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Abstract. In this paper we study the metastable behavior of the lattice gas in two and three
dimensions subject to Kawasaki dynamics in the limit of low temperature and low density.
We consider the local version of the model, where particles live on a finite box and are
created, respectively, annihilated at the boundary of the box in a way that reflects an infinite
gas reservoir. We are interested in how the system nucleates, i.e., how it reaches a full box
when it starts from an empty box. Our approach combines geometric and potential theoretic
arguments.

In two dimensions, we identify the full geometry of the set of critical droplets for the
nucleation, compute the average nucleation time up to a multiplicative factor that tends to
one, show that the nucleation time divided by its average converges to an exponential random
variable, express the proportionality constant for the average nucleation time in terms of cer-
tain capacities associated with simple random walk, and compute the asymptotic behavior
of this constant as the system size tends to infinity. In three dimensions, we obtain similar
results but with less control over the geometry and the constant.

A special feature of Kawasaki dynamics is that in the metastable regime particles move
along the border of a droplet more rapidly than they arrive from the boundary of the box.
The geometry of the critical droplet and the sharp asymptotics for the average nucleation
time are highly sensitive to this motion.

1. Introduction and main results

In this paper we study the metastable behavior of the lattice gas in two and three
dimensions subject to Kawasaki dynamics at low temperature and low density. Par-
ticles live on a finite box, hop between nearest-neighbor sites, have an attractive
interaction when they sit next to each other, and are created, respectively, annihi-
lated at the boundary of the box in a way that reflects an infinite gas reservoir. We
are interested in how the system nucleates, i.e., how it reaches a full box when it
starts from an empty box. Our goal is to improve on earlier work by combining a
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detailed analysis of the energy landscape for the dynamics with the potential the-
oretic approach to metastability that was developed in Bovier, Eckhoff, Gayrard,
and Klein [5] and further exposed in Bovier [3].

Our main theorems sharpen those obtained by den Hollander, Olivieri, and
Scoppola [9] in two dimensions and by den Hollander, Nardi, Olivieri, and Scop-
pola [8] in three dimensions. In particular, in two dimensions we identify the full
geometry of the set of critical droplets, compute the average nucleation time up to a
multiplicative factor that tends to one, show that the nucleation time divided by its
average converges to an exponential random variable, express the proportionality
constant for the average nucleation time in terms of certain capacities associated
with simple random walk, and compute the asymptotic behavior of this constant as
the system size tends to infinity. In three dimensions, we obtain similar results but
with less control over the geometry and the constant.

Our results are comparable with those derived by Bovier and Manzo [6] for the
Ising model on a finite box in two and three dimensions with periodic boundary
conditions subject to Glauber dynamics at low temperature. This work sharpened
earlier results by Neves and Schonmann [11] in two dimensions and by Ben Arous
and Cerf [4] in three dimensions.

Kawasaki differs from Glauber in that it is a conservative dynamics: particles
are conserved in the interior of the box. This creates a complication in controlling
the growing and the shrinking of droplets, because particles have to travel between
the droplet and the boundary of the box. Moreover, it turns out that in the metastable
regime particles move along the border of a droplet more rapidly than they arrive
from the boundary of the box. This leads to a shape of the critical droplet that is
more complicated than the one for Ising spins under Glauber dynamics. This com-
plexity needs to be handled in order to obtain the sharp asymptotics. For a critical
comparison of Glauber and Kawasaki we refer to den Hollander [7].

The outline of the paper is as follows. In Section 1 we define the model, recall
earlier results, and state our main theorems. In Section 2 we consider two dimen-
sions, collect the key geometric facts that underlie our analysis, and prove our result
identifying the full geometry of the set of critical droplets. In Section 3 we use this
full geometry to prove our sharp asymptotics for the average nucleation time. In
Section 4 we show to what extent these results can be extended to three dimensions.

1.1. Hamiltonian and Gibbs measure

Let � ⊆ Z
2 be a large square box, centered at the origin. Let

∂−� = {x ∈ � : ∃ y /∈ � : |y − x| = 1},
∂+� = {x /∈ � : ∃ y ∈ � : |y − x| = 1}, (1.1.1)

be the internal, respectively, external boundary of �, and put

�− = � \ ∂−�,

�+ = � ∪ ∂+�. (1.1.2)
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With each site x ∈ � we associate an occupation variable η(x), assuming the values
0 or 1, indicating the absence or presence of a particle at x. A lattice configuration
is denoted by η ∈ X = {0, 1}�. Each configuration η ∈ X has an energy given by
the Hamiltonian

H(η) = −U
∑

(x,y)∈�∗,−
η(x)η(y)+�

∑

x∈�
η(x), (1.1.3)

where

�∗,− = {(x, y) : x, y ∈ �−, |x − y| = 1} (1.1.4)

is the set of non-oriented bonds in �−. The interaction consists of a binding energy
−U < 0 for each nearest-neighbor pair of particles in �−. In addition, there is an
activation energy � > 0 for each particle in �.

The Gibbs measure associated with H is

µβ(η) = e−βH(η)

Zβ

, η ∈ X , (1.1.5)

with inverse temperature β > 0 and partition sum

Zβ =
∑

η∈X
e−βH(η). (1.1.6)

1.2. Kawasaki dynamics

We next define Kawasaki dynamics on �, with a boundary condition that mimics
the effect of an infinite gas reservoir outside � with density

ρβ = e−�β, (1.2.1)

in accordance with the activation energy � appearing in (1.1.3).
Let b = (x → y) denote an oriented bond, i.e., an ordered pair of nearest-

neighbor sites. Define

�∗, orie = {b = (x → y) : x, y ∈ �},
∂�∗, in = {b = (x → y) : x ∈ ∂+�, y ∈ ∂−�}, (1.2.2)

∂�∗, out = {b = (x → y) : x ∈ ∂−�, y ∈ ∂+�},
and put �̄∗, orie = �∗, orie∪∂�∗, in∪∂�∗, out . Two configurations η, η′ ∈ X with
η �= η′ are called communicating configurations, written η ↔ η′, if there exists
a bond b ∈ �̄∗, orie such that η′ = Tbη, where Tbη is the configuration obtained
from η as follows:

– b = (x → y) ∈ �∗, orie:

(Tbη)(z) =






η(z) if z �= x, y,

η(x) if z = y,

η(y) if z = x.

(1.2.3)
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– b = (x → y) ∈ ∂�∗, in:

(Tbη)(z) =
{

η(z) if z �= y,

1 if z = y.
(1.2.4)

– b = (x → y) ∈ ∂�∗, out :

(Tbη)(z) =
{

η(z) if z �= x,

0 if z = x.
(1.2.5)

These transitions correspond to particle motion in �, creation and annihilation in
∂−�, respectively. Note that, for b ∈ �∗, orie, Tbη is invariant under a change of
orientation of b, while for b ∈ ∂�∗, out and b ∈ ∂�∗, in it is not.

The Kawasaki dynamics is defined to be the continuous-time Markov chain
(ηt )t≥0 on X with transition rates

cβ(η, η′) = 1{η↔η′} e−β{[H(η′)−H(η)]∨0}, ∀ η, η ∈ X , η �= η′. (1.2.6)

This is a standard Metropolis dynamics with an open boundary: along each bond
touching ∂−� from the outside, particles are created with rate ρβ and are anni-
hilated with rate 1, reflecting the activation energy, while inside �− particles are
conserved and jump at a rate that depends on the change in energy associated with
the jump, reflecting the binding energy. Note that a move of particles inside ∂−�

does not involve a change in energy because the interaction acts only inside �−
(see (1.1.3)).

The measure µβ defined in (1.1.5) is the reversible equilibrium of the dynamics
with transition rates cβ defined in (1.2.6):

µβ(η)cβ(η, η′) = µβ(η′)cβ(η′, η) ∀ η, η′ ∈ X , η �= η. (1.2.7)

1.3. Rough description of nucleation in two dimensions

1.3.1. Metastable regime and critical droplet size

In two dimensions, we will be interested in the metastable regime

� ∈ (U, 2U), β →∞. (1.3.1)

In this regime, droplets tend to grow slowly: single particles attached to one side of
a droplet typically detach before the arrival of a next particle (because eUβ � e�β ),
while bars of two or more particles typically do not detach (because e�β � e2Uβ ).

As was pointed out in den Hollander, Olivieri, and Scoppola [9], Section 1.2.3,
the energy E(�) of an �× � droplet in �− equals (recall (1.1.3) and see Fig. 1)

E(�) = −U [2�(�− 1)]+��2 = 2U�− (2U −�)�2, (1.3.2)

which is maximal at � = U/(2U −�):
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Fig. 1. � �→ E(�)

The critical droplet size is therefore given by

�c =
⌈

U

2U −�

⌉
(1.3.3)

(�·� denotes the upper integer part), provided we assume that

U

2U −�
/∈ N (1.3.4)

in order to avoid ties. Throughout the sequel we assume that (1.3.4) is in force.
Thus, an (�c − 1) × (�c − 1) droplet is subcritical while an �c × �c droplet is
supercritical.

1.3.2. Basic geometric definitions

Throughout the sequel, we identify a configurationη ∈ X with its support supp(η) =
{x ∈ � : η(x) = 1}, and write x ∈ η to indicate that η has a particle at x.

To state what is known about nucleation in two dimensions, we need some basic
geometric definitions:

Definition 1.3.1. (a) A path ω is a sequence ω = (ω1, . . . , ωk), k ∈ N, of commu-
nicating configurations, i.e., ωi ∈ X for i = 1, . . . , k and cβ(ωi, ωi+1) > 0
for i = 1, . . . , k − 1. For η, η′ ∈ X , we write ω : η → η′ to denote a path
from η to η′. For ζ ∈ X , we write ζ ∈ ω when ω visits ζ . For A ⊆ X , we write
ω ⊆ A when ω stays inside A.

(b) For η, η′ ∈ X , a path ω : η→ η′ is called a U -path if

(i) H(η) = H(η′),
(ii) maxi H(ωi) ≤ H(η)+ U,

(iii) |ωi | = |η| for all i.

(1.3.5)
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(c) The configuration space X can be partitioned as

X =
|�|⋃

n=0

Vn, (1.3.6)

where

Vn = {η ∈ X : |η| = n} (1.3.7)

is the set of configurations with n particles, called the n-manifold.
(d) For A ⊆ X , the communication height between η, η′ ∈ A inside A is


A(η, η′) = min
ω : η→η′

ω⊆A

max
ζ∈ω

H(ζ ). (1.3.8)

We write 
(η, η′) = 
X (η, η′).

(e) For A ⊆ X , the communication level set between η, η′ ∈ A inside A is

SA(η, η′) =
{
ζ ∈ A : ∃ω : η→ η′, ω ⊆ A, ω � ζ :

max
ξ∈ω

H(ξ) = H(ζ) = 
A(η, η′)
}
. (1.3.9)

We write S(η, η′) = SX (η, η′).

(f) For η ∈ X , the law of (ηt )t≥0 starting from η0 = η is denoted by Pη. For
A ⊆ X ,

τA = inf{t > 0 : ηt ∈ A, ∃ 0 < s < t : ηs �= η0} (1.3.10)

is the first hitting/return time of A.

Each configuration can be decomposed into maximally connected components,
called clusters. The following sets of configurations will determine the geometry
of the critical droplet, as will become clear later on.

Definition 1.3.2. (a) Let Q denote the set of configurations having one cluster
anywhere in �− consisting of an (�c − 1) × �c quasi-square with a single
protuberance attached to one of its sides.

(b) Let D denote the set of configurations that can be reached from some configu-
ration in Q via a U -path, i.e.,

D =
{
η′ ∈ Vnc : ∃ η ∈ Q : H(η) = H(η′), 
Vnc

(η, η′) ≤ H(η)+ U
}
,

(1.3.11)

where nc = �c(�c − 1)+ 1 is the volume of the clusters in Q.
(c) Let C∗ = Dfp, where (·)fp denotes addition of a free particle anywhere in �

(see Fig. 2).
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Fig. 2. A canonical critical droplet: an element of Qfp ⊆ Dfp = C∗

(d) Let


∗ = H(C∗) = H(Dfp) = H(D)+� = H(Q)+�

= −U [(�c − 1)2 + �c(�c − 2)+ 1]+�[�c(�c − 1)+ 2] (1.3.12)

= 2U [�c + 1]− (2U −�)[�c(�c − 1)+ 2]

denote the energy of the configurations in C∗.
As we will see shortly, Q plays the role of the set of canonical protocritical

droplets for the nucleation, D ⊇ Q the set of protocritical droplets, and C∗ the set
of critical droplets. Think of D as the set of configurations the dynamics can reach
after hitting Q before the creation of the next free particle in ∂−� (which takes
a time e�β � eUβ ). This particle moves the configuration into C∗ and completes
the formation of the critical droplet (= critical cluster + free particle) that triggers
the nucleation. If subsequently the free particle moves to the critical cluster and
attaches itself properly (i.e., in a corner), then the dynamics has “moved over the
hill” and proceeds to fill �−.

1.3.3. Nucleation time and critical droplets

Let

� = {η ∈ X : η(x) = 0 ∀ x ∈ �}, (1.3.13)

� = {η ∈ X : η(x) = 1 ∀ x ∈ �−, η(x) = 0 ∀ x ∈ ∂−�},
denote the configurations where � is empty, respectively, �− is full and ∂−� is
empty. We assume that � is so large that

H(�) < H(�) = 0. (1.3.14)
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In this case, � is the global minimum of H . The main result known about nucleation
in two dimensions reads as follows.

Theorem 1.3.3. (den Hollander, Olivieri, and Scoppola [9], Theorem 1.53 and
Proposition 4.24)

(i) 
(�, �) = 
∗ and S(�, �) ⊇ C∗.
(ii)

lim
β→∞

P�
(
e(
∗−δ)β < τ� < e(
∗+δ)β

)
= 1 ∀ δ > 0. (1.3.15)

(iii)

lim
β→∞

P�(τC∗ < τ� | τ� < τ�) = 1. (1.3.16)

Theorem 1.3.3(i) identifies 
∗ as the communication height for the nucleation and
C∗ as a subset of the communication level set for the nucleation. Theorem 1.3.3(ii)
identifies the nucleation time to exponential order in β, with exponent 
∗. Theorem
1.3.3(iii) states that C∗ is a gate for the nucleation.

1.4. Sharp description of nucleation in two dimensions

1.4.1. Goal and background

The goal of the present paper is to sharpen Theorem 1.3.3 in two ways:

(I) Equation (1.3.11) defines D as a certain neighborhood of Q defined in terms
of energies and communication heights. We will describe the configurations
in D geometrically and elaborate on the gate structure of C∗ = Dfp.

(II) We will sharpen (1.3.15) by computing the average nucleation time up to a
multiplicative factor that tends to one as β → ∞ and by showing that the
limit law is exponential. This will require the knowledge obtained in (I).

To achieve (II), we will apply the potential theoretic approach to metastability
developed in Bovier, Eckhoff, Gayrard, and Klein [5] and further exposed in Bovier
[3]. There it was shown that, for reversible Markov processes exhibiting metasta-
bility, the computation of average metastable exit times and of corresponding small
eigenvalues of the generator reduces to the computation of certain capacities. The
advantage of this reduction is that the variational representation of capacities given
through the Dirichlet form allows for a sharp computation of these capacities up to
multiplicative errors that tend to one as the small parameters in the theory tend to
zero. Roughly speaking, the reason why this happens is that in metastable systems
the full Dirichlet form effectively reduces to a Dirichlet form involving only a tiny
fraction of the state space, namely, the communication level set and its immediate
vicinity.

In Bovier and Manzo [6] it was shown that this situation arises for the Ising
model with Glauber dynamics in finite volume in the limit of low temperature.
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For that model the situation turns out to be relatively simple, because the com-
munication level set is completely disconnected, implying that the full Dirichlet
form reduces to a sum of zero-dimensional Dirichlet forms. We will show that in
our model the same approach can be followed, even though the structure of the
communication level set is far more complicated. In particular, in our model this
set contains plateaus, wells embedded in these plateaus, and dead-ends. Thus, the
reduced Dirichlet forms remain multi-dimensional. However, we will be able to
express them in terms of certain hitting probabilities of simple random walk. The
latter will turn out to be sufficiently manageable so as to allow for a computation
of the asymptotic behavior of the reduced Dirichlet forms as �→ Z

2.
The idea behind the potential theoretic approach is explained in Section 3.3.

Certain specific geometric information is needed for this approach to work, which
is gathered in Section 2, but this information is relatively limited.

Throughout the paper we assume that �c ≥ 3. The case �c = 2 is trivial: Q = D
is the set of configurations consisting of three particles forming a cluster anywhere
in �−, C∗ is the set of configurations obtained from these by adding a free particle
anywhere in �, and 
∗ = −2U + 4�.

1.4.2. Geometry of protocritical droplets

Our first theorem identifies the full geometry of the configurations in D (see Fig.
3) and will be proved in Section 2.2.

Theorem 1.4.1. D = D̄ ∪ D̃, where

– D̄ is the set of configurations having one cluster anywhere in �− consisting of
an (�c−2)× (�c−2) square with four bars of lengths k̄i , i = 1, 2, 3, 4, attached
to its four sides satisfying

1 ≤ k̄i ≤ �c − 1,
∑

i

k̄i = 3�c − 3; (1.4.1)

– D̃ is the set of configurations having one cluster anywhere in �− consisting of
an (�c − 3) × (�c − 1) rectangle with four bars of lengths k̃i , i = 1, 2, 3, 4,
attached to its four sides satisfying

1 ≤ k̃i ≤ �c − 1,
∑

i

k̃i = 3�c − 2. (1.4.2)

Remark. In the first half of Theorem 1.4.1, the four bars may be placed anywhere
in the ring around the square, i.e., anywhere in the union of the two rows, the two
columns and the four corners forming the outer layer of the square.A total of 3�c−3
particles must be accomodated in this ring in such a way that each side of the ring,
i.e., each row or column with its two adjacent corners, contains precisely one bar.
Thus, a bar may include a corner of the ring provided the neighboring bar also
includes this corner. Similarly for the second half of Theorem 1.4.1.

Compare Definitions 1.3.2(a) and 1.4.1. Write Q = Q̄ ∪ Q̃, where
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Fig. 3. Configurations in Q̄ and D̄ for �c = 14. A similar picture applies for Q̃ and D̃ with
a 11× 13 rectangle in the center

– Q̄ are those configurations where the single particle is attached to one of the
longest sides of the (�c − 1)× �c quasi-square.

– Q̃ are those configurations where the single particle is attached to one of the
smallest sides of the (�c − 1)× �c quasi-square.

Then Q̄ consists of precisely those configurations in D̄ where one k̄i equals 1 and
the others are maximal. Similarly, Q̃ consists of precisely those configurations in
D̃ where one k̃i equals 1 and the others are maximal. We will see in Section 2.2
that the configurations in D̄, D̃ arise from those in Q̄, Q̃ via a motion of particles
along the border of the droplet. This property is special for Kawasaki dynamics.

1.4.3. Minimal gates and entrance distribution

To formulate our sharpening of Theorem 1.3.3 we need some more definitions.

Definition 1.4.2. Fix η, η′ ∈ X .

(a) The set of paths realizing the minimax in 
(η, η′) (recall (1.3.8)) is denoted
by (η→ η′)opt .

(b) A set W ⊆ X is called a gate for η→ η′ if W ⊆ S(η, η′) and ω ∩W �= ∅ for
all ω ∈ (η→ η′)opt .

(c) A set W ⊆ X is called a minimal gate for η→ η′ if it is a gate for η→ η′ and
for any W ′ � W there exists an ω′ ∈ (η→ η′)opt such that ω′ ∩W ′ = ∅.

(d) A priori there may be several (not necessarily disjoint) minimal gates. The
union of all the minimal gates

G(η, η′) =
⋃

W minimal gate for η→η′
W (1.4.3)

is called the essential gate for η→ η′.
(e) The configurations in S(η, η′) \ G(η, η′) are called dead-ends.
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The notion of minimal gate for �→ � is important: on its way from � to � the
dynamics passes through each of the minimal gates for �→ � with a probability
tending to one as β →∞, i.e., (1.3.16) holds with C∗ replaced by any of the min-
imal gates, or any union of them. Thus, the essential gate G(�, �) plays the role
of the minimal set of configurations in S(�, �) the dynamics sees on its way from
� to �. For an elaborate dicussion of essential gates and their role for metastable
transition times, we refer the reader to Manzo, Nardi, Olivieri and Scoppola [10].

Our second theorem extends Theorem 1.3.3(i–ii) and will be proved in Section
3.5.

Theorem 1.4.3. (i) S(�, �) � G(�, �), S(�, �) � C∗.
(ii)

lim
β→∞

P�(τQ < τC∗ < τ� | τ� < τ�) = 1. (1.4.4)

(iii)

lim
β→∞

P�(ητC∗− = η | τC∗ < τ�) = 1

|D| ∀ η ∈ D (1.4.5)

with τC∗− the time just prior to τC∗ .

Theorem 1.4.3(i) shows that S(�, �) has dead-ends and is larger than the set of crit-
ical droplets C∗. Theorem 1.4.3(ii) says that Q is hit prior to C∗. Theorem 1.4.3(iii)
says that the entrance distribution of C∗ is uniform, i.e., the protocritical droplets
in D, seen just prior to the creation of the free particle in ∂−�, occur with equal
probability. (Incidentally, the exit distribution is not uniform and turns out to be
hard to compute.)

In Section 3.5 we will see that neither G(�, �) ⊆ C∗ nor C∗ ⊆ G(�, �). We
will identify a set C∗min � C∗ that is a union of minimal gates, each consisting of a
protocritical droplet and a free particle in (part of) a ring around the protocritical
droplet. Clearly, Cmin ⊆ G(�, �). The inequality will turn out to be strict. Since
we have no full classification of the minimal gates, we have no full identification
of G(�, �). This lack is due to motion of particles along the border of the droplet.

1.4.4. Sharp asymptotics

Our third and fourth theorem extend Theorem 1.3.3(iii) and will be proved in Sec-
tions 3.3–3.4.

Theorem 1.4.4. There exists a constant K = K(�, �c) such that

E�(τ�) = Ke
∗β [1+ o(1)] β →∞. (1.4.6)

Moreover,

P� (τ� > t E�(τ�)) = [1+ o(1)] e−t[1+o(1)], t ≥ 0, β →∞.

(1.4.7)
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Theorem 1.4.4 provides the sharp asymptotics for the nucleation time:

lim
β→∞

P�(τ� > tKe
∗β) = e−t , t ≥ 0. (1.4.8)

The exponential law is typical for “success only occurs after many unsuccessful
attempts”.

In Section 3.3 we will derive a representation for the constant K in terms of
certain capacities associated with two-dimensional simple random walk. This rep-
resentation will depend on the geometry of C∗ and its immediate vicinity, i.e., those
η ∈ X \ C∗ for which there is an η′ ∈ C∗ such that η ↔ η′. In Section 2.3 we
will see that this immediate vicinity is actually rather complex, due to the fact that
when the free particle attaches itself improperly to the protocritical droplet (i.e.,
not in a corner) it triggers a motion of particles along the border of the droplet.
Consequently, no easily computable formula for K is available.

It turns out, however, that the behavior of K for large � can be computed
explicitly.

Theorem 1.4.5. As �→ Z
2,

K(�, �c) ∼ 1

4πN(�c)

log |�|
|�| (1.4.9)

(∼ means that the ratio of the left-hand and the right-hand side tends to 1) with

N(�c) = 1

3
(�c − 1)�2

c(�c + 1) (1.4.10)

the cardinality of D = D(�, �c) modulo shifts.

The intuition behind Theorem 1.4.5 is as follows. The average time it takes for the
dynamics to enter C∗ when starting from � is

1

|D|
1

|∂�∗,in| e

∗β [1+ o(1)] β →∞, (1.4.11)

where |D| counts the number of protocritical droplets and |∂�∗,in| counts the num-
ber of directed bonds from ∂+� to ∂−� along which the free particle can be created
(recall (1.2.2)). Let π(�, �c) be the probability (averaged w.r.t. the uniform distri-
bution for the protocritical droplet on D and the uniform distribution for the free
particle entering on ∂�∗,in) that the free particle moves from ∂−� to the protocrit-
ical droplet and attaches itself properly (i.e., in a corner). This is the probability
that the dynamics after it enters C∗ moves onwards to � rather than returns to �.
Then

1

π(�, �c)
[1+ o(1)] β →∞ (1.4.12)

is the average number of times a free particle just created in ∂−� attempts to move
to the protocritical droplet and attach itself properly before it finally manages to do
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so. The average nucleation time is the product of (1.4.11) and (1.4.12), and so we
conclude that

K(�, �c) = 1

|D| |∂�∗,in|π(�, �c)
. (1.4.13)

Now, we have

|D| ∼ |�|N(�c) �→ Z
2. (1.4.14)

Furthermore, we have

|∂�∗,in|π(�, �c) ∼ 4π

log |�| �→ Z
2. (1.4.15)

Indeed, as we will see in Section 3.4, the right-hand side of (1.4.15) is the probabil-
ity for large � that a particle detaching itself from the protocritical droplet reaches
∂−� before re-attaching itself. Due to the recurrence of simple random walk in
two dimensions, for large � this probability is independent of the shape and the
location of the protocritical droplet, as long as it is far from ∂−�. By reversibil-
ity, the reverse motion has the same probability, which explains (1.4.15). Combine
(1.4.13–1.4.15) to get (1.4.9).

If the free particle attaches itself ‘improperly’ to the protocritical droplet, then
either it may again detach itself or it may cause some motion of particles along
the border of the droplet, after which another particle may detach itself, possibly
leaving behind a different protocritical droplet. However, since for large � a free
particle has a small probability to escape from the protocritical droplet and return to
∂�, it must eventually attach itself ‘properly’. We refer to Section 2.3.2 for details.

The asymptotics in (1.4.9) does not depend on the shape of �, e.g. it would be
the same if � were a large circle rather than a large square.

1.5. Extension to three dimensions

The metastable regime, replacing (1.3.1), is

� ∈ (U, 3U), β →∞, (1.5.1)

and we assume that

2U

3U −�
/∈ N. (1.5.2)

The analogue of Definition 1.3.2 reads (see den Hollander, Nardi, Olivieri, and
Scoppola [8], Eqs. (1.3.7), (1.3.11), (2.0.15), (2.0.17), (2.0.18) and (2.0.21)):

Definition 1.5.1. (a) Let Q denote the set of configurations having one cluster
anywhere in �− consisting of an (mc − 1)× (mc − δc)×mc quasi-cube with,
attached to one of its faces, an (�c − 1) × �c quasi-square with, attached to
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Fig. 4. An element of Qfp ⊆ Dfp = C∗ for �c = 10, mc = 20 and δc = 0

one of its sides, a single particle. Here, δc ∈ {0, 1} depends on the arithmetic
properties of U and �, while

�c =
⌈

U

3U −�

⌉
, mc =

⌈
2U

3U −�

⌉
, (1.5.3)

are the two-dimensional critical droplet size on a face, respectively, the three-
dimensional critical droplet size, replacing (1.3.3). Note that mc ∈ {2�c −
1, 2�c}.

(b) For � ∈ (2U, 3U), let D denote the set of configurations that can be reached
from some configuration in Q via a 2U -path, i.e.,

D =
{
η′ ∈ Vnc : ∃ η ∈ Q : H(η) = H(η′), 
Vnc

(η, η′) ≤ H(η)+ 2U
}
,

(1.5.4)

where nc = mc(mc−δc)(mc−1)+�c(�c−1)+1 is the volume of the clusters
in Q. For � ∈ (U, 2U), use U instead of 2U in (1.5.4).

(c) Let C∗ = Dfp denote the set of configurations obtained from D by adding a
free particle anywhere in � (see Fig. 4).

(d) Let


∗ = H(C∗) = H(Dfp) = H(D)+� = H(Q)+�

= U [mc(mc − δc)+mc(mc − 1)+ (mc − δc)(mc − 1)+ 2�c + 3]

−(3U −�)[mc(mc − δc)(mc − 1)+ �c(�c − 1)+ 2] (1.5.5)

denote the energy of the configurations in C∗.

As is shown in den Hollander, Nardi, Olivieri, and Scoppola [8], Theorem 1.5.1,
the results in Theorem 1.3.3 carry over from two to three dimensions. Unfortunately,
we are not able to identify the full geometry of D, and hence of C∗ = Dfp, because
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the motion of particles along the border of the droplet is much more complex in
three than in two dimensions, i.e., the analogue of Fig. 3 is not fully understood (see
e.g. [8], Figure 7). Consequently, we have no result extending Theorems 1.4.1. The-
orem 1.4.3 carries over. The following two theorems, proved in Sections 4.2–4.3,
extend Theorems 1.4.4–1.4.5.

Theorem 1.5.2. There exists a constant K = K(�, �c, mc, δc) such that

E�(τ�) = Ke
∗β [1+ o(1)] β →∞. (1.5.6)

Moreover,

P� (τ� > t E�(τ�)) = [1+ o(1)] e−t[1+o(1)], t ≥ 0, β →∞. (1.5.7)

We will derive a representation for the constant K in terms of certain capacities
associated with three-dimensional simple random walk. As in two dimensions, this
representation is so complex that no easily computable formula for K is available.
We will deduce the following asymptotics, which is similar in spirit to the one
obtained in two dimensions but less complete.

Theorem 1.5.3. As �→ Z
3,

K(�, �c, mc, δc) ∼ 1

M(�c, mc, δc)N(�c, mc, δc)

1

|�| , (1.5.8)

where N(�c, mc, δc) is the cardinality of D = D(�, �c, mc, δc) modulo shifts, and
M(�c, mc, δc) satisfies the bounds

κ(mc − �√mc �) ≤ M(�c, mc, δc) ≤ κ(mc + 3) (1.5.9)

with κ(m) the capacity of the m×m×m cube for simple random walk on Z
3.

The interpretation of the asymptotic formula for K is similar as in two dimen-
sions. Instead of (1.4.13), we have

K = 1

|D| |∂�∗,in|π(�, �c, mc, δc)
(1.5.10)

with π(�, �c, mc, δc) the analogue of π(�, �c) in two dimensions (defined be-
low (1.4.11)). By the transience of simple random walk in three dimensions,
|∂�∗,in|π(�, �c, mc, δc) converges to a limit M(�c, mc, δc) as �→ Z

3.
The lower bound in (1.5.9) comes from the fact that all protocritical droplets

contain a cube of side length mc−√mc. The upper bound comes from the fact that
all protocritical droplets are contained in a cube of side length mc + 1 and that as
long as the free particle is at distance ≥ 2 from the protocritical droplet no border
motion is possible (as shown in Section 4.1). Since

κ(m) ∼ κm m→∞, (1.5.11)

with κ the capacity of the unit cube for standard Brownian motion on R
3, which

satisfies κ ∈ (2π, 2π
√

3), we know the asymptotics of M(�c, mc, δc) for mc large,
i.e., for � close to 3U .

We have no formula for N(�c, mc, δc) analogous to (1.4.10). It would be nice
to know its asymptotics for mc large.
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2. Geometry in two dimensions

In this section we collect the key geometric facts that underlie our analysis. In Sec-
tion 2.1 we introduce some geometric definitions. In Section 2.2 we prove Theorem
1.4.1, which identifies the full geometry of the set of protocritical droplets. In Sec-
tion 2.3 we obtain the structure of the communication level set for the nucleation.
In Section 2.4 we prove two global geometric facts that will be needed in Section
3.

2.1. Some geometric definitions

Free particles and 1-protuberances are defined as follows:

– For x ∈ �−, let NN(x) = {y ∈ �− : |y−x| = 1} be the set of nearest-neighbor
sites of x in �−.

– A free particle in η ∈ X is a site x ∈ η ∩ ∂−� or a site x ∈ η ∩ �− such
that

∑
y∈NN(x) η(y) = 0, i.e., a particle not in interaction with any other parti-

cle (remember from (1.1.3) that particles in the interior boundary ∂−� have no
interaction with particles in the interior �−).

– A 1-protuberance in η ∈ X is a site x ∈ η ∩�− such that
∑

y∈NN(x) η(y) = 1.
– A corner in η ∈ X is a site x ∈ �− such that

∑
y∈NN(x) η(y) ≥ 2. A corner in

η can be either occupied or vacant.

Given a configuration η ∈ X , consider the set C(η) ⊆ R
2 defined as the union

of the closed unit squares centered at the sites inside �− where η has a particle. The
maximal connected components C1, . . . , Cm, m ∈ N, of C(η) are called clusters
of η (two unit squares touching only at the corners are not connected). There is a
one-to-one correspondence between configurations η ⊆ �− and sets C(η). A con-
figuration η ∈ X is characterized by a set C(η), depending only on η ∩ �−, plus
possibly a set of particles in ∂−�, namely, η ∩ ∂−�. Thus, we are actually identi-
fying two different objects: a configuration η ∈ X and the pair (C(η), η ∩ ∂−�).

For η ∈ X , let |η| be the number of particles in η, γ (η) the Euclidean boundary
of C(η), called the contour of η, and |γ (η)| the length of γ (η), i.e., the number of
“broken bonds” in η. Then the energy associated with η is given by

H(η) = U

2
|γ (η)| − (2U −�)|η ∩�−| +�|η ∩ ∂−�|. (2.1.1)

For convenience we identify a configuration η ∈ X with its support supp(η) =
{x ∈ � : η(x) = 1} and write x ∈ η to indicate that η has a particle at x.

Throughout the paper we assume that the square box � ⊆ Z
2 is large enough

to amply accommodate the critical droplet (say, it has side length ≥ 2�c).

– An �1× �2 rectangle is a union of closed unit squares centered at the sites inside
�− with side lengths �1, �2 ≥ 1. We use the convention �1 ≤ �2 and collect
rectangles in equivalence classes modulo translations and rotations.

– A bar is a 1× k rectangle with k ≥ 1. A bar is called a row or a column if it fills
a side of a rectangle.
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– A corner of a rectangle is an intersection of two bars attached to neighboring
sides of the rectangle.

– A quasi-square is an �× (�+ δ) rectangle with � ≥ 1 and δ ∈ {0, 1}. A square
is a quasi-square with δ = 0.

– If η is a configuration with a single contour, then we denote by CR(η) the rect-
angle circumscribing η, i.e., the smallest rectangle containing η. We write

∂−CR(η) = {x ∈ CR(η) : ∃ y /∈ CR(η) : |y − x| = 1},
∂+CR(η) = {x /∈ CR(η) : ∃ y ∈ CR(η) : |y − x| = 1}, (2.1.2)

to denote the interior, respectively, external boundary of CR(η), and put

CR−(η) = CR(η) \ ∂−CR(η),

CR+(η) = CR(η) ∪ ∂+CR(η). (2.1.3)

Note that here we identify particles with unit squares.
– Given η such that η ⊇ CR−(η), we say that it is possible to move a particle from

row rα(η) ⊆ ∂−CR(η) to row rα′(η) ⊆ ∂−CR(η) via corner cα,α′(η) ∈ ∂−CR(η)

if (see Figs 5 and 6 below)

|cαα′(η) ∩ η| = 0, |rα(η) ∩ η| ≥ 1, 1 ≤ |rα′(η) ∩ η| ≤ |rα′(η)|, (2.1.4)

where αα′ ∈ {ne, nw, se, sw} with n = north, s = south, etc. By convention,
corners are not part of rows. If equality holds in the last inequality, then we need
to place the bar in the row opposite to rα(η), say rα′′(η), a distance 1 away from
cα′α′′(η) in order to be able to accommodate the shift of a bar in rα′(η) that is
necessary to accomodate the particle that moves around the corner.

2.2. Protocritical droplets: Proof of Theorem 1.4.1

The proof of Theorem 1.4.1 will be given in two steps:

(i) D̄ ∪ D̃ ⊆ D,

(ii) D̄ ∪ D̃ ⊇ D. (2.2.1)

Proof of (i). Recall the definition of U -path in (1.3.5) and the definitions of Q̄, Q̃
and D̄, D̃ in Section 1.4. To prove (i) we must show that for all η ∈ D̄ ∪ D̃,

(i1) H(η) = H(Q̄ ∪ Q̃),

(i2) ∃ω : Q̄ ∪ Q̃→ η : max
i

H(ωi) ≤ H(Q̄ ∪ Q̃)+ U, |ωi | = nc for all i.

(2.2.2)

��
Proof of (i1). Any η ∈ D̄ ∪ D̃ has a single contour γ (η) inside �− of length
|γ (η)| = 4�c and volume |η ∩�−| = �c(�c − 1)+ 1 = nc, while |η ∩ ∂−�| = 0
(see Fig. 3). Thus, by (2.1.1), H is constant on D̄ ∪ D̃. Since Q̄∪ Q̃ ⊆ D̄ ∪ D̃, this
completes the proof of (i1). ��
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Fig. 5. Translation of a bar on a side of a rectangle at cost U

Fig. 6. Motion of a particle around a corner of a rectangle at cost U

Proof of (i2). Note that, because Q̄ and Q̃ are connected via a U -path (disconnect
the 1-protuberance and re-attach it to one of the neighboring sides of the (�c−1)×�c

quasi-square), we have

D = {η ∈ X : ∃U -path from Q̄ to η} = {η ∈ X : ∃U -path from Q̃ to η}. (2.2.3)

First, we prove that for any η ∈ D̄ there exists an ω : Q̄ → η such that
maxi H(ωi) ≤ H(Q̄) + U and |ωi | = nc for all i. We start the path from some
ζ ∈ Q̄. Then, recalling the labelling in Theorem 1.4.1, we have

– k̄1(ζ ) = 1 contained in re(ζ );
– k̄2(ζ ) = �c − 2 contained in rn(ζ );
– k̄3(ζ ) = k̄4(ζ ) = �c − 1 contained in rw(ζ ) ∪ cnw(ζ ) and rs(ζ ) ∪ csw(ζ ),

respectively.

Here, without loss of generality, we assume that the 1-protuberance is attached to
re(ζ ) and proceed anti-clockwise. Using the mechanism described in Figs. 5 and
6, we move k̄2(ζ )− k̄2(η) particles from rn(ζ ) to re(ζ ), one by one. After that we
move k̄3(ζ )− k̄3(η)+ k̄4(ζ )− k̄4(η) particles from rs(ζ )∪csw(ζ ) to re(ζ ). Finally,
we move k̄3(ζ )− k̄3(η) particles from rw(ζ )∪ cnw(ζ ) to rs(ζ )∪ csw(ζ ). The result
is a configuration η ∈ D̄.

Next, we prove that for any η ∈ D̃ there exists an ω : Q̃ → η such that
maxi H(ωi) ≤ H(Q̃)+U and |ωi ∩�| = nc for all i. We start the path from some
ζ ∈ Q̃. We have

– k̃1(ζ ) = 1 contained in re(ζ );
– k̃2(ζ ) = k̃4(ζ ) = �c − 1 contained in rn(ζ ) and rs(ζ );
– k̃3(ζ ) = �c − 1 contained in rw(ζ ) ∪ cnw(ζ ) ∪ csw(ζ ).

We move k̃2(ζ )− k̃2(η) particles from rn(ζ ) to re(ζ ). After that we move k̃3(ζ )−
k̃3(η) + k̃4(ζ ) − k̃4(η) particles from rs(ζ ) ∪ csw(ζ ) to re(ζ ). Finally, we move
k̃3(ζ ) − k̃3(η) particles from rw(ζ ) ∪ cnw(ζ ) to rs(ζ ) ∪ csw(ζ ). The result is a
configuration η ∈ D̃. This completes the proof of (i2). ��

Proof of (ii). By (2.2.2), all configurations in D̄ ∪ D̃ are connected via a U -path.

Since Q̄ ∪ Q̃ ⊆ D ∩ (D̄ ∪ D̃), in order to prove (ii) it suffices to show that D̄ ∪ D̃
cannot be exited via a U -path (recall (2.2.3)). ��
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Call a path clustering if all the configurations in the path consist of a single
cluster and no free particles. Below we will prove that for any η ∈ D̄ ∪ D̃ and any
η′ connected to η by a clustering U -path,

(a) CR(η′) = CR(η),

(b) η′ ⊇ CR−(η). (2.2.4)

What (2.2.4) says is that neither D̄ nor D̃ can be exited via a clustering U -path.
From this in turn we deduce that for any η ∈ D̄ ∪ D̃ and any η′ connected to η by
a U -path we must have that η′ ∈ D̄ ∪ D̃, which is what we wanted to prove. The
argument for the latter goes as follows. Detaching a particle costs 2U unless the
particle is a 1-protuberance, in which case the cost is U . The only configurations in
D̄∪ D̃ having a 1-protuberance are those in Q̄∪ Q̃ (recall the remarks made below
Theorem 1.4.1). If we detach the 1-protuberance from a configuration in Q̄ ∪ Q̃,
at cost U , then we obtain an (�c − 1)× �c quasi-square plus a free particle. Since
now only moves at zero cost are allowed, only the free particle can move. Since in
a U -path the particle number is conserved, the only way to regain U and complete
the U -path is to re-attach the free particle to the quasi-square, in which case we
return to Q̄ ∪ Q̃.

Remark. Note that the motion of particles along the border a droplet may shift the
droplet (see Figs. 5 and 6). Indeed, from any configuration in Q̄ ∪ Q̃ the 1-protu-
berance may detach itself and re-attach itself to a different side of the quasi-square
or rectangle (recall Fig. 3). Thus, the U -path may shift the protocritical droplet to
anywhere in �−.

Proof of (a). Starting from any η ∈ X , it is geometrically impossible to modify
CR(η) without detaching a particle. ��
Proof of (b). Fix η ∈ D̄ ∪ D̃. The proof is done in two steps.

1. Let us first consider clustering U -paths along which we do not move a particle
from CR−(η). Along such paths we only encounter configurations in D̄ ∪ D̃ or
configurations obtained from D̄ ∪ D̃ by breaking one of the bars in ∂−CR(η)

into two pieces, at cost U (because there is no particle outside CR(η) that can
help to lower the cost). From the latter only moves at zero cost are possible,
so no particle can be detached, and the only way to regain U and complete the
U -path is to restore a bar.

2. Let us next consider clustering U -paths along which we move a particle from
a corner of CR−(η). This move costs 2U , which exceeds U . The overshoot U

must be regained by letting the particle slide next to a bar that is attached to a
side of CR−(η) (see Fig. 7). Since there are never two bars attached to the same
side, we can at most gain U . This is why it is not possible to move a particle from
CR−(η) other than from a corner. From here only moves at zero cost are allowed.
There are no 1-protuberances present anymore, because only the configurations
in Q̄ ∪ Q̃ have a 1-protuberance. Thus, no particle outside CR−(η) can move,
except the one that just detached itself from CR−(η). This particle can move
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Fig. 7. Creation and motion of the hole at cost 0

Fig. 8. Dumb-bell shape of D = D̄ ∪ D̃ for U -paths

back, in which case we return to the same configuration η. In fact, all possible
moves at zero cost consist in moving the “hole” just created in CR−(η) along
the side of CR−(η), until it reaches the height of the top of the bar attached to
this side of CR−(η), after which it cannot advance anymore at zero cost (see
Fig. 7). All these moves do not change the energy, except the one that returns
the particle to its original position and regains U . ��
This proves our claim in (2.2.4), completes the proof of (ii) in (2.2.1), and hence

of Theorem 1.4.1.
We saw above that U -paths cannot exit D = D̄ ∪ D̃, but can make a crossover

between D̄ and D̃. This crossover can, however, only occur between Q̄ and Q̃. A
schematic picture of D therefore is given by Fig. 8.

2.3. Structure of the communication level set

2.3.1. Optimal paths

Most of this section is based on a line of argument in den Hollander, Nardi, Olivieri
and Scoppola [8]. We repeat this argument here because it is vital for understanding
the rest of the paper.

We begin by giving a precise description of (� → �)opt , the set of optimal
paths for the nucleation (recall Definition 1.4.2(a)).

Proposition 2.3.1. (den Hollander, Olivieri, and Scoppola [9], Proposition 4.24)

(i) 
(�, �) = 
∗.
(ii) S(�, �) ⊇ C∗.

Proof. The proof is different from that in [9], and follows [8].

(i) We prove that 
(�, �) ≤ 
∗ and 
(�, �) ≥ 
∗.
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(�, �) ≤ 
∗: All we need to do is to construct a path that connects � and �
without exceeding energy 
∗. This is done in three steps.

1. We first show that the configurations in Q are connected to � by a path that
stays below 
∗.

Lemma 2.3.2. For any η1pr ∈ Q there exists an ω : η1pr → � such that maxξ∈ω
H(ξ) < 
∗.

Proof. Fix η1pr ∈ Q. Note that, by (1.3.12), we have H(η1pr) = 
∗ − �. First,
we detach the 1-protuberance from the (�c − 1)× �c quasi-square, which costs U

and raises the energy to 
∗ −�+U(< 
∗), move the particle to the boundary of
the box, which costs nothing, and move it out of the box, which pays �. We are
then left with a quasi-square of energy


∗ − 2�+ U. (2.3.1)

Second, we detach a particle from a corner of the quasi-square, which costs 2U , and
move it out of the box, which pays �. Thus, the energy increases by 2U −� when
detaching and removing a particle from a corner of the quasi-square. We repeat this
operation another �c−3 times, each time picking particles from the bar on the same
shortest side. To guarantee that we never reach energy 
∗, we have the condition
that

(2U −�)k + 2U < 2�− U for 0 ≤ k ≤ �c − 3, (2.3.2)

or

3 ≤ �c <
U

2U −�
+ 1. (2.3.3)

The second inequality holds by the definition of �c in (1.3.3), the first inequality
by our exclusion of �c = 2 (recall the statement made just prior to Theorem 1.4.1).
Third, detaching the last particle costs U instead of 2U . To guarantee that we still
do not reach energy 
∗, we have the condition that

(2U −�)(�c − 2)+ U < 2�− U, (2.3.4)

which is weaker than (2.3.2) because 2U − � < U . Removal of the last particle
pays �, so that we arrive at energy

(
∗ − 2�+ U)+ (2U −�)(�c − 2)+ (U −�)

= 
∗ − 2�+ (2U −�)(�c − 1), (2.3.5)

which is strictly smaller than (2.3.1) by the second inequality in (2.3.3). Thus,
removal of a row of length �c − 1 from the (�c − 1)× �c quasi-square in η1pr ∈ Q
lowers the energy (see Fig. 9).

We now have a square of side length �c − 1. It is obvious that we can remove
further rows without encountering new conditions, until we reach �. ��
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Fig. 9. Cost of adding or removing a row of length �

2. For η1pr ∈ Q, let η2pr be the configuration obtained from η1pr by attaching
an extra particle next to the 1-protuberance, thereby forming a 2-protuberance.
We next show that η2pr is connected to � by a path that stays below 
∗.

Lemma 2.3.3. For any η1pr ∈ Q there exists an ω : η2pr → � such that maxξ∈ω
H(ξ) < 
∗.

Proof. Fix η1pr ∈ Q. Note that H(η2pr) = 
∗ − 2U . First, we create a particle,
which costs � and raises the energy to 
∗ − 2U +�(< 
∗), move it to the drop-
let, which costs nothing, and attach it next to the 2-protuberance, which pays 2U ,
thereby forming a bar of length 3. This operation pays 2U −�. We can repeat this
operation another �c− 3 times until the row is filled. By that time we have a square
of side length �c and energy


∗ − 2U − (2U −�)(�c − 2). (2.3.6)

Second, we create another particle and attach it anywhere to the square to form a
new 1-protuberance. This operation costs �− U . We must make sure that we can
still create a particle without reaching energy 
∗, which gives us the condition

(�− U)+� < 2U + (2U −�)(�c − 2), (2.3.7)

or

�c >
U

2U −�
, (2.3.8)

which holds by the definition of �c and the non-degeneracy hypothesis in (1.3.4).
Third, we create another particle and attach it next to the new 1-protuberance. This
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brings us to energy


∗ − U − (2U −�)�c, (2.3.9)

which is below the energy of η2pr by (2.3.8). It is obvious that we can add further
rows without encountering new conditions, until we reach �. ��
3. We can now conclude the proof of 
(�, �) ≤ 
∗ by constructing a “bridge”

between η1pr and η2pr that does not exceed 
∗. Namely, create a particle at the
boundary, which costs � and raises the energy to 
∗, move it to the droplet,
which costs nothing, and place it next to the 1-protuberance, which pays 2U .
The desired path ω : �→ � is realized by tracing the path in Lemma 2.3.2 in
the reverse direction, back from � to η1pr , going over the bridge from η1pr to
η2pr , and then following the path in Lemma 2.3.3 from η2pr to �. This ω will
be called the reference path through η for the nucleation.


(�, �) ≥ 
∗: The proof comes in three steps.

1. The first crucial ingredient in the proof is the following observation:

Lemma 2.3.4. Any ω ∈ (�→ �)opt must pass through a configuration consisting
of a single (�c − 1)× �c quasi-square somewhere in �−.

Proof. Any path ω : �→ � must cross the set V�c(�c−1). As shown in Alonso and
Cerf [1], Theorem 2.6, in V�c(�c−1) the unique (modulo translations and rotations)
configuration of minimal perimeter and hence of minimal energy is the (�c−1)×�c

quasi-square, which we denote by η and which has energy

H(η) = 
∗ − 2�+ U. (2.3.10)

All other configurations in V�c(�c−1) have energy at least 
∗−2�+2U . To increase
the particle number starting from any such configuration, we must create a particle
at cost �. But the resulting configuration would have energy 
∗ −�+ 2U(> 
∗)
and thus would lead to a path exceeding energy 
∗. ��
2. The second crucial ingredient in the proof is the following observation:

Lemma 2.3.5. Any ω ∈ (�→ �)opt must pass through Q.

Proof. Follow the path until it hits the set V�c(�c−1). According to Lemma 2.3.4,
the configuration in this set must be an (�c − 1)× �c quasi-square. Since we need
not consider any paths that return to the set V�c(�c−1) afterwards, a first step beyond
the quasi-square must be the creation of a new particle. This brings us to energy


∗ −�+ U. (2.3.11)

Before any new particle is created, we must lower the energy by at least U . The
obviously only possible way to do this is to move the particle to the quasi-square
and attach it to one of its sides, which reduces the energy to


∗ −� (2.3.12)

and gives us a configuration in Q. ��
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3. It now suffices to show that to reach � from Q we must reach energy 
∗. This
goes as follows. Starting from Q, it is impossible to reduce the energy without
lowering the particle number. Indeed, this follows from Alonso and Cerf [1],
Theorem 2.6, which asserts that the minimal energy in V�c(�c−1)+1 is realized
(although not uniquely) by the configurations in Q. Since any further move to
increase the particle number involves the creation of a new particle, the energy
must reach 
∗.

This completes the proof of Proposition 2.3.1(i).

(ii) Our final observation is the following:

Lemma 2.3.6. The set of configurations in V�c(�c−1)+1 that can be reached from �
by a path that stays below 
∗ and for which it is possible to add a particle without
exceeding 
∗ coincides with the set D defined in Definition 1.3.2(b).

Proof. From step 2 above it is clear that the definition of D precisely assures that
the assertion holds true. Indeed, by Lemma 2.3.5, any ω ∈ (� → �)opt crosses
V�c(�c−1)+1 in Q. Once it is in Q, before the arrival of the next particle, which
costs �, it can reach all configurations that have the same energy, the same particle
number, and can be reached at cost ≤ U < �. ��

By adding a particle to a configuration in D we arrive in C∗ = Dfp, the set
defined in Definition 1.3.2(c). This completes the proof of Proposition 2.3.1(ii). ��

We conclude the following:

Proposition 2.3.7. Any ω ∈ (� → �)opt passes first through Q, then possibly
through D \Q, and finally through C∗.
Proof. Combine Lemmas 2.3.5–2.3.6 and Proposition 2.3.1(i). ��

2.3.2. Motion on C∗

The next proposition will be important later on.

Proposition 2.3.8. (i) Starting from C∗ \ Qfp, the only transitions that do not
raise the energy are motions of the free particle, as long as the free particle
is at lattice distance ≥ 3 from the protocritical droplet.

(ii) Starting from Qfp, the only transitions that do not raise the energy are motions
of the free particle and motions of the 1-protuberance along the side of the
quasi-square where it is attached, as long as the free particle is at lattice dis-
tance≥ 3 from the protocritical droplet. When the lattice distance is 2, either
the free particle can be attached to the protocritical droplet or the 1-protuber-
ance can be detached from the protocritical droplet and attached to the free
particle, to form a quasi-square plus a dimer. From the latter configuration
the only transition that does not raise the energy is the reverse move.

(iii) Starting from C∗, the only configurations that can be reached by a path that
lowers the energy and does not decrease the particle number are those where
the free particle is attached to the protocritical droplet.
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Fig. 10. Good sites (G) and bad sites (B) for �c = 14

Proof. Obvious. The restriction in (i) that the free particle must be at lattice dis-
tance ≥ 3 from the protocritical droplet is needed for the following reason: If the
protocritical droplet is a configuration in D \Q and the free particle sits at lattice
distance 2 from a corner of a bar, diagonally opposite the particle that sits in the
corner of the bar, then at zero cost this particle may detach itself from the bar and
slide inbetween the quasi-square and the free particle. For (iii) note the following:
if we start from the configuration described above and slide the remaining particles
in the bar one by one, all at zero cost except the last one, which pays U , then we
reach a configuration where the free particle is attached to the protocritical droplet
with the bar shifted. ��

For η ∈ C∗, we write η = (η̂, x) with η̂ ∈ D the protocritical droplet and x ∈ �

the position of the free particle. Let us denote the configurations that can be reached
from η = (η̂, x) according to Proposition 2.3.8(iii) by (see Fig. 10)

– CG(η̂) if the particle is attached in ∂−CR(η̂).
– CB(η̂) if the particle is attached in ∂+CR(η̂),

Let

CG = ∪η̂∈D CG(η̂), CB = ∪η̂∈D CB(η̂). (2.3.13)

The next proposition shows that when we reach CG we have made it “over the hill”,
while when we reach CB we have not.

Proposition 2.3.9. (i) If η ∈ CG, then there exists an ω : η → � such that
maxξ∈ω H(ξ) < 
∗.

(ii) If η ∈ CB , then there are no ω : η→ � or ω : η→ � such that maxξ∈ω H(ξ) <


∗.

Proof. (i) If η ∈ CG, then its energy is either 
∗ − 2U or 
∗ − U , depending on
whether the particle was attached in a corner or as a 1-protuberance. In the latter
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Fig. 11. An example of a path from CB to �

case we can move the particle at no cost into a corner and gain an extra −U .
After that it is possible to create a new particle and re-attach it, which leads to
energy 
∗ − 2U − (2U −�). We can continue in this way, filling up all rows
in ∂−CR(η), until we reach either an �c × �c square or an (�c − 1)× (�c + 1)

rectangle, depending on whether η arose from D̄ or D̃ (recall Fig. 3). In the first
case we can proceed along the reference path for the nucleation constructed in
the proof of Proposition 2.3.1. In the latter case, however, we can connect to
this reference path as follows. The energy of the (�c − 1)× (�c + 1) rectangle
is 
∗ − 2U − (2U −�)(�c − 3). This is lower than 
∗ −�, because �c ≥ 3.
Create a particle, which costs �, and attach it to one of the longest sides of the
rectangle, which pays U . Now slide particles along the corner of the rectangle,
following the mechanism described in Figs. 5 and 6, until an �c × �c square is
reached. This costs U and keeps the energy below 
∗. From there again proceed
along the reference path for the nucleation.

(ii) If η ∈ CB , then H(η) = 
∗ − U , so as long as the energy stays below 
∗ it is
impossible to create a new particle before further lowering the energy. But there
are no moves available to lower the energy. The only moves available are those
where the particle that was last attached is moving along the side or is detached
again, which brings us back to C∗, or those starting a motion of particles along
the border of the droplet (as in Figs. 5 and 6), which may or may not bring us
back to C∗. In both cases the cost is U and the energy returns to 
∗.

An example of a path from CB to � that does not return to C∗ is obtained as
follows (see Fig. 11). Suppose that η̂ ∈ D is such that one bar completes one side of
∂−CR(η̂), and suppose that the free particle attaches itself on top of that bar, form-
ing a 1-protuberance. Then the energy is 
∗ − U . Slide this bar to the end of the
side it is attached to (at cost and gain U ) and slide the two bars on the neighboring
sides to the end as well (at cost and gain U ). Then the energy is again 
∗ −U . Now
move the shorter bar on top of the longer bar via a motion as in Fig. 6. When the last
particle of the bar is moved, it can be detached (at cost U ) and re-attached (at gain
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2U ). Then the energy is 
∗ − 2U . Now create a free particle (at cost �), move it to
the droplet (at cost 0), and attach it in a corner of the droplet (at gain 2U ). Continue
“downhill” in this way, adding on successive rows as in the reference path that was
used above, until � is reached. ��

Proposition 2.3.9(ii) shows that the configurations in CB are wells, i.e., their
energy is < 
∗, but to move to either � or � the energy must return to 
∗. The
configurations of the form “quasi-square plus dimer” described in (ii) in the proof of
Proposition 2.3.8 are elements of S(�, �) but not of C∗. Indeed, the only possible
move at zero cost is the one where the free particle jumps back to the quasi-square.
Thus, we see that

– C∗ is a union of plateaus, index by η̂ ∈ D; each plateau consists of a proto-
critical droplet η̂ and a collection of positions of the free particle, indexed by
� \ (η̂ ∪ ∂+η̂); each plateau has wells and dead-ends when the free particle is
close to the protocritical droplet.

This property is special for Kawasaki dynamics. We will not attempt to describe
the wells and dead-ends in full detail. For our sharp asymptotics of the average
nucleation time we will not need this detail.

2.3.3. Graph structure of the energy landscape

Let us summarize what we have shown so far:

Theorem 2.3.10. View X as a graph whose vertices are configurations and whose
edges connect communicating configurations. Let

– X ∗ be the subgraph of X obtained by removing all vertices η with H(η) > 
∗
and all edges incident to these vertices;

– X ∗∗ be the subgraph of X ∗ obtained by removing all vertices η with H(η) = 
∗
and all edges incident to these vertices;

– X� and X� be the connected components of X ∗∗ containing � and �, respec-
tively.

Then

(i) X� �= X�, and so X� and X� are disconnected in X ∗∗.
(ii) D ⊆ X�, CG ⊆ X�, CB ⊆ X ∗∗ \ (X� ∪ X�).

Propositions 2.3.7–2.3.9 and Theorem 2.3.10 will play a crucial role in Section
3.3, where we derive sharp estimates for the average nucleation time. We will see
that they are in fact all that is needed for these estimates.

2.4. Two global geometric facts

In Sections 2.2–2.3 we have analysed the geometry of the configurations on and
incident to C∗ that are relevant for the nucleation. This will be sufficient for the
computation of the average nucleation time. To make full use of the results of
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Bovier, Eckhoff, Gayrard, and Klein [5], we must establish two further facts, both
concerning the global geometry of the energy landscape.

Proposition 2.4.1 below shows that there are no valleys in the energy landscape
whose depth equals or exceeds the communication height between �, �.

Proposition 2.4.1. For all η ∈ X \ {�, �},

(η, {�, �})−H(η) < 
∗ = 
(�, �). (2.4.1)

Proof. This is the analogue of Proposition 3.4.6 in den Hollander, Nardi, Olivi-
eri, and Scoppola [8] for three dimensions. The proof can be carried over to two
dimensions verbatim. ��

Proposition 2.4.2 below shows that � is a proper metastable configuration
because it lies at the bottom of its valley:

Proposition 2.4.2. If η ∈ X \� is such that


(η, �) ≤ 
(η, �), (2.4.2)

then H(η) > H(�)0.

Proof. Recall that nc = �c(�c − 1)+ 1. Define

V≤nc =
⋃

0≤n≤nc

Vn, V>nc = X \ V≤nc . (2.4.3)

First, we claim that if η satisfies (2.4.2) and H(η) ≤ 0, then η ∈ V≤nc .
Indeed, since 
(η, {�, �}) = 
(η, �) ∧ 
(η, �), it follows from (2.4.1–2.4.2)
that 
(η, �) < 
∗ +H(η). So, if H(η) ≤ 0, then 
(η, �) < 
∗. But in the proof
of Proposition 2.3.1(i) we have shown that 
(η, �) ≥ 
∗ for all η ∈ V>nc (nc is
the volume of the clusters in D).

Second, we claim that � is the only configuration in V≤nc with zero energy,
while all other configurations have strictly positive energy. Indeed, inserting the
isoperimetric inequality

|η ∩�−| ≤
(

γ (η)

4

)2

∀ η �= � (2.4.4)

into (2.1.1), we get

H(η) ≥ U

2
|γ (η)| − (2U −�)|η ∩�−|

≥ U

2
4
√
|η ∩�−| − (2U −�)|η ∩�−|

= (2U −�)
√
|η ∩�−|

(
2

U

2U −�
−

√
|η ∩�−|

)
(2.4.5)

> (2U −�)
√
|η ∩�−|

(
2(�c − 1)−

√
�c(�c − 1)+ 1

)

> (2U −�)
√
|η ∩�−| (�c − 1) > 0.

��
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3. Average nucleation time in two dimensions

In this section we analyze the average nucleation time. Section 3.1 recalls the defini-
tion of Dirichlet form and capacity, and provides an a priori estimate for capacities
between arbitrary sets. Section 3.2 shows that {�, �} is a metastable pair in the
proper sense, and provides the link between the average nucleation time and the
capacity of the pair {�, �}. Section 3.3 contains the proof of Theorem 1.4.4 in
two steps: (1) a priori estimates of the equilibrium potential associated with the
capacity of the pair {�, �}; (2) reduction of the Dirichlet form for this capacity to
one involving simple random walk. Section 3.4 gives the proof of Theorem 1.4.5,
Section 3.5 of Theorem 1.4.3.

3.1. Dirichlet form and capacity

In the proof of Theorem 1.4.4, a key role is played by the Dirichlet form

Eβ(h) = 1

2

∑

η,η′∈X
µβ(η)cβ(η, η′)[h(η)− h(η′)]2, h : X → [0, 1], (3.1.1)

where µβ is the Gibbs measure defined in (1.1.5) and cβ are the transition rates
of the Kawasaki dynamics defined in (1.2.6). Given two non-empty disjoint sets
A, B ⊆ X , the capacity of the pair A, B is defined by

CAPβ(A, B) = min
h : X→[0,1]

h|A≡1, h|B≡0

Eβ(h), (3.1.2)

where h|A ≡ 1 means that h(η) = 1 for all η ∈ A and h|B ≡ 0 means that
h(η) = 0 for all η ∈ B. The right-hand side of (3.1.2) has a unique minimizer
h∗A,B, called the equilibrium potential of the pair A, B, given by

h∗A,B(η) = Pη(τA < τB), η ∈ X \ (A ∪ B) (3.1.3)

(recall (1.3.10)). This is the solution of the equation

(cβh)(η) = 0, η ∈ X \ (A ∪ B),

h(η) = 1, η ∈ A, (3.1.4)

h(η) = 0, η ∈ B,

with (cβh)(η) =∑
η′∈X cβ(η, η′)h(η′). Moreover,

CAPβ(A, B) =
∑

η∈A
µβ(η) cβ(η, X \ η) Pη(τB < τA) (3.1.5)

with cβ(η, X \η) =∑
η′∈X \η cβ(η, η′) the rate of moving out of η. This rate enters

because τA is the first hitting time of A after the initial configuration is left (recall
(1.3.10)). Note from (1.2.7) and (3.1.1–3.1.2) that

CAPβ(A, B) = CAPβ(B, A). (3.1.6)

Note from (3.1.5) that small capacity means “hand for the dynamics to cross over.”
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The following elementary estimate will be important. Here write 
(A, B)=
minη∈A,η′∈B 
(η, η′) for the communication height between the pair A, B.

Lemma 3.1.1. For every non-empty disjoint A, B ⊆ X there exist constants 0 <

C1 ≤ C2 <∞ (depending on A, B) such that for all β,

C1 ≤ eβ
(A,B) Zβ CAPβ(A, B) ≤ C2. (3.1.7)

Proof. The proof uses basic properties of communication heights.

Upper bound: The upper bound is obtained from (3.1.2) by picking h = 1K(A,B)

with

K(A, B) = {η ∈ X : 
(η, A) ≤ 
(η, B)}. (3.1.8)

To see why, the key observation is that if η → η′ is a transition from K(A, B) to
X \K(A, B), then

(1) H(η′) < H(η),

(2) H(η) ≥ 
(A, B).
(3.1.9)

To see (1), suppose that H(η′) ≥ H(η). Clearly,

H(η′) ≥ H(η) ⇐⇒ 
(η′, F) = 
(η, F) ∨H(η′) ∀F ⊆ X . (3.1.10)

But η ∈ K(A, B) tells us that 
(η, A) ≤ 
(η, B), hence 
(η′, A) ≤ 
(η′, B) by
(3.1.10), and hence η′ ∈ K(A, B), which is a contradiction.

To see (2), note that (1) implies the reverse of (3.1.10):

H(η) ≥ H(η′) ⇐⇒ 
(η, F) = 
(η′, F) ∨H(η) ∀F ⊆ X . (3.1.11)

Trivially, 
(η, B) ≥ H(η). We claim that equality holds. Indeed, suppose that
equality fails. Then we get

H(η) < 
(η, B) = 
(η′, B) < 
(η′, A) = 
(η, A), (3.1.12)

where the two equalities come from (3.1.11), while the second inequality uses that
η′ ∈ X \ K(A, B). Thus, 
(η, A) > 
(η, B), which contradicts η ∈ K(A, B).
From 
(η, B) = H(η) we obtain 
(A, B) ≤ 
(A, η) ∨ 
(η, B) = 
(η, B) =
H(η), which proves (2).

Combining (3.1.9) with (1.1.5), (1.2.6) and (1.2.7), we find that

µβ(η)cβ(η, η′) ≤ 1

Zβ

e−β
(A,B) ∀ η ∈ K(A, B), η′ ∈ X \K(A, B).

(3.1.13)

Hence

CAPβ(A, B) ≤ Eβ(1K(A,B)) ≤ C2
1

Zβ

e−β
(A,B) (3.1.14)

with C2 = |{(η, η′) : η ∈ K(A, B), η′ ∈ X \K(A, B)}|.
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Lower bound: The lower bound is obtained by picking any pathω = (ω0, ω1, . . . ,

ωK) that realizes the minimax in 
(A, B) and ignore all the transitions that are not
in this path, i.e.,

CAPβ(A, B) ≥ min
h : ω→[0,1]

h(ω0)=1,h(ωK )=0

Eω
β (h), (3.1.15)

where the Dirichlet form Eω
β is defined as Eβ in (3.1.1) but with X replaced by

ω. Due to the one-dimensional nature of the set ω, the variational problem in the
right-hand side can be solved explicitly by elementary computations. One finds that
the minimum equals

M =
[

K−1∑

k=0

1

µβ(ωk)cβ(ωk, ωk+1)

]−1

, (3.1.16)

and is uniquely attained at h given by

h(ωk) = M

k−1∑

l=0

1

µβ(ωl)cβ(ωl, ωl+1)
, k = 0, 1, . . . , K. (3.1.17)

We thus have, (recall (1.2.6–1.27))

CAPβ(A, B) ≥ M

≥ 1

K
min

k=0,1,... ,K−1
µβ(ωk)cβ(ωk, ωk+1)

= 1

K

1

Zβ

min
k=0,1,... ,K−1

e−β[H(ωk)∨H(ωk+1)] (3.1.18)

= C1
1

Zβ

e−β
(A,B)

with C1 = 1/K . ��
Lemma 3.1.1 is a typical a priori bound for capacities. In particular, the use of

one-dimensional subgraphs is a tool that with little effort produces rough estimates,
which can be lifted to sharp estimates with more effort, as we will see later on.

3.2. Metastable pair, link between average nucleation time and capacity

In Bovier, Eckhoff, Gayrard, and Klein [5] metastability is defined in terms of
properties of capacities, namely:

Definition 3.2.1. Consider a family of Markov chains, indexed by β, on a finite
state space X . A set M ⊆ X is called metastable if

lim
β→∞

maxη/∈M µβ(η)[CAPβ(η, M)]−1

minη∈M µβ(η)[CAPβ(η, M \ η)]−1 = 0. (3.2.1)
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For our model we have:

Lemma 3.2.2. The set {�, �} is metastable in the sense of Definition 3.2.1.

Proof. The numerator in (3.2.1) can be bounded above by e(
∗−δ)β/C1, via Propo-
sition 2.4.1 and Lemma 3.1.1. The denominator, on the other hand, can be bounded
below by e
∗β/C2 (the minimum being attained at �). Therefore the ratio is
bounded above by e−δβ(C2/C1). ��

Lemma 3.2.2 allows us to apply the theory in Bovier, Eckhoff, Gayrard, and
Klein [5]. To obtain our sharp estimate of E�(τ�), we will use the following key
relation:

Proposition 3.2.3. E�(τ�) = 1
Zβ CAPβ(�,�)

[1+ o(1)] as β →∞.

Proof. Bovier, Eckhoff, Gayrard, and Klein [5], Theorem 1.3(i), written in our
notation, states that

E�(τ�) = µβ(R�)

CAPβ(�, �)
[1+ o(1)] β →∞, (3.2.2)

where

R� =
{
η ∈ X : Pη(τ� < τ�) ≥ Pη(τ� < τ�)

}
. (3.2.3)

It follows from the proof of Lemma 3.3.1 below that, for large enough β,

{η ∈ X : 
(η, �) < 
(η, �)} ⊆ R� ⊆ {η ∈ X : 
(η, �) ≤ 
(η, �)}
(3.2.4)

and hence, via Proposition 2.4.2,

min
η∈R�\�

H(η) > H(�) = 0. (3.2.5)

This in turn implies that µβ(R�)/µβ(�) = 1 + o(1). Since µβ(�) = 1/Zβ , we
get the claim. ��
Proposition 3.2.3 shows that the computation of E�(τ�) revolves around get-
ting sharp bounds on Zβ CAPβ(�, �). From Lemma 3.1.1 we know that C1 ≤
eβ
∗ZβCAPβ(�, �) ≤ C2. In what follows we narrow down the constants.

3.3. Average nucleation time: Proof of Theorem 1.4.4

In this section we will show how to turn the geometric information obtained in
Theorem 2.3.10 into a sharp estimate of ZβCAPβ(�, �). We follow the general
strategy outlined in Bovier and Manzo [6] and Bovier [3]:

– Note that all terms in the Dirichlet form in (3.1.1) involving configurations η

with H(η) > 
∗, i.e., η ∈ X \ X ∗, contribute at most Ce−(
∗+δ)β for some
δ > 0 and can be neglected. Thus, effectively we can replace X by X ∗.



Sharp asymptotics for Kawasaki dynamics 297

– Show that h∗�,� = O(e−δβ) on X� and h∗�,� = 1−O(e−δβ) on X� for some
δ > 0.

– Prove sharp upper and lower bounds for h∗�,� on X ∗ \ (X� ∪ X�) in terms of
a variational problem involving only the vertices and the bonds in and incident
to X ∗ \ (X� ∪ X�).

The last two steps are carried out in Sections 3.3.1–3.3.2. We identify the resulting
variational problem with capacities associated with simple random walk. In Section
3.4 we analyse the asymptotics of these capacities for large �.

3.3.1. A priori estimates on the equilibrium potential

Note that

X� = {η ∈ X ∗ : 
(η, �) < 
(η, �)},
X� = {η ∈ X ∗ : 
(η, �) < 
(η, �)}. (3.3.1)

The guiding idea behind the sharp estimate of Zβ CAPβ(�, �) is that h∗�,� is expo-
nentially close to 1 on X� and exponentially close to 0 on X�. This is the content
of the following estimate, which has been used already in (3.24) and will be needed
later on.

Lemma 3.3.1. There exist C <∞ and δ > 0 such that for all β,

min
η∈X�

h∗�,�(η) ≥ 1− Ce−δβ, max
η∈X�

h∗�,�(η) ≤ Ce−δβ . (3.3.2)

Proof. A standard renewal argument gives the relations, valid for η /∈ {�, �},

Pη(τ� < τ�) = Pη(τ� < τ�∪η)
1− Pη(τ�∪� > τη)

, Pη(τ� < τ�) = Pη(τ� < τ�∪η)
1− Pη(τ�∪� > τη)

.

(3.3.3)

For η ∈ X� \�, we estimate

h∗�,�(η) = 1− Pη(τ� < τ�) = 1− Pη(τ� < τ�∪η)
Pη(τ�∪� < τη)

≥ 1− Pη(τ� < τη)

Pη(τ� < τη)

(3.3.4)

and, with the help of (3.1.5) and Lemma 3.1.1,

Pη(τ� < τη)

Pη(τ� < τη)
= Zβ CAPβ(η, �)

Zβ CAPβ(η, �)
≤ C(η) e−[
(η,�)−
(η,�)]β ≤ C(η) e−δβ,

(3.3.5)

which proves the first claim with C = maxη∈X�\� C(η). Note that h∗�,�(�) is a
convex combination of h∗�,�(η) with η ∈ X� \�, namely, those η that communi-
cate with �. Hence the claim extends to η = �.

For η ∈ X� \�, we estimate

h∗�,�(η) = Pη(τ� < τ�) = Pη(τ� < τ�∪η)
Pη(τ�∪� < τη)

≤ Pη(τ� < τη)

Pη(τ� < τη)
(3.3.6)
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and, with the help of (3.1.5) and Lemma 3.1.1,

Pη(τ� < τη)

Pη(τ� < τη)
= Zβ CAPβ(η, �)

Zβ CAPβ(η, �)
≤ C(η) e−[
(η,�)−
(η,�)]β ≤ C(η) e−δβ,

(3.3.7)

which proves the second claim with C = maxη∈X�\� C(η). ��
Knowing that h∗�,� is trivial on X� ∪X�, it remains to understand what h∗�,�

looks like on the set

X ∗ \ (X� ∪ X�) = {η ∈ X ∗ : 
(η, �) = 
(η, �)}, (3.3.8)

which separates X� and X� and contains S(�, �) (recall (1.3.9)). This will be
carried out in Section 3.3.2.

Before doing so, we first show that h∗�,� is also trivial on X ∗∗ \ (X� ∪ X�).
This set can be partitioned into maximally connected components,

X ∗∗ \ (X� ∪ X�) =
I⋃

i=1

Xi , (3.3.9)

where each Xi is a well in S(�, �), i.e., a set of communicating configurations
with energy < 
∗ but with communication height 
∗ towards both � and �.

Lemma 3.3.2. There exist C < ∞ and δ > 0 such that for all i = 1, . . . , I and
all β,

max
η,η′∈Xi

|h∗�,�(η)− h∗�,�(η′)| ≤ Ce−δβ . (3.3.10)

Proof. Fix i = 1, . . . , I and η, η′ ∈ Xi . Estimate

h∗�,�(η) = Pη(τ� < τ�) ≤ Pη(τ� < τη′)+ Pη(τη′ < τ� < τ�). (3.3.11)

First, as in the proof of Lemma 3.3.1, we have

Pη(τ� < τη′) =
Pη(τ� < τη∪η′)

1− Pη(τ�∪η′ > τη)
≤ Pη(τ� < τη)

Pη(τη′ < τη)
(3.3.12)

= ZβCAPβ(η, �)

ZβCAPβ(η, η′)
≤ C(η, η′) e−[
(η,�)−
(η,η′)]β ≤ C(η, η′) e−δβ,

where we use that 
(η, �) = 
∗ and 
(η, η′) < 
∗. Second,

Pη(τη′ < τ� < τ�) = Pη(τη′ < τ�∪�)Pη′(τ� < τ�)

≤ Pη′(τ� < τ�) = h∗�,�(η′). (3.3.13)

Combining (3.3.11–3.3.13), we get

h∗�,�(η) ≤ C(η, η′) e−δβ + h∗�,�(η′). (3.3.14)

Interchange η and η′ to get the claim with C = maxi maxη,η′∈Xi
C(η, η′). ��
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Remark. We saw in Proposition 2.3.9(i) that for each η̂ ∈ D the four bars of bad
sites in ∂+CR(η̂) (see Fig. 10) each form a well. Lemma 3.3.2 shows that h∗�,� is
close to a constant on each of these wells. These are not the only wells, but Lemma
3.3.2 shows that we not need care too much about wells anyway: only the transi-
tions in and out of the wells contribute to the Dirichlet form at the order we are
after, not those inside the wells. Later we shall see that we can even ignore the wells
altogether, provided we are content with obtaining bounds. Indeed, in Proposition
2.3.8 we saw that the wells only occur when the free particle is at distance 2 from
the protocritical droplet.

3.3.2. Reduction of the Dirichlet form

The reduction is done in two steps, carried out in Propositions 3.3.3 and 3.3.4
below. First we reduce the full Dirichlet form to a Dirichlet form involving only
the immediate vicinity of the communication level set.

Proposition 3.3.3. There exists δ > 0 such that for β →∞,

ZβCAPβ(�, �) = [1+O(e−δβ)] � e−
∗β, (3.3.15)

where

� = min
C1,...,CI

min
h : X∗→[0,1]

h|X�≡1, h|X�≡0, h|Xi
≡Ci ∀ i=1,...,I

1

2

∑

η,η′∈X ∗
1{η↔η′} [h(η)− h(η′)]2.

(3.3.16)

Proof. First, recalling (1.1.5–1.1.6), (1.2.6) and (3.1.1–3.1.2), we have

Zβ CAPβ(�, �) = Zβ min
h : X→[0,1]

h(�)=1, h(�)=0

1

2

∑

η,η′∈X
µβ(η)cβ(η, η′)[h(η)− h(η′)]2

= O
(
e−(
∗+δ)β

)

+Zβ min
h : X∗→[0,1]

h(�)=1, h(�)=0

1

2

∑

η,η′∈X ∗
µβ(η)cβ(η, η′)[h(η)− h(η′)]2.

(3.3.17)

Next, with the help of Lemmas 3.3.1–3.3.2, we get (recall (3.1.3))

min
h : X∗→[0,1]

h(�)=1, h(�)=0

1

2

∑

η,η′∈X ∗
µβ(η)cβ(η, η′)[h(η)− h(η′)]2

= min
h : X∗→[0,1]

h=h∗�,� on X�∪X�∪(X1,...,XI )

1

2

∑

η,η′∈X ∗
µβ(η)cβ(η, η′)[h(η)− h(η′)]2

= [1+O(e−δβ)] min
C1,...,CI

min
h : X∗→[0,1]

h|X�≡1, h|X�≡0, h|Xi
≡Ci ∀ i=1,...,I

×1

2

∑

η,η′∈X ∗
µβ(η)cβ(η, η′)[h(η)− h(η′)]2, (3.3.18)
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where the error term O(e−δβ) arises after we replace the approximate boundary
conditions (recall lemmas 3.3.1 and 3.3.2)

h =






1−O(e−δβ) on X�,

O(e−δβ) on X�,

Ci +O(e−δβ) on Xi , i = 1, . . . , I,

(3.3.19)

by the sharp boundary conditions

h =






1 on X�,

0 on X�,

Ci on Xi , i = 1, . . . , I.

(3.3.20)

Finally, by (1.1.5–1.1.6) and (1.2.6–1.2.7) we have

Zβµβ(η)cβ(η, η′) = 1{η↔η′} e−
∗β for all η, η′ ∈ X ∗ that are not
both in X� or both in X� or both in Xi for some i = 1, . . . , I.

(3.3.21)

Indeed, in each of these cases either H(η) = 
∗ > H(η′) or H(η) < 
∗ = H(η′),
because there are no direct transitions between X�, X� and Xi , i = 1, . . . , I (use
Proposition 2.3.10(i) and recall the decomposition in (3.3.9)). Combining (3.3.17–
3.3.18) and (3.3.21), we arrive at the claim. ��

Next we estimate � in terms of capacities associated with simple random walk.

Proposition 3.3.4. � ∈ [�1, �2] with

�1 =
∑

η̂∈D
CAP �+ (

∂+�, CR(η̂)
)
,

�2 =
∑

η̂∈D
CAP �+ (

∂+�, CR++(η̂)
)
, (3.3.22)

where CR++ = (CR+)+,

CAP �+ (
∂+�, F

) = min
g : �+→[0,1]

g|
∂+�

≡1, g|F≡0

1

2

∑

x,x′∈�+
x∼x′

[g(x)− g(x′)]2, F ⊆ �+,

(3.3.23)

and x ∼ x′ means that x and x′ are nearest-neighbor sites.

Proof. The variational problem in (3.3.16) decomposes into disjoint variational
problems for the maximally connected components of X ∗. Only those components
that contain X� or X� contribute, since for the other components the minimum is
achieved by picking h constant.
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� ≥ �1: The lower bound is obtained from (3.3.16) by removing all transitions
that do not involve a protocritical droplet and a free particle that is moving. This
removal gives

� ≥
∑

η̂∈D
min

Cj (η̂), j=1,2,3,4
min

g : �+→[0,1]
g|

∂Gη̂
≡0, g|

∂B
j

η̂
≡Cj (η̂), j=1,2,3,4, g|

∂+�
≡1

×1

2

∑

x,x′∈�+
x∼x′

[g(x)− g(x′)]2, (3.3.24)

where ∂Gη̂ denotes the set of good sites in ∂−CR(η̂) and ∂B
j η̂, j = 1, 2, 3, 4, denote

the four bars of bad sites in ∂+CR(η̂) (see Fig. 10). To see how this bound arises
from (3.3.16), pick

h(η) = h(η̂, x) = g(x), η̂ ∈ D, x ∈ �+ \ η̂, (3.3.25)

and use Proposition 2.3.10(ii) to match the boundary conditions in (3.3.16) (recall
the decomposition in (3.3.9)). Note that x ∈ ∂+� in η = (η̂, x) corresponds to
η ∈ D (i.e., the free particle at x is outside �), while x ∈ ∂+η̂ corresponds to
η ∈ CG(η̂)∪CB(η̂). The right-hand side of (3.3.24) may be further bounded below
by �1, because the latter has less stringent boundary conditions.

� ≤ �2: The upper bound is obtained from (3.3.16) by picking Ci = 0, i =
1, . . . , I , and

h(η) =





1 for η ∈ X�,

g(x) for η ∈ C++,

0 for η ∈ X ∗ \ [X� ∪ C++],
(3.3.26)

where

C++ = {η = (η̂, x) : η̂ ∈ D, x ∈ � \ CR++(η̂)}. (3.3.27)

This choice satisfies the boundary conditions in (3.3.16), because

C++ ⊆ C∗ and C∗ ∩ [X� ∪ (∪I
i=1Xi )] = ∅. (3.3.28)

By Proposition 2.3.10(ii), D ⊆ X�, so that h(η) = 1 for η = (η̂, x) with η̂ ∈ D and
x ∈ ∂+�, which is consistent with the boundary condition g|∂+� ≡ 1 in (3.3.23).
Moreover, h(η) = 0 for η = (η̂, x) with η̂ ∈ D and x ∈ CR++(η̂), which is con-
sistent with the boundary condition g|CR++(η̂)

≡ 0 in (3.3.23) with F = CR++(η̂).
Note that, by Proposition 2.3.7, the only transitions in X ∗ between X� and C∗
are those where a free particle is entering at ∂−�. Hence, there are no transitions
between X� and X ∗ \ [X� ∪ C++]. Also note that, by Proposition 2.3.8(i–ii), the
only transitions in X ∗ between C++ and X ∗ \ [X�∪C++] are those where the free
particle moves to distance 1 from the protocritical droplet. Thus, (3.3.23) includes
all the relevant transitions. ��
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Propositions 3.3.3–3.3.4 complete the proof of the first half of Theorem 1.4.4,
with K identified as K = 1/� with � defined in (3.3.16) and bounded in (3.3.22).
The second half, i.e., the exponential limit law in (1.4.7), follows from Bovier,
Eckhoff, Gayrard, and Klein [5], Theorem 1.3(iv).

The capacity defined in (3.3.23) is the capacity of the pair {∂+�, D} for con-
tinuous-time simple random walk on �+ where transitions between sites occur at
rate 1. In Section 3.4 we will show that �1 and �2 have the same asymptotics for
�→ Z

2.

3.4. Capacity asymptotics: Proof of Theorem 1.4.5

As � → Z
2, the capacities CAP �+(∂+�, CR(η̂)) and CAP �+(∂+�, CR++(η̂))

tend to zero in a way that depends neither on the shape of the protocritical droplet
η̂ nor on its location in �, provided it is far from ∂+�:

Lemma 3.4.1. Write � = BM = [−M,+M]2 ∩ Z
2. For any ε > 0,

lim
M→∞

max
η̂∈D

d(∂+BM,η̂)≥εM

∣∣∣∣
log M

2π
CAP B+M (∂+BM, CR(η̂))− 1

∣∣∣∣ = 0 (3.4.1)

and

lim
M→∞

max
η̂∈D

d(∂+BM,η̂)≥εM

∣∣∣∣
log M

2π
CAP B+M (∂+BM, CR++(η̂))− 1

∣∣∣∣ = 0, (3.4.2)

where d(∂+BM, η̂) = min{|x − y| : x ∈ ∂+BM, y ∈ η̂}.
Proof. Let us first prove (3.4.1). For η̂ ∈ D, let y ∈ CR(η̂) ⊆ BM denote the site
closest to the center of CR(η̂). The capacity decreases when we enlarge the set over
which the Dirichlet form is minimized. Therefore we have

CAP B+M (∂+BM, CR(η̂)) ≥ CAP B+M (∂+BM, y)

= CAP B+M−y(∂+(BM − y), 0) ≥ CAP B+2M (∂+B2M, 0). (3.4.3)

By the analogue of (3.1.5–3.1.6), we have (compare (3.3.23) with (3.1.1–3.1.2))

CAPB+2M (∂+B2M, 0) = CAPB+2M (0, ∂+B2M)

=




∑

x∈B+2M

1{x∼0}



 P0(τ∂+B2M
< τ0) = 4 P0(τ∂+B2M

< τ0), (3.4.4)

where P0 is the law on path space of the discrete-time simple random walk on Z
2

starting at 0. According to Révész [12], Lemma 22.1, we have

P0(τ∂+B2M
< τ0) ∼ π

2 log(2M)
M →∞. (3.4.5)

This proves the desired lower bound.
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Similarly, by monotonicity we have

CAP B+M (∂+BM, CR(η̂)) ≤ CAP B+M (∂+BM, S�c (y))

≤ CAP B+εM (∂+BεM, S�c (0)), (3.4.6)

where S�c (y) is the �c × �c square or (�c − 1) × (�c + 1) rectangle centered at
y containing CR(η̂), and the last inequality uses that d(∂+BM, η̂) ≥ εM . By the
recurrence of simple random walk, we have

CAP B+εM (∂+BεM, S�c (0)) ∼ CAP B+εM (∂+BεM, 0) M →∞. (3.4.7)

Therefore the desired upper bound follows from (3.4.5).
The proof of (3.4.2) is similar. ��
Combining (3.3.22) and Lemma 3.4.1, we find

�1 = O(εM)+
∑

η̂∈D
d(∂+BM,η̂)≥ εM

CAP B+M (∂+BM, CR(η̂))

= O(εM)+ 2π

log M
|{η̂ ∈ D : d(∂+BM, η̂) ≥ εM}|[1+ o(1)] (3.4.8)

= O(εM)+ 2π

log M
N(�c) [(1− ε)M]2 [1+ o(1)]

and the same expression for �2 (recall that N(�c) is defined to be the cardinal-
ity of D modulo shifts). Let M → ∞ followed by ε ↓ 0, to conclude that � ∼
(2π/ log M)N(�c)M

2. Since |�| = M2 and K = 1/�, this proves the claim in
Theorem 1.4.5 after we prove the formula for N(�c) stated in (1.4.10). This is done
in Lemmas 3.4.2–3.4.3 below.

Remark. The asymptotics in Lemma 3.4.1 shows that � ∼ 4
∑

x∈� Px(τ∂ +� <

τx) as � → Z
2 (recall (3.4.5)). In van den Berg [2] this sum is studied in more

detail and for more general domains than the square box �.

Lemma 3.4.2. |D̄| = 1
6 (�c − 1)�c(�c + 1)(�c + 2).

Proof. We have to count how many different shapes the clusters in D̄ can take
on (recall Fig. 3). Return to Theorem 1.4.1. We will do the counting by starting
from an �c × �c square and counting in how many ways �c − 1 particles can be
removed from the four bars forming the internal boundary of the square. We will
split the counting according to the number k = 1, 2, 3, 4 of corner particles that
are removed.

k = 1: There are 4 choices for the one corner. Let m1+, m1− denote the number of
particles that are removed in the two directions away from the corner. Then
m+1, m−1 ≥ 0 and m+1+m−1 = �c − 2. There are �c − 1 ways to choose
these. Therefore the contribution to |D̄| is 4(�c − 1).
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k = 2: There are 6 choices for the two corners. Let m1+, m1− and m2+, m2− denote
the number of particles that are removed in the two directions away from
the two corners. Then m+1, m−1, m2+, m2− ≥ 0 and m+1+m−1+m2++
m2− = �c − 3. There are (�c − 1)(�c − 2) ways to choose these. Therefore
the contribution to |D̄| is 6(�c − 1)(�c − 2).

k = 3: There are 4 choices for the three corners.A similar argument as above shows
that there are 1

2 (�c − 1)(�c − 2)(�c − 3) ways to remove �c − 4 particles in
the two directions away from the three corners. Therefore the contribution
to |D̄| is 2(�c − 1)(�c − 2)(�c − 3).

k = 4: There is 1 choice for the four corners. There are 1
6 (�c − 1)(�c − 2)(�c −

3)(�c− 4) ways to remove �c− 5 particles in the two directions away from
the four corners. Therefore the contribution to |D̄| is 1

6 (�c−1)(�c−2)(�c−
3)(�c − 4).

Sum the contributions to get the claim. ��
Lemma 3.4.3. |D̃| = 1

6 (�c − 2)(�c − 1)�c(�c + 1).

Proof. Similar. Start from an (�c− 1)× (�c+ 1) rectangle and count in how many
ways �c − 2 particles can be removed from the four bars. The answer is the same
as in Lemma 3.4.2 with �c − 1 replaced by �c − 2. ��

It follows from Lemmas 3.4.2–3.4.3 that N(�c) = |D| = |D̄| + |D̃| = 1
3 (�c −

1)�2
c(�c + 1), as claimed in (1.4.10).

3.5. Gate for the nucleation: Proof of Theorem 1.4.3

(i) We saw in Proposition 2.3.8(ii) that the configuration consisting of an (�c −
1)×�c quasi-square plus a dimer at distance 1 is a dead-end in S(�, �). Therefore
S(�, �) � G(�, �), which is the first part of Theorem 1.4.3(i).

To prove the second part of Theorem 1.4.3(i), we must exhibit a configuration
in S(�, �) that is not in C∗. For that we return to the proof of Proposition 2.3.9(ii),
where we exhibited a path from CB to � that does not exceed energy 
∗ and avoids
C∗. The configurations with energy 
∗ visited by this path are elements of S(�, �).

For η ∈ C∗, let η̂ ∈ D be the configuration obtained from η by removing the
free particle. For A ⊆ � and x ∈ �, let d(x, A) denote the lattice distance between
x and A. Let �4 be � without its four corners. Define, recursively,

B1(η̂) = {x ∈ �4 : x �∈ η̂, d(x, η̂) = 1} (3.5.1)

and

B2(η̂) = {x ∈ �4 : x �∈ η̂, d(x, B1(η̂)) = 1},
B̄2(η̂) = B2(η̂), (3.5.2)

and

B3(η̂) = {x ∈ �4 : x �∈ B1(η̂), d(x, B2(η̂)) = 1},
B̄3(η̂) = B3(η̂) ∪ [B̄2(η̂) ∩ ∂−�4], (3.5.3)
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and, for i = 4, 5, . . . , L− �c (with L the side length of �),

Bi(η̂) = {x ∈ �4 : x �∈ Bi−2(η̂), d(x, Bi−1(η̂)) = 1},
B̄i(η̂) = Bi(η̂) ∪ [B̄i−1(η̂) ∩ ∂−�4]. (3.5.4)

In words, B1(η̂) is the ring of sites in �4 at distance 1 from η̂, while B̄i(η̂) is the ring
of sites in �4 at distance i from η̂ plus all the sites in ∂−�4 at distance 1 < j < i

from η̂ (i = 2, 3, . . . , L− �c). Note that, depending on the location of η̂ in �, the
B̄i(η̂) coincide for large enough i. The maximal number of rings is L− �c.

The following sets are minimal gates:

C∗i = {(η̂, x) : η̂ ∈ D, x ∈ B̄i(η̂)}, i = 2, 3, . . . , L− �c. (3.5.5)

(Note that the sites in B1(η̂) ∩ ∂−�4 are not in any minimal gate.) This may be
seen as follows. First, C∗i is a gate. Indeed, any ω ∈ (�→ �)opt enters C∗ through
a configuration of the form (η̂, x), with η̂ ∈ D a protocritical droplet and x a
free particle such that x ∈ Bi(η̂) when d(∂−�4, η̂) > i and x ∈ B̄i(η̂) when
d(∂−�4, η̂) ≤ i. Second, C∗i is a minimal gate. Indeed, for any η ∈ C∗i there
exists an ω ∈ (� → �)opt that avoids C∗i \ η, namely, any ω that enters C∗i at
η = (η̂, x) and proceeds by moving the free particle at x inside Bi−1(η̂) and from
there towards η̂, where it attaches itself ‘properly’ (i.e., in a corner). Note that the
C∗i are not disjoint.

The union of the C∗i is the set C∗min that was announced at the end of Section
1.4.3. Clearly, C∗min ⊆ G(�, �). The configuration exhibited in the proof of the
second part of Theorem 1.4.3(i) is an element of G(�, �) but not of C∗min.

(ii) We will show that there exist δ > 0 and C <∞ such that for all β,

P�
(
τQ < τC∗ < τ�|τ� < τ�

) ≥ 1− Ce−δβ, (3.5.6)

which implies (1.4.4). The proof goes as follows. Recall (1.3.10).
By (3.1.5), CAPβ(�, �) = µβ(�) cβ(�, X \ �)P�(τ� < τ�) with µβ(�)

= 1/Zβ . From the lower bound in Lemma 3.1.1 it therefore follows that

P�(τ� < τ�) ≥ C1e
−
∗β 1

cβ(�, X \�)
. (3.5.7)

We will show that

P�
({τQ < τC∗ < τ�}c, τ� < τ�

) ≤ C2e
−(
∗ + δ)β 1

cβ(�, X \�)
. (3.5.8)

Combining (3.5.7–3.5.8), we get (3.5.6) with C = C2/C1.
In Proposition 2.3.7 we saw that any path from � to � that does not pass first

through Q and then through C∗ must pass the set V�c(�c − 1)+2 ⊇ S(�, �) in a con-
figuration η with H(η) > 
∗. Therefore there exists a set S, with H(η) ≥ 
∗ + δ

for all η ∈ S and some δ > 0, such that

P�
({τQ < τC∗ < τ�}c, τ� < τ�

) ≤ P� (τS < τ�) . (3.5.9)
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Now estimate, with the help of reversibility (use (1.2.7) or (3.1.5–3.1.6)),

P� (τS < τ�) ≤
∑

η∈S
P�

(
τη < τ�

) =
∑

η∈S

µβ(η)cβ(η, X \ η)

µβ(�)cβ(�, X \�)
Pη

(
τ� < τη

)

≤ 1

cβ(�, X \�)

∑

η∈S
|{η′ ∈ X \ η : η↔ η′}| e−βH(η)

≤ 1

cβ(�, X \�)
C2 e−(
∗ + δ)β (3.5.10)

with C2 = |{(η, η′) ∈ S × X \ η : η ↔ η′}|, where we use that cβ(η, η′) ≤ 1.
Combine (3.5.9–3.5.10) to get the claim in (3.5.8).

(iii) Let ∂−C∗ be those configurations in C∗ where the free particle is in ∂−�. Write

P�
(
ητ∂−C∗ =η|τ∂−C∗ < τ�

) = P�
(
ητ∂−C∗ = η, τ∂−C∗ < τ�

)

P� (τ∂−C∗ < τ�)
, η ∈ ∂−C∗.

(3.5.11)

Again by reversibility (use (1.2.7)),

P�
(
ητ∂−C∗ = η, τ∂−C∗ < τ�

) = µβ(η)cβ(η, X \ η)

µβ(�)cβ(�, X \�)
Pη (τ� < τ∂−C∗)

= e−
∗β cβ(η, X \ η)

cβ(�, X \�)
Pη (τ� < τ∂−C∗) , η ∈ ∂−C∗. (3.5.12)

Moreover,

Pη (τ� < τ∂−C∗) =
∑

η′∈X \∂ − C∗
η↔η′

cβ(η, η′)
cβ(η, X \ η)

h∗�,∂ − C∗(η
′), η ∈ ∂−C∗,

(3.5.13)

where

h∗�,∂−C∗(η
′) =

{
0 if η′ ∈ ∂ − C∗,
Pη′(τ� < τ∂ − C∗) otherwise.

(3.5.14)

Because D ⊆ X� by Theorem 2.3.10(ii), it follows from Lemma 3.3.1 and C∗ ⊆
S(�, �) that

min
η′∈D

h∗�,∂ − C∗(η
′) ≥ 1− Ce−δβ . (3.5.15)

Moreover, letting ∂ −− C∗ be the set of configurations obtained from ∂−C∗ by mov-
ing the free particle from ∂−� to ∂−−� = ∂−(�−), we have

max
η′∈∂−−C∗

h∗�,∂−C∗(η
′) ≤ Ce−δβ . (3.5.16)
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This is because moving a particle from the protocritical droplet costs at least U ,
while attaching the free particle to the protocritical droplet leads to a configuration
that, by Theorem 2.3.10(ii), is either in X� or in X ∗∗ \ (X� ∪X�). By restricting
the sum in (3.5.13) to η′ ∈ D and inserting (3.5.15), we get

Pη (τ� < τ∂ − C∗) ≥ (1− Ce−δβ)
cβ(η, D \ η)

cβ(η, X \ η)
, η ∈ ∂ − C∗. (3.5.17)

On the other hand, by inserting (3.5.16), we get

Pη (τ� < τ∂ − C∗) ≤
cβ(η, D \ η)

cβ(η, X \ η)
+ Ce−δβ |∂ −− C∗|, η ∈ ∂−C∗. (3.5.18)

Next, we note that for all η ∈ ∂−C∗,

cβ(η, D \ η)

cβ(η, X \ η)

= O(e−Uβ)+





1
2 if the free particle in ∂−� sits in a corner,

1
4 if the free particle in ∂−� sits not in a corner,

(3.5.19)

because moves of the free particle from ∂−� do not raise the energy (whether
it stays in � or exits �), while all other moves raise the energy by at least U .
Combining (3.5.18–3.5.19), we obtain

Pη (τ� < τ∂ − C∗) ≤ (1+ Ce−δβ)
cβ(η, D \ η)

cβ(η, X \ η)
, η ∈ ∂−C∗. (3.5.20)

Inserting (3.5.17) and (3.5.20) into (3.5.12), we deduce from (3.5.11) that

P�
(
ητ∂−C∗ = η | τ∂ − C∗ < τ�

) = cβ(η, X \ η) Pη(τ� < τ∂−C∗)∑
η′∈∂−C∗ cβ(η′, X \ η′) Pη′(τ� < τ∂−C∗)

= [1+O(e−δβ)]
cβ(η, D \ η)∑

η′∈∂ − C∗ cβ(η′, D \ η′)
, η ∈ ∂ − C∗. (3.5.21)

Via (3.5.19) this proves the assertion in (1.4.5), because the free particle is created
in ∂−� twice as fast in a corner as not in a corner.

4. Extension to three dimensions

The extension of our results to three dimensions is in principle straightforward and
involves no new ideas. However, the geometry of the communication level set is
more difficult and we are unable to fully identify the set D. In Section 4.1 we look
at the structure of S(�, �). Section 4.2 gives the proof of Theorem 1.5.2, Section
4.3 of Theorem 1.5.3.
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4.1. Structure of the communication level set

We use the notation of Section 1.5.

Proposition 4.1.1. (den Hollander, Nardi, Olivieri, and Scoppola [8], Eq. (2.0.23)
and Proposition 3.3.1) 
(�, �) = 
∗ and S(�, �) ⊇ C∗, with 
∗ and C∗ given
by Definition 1.5.1(c-d).

Proof. The argument is similar as for d = 2. A key ingredient is the following
fact, shown in Alonso and Cerf [1], Theorem 3.5: the configurations consisting of
a single (mc − 1) × (mc − δc) × mc quasi-cube anywhere in �− with, attached
anywhere to one of its faces, an (�c − 1)× �c quasi-square are the unique (modulo
translations and rotations) minimizers of H in Vnc−1. The energy of these config-
urations is 
∗ − 2� + 2U , while all other configurations in Vnc−1 have energy
at least 
∗ − 2� + 3U > 
∗ − � and therefore do not permit the creation of a
particle without exceeding energy 
∗. Thus, all optimal nucleation paths must visit
this set, i.e., the analogue of Lemma 2.3.4 holds. Similarly, Lemmas 2.3.5–2.3.6
and Proposition 2.3.7 carry over. ��

Thus, the only difficult part in identifying the reduced graph X ∗, analogous to
the one in Theorem 2.3.10, is the explicit construction of the set D and the ana-
logues of the sets CB and CG, which remains open. Nonetheless, a few facts about
D are easy to establish:

Proposition 4.1.2. For all η̂ ∈ D,

(i) CR(η̂) is contained in a cube of side length mc + 1.
(ii) CR(η̂) contains a cube of side length mc − �√mc �.
Proof. (i) In den Hollander, Nardi, Olivieri, and Scoppola [8], Proposition 5.2.1, it
is shown that

CR(η̂) = CR(η̂′) for all η̂, η̂′ ∈ D. (4.1.1)

Clearly, this is stronger than (i). For reasons of completeness we give the proof of
(i).

Note that any configuration in D can, on either of its faces, have a protrud-
ing rectangle with a 1-protuberance attached to it. Indeed, if we fix the number of
particles sitting on top of each of the faces of CR−(η̂), then it is clear that these “two-
dimensional configurations on a face” must minimize their energy. Obviously, none
of them can have two 1-protuberances, since detaching one 1-protuberance (which
costs 2U ) and moving it next to the other 1-protuberance (which pays 3U ) would
lead to a lowering of the energy. Moreover, if any of the six clusters attached to the
faces is not a rectangle, then none of the other clusters can have a 1-protuberance,
since detaching this 1-protuberance (which costs 2U ) and moving it into a corner
of the cluster that is not a rectangle (which pays 3U ) would lead to a lowering of
the energy.

From any configuration of the above form, if we detach the 1-protuberance and
place it on top of one of the rectangles in ∂−CR(η̂), then we raise the energy to
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∗ − � + U . From there, moving any particle except this 1-protuberance costs
energy 2U and leads to an energy exceeding 
∗. Therefore all we can do is move
the 1-protuberance around on top of the rectangle, until finally we have to detach
it again and re-attach it to CR−(η̂).

(ii) All configurations in D have volume nc and are “minimal polyominoes”, i.e.,
among the configurations with volume nc their surface is minimal. Pick η̂ ∈ D. Let
j1, j2, j3 be the smallest integers such that η̂ is contained in the j1×j2×j3 parallele-
piped. Then η̂ can be obtained from this parallelepiped by removing j1j2j3−nc unit
cubes. By (4.1.1) and Definition 1.5.1(a), we have j1j2j3−nc ≤ m2

c−(�c−1)�c−1
(the bound corresponding to the case where the (�c−1)×�c quasi-square is attached
to an mc×mc face). Since mc ∈ {2�c−1, 2�c}, it follows that j1j2j3−nc ≤ 3m2

c/4.
Thus, no more than 3m2

c/4 unit cubes need to be removed from the parallelepiped
to obtain η̂.

Next, according to Alonso and Cerf [1], Corollary 3.26, all minimal polyomi-
noes can be obtained from their circumscribing parallelepiped by removing a suc-
cession of bars, as many as possible, and then removing a succession of corner
cubes. In our case, by (4.1.1), each bar has length either mc − 1 or mc, so no more
than mc bars and mc corner cubes can be removed. But any such removal can only
involve bars and corner cubes that lie in a layer of thickness at most �√mc � of
CR(η̂) (the bound corresponding to the case where the bars form a parallelepiped
with an �√mc � × �√mc � face). ��
Remark. Recall from the remark made below (2.2.4) that in two dimensions a
U -path can shift the protocritical droplet. In contrast, (4.1.1) shows that in three
dimensions a 2U -path cannot (see [8], Section 5).

The two global geometric facts proved in Section 2.4 continue to holds in three
dimensions as well.

4.2. Average nucleation time: Proof of Theorem 1.5.2

Based on the information obtained so far, we can proceed to estimateZβCAPβ(�, �)

in exactly the same way as was done in Section 3.3 for two dimensions. Lemmas
3.3.1–3.3.2 and Propositions 3.3.3–3.3.4 carry over verbatim. The resulting reduc-
tion of the Dirichlet form, together with Proposition 3.2.3, proves the first half of
Theorem 1.5.2. As before, the second half follows from Bovier, Eckhoff, Gayrard,
and Klein [5], Theorem 1.3(iv).

4.3. Capacity asymptotics: Proof of Theorem 1.5.3

By the transience of simple random walk in three dimensions,

lim
�→Z3

CAP �+ (
∂+�, F

) = CAP Z
3
(F ) (4.3.1)

exists for any finite nonempty F ⊆ Z
3. The limit, which is positive and finite, is

the capacity of F . This proves Theorem 1.5.3. The bounds in (1.5.9) come from
Proposition 4.1.2 in combination with Proposition 3.3.4.
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If Fm is a cube of side length m, then

lim
m→∞

CAP Z
3
(Fm)

m
= κ (4.3.2)

with κ the capacity of the unit cube for standard Brownian motion on R
3. This

explains (1.5.11). Since 2πR is the capacity of the ball with radius R for standard
Brownian motion on R

3, we have that κ ∈ (2π, 2π
√

3) as claimed below (3.4.1).
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12. Révész, P.: Random Walk in Random and Non-Random Environments. World Scientific,
Singapore, 1990


