consequence of reversibility.
Indeed, as in (2.69),

R
◦ (τy

x < τ
y
0

) =
R
◦
(
τ

y
x < τ

y
y∪0

)

R◦ (τy
x∪0 < τ

y
y

) . (2.85)

A straightforward adaptation of the proof of the bound (2.81) to the case at hand
shows that the denominator of (2.85) obeys the bound

R
◦ (τy

x∪0 < τ
y
y

) ≥ 1/N (2.86)

while by reversibility its numerator may be rewritten as

R
◦
(
τ

y
x < τ

y
y∪0

)
= Q

◦(x)

Q◦(y)
R
◦
(
τx
y < τx

x∪0

)
. (2.87)

Thus, by (2.27),

R
◦
(
τ

y
x < τ

y
y∪0

)
≤ Q

◦
N(x)

Q
◦
N(y)

= |{σ | γ (σ ) = x}|
|{σ | γ (σ ) = y}| =

1

|{σ | γ (σ ) = y}| , (2.88)

where the last equality follows from the fact that x ∈ γI (I ) (see Lemma 2.2). To estimate
the last ratio note that condition i) combined with (2.84) implies that

inf
z′∈{−1,1}κ

‖z′ − πy‖2 > δ/2 (2.89)
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which in turn implies that there exists k′ ∈ K(I ) such that infs=±1 |s−yk′ | > δ/2
√

κ , or
in other words, such that |yk′ | < 1 − δ/2

√
κ . Thus, making use of (2.18) and Stirling’s

formula,

|{σ | γ (σ ) = y}|−1 ≤
( |�k′(I )|
|�k′(I )| 1+yk′

2

)−1

≤ c exp {−|�k′(I )|I(yk′)}
≤ c exp

{

−N∗ inf
|u|<1−δ/2

√
κ
I(u)

}

, (2.90)

for some constant c > 0, with N∗ defined as in (2.33), and where

−I(u) =
(

1 − u

2

)
ln

(
1 − u

2

)
+

(
1 + u

2

)
ln

(
1 + u

2

)
, |u| ≤ 1. (2.91)

Collecting all our bounds we arrive at

R
◦ (τy

x < τ
y
0

) ≤ cN exp

{

−N∗ inf
|u|<1−δ/2

√
κ
I(u)

}

. (2.92)

As δ > 0, inf |u|<1−δ/2
√

κ I(u) > 0. Choosing h(δ, κ) = inf |u|<1−δ/2
√

κ I(u)/2, it then
follows from (2.92) that, for all N large enough,

R
◦ (τy

x < τ
y
0

) ≤ exp {−N∗h(δ, κ)} . (2.93)

Thus, under the assumption made in i), (2.35) is proven. Let us turn to the case ii).
Observe that for δ < 1/2 there exists a unique point z ∈ {−1, 1}κ such that ‖πz−πy‖2
≤ δ/2. Calling z∗ this point and introducing the discrete hyper-surface Hδ/2(z

∗) =
{z′ ∈ 
N,d(I ) | ‖z∗ − πz′‖2 = δ/2}, we have

R
◦ (τy

x < τ
y
0

) =
∑

z′∈Hδ/2(z∗)
R
◦
(
τ

y

z′ < τ
y

Hδ/2(z∗)

)
R
◦
(
τ z′
x < τz′

0

)
. (2.94)

Now all points z′ ∈ Hδ/2(z
∗) have the following properties: firstly, as is obvious from

the definition of Hδ/2(z
∗), ‖πz−πz′‖2 > δ/4 for all z ∈ {−1, 1}d ∩


x,δ
N,d(I ), implying

that assumption i) is satisfied with δ replaced by δ/2; secondly, since z∗ ∈ 

x,δ
N,d(I ) by

assumption, then

δ ≤ ‖πx − πz∗‖2 ≤ ‖πx − πz′‖2 + ‖πz′ − πz∗‖2 ≤ ‖πx − πz′‖2 + δ/2 (2.95)

implying that ‖πx − πz′‖2 ≥ δ/2, i.e., that z′ ∈ 

x,δ/2
N,d (I ).

As a result, for each z′ ∈ Hδ/2(z
∗), the probability R

◦
(
τ z′
x < τz′

0

)
obeys the bound

(2.92) with δ replaced by δ/2. It therefore follows from (2.94) that

R
◦ (τy

x < τ
y
0

) ≤ exp {−N∗h(δ/2, κ)}
∑

z′∈∂Bδ/2(z∗)
R
◦
(
τ

y

z′ < τ
y

∂Bδ/2(z∗)

)

≤ exp {−N∗h(δ/2, κ)} . (2.96)

This concludes the proof of Lemma 2.7. ��
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Proof of Lemma 2.8. Again using renewal as in (2.69),

R
◦
(
τ 0
x ≤ τ 0

J

)
= R

◦ (τ 0
x ≤ τ 0

J∪0

)

R◦ (τ 0
J < τ 0

0

) = R
◦ (τ 0

x ≤ τ 0
J∪0

)

∑
y∈J R◦

(
τ 0
y ≤ τ 0

J∪0

) , (2.97)

so that we are left to bound a term of the form R
◦
(
τ 0
y ≤ τ 0

J∪0

)
, y ∈ J . To do so observe

that

R
◦
(
τ 0
y ≤ τ 0

J∪0

)
= R

◦
(
τ 0
y < τ 0

0

)
− R

◦
(
τ 0
J\y < τ 0

y < τ 0
0

)
(2.98)

and that

R
◦
(
τ 0
J\y < τ 0

y < τ 0
0

)
=

∑

z∈J\y
R
◦
(
τ 0
z ≤ τ 0

J∪0

)
R
◦
(
τ z
y < τz

0

)
. (2.99)

By assumption, the probabilities R
◦
(
τ z
y < τz

0

)
in the r.h.s. above obey the bound (2.35)

of Lemma 2.7. Thus

R
◦
(
τ 0
J\y < τ 0

y < τ 0
0

)
≤ e−Nh(δ,κ)

∑

z∈J\y
R
◦
(
τ 0
z ≤ τ 0

J∪0

)

≤ e−Nh(δ,κ)
R
◦
(
τ 0
J < τ 0

0

)
. (2.100)

From (2.98) and (2.100) we deduce that

R
◦
(
τ 0
y < τ 0

0

)
− e−Nh(δ,κ)

R
◦
(
τ 0
J < τ 0

0

)
≤ R

◦
(
τ 0
y ≤ τ 0

J∪0

)
≤ R

◦
(
τ 0
y < τ 0

0

)

(2.101)

and, summing over y ∈ J ,

∑

y∈J

R
◦
(
τ 0
y ≤ τ 0

0

)
− |J |e−Nh(δ,κ)

R
◦
(
τ 0
J < τ 0

0

)
≤ R

◦
(
τ 0
J ≤ τ 0

0

)
≤

∑

y∈J

R
◦
(
τ 0
y < τ 0

0

)
.

(2.102)

Inserting the bounds (2.101) and (2.102) into (2.97), and using that

R
◦ (τ 0

J ≤ τ 0
0

)

∑
y∈J R◦

(
τ 0
y < τ 0

0

) ≤ 1 (2.103)

we arrive at:

R − e−Nh(δ,κ) ≤ R
◦
(
τ 0
x ≤ τ 0

J

)
≤ R

(
1

1 − |J |e−Nh(δ,κ)

)
, (2.104)

where

R ≡ R
◦ (τ 0

x ≤ τ 0
0

)

∑
y∈J R◦

(
τ 0
y ≤ τ 0

0

) . (2.105)
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To estimate the above ratio we use first that, by reversibility,

R = Q
◦
N(x)R◦ (τx

0 ≤ τx
x

)

∑
y∈J Q

◦
N(y)R◦ (τy

0 ≤ τ
y
y

) (2.106)

and next that, by Lemma 2.6,

ϑR ≤ R
◦
(
τ 0
x ≤ τ 0

J

)
≤ R

ϑ
, (2.107)

where ϑ is defined in (2.37) and

R ≡ Q
◦
N(x)

∑
y∈J Q

◦
N(y)

. (2.108)

Now since J ⊆ γI (I ), and since Q
◦
N(y) = 2−N for all y ∈ γI (I ),

R = 1

|J | . (2.109)

Collecting (2.104), (2.107), and (2.109) yields (2.38), concluding the proof of Lemma
2.8. ��

2.3. Proof of Proposition 2.1. While the estimates of Sect. 2.2 will furnish all the basic
ingredients to the proof of Proposition 2.1, they depend upon the choice of the mapping
γI through several quantities. To put them to use we still have to identify which map-
pings γI will be needed and establish the properties of all related objects. Taking a look
at Proposition 2.1 in the light of Lemma 2.5 tells us at once that we will be concerned
with two cases only: the case where the mapping γI is induced by the elements of the
top (as required for the proof of the first four assertions) or the top augmented by a
non-random element of SN (which is needed for the proof of the last one). These two
cases are analysed below.

Notation. In this section we will systematically write T for T (E).

Lumped chain induced by the Top. Let t ξ = (ξ1, ξ2, . . . , ξ |T |) be the matrix formed of
the elements of the top ordered according to the magnitude of Xσ :

T = {ξ1, ξ2, . . . , ξ |T |}, where Xξ1 ≥ Xξ2 ≥ · · · ≥ Xξ |T | . (2.110)

Thus ξ is here a random variable on the probability space (�, F, P ). One easily
verifies that the conditional distribution of ξ , given that the top contains exactly M points,
is the uniform distribution over the set S̃M×N of M-tuples of mutually distinct points of
SN , i.e.:

P (ξ = ζ | |T | = M) =
{

(2N−M)!
(2N)!

if ζ ∈ S̃M×N

0, otherwise
, (2.111)
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where

S̃M×N ≡
{
ζ ∈ SM×N

∣∣∣ ζµ �= ζ ν for all 1 ≤ µ, ν ≤ M, µ �= ν
}

. (2.112)

Set

δ(N) ≡ (d/N)1/2 ln N (2.113)

(where, as before, d = 2M ) and let SM×N be defined through

SM×N ≡
{
ζ ∈ SM×N

∣∣∣ |�k(ζ )| = N
d
(1 + λk(N)), |λk(N)| < δ(N), 1 ≤ k ≤ d

}
.

(2.114)

The set E appearing in the statement of Proposition 2.1 may be chosen as

E =
⋃

N0

⋂

N>N0

EN, (2.115)

where EN is given by

EN ≡ {
ω ∈ � | ξ(ω) ∈ S |T |×N

}
. (2.116)

It is easy to see, using the proof of Lemma 4.2 of [G], that:

Lemma 2.11.

P (E) = 1. (2.117)

We will need a certain number of geometric properties of the set T , which we collect
below.

Lemma 2.12. For all 0 ≤ ε < 1/2, all ω ∈ EN , and large enough N the following
holds: for all η �= η̄, η ∈ T , η̄ ∈ T ,

B√
εN (η) ∩ B√

εN (η̄) = ∅, (2.118)

and

1

N

N∑

i=1

ηi η̄i ≤ δ(N). (2.119)

Proof. With the notation of (2.110) let ξµ �= ξν be any two distinct elements of T . For
all σ ∈ B√

εN (ξµ) we have,

‖σ − ξν‖2 ≥ ‖ξν − ξµ‖2 − ‖σ − ξµ‖2

≥ ‖ξν − ξµ‖2 −
√

εN

=
√

2N

(

1 − 1

N

N∑

i=1

ξν
i ξ

µ
i

)1/2

−
√

εN. (2.120)
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Using (2.13) we may write

1

N

N∑

i=1

ξν
i ξ

µ
i = 1

N

d∑

k=1

|�k(ξ)|eν
ke

µ
k . (2.121)

Since ω ∈ EN by assumption, it follows from (2.114) that

1
N

N∑

i=1

ξν
i ξ

µ
i = 1

d

d∑

k=1

eν
ke

µ
k + 1

d

d∑

k=1

λk(N)eν
ke

µ
k

= 1
d

d∑

k=1

λk(N)eν
ke

µ
k

≤ δ(N), (2.122)

where the second equality follows from Lemma 2.1 of [G]. Thus (2.119) is proven.
Inserting (2.122) in (2.120) yields,

‖σ − ξν‖2 ≥
√

2N(1 − δ(N))−
√

εN, (2.123)

which would entail (2.118) if we had
√

2N(1 − δ(N))−
√

εN >
√

εN. (2.124)

Now our assumptions on ε imply that this is the case for all N large enough. The lemma
is therefore proven. ��

With our choice of EN it readily follows from (2.16) that, for ω ∈ EN , choosing e.g.
ε = 1/2 in definition (2.33),

K(T )c = ∅ (2.125)

and

N∗ = min
k∈K(T )

|�k(T )| ≥ N
d

(
1 − (

d
N

)1/2
ln N

)

max
k∈K(T )

|�k(T )| ≤ N
d

(
1 + (

d
N

)1/2
ln N

)
. (2.126)

Of course κ = d and the projection π defined in the line preceding (2.33) simply is the
identity. Knowing this we have:

Lemma 2.13. Assume that ω ∈ EN . Then, for all N large enough,

i) For all σ ∈ Wε(T ),

inf
x∈γT (T )

‖πx − πγT (σ )‖2 ≥ ε
√

d

2
(1 − δ(N)). (2.127)

ii) For all σ ∈ T ,

inf
x∈γT (T )\γT (σ )

‖πx − πγT (σ )‖2 ≥ (1 − 2δ(N))
√

d. (2.128)
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Proof. As a consequence of (2.126) and assertion iv) of Lemma 2.2 we have, for all
σ ∈ Wε(T ),

inf
x∈γT (T )

‖πx − πγT (σ )‖2 = inf
x∈γT (T )

‖x − γT (σ )‖2

≥ εN

2
√

d maxk |�k(T )|
≥ ε

√
d

2
(1 − δ(N))−1 (2.129)

which yields (2.127). Similarly note that if σ ∈ T then, by Lemma 2.12,

inf
η∈T \σ

‖η − σ‖2 ≥
√

2N(1 − δ(N)). (2.130)

Just as in (2.129) this property combined with (2.126) and Lemma 2.2, iv) implies that,
for all σ ∈ T ,

inf
x∈γT (T )\γT (σ )

‖πx − πγT (σ )‖2 ≥
√

d
1 − δ(N)

1 + δ(N)
, (2.131)

which proves (2.128). ��
We are now ready to prove the first five assertions of Proposition 2.1.

Notation. The following notation will be used throughout: T = γT (T ), y = γT (σ ),
x = γT (η) and x̄ = γT (η̄). It will moreover be assumed that ω ∈ EN .

Proof of Proposition 2.1, i). Using in turn assertion i) of Lemma 2.4 and Lemma 2.5,

P

(
τσ
η < τσ

T \η
)
= P

◦
(
τσ
η < τσ

T \η
)
= R

◦
(
τ

y
x < τ

y

T \x
)

. (2.132)

Defining

R1 ≡ R
◦
(
{τy

x < τ
y

T \x} ∩ {τy
0 < τ

y
x }

)
,

R2 ≡ R
◦
(
{τy

x < τ
y

T \x} ∩ {τy
x < τ

y
0 }

)
, (2.133)

R
◦
(
τ

y
x < τ

y

T \x
)

may be decomposed as

R
◦
(
τ

y
x < τ

y

T \x
)
= R1 + R2. (2.134)

Obviously

0 ≤ R2 ≤ R
◦ (τy

x < τ
y
0

)
, (2.135)

while

R1 = R
◦
(
τ

y
0 < τ

y
x < τ

y

T \x
)

= R
◦ (τy

0 < τ
y

T
)
R
◦
(
τ 0
x < τ 0

T \x
)

= [
1 − R

◦ (τy

T < τ
y
0

)]
R
◦
(
τ 0
x < τ 0

T \x
)

(2.136)
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which, together with the bound

R
◦ (τy

T < τ
y
0

) ≤
∑

x′∈T
R
◦ (τy

x′ < τ
y
0

)
(2.137)

yields

R
◦
(
τ 0
x < τ 0

T \x
) [

1 −M sup
x′∈T

R
◦ (τy

x′ < τ
y
0

)] ≤ R1 ≤ R
◦
(
τ 0
x < τ 0

T \x
)

. (2.138)

We are thus left to bound the quantities supx′∈T R
◦ (τy

x′ < τ
y
0

)
and R

◦
(
τ 0
x < τ 0

T \x
)

,

which will be done by means of, respectively, Lemma 2.7 and Lemma 2.8: on the one
hand, since by assumption σ ∈ Wε(T ), it follows from (2.127) that δ in Lemma 2.7 may

be chosen as δ = ε
√

d
4 , so that inserting the bound (2.126) in (2.35) yields

R
◦ (τy

x′ < τ
y
0

) ≤ e−Nh′(d), for all x′ ∈ T (2.139)

for some constant h′(d) > 0 and large enough N ; on the other hand, it follows from
(2.128) that δ in Lemma 2.8 may be chosen as δ = √

d so that, in view of (2.125),
combining the bounds (2.38) and (2.126), we obtain

∣∣∣∣R
◦
(
τ 0
x < τ 0

T \x
)
− 1

M

∣∣∣∣ ≤
d

NM

(
1 + c0

(
d
N

)1/2
ln N

)
(2.140)

for some constant c0 > 0.
Collecting the previous estimates we obtain that, for large enough N ,

∣∣∣∣R
◦
(
τ

y
x < τ

y

T \x
)
− 1

M

∣∣∣∣ ≤
d

NM

(
1 + c1

(
d
N

)1/2
ln N

)
(2.141)

for some constant c1 > 0. Inserting (2.141) in (2.132) yields the claim of assertion i).
��
Proof of Proposition 2.1, ii). The proof of this second assertion closely follows that of
assertion i). Keeping in mind the notation T = γT (T ), x = γT (η) and x̄ = γT (η̄) we
may write, using in turn assertion ii) of Lemma 2.4 and Lemma 2.5,

P

(
τ η̄
η < τ

η̄
T \η

)
= e−β

√
NEη̄P

◦
(
τ η̄
η < τ

η̄
T \η

)
= e−β

√
NEη̄R

◦
(
τ x̄
x < τ x̄

T \x
)

. (2.142)

We then decompose R
◦
(
τ x̄
x < τ x̄

T \x
)

as in (2.134), and bound R2 as in (2.135). As for

R1 we write, just as in (2.136),

R1 =
[
1 − R

◦
(
τ x̄
T < τ x̄

0

)]
R
◦
(
τ 0
x < τ 0

T \x
)

, (2.143)

but this time use (2.137) to deduce that

1 − R
◦
(
τ x̄
T < τ x̄

0

)
≥ 1 −

∑

x′∈T
R
◦
(
τ x̄
x′ < τ x̄

0

)

= R
◦
(
τ x̄

0 < τ x̄
x̄

)
−

∑

x′∈T \x̄
R
◦
(
τ x̄
x′ < τ x̄

0

)

≥ R
◦
(
τ x̄

0 < τ x̄
x̄

)
− (M − 1) sup

x′∈T \x̄
R
◦
(
τ x̄
x′ < τ x̄

0

)
.

(2.144)
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Therefore

R
◦
(
τ 0
x < τ 0

T \x
) [

R
◦
(
τ x̄

0 < τ x̄
x̄

)
− (M − 1) sup

x′∈T \x̄
R
◦
(
τ x̄
x′ < τ x̄

0

)]

≤ R1 ≤ R
◦
(
τ 0
x < τ 0

T \x
)

. (2.145)

Having already estimated the probability R
◦
(
τ 0
x < τ 0

T \x
)

in (2.140), we are left to treat

the terms R
◦ (τ x̄

0 < τ x̄
x̄

)
and supx′∈T \x̄ R

◦ (τ x̄
x′ < τ x̄

0

)
. The probabilities R

◦ (τ x̄
x′ < τ x̄

0

)

entering the latter term are easily dealt with by means of Lemma 2.7: note that for all
x′ ∈ T \ x and x̄ ∈ T , it follows from (2.128) that δ in Lemma 2.7 may be chosen as
δ = √

d, so that inserting the bound (2.126) in (2.35) yields

R
◦
(
τ x̄
x′ < τ x̄

0

)
≤ e−Nh′(d), for all x′ ∈ T \ x̄ (2.146)

for some constant h′(d) > 0 and large enough N . To bound R
◦ (τ x̄

0 < τ x̄
x̄

)
we simply

use that by Lemma 2.6, in view of (2.125) and (2.126), there exists a constant c2 > 0
such that

R
◦
(
τ x̄

0 < τ x̄
x̄

)
≥ 1 − d

NM

(
1 + c2

(
d
N

)1/2
ln N

)
. (2.147)

Gathering our bounds, we finally obtain
∣∣∣∣R

◦
(
τ x̄
x < τ x̄

T \x
)
− 1

M

∣∣∣∣ ≤
d

NM

(
1 + c3

(
d
N

)1/2
ln N

)
(2.148)

for some constant c3 > 0. Inserting (2.148) in (2.142) concludes the proof of assertion
ii). ��
Proof of Proposition 2.1, iii). Again, the proof of this third assertion is very similar to
that of assertion i). Using in turn assertion i) of Lemma 2.4 and Lemma 2.5,

P

(
τ η̄
η < τ

η̄
T \{η,η̄}

)
= P

◦
(
τ η̄
η < τ

η̄
T \{η,η̄}

)
= R

◦
(
τ x̄
x < τ x̄

T \{x,x̄}
)

. (2.149)

Defining

R1 ≡ R
◦
(
{τ x̄

x < τ x̄
T \{x,x̄}} ∩ {τ x̄

0 < τ x̄
x }

)

R2 ≡ R
◦
(
{τ x̄

x < τ x̄
T \{x,x̄}} ∩ {τ x̄

x < τ x̄
0 }

)
(2.150)

we have

R
◦
(
τ x̄
x < τ x̄

T \{x,x̄}
)
= R1 + R2. (2.151)

Next, just as in (2.135) we write

0 ≤ R2 ≤ R
◦
(
τ x̄
x < τ x̄

0

)
(2.152)
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while proceeding as in (2.136) and (2.137) to treat the term R1 yields, in analogy with
(2.138),

R
◦
(
τ 0
x < τ 0

T \{x,x̄}
)[

1 − (M − 1) sup
x′∈T \x̄

R
◦
(
τ x̄
x′ < τ x̄

0

)]

≤ R1 ≤ R
◦
(
τ 0
x < τ 0

T \{x,x̄}
)

.

(2.153)

Since the probabilities R
◦ (τ x̄

x′ < τ x̄
0

)
, x′ ∈ T \ x̄, appearing in (2.152) and (2.153) have

already been bounded in (2.146), we are left to estimate R
◦
(
τ 0
x < τ 0

T \{x,x̄}
)

. To do this

we proceed exactly as in the proof of (2.140) (the only difference being that the set J in
Lemma 2.8 is here given by J = T \ {x, x̄} so that |J | = M − 1) and obtain

∣∣∣∣R
◦
(
τ 0
x < τ 0

T \{x,x̄}
)
− 1

M − 1

∣∣∣∣ ≤
d

N(M − 1)

(
1 + c0

(
d
N

)1/2
ln N

)
(2.154)

for some constant c0 > 0. Collecting our bounds yields the claim of assertion iii). ��

Proof of Proposition 2.1, iv). This assertion is nothing but a direct consequence of as-
sertion ii) since

P

(
τ

η
T \η < τη

η

)
=

∑

η̄∈T \η
P

(
τ

η
η̄ < τ

η
T \η̄

)
. (2.155)

Thus (2.6) is proven. For later use (see the proof of assertion v)) let us however give a
full derivation of the lower bound in (2.6): again, with the same notation as in the proofs
of the first two assertions, using in turn assertion ii) of Lemma 2.4 and Lemma 2.5, it
follows from (2.155) that

P

(
τ

η
T \η < τη

η

)
= e−β

√
NEηP

◦
(
τ

η
T \η < τη

η

)
= e−β

√
NEηR

◦
(
τx
T \x < τx

x

)
. (2.156)

Defining

R1 ≡ R
◦
(
{τx

T \x < τx
x } ∩ {τx

0 < τx
T \x}

)
,

R2 ≡ R
◦
(
{τx

T \x < τx
x } ∩ {τx

T \x < τx
0 }

)
, (2.157)

we have

1 ≥ R
◦
(
τx
T \x < τx

x

)
= R1 + R2 ≥ R1, (2.158)

and since

R1 = R
◦
(
τx

0 < τx
T \x < τx

x

)

= R
◦ (τx

0 < τx
T
)
R
◦
(
τ 0
T \x < τ 0

x

)

= [
1 − R

◦ (τx
T < τx

0

)] [
1 − R

◦
(
τ 0
x < τ 0

T \x
)]

(2.159)



410 G. Ben Arous, A. Bovier, V. Gayrard

we obtain, proceeding as in (2.144) to bound 1 − R
◦ (τx

T < τx
0

)
,

R1 ≥
[

R
◦ (τx

0 < τx
x

)− (M − 1) sup
x′∈T \x

R
◦ (τx

x′ < τx
0

)
] [

1 − R
◦
(
τ 0
x < τ 0

T \x
)]

.

(2.160)

Now all the probabilities entering the above expression have already been estimat-
ed (see respectively (2.147), (2.146) and (2.140) for the estimates on R

◦ (τx
0 < τx

x

)
,

R
◦ (τx

x′ < τx
0

)
, x′ ∈ T \ x, and R

◦
(
τ 0
x < τ 0

T \x
)

). Plugging these estimates in (2.160)

we obtain

R
◦
(
τx
T \x < τx

x

)
≥ (

1 − 1
M

) (
1 − d

N

(
1 + c4

(
d
N

)1/2
ln N

))
(2.161)

for some constant c4 > 0. Inserting (2.161) in (2.156) proves the lower bound of (2.6).
��

As is by now routine, the proof of assertion v) of Proposition 2.1 begins as in (2.156):
we first invoke Lemma 2.4 to write

P
(
τσ
T < τσ

σ

) = e−β
√

NEσ P
◦ (τσ

T < τσ
σ

)
(2.162)

and next use Lemma 2.5 to express the last probability above in terms of a lumped chain:

P
◦ (τσ

T < τσ
σ

) = R
◦
(
τ

γT∪σ (σ )

γT∪σ (T ) < τ
γT∪σ (σ )

γT∪σ (σ )

)
. (2.163)

Similarly, to prove assertion vi) we begin by writing:

P

(
τ σ̄
σ ≤ τ σ̄

T

)
= R

◦
(
τ

γT∪σ (σ̄ )

γT∪σ (σ ) < τ
γT∪σ (σ̄ )

γT∪σ (T )

)
. (2.164)

At this point however we see that contrary to the cases encountered so far the mapping
γ involved in the last two identities is not constructed from the top alone, but the top
augmented by a non-random point σ . To proceed any further we thus need to investigate
its properties.

Lumped chain induced by the Top and a non-random point. In order to study the map-
ping γT∪σ we must go back to its definition (see Sect. 2.1). Most of the results we will
establish below rely on the simple observation that the partition PT∪σ (�) induced by
T ∪ σ may be constructed by first constructing the partition PT (�) induced by the top
alone and next, partitioning each of the elements of PT (�) according to the sign of σi .
More precisely:

Lemma 2.14. Set d ′ = 2M+1, d = 2M . There is a one-to-one correspondence between
the elements of the partition PT∪σ (�),

�k′(T ∪ σ), k′ ∈ {1, . . . , d ′} (2.165)

and the sets

�s
k(T ) = {i ∈ �k(T ) | σi = s} , (s, k) ∈ {−1, 1}× ∈ {1, . . . , d}. (2.166)
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Proof. Let {e′1, . . . , e′k′ , . . . , e′d ′ } and {e1, . . . , ek, . . . , ed} be arbitrarily chosen label-
lings of, respectively, all d ′ elements of SM+1 and all d elements of SM . For u =
(u1, . . . , uM+1) ∈ R

M+1 write u = (u, u), with u = (u1, . . . , uM) and u = uM+1.
Then, clearly,

{e′k′ }k′∈{1,...,d ′} = {(ek, s)}(s,k)∈{−1,1}×∈{1,...,d} (2.167)

and that the relation

e′k′ = (ek, s) (2.168)

induces a one-to-one correspondance between the indices k′ ∈ {1, . . . , d ′} and the pairs
(s, k) ∈ {−1, 1}× ∈ {1, . . . , d}.

Let now ξ ′ ∈ S(|T |+1)×N and ξ ∈ S(|T |)×N be two matrices satisfying property (2.12)
with, respectively, I = T ∪ σ and I = T , and chosen such that:

ξ ′µ =
{

ξµ if µ ∈ {1, . . . , M}
σ, if µ = M + 1

. (2.169)

It then follows from Definition (2.13) that, whenever (2.168) holds,

�k′(T ∪ σ) ≡ {i ∈ � | ξ ′i = e′k′ }
= {i ∈ � | ξ ′

i
= e′k′ , ξ

′
i = e′k′ }

= {i ∈ � | ξi = ek, σi = s}
= {i ∈ �k(T ) | σi = s}
= �s

k(T ). (2.170)

The lemma is therefore proven. ��
Lemma 2.15. Let K(T ∪ σ) ≡ Kε(T ∪ σ) and δ(N) be defined as in (2.32), resp.
(2.113). Choose ε = 1 − 2δ(N). Then, for all ω ∈ EN ,

d ′

2
≤ |K(T ∪ σ)| ≤ d ′ (2.171)

and

N∗ ≡ min
k∈K(T∪σ)

|�k(T ∪ σ)| ≥ (1 − 2δ(N))
N

d ′

max
k∈K(T∪σ)

|�k(T ∪ σ)| ≤ 2(1 + δ(N))
N

d ′
. (2.172)

Proof. It obviously follows from Definition (2.166) that

|�k(T )| = |�+
k (T )| + |�−

k (T )|. (2.173)

For fixed k ∈ {1, . . . , d}, assume that there exists s ∈ {−1, 1} such that |�s
k(T )| < ε N

d ′ .
It then follows from (2.173) that

|�−s
k (T )| ≥ |�k(T )| − ε

N

d ′
≥ (1 − δ(N))

N

d
− ε

N

2d
≥ ε

N

d ′
, (2.174)

where the second inequality follows from (2.126) and the fact that ω ∈ EN , while the
last line results from our choice of ε. Thus for each k ∈ {1, . . . , d} there exists at least
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one index s ∈ {−1, 1} such that |�s
k(T )| ≥ ε N

d ′ . This together with Lemma 2.14 yields
the lower bound of (2.171). The upper bound beeing immediate, (2.171) is proven.

Let us turn to (2.172). The first inequality simply follows from the definition of
K(T ∪ σ) and our choice ε. To prove the second inequality we first use that by (2.173),
for each pair (s, k) ∈ {−1, 1}× ∈ {1, . . . , d},

|�s
k(T )| ≤ |�k(T )| ≤ (1 + δ(N))

N

d
= 2(1 + δ(N))

N

d ′
, (2.175)

where the second inequality follows from (2.126), and next conclude by means of
Lemma 2.14. The lemma is proven. ��

To state the next lemma we need some extra notation. Set κ ′ = |K(T ∪ σ)| and let
π ′ : R

d ′ → R
κ ′ be the projection that mapsx = (xk′)k′∈{1,...,d ′} intoπ ′x = (xk′)k′∈K(T∪σ)

. For each k ∈ {1, . . . , d}, let s∗ ∈ {−1, 1} be defined through

|�s∗
k (T )| ≥ |�−s∗

k (T )| (2.176)

and set

D = {
k′ ∈ {1, . . . , d ′} | �k′(T ∪ σ) = �

s∗
k (T ), k ∈ {1, . . . , d}} . (2.177)

Finally, let π∗ : R
d ′ → R

d be the projection that maps x = (xk′)k′∈{1,...,d ′} into π∗x =
(xk′)k′∈D.

Lemma 2.16. For all σ ∈ T c the following holds true:

i) For all η ∈ T ,

π∗γT∪σ (η) = γT (η). (2.178)

For 0 ≤ ε < 1
2 , define

Aε(σ ) =
{
η ∈ T

∣∣∣ ‖π∗γT∪σ (η)− π∗γT∪σ (σ )‖2 ≤ ε
√

d
}
. (2.179)

Then,
ii) either Aε(σ ) = ∅ or else, |Aε(σ )| = 1.

iii) For all η ∈ T \Aε(σ ),

‖π ′γT∪σ (η)− π ′γT∪σ (σ )‖2 ≥ ε
√

d (2.180)

and, for all η ∈ T ,

inf
η∈T \η

‖π ′γT (η)− π ′γT (η)‖2 ≥ (1 − 2δ(N))
√

d. (2.181)

Proof. We first prove assertion i). By Lemma 2.14, to each k′ ∈ {1, . . . , d ′} there corre-
sponds a unique pair (s, k) ∈ {−1, 1}× ∈ {1, . . . , d} verifying

�k′(T ∪ σ) = �s
k(T ). (2.182)

Fix k′ ∈ {1, . . . , d ′}. It follows from Definition (2.16) and (2.182) that

γ k′
T∪σ (η) = 1

|�s
k(T )|

∑

i∈�s
k(T )

ηi . (2.183)
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Now by (2.166), we have,

�s
k(T ) ⊆ �k(T ) for each s ∈ {−1, 1}. (2.184)

But assertion iii) of Lemma 2.2 states that

ηi = γ k
T (η), for all i ∈ �k(T ). (2.185)

Hence, combining (2.185) and (2.183) we get

γ k′
T∪σ (η) = γ k

T (η) for each s ∈ {−1, 1}. (2.186)

Since (2.186) holds for each s ∈ {−1, 1} it holds true for s = s∗. We therefore have prov-
en that for each k′ ∈ {1, . . . , d ′} and each k ∈ {1, . . . , d} related through �k′(T ∪ σ) =
�

s∗
k (T ), γ k′

T∪σ (η) = γ k
T (η). But this, in view of (2.177), implies that π∗γT∪σ (η) =

γT (η), concluding the proof of assertion i).
We now turn to the proof of assertion ii). Note that by (2.178), Aε(σ ) may be written

as

Aε(σ ) =
{
η ∈ T

∣∣∣ ‖γT (η)− π∗γT∪σ (σ )‖2 ≤ ε
√

d
}
. (2.187)

Assume that Aε(σ ) �= ∅. Then there exists η ∈ T such that ‖γT (η) − π∗γT∪σ (σ )‖2 ≤
ε
√

d. Thus,

inf
η∈T \η

‖γT (η)− π∗γT∪σ (σ )‖2 ≥ inf
η∈T \η

‖γT (η)− γT (η)‖2 − ε
√

d

≥ (1 − 2δ(N))
√

d − ε
√

d, (2.188)

where the last inequality follows from Lemma 2.13. Since for all 0 ≤ ε < 1
2 , 1 −

2δ(N) − ε > ε, provided that N is sufficiently large, we conclude that |Aε(σ )| = 1.
The claim of assertion ii) is thus proven and it remains to prove iii).

To do so note that proceeding just as in the proof of (2.171), we easily see that
D ⊆ K(T ∪ σ). Hence, for all y, y′ ∈ R

d ′ ,

‖π ′y′ − π ′y‖2 ≥ ‖π∗y′ − π∗y‖2. (2.189)

Now (2.180) is an immediate consequence of (2.189) and the definition of Aε(σ ) while
(2.181) results from the combination of (2.189) and (2.128) of Lemma 2.13. Assertion
iii) being proven, the proof of the lemma is done. ��

We are now ready to prove the last two assertions of Proposition 2.1. The following
notation will be used throughout: I ≡ T ∪ σ , I ≡ γI (I ), y ≡ γI (σ ), and ȳ ≡ γI (σ̄ ). It
will moreover be assumed that ω ∈ EN .

Proof of Proposition 2.1, v and vi). With the notation introduced above, (2.163) and
(2.164) read, respectively,

P
◦ (τσ

T < τσ
σ

) = R
◦
(
τ

y

I\y < τ
y
y

)
(2.190)

and

P

(
τ σ̄
σ ≤ τ σ̄

T

)
= R

◦
(
τ

ȳ
y < τ

ȳ

I\y
)

. (2.191)
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We may now distinguish two cases since, according to assertion ii) of Lemma 2.16,
either σ is such that, case 1), Aε(σ ) = ∅, or else case 2), Aε(σ ) = {η} for some η ∈ T .

In case 1), a simple adaptation of the proof of the lower bound (2.161) of assertion
iii) yields

R
◦
(
τ

y

I\y < τ
y
y

)
≥

(
1 − 1

M+1

) (
1 − d

N
(1 + c5(1 + δ(N)))

)
(2.192)

for some constant c5 > 0. Similarly, retracing the proof of the upper bound of assertion
i), we readily obtain that

∣∣∣R◦
(
τ

ȳ
y < τ

ȳ

I\y
)
− 1

M+1

∣∣∣ ≤ d
NM

(1 + c6(1 + δ(N))) (2.193)

for some constant c6 > 0.
Case 2) will also be brought back to well known situations once observed that, setting

x ≡ γI (η),

R
◦
(
τ

y

I\y < τ
y
y

)
≥ R

◦
(
τ

y

I\{y,x} < τ
y
y

)
(2.194)

while

R
◦
(
τ

ȳ
y < τ

ȳ

I\y
)
≤ R

◦
(
τ

ȳ
y < τ

ȳ

I\{y,x}
)

. (2.195)

Then, proceeding as in the proof of (2.192) we obtain that

R
◦
(
τ

y

I\{y,x} < τ
y
y

)
≥ (

1 − 1
M

) (
1 − d

N
(1 + c7(1 + δ(N)))

)
(2.196)

for some constant c7 > 0, while going back over the proof of (2.193) yields
∣∣∣∣R

◦
(
τ

ȳ
y < τ

ȳ

I\{y,x}
)
− 1

M

∣∣∣∣ ≤ d
NM

(1 + c8(1 + δ(N))) (2.197)

for some constant c8 > 0.
The lower bound in (2.7) then follows from (2.162) together with (2.190), (2.192),

(2.194), and (2.196); the coresponding upper bound being immediate, assertion v) is
proven. Finally, collecting (2.191), (2.193), (2.195), and (2.197) proves (2.8) of asser-
tion vi). This completes the proof of Proposition 2.1. ��

3. Expected Times

In this section we prove Theorems 1.4 and 1.5. Let ET (E)( . ) and VT (E)( . ) denote the ex-
pectation and the variance with respect to the conditional distribution P ( . | T (E)(ω) =
T (E)). Define

Zβ,N(T c(E)) ≡
∑

σ∈T (E)c

eβ
√

NEσ , (3.1)

VN,E ≡ Vβ,N,T (E) ≡ Zβ,N(T c(E))− ET (E)(Zβ,N(T c(E)))

VT (E)(Zβ,N(T c(E)))
. (3.2)

Recall that

Wβ,N,T (E) ≡ e(α−1)E+β
√

NuN(0)

M(α − 1)

(
1 + Vβ,N,T (E)e

E/2 α − 1√
2α − 1

)
, (3.3)

where, as in Sect. 2, M = |T (E)|.
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Remark. A remark is in order concerning the random variables defined in (3.1) to (3.3).
The behavior of Zβ,N(T c(E)) will be studied in Lemma 3.3. It will in particular be estab-
lished that Zβ,N(T c(E)) = MWβ,N,T (E)(1+O(1/N)) (see (3.27)). This of course im-
plies that Wβ,N,T (E) is a positive random variable. Note also that by definition Vβ,N,T (E)

has mean zero and variance one, and that all its moments are finite.

Notation. From now on we will systematically write T for T (E) and drop the indices
β, N , and T (E) in all the symbols appearing in (3.1), (3.2) and (3.3).

The cornerstone of the proof of Proposition 1.4 is a classical identity from poten-
tial theory (see e.g. [So] or Corollary (3.3) of [BEGK2]) that expresses the expectation
of conditioned transition times in terms of the invariant measure and transition prob-
abilities. Namely, it states that for all subsets I, J ⊆ SN , and all σ ∈ SN such that
σ /∈ I ∪ J ,

E
(
τσ
I | τσ

I ≤ τσ
J

) = 1

µβ,N(σ )P(τσ
I∪J < τσ

σ )

×


µβ,N(σ )+
∑

σ ′∈(I∪J∪σ)c

µβ,N (σ ′)P(τσ ′
σ < τσ ′

I∪J )
P(τσ ′

I ≤ τσ ′
J )

P(τσ
I ≤ τσ

J )



 . (3.4)

Equation (3.4) generalizes the following expression for the expected value of uncondi-
tioned transition times: for all subset I ⊆ SN and all σ ∈ SN such that σ /∈ I ,

E(τσ
I ) = 1

µβ,N(σ )P(τσ
I < τσ

σ )



µβ,N(σ )+
∑

σ ′∈(I∪σ)c

µβ,N (σ ′)P(τσ ′
σ < τσ ′

I )



 . (3.5)

Therefore, by definition of µβ,N , (3.4) reads

E(τσ
I | τσ

I ≤ τσ
J ) = 1

eβ
√

NEσ P(τσ
I∪J < τσ

σ )

×


eβ
√

NEσ +
∑

σ ′∈(I∪J∪σ)c

eβ
√

NEσ ′P(τσ ′
σ < τσ ′

I∪J )
P(τσ ′

I ≤ τσ ′
J )

P(τσ
I ≤ τσ

J )





(3.6)

and similarly,

E(τσ
I ) = 1

eβ
√

NEσ P(τσ
I < τσ

σ )



eβ
√

NEσ +
∑

σ ′∈(I∪σ)c

eβ
√

NEσ ′P(τσ ′
σ < τσ ′

I )



 . (3.7)

Applying (3.6) and (3.7) to the quantities E(τ
η
η̄ | τ

η
η̄ ≤ τ

η
T \η), E(τ

η
T \η) and E(τσ

T ), and in-
serting the probability estimates of Proposition 2.1 in the resulting expressions, the proof
of Proposition 1.4 essentially reduces to studying the behavior of the random variable
Z(T c) = ∑

σ ′∈T c eβ
√

NEσ ′ . We start by proving the first assertion of the proposition.
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Proof of assertion i) of Theorem 1.4. We will assume throughout that the assumptions
of Proposition 2.1 are satisfied. It follows from (3.7) that, for all η ∈ T ,

E(τ
η
T \η) =

1

eβ
√

NEηP(τ
η
T \η < τ

η
η )

[

eβ
√

NEη +
∑

σ∈T c

eβ
√

NEσ P(τσ
η < τσ

T \η)

]

. (3.8)

The factor in front of the square brackets was estimated in Proposition 2.1, iv). Plugging
in this estimate yields

E(τ
η
T \η) =

1

1 − 1
M

[

eβ
√

NEη +
∑

σ∈T c

eβ
√

NEσ P(τσ
η < τσ

T \η)

]

(1 +O(1/N)) (3.9)

and we are left to study the term

I ≡
∑

σ∈T c

eβ
√

NEσ P
◦(τσ

η < τσ
T \η). (3.10)

To do so, we proceed as follows: for ε > 0 a constant, let B√
εN (η) and Wε(T ) be defined

as in (2.1) and (2.2) and set

Vε(T ) ≡
⋃

η∈T

(
T c ∩ B√

εN (η)
)

. (3.11)

Observing that

T c = Vε(T ) ∪Wε(T ) (3.12)

I may be decomposed as

I = I1 + I2 (3.13)

with

I1 ≡
∑

σ∈Vε(T )

eβ
√

NEσ P
◦(τσ

η < τσ
T \η),

I2 ≡
∑

σ∈Wε(T )

eβ
√

NEσ P
◦(τσ

η < τσ
T \η). (3.14)

Now obviously,

0 ≤ I1 ≤
∑

σ∈Vε(T )

eβ
√

NEσ (3.15)

while, by Proposition 2.1, i), for all ω ∈ E and large enough N , I2 obeys the bound
∣∣
∣
∣∣∣
I2 − 1

M

∑

σ∈Wε(T )

eβ
√

NEσ

∣∣∣
∣∣
∣
≤ d

NM
(1 + cδ(N)). (3.16)

Therefore, setting

Z(Vε(T )) ≡
∑

σ∈Vε(T )

eβ
√

NEσ ,
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Z(T c) ≡
∑

σ∈T c

eβ
√

NEσ , (3.17)

and combining (3.15) and (3.16) together with (3.13), we arrive at
∣∣∣∣I −

1

M
Z(T c)

[
1 + (M − 1)

Z(Vε(T ))

Z(T c)

]∣∣∣∣ ≤
d

NM
(1 + cδ(N)), (3.18)

and it remains to study the behavior of the random variables Z(Vε(T )) and Z(T c). As
this depends on the cardinality of Vε(T ), we will first establish that:

Lemma 3.1. Assume that 0 < ε < 1/2 and set

J (x) = (1 − x) ln 1
1−x

+ x ln 1
x
, 0 < x < 1. (3.19)

Then, for all ω ∈ E and large enough N , there exist constants, 0 < c− ≤ c+ < ∞, such
that

c−MN−1/2eNJ(ε/4) −M ≤ |Vε(T )| ≤ c+MN1/2eNJ(ε/4). (3.20)

Proof. Under the assumptions of Lemma 2.12,

|Vε(T )| =
∑

η∈T

|T c ∩ B√
εN (η)| =

∑

η∈T

|B√
εN (η) \ η| =

∑

η∈T

|B√
εN (η)| −M. (3.21)

Now, for all η ∈ T ,
(

N

εN/4

)
≤ |B√

εN (η)| ≤ εN

4

(
N

εN/4

)
, (3.22)

where we used that
(
N
k

)
is an increasing function of k for 0 ≤ k ≤ εN/4. By Stirling’s

formula, for large enough N , there exist constants, 0 < a− ≤ a+ < ∞ such that

a−√
πε(1 − ε/4)

eNJ(ε/4) ≤
(

N

εN/4

)
≤ a+√

πε(1 − ε/4)
eNJ(ε/4). (3.23)

Inserting (3.23) in (3.22) and using that, by assumption, 0 < ε < 1/2 we obtain

c−N−1/2eNJ(ε/4) ≤ |B√
εN (η)| ≤ c+N1/2eNJ(ε/4) (3.24)

for some constants, 0 < c− ≤ c+ < ∞. Inserted in (3.21), (3.24) yields (3.20),
concluding the proof of Lemma 3.1. ��

We are now ready to prove the following two lemmata.

Lemma 3.2. Let Z(Vε(T )) be as in (3.17). Under the assumptions and with the notation
of Lemma 3.1), the following holds: there exists a constant 0 < c < ∞ such that, for
all 0 < ε < 1/2 , and large enough N ,

P
(
Z(Vε(T )) ≥ |Vε(T )|e2β

√
N ln |Vε(T )|

∣
∣∣ T (ω) = T

)
≤ c√

J (ε/4)
e−NJ(ε/4). (3.25)
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Lemma 3.3. Let Z(T c) and W be as in (3.1) and (3.3). Then, for all N large enough,

P
(
Z(T c) ≤ eβN

√
ln 2

∣∣∣ T (ω) = T
)
≤ e−eN(ln 2)/4

(3.26)

and

Z(T c) = MW(1 +O(1/N)). (3.27)

Proof of Lemma 3.2. For δ > 0, set a = eβ
√

2(δ+1)N ln |Vε(T )|,

P (Z(Vε(T )) ≥ a|Vε(T )| | T (ω) = T )

≤ P

(
|Vε(T )| max

σ∈Vε(T )
eβ

√
NEσ ≥ a|Vε(T )|

∣∣∣ T (ω) = T

)

≤ |Vε(T )|P
(
eβ

√
NEσ ≥ a

∣∣∣ T (ω) = T
)

= |Vε(T )|P
(
eβ

√
NEσ ≥ a

∣∣∣Eσ < uN(E)
)

, (3.28)

where the second inequality holds true for all σ ∈ Vε(T ) (thereby implying the last
equality). In explicit form, the probability appearing in the last line of (3.28) reads

P
(
eβ

√
NEσ ≥ a

∣∣∣Eσ < uN(E)
)
= P

(√
2(δ + 1) ln |Vε(T )| ≤ Eσ < uN(E)

)

P (Eσ < uN(E))
.

(3.29)

By a standard upper tail estimate for Gaussian random variables,

P
(√

2(δ + 1) ln |Vε(T )| ≤ Eσ < uN(E)
)

≤ P
(
Eσ ≥

√
2(δ + 1) ln |Vε(T )|

)

≤ 1

|Vε(T )|δ+1
√

4π(δ + 1) ln |Vε(T )| (3.30)

while

P (Eσ < uN(E)) = 1 − 2−Ne−E. (3.31)

Inserting (3.30) and (3.31) in (3.29) and combining with (3.28) yields

P (Z(Vε(T )) ≥ a|Vε(T )| | T (ω) = T )

≤ 1

|Vε(T )|δ(1 − 2−Ne−E)
√

4π(δ + 1) ln |Vε(T )| . (3.32)

Choosing δ = 1, (3.32) together with the lower bound on |Vε(T )| of Lemma 3.1 gives
(3.25). This proves the lemma. ��
Proof of Lemma 3.3. We first prove (3.27). Recall from Theorem 1.4 that ET ( . ) and
VT ( . ) denote the expectation and the variance with respect to the conditional distribu-
tion P ( . | T (ω) = T ) and set

Xσ
β = eβ

√
NEσ I{Eσ <uN(E)}. (3.33)
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Observing that

ET (Z(T c)) = |T c|ET (Xσ
β ),

V
2
T (Z(T c)) = ET (Z(T c)2)− E

2
T (Z(T c))2 = |T c|[ET (Xσ

2β)− E
2
T (Xσ

β )], (3.34)

the computation of the mean and variance of Z(T c) reduces to that of ET (Xσ
β ). Now

ET (Xσ
β ) =

1√
2π

∫ uN (E)

0
e−

x2
2 +β

√
Nxdx

P (Eσ < uN(E))
. (3.35)

Decomposing the integral above as

1√
2π

∫ uN (E)

0
e−

x2
2 +β

√
Nxdx = r1,N − r0,N (3.36)

with

r1,N = eβ2N/2

√
2π

∫ uN (E)−β
√

N

−∞
e−

y2

2 dy

r0,N = eβ2N/2

√
2π

∫ −β
√

N

−∞
e−

y2

2 dy (3.37)

we have, by standard tail estimates for the Gaussian,

β
√

N√
2π(1 + β2N)

≤ r0,N ≤ 1
√

2πβ2N
(3.38)

while, for β >
√

2 ln 2,

r1,N = e(α−1)E+β
√

NuN(0)

2N(α − 1)
(1 +O(1/N)). (3.39)

Inserting these bounds (3.36) and making use of (3.31), we get

ET (Xσ
β ) = e(α−1)E+β

√
NuN(0)

2N(α − 1)
(1 +O(1/N)). (3.40)

Remembering that |T c| = 2N −M , it follows from (3.34) and (3.40) that

ET (Z(T c)) = e(α−1)E+β
√

NuN(0)

(α − 1)
(1 +O(1/N)) (3.41)

and

V
2
T (Z(T c)) = e(2α−1)E+2β

√
NuN(0)

(2α − 1)
(1 +O(1/N)). (3.42)

Hence, recalling from (3.2) that V = [Z(T c)− ET (Z(T c))]/[VT (Z(T c))], we have

Z(T c) = ET (Z(T c))

[
1 + V VT (Z(T c))

ET (Z(T c))

]
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= e(α−1)E+β
√

NuN(0)

(α − 1)

[
1 + VeE/2 α − 1√

2α − 1

]
(1 +O(1/N))

= MW(1 +O(1/N)), (3.43)

where the last line follows from the definition of W . Thus (3.27) is proven. To prove
(3.26) we use the rather abrupt bound

P
(
Z(T c) ≤ eβN

√
ln 2

∣∣∣ T (ω) = T
)
≤ P

(
∀σ∈T cEσ <

√
N ln 2

∣∣∣ T (ω) = T
)

≤
∏

σ∈T c

P
(
Eσ <

√
N ln 2

∣∣∣Eσ < uN(E)
)

.

(3.44)

Since
√

N ln 2 < uN(E) for fixed E and large enough N , we have

P
(
Eσ <

√
2N ln 2/2

∣∣∣Eσ < uN(E)
)
=

2√
2π

∫ √
N ln 2

0 e−
x2
2 dx

P (Eσ < uN(E))
, (3.45)

and it follows from (3.31) together with the bound

2√
2π

∫ √
N ln 2

0
e−

x2
2 dx = 1 − 2√

2π

∫ ∞
√

N ln 2
e−

x2
2 dx ≥ 1 − 1

4
√

N
e−N(ln 2)/2 (3.46)

that

P
(
∀σ∈T cEσ <

√
N ln 2

∣∣∣ T (ω) = T
)
≤




1 − 1

4
√

N
e−N(ln 2)/2

1 − 2−Ne−E





|T c|

≤
(

1 − 1

8
√

N
e−N(ln 2)/2

)2N(1−2−NM)

≤ exp
(
−eN(ln 2)/2(1 − 2−NM)/8

√
N

)

≤ exp
(
−eN(ln 2)/4

)
. (3.47)

This proves (3.26) and concludes the proof of Lemma 3.3. ��
We are now ready to complete the proof of assertion i) of Theorem 1.4. For β ≥√

2 ln 2 and fixed 0 < ε < 1/2 (to be chosen appropriately later), let ẼN ≡ ẼN(β, ε) be
defined as

ẼN ≡ E ∩
{
ω ∈ � | Z(Vε(T )) ≤ |Vε(T )|e2β

√
N ln |Vε(T )|, Z(T c) ≥ eβN

√
ln 2

}
,

(3.48)

where E is taken from Proposition 2.1. Now set

Ẽ ≡
⋃

N0

⋂

N>N0

ẼN. (3.49)

Obviously, by (3.25), (3.26) and Lemma 2.11,

P
(
Ẽ
) = 1. (3.50)
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Assume from now on that ω ∈ ẼN (and that N is large enough). By Lemma 3.1 and
Lemma 3.2,

Z(Vε(T )) ≤ ecβN
√

ε (3.51)

for some numerical constant 0 < c < ∞. Thus, by 3.26 of Lemma 3.3,

0 <
Z(Vε(T ))

Z(T c)
< e−c(ε)βN , (3.52)

where c(ε) = ln 2 − c
√

ε. Let ε0 be defined through c(ε0) = 0. Then, choosing 0 <

ε < (1/2 ∧ ε0),

1

M
Z(T c)

[
1 + (M − 1)

Z(Vε(T ))

Z(T c)

]
= 1

M
Z(T c)

[
1 +O

(
e−c(ε)βN

)]
(3.53)

which, combined with (3.27) of Lemma 3.3 yields,

1

M
Z(T c)

[
1 + (M − 1)

Z(Vε(T ))

Z(T c)

]
= W(1 +O(1/N)). (3.54)

This inserted in turn in (3.18) gives,

I = W(1 +O(1/N)). (3.55)

Combining (3.55) with (3.10) and (3.9) concludes the proof of assertion i) of Theorem
1.4. ��
Proof of assertion ii) of Theorem 1.4. It follows from (3.7) that, for all σ /∈ T ,

E(τσ
T ) = 1

eβ
√

NEσ P(τσ
T < τσ

σ )



eβ
√

NEσ +
∑

σ ′∈T c\σ
eβ

√
NEσ ′P(τσ ′

σ < τσ ′
T )



 . (3.56)

Assuming again that the assumptions of Proposition 2.1 are satisfied, it follows from
Proposition 2.1, v), that

[
eβ

√
NEσ + I ′

]
≤ E(τσ

T ) ≤ 1

1 − 1
M

[
eβ

√
NEσ + I ′

]
(1 +O(1/N)), (3.57)

where

I ′ ≡
∑

σ ′∈T c\σ
eβ

√
NEσ ′P(τσ ′

σ < τσ ′
T ). (3.58)

Then, decomposing I ′ as

I ′ = I ′1 + I ′2 (3.59)

with (for ε > 0 a constant and with Vε(T ) and Wε(T ) defined as in (3.11) and (3.12))

I ′1 ≡
∑

σ ′∈Vε(T∪σ)

eβ
√

NEσ ′P(τσ ′
σ < τσ ′

T ),
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I ′2 ≡
∑

σ ′∈Wε(T∪σ)

eβ
√

NEσ ′P(τσ ′
σ < τσ ′

T ). (3.60)

But clearly,

0 ≤ I ′1 ≤
∑

σ ′∈Vε(T∪σ)

eβ
√

NEσ ′ , (3.61)

while by Lemma 2.1, vi), I ′2 obeys the bounds

I ′2 ≥
1

M + 1

∑

σ ′∈Wε(T∪σ)

eβ
√

NEσ ′
(

1 + d

N
(1 − cδ(N))

)

≤ I ′2 ≤
1

M

∑

σ ′∈Wε(T∪σ)

eβ
√

NEσ ′
(

1 + d

N
(1 + cδ(N))

)
. (3.62)

Therefore, recalling the definition of Z(Vε(T )) and Z(T c) from (3.17),

I ′ ≥ Z((T ∪ σ)c)

M + 1

[
1 − (M − 1)

Z(Vε(T ∪ σ))

Z((T ∪ σ)c)

](
1 + d

NM
(1 + cδ(N))

)

I ′ ≤ Z((T ∪ σ)c)

M

[
1 + (M − 1)

Z(Vε(T ∪ σ))

Z((T ∪ σ)c)

](
1 + d

NM
(1 + cδ(N))

)
. (3.63)

In other words, comparing (3.63) with (3.18), and noting that the difference between
Z(T c) and Z((T ∪ σ)c is even in the worst case not larger than eE(α − 1)Z(T c) , I ′
obeys virtually the same upper bound as does I in the proof of assertion i). From here
on the proof of assertion ii) follows step by step that of the first assertion.

Proof of assertion iii) of Theorem 1.4. As is the proof of the first two assertions we will
assume that the assumptions of Proposition 2.1 are satisfied. By (3.6) we have, for all
η, η̄ ∈ T , η �= η̄,

E(τ
η
η̄ | τ

η
η̄ ≤ τ

η
T \η) =

1

eβ
√

NEηP(τ
η
T \η < τ

η
η )

×
[

eβ
√

NEη +
∑

σ∈T c

eβ
√

NEσ P(τσ
η < τσ

T \η)
P(τσ

η̄ ≤ τσ
T \η)

P(τ
η
η̄ ≤ τ

η
T \η)

]

.

(3.64)

Recalling the definition of I from (3.10) and comparing Eqs. (3.64) and (3.8), we see that
their right hand sides are identical up to the extra factor P(τσ

η̄ ≤ τσ
T \η)/P(τ

η
η̄ ≤ τ

η
T \η)

that multiplies each of the terms of the sum in I . Mimicking the proof of assertion i), set

I ′ ≡ I ′1 + I ′2, (3.65)

where, for ε > 0 a constant and with Vε(T ) and Wε(T ) defined as in (3.11) and (3.12),

I ′1 ≡
∑

σ∈Vε(T )

eβ
√

NEσ P
◦(τσ

η < τσ
T \η)

P(τσ
η̄ ≤ τσ

T \η)
P(τ

η
η̄ ≤ τ

η
T \η)

,

I ′2 ≡
∑

σ∈Wε(T )

eβ
√

NEσ P
◦(τσ

η < τσ
T \η)

P(τσ
η̄ ≤ τσ

T \η)
P(τ

η
η̄ ≤ τ

η
T \η)

. (3.66)
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It follows from Proposition 2.1, iii) that, for σ ∈ Vε(T ),

0 ≤
P(τσ

η̄ ≤ τσ
T \η)

P(τ
η
η̄ ≤ τ

η
T \η)

≤ (M − 1)(1 +O(1/N)), (3.67)

where we trivially used that 0 ≤ P(τσ
η̄ ≤ τσ

T \η) ≤ 1 in the numerator. In the case where
σ ∈ Wε(T ), observing that P(τσ

η̄ ≤ τσ
T \η) = P(τσ

η̄ < τσ
(T \η)\η̄), and making use of

assertion i) of Proposition 2.1 with T replaced by T \ η (hence, since M = |T |, with M

replaced by M − 1) we get,
∣∣∣∣∣

P(τσ
η̄ ≤ τσ

T \η)
P(τ

η
η̄ ≤ τ

η
T \η)

− 1

∣∣∣∣∣
≤ O(1/N). (3.68)

Thus, with I = I1 + I2, I1 and I2 being defined as in (3.14), we get

|I − I ′| ≤ |I ′1 − I1| + |I ′2 − I2|
≤ M(1 +O(1/N))I1 +O(1/N)I2
= [M(I1/I2)(1 +O(1/N))+O(1/N)] I2
≤ [M(I1/I2)(1 +O(1/N))+O(1/N)] I, (3.69)

where for Z(Vε(T )) and Z(T c) defined as in (3.17) we have, in view of (3.15) and
(3.16),

I1

I2
≤ MZ(Vε(T ))

Z(T c)− Z(Vε(T ))− d
N

(1 + cδ(N))

≤ M[Z(Vε(T ))/Z(Vε(T ))]

1 − [Z(Vε(T ))/Z(Vε(T ))]
(
1 + d

N
(1 + cδ(N))

) . (3.70)

With ẼN defined as in (3.48), choosing ε as in the line following (3.52), and inserting
the bound (3.52) in (3.69) we get, for large enough N ,

I1

I2
≤ 2e−c(ε)βN , on ẼN . (3.71)

From this and (3.55), (3.69) yields

|I ′ − I | ≤ WO(1/N). (3.72)

Finally, combining (3.64) and (3.8), and using the previous bound,
∣∣∣E(τ

η
η̄ | τ

η
η̄ ≤ τ

η
T \η)− E(τ

η
T \η)

∣∣∣ = eβ
√

NEηP(τ
η
T \η < τη

η )|I ′ − I | ≤ 1

1 − 1
M

WO(1/N),

(3.73)

where the pre-factor of |I ′ − I | was estimated by means of Proposition 2.1, iv). This
completes the proof of the last assertion of Theorem 1.4. ��
Proof of Theorem 1.5. The proof of this theorem is very similar to that of assertion (i) of
Theorem 1.4. The only difference is that this time, the partial partition function Z(Vε(E))

is negligible compared to Zβ,N . Finally, for β <
√

2 ln 2, Zβ,N = eNβ2/2(1+O(N−1/4))

with probability tending to one faster than any polynomial, as follows from easy esti-
mates (see [BKL or Bo]), and this proves the theorem. ��
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A. Appendix

We state and prove a simple lemma that is used in Sect. 2.

Lemma 4.1. Let �k ⊂ 
N , 1 ≤ k ≤ K , be a collection of subgraphs of 
N and let R̃
◦
�k

denote the law of the Markov chain with transition rates

r̃◦�k
(x′, x′′) =

{
r◦N(x′, x′′), if x′ �= x′′ , and (x′, x′′) ∈ E(�k)

0, otherwise
. (4.1)

Assume that

E(�k) ∩ E(�k′) = ∅, ∀k, k′ ∈ {1, . . . , K}, k �= k′ (4.2)

and that

y, x ∈
K⋂

k=1

V (�k). (4.3)

Then

R
◦ (τy

x < τ
y
y

) ≥
K∑

k=1

R̃
◦
�k

(
τ

y
x < τ

y
y

)
. (4.4)

Proof. This lemma is a straightforward generalisation of Lemma 2.1 of [BEGK1]. Let
Hy

x denote the space of functions

Hy
x ≡ {h : 
N → [0, 1] : h(y) = 0, h(x) = 1} (4.5)

and define the Dirichlet forms

�N(h) ≡
∑

x′,x′′∈
N

QN(x′)r◦N(x′, x′′)[h(x′)− h(x′′)]2,

��k
(h) ≡

∑

x′,x′′∈�k

Q̃
◦
�k

(x′)r◦�k
(x′, x′′)[h(x′)− h(x′′)]2, (4.6)

where Q̃
◦
�k

(y) = QN(y)/QN(�k). Then �N(h) ≥ ∑K
k=1 QN(�k)��k

(h), implying
that

inf
h∈Hy

x

�N(h) ≥ inf
h∈Hy

x

K∑

k=1

QN(�k)��k
(h) ≥

K∑

k=1

QN(�k) inf
h∈Hy

x

��k
(h) (4.7)

from which the lemma follows by an application of Theorem 2.2 of [BEGK1]. ��
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