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2.3 The càdlàg space DE [0,∞) 41

2.3.1 A Skorokhod metric 41

3 Markov processes 45

3.1 Semi-groups, resolvents, generators 45

3.1.1 Transition functions and semi-groups 46

3.1.2 Strongly continuous contraction semi-groups 49

3.1.3 The Hille-Yosida theorem 52

3.2 Feller-Dynkin processes 61

3.3 The strong Markov property 64

3.4 The martingale problem 65

3.4.1 Uniqueness 72

3.4.2 Existence 80

3.5 Convergence results 82

i



ii 0 Contents
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1

Continuous time martingales

In the last course we have seen that martingales play a truly funda-

mental rôle in the theory of stochastic processes in discrete time, and

in particular we have seen an intimate connection between martingales

and Markov processes. In this course we will seriously engage in the

study of continuous time processes where this relation will play an even

more central rôle. Therefore, we begin with the extension of martingale

theory to the continuous time setting. We will see that this will go quite

smoothly, but we will have to worry about a number of technical details.

Most of the material in this Chapter is from Rogers and Williams [13].

1.1 Càdlàg functions

In the example of Brownian motion we have seen that we could construct

this continuous time process on the space of continuous functions. This

setting is, however, too restrictive for the general theory. It is quite

important to allow for stochastic processes to have jumps, and thus live

on spaces of discontinuous paths. Our first objective is to introduce a

sufficiently rich space of such functions that will still be manageable.

Definition 1.1.1 A function f : R+ → R is called a càdlàg 1 function,

iff

(i) for every t ≥ 0, f(t) = lims↓t f(s), and

(ii) for every t > 0, f(t−) = lims↑t f(s) exists.

Recall that this definition should remind you of distribution functions.

In fact, a probability distribution function is a non-decreasing càdlàg

function.

1 From “continue à droite, limites à gauche”.
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2 1 Continuous time martingales

It will be important to be able to extend functions specified on count-

able sets to càdlàg functions.

Definition 1.1.2 A function y : Q+ → R is called regularisable, iff

(i) for every t ≥ 0, limq↓t y(q) exists finitely, and

(ii) for every t > 0, y(t−) = limq↑t y(s) exists finitely.

Regularisability is linked to properties of upcrossings. We define this

important concept for functions from the rationals to R.

Definition 1.1.3 Let y : Q+ → R, N ∈ N and let a < b ∈ R. Then

the number UN(y, [a, b]) ∈ N ∪ {∞} of upcrossings of [a, b] by y during

the interval [0, N ] is the supremum over all k ∈ N, such that there are

rational numbers qi, ri ∈ Q, i ≤ k with the property that

0 ≤ q1 < r1 < · · · < qk < rk ≤ N

and

y(qi) < a < b < y(ri), for all 1 ≤ i ≤ k.

Theorem 1.1.1 Let y : Q+ → R. Then y is regularisable if and only

if, for all N ∈ N and a < b ∈ R,

sup{|y(q)| : q ∈ Q ∩ [0, N ]} <∞, (1.1)

and

UN(y, [a, b]) <∞. (1.2)

Proof. Let us first show that the two conditions are sufficient. To do

so, assume that lim supq↓t y(q) > lim infq↓t y(q). Then choose b > a such

that lim supq↓t y(q) > b > a > lim infq↓ y(q). Then, for N > t, y(q) must

cross [a, b] infinitely many times, i.e. UN(y, [a, b]) = +∞, contradicting

assumption (1.2). Thus the limit limq↓t y(q) exists, and by (1.1) it is

finite. The same argument applies to the limit from below.

Next we show that the conditions are necessary. Assume that for

some N y(q) is unbounded on [0, N ]. Then for any n there exists qn
such that |y(qn)| > n. The set ∪n{qn} must be infinite, since otherwise

q will be infinite on a finite set, contradicting the assumption that it

takes values in R. Hence this set has at least one accumulation point, t.

But then either limq↑t y(q) or limq↓t y(q) must be infinite, hence y is not

regularisable.

Assume now that UN (y; [a, b]) = ∞. Define t ≡ inf{r ∈ R+ :

Ur(y; [a, b]) = ∞}. Then there are infinitely many upcrossings of [a, b]
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in any interval [t− ε, t] or in the interval [t, t+ ε], for any ε > 0. In the

first case, this implies that lim supq↑t y(y) ≥ b and lim infq↑t y(y) ≤ a,

which precludes the existence of that limit. In the second case, the same

argument precludes the existence of the limit limq↓t y(y).

One of the main points of Theorem 1.1.1 is that it can be used to

show that the property to be regularisable is measurable.

Corollary 1.1.2 Let {Yq, q ∈ Q+} be a stochastic process defined on

(Ω,F ,P) and let

G ≡ {ω ∈ Ω : q → Yq(ω) is regularisable} (1.3)

Then G ∈ F .

Proof. By Theorem 1.1.1, to check regularisability we have to take

countable intersections and unions of finite dimensional cylinder sets

which are all measurable. Thus regularisability is a measurable property.

Next we observe that from a regularisable function we can readily obtain

a càdlàg function by taking limits from the right.

Theorem 1.1.3 Let y : Q+ → R be a regularisable function. Define,

for any t ∈ R+,

f(t) ≡ lim
q↓t

y(q). (1.4)

Then f is càdlàg .

The proof is obvious and left to the reader.

1.2 Filtrations, supermartingales, and càdlàg processes

We begin with a probability space (Ω,G,P). We define a continuous

time filtration Gt, t ∈ R+ essentially as in the discrete time case.

Definition 1.2.1 A filtration (Gt, t ∈ R+) of (Ω,G,P) is an increasing

family of sub-σ-algebras Gt, such that, for 0 ≤ s < t,

Gs ⊂ Gt ⊂ G∞ ≡ σ


 ⋃

r∈R+

Gr


 ⊂ G. (1.5)

We call (Ω,G,P; (Gt, t ∈ R+)) a filtered space.
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Definition 1.2.2 A stochastic process, {Xt, t ∈ R+}, is called adapted

to the filtration {Gt, t ∈ R+}, if, for every t, Xt is Gt-measurable.

Definition 1.2.3 A stochastic process, X , on a filtered space is called

a martingale, if and only if the following hold:

(i) The process X is adapted to the filtration {Gt, t ∈ R+};
(ii) For all t ∈ R+, E|Xt| <∞;

(iii) For all s ≤ t ∈ R+,

E(Xt|Gs) = Xs, a.s.. (1.6)

Sub- and super-martingales are define in the same way, with “=” in (1.6)

replaced by “≥” resp. “≤”.

We see that so far almost nothing changed with respect to the discrete

time setup. Note in particular that if we take a monotone sequence of

points tn, then Yn ≡ Xtn is a discrete time martingale (sub, super)

whenever Xt is a continuous time martingale (sub, super).

The next lemma is important to connect martingale properties to

càdlàg properties.

Lemma 1.2.4 Let Y be a supermartingale on a filtered space (Ω,G,P; (Gt, t ∈
R+)). Let t ∈ R+ and let q(−n), n ∈ N, such that q(−n) ↓ t, as n ↑ ∞.

Then

lim
q(−n)↓t

Yq(−n)

exists a.s. and in L1.

Proof. This is an application of the Lévy-Doob downward theorem (see

[2], Thm. 4.2.9).

Spaces of càdlàg functions are the natural setting for stochastic pro-

cesses. We define this in a strict way.

Definition 1.2.4 A stochastic process is called a càdlàg process, if all

its sample paths are càdlàg functions. càdlàg processes that are (su-

per,sub) martingales are called càdlàg (super,sub) martingales.

Remark 1.2.1 Note that we do not just ask that almost all sample

paths are càdlàg .
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1.3 Examples

Brownian motion We have already seen that Brownian motion is de-

fined in such a way that all its sample paths are continuous, and thus

a fortiori càdlàg . We had also argued that Brownian motion is a mar-

tingale, and from the definition of continuous time martingales given

above, we see that we checked exactly the right things. Thus Brownian

motion is our first example of a càdlàg martingale.

Poisson process. As a second example we will construct a Poisson

counting process. We begin with a σ-finite measure space (W,W , λ)

where W is assumed to contain all points (think of W ⊂ R,W = B(R)).
Assume first that λ(W ) < ∞. Then we can construct, on a probability

space (Ω,G,P), a family of independent random variables

N,Z1, Z2, . . . ,

where

(i) N is a Poisson random variable with parameter λ(W ), i.e.

P[N = n] =
λ(W )n

n!
e−λ(W ),

for all n ∈ N0, and

(ii)

P[Zk ∈ B] =
λ(B)

λ(W )
,

for all B ∈ W . Then we can construct the random measure, Λ, by

ΛW (B,ω) ≡
N(ω)∑

n=1

1IB(Zn(ω)),

for B ∈ W and ω ∈ Ω.

Exercise: Verify by direct computation that if W1 ⊂ W , and W2 ≡
W\W1, then

ΛW = ΛW1 + ΛW2 .

where ΛWi
are independent of each other.

On the basis of the exercise, we can readily extend the construction

to the case where λ is only σ-finite. In that case, there exists a disjoint

partition Wi, ∪iWi = W , with λ(Wi) < ∞. Thus we can construct

independent random measures ΛWi
and set
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ΛW (B,ω) ≡
∑

i

ΛWi
(B ∩Wi, ω). (1.7)

This defines the Poisson process. Note that the result of the exercise is

crucial to guarantee that this construction is consistent and independent

of the choice of the partition Wi.

Now let W = R+, and λ the Lebesgue measure. We can define the

random functions

Nt(ω) ≡ ΛR+([0, t], ω) ≡ Λ([0, t], ω).

By construction, these functions are càdlàg for every ω, and so Nt is

a càdlàg process. This process is called a Poisson counting process.

Moreover, by the properties of the Poisson process, for s < t,

Nt −Ns = Λ((s, t])

is independent of Gs ≡ σ(Nr, r ≤ s) and E(Nt −Ns) = t− s. Therefore,

the process Ct ≡ Nt − t is a càdlàg martingale.

Lévy processes An important class of càdlàg processes generalizes

both Brownian motion as well as the Poisson counting process. Their

characterization is the independence of increments. Quite naturally,

they generalize the notion of sums of independent random variables to

continuous time processes, and it will not be surprising that they appear

as limits of these in non-central limit theorems. An excellent presenta-

tion of these Lévy processes was given by Kiyosi Itô in his Aarhus lectures

[8]. Another good reference is Bertoin’s book [1].

Definition 1.3.1 A stochastic process (Xt, t ∈ R+) with values in Rd

is called a Lévy process, if:

(i) Xt is a càdlàg process;

(ii) For any collection 0 ≤ t1 < t2 · · · < tk < ∞, the family of random

variables

Yi ≡ Xti −Xti−1 , i = 1, . . . , k

is independent;

(iii) The law of Xt+h −Xt is independent of t.

The theory of Lévy processes is intimately linked to the theory of in-

finitely divisible laws, and we will provide some background information

on this.
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Definition 1.3.2 A probability measure on Rd is called infinitely divis-

ible if, for each n, there exists a probability measure, µn, on Rd, such

that, if Vi are independent random variables with law µn, then the law

of
n∑

i=1

Vi

is µ.

The connection with Lévy processes is apparent, since clearly the law

of Xt is infinitely divisible, being the law of the sum of iid random vari-

ables Yi ≡ Xit/n−X(i−1)t/n. Note also that the Gaussian distribution is

infinitely divisible, and that Brownian motion is the corresponding Lévy

process.

The following famous theorem gives a complete characterization of

infinitely divisible laws. We will state it without proof, but give the

proof in a special case.

Theorem 1.3.5 For each b ∈ Rd, and non-negative definite matrix M ,

and each measure, ν, on Rd\{0}, that satisfies∫
min(|x|2, 1)ν(dx) <∞, (1.8)

the function

φ(θ) ≡ exp(ψ(θ)),

where

ψ(θ) ≡ i(b, θ)− 1

2
(θ,Mθ) +

∫
(ei(θ,x) − 1− i(θ, x)1I|x|≤1)ν(dx), (1.9)

is the characteristic function of an infinitely divisible distribution. More-

over, the characteristic function of any infinitely divisible law can be

written in this form with uniquely determined (b,M, ν).

Note that it is easy to see that any law of the form given above is

infinitely divisible. Namely, for any n ∈ N, consider the function

ψn(θ) ≡
1

n
ψ(θ).

Then φn corresponds to a Lévy triple (b/n,M/n, ν/n), and if Xi are iid

with characteristic function exp(ψn(θ)), then
∑n

i=1Xi has the charac-

teristic function φ.

In the case of distributions that take values on the positive reals only,

one has the following alternative result. Its proof will be easier since
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here the characterisation involves the Laplace rather than the Fourier

transform.

Theorem 1.3.6 Let F be a distribution function on R+. Then F is the

distribution function of an infinitely divisible law, iff, for

geq0,
∫ ∞

0

e−λxF (dx) = exp

[
−cλ−

∫ ∞

0

(
1− e−x

)
µ(dx)

]
, (1.10)

where c ∈ R and µ is a measure on (0,∞) such that∫ ∞

0

(x ∧ 1)µ(dx) <∞. (1.11)

Proof. The fact that the right-hand side of (1.10) represent the Laplace

transform of an infinitely divisible law follows by inspection. The con-

verse direction is more interesting. The starting observation is that the

infinite divisibility implies that for any n ∈ N, there exists distribution

functions with support on R+ such that

F ∗
n(λ) ≡

∫ ∞

0

e−λxFn(dx) = [F ∗(λ)]1/n . (1.12)

Clearly F ∗
n(λ) ↑ 1, uniformly on compact subsets of R+. Taking loga-

rithms, we get first that

lnF ∗(λ) = n lnF ∗
n(λ) = n ln (1− (1 − F ∗

n(λ))) ≤ −n(1− F ∗
n(λ)).

(1.13)

We want to proof that for n large, the last inequality is essentially an

equality. To see this, note that the convergence of F ∗
n mentioned above

means that for any δ > 0 and K < ∞, there exists n0 < ∞, such that

for all λ ≤ K and n ≥ n0,

(1 − Fn(λ)) ≤ δ. (1.14)

On the other hand, for any ε > 0, there exists δ > 0 such that for all

0 ≤ x ≤ δ,

ln(1 + x) > (1 + ε)x. (1.15)

Hence, for all ε > 0,K < ∞, there exists n0 < ∞, such that for all

λ ≤ K and n ≥ n0,

ln (1− (1 − F ∗
n(λ))) > −(1 + ε) (1− (1− F ∗

n(λ))) . (1.16)

Thus,

n(1− F ∗
n (λ)) → − lnF ∗(λ), as n ↑ ∞, (1.17)
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uniformly on compact intervals. Now we can write

n(1−F ∗
n(λ)) = n

∫ (
1− e−λx

)
Fn(dx) =

∫
1− e−λx

1− e−x
n
(
1− e−x

)
Fn(dx).

(1.18)

Now mn(dx) ≡ n (1− e−x)Fn(dx) is a measure on (0,∞) with total

mass n(1 − F ∗
n(1)), which by the observations above converges to the

finite value − lnF ∗(1). Hence there exist subsequences (which) along

which mn converges to some finite measure m on [0,+∞]. Then

n(1− F ∗
n(λ)) → m({0})λ+

∫
1− e−λx

1− e−x
m(dx) +m({+∞}), (1.19)

which thus must be − lnF ∗(λ). The first two terms are what we want

(with m(0) = c and m(dx) = (1− e−x)µ(dx), while setting λ = 0 shows

that in fact

lnF ∗(0) = ln 1 = 0 = m({+∞}).

This proves the theorem.

The description of infinitely divisible laws in terms of the (Lévy)

triplets (b,M, ν) is called the Lévy-Khintchine representation, ν is called

the Lévy measure, and ψ the characteristic exponent.

We now use the Lévy-Khintchine representation to study Lévy pro-

cesses. Since Xt =
∑t

i=1 Yi where Yi has the same law as X1 (assume

t ∈ N for a moment), we should expect that

E exp (i(θ,Xt)) = exp (tψ(θ)) (1.20)

where ψ is the characteristic exponent of the distribution of X1. In fact,

for any infinitely divisible law, (1.20) provides a characteristic function

of a process with independent and stationary increments. Let µt be the

law of Xt. Just like in the case of Brownian motion, we can thus define

a Markov transition kernel for the process X via

(Ptf)(x) ≡
∫
f(x+ y)µt(dy), (1.21)

for bounded continuous functions, f , vanishing at infinity. We will see

later that properties of this transition kernel guarantee that X can be

constructed as a càdlàg process, and hence a Lévy process.

An important example of Lévy processes can be constructed from

Poisson counting processes. Let Nt be a Poisson counting process, and

let Yi, i ∈ N be iid real random variables with distribution function F .
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Then define

Xt ≡
Nt∑

i=1

Yi.

Clearly X has càdlàg paths and independent increments (both the in-

crements of Nt and the accumulated Y ′s are independent). Moreover,

it is easy to compute the characteristic function of Xt+s −Xt:

Eei(θ,Xt+s−Xt) =

∞∑

n=0

sne−s

n!

(∫
ei(θ,x)F (dx)

)n

(1.22)

= exp

(
s

∫ (
ei(θ,x) − 1

)
F (dx)

)

= exp

(
si

(
θ,

∫

|x|≤1

xF (dx)

)

+s

∫ (
ei(θ,x) − 1− i(θ, x)1I|x|≤1

)
F (dx)

)

Thus X is a Lévy process, called a compound Poisson process with Lévy

triple (
∫
‖x‖≤1 xF (dx), 0, F ), where the Lévy measure is finite.

Compound Poisson processes are of course pure jump processes, i.e.

the only points of change are discontinuities. We will, as an application,

show that a non-trivial Lévy measure always makes a Lévy process dis-

continuous, i.e. produces jumps. This is the content of Lévy’s theorem:

Theorem 1.3.7 If X is a Lévy process with continuous paths, then it’s

Lévy triple is of the form (b,M, 0), i.e.

Xt =MBt + bt,

where Bt is Brownian motion.

Proof. Let Xt be a Lévy process with triple (b,M, ν). Fix ε ∈ (0, 1) and

construct an independent Lévy process with characteristic exponent

ψε(θ) ≡ i(b, θ)− 1

2
(θ,Mθ) +

∫

|x|≤ε

(ei(θ,x) − 1− i(θ, x)1I|x|≤1)ν(dx).

Finally set ψε(θ) ≡ ψ(θ)− ψε(θ), i.e.

ψε(θ) =

∫

|x|>ε

(ei(θ,x) − 1− i(θ, x)1I|x|≤1)ν(dx).
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Due to the integrability assumption of Lévy measures,
∫
|x|>ε ν(dx) <∞,

and therefore, the process Y ε with characteristic exponent ψε is a com-

pound Poisson process, and as such has only finitely many jumps on any

compact interval. If Xε is the process with exponent ψε, independent of

Y ε, then Xε + Y ε have the same law as X . Now Xε has only countably

many jumps, that occur at times independent of the process Y ε. But

this means that, with probability one, all the jumps of Y ε occur at times

when there is no jump of Xε, and whence X jumps whenever Y ε jumps.

But this means that X cannot be continuous, unless the process Y ε

never jumps, which is only the case if ν = 0. This proves the theorem.

A slightly different look at the construction of compound Poissom pro-

cesses will provide us with the means to construct general Lévy processes

with pure jump part. For notational simplicity we consider only the case

of Lévy processes with values in R. To this end, let ν be any measure

on R that satisfies the integrability condition (1.8). For ε > 0, set

νε(dx) ≡ ν(dx)1I|x|>ε. Then ν
ε is a finite measure. Define the measures

on λe(dx, dt) ≡ νε(dx)dt be a measure on R2. Then we can associate to

λε a Poisson process, Pε, on R2 with intensity measure λε. Clearly, for

any ε > 0, and any t < ∞, νε((0, t]× R) < ∞. Thus we can define the

functions

Xε(t) ≡
∫ t

0

∫
xPε(ds, dx). (1.23)

Note that this is nothing but a random finite sum, and in fact, up to a

time change, a compound Poisson process (with Y distributed according

to the normalization of the measure νε). Now we may ask whether the

limit ε ↓ 0 of these processes exists as a Lévy process. To do this, we

would like to argue that
∫ t

0

∫
xP(ds, dx) =

∫ t

0

∫
xPε(ds, dx) +

∫ t

0

∫

|x|<ε

xP(ds, dx)

and that the second integral tends to zero as ε ↓ 0. A small problem

with this is that we cannot be sure under our conditions on ν that

E

∫ t

0

∫

|x|<ε

xP(ds, dx) =

∫ t

0

∫

|x|<ε

xλ(ds, dx) = t

∫

|x|<ε

xν(dx)

is finite. To remedy this problem, we modify the definition of our target

process and set

X(t) ≡ ct+

∫ t

0

∫
x
(
P(ds, dx) − 1I|x|≤1ν(dx)

)
. (1.24)
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This can indeed be decomposed as (for 0 < ε < 1)

X(t) = ct+

∫ t

0

∫

|x|>ε

x
(
P(ds, dx)− 1I|x|≤1ν(dx)

)
(1.25)

+

∫ t

0

∫

|x|≤ε

x (P(ds, dx)− ν(dx)) .

The first line is well defined. The second line satisfies

E

∫ t

0

∫

|x|≤ε

x (P(ds, dx)− ν(dx)) = 0, (1.26)

and

E

(∫ t

0

∫

|x|≤ε

x (P(ds, dx) − ν(dx))

)2

(1.27)

=

∫ t

0

∫

|x|≤ε

x2λ(ds, dx) = t

∫

|x|≤ε

x2ν(dx)

The last expression is finite, and hence it follows that the second line

in (1.25) represents a square integrable martingale, for any 0 < ε ≤ 1.

The last expression tends to zero as ε ↓= 0, and hence the second line in

(1.25) tends to zero in probability as ε ↓ 0 (This follows from Lebesgue’s

dominated convergence theorem).

Since ε is arbitray, we see that X(t) is a finite random variable (with

possibly infinite variance), and that X(t) is the limit of the càdlàg

processes given by the first line of (1.25). To conclude that X(t) is

a Lévy process we still need to show that, using a maximum inequality,

the convergence of the second line to zero holds for maxima on compact

sets, and that uniform limits of càdlàg functions are càdlàg functions.

To make this waterproof, we will need to have closer look at the issue of

weak convergence. We come back to this later.

The decomposition of a Lévy process given above with ε = 1 is called

the Lévy-Itô decomposition.

Markov jump processes. Another class of Markov processes with

continuous time can be constructed “explicitly” from Markov processes

with discrete time. They are called Markov jump processes. The idea is

simple: take a discrete time Markov process, say Yn, and make it into a

continuous time process by randomizing the waiting times between each

move in such a way as to make the resulting process Markovian.

Let us be more precise. Let Yn, Yn ∈ S, n ∈ N, be some discrete time

Markov process with transition kernel P and initial distribution µ. Let
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m(x) : S → R+ be a uniformly bounded, measurable function. Let ei,x,

i ∈ N, x ∈ S, be a family of independent exponential random variables

with mean m(x), defined on the same probability space (Ω,F ,P) as Yn,
and let Yn and the ex be mutually independent. Then define the process

S(n) ≡
n−1∑

i=0

ei,Yi
. (1.28)

S(n) is called a clock process. It is supposed to represent the time at

which the n-th jump is to take place. We define the inverse function

S−1(t) ≡ sup {n : S(n) ≤ t} . (1.29)

Then set

X(t) ≡ YS−1(t). (1.30)

Theorem 1.3.8 The process X(t) defined through (1.30) is a continu-

ous time Markov process with càdlàg paths.

Proof. Exercise.

1.4 Doob’s regularity theorem

We will now show that the setting of càdlàg functions is in fact suitable

for the theory of martingales.

Theorem 1.4.9 Let (Yt, t ∈ R+) be a supermartingale defined on a

filtered space (Ω,G,P, (Gt, t ∈ R+)). Define the set

G ≡ {ω ∈ Ω : the mapQ+ ∋ q → Yq(ω) ∈ R is regularisable}. (1.31)

Then G ∈ G and P(G) = 1. The process X defined by

Xt(ω) ≡
{
limq↓t Yq(ω), if ω ∈ G,

0, else
(1.32)

is a càdlàg process.

Proof. The proof makes use of our observations in Theorem 1.1.1. There

are only countably many triples (N, a, b) with N ∈ N, a < b ∈ Q. Thus

in view of Theorem 1.1.1, we must show that with probability one,

sup
q∈Q∩[0,N ]

|Yq| <∞, (1.33)

and
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UN ([a, b];Y |Q) <∞, (1.34)

where Y |Q denotes the restriction of Y to the rational numbers.

To do this, we will use discrete time approximations of Y . Let D(m) ⊂
Q∩ [0, N ] be an increasing sequence of finite subsets of Q converging to

Q ∩ [0, N ] as m ↑ ∞. Then

P

[
sup

q∈Q∩[0,N ]

|Yq| > 3c

]
= lim

m↑∞
P

[
sup

q∈D(m)

|Yq| > 3c

]
(1.35)

≤ c−1 (4E|Y0|+ 3E|YN |) ,

by Lemma 4.4.15 in [2]. Taking c ↑ ∞ (1.33) follows. Note that we used

the uniformity of the maximum inequality in the number of steps!

Similarly, using the upcrossing estimate of Theorem 4.2.2 in [2], we

get that

E [UN ([a, b];Y |Q] = lim
m↑∞

E
[
UN ([a, b];Y |D(m))

]
<∞ ≤ E|YN |+ |a|

b− a
,

(1.36)

uniformly in m, and so (1.34) also follows.

Now Theorem 1.1.1 implies the asserted result.

We may think that Theorem 1.4.9 solves all problems related to con-

tinuous time martingales. Simply start with any supermartingale and

then pass to the càdlàg regularization. However, a problem of measur-

ability arises. This can be seen in the most trivial example of a process

with a single jump. Let Yt be defined for any ω ∈ Ω as

Yt(ω) =

{
0, if t ≤ 1,

q(ω), if t > 1,
(1.37)

where Eq = 0. Let Gt be the natural filtration associated to this process.

Clearly, for t ≤ 1, Gt = {∅,Ω}. Yt is a martingale with respect to this

filtration. The càdlàg version of this process is

Xt(ω) =

{
0, if t < 1,

q(ω), if t ≥ 1,
(1.38)

Now first, Xt is not adapted to the filtration Gt, since X1 is not mea-

surable with respect to G1. This problem can also not be remedied by

a simple modification on sets of measure zero, since P[X1 = Y1] < 1. In

particular, Xt is not a martingale with respect to the filtration Gt, since

E[X1+ε|G1] = 0 6= X1.
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We see that the right-continuous regularization of Y at the point of the

jump anticipates information from the future. If we want to develop our

theory on càdlàg processes, we must take this into account and introduce

a richer filtration that contains this information.

Definition 1.4.1 Let (Ω,G,P, (Gt, t ∈ R+)) be a filtered space. Define,

for any t ∈ R+,

Gt+ ≡
⋂

s>t

Gs =
⋂

Q∋q>t

Gq (1.39)

and let

N (G∞) ≡ {G ∈ G∞ : P[G] ∈ {0, 1}} . (1.40)

Then the partial augmentation, (Ht, t ∈ R+), of the filtration Gt is de-

fined as

Ht ≡ σ(Gt+,N (G∞)). (1.41)

The following lemma, which is obvious from the construction of càdlàg

versions, justifies this definition.

Lemma 1.4.10 If Yt is a supermartingale with respect to the filtration

Gt, and Xt is its càdlàg version defined in Theorem 1.4.9, then Xt is

adapted to the partially augmented filtration Ht.

The natural question is whether in this setting Xt is a supermartin-

gale. The next theorem answers this question and is to be seen as the

completion of Theorem 1.4.9

Theorem 1.4.11 With the assumptions and notations of Lemma 1.4.10,

the process Xt is a supermartingale with respect to the filtrations Ht.

Moreover, X is a modification of Y if and only if Y is right-continuous

in the sense that, for every t ∈ R+,

lim
s↓t

E|Yt − Ys| = 0. (1.42)

Proof. This is now pretty straight-forward. Fix s > t, and take a

decreasing sequence, s > q(n) ∈ Q, of rational points converging to t.

Then

E[Ys|Gq(n)] ≤ Yq(n).

By the Lévy-Doob downward theorem (Theorem 4.2.9 in [2]),

E[Ys|Gt+] = lim
n↑∞

E[Ys|Gq(n)] ≤ lim
q↓t

Yq = Xt.
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Thus

E[Ys|Ht] ≤ Xt.

Next take u ≥ t and q(n) ↓ u. Then

E[Yq(n)|Ht] ≤ Xt.

On the other hand, Lemma 1.2.4 and Theorem 1.4.9, Yq(n) → Xu in L1,

so

E[Xu|Ht] = lim
n↑∞

E[Yq(n)|Ht] ≤ Xt.

Hence X is a supermartingale with respect to Ht.

The last statement is obvious since

lim
s↓t

E|Yt − Ys| = lim
s↓t

E|Yt −Xt +Xt − Ys| = E|Yt −Xt|.

With the partial augmentation we have found the proper setting for

martingale theory. Henceforth we will work on filtered spaces that are

already partially augmented, that is our standard setting (called the

usual setting in [13]) is as as follows:

Definition 1.4.2 A filtered càdlàg space is a quadruple (Ω,F ,P, (Ft, t ∈
R)), where (Ω,F ,P) is a probability space and Ft is a filtration of F
that satisfies the following properties:

(i) F is P-complete (contains sets of outer-P measure zero).

(ii) F0 contains all sets of P-measure 0.

(iii) Ft = Ft+, i.e. Ft is right-continuous.

If (Ω,G,P, (Gt, t ∈ R+)) is a filtered space, then the the minimal en-

largement of this space, (Ω,F ,P, (Ft, t ∈ R+)) that satisfies the con-

ditions (i),(ii),(iii) is called the right-continuous regularization of this

space.

On these spaces everything is now nice.

The following lemma details how a right-continuous regularization is

achieved.

Lemma 1.4.12 If (Ω,G,P, (Gt, t ∈ R+)) is filtered space, and (Ω,F ,P, (Ft, t ∈
R+)) its right-continuous regularization, then

(i) F is the P-completion of G (i.e. the smallest σ-algebra containing G
and all sets of P-outer measure zero;
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(ii) If N denotes the set of all P-null sets in F , then

Ft ≡
⋂

u>t

σ(Gu,N ) = σ(Gt+,N ); (1.43)

(iii) If F ∈ Ft, then there exists G ∈ Gt+ such that

F∆G ∈ N , (1.44)

where F∆G denotes the symmetric difference of the sets F and G.

Proof. Exercise.

Proposition 1.4.13 The process X constructed in Theorem 1.4.9 is a

supermartingale with respect to the filtration Ft.

Proof. Since by (1.44) Ft and Ht differ only by sets of measure zero,

E(Xt+s|Ft) and E(Xt+s|Ht) differ only on null sets and thus are versions

of the same conditional expectation.

We can now give a version of Doob’s regularity theorem for processes

defined on càdlàg spaces.

Theorem 1.4.14 Let (Ω,F ,P, (Ft, t ∈ R+)) be a filtered càdlàg space.

Let Y be an adapted supermartingale. Then Y has a càdlàg modification,

Z, if and only if the map t → EYt is right-continuous, in which case Z

is a càdlàg supermartingale.

Proof. Since Y is a supermartingale, for any u ≥ t, E(Yu)|Ft) ≤ Yt, a.s..

Construct the process X as in Theorem 1.4.9 Then

E(Xt|Ft) = E

(
lim
u↓t

Yu|Ft

)
= lim

u↓t
E (Yu|Ft) ≤ Yt, a.s.. (1.45)

since Yu ↓ Yt in L1. Since Xt is adapted to Ft, this implies Xt ≤ Yt, a.s..

If now E(Yt) is right-continuous, then limu↓t EYu = EYt, while from

the L1-convergence of Yu to Xt, we get EXt = limu↓t EYu = EYt. Hence

EXt = EYt, and so, since already Xt ≤ Yt, a.s., Xt = Yt, a.s., i.e. Xt

is the càdlàg modification of Y . If, on the other hand, EYt fails to

be right-continuous at some point t, then it follows that Xt < Yt with

positive probability, and so the càdlàg process Xt is not a modification

of Y .
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1.5 Convergence theorems and martingale inequalities

Key results on discrete time martingale theory were Doob’s forward and

backward convergence theorems and the maximum inequalities. We will

now consider the corresponding results in continuous time. This will not

be very hard.

Theorem 1.5.15 Let X be a càdlàg supermartingale with respect to a

filtered space (Ω,G,P,Gt) and assume that supt E|Xt| <∞. Then

lim
t↑∞

Xt ≡ X∞ ∈ R, (1.46)

exists almost surely.

Proof. A càdlàg function is determined by its values on the rational

numbers. ThusXt will converge if and only ifXq, q ∈ Q does. Therefore,

the proof of our theorem can be reduced to proving the same fact for

the restriction of X to the rationals, and all arguments of the discrete

time case simply carry over.

Similarly, one obtains the corresponding uniform integrability results.

Theorem 1.5.16 Let X be as in the previous theorem. Then

(i) if X is uniformly integrable, then Xt → X∞ in L1, and for any t,

E(X∞|Gt) ≤ Xt, a.s., with equality in the martingale case;

(ii) If X is a martingale (or a supermartingale that is bounded from above)

and Xt → X∞ in L1, then X is uniformly integrable.

Proof. The proof of the first statement uses Theorem 1.4.15 from [1]

(Vitali’s theorem) which implies that uniform integrability and a.s. con-

vergence implies convergence in L1 along any discrete subsequence tn. If

X is a martingale that converges in L1, then Xt = E (X∞|Gt) a.s., and

so Xt is a family of conditional expectations, and hence uniformly inte-

grable by Theorem 4.2.6 of [1]. If X is a supermartingale and bounded

from above by a constant C < ∞, then C ≥ Xt ≥ E(X∞|Gt) where

the lower bound is uniformly integrable. This implies that Xt is itself

uniformly integrable.

Remark 1.5.1 In general, (ii) does not hold for supermartingales with-

out further assumptions. This is different from the discrete time case,

where Vitali’s theorem yields uniform integrability of L1-convergent su-

permartingales.
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Finally we have an analog of the downward theorem, with a slightly

different twist:

Theorem 1.5.17 Suppose we have a càdlàg supermartingale as before

but on the parameter space (0,∞). Assume that supt>0 EXt <∞. Then

X0+ ≡ lim
t↓0

Xt

exists a.s. and in L1. Moreover, E(Xt|G0+) ≤ X0+, a.s..

Again the proof is virtually the same as in the discrete case and will

not be given.

In a similar way the maximum inequalities for càdlàg submartingales

can be inferred from the discrete ones.

Theorem 1.5.18 Let Z be a non-negative càdlàg submartingale on a

filtered space. Then, for any c > 0 and t ≥ 0,

P

(
sup
s≤t

Zs ≥ c

)
≤ c−1E

(
Zt1Isups≤t Zs≥c

)
≤ c−1EZt. (1.47)

Proof. The proof contains some basic ideas how to control suprema

over uncountable sets and is thus instructive. Consider an increasing

sequence, D(m), of finite subsets of [0, t] containing each 0 and t such

that D ≡ ∪mD(m) is dense in [0, 1]. Then, since Z is càdlàg

sup
s∈[0,t]

Zs(ω) = sup
m

sup
s∈D(m)

Zs(ω). (1.48)

Thus,
{
ω : sup

s∈[0,t]

Zs(ω) ≥ c

}
= lim

m

{
ω : sup

s∈D(m)

Zs(ω) ≥ c

}
.

Now use the discrete time submartingale inequality to see that

P

(
sup

s∈[0,t]

Zs ≥ c

)
= lim

m
P

(
sup

s∈D(m)

Zs ≥ c

)

≤ lim
m
c−1E

(
Zt1Isups∈D(m) Zs≥c

)

= c−1E

(
Zt1Isups∈[0,t] Zs≥c

)

Finally we state the continuous time analog of Doob’s Lp inequality.
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Theorem 1.5.19 Let 1/p + 1/q = 1, p > 1. Let Z be a non-negative

càdlàg sub-martingale on a filtered space (Ω,G.P,Gt) such that EZp
t <

∞, uniformly in t ∈ R. Let Z∗ ≡ supt≥0 Zt. Then

‖Z∗‖p ≤ q sup
t∈R+

‖Zt‖p. (1.49)

Then Z∞ ≡ limt↑∞ Zt exists a.s. and in Lp, and

‖Z∞‖p = sup
t∈R+

‖Zt‖p = lim
t↑∞

‖Zt‖p. (1.50)

In the case when Z is a martingale, then Zt = E (Z∞|Gt), a.s. .

Proof. Compare to Theorem 4.3.13 in [2] and adopt the proof to the

continuous setting.

1.6 Brownian motion revisited

We have shown in [2] Theorem 6.2.1 that Brownian motion exists through

an explicite construction. We now want to show an alternative that

starts with the “pre-Brownian” motion that we had defined without

reference to continuity of paths.

Now we want to take that process, show first that it can be regularized

to define a càdlàg martingale and show than that it has almost surely

continuous paths.

We consider the Gaussian stochastic process Yt defined on a filtered

space (Ω,G,P,Gt) with covariance EYtYs = s ∧ t; we have seen that

Yt−Ys, for t > s, is independent of the σ-algebra Gs and E (Yt − Ys|Gs) =

0 so that Ys is a martingale with respect to the filtration Gt. Since E|Yt−
Ys| ≤

√
E(Yt − Ys)2 =

√
t− s tends to zero as t ↓ s, the assumption of

Theorem 1.4.11 are verified and there exists a càdlàg modification, X ,

of Y , that is a càdlàg martingale relative to the usual augmentation Ft.

It is not entirely trivial that this modification will have the desired

independence properties of Brownian motion, but the following lemma

shows why it does.

Lemma 1.6.20 With the notation above,

(i) For t ≥ 0, the σ-algebra Ut ≡ σ(Yt+u − Yt, u ∈ R+}, is independent of
Gt+.

(ii) For t ≥ 0, Gt+ ⊂ σ(Gt,N (G∞)), where N (G∞) denotes the P-null sets

in G∞.



1.6 Brownian motion revisited 21

Proof. First it is clear that the càdlàg modification of Y , satisfies that

Xt+u+ε − Xt+ε is independent of Gt+ε/2 and hence of Gt+. Thus, for

G ∈ Gt+,

E (f(Xt+u+ε −Xt+ε)1IG) = P(G)E (f(Xt+u+ε −Xt+ε)) ,

for any bounded continuous function. SinceX is right-continuous, bounded

convergence shows that

E (f(Xt+u −Xt)1IG) = P(G)E (f(Xt+u −Xt)) ,

Then the monotone class theorem shows that Xt+u −Xt is independent

of Gt+. Since Y is a modification of X , the same holds for Yt+u − Yt.

Next, let η be Gt+-measurable and let ξ = η − E(η|Gt) almost surely.

We want to show that ξ = 0 a.s. . We know that ξ is independent of Ut,

so for any Gt ∈ Gt and At ∈ Ut,

E(ξ1IGt
1IAt

) = P(At)E(η1IGt
)− P(At)P(Gt)E(η|Gt) = 0, a.s. (1.51)

as desired. Now events of the form At ∩Gt form a π-system that gener-

ates the σ-algebra G∞ = σ(Ut,Gt). Thus (1.51) shows ξ = 0 a.s..

By definition of the augmentation Ft, the statements of the lemma

can also be read as

(i) For t ≥ 0, the σ-algebra σ(Xt+u−Xt), u ∈ R+}, is independent of Ft.

(ii) For t ≥ 0, Ft = σ(Gt,N (G∞)), where N denotes the P-null sets in F .

Therefore, Xt as a càdlàg martingale satisfies the properties required

of Brownian motion, except so far the continuity of paths. We will now

show that this also holds.

Theorem 1.6.21 P-almost all paths of X are continuous.

Proof. The process X4 is a càdlàg submartingale, since by Jensen’s

inequality

E(X4
t |Fs) = E

(
(Xt −Xs +Xs)

4|Fs

)
≤ (E(Xt −Xs +Xs|Fs))

4
= X4

s .

Hence

P

(
sup
s≤δ

|Xs| > ε

)
= P

(
sup
s≤δ

|X4
s | > ε4

)
≤ ε−4EX4

δ = 3ε−4δ2.

Put

Dn ≡ {k2−n : 0 ≤ k < 2n},
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and δn ≡ 2−n. Then

P

(
sup
r∈Dn

sup
s≤δn

|Xr+s −Xr| > 1/n

)
≤ 2nP

(
sup
s≤δn

|Xs −X0| > 1/n

)

≤ 32nδ2nn
4 = 3n42−n.

The right-hand side is summable over n, and so the first Borel-Cantelli

lemma implies that on a set of probability one, for all except finitely

many values of n,

sup
r∈Dn

sup
s≤δn

|Xr+s −Xr| ≤ 1/n

and so

sup
r∈[0,1]

sup
s≤δn

|Xr+s −Xr| ≤ 3/n

which implies uniform continuity of all paths on a set of measure one.

Then it suffices to modify the process on a set of measure zero to obtain

Brownian motion.

1.7 Stopping times

The notions around stopping times that we will introduce in this section

will be very important in the sequel, in particular also in the theory of

Markov processes. We have to be quite a bit more careful now in the

continuous time setting, event though we would like to have everything

resemble the discrete time setting.

We consider a filtered space (Ω,G : P, (Gt, t ∈ R+)).

Definition 1.7.1 A map T : Ω → [0,∞] is called a Gt-stopping time if

{T ≤ t} ≡ {ω ∈ Ω : T (ω) ≤ t} ∈ Gt, ∀t ≤ ∞. (1.52)

If T is a stopping time, then the pre-T -σ-algebra, GT , is the set of all

Λ ∈ G such that

Λ ∩ {T ≤ t} ∈ Gt, ∀t ≤ ∞. (1.53)

With this definition we have all the usual elementary properties of

pre-T -σ-algebras:

Lemma 1.7.22 Let S, T be stopping times. Then:

(i) If S ≤ T , then GS ⊂ GT .

(ii) GT∧S = GT ∩ GS.

(iii) If F ∈ GS∨T , then F ∩ {S ≤ T } ∈ GT .
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(iv) GS∨T = σ(GT ,GS).

Proof. Exercise.

It will be useful to talk also about stopping time with respect to the

filtrations Gt+.

Definition 1.7.2 A map T : Ω → [0,∞] is called a Gt+-stopping time

if

{T < t} ≡ {ω ∈ Ω : T (ω) < t} ∈ Gt, ∀t ≤ ∞. (1.54)

If T is a Gt+-stopping time, then the pre-T -σ-algebra, GT+, is the set of

all Λ ∈ G such that

Λ ∩ {T < t} ∈ Gt, ∀t ≤ ∞. (1.55)

Lemma 1.7.23 Let Sn be a sequence of Gt-stopping times. Then:

(i) if Sn ↑ S, then S is a Gt stopping time;

(ii) if Sn ↓ S, then S is a Gt+-stopping time and GS+ =
⋂

n∈N GSn+.

Proof. Consider case (i). Since Sn is increasing, the sequence of sets

{Sn ≤ t} ∈ Gt is decreasing, and its limit is also in Gt. In case (ii), since

if Sn ↓ S, {S < t} contains all sets {Sn < t}. On the other hand, for

any ε > 0, there exists n0 < ∞, such that {S ≤ t − ε} ⊂ {Sn < t} for

all n ≥ n0. Hence the event {S < t} is contained in
⋃

n{Sn ≤ t}, and
by the previous observation, {S < t} =

⋃
n{Sn ≤ t} ∈ Gt.

Definition 1.7.3 A process Xt, t ∈ R+ is called Gt-progressive if, for

every t ≥ 0, the restriction of the map (s, ω) → Xs(ω) to [0, t] × Ω is

B([0, t]× Gt-measurable.

The notion of a progressive process is stronger than that of an adapted

process. The importance of the notion of progressiveness arises from the

fact that T -stopped progressive processes are measurable with respect

to the respective pre-T σ-algebra.

The good news is that in the usual càdlàg world we need not worry:

Lemma 1.7.24 An adapted càdlàg process with values in a metrisable

space, (S,B(S)), is progressive.

Proof. The whole idea is to approximate the process by a piecewise

constant one, to use that this is progressive, and then to pass to the
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limit. To do this, fix t and set, for s < t, (we will always understand

X(s) = Xs)

Xn(s, ω) ≡ X((k + 1)2−nt, ω), if k2−nt ≤ s < [k + 1]2−nt.

For n fixed, checking measurability of the map Xn involves the inspec-

tion of only finitely many time points, i.e.

(Xn)
−1

(B) = {(ω, s) ∈ Ω× [0, t] : Xn(s, ω) ∈ B}
= {(ω, s) ∈ Ω× [0, t] : Xn(k(s)2−nt, ω) ∈ B}

where k(s) = max{k ∈ N : k2−nt ≤ s}. The latter set is clearly measur-

able.

Finally, Xn converges pointwise to X on [0, t], and so X shares the

same measurability properties.

Exercise: Show why the right-continuity of paths is important. Can

you find an example of an adapted process that is not progressive?

Lemma 1.7.25 If X is progressive with respect to the filtration Gt and

T is a Gt-stopping time, then XT is GT measurable.

Proof. For t ≥ 0 let Ω̂t ≡ {ω : T (ω) ≤ t}. Define Ĝt to be the sub-σ-

algebra of Gt such that any set A ∈ Ĝt is in Ω̂t. Let ρ : Ω̂t → [0, t]× Ω̂t

be defined by

ρ(ω) ≡ (T (ω), ω).

Define further the map X̂t : [0, t]× Ω̂t → S by

X̂t(s, ω) ≡ Xs(ω).

Note that the map X̂t is measurable with respect to B([0, t]) × Gt due

to the progressiveness of X . ρ is measurable with respect to Gt by the

definition of stopping times and the obvious measurability of the identity

map. Hence X̂t ◦ ρ as map from Ω̂t → S is Gt- measurable.

Then we can write, for ω ∈ Ω̂t, XT (ω) = X̂t ◦ ρ(ω), and hence, for

any Borel set Γ

{ω ∈ Ω : XT (ω) ∈ Γ} ∩ {T ≤ t} = {ω ∈ Ω̂t : XT (ω) ∈ Γ}
= (X̂t ◦ ρ)−1(Γ) ∈ Ĝt ⊂ G,

which proves the measurability of XT .
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1.8 Entrance and hitting times

Already in the case of discrete time Markov processes we have seen that

the notion of hitting times of certain sets provides particularly important

examples of stopping times. We will here extend this discussion to the

continuous time case. It is quite important to distinguish two notions

of hitting and first entrance time. They differ in the way the position of

the process at time 0 is treated.

Definition 1.8.1 Let X be a stochastic process with values in a mea-

surable space (E, E). Let Γ ∈ E . We call

τΓ(ω) ≡ inf{t > 0 : Xt(ω) ∈ Γ} (1.56)

the first hitting time of the set Γ; we call

∆Γ(ω) ≡ inf{t ≥ 0 : Xt(ω) ∈ Γ} (1.57)

the first entrance time of the set Γ. In both cases we infimum is under-

stood to yield +∞ if the process never enters Γ.

Recall that in the discrete time case we have only worked with τΓ,

which is in fact the more important notion.

We will now investigate cases when these times are stopping times.

Lemma 1.8.26 Consider the case when E is a metric space and let F

be a closed set. Let X be a continuous adapted process. Then ∆F is a

Gt-stopping time and τF is a Gt+-stopping time.

Proof. Let ρ denote the metric on E. Then the map x → ρ(x, F ) is

continuous, and hence the map ω → ρ(Xq(ω), x) is Gq measurable, for

q ∈ Q+. Since the paths Xt(ω) are continuous, ∆F (ω) ≤ t if and only if

inf
q∈Q∩[0,t]

{ρ(Xq(ω), F )} = 0.

and so ∆F is measurable w.r.t. Gt. For τF the situation is slightly

different at time zero. Let us define, for r > 0, ∆r
F ≡ inf{t ≥ r : Xt ∈

F}. Obviously, from the previous result, Dr
F is a Gt-stopping time. On

the other hand, {τF > 0} if and only if there exists δ > 0, such that, for

all Q ∋ r > 0, ∆r
F > δ. But clearly, the event

Aδ ≡ ∩Q∋r>0{∆r
F > δ}

is Gδ-measurable, and so the event

{τF = 0} = {τF > 0}c = ∩δ>0A
c
δ

is G0+-measurable and so τF is a Gt+-stopping time.



26 1 Continuous time martingales

To see where the difference in the two times comes from, consider the

process starting at the boundary of F . Then ∆F = 0 can be deduced

from just that knowledge. On the other hand, τF may or may not be

zero: it could be that the process leaves F and only returns after some

time t, or it may stay a little while in F , in which case τF = 0; to

distinguish the two cases, we must look a little bit into the future!

1.9 Optional stopping and optional sampling

We have seen the theory of discrete time Markov processes that mar-

tingale properties of processes stopped at stopping times are important.

We want to recover such results for càdlàg processes.

In the sequel we will work on a filtered càdlàg space (Ω,F ,P, (Ft, t ∈
R+)) on which all processes will be defined and adapted.

Our aim is the following optional sampling theorem:

Theorem 1.9.27 Let X be a càdlàg submartingale and let T, S be Ft-

stopping times. Then for each M <∞,

E (X(T ∧M)|FS) ≥ X(S ∧ T ∧M), a.s.. (1.58)

If, in addition,

(i) T is finite a.s.,

(ii) E|X(T )| <∞, and

(iii) limM↑∞ E (X(M)1IT>M ) = 0,

then

E (X(T )|FS) ≥ X(S ∧ T ), a.s.. (1.59)

Equality holds in the case of martingales.

Proof. In order to prove Theorem 1.9.27 we frst prove a result for

stopping times taking finitely many values.

Lemma 1.9.28 Let S, T be Ft stopping times that take only values in

the set {t1, . . . , tm}, 0 ≤ t1 < · · · < tm ≤ ∞. If X is a Ft-submartingale,

then

E (X(T )|FS) ≥ X(S ∧ T ), a.s.. (1.60)

Proof. We need to prove that for any A ∈ FS ,

E (1IAX(T )) ≥ E (1IAX(T ∧ S)) . (1.61)
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Now we can decompose A = ∪m
i=1A ∩ {S = ti}. Hence we just have to

prove (1.61) with A replaced by A∩{S = ti}, for any i = 1, . . .m. Now,

since A ∈ FS, we have that A ∩ {S = ti} ∈ Fti . We will first show that

E (X(T )|Fti) ≥ X(T ∧ ti). (1.62)

To do this, note that

E (X(T ∧ tk+1)|Ftk) = E (X(tk+1)1IT>tk +X(T )1IT≤tk |Ftk) (1.63)

= E (X(tk+1)|Ftk) 1IT>tk +X(T )1IT≤tk

≤ X(tk+1)1IT>tk +X(T )1IT≤tk

= X(tk ∧ T ), a.s..

Since S = S ∧ tm, this gives (1.62) for i = m − 1. Then we can iterate

(1.63) to get (1.62) for general i.

Using (1.61), we can now deduce that

E
(
1IA∩{S=ti}X(T )

)
= E

(
1IA∩{S=ti}E(X(T )|Fti)

)
(1.64)

≥ E (1IAX(T ∧ ti))
= E (1IAX(T ∧ S))

as desired. This concludes the proof of the lemma.

We now continue the proof of the theorem through approximation

arguments. Let Sn = (k + 1)2−n, if S ∈ [k2−n, (k + 1)2−n), and T (n) =

∞, if T = ∞; define T (n) in the same way. Fix α ∈ R and M > 0. Then

the preceeding lemma implies that

E

(
X(T (n) ∧M) ∨ α|FS(n)

)
≥ X(T (n) ∧ S(n) ∧M) ∨ α, a.s.. (1.65)

Since FS ⊂ FS(n) , it follows that

E

(
X(T (n) ∧M) ∨ α|FS

)
≥ E

(
X(T (n) ∧ S(n) ∧M) ∨ α|FS

)
, a.s..

(1.66)

Again from using Lemma 1.9.28, we get that

α ≤ X(T (n) ∧M) ∨ α ≤ E (X(M) ∨ α|FT (n)) , a.s.,

and thereforeX(T (n)∧M)∨α is uniformly integrable. SimilarlyX(T (n)∧
S(n)∧M)∨α is uniformly integrable. Therefore we can pass to the limit

n ↑ ∞ in (1.66) and obtain, using that X is right-continuous,

E (X(T ∧M) ∨ α|FS) ≥ E (X(T ∧ S ∧M) ∨ α|FS) , a.s.. (1.67)

Since this relation holds for all α, we may let α ↓ −∞ to get (1.58).
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Using the additional assumptions on T ; we can pass to the limit M ↑ ∞
and get (1.59) in this case: First, the a.s. finiteness of T implies that

lim
M↑∞

X(T ∧ S ∧M) = X(T ∧ S), a.s.,

Do deal with the left-hand side, write

E (X(T ∧M)|FS) = E (X(T )|FS)

+ E (X(M)1IT>M |FS)− E (X(T )1IT>M |FS)

The first term in the second line converges to zero by Assumption (iii),

since

|E (X(M)1IT>M |FS)| ≤ E (|X(M)|1IT>M |FS)

and

EE (|X(M)|1IT>M |FS) = E (|X(M)|1IT>M ) ↓ 0.

The mean of the absolute value of the second term is bounded by

E (|X(T )|1IT>M ) ,

which tends to zero by dominated convergence due to Assumtions (i)

and (ii).

A special case of the preceeding theorem implies the following corol-

lary:

Corollary 1.9.29 Let X be a càdlàg (super, sub )martingale, and let

T be a stopping time. Then XT ≡ XT∧t is a (super, sub) martingale.

In the case of uniformly integrable supermartingales we get Doob’s

optional sampling theorem:

Theorem 1.9.30 Let X be a uniformly integrable or a non-negative

càdlàg supermartingale. Let S and T be stopping times with S ≤ T .

Then XT ∈ L1 and

E (X∞|FT ) ≤ XT , a.s. (1.68)

and

E (XT |FS)) ≤ XS , a.s., (1.69)

with equality in the uniformly integrable martingale case.

Proof. The proof is along the same lines of approximation with discrete

supermartingales as in the preceding theorem and uses the analogous

results in discrete time (see [13], Thms (59.1,59.5)).
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Weak convergence

In this short section we collect some necessary material for understand-

ing the convergence of sequences of stochastic processes with path prop-

erties. This will allow us to put the analysis of the Donsker theorem

into a general framework.

2.1 Some topology

We consider the general setup on a compact Hausdorff space, J . We

denote by C(J) the Banach space of bounded, continuous real-valued

functions equipped with the supremum norm. We denote by M1(J) the

space of probability measures on J . We denote by C(J)∗ the space of

bounded linear functionals C(J) → R on C(J).

We need two basic facts from functional analysis:

Theorem 2.1.1 [Stone-Weierstrass theorem] Let A be a sub-algebra of

C(J) that contains constant functions and separates points of J , i.e. for

any x ∈ J there exits f, g ∈ A such that f(x) 6= g(x). Then A is dense

in C(J).

Theorem 2.1.2 [Riesz representation theorem] Let φ be a linear in-

creasing functional φ : C(J) → R with Φ(1) = 1. Then there exists a

unique inner regular probability measure, µ ∈ M1(J), such that

φ(f) = µ(f) =

∫

J

fdµ. (2.1)

Recall (see [2], page 12) that a measure is inner regular, if for any Borel

set, B, µ(B) = sup{µ(K),K ⊂ B, compact}. We have shown there

already, that if J is a compact metrisable space, then any probability

measure on it is inner regular.

29
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The weak-∗ topology on the space C(J)∗ is obtained by choosing sets

of the form

Bf1,...,fn,ε(φ0) ≡ {φ ∈ C(J)∗ : ∀1≤i≤n|φ(fi)− φ0(fi)| < ε} (2.2)

with n ∈ N, ε > 0, fi ∈ C(J) as a basis of neighborhoods. The ensuing

space is a Hausdorff space.

When speaking of convergence on topological spaces, it is useful to

extend the notion of convergence of sequences to that of nets.

Definition 2.1.1 A directed set, D, is a partially ordered set all of

whose finite subsets have an upper bound in D. A net is a family

(xα, α ∈ D) indexed by a directed set.

If (xα, α ∈ D) is a net in a topological space, E, then xa → x if, for

every open neighborhood, G, of x, there exists a0 ∈ D such that for all

α ≥ α0, xα ∈ G.

Lemma 2.1.3 A net φα in C(J)∗ converges in the weak-* topology to

some element, φ, if and only if, for all f ∈ C(J), φα(f) → φ(f).

Proof. Let us prove first the “if” part. Then for any f , and any ε, there

exists αf , such that for all α ≥ αf , φα(f) − φ(f)| < ε. Now take any

neighborhood Bf1,...,fn,ε(φ). Then, let α0 ≡ maxni=1 αfi , and it follows

that φα ∈ Bf1,...,fn,ε(φ), for α ≥ α0, hence φa → φ. For the converse,

we have that for any n ∈ N, any collection f1, . . . , fn, and any ε > 0,

there exists α0 such that, if φα0 ∈ Bf1,...,fn,ε(φ), then for all α ≥ α0,

φα ∈ Bf1,...,fn,ε(φ). Thus to show that for any given f , φα(f) → φ(f)

we just have to use this fact with Bf,ε(φ).

One of the most important facts about the weak-∗ topology is Alaoglu’s
theorem. The space C(J)∗ is in fact a Banach space equipped with the

norm ‖φ‖ ≡ supf∈C(J)
φ(f)
‖f‖∞

Theorem 2.1.4 The unit ball

{φ ∈ C(J)∗ : ‖φ‖ ≤ 1} (2.3)

is compact in the weak-∗ topology.

(for a proof, see any textbook on functional analysis, e.g. Dunford

and Schwartz [5]).

The importance for us is that when combined with the Riesz repre-

sentation theorem, it yields:
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Corollary 2.1.5 The set of inner regular probability measures on a

compact Hausdorff space is compact in the weak-∗ topology.

Proof. By the Riesz representation theorem, each inner regular proba-

bility measure corresponds to a unique increasing functional, φ ∈ C(J)∗

with φ(1) = 1. Since the function f ≡ 1 is the largest function such

that ‖f‖∞ ≤ 1, it follows that ‖φ‖ ≤ φ(1) = 1. Hence this set is a

subset of the unit ball. Moreover, the set of increasing (in the sense of

non-decreasing) linear functionals mapping 1 to 1 is closed, and hence,

as a closed subset of a compact set, compact.

Corollary 2.1.6 The set of probability measures on a compact metris-

able space is compact in the weak-∗ topology.

Proof. By Theorem 1.2.6 in [2], any probability measure on a compact

metrisable space is inner regular, hence the restriction to inner regular

measures in Corollary 2.1.5 can be dropped in this case.

As a matter of fact, in the compact metrisable case we get even more.

Theorem 2.1.7 Let J be a compact metrisable space. Then C(J) is

separable, and M1(J) equipped with the weak-∗ topology is compact metris-

able.

Proof. We may take J to be metric with metric ρ. Since J is separable

(any compact metric space is separable), there is a countable dense set

of points, xn, n ∈ N. Define the functions

hn(x) ≡ ρ(x, xn).

The functions hn separate points in J , i.e. if x 6= y, then there exists n

such that hn(x) 6= hn(y). Now let A be the set of all functions of the

form

q1I +
∑

n1,...,nr ;k1,...,kr

q(n1, . . . , nr; k1, . . . , kr)h
k1
n1
. . . hkr

nr

where all q’s are rational. Then the closure of A is an algebra containing

all constant functions and separating points in J . The Stone-Weierstrass

theorem asserts therefore that the countable set A is dense in C(J), so

C(J) is separable.

Now let fn, n ∈ N, be a countable dense subset of C(J). Consider the
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map Φ : M1(J) → V ≡ ×n∈N[−‖fn‖∞, ‖fn‖∞], given by

Φ(µ) = (µ(f1), µ(f2), . . . ).

This map is one to one. Namely, assume that µ 6= ν, but Φ(µ) = Φ(ν).

Then on the one hand, there must exists f ∈ C(J) such that µ(f) 6=
ν(f), while for all n, µ(fn) = ν(fn). But there are sequences fi ∈ A such

that fi → f . Thus limi µ(fi) = limi ν(fi), and by dominated conver-

gence, both limits equal µ(f), resp. ν(f), which must be equal contrary

to the assumption. Moreover, the set A determines convergence, i.e. a

net µα converges to µ (in the weak-∗ topology , if µα(fn) → µ(fn), for

all fn ∈ A. But the product space V is compact and metrisable (by

Tychonoff’s theorem), and from the above, M1(J) is homeomorphic to

a compact subset of this space. Thus it is compact and metrisable.

Let us remark that a metric on M1(J) can be defined by

ρ̂(µ, ν) ≡
∞∑

n=1

2−n
(
1− e−|µ(fn)−ν(fn)|

)
. (2.4)

2.2 Polish and Lousin spaces

When dealing with stochastic processes, an obviously important space

is that of continuous, real valued functions on R+. We will call

W ≡ C([0,∞),R). (2.5)

This space is not compact, so we have to go slightly beyond the previous

setting.

Lemma 2.2.8 The space W equipped with the topology of uniform con-

vergence on compact sets is a Polish space. The σ-algebra, A, of cylin-

ders generated by the projections πt : W → R, πt(w) = w(t), is the

Borel-σ-algebra on W .

Proof. We can metrise the topology on W by the metric

ρ(w1, w2) ≡
∞∑

n=1

2−n ρn(w1, w2)

1 + ρn(w1, w2)
,

where

ρn(w1, w2) ≡ sup
0≤t≤n

|w1(t)− w2(t)|.

Then it inherits its properties form the metric space C([0, n),R) equipped

with the uniform topology.
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Now the maps πt are continuous, and hence A ⊂ B(W ). On the other

hand, for continuous functions, wi,

ρn(w1, w2) = sup
q∈Q∩[0,n]

|w1(q)− w2(q)|,

so that ρn and hence ρ are A-measurable. Now let F be a closed subset

of W . Take a countable dense subset of F , say wn, n ∈ N. Then

F = {w ∈W : inf
n
ρ(w,wn) = 0},

which (since all is countable) implies that F ∈ A, and thus A = B(W ).

This (and the fact that quite similarly the corresponding spaces of

càdlàg functions are Polish) implies that we can most of the time assume

that we will be working on Polish probability spaces. In the construction

of stochastic processes we have actually been working on Lousin spaces

(and used the fact that these are homeomorphic to a Borel subset of

a compact metric space). The next theorem nicely clarifies that Polish

spaces are even better.

Theorem 2.2.9 A topological space is Polish, if and only if it is home-

omorphic to a Gδ subset (i.e. a countable intersection of open subsets)

of a compact metric space. In particular, every Polish space is a Lousin

space.

Proof. We really only care about the “only if” part and only give its

proof. Let S be our Polish space. We will actually show that it can be

embedded in a Gδ subset of the compact metrisable space J ≡ [0, 1]N.

Let ρ be a metric on S, and set ρ̂ = ρ
1+ρ . This is an equivalent metric

that is bounded by 1. Chose a countable dense subset xn, n ∈ N, of S

and define

α(x) ≡ (ρ̂(x, x1), ρ̂(x, x2), . . . ).

Let us show that α is a homeomorphism from S to its image, α(S) ⊂
[0, 1]N. For this we must show that a sequence of elements x(n) converges

to x, if and only if

ρ̂(x(n), xk) → ρ̂(x, xk),

for all k. The only if direction foillow from the continuity of the map

ρ̂(·, xk). To show the other direction, note that by the triangle inequality

ρ̂(x(n), x) ≤ ρ̂(x(n), xk) + ρ̂(xk, x).
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Therefore, for all k,

lim sup ρ̂(x(n), x) ≤ 2ρ̂(xk, x). (2.6)

Now take a sequence of xk that converges to x. Then (2.6) implies that

lim sup ρ̂(x(n), x) ≤ 0, and so x(n) →, as desired.

Next, let d be a metric on J . By continuity of the inverse map α−1

on the image of S, for any n ∈ N we can find 1/2n ≥ δ > 0, such that

the pre-image of the ball Bd(α(x), δ) ∩ α(S) has diameter smaller than

1/n (with respect to the metric ρ̂).

Now think of α(S) as a subset of J . Let ᾱ(S) be its closure. For

n given, let Un be the union of all points x ∈ ᾱ(S) such that it has a

neighborhood, Nn,x in J such that α−1(Nn,x ∩ α(S)) has ρ̂-diameter at

most 1/n. Note that by what we just showed, all points in α(S) belong

to Un. Now we show that Un is open in ᾱ(S): if x ∈ Un, and y ∈ ᾱ(S)

is close enough to x, then y ∈ Nn,x, and the set Nn,x may serve as Nn,y,

so that y ∈ Un. Thus Un is open.

Now let x ∈ ⋂n Un. Choose for any n a point xn ∈ α(S)∩⋂k≤nNk,x.

Clearly d(x, xn) ≤ 1/n and hence xn → x. Moreover, for any r ≥ n,

both xr ∈ Nn,x and xn ∈ Nn,x, so that ρ̂(α−1(xr), α
−1(xn)) ≤ 1/n.

Thus α−1(xn) is a Cauchy sequence in complete metric space, and so

α−1(xn) → y ∈ S. Thus, since α is a homeomorphism, xn → α(y) in J ,

and clearly α(y) = x, implying that α(S) =
⋂

n Un. Finally, since Un is

open in ᾱ(S), there are open sets Vn such that Un = ᾱ(S) ∩ Vn. Hence

α(S) = ᾱ(S) ∩
(⋂

n

Vn

)
.

Remember that we want to show that α(S) is a countable intersection

of open sets: all that remains to show that is that ᾱ(S) is such a set,

but this is obvious in a metric space:

ᾱ(S) =
⋂

n

{y ∈ J : d(y, α(S)) < 1/n}.

On the space of probability measures on Lousin spaces we introduce

a the weak-∗ topology with respect to the set of bounded continuous

functions (the boundedness having been trivial in the compact setting).

Convergence in this topology is usually called weak convergence, which

is bad, since it is not what weak convergence would be in functional

analysis. But that is how it is, anyway.

Let us state this as a definition:
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Definition 2.2.1 Let S be a Lousin space. Let Cb(S) be the space of

bounded, continuous functions on S, and let M1(S) be the space of

probability measures on S. Then a net, µα ∈ M1(S) converges weakly

to µ ∈ M1(S), if and only if, for all f ∈ Cb(S),

µa(f) → µ(f). (2.7)

Weak convergence is related to convergence in probability.

Lemma 2.2.10 Assume that Xn is a sequence of random variables with

values in a Polish space such that Xn → X in probability, where X is

a random variable on the same probability space. Let µn, µ denote their

distributions. Then µn → µ weakly.

Proof. Let us first show that convergence in probability implies conver-

gence of µn(f) if f be a bounded uniformly continuous function. Then

there there exists C < ∞ such that |f(x)| ≤ C and for any δ > 0 there

exists ε = ε(δ) such that ρ(x− y) ≤ ε implies |f(x)− f(y)| ≤ δ. Clearly

|µn(f)− µ(f)| = |E(f(Xn)− f(X))|
≤
∣∣E
[
(f(Xn)− f(X))1Iρ(Xn−X)≤ε

]∣∣
+
∣∣E
[
(f(Xn)− f(X))1Iρ(Xn−X)>ε

]∣∣
≤ δ + CP (ρ(Xn −X) > ε) (2.8)

Since the second term on the right tends to zero as n ↑ ∞ for any ε > 0,

for any δ > 0,

lim sup
n↑∞

|µn(f)− µ(f)| ≤ δ,

hence

lim
n↑∞

|µn(f)− µ(f)| = 0,

as claimed.

To conclude the prove, we must only show that convergence of µn(f)

to µ(f) for all absolutely continuous functions implies that the same

holds for all bounded continuous functions. To this end we use that

if f is a bounded continuous function, then there exists s sequence of

uniformly continuous functions, fk, such that ‖fk− f‖∞ → 0. One then

has the decomposition

|µn(f)− µ(f)| ≤ µn(|f − fk|) + |µn(fk)− µ(fk)|+ µ(|fk − f |).

by unifrom convergence of fk to f , the first term is smaller than ε/3,
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provided only k is large enough; the second bracket is smaller than ε/3

if n ≥ n0(k); the last bracket is smaller than ε/3, of k is large enough,

independent of n. Hence choosing k ≥ k0 and n ≥ n0(k), we see that

for any ε > 0, there exists n0, s.t. for n ≥ n0, |µn(f)− µ(f)| ≤ ε.

The following characterization of weak convergence is important, but

the proof is somewhat technical and will be skipped (try as an exercise).

Proposition 2.2.11 Let µα be a net of elements of M1(S) where S is

a Lousin space. Then the following conditions are equivalent:

(i) µα → µ weakly;

(ii) for every closed F ⊂ S, lim supµα(F ) ≤ µ(F );

(iii) for every open G ⊂ S, lim inf µα(G) ≥ µ(G);

Thus, if B ∈ B(S) with µ(∂B) = 0, then, if µα → µ, then µα(B) →
µ(B).

We will use this proposition to prove the fundamental result that the

weak topology on M1(S) is metrisable if S is Lousin. This is very

convenient, and in particular will allow us to never use nets anymore!

Theorem 2.2.12 Let S be a Lousin space and let J be the compact

metrisable space such that S is homeomorphic to one of its Borel subsets,

B. Let µ̂ be the extension of (the natural image of1) µ on B on J such

that µ̂(J\B) = 0. The map µ → µ̂ is a homeomorphisms from M1(S)

to the set {ν ∈ M1(J) : ν(B) = 1} in the weak topologies. Therefore,

the weak topology on M1(S) is metrisable.

Proof. We must show that, if µα is a net in M1(S) and µ ∈ M1(S),

then the conditions

(i) µα(f) → µ(f), ∀f ∈ Cb(S), and

(ii) µ̂α(f) → µ̂(f), ∀f ∈ C(J)

are equivalent. Assume that (i) holds. Let f ∈ C(J) and set fB = f1IB.

Clearly fB is bounded on B, and if φ : S → B is our homeomorphism,

then g ≡ fB ◦ φ is a bounded function on S, and µn(g) = µ̂n(fB) =

µ̂n(f). Thus (i) implies (ii).

Now assume that (ii) holds. Let F ⊂ S be a closed. Then there exists

a closed subset, Y , of J such that F = φ−1(B ∩ Y ). By Proposition

2.2.11,

1 That is, if A ∈ B(J), then µ̂(A) ≡ µ(φ−1(A ∩ B))
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lim supµα(F ) = lim sup µ̂α(B ∩ Y ) = lim sup µ̂α(Y )

≤ µ̂(Y ) = µ̂(B ∩ Y ) = µ(F ).

Hence again by Proposition 2.2.11, (i) holds.

Now that we have shown that the space M1(S) is homeomorphic to a

subspace of the compact metrisable space M1(J) (because of Theorem

2.5), M1(S) is metrisable.

We now introduce the very important concept of tightness. The point

here is the following. We already know, from the Kolmogorov-Daniell

theorem, that the finite dimensional marginals of a process determine

its law. It is frequently possible, for a sequence of processes, to prove

convergence of of the finite dimensional marginals. However, to have

path properties, we want to construct the process on a more suitable

space of, say, continuous or càdlàg paths. The question is whether the

sequence converges weakly to a probability measure on on this space.

For this purpose it is useful to have a compactness criterion for set of

probability measures (e.g. for the sequence under consideration). This

is provided by the famous Prohorov theorem .

We need to recall the definition of conditional compactness.

Definition 2.2.2 Let S be a topological space. A subset, J ⊂ S, is

called conditionally compact if its closure in the weak topology is com-

pact. J is called conditionally sequentially compact, if its closure is

sequentially compact. If S is a metrisable space, then any conditionally

compact set is conditionally sequentially compact.

Remark 2.2.1 The terms conditionally compact and relatively compact

are used interchangebly by different authors with the same meaning.

The usefulness of this notion for us lies in the following. Assume that

we are given a sequence of probability measures, µn, on some space, S.

If the set {µn, n ∈ N}, is conditionally sequentially compact in the weak

topology, then there exist limit points, µ ∈ M1(S), and subsequences,

nk), such that µnk
→ µ, in the weak topology. E.g., if we take as our

space S the space of càdlàg paths, if our sequence of meaures is tight,

the limit points will be probability measures on càdlàg paths.

Definition 2.2.3 A subset, H ⊂ M1(S) is called tight, if and only if

there exists, for any ε > 0, a compact set Kε ⊂ S, such that, for all

µ ∈ H ,
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µ(Kε) > 1− ε. (2.9)

Theorem 2.2.13 (Prohorov) If S is a Lousin space, then a subset

H ⊂ M1(S) is conditionally compact, if it is tight.

If S is a Polish space then any conditionally compact subset of M1(S)

is tight.

Moreover, since the spaces M1(S) are metrisable under both hypothe-

sis, conditionally compact may be replaced by sequentially conditionally

compact in both statements.

Proof. We prove the first (and most important statement). Let again

J be the compact metrisable space, and let φ be a homeomorphiosm

φ : Σ → B ⊂ J , for some Borel set B. We know that M1(J) is compact

metrisable, so that every subset of it is conditionally compact. Since

compactness and sequential compactness are equivalent in our setting,

we know that any sequence, µ̂n ∈ M1(J) has limit points in M1(J).

Now let H = {µn, n ∈ N} ⊂ M1(S) be tight. Let µ̂N ≡ µn ◦ φ−1. Let

µ̂ be a limit point of the sequence µ̂n. We want to show that µ̂ is the

image of a probability measure on S, and thus µ ≡ µ̂ ◦ φ exists and is a

limt point of the sequence µn. For this we need to show that µ̂(B) = 1.

Now let Kε be the compact set in S such that µn(Kε) > 1 − ε. Then,

by Proposition 2.2.11,

µ̂(φ(Kε)) ≥ lim sup
n

µ̂n(φ(Kε)) = lim sup
n

µn(Kε) ≥ 1− ε,

for all ε > 0, and so µ̂(B) = 1, as desired.

The proof of the less important converse will be skipped.

We will consider an application of the Prohorov theorem in the case

when S is the space, W , of continuous paths defined in (2.5).

This is based on the Arzelà–Ascoli theorem that characterizes condi-

tionally compact set in W .

Theorem 2.2.14 A subset, Γ ⊂W is conditionally compact if and only

if the following hold:

(i) sup{|w(0)| : w ∈ Γ} <∞;

(ii) ∀N∈N limδ↓0 supw∈Γ∆(δ,N,w) = 0, where

∆(δ,N.w) ≡ sup {|w(t) − w(s)| : t, s ∈ [0, N ], |t− s| < δ} . (2.10)
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For the proof, see texts on functional analysis, e.g. [5].

This allows us to formulate the following tightness-criterion.

Theorem 2.2.15 A subset, H ⊂ M1(W ), is conditionally compact

(equiv. tight), if and only if:

(i) limc↑∞ supµ∈H µ (|w(0)| > c) = 0;

(ii) for all n ∈ N and all ε > 0, limδ↓0 supµ∈H µ (∆(δ,N.w) > ε) = 0,

where ∆ is defined in (2.10)

Proof. We give only the prove of the relevant “if” direction. We should

find a compact subset of W of measure aritrarily close to one for all

measures inH . Clearly, we can do this by giving a conditionally compact

set, Γε, of measure µ(Γε) > 1− ε, since then its closure is a compact set

of at least the same measure. Now assume that (i) and (ii) hold. Then

take, for given ε, C such that the set

A ≡ {w ∈W : |w(0)| ≤ C}

satisfies, for all µ ∈ H , µ(A) ≤ 1 − ε/2. By (ii) we can chose δ(n,N)

such that the sets

An,N ≡ {w ∈W : ∆(δ,N,w) ≤ 1/n}

satisfy, for all µ ∈ H , µ(An,N ) ≥ 1− ε2−(n+N+2). Then the set

Γ ≡ A ∩
⋂

n,N∈N

An,N

satisfies µ(Γ) > 1− ε, for all µ ∈ H .

This proves this part of the theorem.

Finally we come to the most important result of this chapter.

Lemma 2.2.16 Let µn, µ be probability measures in W . Then µn con-

verges weakly to µ, if and only if

(i) the finite dimensional distributions of µn converge to those of µ;

(ii) the family {µn, n ∈ N} is tight.

Proof. Let us first show the “if” direction. From tightness and Pro-

horov’s theorem it follows that the family {µn, n ∈ N} is conditionally

sequentially compact, so that there are subsequences, n(k), along which

µn(k) converges weakly to some measure µ. Assume that there is another

subsequence, m(k), such that µm(k) converges weakly to a measure ν.
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But then also the finite dimensional distibutions of µn(k), respectively,

µm(k), converge to those of µ, repectively ν. But by (i), the finite dimen-

sional marginals of µn converge, so that µ and ν have the same finite

dimensional marginals, and hence, are the same measures. Since this

holds for any limit point, it follows that µn → µ, weakly.

The “only if” direction: first, the projection to finite dimensional

marginals is a continuous map, hence weak convergence implies that of

the marginals. Second, Prohorov’s theorem in the case of the Polish

spaceW implies that the existence of sequential limits, hence sequential

conditional compactness, hence conditional compactness implies tight-

ness.

Exercise. As an application of this theorem, you are invited to prove

Donsker’s theorem (Theorem 6.3.3 in [2]) without using the Skorokhod

embedding that was used in in the last section of [2]. Note that we al-

ready have: (i) convergence of the finite dimensional distributions (Ex-

ercise in [2]) and the existence of BM on W . Thus all you need to prove

tightness of the sequences Sn(t). Note that here it pays to chose the

linealy interpolated version (6.3) in [2].

Finally, we give a useful characterisation of weak convergence, known

as Skorokhod’s theorem, that may appear somewhat surprising at first

sight. It is, however, extremely useful.

Theorem 2.2.17 Let S be a Lousin space and assume the µn, µ are

probability measures on S. Assume that µn → µ weakly. Then there

exists a probability space (Ω,F ,P) and random variables Xn with law

µn, and X with law µ, such that Xn → X P-almost surely.

Proof. The proof is quite simple in the case when S = R. In that

case, weak convergence is equivalent to convergence of the distribution

function, Fn(x) = µ([−∞, x]) at all continuity points of the limit, F .

In that case we chose the probability space Ω = [0, 1], P the uniform

measure on [0, 1] and define the random variables Xn(x) = F−1
n (x).

Then clearly

P (Xn ≤ z) = P (x ≤ Fn(z)) = Fn(z)

so that indeed Xn has the desired law. On the other hand, Fn(x) con-

verges to F (x) at all continuity points of F , and one can check that the

same is true for F−1
n , implying almost sure convergence of Xn.

In the general case, the prove is quite involved and probably not very

enlightening....



2.3 The càdlàg space DE [0,∞) 41

Skorohod’s theorem is very useful if one wants to prove convergence

of functionals of probability distributions.

2.3 The càdlàg space DE [0,∞)

In the general theory of Markov processes it will be important that we

can treat the space of càdlàg functions with values in a metric space as a

Polish space much like the space of continuous functions. The material

from this section is taken from [6] where omitted proofs and further

details can be found.

2.3.1 A Skorokhod metric

We will now construct a metric on càdlàg space which will turn this

space into a complete metric space. This was first don by Skorokhod.

In fact, there are various different metrics one may put on this space

which will give rise to different convergence properties. This is mostly

related to the question whether each jump in the limiting function is

associated to one, several, or no jumps in approximating functions. A

detailed discussion of these issues can be found in [15]. Here we consider

only one case.

Definition 2.3.1 Let Λ denote the set of all strictly increasing maps

λ : R+ → R+, such that λ is Lipshitz continuous and

γ(λ) ≡ sup
0≤t<s

∣∣∣∣ln
λ(s)− λ(t)

s− t

∣∣∣∣ <∞. (2.11)

For x, y ∈ DE [0,∞), u ∈ R+, and λ ∈ Λ, set

d(x, y, λ, u) ≡ sup
≥0

ρ (x(t ∧ u), y(λ(t) ∧ u)) . (2.12)

Finally, the Skorohod metric on DE [0,∞) is given as

d(x, y) ≡ inf
λ∈Λ

(
γ(λ) ∨

∫ ∞

0

e−ud(x, y, u, λ)du

)
. (2.13)

To get the idea behind this definition, note that with λ the identity,

this is just the metric on the space of continuous functions. The rôle of

the λ is to make the distance of two functions that look much the same

except that they jump at two points very close to each other by sizable

amount. E.g., we clearly want the functions

xn(t) = 1I[1/n,∞](t)
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to converge to the function

x∞(t) = 1[0,∞](t).

This is wrong under the sup-norm, since supt ‖xn(t) − x∞(t)‖ = 1, but

it will be true under the metric d (Exercise!).

Lemma 2.3.18 d as defined a above is a metric on DE [0,∞).

Proof. We first show that d(x, y) = 0 implies y = x. Note that for

d(x, y) = 0, it must be true that there exists a sequence λn such that

γ(λ0) ↓ 0 and limn↑∞ d(x, y, λn, u) = 0; one easily checks that then

lim
n↑∞

sup
0≤t≤T

|λn(t)− t| = 0,

and hence x(t) = y(t) at all continuity points of x. But since x and y

are càdlàg , this implies x = y.

Symmetry follow from the fact that d(x, y, λ, u) = d(y, x, λ−1, u) and

that γ(λ) = γ(λ−1).

Finally we need to prove the triangle inequality. A simple calculation

shows that

d(x, z, λ2 ◦ λ1, u) ≤ d(x, y, λ1, u) + d(y, z, λ2, u).

Finally γ(λ1 ◦λ2) ≤ γ(λ1)+γ(λ2), and putting this together one derives

d(x, z) ≤ d(x, y) + d(y, z).

Exercise: Fill in the details of the proof of the triangle inequality.

The next theorem completes our task.

Theorem 2.3.19 If E is separable, then DE [0,∞) is separable, and if

E is complete, then DE [0,∞) is complete.

Proof. The proof of the first statement is similar to the proof of the

separability of C(J) (Theorem 2.1.7) and is left to the reader. To prove

completeness, we only need to show that every Cauchy sequence con-

verges. Thus let xn ∈ DE [0,∞) be Cauchy. Then, for any constant

C > 1, and any k ∈ N, there exist values nk, such that for all n,m ≥ nk,

d(xn, xm) ≤ C−k. Then we can select sequences uk, and λk, such that

γ(λk) ∨ d(xnk
, xnk+1

, λk, uk) ≤ 2−k.

Then, in particular,

µk ≡ lim
m↑∞

λk+m ◦ λk+m−1 ◦ · · · ◦ λk+1 ◦ λk
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exists and satisfies

γ(µk) ≤
∑

m=k∞

γ(λm) ≤ 2−k+1.

Now

sup
t≥0

ρ
(
xnk

(µ−1
k (t) ∧ uk), xnk+1

(µ−1
k+1(t) ∧ uk)

)

= sup
t≥0

ρ
(
xnk

(µ−1
k (t) ∧ uk), xnk+1

(λk(µ
−1
k+1(t)) ∧ uk)

)

= sup
t≥0

ρ
(
xnk

(t ∧ uk), xnk+1
(λ−1

k (t) ∧ uk)
)

≤ 2−k.

Therefore, by the completeness of E, the sequence of functions zk ≡
xnk

(µ−1
k (t)) converges uniformly on compact intervals to a function z.

Each zk being càdlàg , so z is also càdlàg . Since γ(µk) → 0, it follows

that

lim
k↑∞

sup
0≤t≤T

ρ(xnk
(µ−1

k (t)), z(t)) = 0,

for all T , and hence d(xnk
, z) → 0. Since a Cauchy sequence that con-

tains a convergent subsequence converges, the proof is complete.

To use Prohorov’s theorem for proving convergence of probability mea-

sures on the space DE [0,∞), we need first a characterisation of compact

sets.

The first lemma states that the clusure of the space of step functions

that are uniformly bounded and where the distance between steps is

uniformly bounded from below is compact:

Lemma 2.3.20 Let Γ ⊂ E be compact and δ > 0 be fixed. Let A(Γ, δ)

denote the set of step functions, x, in DE [0,∞) such that

(i) x(t) ∈ Γ, for all τ ∈ [0,∞), and

(ii) sk(x) − sk−1(x) > d, for all k ∈ N,

where

sk(x) ≡ inf{t > sk−1(x) : x(t) 6= x(t−)}.
Then the closure of A(Γ, δ) is compact.

We leave the prove as an exercise.

The analog of the modulus of continuity in the Arzelà-Ascoli theorem

on càdlàg space is the following: For x ∈ DE [0,∞), δ > 0, and T <∞,

set
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w(x, δ, T ) ≡ inf
ti

max
i

sup
s,t∈[ti−1,ti)

ρ(x(s), x(t)), (2.14)

where the first infimum is over all collections 0 = t0 < t1 < · · · < tn−1 <

T < tn, with ti − ti−1 < δ, for all i.

The following theorem is the analog of the Arzelà-Ascoli theorem:

Theorem 2.3.21 Let E be a complete metric space. Then the closure

of a set A ⊂ DE([0,∞) is compact, if and only if,

(i) For every rational t ≥ 0, there exists a compact set Γt ⊂ E, such that

for all x ∈ A; x(t) ∈ Γt.

(ii) For each T <∞,

lim
δ↓0

sup
x∈A

w(x, δ, T ) = 0. (2.15)

A proof of this result can be found, e.g. in [6].

Based on this theorem, we now get the crucial tightness criterion:

Theorem 2.3.22 Let E be complete and separable, and let Xα be a

family of processes with càdlàg paths. Then the family of probability

laws, µα, of Xα, is conditionally compact, if and only if the following

holds:

(i) For every η > 0 and rational t ≥ 0, there exists a compact set, Γη,t ⊂
E, such that

inf
α
µα (x(t) ∈ Γη,t) ≥ 1− η, (2.16)

and

(ii) For every η > 0 and T <∞, there exists δ > 0, such that

sup
α
µα (w(x, δ, T ) ≥ η) ≤ η. (2.17)

An application of the preceeding theorem to the case of Lévy processes

allows us to prove that the processes constructed in Section 1 from Pois-

son point processes do indeed have càdlàg paths with probability one,

i.e. they have a modification that are Lévy processes.

Exercise. Consider the family of processes defined by the first line of

(1.24). Show that the corresponding family of laws on DR[0,∞) is tight.

Hint: Introduce a further cutoff, ε0, to break this process into one with

small jumps and one with few jumps. Use a maximum inequality for the

small jump part, and the fact that the large jump part is a compound

Poisson process.
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Markov processes

In this chapter we return to the most important class of stochastic pro-

cesses,Markov processes. In Chapter 5 of [2] we have seen a lot of aspects

of Markov processes in the case of discrete time. We would expect to

have many similar results in continuous time, but on the technical level,

we will encounter many analytical problems that were absent in the dis-

crete time setting. The need for studying continuous time processes is

motivated in part from the fact that they arise a natural limits of dis-

crete time processes. We have already seen this in the case of Brownian

motion, but the same holds for certain classes of Lévy processes. We

will also see that they lend themselves in may respects to simpler, or

more elegant computations and are therefore used in many areas of ap-

plications, e.g. mathematical finance. In the remainder of this section,

S denotes at least a Lousin space, and in fact you may assume S to be

Polish. In this section we will restrict our attention to time-homogeneous

Markov process.

Notation: In this section S will usually denote a metric space. Then

B(S,R) ≡ B(S) will be the space of real valued, bounded, measurable

functions on S; C(S,R) ≡ C(S) will be the space of continuous func-

tions, Cb(S,R) ≡ Cb(S) the space of bounded continuous functions, and

C0(S,R) ≡ C0(S) the space of bounded continuous functions that vanish

at infinity. Clearly C0(Σ) ⊂ Cb(S) ⊂ C(S) ⊂ B(S).

3.1 Semi-groups, resolvents, generators

The main building block for a time homogeneous Markov process is the

so called transition kernel, P : R+ × S × B → [0, 1].

45
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3.1.1 Transition functions and semi-groups

We will denote in the sequel by B(S) ≡ B(S,R) the space on bounded

real valued functions on a space S.

Definition 3.1.1 AMarkov transition function, Pt is a family of kernels

Pt : S × B(S) → [0, 1] with the following properties:

(i) For each t ≥ 0 and x ∈ S, Pt(x, ·) is a measure on (S,B) with

Pt(x, S) ≤ 1.

(ii) For each A ∈ B, and t ∈ R+, Pt(·, A) is a B-measurable function on

S.

(iii) For any t, s ≥ 0,

Ps+t(x,A)) =

∫
Pt(y,A)Ps(x, dy). (3.1)

Definition 3.1.2 Then, a stochastic process X with state space S and

index set R is a continuous time homogeneous Markov process with law

P on a filtered space (Ω,F ,P, (Ft, t ∈ R+)) with transition function Pt,

if it is adapted to Ft and, for all bounded B-measurable functions f ,

t, s ∈ R+,

E [f(Xt+s)|Fs] (ω) = (Ptf)(Xs(ω)), a.s.. (3.2)

It will be very convenient to think of the transition kernels as bounded

linear operators on the space of bounded measurable functions on S,

B(S,R), acting as

(Ptf)(x) ≡
∫

S

Pt(x, dy)f(y). (3.3)

The Chapman-Kolmogorov equations (iii) then take the simple form

PsPt = Pt+s. Pt can then be seen as a semi-group of bounded linear

operators. Note that we also have the dual action of Pt on the space of

probability measures via

(µPt)(A) ≡
∫

S

µ(dx)Pt(x,A). (3.4)

Of course we then have the duality relation

(µPt)(f) =

∫

S

µ(dx)(Ptf)(x) = µ (Ptf) ,

for f ∈ B(S,R).

Remark 3.1.1 The conditions Pt(x, S) ≤ 1 may look surprising, since

you would expect Pt(x, S) = 1; the latter is in fact the standard case,

and is sometimes called an “honest” transition function. However, one
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will want to deal with the case when probability is lost, i.e. when the

process can “die”. In fact, there are several scenarios where this is use-

ful. First, if our state space is not compact, we may want to allow for

our processes to explode, resp. go to infinity in finite time. Such phe-

nomena happen in deterministic dynamical systems, and it would be too

restrictive to to exclude this option for Markov chains, which we think of

as stochastic dynamical systems. Another situation concerns open state

spaces with boundaries where we want to stop the process upon arrival

at the boundary. Finally, we might want to consider processes that die

with certain rates out of pure spite.

In all these situations, it is useful to consider a compactification of the

state space by adjoining a so-called coffin state, usually denoted by ∂.

This state will always be considered absorbing. A dishonest transition

function then becomes honest if considered extended to the space S ∪∂.
These extensions will sometimes be called P ∂

t . To be precise, we will set

(i) P ∂
t (x,A) ≡ Pt(x,A), for x ∈ S,A ∈ B(S),

(ii) P ∂
t (∂, ∂) = 1,

(iii) P ∂
t (x, ∂) = 1− Pt(x, S).

We will usually not distinguish the semi-group and its honest extension

when talking about S∂-valued processes.

It is not hard to see, by somewhat tedious writing, that the transition

functions (and an initial distribution) allow to express finite dimensional

marginals of the law of the Markov process. This also allows to construct

a process on the level of the Daniell-Kolmogorov theorem. The really

interesting questions in continuous time, however, require path proper-

ties. Given a semi-group, can we construct a Markov process with càdlàg

paths? Does the strong Markov property hold? We will see that this

will involve analytic regularity properties of the semi-groups.

Another issue is that semi-groups are somewhat complicated and in

almost no cases (except some Gaussian processes, like Brownian motion)

can they be written down explicitly. In the case of discrete time we have

seen the rôle played by the generator (respectively one-step transition

probabilities). The corresponding object, the infinitesimal generator of

the semi-group, will be seen to play an even more important rôle here.

In fact, our goal in this section is to show how and when we can charac-

terize and construct a Markov process by specifying a generator. This

is fundamental for applications, since we are more likely to be able to

describe the law of the instantaneous change of the state of the system,
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then its behavior at all times. This is very similar to the theory of differ-

ential equations: there, too, the modeling input is the prescription of the

instantaneous change of state, described by specifying some derivatives,

and the task of the theory is to compute the evolution at later times.

Eq. (3.1) allows us to think of Markov kernels as operators on the

Banach space of bounded measurable functions.

Definition 3.1.3 A family, Pt of bounded linear operators on B(S,R)

is called sub-Markov semi-group , if for all t ≥ 0,

(i) Pt : B(S,R) → B(S,R);

(ii) if 0 ≤ f ≤ 1, then 0 ≤ Ptf ≤ 1;

(iii) for all s > 0, Pt+s = PtPs;

(iv) if fn ↓ 0, then Ptfn ↓ 0.

A sub-Markov semigroup is called normal if P0 = 1. It is called honest,

if, for all t ≥ 0, Pt1 = 1.

Exercise. Verify that the transition functions of Brownian motion (Eq.

(6.18) in [2]) define a honest normal semi-group.

In the sequel we assume that Pt is measurable in the sense that the

map (x, t) → Pt(x,A), for any A ∈ B, is B(S)× B(R+)-measurable.

Let us now assume that Pt is a family of Markov transition kernels.

Then we may define, for λ > 0, the resolvent , Rλ, by

(Rλf)(x) ≡
∫ ∞

0

e−λt(Ptf)(x)dt =

∫

S

Rλ(x, dy)f(y), (3.5)

where the resolvent kernel, Rλ(x, dy), is defined as

Rλ(x,A) ≡
∫ ∞

0

e−λtPt(x,A)dt. (3.6)

The following properties of a sub-Markovian resolvent are easily es-

tablished:

(i) For all λ > 0, Rλ is a bounded operator from B(S,R) to B(S,R);

(ii) if 0 ≤ f ≤ 1 then 0 ≤ Rλf ≤ λ−1;

(iii) for λ, µ > 0,

Rλ −Rµ = (µ− λ)RλRµ; (3.7)

(iv) if fn ↓ 0, then Rλfn ↓ 0.
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Moreover, if Pt is honest, then Rλ1 = λ−1, for all λ > 0.

Eq. (3.7) is called the resolvent identity. To prove it, use the identity

∫
e−λse−µtf(s+ t)dsdt =

∫
e−λu − e−µu

µ− λ
f(u)du.

Our immediate aim will be to construct the generator of the semi-

group. Let us see how this goes formally. We search an operator, G,

such that Pt = exp(tG), where exp is the usual exponential map, defined

e.g. through its Taylor expansion. Then, formally, we see that

Rλ =

∫ ∞

0

e−λteGtdt =
1

λ−G
. (3.8)

This should make sense, because eGt is bounded, so that the integral

converges at infinity. Finally, we can recover G from Rλ: set

Gλ ≡ λ(λRλ − 1) =
G

1−G/λ
;

formally, at least Gλ → G, if λ ↑ ∞.

While the above discussion makes sense only for bounded G, we can

define, for λ > 0, exp(tGλ), since Gλ is bounded, and we will see that

(under certain circumstances, exp(tGλ) → Pt, as λ ↑ ∞.

3.1.2 Strongly continuous contraction semi-groups

These manipulations become rigorous in the context of so called strongly

continuous contraction semi-groups and constitute the famous Hille-

Yosida theorem.

Definition 3.1.4 Let B0 be a Banach space. A family, Pt : B0 → B0,

of bounded linear operators is called a strongly continuous contraction

semigroup if the following conditions are verified:

(i) for all f ∈ B0, limt↓0 ‖Ptf − f‖ = 0:

(ii) ‖Pt‖ ≤ 1, for all t ≥ 0;

(iii) PtPs = Pt+s, for all t, s ≥ 0.

Here ‖ · ‖ denotes the operator norm corresponding to the norm on B0.

Lemma 3.1.1 If Pt is a strongly continuous contraction semigroup,

then, for any f ∈ B0, the map t→ Ptf is continuous.
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Proof. Let t ≥ s ≥ 0. We need to show that Ptf −Psf tends to zero in

norm as t− s ↓ 0. But

‖Ptf − Psf‖ = ‖Ps(Pt−sf − f)‖ ≤ ‖Pt−sf − f‖,

which tends to zero by property (i). Note that we needed all three

defining properties!.

Note that continuity allows to define the resolvent through a (limit

of) Riemann integrals,

Rλf ≡ lim
T↑∞

∫ T

0

e−λtPtf.

The inherited properties if such an Rλ are now used to define a

strongly continuous contraction resolvent.

Definition 3.1.5 Let B be a Banach space, and let Rλ, λ > 0, be a

family of bounded linear operators on B. Then Rλ is called a contraction

resolvent, if

(i) λ‖Rλ‖ ≤ 1, for all λ > 0;

(ii) the resolvent identify (3.7) holds.

A contraction resolvent is called strongly continuous, if in addition

(iii) limλ↑∞ ‖λRλf − f‖ = 0.

Exercise. Verify that the resolvent of a strongly continuous contraction

semi-group is a strongly continuous contraction resolvent.

Lemma 3.1.2 Let Rλ be a contraction resolvent on B0. Then the the

range of Rλ is independent of λ, and that the closure of its range coin-

cides with the space of functions, h, such that λRλh→ h, as λ ↑ ∞.

Proof. Both observations follow from the resolvent identity. Letµ, λ >

0, then Rµ = Rλ(1 + (λ − µ)Rµ. Thus, if g is in the range of Rµ,

then it is also in the range of Rλ: if g = Rµf , then g = Rλh, where

h = (1 + (λ− µ)Rµ)f ! Denote the common range of the Rλ by R.

Moreover, if h ∈ R, then h = Rµg, and so

(λRλ − 1)h = (λRλ − 1)Rµg =
µ

λ− µ
Rµg −

λRλ

λ− µ
g

Since λRλ is bounded, it follows that the right-hand side tends to zero,
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as λ ↑ ∞. Also, if h is in the closure of R, the there exist hn ∈ R, such

that hn → h; then

‖λRλh− h‖ ≤ ‖λRλhn − hn‖+ ‖hn − h‖+ ‖λRλ(f − fn)‖,

and since λRλ is a contraction, the right hand side can be made as small

as desired by letting n and λ tend to infinity. Finally, it is clear that if

h = limλ↑∞Rλh, then h must be in the closure of R.

As a consequence, the restriction of a contraction resolvent to the

closure of its range is strongly continuous. Moreover, for a strongly

continuous contraction resolvent, the closure of its range is equal to B0,

and so the range of Rλ is dense in B0.

We now come to the definition of an infinitesimal generator.

Definition 3.1.6 Let B0 be a Banach space and let Pt, t ∈ R+ be

a strongly continuous contraction semigroup. We say that f is in the

domain of G, D(G), if there exists a function g ∈ B0, such that

lim
t↓0

‖t−1(Ptf − f)− g‖ = 0. (3.9)

For such f we set Gf = g if g is the function that satisfies (3.9).

Remark 3.1.2 Note that we define the domain of G at the same time

as G. In general, G will be an unbounded (e.g. a differential) operator

whose domain is strictly smaller than B0. Some authors (e.g. [6]) de-

scribe the generator of a Markov process as a collections of the pairs of

functions (f, g) satisfying (3.9).

The crucial fact is that the resolvent is related to the generator in the

way anticipated in (3.8).

Lemma 3.1.3 Let Pt be a strongly continuous contraction semigroup

on B0. Then the operators Rλ and (λ−G) are inverses.

Proof. Let g ∈ B0 and let f = Rλg. We want to show that (λ−G)f = g,

i.e. that (3.9) holds for pairs of functions f and λf − g where f is in the

range of Rλ. But

λf − t−1(Ptf − f) = t−1(f(1 + λt)− Ptf)

As t ↓ 0, we may replace (1 + λt) by eλt and write

lim
t↓0

λf − t−1(Ptf − f) = lim
t↓0

eλtt−1(Rλg − e−λtPtRλg)
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Now

e−λtPtRλg =

∫ ∞

0

e−λ(t+sPt+sgds =

∫ ∞

t

e−λsPsgds,

and so

t−1(Rλg − e−λtPtRλg) = t−1

∫ t

0

e−λsPsgds.

By continuity of Pt, the latter expression converges to g, as t ↓ 0, so we

have shown that (λ−G)Rλg = g, and that Rλg ∈ D(G).

Next we take f ∈ D(G). Then ε−1(Pt+εf−Ptf) = Pt(ε
−1(Pεf−f) →

PtGf . Thus,

d

dt
Ptf = PtGf.

Integrating this relation gives that

Ptf − f =

∫ t

0

PsGfds.

Multiplying with e−λt and integrating gives

Rλf − λ−1f = λ−1RλGf,

which shows that for f ∈ D(G), Rλ(λ − G)f = f , and in particular

f ∈ R. Thus D(G) = R. This concludes the proof of the lemma.

3.1.3 The Hille-Yosida theorem

We now prove the fundamental theorem of Hille and Yosida that allows

us to construct a semi-group from the resolvent.

Theorem 3.1.4 Let Rλ be a strongly continuous contraction resolvent

on a Banach space B0. Then there exists a unique strongly continuous

contraction semi-group, Pt, t ∈ R, on B0, such that, for all λ > 0 and

all f ∈ B0, ∫ ∞

0

e−λtPtfdt = Rλf. (3.10)

Moreover, if

Gλ ≡ λ(λRλ − 1) (3.11)

and

Pt,λ ≡ exp (tGλ) , (3.12)

then
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Ptf = lim
λ↑∞

Pt,λf. (3.13)

Proof. When proving the Hille-Yosida theorem we must take care not

to assume the existence of a semi-group. So we want to rely essentially

on the resolvent identity.

We have seen before that the range, R, of Rλ is independent of λ and

dense in B0, due to the assumption of strong continuity. Now we want

to show that Rλ is a bijection. Note that we cannot use Lemma 3.1.3

here because in its prove we used the existence of Pt. Namely, let h ∈ B0

such that Rλh = 0. Then,by the resolvent identity,

Rµh = (1− (λ− µ)Rµ)Rλh = 0,

for every µ. But by strong continuity, limµ↑∞ µRµh = h, so we must

have that h = 0.

Therefore, there exists an inverse, R−1
λ , of Rλ, with domain equal to

R, such that for all h ∈ B0, R
−1
λ Rλh = h, and for g ∈ R, RλR

−1
λ g = g.

Moreover, by the resolvent identity,

RλR
−1
µ = (Rµ + (µ− λ)RλRµ)R

−1
µ = 1 + (µ− λ)Rλ.

Thus

R−1
µ − (µ− λ) = R−1

λ , (3.14)

which we may rewrite as

R−1
λ − λ = R−1

µ − µ ≡ −G (3.15)

in other words, there exists an operator G with domain D(G) = R, such

that, for all λ,

1

λ−G
= Rλ. (3.16)

We now show the following lemma:

Lemma 3.1.5 Let Gλ be defined in (3.11). Then, f ∈ D(G) if and only

if

lim
λ↑∞

Gλf ≡ g

exists. Then Gf = g.
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Proof. Let first f ∈ D(G). Then

Gλf = λ(λRλ − 1)f = λRλ(λ −R−1
λ )f = λRλGf,

and by strong continuity, limλ↑∞ λRλGf = Gf , as claimed.

Assume now that limλ↑∞Gλf = g. The by the resolvent identity,

RµGλf = λ

(
µRµ − λRλ

λ− µ

)
f =

λµ

λ− µ
Rµf − λ

λ− µ
λRλf.

As λ ↑ ∞, the right-hand side clearly tends to µRµf − f , while the left

hand side, by assumption, tends to Rµg. Hence,

f = µRµf −Rµg = Rµ(µf − g).

Therefore, f ∈ R, and

Gf = (µ−R−1
µ )Rµ(µf − g) = µf −R−1

µ Rµ(µf − g) = µf − µf + g = g.

We now continue the proof of the theorem. Note that Gλ is bounded,

and so by the standard properties of the exponential map, we have the

following three facts:

(i) Pt,λPs.λ = Pt+s,λ.

(ii) limt↓0 t−1(Pt,λ − 1) = Gλ.

(iii) Pt,λ − 1 =
∫ t

0
Ps,λGλds.

Moreover, since ‖λRλ‖ ≤ 1, from the definition of Pt,λ it follows that

‖Pt,λ‖ ≤ e−λtetλ‖λRλ| ≤ 1.

Now the resolvent identity implies that the operators Rλ and Rµ com-

mute for all λ, µ > 0, and so all derived operators commute. Thus we

have the telescopic expansion

Pt,λ − Pt,µ = Pt,λP0,µ − P0,λPt,µ (3.17)

=
n∑

k=1

(
Pkt/n,λP(n−k)t/n,µ − P(k−1)t/n,λP(n−k+1)t/n,µ

)

=

n∑

k=1

P(k−1)t/n,λP(n−k)t/n,µ

(
Pt/n,λ − Pt/n,µ

)
.

By the bound on ‖Pt,λ‖, it follows that for any f ∈ B0,

‖Pt,λf − Pt,µf‖ ≤ n‖Pt/n,λf − Pt/n,µf‖
= n

∥∥(Pt/n,λ − 1
)
f −

(
Pt/n,µ − 1

)
f
∥∥ .
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Passing to the limit n ↑ ∞, and using (ii), we conclude that

‖Pt,λf − Pt,µf‖ ≤ t‖Gλf −Gµf‖. (3.18)

This implies the existence of limλ↑∞ Pt,λf ≡ Ptf whenever limλ↑∞Gλf

exists, hence by Lemma 3.1.5 for all f ∈ D(G). Moreover, the conver-

gence is uniform in t on compact sets, so the map t→ Ptf is continuous.

Since D(G) = R is dense in B0, and Pλ
t are uniformly bounded in norm,

these results in fact extends to all functions f ∈ B0.

It remains to show that (3.10) holds. To do so, note that
∫ ∞

0

e−λtPt,µfdt =

∫ ∞

0

e−t(λ−Gµ)fdt =
1

λ−Gµ
f

As µ tends to infinity, the left-hand side converges to
∫∞
0
e−λtPtf , and,

using the resolvent identity, the right hand side is shown to tend to Rλf .

This concludes the prove of the theorem.

The Hille-Yosida theorem clarifies how a strongly continuous contrac-

tion semi-group can be recovered from a resolvent. To summarize where

we stand, the theorem asserts that if we have a strongly continuous con-

traction resolvent family, Rλ, then there exists a unique operator, G,

such that Rλ = (λ − G)−1, that is the generator of a unique strongly

continuous contraction semi-group, Pλ.

One might rightly ask if we can start from a generator: of course, the

answer is yes: if we have linear operator, G, with D(G) ⊂ B0, this will

generate a strongly continuous contraction semi-group, if the operators

(λ−G)−1 exist for all λ > 0 and form a strongly continuous contraction

resolvent family.

One may not be quite happy with this answer, which leaves a lot to

verify. It would seem nicer to have a characterization of when this is

true in terms of direct properties of the operator G.

In the next theorem (sometimes also called the Hille-Yosida theorem,

see [6]), formulates such conditions.

Theorem 3.1.6 A linear operator, G, on a Banach space, B0, is the

generator of a strongly continuous contraction semi-group, if and only if

the following hold:

(i) The domain of G, D(G), is dense in B0.

(ii) G is dissipative, i.e. for all λ > 0 and all f ∈ D(G),

‖(λ−G)f‖ ≥ λ‖f‖. (3.19)

(iii) There exists a λ > 0 such that range(λ−G) = B0.
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Proof. By theorem 3.1.4, we just have to show that the family (λ−G)−1

is a strongly continuous contraction resolvent, if and only if (i)–(iii)

hold. In fact, we have seen that properties (i)–(iii) are satisfied by

the generator associated to a strongly continuous contraction resolvent:

(i) was shown at the beginning of the proof of Thm. 3.1.4, (ii) is a

consequence of the bound ‖λRλ‖ ≤ 1: Note that

1 ≥ sup
f∈B0

‖λRλf‖
‖f‖ ≥ sup

g∈D(G)

‖λRλ(λ−G)g‖
‖(λ−G)g‖ = sup

g∈D(G)

λ‖g‖
‖(λ−G)g‖ .

Finally, since for any function f ∈ B0,

(λ −G)Rλf = f,

any such f is in the range of (λ−G).

It remains to show that these conditions are sufficient, i.e. that under

them, if Rλ ≡ (λ−G)−1 is a strongly continuous contraction resolvent.

We need to recall a few notions from operator theory.

Definition 3.1.7 A linear operator, G, on a Banach space, B0, is called

closed, if and only if its graph, the set

Γ(G) ≡ {(f,Gf) : f ∈ D(G)} ⊂ B0 ×B0 (3.20)

is closed in B0 × B0. Equivalently, G is closed if for any sequence fn ∈
D(G) such that fn → f and Gfn → g, f ∈ D(G) and g = Gf .

Definition 3.1.8 If G is a closed operator on B0, then a number λ ∈ C

is an element of the resolvent set, ρ(G), of G, if and only if

(i) (λ−G) is one-to-one;

(ii) range(λ−G) = B0,

(iii) Rλ ≡ (λ−G)−1 is a bounded linear operator on B0.

It comes as no surprise that whenever λ, µ ∈ ρ(G), then the resolvents

Rλ, Rµ satisfy the resolvent identity. (Exercise: Prove this!).

Another important fact is that if for some λ ∈ C, λ ∈ ρ(G), then

there exists a neighborhood of λ that is contained in ρ(G). Namely, if

|λ− µ| < 1/‖Rλ‖, then the series

R̂µ ≡
∞∑

n=0

(λ− µ)nRn+1
λ

converges and defines a bounded operator. Moreover, for g ∈ D(G), a

simple computation shows that

R̂µ(µ−G)g = g,
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and for any f ∈ B0,

(µ−G)R̂µf = f.

Hence R̂µ = (µ − G)−1, range(µ − G) = B0, and so µ ∈ ρ(G). Thus,

ρ(G) is an open set.

We will first show that (i) and (ii) imply that G is closed.

Lemma 3.1.7 Let G be a dissipative operator and let λ > 0 be fixed.

Then G is closed if and only if range(λ−G) is closed.

Proof. Let us first show that the range of (λ − G) is closed if G is

closed. Take fn ∈ D(G) and assume that (λ − G)fn → h. Since G is

dissipative, ‖(λ − G)(fn − fn+k)‖ ≥ λ‖fn − fn+k‖, so fn is a Cauchy

sequence, and by closedness, there exists a limit f = limn fn ∈ D(G).

Thus limnGfn = λf−h. But also, limnGfn = Gf , so h = (λ−G)f , i.e.
limn(λ−G)fn is in the range of (λ−G) and so the range is closed. On the

other hand, if range(λ − G) is closed, then take some D(G) ∋ fn → f

and Gfn → g. Then (λ−G)fn → λf − g in the range of (λ−G). Thus

there exists f0 ∈ D(G), such that

(λ−G)f0 = λf − g.

But since G is dissipative, if (λ −G)fn → (λ −G)f0, then fn → f0, so

f0 = f . Hence (λ−G)f = λf − g, or Gf = g. Hence f is in the domain

and g in the range of G, so G is closed.

It follows that if the range of (λ −G) is closed for some λ > 0, then

it is closed for all λ > 0.

The next lemma establishes that the resolvent set of a closed dissipa-

tive operator contains (0,∞), if some point in (0,∞) is in the resolvent

set.

Lemma 3.1.8 If G is a closed dissipative operator on B0, then the set

ρ+(G) ≡ ρ(G) ∩ (0,∞) is either empty or equal to (0,∞).

Proof. We will show that (0,∞) is open and closed in (0,∞). First,

since ρ(G) is open, its intersection with (0,∞) is relatively open. Let

now λn ∈ ρ+(G) and λn → λ ∈ (0,∞). For any g ∈ B0, and any n we

can define gn = (λ−G)Rλn
g. Then

‖gn − g‖ = ‖(λ−G)Rλn
g − (λn −G)Rλn

g‖ = ‖(λ− λn)Rλn
g‖

≤ λ−1
n (λ− λn)‖g‖
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which tends to zero as n ↑ ∞. Note that the inequality used the dissi-

pativity of G. Therefore, the range of (λ −G) is dense in B0; but from

the preceding lemma we know that the range of (λ−G) is closed. Hence
range(λ − G) = B0. But since G is dissipative, if ‖f − g‖ > 0, then

‖(λ − G)f − (λ − G)g‖ > 0, and so (λ − G) is one-to one. Finally, for

any g ∈ B0, f = (λ−G)−1g is in D(G). Then dissipativity shows that

‖g‖ = ‖(λ−G)f‖ ≥ λ‖f‖ = λ‖(λ−G)−1g‖,

so that (λ−G)−1 is bounded by λ−1 on B0. Thus λ ∈ ρ+(G), and hence

ρ+(G) is closed.

We now continue with the proof of the theorem. We know from (ii)

and (iii) and Lemma 3.1.7 that G is closed and range(λ−G) = B0 for

all λ > 0. Moreover, just as in the proof of Lemma 3.1.8, dissipativity

implies then that ρ+(G) = (0,∞). Also as in that proof, we get the

bound λ‖Rλ‖ ≤ 1. As we have already explained, the resolvent identity

holds for all λ > 0, so Rλ is a contraction resolvent family.

All what remains to prove is the strong continuity. Let first f ∈ D(G).

Then we can write

‖λRλf − f‖ = λ‖Rλ(f − λ−1(λ−G)f)‖ ≤ λ−1‖Gf‖.

Since f ∈ D(G), Gf ∈ B0, and ‖Gf‖ <∞, so the right hand side tends

to zero as λ ↑ ∞.

Thus λRλf → f for all f in D(G). For general f , since D(G) is dense

in B0, take a sequence fn ∈ D(G) such that fn → f . Then,

‖λRλf − f‖ ≤ ‖λRλ(f − fn)‖ + ‖λRλfn − fn‖+ ‖f − fn‖

and so

lim sup
λ↑∞

‖λRλf − f‖ ≤ 2‖f − fn‖.

Since the right-hand side can be made as small as desired by taking

n ↑ ∞, it follows that ‖λRλf−f‖ → 0, as claimed. Thus Rλ ≡ (λ−G)−1

is a strongly continuous contraction resolvent family, and the theorem

is proven.

One may find the the conditions (i)–(iii) of Theorem 3.1.6 are just as

difficult to verify then those of Theorem 3.1.4. In particular, it does not

seem easy to check whether an operator is dissipative.

The following lemma, however, can be very helpful.
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Lemma 3.1.9 Let S be a complete metric space. A linear operator,

G, on C0(S) is dissipative, if for any f ∈ D(G), if y ∈ S is such that

f(y) = maxx∈S f(x), then Gf(y) ≤ 0.

Proof. Since f ∈ C0(S) vanishes at infinity, there exists y such that

|f(y)| = ‖f‖. Assume without loss of generality that f(y) ≥, so that

f(y) is a maximum. For λ ≥ 0, let g ≡ f − λ−1Gf . Then

max
x

f(x) = f(y) ≤ f(y)− λ−1Gf(y) = g(y) ≤ max
x

g(x).

Since the same holds for the function −f , we also get that

min
x
f(x) ≥ min

x
g(x),

and hence G is dissipative.

Examples We can verify the conditions of Theorem 3.1.6 in some sim-

ple examples.

• Let S = [0, 1], G = 1
2

d2

dx2 , D(G) = {f ∈ C2([0, 1] : f ′(0) = f ′(1) = 0}.
Since here S is compact, clearly any continuous function takes on

its minimum at some point y ∈ [0, 1]. If y ∈ (0, 1), then clearly
1
2

d2

dx2 f(y) = 0; if y = 0, for 0 to be a minimum, since f ′(0) = 0, the

second derivative must be non-negative; the same is true if y = 1.

Thus G is dissipative.

The fact the D(G) is dense is clear from the definition. To show

that the range of λ−G is C([0, 1]), we must show that the equation

λf − 1

2
f ′′ = g (3.21)

with boundary conditions f ′(0) = f ′(1) = 0 has a solution for all

g ∈ B([0, 1]). Such a solution can be written down explicitely. In fact,

(we just consider the case λ = 1, which is enough)

f(x) = −2e
√
2x

∫ x

0

e−
√
2t

∫ t

0

g(s)dsdt+K sinh(
√
2x) (3.22)

with

K sinh
√
2 ≡ −2e

√
2

∫ 1

0

e−
√
2t

∫ t

0

g(s)dsdt

is easily verified to solve this problem uniquely.
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(ii) The same operator as above, but replace [0, 1] with R and D(G) =

C2
b (R). We first show that the range of Rλ is contained in C2

b (R).

Let f be given by f = Rλg with g ∈ B(R). Rλ is the resolvent

corresponding to the Gaussian transition kernel

Pt(x, dy) ≡
1√
2πt

e−
(x−y)2

2t dy.

Thus

f(x) ≡ (Rλg)(x) =

∫ ∞

0

e−λt

∫ ∞

−∞

1√
2πt

e−
(x−y)2

2t g(y)dy.

Now one can show that∫ ∞

0

e−λt 1√
2πt

e−
(x−y)2

2t =
1√
2λ
e−

√
2λ|x−y|,

and so

f(x) =

∫
1√
2λ
e−

√
2λ|x−y|g(y)dy.

Hence

f ′(x) =

∫
e−

√
2λ|x−y|sign g(y)dy (3.23)

= −
∫ x

−∞
e−

√
2λ|x−y|g(y)dy +

∫ ∞

x

e−
√
2λ|x−y|g(y).

Thus, differentiating once more,

f ′′(x) = −2g(x) +
√
2λ

∫ x

−∞
e−

√
2λ|x−y|g(y)dy (3.24)

+
√
2λ

∫ ∞

x

e−
√
2λ|x−y|g(y)

= −2g(x) + 2λf(x).

Hence f ∈ B(R) as claimed. Moreover, f solves (3.21) and thus

(∆/2 − λ) is the inverse of Rλ. Since this operator maps C2
b (R) into

B(R), we see that C2
b (R) ⊂ D(G). Hence C2

b (R) = D(G), ∆ is closed

and is the generator of our semigroup.

(iii) If we replace in the previous example R with Rd, then the the result

will not carry over. In fact, ∆ is not a closed operator in Rd if d ≥ 2.

This may appear disappointing, because it says that 1
2∆ is not the

generator of Brownian motion in d ≥ 2. Rather, the generator of

BM will be the closure of 1
2∆. We will come back to this issue in a

systematic way when we discuss the martingale problem approach to

Markov processes.
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3.2 Feller-Dynkin processes

We will now turn to a special class of Markov semi-groups that will be

seen to have very nice properties. Our setting is that the state space

is a locally compact Hausdorff space with countable basis (but think of

Rd if you like). The point is that we do not assume compactness. We

will, however, consider the one-point compactification of such a space

obtained by adding a “coffin state”, ∂, (“infinity”) to it. Then S∂ ≡ S∪∂
is a compact metrisable space.

We will now place ourselves in the setting where the Hille-Yosida the-

orem work, and make a specific choice for the underlying Banach space,

namely we will work on the the space C0(S) of continuous functions

vanishing at infinity. This will actually place a restriction of the semi-

groups to preserve this space. This (and similar properties) is known as

the Feller property.

Definition 3.2.1 A Feller-Dynkin semigroup is a strongly continuous

sub-Markov semigroup, Pt, acting on the space C0(S), in particular for

all t ≥ 0,

Pt : C0(S) → C0(S). (3.25)

It is an analytic fact that follows from the Riesz representation theo-

rem, that to any strongly continuous contraction semigroup corresponds

a sub-Markov kernel, Pt(x, dy), such that (Ptf)(x) =
∫
S
Pt(x, dy)f(y),

for all f ∈ C0(S).

To see this recall that the Riesz representation theorem asserts that

for any linear map, L, from the space of continuous functions C(S) there

corresponds a unique measure, µ, such that

Lf =

∫

S

f(y)µ(dy).

If moreover L1 = 1, this measure will be a probability measure.

Thus for any x ∈ S, there exists a probability measure Pt(x, dy), such

that for any continuous function f

(Ptf)(x) =

∫
f(y)Pt(x, dy).

Since Ptf is measurable, we also get that
∫
f(y)Pt(x, dy) is measurable.

Finally, using the monotone class theorem, one shows that Pt(x,A) is

measurable for any Borel set A, and hence Pt(x, dy) is a probability

kernel, and in fact a sub-Markov kernel.

Note that, since we are in a setting where the Hille-Yosida theorem
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applies and that there exists a generator, G, exists on a domain D(G) ⊂
C0(S). Note that then we have for f ∈ D(G) the formula

Gf(x) ≡ lim
t↓0

t−1

(∫

S

Pt(x, dy)f(y)− f(x)

)
(3.26)

Therefore, if f attains its maximum at a point x, then
∫

S

Pt(x, dy)f(y) ≤ f(x),

and so Gf(x) ≤ 0, if f(x) ≥ 0 (this condition is not needed if Pt is

honest).

Dynkin’s maximum principle states that this property characterizes

the domain of the generator. Let us explain what we mean by this.

Definition 3.2.2 LetG,C be two linear operators with domainsD(G),D(C),

respectively. We say that C is an extension of G, if

(i) D(G) ⊂ D(C), and

(ii) For all f in D(G), Gf = Cf .

Lemma 3.2.10 Let G be a generator of a Feller-Dynkin semigroup and

let C be an extension of G. Assume that if f ∈ D(C) and f attains its

maximum in x with f(x) ≥ 0, then Cf(x) ≤ 0. Then G = C.

Proof. Note first that C = G if Cf = f implies f = 0. To see this, let

g ≡ f − Cf und h = R1g. But R1g ∈ D(G) and thus

h− Ch = h−Gh = g = f − Cf.

Hence f − h = C(f − h), and so f = h. In particular f ∈ D(G).

Now let f ∈ D(C) and Cf = f . We see that if f attains its maximum

at x with f(x) ≥ 0, then under the hypothesis of the lemma, Cf(x) ≤ 0.

Since Cf = f , this means that f(x) = Cf(x) = 0. Thus maxy f(y) = 0.

Applying the same argument to −f , it follows that miny f(y) = 0.

The now turn to the central result of this section, the existence theo-

rem for Feller-Dynkin processes.

Theorem 3.2.11 Let Pt be a Feller-Dynkin semigroup on C0(S). Then

there exists a strong Markov process with values in S∂ and càdlàg paths

and transition kernel Pt.

Remark 3.2.1 Note that the unique existence of the Markov process

on the level of finite dimensional distributions does not require the Feller

property.
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Proof. First, the Daniell-Kolmogorov theorem guarantees the existence

of a unique process on the product space (S∂)R+ , provided the finite

dimensional marginals satisfy the compatibility conditions. This is easily

verified just as in the discrete time case using the Chapman-Kolmogorov

equations.

We now want to show that the paths of this process are regularisable,

and finally that regularization entrains just a modification. For this we

need to get martingales into the game.

Lemma 3.2.12 Let g ∈ C0(S) and g ≥ 0. Set h = R1g. Then

0 ≤ e−tPth ≤ h. (3.27)

If Y is the corresponding Markov process, e−th(Yt) is a supermartingale.

Proof. Let us first prove (3.27). The lower bound is clear since Pt and

hence Rλ map positive function to positive functions. Next

e−sPsh = e−sPsR1g = e−sPs

∫ ∞

0

e−uPugdu (3.28)

=

∫ ∞

s

e−uPugdu ≤ R1g = h.

Now e−th(Yt) is a supermartingale since

E[e−s−th(Yt+s|Gt] = e−s−tPsh(Yt) ≤ e−th(Yt),

where of course we used (3.27) in the last step.

As a consequence of the previous lemma, the functions e−qh(Yq) are

regularisable, i.e. limq↓t e−qh(Yq) exists for all t almost surely.

Now we can take a countable dense subset, g1, g2, . . . , of elements of

C0(S), and set hi = R1gi. The set H = {hi}i∈N separates points in S∂ ,

while almost surely, e−qhi(Yq) is regularisable for all i ∈ N. But then

Xt ≡ limq↓t Yq exists for all t, almost surely and is a càdlàg process.

Finally we establish that X is a modification of Y . To do this, let

f, g ∈ C0(S). Then

E[f(Yt)g(Xt)] = lim
q↓t

E[f(Yt)g(Yq)] = lim
q↓t

E[f(Yt)Pt−qg(Yt)] = E[f(Yt)g(Yt)]

where the first inequality used the definition of Xt and the third the

strong continuity of Pt. By an application of the monotone class theo-

rem, this implies that E[f(Yt, Xt)] = E[f(Yt, Yt)] for any bounded mea-

surable function on S∂ × S∂ , and hence in particular P[Xt = Yt] = 1.
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The previous theorem allows us to henceforth consider Feller-Dynkin

Markov processes defined on the space of càdlàg functions with values

in S∂ (with the additional property that, if Xt = ∂ or Xt− = ∂, then

Xs = ∂ for all s ≥ t). We will henceforth think of our Markov processes

as defined on that space (with the usual right-continuous filtration).

3.3 The strong Markov property

Of course our Feller-Dynkin processes have the Markov property. In

particular, if ζ is a Ft measurable function and f ∈ C0(S), then

E[ζf(Xt+s)] = E[ζPsf(Xt)]. (3.29)

Of course we want more to be true, namely as in the case of discrete time

Markov chains, we want to be able to split past and future at stopping

times. To formulate this, we denote as usual by θt the shift acting on

Ω, via

X(θtω)s ≡ (θtX)(ω)s ≡ X(ω)s+t. (3.30)

We then have the following strong Markov property:

Theorem 3.3.13 Let T be a Ft+stopping time, and let P be the law

of a Feller-Dynkin Markov process, X. Then, for all bounded random

variables η, if T is a stopping time, then

E[θT η|FT+] = EXT
[η], (3.31)

or equivalently, for all FT+-measurable bounded random variables ξ,

E[ξθT η] = E[ξEXT
[η]], (3.32)

Proof. We again use the dyadic approximation of the stopping time T

defined as

T (n)(ω) ≡
{
k2−n, if (k − 1)2−n ≤ T (ω) < k2−n, k ∈ N

+∞, ifT (ω) = +∞.

For Λ ∈ FT+ we set

Λn,k ≡ {ω ∈ Ω : T (n)(ω) = 2−nk} ∩ Λ ∈ Fk2−n .

Let f be a continuous function on S. Then
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E
[
f(XT (n)+s1IΛ

]
=

∑

k∈N∪{+∞}
E
[
f(Xk2−n+s1IΛn,k

]
(3.33)

=
∑

k∈N∪{+∞}
E
[
Psf(Xk2−n1IΛn,k

]

= E [Psf(XT (n))1IΛ]

Now let n tend to infinity: by right-continuity of the paths,

XT (n)+s → XT+s,

for any s ≥ 0. Since f is continuous, it also follows that

f(XT (n)+s) → f(XT+s),

and since, by the Feller property, Psf is also continuous, it holds that

Psf(XT (n)) → Psf(XT )

Note that finally working with Feller semi groups has payed off!

Now, by dominated convergence,

E [f(XT+s)1IΛ] = E [Psf(XT 1IΛ]

To conclude the proof we must only generalize this result to more

general functions, but this is done as usual via the monotone class theo-

rem and presents no particular difficulties (e.g. we first see that 1IΛ can

be replaced by any bounded FT+-measurable function; next through

explicit computation one shows that instead of f(XT+s) we can put∏n
i=1 fi(XT+si), and then we can again use the monotone class theorem

to conclude for the general case.

3.4 The martingale problem

In the context of discrete time Markov chains we have encountered a

characterization of Markov processes in terms of the so-called martin-

gale problem. While this proved quite handy, there was nothing really

profoundly important about its use. This will change in the continu-

ous time setting. In fact, the martingale problem characterizations of

Markov processes, originally proposed by Stroock and Varadhan, turns

out to be the “proper” way to deal with the theory in many respects.

Let us return to the issues around the Hille-Yosida theorem. In prin-

ciple, that theorem gives us precise criteria to recognize when a given
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linear operator generates a strongly continuous contraction semigroup

and hence a Markov process. However, if one looks at the conditions

carefully, one will soon realize that in many situations it will be essen-

tially impractical to verify them. The point is that the domain of a

generator is usually far too big to allow us to describe the action of the

generator on all of its elements. E.g., in Brownian motion we want to

think of the generator as the Laplacian, but, except in d = 1, this is

not the case. We really can describe the generator only on twice differ-

entiable functions, but this is not the domain of the full generator, but

only a dense subset.

Let us discuss this issue from the functional analytic point of view

first. We have already defined the notion of the (linear) extension of a

linear operator.

First, we call the closure, G, of a linear operator, G, the minimal

extension of G that is closed. An operator that has a closed linear

extension is called closable.

Lemma 3.4.14 A dissipative linear operator, G, on B0 whose domain,

D(G), is dense in B0 is closable, and the closure of range(λ − G) is

equal to range(λ−G) for all λ > 0.

Proof. Let fn ∈ D(G) be a sequence such that fn → f , and Gfn →
g. We would like to associate with any such f the value g and then

define Gf = g for all achievable f that would then be the desired closed

extension of G. So all we need to show that if f ′
n → f and Gf ′

n → g′,
then g′ = g. Thus, in fact all we need to show is that if fn → 0, and

Gfn → g, then g = 0. To do this, consider a sequence of functions

gn ∈ D(G) such that gn → g. This exists because D(G) is dense in B0.

Using the dissipativity of G, we get then

‖(λ−G)gn−λg‖ = lim
k↑∞

‖(λ−G)(gn+λfk)‖ ≥ lim
k↑∞

λ‖gn+λfk‖ = λ‖gn‖.

Note that in the first inequality we used that 0 = limk fk and g =

limkGfk. Dividing by λ and taking the limit λ ↑ ∞ implies that

‖gn‖ ≤ ‖gn − g‖.

Since gn − g → 0, this implies gn → 0.

The identification of the closure of the range with the range of the

closure follows from the observation made earlier that a range of a dis-

sipative operator is closed if and only if it is closed.
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As a consequence of this lemma, if a dissipative linear operator on B0,

G, is closable, and if the range of λ−G is dense in B0, then its closure

is the generator of a strongly continuous contraction semigroup on B0.

These observations motivate the definition of a core of a linear oper-

ator.

Definition 3.4.1 Let G be a linear operator on a Banach space B0. A

subspaceD ⊂ D(G) is called a core for G, if the closure of the restriction

of G to D is equal to G.

Lemma 3.4.15 Let G be the generator of a strongly continuous con-

traction semigroup on B0. Then a subspace D ⊂ D(G) is a core for G,

if and only if D is dense in B0 and, for some λ > 0, range(λ−G|D) is

dense in B0.

Proof. Follows from the preceding observations.

The following is a very useful characterization of a core in our context.

Lemma 3.4.16 Let G be the generator of a strongly continuous con-

traction semigroup, Pt, on B0. Let D be a dense subset of D(G). If, for

all t ≥ 0, Pt : D → D, then D is a core [in fact it suffices that there is

a dense subset, D0 ⊂ D, such that Pt maps D0 into D].

Proof. Let f ∈ D0 and set

fn ≡ 1

n

n2∑

k=0

e−λk/nPk/nf.

By hypothesis, fn ∈ D. By strong continuity,

lim
n↑∞

(λ −G)fn = lim
n↑∞

1

n

n2∑

k=0

e−λk/nPk/n(λ−G)f (3.34)

=

∫ ∞

0

e−λtPt(λ−G)f

= Rλ(λ−G)f = f

Thus, for any f ∈ D0, there exists a sequence of functions, (λ−G)fn ∈
range(λ − GD), that converges to f . Thus the closure of the range of

(λ−G|D) contains D0. But since D0 is dense in B0, the assertion follows

from the preceding lemma.
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Example. Let G be the generator of Brownian motion. Then C∞(Rd)

is a core for G and G is the closure of 1
2∆ with this domain.

To show that C∞ is a core, since obviously C∞ is dense in the space

of continuous functions, by the preceding lemma we need only to show

that Pt maps C∞ to C∞. But this is obvious from the explicit formula

for the transition function of Brownian motion. Thus it remains to check

that the restriction of G to C∞ is 1
2∆, which is a simple calculation (we

essentially did that in [2]). Hence G is the closure of 1
2∆.

We see that these results are nice, if we know already the semigroup.

In more complicated situations, we may be able to write down the action

of what we want to be the generator of the Markov process we want to

construct on some (small) space of function. The question when is how

to know whether this specifies a (unique) strongly continuous contraction

semigroup on our desired space of functions, e.g. C0(S)? We may be

able to show that it is dissipative, but then, is range(λ − G) dense in

C0?

The martingale problem formulation is a powerful tool to address such

question.

We begin with a relatively simple observation.

Lemma 3.4.17 Let X be a Feller-Dynkin process with transition func-

tion Pt and generator G. Define, for f, g ∈ B(S),

Mt ≡ f(Xt)−
∫ t

0

g(Xs)ds. (3.35)

Then, if f ∈ D(G) and g = Gf , Mt is a Ft-martingale.

Proof. The proof goes exactly as in the discrete time case.

E[Mt+u|Ft] = E[f(Xt+u)|Ft]−
∫ t

0

(Gf)(Xs)ds−
∫ t+u

t

E[Gf(Xs)|Ft]ds (3.36)

=

∫
Pu(Xt, dy)f(y)−

∫ t

0

(Gf)(Xs)ds−
∫ u

0

∫
Ps(Xt, dy)(Gf)(y)ds

= f(Xt)−
∫ t

0

(Gf)(Xs)ds

+

∫
Pu(Xt, dy)f(y)− f(Xt)−

∫ u

0

∫
Ps(Xt, dy)(Gf)(y)ds

= Mt +

∫
Pu(Xt, dy)f(y)− f(Xt)−

∫ u

0

(PsGf)(Xt)ds.
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But

(PrGf)(z) =
d

dr
(Prf)(z),

and so
∫
Pu(Xt, dy)f(y)− f(Xt)−

∫ u

0

(PrGf)(Xt)ds = 0,

from which the claim follows.

By “the martingale problem” we will consider the inverse problem

associated to this observation.

Definition 3.4.2 Given a linear operator, G, with domain D(G) and

range(G) ⊂ Cb(S), a S-valued (càdlàg ) process defined on a filtered

càdlàg space (Ω,F ,P, (Ft, t ∈ R+)), is called a solution of the martingale

problem associated to the operator G, if for any f ∈ D(G), Mt defined

by (3.35) is a Ft-martingale.

Remark 3.4.1 One may relax the càdlàg assumptions. Ethier and

Kurtz [6] work in a more general setting, which entails a number of

subtleties regarding the relevant filtrations that I want to avoid.

One of the key points in the theory of martingale problems will be the

fact that Gmay not need to be the full generator (i.e. the generator with

maximal domain), but just a core, i.e. an operator defined on a smaller

subspace of functions. This really makes the power of this approach.

Before we continue, we need some new notion of convergence in Ba-

nach spaces.

Definition 3.4.3 A sequence fn ∈ B(S) is said to converge pointwise

boundedly to a function f ∈ B(S), iff

(i) supn ‖fn‖∞ <∞, and

(ii) for every x ∈ S, limn↑∞ fn(x) = f(x).

A set M ∈ B(S) is called bp-closed, if for any sequence fn ∈ M s.t.

bp− lim fn = f ∈ B(S), then f ∈M . The bp-closure of a set D ⊂ B(S)

is the smallest bp-closed set in B(S) that contains D. A set M is called

bp-dense, if its closure is B(S).

Lemma 3.4.18 Let fn be such that bp− lim fn = f and bp− limGfn =

Gf . Then, if fn(Xt) −
∫ t

0 (Gfn)(Xs) is a martingale for all n, then

f(Xt)−
∫ t

0
(Gf)(Xs) is a martingale.
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Proof. Straightforward.

The implication of this lemma is that to find a unique solution of the

martingale problem, it suffices to know the generator on a core.

Proposition 3.4.19 Let G1 be an operator with D(G1) and range(G1),

and let G be an extension of G1. Assume that the bp-closures of the

graphs of G1 and G are the same. Then a stochastic process X is a

solution for the martingale problem for G if and only if it is a solution

for the martingale problem for G1.

Proof. Follows from the preceding lemma.

The strategy will be to understand when the martingale problem has

a unique solution and to show that this then is a Markov process. In

that sense it will be comforting to see that only dissipative operators

can give rise to the solution of martingale properties.

We first prove a result that gives an equivalent characterization of the

martingale problem.

Lemma 3.4.20 Let Ft be a filtration and X an adapted process. Let

f, g ∈ B(S). Then, for λ ∈ R, (3.35) is a martingale if and only if

e−λtf(Xt) +

∫ t

0

e−λs (λf(Xs)− g(Xs)) ds (3.37)

is a martingale.

Proof. The details are left as an exercise. To see why this should be

true, think of Pλ
t ≡ e−λtPt as a new semi-group. Its generator should

be (Gλ), which suggests that (3.37) should be a martingale whenever

(3.35) is, and vice versa.

Lemma 3.4.21 Let G be a linear operator with domain and range in

B(S). If a solution for the martingale problem for G exists for any

initial condition X0 = x ∈ S, then G is dissipative.

Proof. Let f ∈ D(G) and g = Gf . Now use that (3.37) is a martingale

with λ > 0. Taking expectations and sending t to infinity gives thus

f(X0) = f(x) = E

[∫ ∞

0

e−λs (λf(Xs)− g(Xs)) ds

]
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and thus,

|f(x)| ≤
∫ ∞

0

e−λsE|λf(Xs)−g(Xs)|ds ≤
∫ ∞

0

e−λs‖λf−g‖ = λ−1‖λf−g‖ds,

which proves that G is dissipative.

Next, we know that martingales usually have a càdlàg modification.

This suggests that, provided the set of functions on which we have de-

fined our martingale problem is sufficiently rich, this property should

carry over to the solution of the martingale problem as well. The fol-

lowing theorem shows when this holds.

Theorem 3.4.22 Assume that S is separable, and that D(G) ⊂ Cb(S).

Suppose moreover that D(G) is separating and contains a countable sub-

set that separates points. If X is a solution of the associated martingale

problem and if for any ε > 0 and T < ∞ there exists a compact set

Kε,T ⊂ S, such that

P (∀t ∈ [0, T ] ∩Q : Xt ∈ Kε,T ) > 1− ε, (3.38)

then X has càdlàg modification.

Proof. By assumption there exists a sequence fi ∈ D(G) that separates

points in S. Then

M
(i)
t ≡ fi(Xt)−

∫ t

0

gi(Xs)ds

with gi ≡ Gfi are martingales and so by Doob’s regularity theorem

regularisable with probability one; since
∫ t

0
gi(Xs)ds is manifestly con-

tinuous, if follows that fi(Xt) is regularisable. In fact there exists a set

of full measures such that all fi(Xt)) are regularisable. Moreover, by

hypothesis (3.38), the set {Xt(ω), t ∈ [0, T ]} has compact closure for

almost all ω for all T . Let Ω′ denote the set of full measure where all

the properties above hold. Then, for all ω ∈ Ω′, and all t ≥ 0, there

exists sequences Q ∋ sn ↓ t, such that limsn↓tXsn(ω) exists and whence

fi(lim
sn↓t

Xsn(ω)) = lim
Q∋s↓t

fi(Xs(ω)).

Since the sequence fi separates points, it follows that limQ∋s↓tXs(ω) ≡
Yt(ω) exists for all t. In fact, X has a càdlàg regularization. Finally we

need to show that fi(Yt) = fi(Xt) , a.s., in order to show that Y is a

modification of X . But this follows from the fact that the integral term
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in the formula for Mt is continuous in t, and hence

fi(Yt) = Efi(Yt)|Ft]Efi(Yt)|Ft] = lim
s↓t

E(fi(Xs)|Ft) = fi(Xt), a.s.

by the fact that M
(i)
t is a martingale.

3.4.1 Uniqueness

We have seen that solutions to the martingale problem provide candi-

dates for nice Markov processes. The main issues to understand is when

a martingale problem has a unique solution, and whether in that case is

represents a Markov process. When talking about uniqueness, we will of

course always think that an initial distribution, µ0, is given. The data

for the martingale problem is thus a pair (G,µ), where G is a linear

operator with its domain D(G) and µ is a probability measure on S.

The following first result is not terribly surprising.

Theorem 3.4.23 Let S be separable and let G be a linear dissipative

operator on B(S) with D(G) ⊂ B(S). Suppose there exists G′ with

D(G′) ⊂ D(G) such that G is an extension of G′. Let D(G′) = range(λ−G′) ≡
L, and let L be separating. Let X be a solution for the martingale prob-

lem for (G,µ). Then X is a Markov process whose semigroup on L is

generated by the closure of G′, and the martingale problem for (G,µ)

has a unique solution.

Proof. Assume G′ closed. We know that it generates a unique strongly

continuous contraction semigroup on L, hence a unique Markov process

with generator G′. Thus we only have to show that the solution of the

martingale problem satisfies the Markov property with respect to that

semigroup.

Let f ∈ D(G′) and λ > 0. Then, by Lemma 3.4.20,

e−λtf(Xt) +

∫ t

0

e−λs(λf(Xs)−G′f(Xs))ds

is a martingale,

f(Xt) = E

[∫ ∞

0

e−λs (λf(Xt+s −G′f(Xt+s))) ds
∣∣∣Ft

]
. (3.39)

To see this note that for any T > 0, by simple algebra,
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∫ T

0

e−λs (λf(Xt+s −G′f(Xt+s))) ds (3.40)

= eλt
∫ t+T

0

e−λs (λf(Xs)−G′f(Xs))) ds− eλt
∫ t

0

e−λs (λf(Xs)−G′f(Xs))) ds

= eλt

[∫ t+T

0

e−λs (λf(Xs)−G′f(Xs))) ds+ e−(t+Tf(Xt+T )

]
− e−Tλf(Xt+T )

−eλt
∫ t

0

e−λs (λf(Xs)−G′f(Xs))) ds

Hence,

E

[∫ T

0

e−λs (λf(Xt+s)−G′f(Xt+s))) ds
∣∣∣Ft

]
(3.41)

= f(Xt) + eλt
∫ t

0

e−λs (λf(Xs)−G′f(Xs))) ds

−e−λTE
[
f(Xt+T )

∣∣Ft

]
− eλt

∫ t

0

e−λs (λf(Xs)−G′f(Xs))) ds

= f(Xt)− e−λTE
[
f(Xt+T )

∣∣Ft

]
.

Letting T tend to infinity, we get (3.39).

We will use the following lemma.

Lemma 3.4.24 Let Pt be a SCCSG on B0 and G its generator. Then,

for any f ∈ B0,

lim
n↑∞

(1− n−1G)−[nt]f = Ptf. (3.42)

Proof. Set V (t) ≡ (1− tG]−1. We want to show that V (1/n)[tn] → Pt.

But

n[V (1/n)f − f ] = n
[
(1− n−1G)−1f − f

]
= Gnf,

where Gn is the Hille-Yosida approximation of G. Hence

V (1/n)tnf =
[
1 + n−1Gn

]tn
.

Now one can show that for any linear contraction B (Exercise!),

‖Bnf − en(B−1)f‖ ≤ √
n‖BF − f‖|.

We will apply this for B = 1
nGn + 1. Thus

∥∥∥
[
1 + n−1Gn

]tn
f − exp(tGn)f

∥∥∥ ≤ n−1/2‖Gnf‖.
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Since the right-hand side converges to zero for f ∈ ∆(G), and exp(tGn)f →
Ptf , by the Hille-Yosioda theorem, we arrive at the claim of the lemma

for f ∈ ∆(G). But since ∆(G) is dense, the result holds for all B0 by

standard arguments.

Now from (3.39)

(1 − n−1G′)−1f(Xt) = n
1

n−G′ f(Xt) (3.43)

= E

[
n

∫ ∞

0

e−nsf(Xt+s)ds
∣∣∣Ft

]

= E

[∫ ∞

0

e−sf(Xt+n−1s)ds
∣∣∣Ft

]

Iterating this formula and re-arranging the resulting multiple integrals,

and using the formula for the area of the k-dimensional simplex, gives

(1− n−1G′)−[nu]f(Xt) (3.44)

= E

[∫ ∞

0

e−s1−s2···−s[un]f(Xt+n−1(s1+···+s[un]))ds1 . . . ds[un]

∣∣∣Ft

]

= E

[∫ ∞

0

e−s s
[un]−1

Γ([un])
f(Xt+n−1(s))ds

∣∣∣Ft

]

We write, for f ∈ D(G′),

f(Xt+n−1(s)) = f(Xt+u +

∫ s/n

u

G′f(Xt+v)dv

and insert this into (3.44). Finally, since
∫ ∞

0

e−s s
[un]−1

Γ([un])
ds = 1,

we arrive at

(1− n−1G′)−[nu]f(Xt) = E
[
f(Xt+u)

∣∣Ft

]
(3.45)

+ E

[∫ ∞

0

e−s s
[un]−1

Γ([un])

∫ s/n

u

G′f(Xt+v))dvds
∣∣∣Ft

]

We are finished if the second term tends to zero. But, re-expressing the

volume of the sphere through multiply integrals, we see that∣∣∣∣∣E
[∫ ∞

0

e−s s
[un]−1

Γ([un])

∫ s/n

u

G′f(Xt+v))dvds
∣∣∣Ft

]∣∣∣∣∣ (3.46)

≤ ‖G′f‖∞
∫ ∞

0

ds1 . . . ds[un]
∣∣n−1(s1 + · · ·+ s[un])− u

∣∣ e−s1−···−s[un]
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But the last integral is nothing but the expectation of
∣∣∣n−1

∑[un]
i=1 ei − u

∣∣∣
where ei are iid exponential random variable. Hence the law of large

numbers implies that this converges to zero. Thus we have the desired

relation

Puf(Xt) = E[f(Xt+u)|Ft]

for all f ∈ D(G′). In the usual way, this relation extends to the closure

of D(G′) which by assumption if L.

Finally we establish an important uniqueness criterion an the strong

Markov property for solutions of uniquely posed martingale problems.

Theorem 3.4.25 Let S be a separable space and let G be a linear oper-

ator on B(S). Suppose that the for any initial distribution, µ, any two

solutions, X,Y , of the martingale problem for (G,µ) have the same one-

dimensional distributions, i.e. for any t ≥ 0, P(Xt ∈ A) = P(Yt ∈ A)

for any Borel set A. Then the following hold:

(i) Any solution of the martingale problem for G is a Markov process

and any two solutions of the martingale problem with the same ini-

tial distribution have the same finite dimensional distributions (i.e.

uniqueness holds).

(ii) If D(G) ⊂ Cb(S) and X is a solution of the martingale problem with

càdlàg sample paths, then for any a.s. finite stopping time, τ ,

E[f(Xt+τ )|Fτ ] = E[f(Xt+τ )|Xτ ], (3.47)

for all f ∈ B(S).

(iii) If in addition to the assumptions in (ii), there exists a càdlàg solution

of the martingale problem for any initial measure of the form δx, x ∈
S, then the strong Markov property holds, i.e.

E[f(Xt+τ )|Fτ ] = Ptf(Xτ ). (3.48)

Proof.

Let X be the solution of the martingale problem with respect to some

filtration Gt. We want to prove that it is a Markov process. Let F ∈ Gr

have positive probability. The, for any measurable set B let

P1(B) ≡ E [1IFE[1IB|Gr]]

P(F )
(3.49)

and

P2(B) ≡ E [1IFE[1IB|Xr]]

P(F )
. (3.50)
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Let Ys ≡ Xr+s. We see that, since E[f(Xr)|Xr] = f(Xr) = E[f(Xr)|Gr ],

P1(Y0 ∈ Γ) = P2(Y0 ∈ Γ) = P[Xr ∈ Γ|F ] (3.51)

Now chose any 0 ≤ t1 < t2 < · · · < tn+1, f ∈ D(G), g = Gf , and

hk ∈ B(S), (k ∈ N. Define

η(Y ) ≡
(
f(Ytn+1)− f(Ytn)−

∫ tn+1

tn

g(Ys)ds

) n∏

k=1

hk(Ytk). (3.52)

Y is a solution of the martingale problem if and only if Eη(Y ) = 0 for

all possible choices of the parameters (Check this!).

Now E [η(Xr+·)|Gr ] = 0, since X is a solution of the martingale prob-

lem. A fortiori, E [η(Xr+·)|Xr] = 0, and so

E1[η(Y )] = E2[η(Y )] = 0,

where Ei denote the expectation w.r.t. the measures Pi. Hence, Y is a

solution to the martingale problem for G under both P1 and P2, and by

(3.51),

E1[f(Yt)] = E2[f(Yt)],

for any bounded measurable function. Thus, for any F ∈ Gr,

E [1IFE[f(Xr+s)|Gr]] = E [1IFE[f(Xr+s)|Xr]] ,

and hence

E[f(Xr+s)|Gr] = E[f(Xr+s)|Xr].

Thus X is a Markov process.

To prove uniqueness one proceeds as follows. Let X and Y be two

solutions of the martingale problem for (G,µ). We want to show that

E

[
n∏

k=1

hk(Xtk)

]
= E

[
n∏

k=1

hk(Ytk)

]
. (3.53)

By hypothesis, this holds for n = 1, so we will proceed by induction,

assuming (3.53) for all m ≤ n. For with we define two new measures

P̃ (B) ≡ E [1IB
∏n

k=1 hk(Xtk)]

E [
∏n

k=1 hk(Xtk)]
, (3.54)

Q̃(B) ≡ E [1IB
∏n

k=1 hk(Ytk)]

E [
∏n

k=1 hk(Ytk)]
. (3.55)

Set X̃t ≡ Xt+tn and Ỹt ≡ Yt+tn . As in the proof of the Markov property,



3.4 The martingale problem 77

X̃ and Ỹ are solutions of the martingale problems under P̃ and Q̃,

respectively. Now for t = 0, we get from the induction hypothesis that

ẼP f(X̃0) = ẼQf(Ỹ0)

where the expectations are w.r.t. the measures defined above. Thus X̃

and Ỹ have the same initial distribution. Now we can use the fact the by

hypothesis, any two solutions of our martingale problem with the same

initial conditions have the same one-dimensional distributions. But this

provides immediately the assertion for m = n + 1 and concludes the

inductive step.

The proofs of the strong properties (ii) and (iii) follows from similar

constructions using stopping times τ instead of r, and optional sampling

theorem for bounded continuous functions of càdlàg martingales. E.g.,

to get (ii), note that

E[η(Xτ+s)|Gτ ] = 0.

For part (iii) we construct the measures Pi replacing r by τ and so get

instead of the Markov property the strong Markov property.

Note that in the above theorem, we have made no direct assumptions

on the choice of D(G) (in particular, it need not separate point, as in

the previous theorem). The assumption is implicit in the requirement

that uniqueness of the one-dimensional marginals must be satisfies. This

is then also the main message: a martingale problem that gets unique-

ness of the one-dimensional marginals implies uniqueness of the finite

dimensional marginals. This theorem is in fact the usual way to prove

uniqueness of solutions of martingale problems.

Duality. One still needs methods to verify the hypothesis of the last

theorem. A very useful one is the so-called duality method.

Definition 3.4.4 Consider two separable metric spaces (S, ρ) and (E, r).

Let G1, G2 be two linear operators on B(S), resp. B(E). Let µ, ν

be probability measures on S, resp. E, α : S → R, β : E → R,

f : S×E → R, measurable functions. Then the martingale problems for

(G1, µ) and (G2, ν) are dual with respect to (f, α, β), of for any solution,

X , of the martingale problem for (G1, µ) and any solution Y of (G2, ν),

the following hold:

(i)
∫ t

0 (|α(Xs)|+ |β(Ys)|)ds <∞, a.s.,
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(ii)
∫

E

[∣∣∣f(Xt, y) exp

(∫ t

0

α(Xs)ds

) ∣∣∣
]
ν(dy) <∞, (3.56)

∫
E

[∣∣∣f(x, Yt) exp
(∫ t

0

β(Ys)ds

) ∣∣∣
]
µ(dx) <∞, (3.57)

(iii) and,
∫

E

[∣∣∣f(Xt, y) exp

(∫ t

0

α(Xs)ds

) ∣∣∣
]
ν(dy) (3.58)

=

∫
E

[∣∣∣f(x, Yt) exp
(∫ t

0

β(Ys)ds

) ∣∣∣
]
µ(dx)

for any t ≥ 0.

Proposition 3.4.26 With the notation of the definition, let M ⊂ M1(S)

contain the set of all one-dimensional distributions of all solutions of

the martingale problem for G1 for which the distribution of X0 has com-

pact support. Assume that (G1, µ) and (G2, δy) are dual with respect

to (f, 0, β) for every µ with compact support and any y ∈ E. Assume

further that the set {f(·, y) : y ∈ E} is separating on M. If for every

y ∈ E there exists a solution of the martingale problem (G2, δy), then

uniqueness holds for each µ in the martingale problem (G1, µ).

Proof. Let X and X̃ be solutions for the martingale problem for (G1, µ)

where µ has compact support, and let Y y be a solution to the martingale

problem (G2, δy). By duality we have then that

E[f(Xt, y)] =

∫
E

[
f(x, Y y

t ) exp

(∫ t

0

β(Y y
s )ds

)]
µ(dx) = E[f(X̃t, y)]

(3.59)

Now we assumed that the class of functions {f(·, y) : y ∈ E} is separating
on M, so the one-dimensional marginals of X and X̃ coincide.

If µ does not have compact support, take a compact set K with

µ(K) > 0 and consider the two solutions X and X̃ conditioned on

X0 ∈ K, X̃0 ∈ K. They are solutions of the martingale problem for

the initial distribution conditioned on K, and hence have the same one-

dimensional distributions. Thus

P[Xt ∈ Γ|X0 ∈ K] = P[X̃t ∈ Γ|X̃0 ∈ K]

for any K, which again implies, since µ is inner regular, the equality

of the one dimensional distributions and thus uniqueness by Theorem

3.4.25.
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This theorem leaves a lot to good guesswork. It is more or less an art

to find dual processes and there are no clear results that indicate when

and why this should be possible. Nonetheless, the method is very useful

and widely applied.

Let us see how one might wish to go about finding duals. Let us

assume that we have two independent processes, X,Y , on spaces S1, S2,

and two functions g, h ∈ B(S1 × S2), such that

f(Xt, y)−
∫ t

0

g(Xs, y)ds (3.60)

and

f(x, Yt)−
∫ t

0

h(x, Ys)ds (3.61)

are martingales with respect to the natural filtrations for X , respectively

Y . Then (3.58) is the integral of

d

ds
E

[
f(Xs, Yt−s) exp

(∫ s

0

α(Xu)du+

∫ t−s

0

β(Yu)du

)]
. (3.62)

Computing (assuming that we can pull the derivative into the expecta-

tion) gives that (3.62) equals

E

[(
g(Xs, Yt−s)− h(Xs, Yt−s) + (α(Xs)− β(Yt−s)) f(Xs, Yt−s)

)

× exp

(∫ s

0

α(Xu)du +

∫ t−s

0

β(Yu)du

)]
. (3.63)

This latter quantity is equal to zero, if

g(x, y) + α(x)f(x, y) = h(x, y) + β(y)f(x, y). (3.64)

To see how this can be used, we look at the following simple ex-

ample. Let S1 = R and S2 = N0. The process X has generator G1

defined on smooth functions by G1 = d2

dx2 − x d
dx and Y has generator

G2f(y) = y(y − 1)(f(y − 2)− f(y)). Clearly the process Y can be real-

ized as a Markov jump process that jumps down by 2 and is absorbed

in the states 0 and 1. The Second process is called Ornstein-Uhlenbeck

process. Now choose the function f(x, y) = xy. If X is a solution of the

martingale problem for G1, we get, assuming the necessary integrabil-

ity conditions, that will be satisfied if the initial distribution of X0 has

bounded support), that

Xy
t −

∫ t

0

(
y(y − 1)Xy−2

s − yXy
s

)
ds (3.65)
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are martingales. Of course, this suggest to choose

g(x, y) = y(y − 1)xy−2 − yxy, (3.66)

Similarly,

xYt −
∫ t

0

Ys(Ys − 1)
(
xYs−2 − xYs

)
ds (3.67)

is a martingale and hence

h(x, y) = y(y − 1)
(
xy−2 − xy

)
. (3.68)

Now we may set α = 0 and see that we can satisfy (3.64) by putting

β(y) = y2 − 2y. (3.69)

Thus we get

E

[
XY0

t

]
= E

[
XYt

0 exp

(∫ t

0

(Y u − 2Yu) du

)]
. (3.70)

This explains in a way what is happening here: the jump process Y

together with the initial distribution of the process X determines the

moments of the process Xt. One may check that in the present case,

these are actually growing sufficiently slowly to determine the distribu-

tion of Xt, this in turn is, as we know, sufficient to determine the law of

the process X .

The general structure we encounter in this example is rather typical.

One will often try to go for an integer-valued dual process that deter-

mines the moments of the process of interest. Of course, success is not

guaranteed.

The tricky part is to guess good functions f and a good dual process

Y . To show existence for the dual process is often not so hard. We will

now turn briefly to the existence question in general.

3.4.2 Existence

We have seen that a uniquely solvable martingale problem provides a

way to construct a Markov process. We need to have ways to produce

solutions of martingale problems. The usual way to do this is through

approximations and weak convergence.

Lemma 3.4.27 Let G be a linear operator with domain and range in

Cb(S). Let Gn, n ∈ N be a sequence of linear operators with domain and

range in B(S). Assume that, for any f ∈ D(A), there exists a sequence,

fn ∈ D(Gn) , such that
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lim
n↑∞

‖fn − f‖ = 0, and lim
n↑∞

‖Gnfn −Gf‖ = 0. (3.71)

Then, if for each n, Xn is a solution of the martingale problem for Gn

with càdlàg sample paths, and if Xn converges to X weakly, then X is

a càdlàg solution to the martingale problem for G.

Proof. Let 0 ≤ ti ≤ t < s be elements of the set C(X) ≡ {u ∈ R+ :

P[Xu = Xu−] = 1}. Let hi ∈ Cb(S), i ∈ N. Let f, fn be as in the

hypothesis of the lemma. Then

E

[(
f(Xs)− f(Xt)−

∫ s

t

Gf(Xu)du

) k∏

i=1

hi(Xti)

]
(3.72)

= lim
n↑∞

E

[(
fn(X

n
s )− fn(X

n
t )−

∫ s

t

Gfn(X
n
u )du

) k∏

i=1

hi(X
n
ti)

]

= 0

Now the complement of the set C(X) is at most countable, and then the

relation (3.72) carries over to all points ti ≤ t < s. But this implies that

X solves the martingale problem for G.

The usefulness of the result is based on the following lemma, which

implies that we can use Markov jump processes as approximations.

Lemma 3.4.28 Let S be compact and let G be a dissipative operator on

C(S) with dense domain and G1 = 0. Then there exists a sequence of

positive contraction operators, Tn, on B(S) given by transition kernels,

such that, for f ∈ D(G),

lim
n↑∞

n(Tn − 1)f = Gf. (3.73)

Proof. I will only roughly sketch the ideas of the proof, which is closely

related to the Hille-Yosida theorem. In fact, from G we construct the

resolvent (n − G)−1 on the range of (n − G). Then For a dissipative

G, the operators n(n − G)−1 are bounded (by one) on range(n − G).

Thus, by the Hahn-Banach theorem, they can be extended to C(S) as

bounded operators. Using the Riesz representation theorem one can

then associate to n(n−G)−1 a probability measure, s.t.

n(n−G)−1f(x) =

∫
f(y)µn(x, dy),
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and hence n(n−G)−1 ≡ Tn defines a Markov transition kernel. Finally,

ist remains to show that n(Tn − 1)f = nG
n−Gf = TnGf converges to Gf ,

for f ∈ D(G), which is fairly straightforward.

The point of the lemma is that it shows that the martingale prob-

lem for G can be approximated by martingale problems with bounded

generators of the form B

GnF (x) = n

∫
(f(y)− f(x))µn(x, dy).

For such generators, the construction of a solution can be done explicitly

in various ways, e.g. by constructing the transition function through the

convergent series for exp(tGn).

Such Markov processes are called Markov jump processes because

they can be realized in a very simple through a time change of a discrete

time Markov chain. To be a bit more general, let G be a generator of

the form

Gf(X) = λ

∫
(f(y)− f(x))µ(x, dy).

Let Yk, k ∈ N be a Markov chain with state space S and transition kernel

P1(x.A) = µ(x,A).

Then let τi be a family of iid exponential random variables with param-

eter one. Define

Xt ≡
{
Y0, if 0 ≤ t < τ0

λ(Y0)
,

Yk, if
∑k−1

ℓ=0
τℓ

λ(Yℓ)
≤ t <

∑k
ℓ=0

τℓ
λ(Yℓ)

. (3.74)

Then Xt is a Markov process with generator G. In other words, the

process X follows the same trajectory as the Markov chain Y , but waits

an exponential time of mean 1/λ(Yk) before making the next move when

it reaches a state Yk.

I leave it as an exercise to check this fact.

3.5 Convergence results

This section is still under construction!!!

An obvious question to be asked in the theory of Markov processes

is to what extend convergence of sequences of semi-groups implies con-

vergence of the corresponding processes. As a preparation we need to

connect convergence of semi-groups and generators.
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Theorem 3.5.29 Let P
(n)
t , P

n)
t be SCCSG’s on a Banach space B0 with

generators Gn, G, respectively. Let D be a core for G. Then the following

are equivalent:

(i) For each f ∈ B0, P
(n)
t f → Ptf for all t ∈ Rt, uniformly on bounded

intervals.

(ii) For each f ∈ B0, P
(n)
t f → Ptf for all t ∈ Rt.

(iii) For each f ∈ D, there exists fn ∈ D(Gn) for each n, such that fn → f

and Gnf → Gf .

Proof. It is clear that (i) is stronger than (ii). Next we show that (ii)

implies (iii): Let λ > 0, f ∈ D(A), and g ≡ (λ −G)f , so that f = Rλg.

Set fn ≡ R
(n)
λ g ∈ D(Gn). Since

R
(n)
λ g =

∫ ∞

0

e−λtP
(n)
t g,

(ii) together with Lebesgue’s dominated convergence theorem implies

that fn → f . But since (λ−Gn)fn = g, it follows that Gnfn → Gf .

It remains to show that (iii) implies (i): Let P
(n),λ
t be defined as in

the Hille-Yosida theorem. For f ∈ D, let fn be defined as above. Then

P
(n)
t f − Ptf = P

(n)
t (f − fn) + [P

(n)
t fn − P

(n),λ
t fn]

+P
(n),λ
t (fn − f) + [P

(n),λ
t f − Pλ

t f ]

+[Pλ
t f − Ptf ].

Trivially, the first and the third term tend to zero, since

‖P (n),λ
t (f − fn)‖ ≤ ‖f − fn)‖ ↓ 0.

Also, the last term can be made arbitrarily small by taking λ to infinity

(by the Hille-Yosida theorem).

To deal with the remaining two terms, we need an auxiliary results:

Lemma 3.5.30 Let Pt be a SCCSG with generator G and Pλ, Gλ be

the Hille-Yosida approximants, for any f ∈ D(G),

‖Pλ
t f − Ptf‖ ≤ t‖Gλf −Gf‖. (3.75)

Proof. This follows immediately from the Hille-Yosida-theorem and the

bound (3.18).

Thus we see that
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sup
0≤t≤t0

∥∥∥P (n)
t fn − P

(n),λ
t fn

∥∥∥ ≤ t0‖Gnfn −Gλ
nfn‖

≤ t0‖Gnfn −Gf‖+ t0‖Gf −Gλf‖+ t0‖Gλ
n(t− fn)‖.

The first term tends to zero with n by assumption and so does the last

term since ‖Gλ
n‖ ≤ λ. The second term can be made arbitrarily small

by taking λ to infinity for f ∈ D(G). Thus we have shown that P
(n)
t f →

Ptf , uniformly in compact t-sets, on a dense set of functions f . But this

implies the same convergence on the closure, by the boundedness of the

semi-groups.

This concludes the proof of the theorem.

The following theorem gives a first answer.

Theorem 3.5.31 Let S be a locally compact and separable space. Let

P
(n)
t , n ∈ N be a sequence of Feller semi-groups on C0(S) and let Xn

be the corresponding Markov processes with càdlàg paths. Suppose that

Pt is a Feller semi-group on C0(S) such that, for all f ∈ C0(S) and for

all t ∈ R+,

lim
n↑∞

P
(n)
t f = Ptf. (3.76)

Then, if P (Xn(0) ∈ A) → ν(A), for all Borel sets A, then there exists a

Markov process X with càdlàg paths and initial distribution ν such that

Xn
D→ X.

Proof. Clearly weak convergence will involve some tightness argument.

We will in fact use the following lemma.

Lemma 3.5.32 Let S be a Polish space and let {Xn} be a family of

processes with càdlàg sample paths. Suppose that for every η > 0, and

T <∞, there exist compact sets Kη,T ⊂ S, such that

inf
n

P (Xn(t) ∈ Kη,T , ∀0 ≤ t ≤ T ) < 1− η. (3.77)

Let H be a dense subset of C0(S,R). Then {Xn} is conditionally com-

pact, if and only if {f ◦Xn} is relatively compact in DR[0,∞), for each

f ∈ H.

The proof of this lemma can be found in [6] (Chapter 3.8).

Let Gn be the generators of the semi-groups P
(n)
t . By the preceding
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theorem, for any f ∈ D(G), there exist functions fn ∈ D(Gn), such that

fn → f and Gnfn → Gf . Then we know that

fn(Xn(T ))−
∫ t

0

Gnfn(Xn(s)ds

is a martingale. One can show (see Chapter 3.9 in [6]) that this implies

that f ◦ Xn is relatively compact, and hence by Lemma 3.5.32, Xn is

relatively compact.



4

Itô calculus

In this chapter we will develop the basics of the theory of stochastic

integration and, closely related, stochastic integral, resp. differential

equations. We will be far from the most general setting possible, but our

treatment will of course include the most important case of integration

with respect to Brownian motion. Apart form our standard texts, there

is an ample literature on stochastic calculus. For further reading see e.g.

the texts by Karatzas and Shreve [11] and Itô and McKeane [9].

In this chapter we will always work on a filtered space (Ω,F ,P, (Ft, τ ∈
R)} that satisfies the conditions of the “usual setting” of Definition 1.4.2.

We will be interested to define stochastic integrals of the form

∫ t

0

XdM, (4.1)

where M is a martingale and X is a progressive process. In fact, the

full ambition of stochastic analysis is to find the largest class of pairs of

processesM and X for which such an integral can be reasonable defined

(which will lead to the notion of semi-martingale, but here we will limit

our ambition to the considerably simpler case when M is a continuous,

square-integrable martingale, i.e. when M has continuous paths (a.s.)

and EM2
t <∞ for all t ≤ ∞. This includes the important case when M

is a Brownian motion. In fact, we could limit ourselves to this particular

case in a first step, and you are welcome to think that Mt = Bt if that

helps. But doing so we would loose some structural information which

would be regrettable.

86
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4.1 Stochastic integrals

In [2] we have defined the discrete stochastic integral of a progressive

process with respect to a (sub-) martingale, C •M . The key property of

this construction was that it preserved the martingale properties of M .

We want to do the same for continuous martingales.

In the theory of stochastic integration it will be useful to relax the

notions associated with martingale properties to local ones.

Definition 4.1.1 A stochastic process M is called a local martingale

if there exists a sequence of stopping times, τn ≤ τn+1 such that τn ↑
∞, such that the processes M τn ≡ M·∧τn are martingales. The same

terminology applies to sub and super-martingales, as well as to various

integrability properties.

Remark 4.1.1 In the sequel I will sometimes state results for martin-

gales. They can all be extended to local martingales.

Let us note as a first step that the definition of the stochastic integral

can be done in the standard way as Stieltjes integral in the case when

the integrand has (locally) bounded variation.

Proposition 4.1.1 Let M be a càdlàg (local) martingale, and let V be

a continuous, adapted process that is locally of bounded variation. Then

W (t) =

∫ t

0

VsdMs = V (t)M(t)− V (0)M(0)−
∫ t

0

MsdVs (4.2)

is a local martingale.

Proof. We can find stopping times γn such that both |Mγn | is bounded
by n and the total variation of V ,

RV (t) ≡ sup
{uk}

m−1∑

k=0

|V (uk+1)− V (uk)| (4.3)

is smaller than n. We have that

∫ t

0

VsdM
γn
s ≡ lim

un
k

m−1∑

k=0

V (unk )(M
γn(unk+1)−Mγn(unk )),

where {unk} is any sequence of partitions of [0, t] such that max(|unk+1 −
unk |) → 0. This limit exists since by elementary reshuffling,
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m−1∑

k=0

V (unk )(M
γn(unk+1)− nMγn(unk )) = V γn(t)Mγn(t)− V (0)Mγn(0)

−
m−1∑

k=0

Mγn(unk+1)(V
γn(unk+1)− V γn(unk )). (4.4)

Since V is of bounded variation, and Mγn is bounded, the latter sum

converges to
∫ t

0 MsdVs, both almost surely and in L1, as n ↑ ∞. As a

consequence the same holds true for the left-hand side, and, since for

any finite n, the left hand side is a martingale, this property remains

true in the limit ↑ ∞. Finally, we pass to the limit n ↑ ∞, which exists

since γn ↑ ∞ (and thus eventually will be larger than t, a.s..

We see that the challenge will be to define stochastic integrals when

also the integrand is not of bounded variation. Before doing so we need

to return briefly to the theory of martingales.

4.1.1 Square integrable continuous (local) martingales

LetM be a càdlàg martingale. We want to define its quadratic variation

process [M ] in analogy to the discrete time case. This will be contained

in the following very fundamental proposition.

Proposition 4.1.2 LetM be a continuous square integrable martingale.

Then there exists a unique increasing process, [M ], such that the process

M2 − [M ] is a uniformly integrable continuous martingale.

Proof. We will only consider the case when M is continuous. We can

also assume that M is bounded; otherwise we consider the martingale

stopped on exceeding a value N . Now define stopping times

T n
0 = 0, T n

k+1 = inf{t > T n
k : |M(t)−M(T n

k ) ≥ 2−n}.

Set tnk ≡ t ∧ T n
k . Then we can write (by telescopic expansions)

M2
t = 2

∑

k≥1

M(tnk−1)(M(tnk )−M(tnk−1)) +
∑

k≥1

(
M(tnk )−M(tnk−1)

)2
.

(4.5)

Let

Hn
t ≡

∑

k≥1

M(T n
k−1)1ITn

k−1
<t≤Tn

k
.
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Note that the process Hn is left-continuous, which makes it previsible.

This is of course the natural choice from the point of view that we want

to define stochastic integrals that are martingales. Then the first term

on the right of (4.5) is Hn •M (see [2], Chapter 4), and we know that

this is a L2-bounded martingale. We define

An
t ≡

∑

k≥1

(
M(tnk )−M(tnk−1)

)2
. (4.6)

Then

M2
t = 2(Hn •M)t +An

t .

By construction Hn approximates M very well:

sup
t

|Hn
t −Hn+1

t | ≤ 2−n−1 (4.7)

sup
t

|Hn
t −Mt| ≤ 2−n (4.8)

The sets Jn(ω) ≡ {T n
k (ω); k ∈ N} refine each other, i.e. Jn(ω) ⊂

Jn+1(ω), and

An(T n
k ) ≤ An(T n

k+1). (4.9)

Now it is elementary to see that

E[(((Hn −Hn+1) •M)∞)2] = E
∑

k≥1

(Hn
k−1 −Hn+1

k−1 )
2(Mk −Mk−1)

2

≤ 2−2n−2E
∑

k≥1

(Mk −Mk−1)
2

= EM2
∞. (4.10)

Thus the continuous martingales (Hn•M) converge, as n ↑ ∞, uniformly

to a continuous martingale, N . This implies that the processes An

converge to some continuous process A, and

M2
t = 2Nt +At.

Due to the fact that the sets Jn form refinements and that An increases

on the stopping times T n
k , it follows that

A(T n
k ) ≤ A(T n

k+1),

for all k, n. So A is increasing on the closure of J(ω) ≡ ∪nJn(ω). Thus

if J(ω) is dense, A is increasing. The remaining option is that the

complement of J(ω) contains some open interval I. But in that case,
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since no T n
k in in I, M must be constant on I, and so is then A. Thus

A is a continuous increasing process such that

M2
t −At

is a continuous martingale; hence A = [M ].

It remains to show the uniqueness of this process. For this we use the

following (maybe surprising) lemma.

Lemma 4.1.3 If M is a continuous (local) martingale that has paths of

finite variation, then, if M0 = 0, then Mt = 0 for all t.

Proof. Again by stopping M when at τn ≡ inf{t : VM (t) > n}, where

VM (t) = lim
n

∑

k

|M(uℓk)−M(unk−1)|

is the total variation process, we may assume that M has bounded total

variation. Then, obviously,

An
t =

∑

k

(
M(tnk )−M(tnk−1)

)2
(4.11)

≤ 2−n
∑

k

∣∣M(tnk )−M(tnk−1)
∣∣ ≤ 2−nVM (t)

which tends to zero as n ↑ ∞. Thus M2 is a martingale. So EM2
t = 0,

for all t, and a positive random variable of zero mean is zero a.s.

Now we derive uniqueness from this: Assume that there are two pro-

cesses A,A′ with the desired properties. Then A−A′ is the difference of
two uniformly integrable martingales, hence itself a uniformly integrable

martingale. On the other hand, as A and A′ are increasing and hence of

finite variation, their difference is of finite variation, and thus identically

equal to zero by the preceding lemma.

Remark 4.1.2 The condition that M is square integrable is not nec-

essary. One can extend the construction by considering the stopped

martingalesM τn where τn = inf{t : |Mt ≥ t}. M τn is square integrable,

and so [M τn ] exists. Moreover, we can set [M ]t = [M τn ]t for t ≤ τn.

Since [M τn+1]t = [M τn ]t for t ≤ τn, this construction can be extended

consistently to all t since τn ↑ ∞.

It will be convenient to know the following fact:

Proposition 4.1.4 Let M be a càdlàg martingale. Then , for each
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t ≥ 0 and any sequence of partitions {unk}, of the interval [0, t] such that

limn↑∞ maxk |unk − unk−1| = 0,∑

k

(
M(unk+1)−M(unk )

)2 D→ [M ]t. (4.12)

Moreover, if M is square integrable, then the convergence also holds in

L1.

The proof of this proposition is somewhat technical and will not be

given, but see e.g. [6].

Let us note that in the case when M is Brownian motion, we have

already seen in [2] that

Lemma 4.1.5 If Bt is standard Brownian motion, then [B]t = t.

Let us recall from the discrete time theory that there were two brack-

ets, < M > and [M ] associated to a martingale: the first corresponds

to the process given by Proposition 4.5, and the second is the quadratic

variation process. In the case of continuous martingales, both are the

same.

4.1.2 Stochastic integrals for simple functions

We have already seen that the stochastic integral can be defined as

a Stieltjes integral for integrators of bounded variation. We will now

show the crucial connection between the quadratic variation process of

the stochastic integral and the process [M ] first in the case when the

integrand, X is a step function.

Let Eb be the space of all bounded step functions, i.e. functions X of

the form

Xt =
∑

i≥1

X(i)1Iti−1<t≤ti ,

for some sequence 0 = t0 < t1 < · · · < tn < . . . and values Xi ∈ R. Note

that X(ti) = Xi. Clearly then, our stochastic integral for such function

is defined and equals
∫ t

0

XdM =
∑

i≥1;ti≤t

Xi(M(ti)−M(ti−1)) +Xm(t)(M(t)−M(tm(t)),

where m(t) = max(m : tm ≤ t).

The following lemma states the crucial properties of stochastic inte-

grals.
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Lemma 4.1.6 Let M be a continuous square integrable martingale and

X ∈ E. Then
∫ t

0 XdM as defined above is a continuous square integrable

martingale and [∫ ·

0

XdM

]

t

=

∫ t

0

X2d[M ]. (4.13)

Proof. We have already seen that
∫
XdM is a martingale. To see that

it is square integrable, note that

E

(∫ t

0

XdM

)2

=
∑

i≥0

E
[
X2

i (M(ti)−M(ti−1))
2
]
≤ CEM2

t <∞,

by assumption. To show (4.13), we have to show that

(∫ t

0

XdM

)2

−
∫ t

0

X2d[M ]

is a martingale. To prove this, we need to compute

E

[(∫ s+t

t

XdM

)2

−
∫ t

2

X2d[M ]
∣∣∣Ft

]
(4.14)

= E

[∑

i,j

XiXj(M(ti+1)−Mti)(M(tj+1)−M(tj))

−
∑

i

X(ti)
2([M ]ti+1 − [M ]ti)

∣∣∣Ft

]

=
∑

i

E

[
X2

i E
[
(M(ti+1)−Mti)

2
∣∣Fti

]

−X(ti)
2E
[
([M ]ti+1 − [M ]ti)

∣∣Fti

]
]∣∣∣Ft

]

= 0,

since of course

E
[
(M(ti+1)−Mti)

2
∣∣Fti

]
= E

[
([M ]ti+1 − [M ]ti)

∣∣Fti

]
.

This proves the lemma.

The lemma states the key properties that we want the general stochas-

tic integral to share. Naturally, our ambition will be to extend the inte-

gral to integrands X for which the objects characterizing it make sense.

Note that, in particular, it follows from (4.13) that
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E

(∫ t

0

XdM

)2

= E

∫ t

0

X2d[M ]. (4.15)

This means that the mapX →
∫ t

0
XdM , from the space of left-continuous

step-functions equipped with the norm

‖X‖2,d[M ] ≡
(
E

∫ t

0

X2d[M ]

)1/2

to the space of local, square integrable martingales with the norm L2(P)

is an isometry, called the Itô isometry. We will extend this isometry to

to all of L2(d[M ]) to define the Itô integral .

To do so we need an approximation result.

Lemma 4.1.7 IfM is a square integrable martingale and X is in L2([M ]).

Then there exists a sequence of bounded, left-continuous step functions,

Xn, such that

lim
n↑∞

E

∫ t

0

(X −Xn)
2d[M ] = 0. (4.16)

Proof. We go in several steps. First, we can approximate any X by

bounded functions Xn: set Xn(t) = X(t)1I|Xt|≤n. Then (Xn −X)2 ↓ 0,

so that the convergence in (4.1.1) follows by monotone convergence.

Thus we may from now on assume that X is bounded. For bounded X

we then construct the approximants (assume n is so large that N−1 < t):

Xn(t) ≡
1

[M ]t − [M ]t−1/n + n−1

∫ t

t−1/n

Xu(d[M ]u + du). (4.17)

One verifies that in fact limn↑∞Xn(t) = X(t), while Xn is continuous.

Since X is bounded, convergence as in (4.16) follows by dominated con-

vergence. Thus we can assume that X is continuous. In that case, we

approximate

Xn(t) = X

(
[nt]

n

)
, (4.18)

which is a left-continuous step function if [x] ≡ min{n ∈ N : n ≥ x}.
Then again convergence as in (4.16) follows by dominated convergence.

We can now extend the definition of the stochastic integral.
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Theorem 4.1.8 Let M be a continuous, square integrable local mar-

tingale, and let X ∈ L2(d[M ]). Then there exists a unique continuous

square integrable local martingale,
∫ ·
0 XdM , such that, whenever a se-

quence of left-continuous step-functions, Xn, satisfies
∑

n∈N

{
E

[∫ n

0

(Xn −X)2d[M ]

]}1/2

<∞, (4.19)

then

lim
n↑∞

sup
0≤t≤T

∣∣∣∣
∫ t

0

(Xn −X)dMs

∣∣∣∣ = 0, (4.20)

almost surely and in L2. Moreover,[∫ ·

0

XdM

]

t

=

∫ t

0

X2d[M ]. (4.21)

Proof. Note first that, by taking subsequences, Lemma 4.1.7 implies

that we can always find sequences of step functions that satisfy (4.19).

Hence

E
∑

n

sup
0≤t≤T

∣∣∣∣
∫ t

0

Xn+1dM −
∫ t

0

XndM

∣∣∣∣ (4.22)

≤
∑

n

(
E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(Xn+1 −Xn)dM

∣∣∣∣
2
])1/2

≤
∑

n


4E



∣∣∣∣∣

∫ T

0

(Xn+1 −Xn)dM

∣∣∣∣∣

2





1/2

≤ 2
∑

n

(
E

[∫ T

0

(Xn+1 −Xn)
2d[M ]

])1/2

<∞

Here we used the maximum inequality and the finiteness of the last

expression follows from the assumption (4.19).

It follows from the Borel-Cantelli lemma that there exists a set, A ∈ F ,

of measure zero, such that

1IAc

∫ ·

0

XndM

converges uniformly on bounded time intervals. The limiting process

is continuous, square integrable and adapted (since we assumed com-

pleteness of F0). Thus we have (4.20) almost surely. To prove uniform

convergence in L2, note that
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E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(Xn −X)dM

∣∣∣∣
2
]

(4.23)

= E

[
lim inf
m↑∞

sup
0≤t≤T

∣∣∣∣
∫ t

0

(Xn −Xm)dM

∣∣∣∣
2
]

≤ lim inf
m↑∞

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(Xn −Xm)dM

∣∣∣∣
2
]

≤ lim inf
m↑∞

4E



∣∣∣∣∣

∫ T

0

(Xn −Xm)dM

∣∣∣∣∣

2



= lim inf
m↑∞

4E

[∫ T

0

(Xn −Xm)2d[M ]

]

= 4E

[∫ T

0

(Xn −X)2d[M ]

]

which converges to zero as n ↑ ∞. Thus convergence in L2 holds for

(4.20).

Finally, that fact that
∫ ·
0
XdM is a local martingale follows form the

fact that this holds for the approximants and the uniform convergence

we have just established. Similarly, the formula for the bracket follows.

Remark 4.1.3 Theorem 4.19 extends the isometry X →
∫
XdM from

the dense set of left-continuous bounded step functions to the full space

L2(d[M ]).

Remark 4.1.4 Theorem 4.1.8 is not the end of the possible extension

of the definition of stochastic integrals. Using localization arguments as

indicated in the definition of the bracket [M ], one can extend the space

of integrators to continuous local martingales without the assumption

of square integrability.

4.2 Itô’s formula

We now come to the most useful formula involving the notion of stochas-

tic integrals, the celebrated Itô formula . It is the analog of the funda-

mental theorem of calculus for functions of stochastic processes with

unbounded variation.
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We consider a stochastic process X of the form

Xt = X0 + Vt +Mt, (4.24)

where Vt is a continuous, adapted process of bounded variation, Mt is a

local martingale (you may assume L2, but see the remark above), and

V0 =M0 = 0. Let f : R+ ×R → R be continuously differentiable in the

first and twice continuously differentiable in the second argument.

Theorem 4.2.9 With the assumptions above, the following holds:

f(t,Xt) − f(0, X0) (4.25)

=

∫ t

0

∂

∂s
f(s,Xs)ds+

∫ t

0

∂

∂x
f(s,Xs)dVs

+

∫ t

0

∂

∂x
f(s,Xs)dMs

+
1

2

∫ t

0

∂2

∂x2
f(s,Xs)d[M ]s.

Remark 4.2.1 The Itô formula can be stated more conveniently in dif-

ferential form as

df(t,Xt) =
∂

∂t
f(t,Xt)dt+

∂

∂x
f(t,Xt)dXt (4.26)

+
1

2

∂2

∂x2
f(t,Xt)d[X ]t,

with the understanding that d[X ] = d[M ], since the quadratic variation

of the finite variation process V is zero.

Proof. As usual, we first localize. Let

τn ≡ inf {t ≥ 0 : (|X0|+ |Mt|+RV (t)) ≥ n} .

Then τn are stopping times tending to infinity, and we can prove first

(4.25) with t replaced by t∧τn, and then let n tend to infinity to extend

the result to all t. Thus in the sequel we can assume M bounded and V

of bounded variation. Let {tk} be a partition of [0, t], and set ∆kX ≡
Xtk −Xtk−1

, etc.. Then
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f(t,Xt) − f(0, X0) (4.27)

=

m−1∑

k=0

(f(tk+1, Xtk+1
)− f(tk, Xtk)− f(tk, Xtk+1

) + f(tk, Xtk+1
))

=

m−1∑

k=0

(∫ tk+1

tk

∂

∂t
f(u,Xk+1)du

+
∂

∂x
f(tk, Xk)∆kX +

1

2

∂2

∂x2
f(tk, ξk)(∆kX)2

)
,

for some ξk with |Xtk − ξk| ≤ |∆kX |, by Taylor’s theorem. Clearly, as

we refine the partition {tk}, the first two terms tend to the integrals,

resp. stochastic integrals appearing in the Itô formula. It is not very

difficult to see that the last term produces the integral of ∂2

∂x2 f(t, x) with

respect to the bracket of M . To see this, note first that

∑

k

∆X2
k =

∑

k

(Vtk+1
− Vtk)

2 + 2
∑

k

(Vtk+1
− Vtk)(Mtk+1

−Mtk)

+
∑

k

(Mtk+1
−Mtk)

2 (4.28)

If we take a sequence of partitions such that maxk |tk+1 − tk| ↓ 0, then

the first two terms clearly tend to zero (since V has bounded variation

and M is continuous, so |Mtk+1
−Mtk | tends to zero. Also, since f is

C2 and X is continuous, it follows that

max
k

∣∣∣∣
∂2

∂x2
f(tk, ξk)−

∂2

∂x2
f(tk, Xtk)

∣∣∣∣ ↓ 0. (4.29)

Thus we are left to show that

∑

k

∂2

∂x2
f(tk, Xtk)

(
Mtk+1

−Mtk

)2 →
∫

∂2

∂x2
f(s,Xs)d[M ]s. (4.30)

But this is relatively straightforward.

To see how useful the Itô formula can be, we will use it to prove Lévy’s

famous theorem that says that Brownian motion can be characterized

as the unique local martingale whose bracket is equal to t.

Theorem 4.2.10 Let X be a continuous local martingale such that [X ]t =

t. Then X is Brownian motion.
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Proof. Let f(t, x) ≡ exp
(
iθx+ 1

2θ
2t
)
. Clearly f (reps. the real and

imaginary parts of f) satisfies the hypothesis of Theorem 4.2.9. Since

X is a local martingale, and

∂

∂t
f(t, x) =

1

2
θ2f(t, x) = −1

2

∂2

∂x2
f(t, x),

and since d[x]t = dt, by hypothesis, Itô’s formula implies that f(t,Xt)

is a local martingale, i.e. one checks that

E [f(t+ s,Xt+s)|Ft] = f(t,Xt) (4.31)

Writing this out implies that

E

[
eiθ(Xt+s−Xt)|Ft

]
= e−

s
2 θ

2

,

for all θ, s, t, so the increments of X are independent and Gaussian,

implying the X is Brownian motion.

4.3 Black-Sholes formula and option pricing

In this section we give a derivation of the Black-Sholes formula as a

simple application of Itô’s formula.

The basic idea of option pricing can be expressed in a rather fun-

damental intrinsically mathematical way. A stochastic integral can be

interpreted as the evolution of the wealth of an investor who invests

according to a previsible strategy C in a stock whose price evolves as a

continuous martingale,M (we disregard here interest rates or inflation).

An (European) option is a function, F : S → R, that corresponds to

a payoff of an amount of money, F (MT ), at fixed time T . If a bank

engages in such a contract, it must ensure that it will charge a price for

this option that allows it, by following a previsible investment strategy,

to procure the payoff F (MT ) at the end of the period from the proceeds

of the received option price. Thus the issue is whether we can represent

the payoff as a sum of initial price, Π, plus a consecutive wealth process:

F (MT ) =

∫ T

0

CdM +Π0, a.s. (4.32)

where of course Π0 should be minimal. In purely mathematical terms,

this corresponds to asking for a representation formula of the random

variable F (MT ).

Let us now see how the Itô formula relates to the issue of option

pricing. As we said, on option is a contract that guarantees the pay-out

of an amount F (MT ) at time T . Thus, the value, V (T,MT ), at time
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T is precisely F (MT ). We are interested to know that the value of the

option is at earlier times t < T , given the stock price Mt. To this end

we consider the value function V (t,M) as a function of two variables.

Then Itô’s formula tells us that

dV (t,Mt) =
∂

∂t
V (t,Mt)dt (4.33)

+
∂

∂M
V (t,Mt)dMt

+
1

2

∂2

∂M2
V (t,Mt)d[M ]t

An investment strategy can replicate the martingale part, ∂
∂M V (t,Mt)dMt,

whereas the other terms should cancel. I.e. we will demand that

0 =
∂

∂t
V (t,M)dt (4.34)

+
1

2

∂2

∂M2
V (t,M)d[M ]t

Note that if Mt is exponential Brownian motion, then

dMt = σ(t)MtdBt

and

d[M ]t = σ2(t)M2
t dt

so that the differential equation becomes

0 =
∂

∂t
V (t,M) +

1

2

∂2

∂M2
V (t,M)σ2(t)M2 (4.35)

This equation can now be considered as a partial equation for the func-

tion V with the final conditions

V (T,M) = F (M).

Let us now see that this then gives the desired reproduction strategy.

Take an initial amount of capital X0 = V (0,M0). Invest according to

the strategy C(t,Mt) =
∂

∂M V (t,Mt) in M . As a result, at time T , you

will have accumulated the wealth

X(T ) =

∫ T

0

∂

∂M
V (t,Mt)dMt +X0. (4.36)

But according to (4.33), since (4.34) holds,

F (MT ) = V (T,MT ) = V (0,M0) +

∫ T

0

∂

∂M
V (t,Mt)dMt = X(T )!

(4.37)
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Thus our investment strategy has produced exactly the desired amount

of money needed to cover the pay-out of the option. V (0,M0) is then

the reasonable price for the option.

4.4 Girsanov’s theorem

Girsanov’s theorem is a particularly useful result to study properties of

processes that can be seen as modifications of Brownian motions. For

simplicity I will consider only the one-dimensional situation, but the

obvious extensions to multi-dimensional settings hold true as well.

Suppose we are living on a filtered space (Ω,F ,P,Ft) that satisfies

the usual assumptions and we are given a Brownian motion B and an

adapted process X that is square integrable with respect to dt, i.e. an

integrand for Brownian motion.

Suppose we want to study the process

Wt ≡ Bt −
∫ t

0

Xsds. (4.38)

For example, we could think of the case Xs = b(s,Bs), for some bounded

measurable function (as in the last section). The simplest case of course

would be b(s,Xs) = b, so

Wt = Bt − bt,

which is Brownian motion with a constant drift b.

How can we compute properties of W? In particular, can we find

a new probability measure, P̃ , such that under this new measure, W

becomes simple? Girsanov’s theorem is a striking affirmative answer to

this question.

Theorem 4.4.11 Let B,X,W be as above and define

Zt(X) ≡ exp

(∫ t

0

XdB − 1

2

∫ t

0

X2
sds

)
(4.39)

and let P̃ be defined by

P̃T (A) ≡ E [ZT (X)1IA] . (4.40)

Then, if Z is a martingale, the process Wt, t ≤ T is a Brownian motion

under P̃T .

Remark 4.4.1 One can check using Itô’s formula that Zt solves

dZt = ZtXtdBt
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and hence is always a positive local martingale, and so, by Fatou’s

lemma, a super-martingale. It is a martingale whenever EZt = 1.

Proof. Let us first show a more abstract looking result. To formulate

this, and to proof Girsanov’s theorem, we need to introduce the notion

of a bracket between two martingales:

[M,N ]t ≡ [M +N ]t −
1

2
([N ]t + [M ]t) (4.41)

One may verify that with this notion, one has the following generaliza-

tion of Itô’s formula to the case of functions of several variables:

f(t,Xt) − f(0, X0) (4.42)

=

∫ t

0

∂

∂s
f(s,Xs)ds+

d∑

i=1

∫ t

0

∂

∂xi
f(s,Xs)dVi(s)

+

d∑

i=1

∫ t

0

∂

∂xi
f(s,Xs)dMi(s)

+
1

2

d∑

i,j=1

∫ t

0

∂2

∂xi∂xj
f(s,Xs)d[Mi,Mj]s.

Lemma 4.4.12 Let M be a continuous local martingale and let Zt ≡
exp

(
Mt − 1

2 [M ]t
)
. Assume that Z is uniformly integrable. Let Q be

the measure that is absolutely continuous with respect to P such that the

Radon-Nikodým derivative dQ
dP = Z∞. Then, if X is a continuous local

martingale under P; then X − [X,M ] is a local martingale under Q.

Proof. As usual we stop at a time τn ≡ inf{t ≥ 0 : |Xt| + [M,N ]t ≥
n}. By assumption, Zt is a uniformly integrable martingale and Zt =

E[Z∞|Ft], a.s.. Let

Y ≡ Xτn − [Xτn ,M ].

Note that Z is the solution of the stochastic differential equation

dZt = ZtdMt,

which can be verified using Itô’s formula. Next we use Itô’s formula

(4.42) to compute
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d(ZtYt) = ZtdYt + YtdZt + d[Z, Y ]t (4.43)

= Zt(dXt − d[X,M ]t) + (Xt − [X,M ]t)ZtdMt + d[Z, Y ]

= Zt(dXt − d[X,M ]t) + (Xt − [X,M ]t)ZtdMt + Ztd[M,X ]

= ZtdXt + (Xt − [X,M ]t)ZtdMt.

Here we used that first [Z, Y ] = [Z,X ], since Y − X is of bounded

variation, and then the fact that Z =
∫
ZdM , and finally the theorem

of Kunita-Watanabe that states that
[∫

ZdM,X

]
=

[∫
ZdM,

∫
dX

]
=

∫
Zd[M,X ],

which extends the formula for the bracket of a stochastic integral to

that of the co-bracket of two such integrals in a natural way. Thus ZY

is a stochastic integral and hence a martingale under P. Therefore, for

A ∈ Fs,

EQ [(Yt − Ys)1IA] = E [(Z∞Yt − Z∞Ys)1IA] = E [(ZtYt − ZsYs)1IA] = 0,

(4.44)

and so Yt is a martingale under Q. Thus the un-stopped X − [X,M ] is

a local martingale.

We can now conclude the proof of Theorem 4.4.11 rather easily. We see

that we are in the setting of Lemma 4.4.12 with Xt = Bt, Mt =
∫ t

0 XdB

and Yt = Wt = Bt −
∫ t

0 Xd[B] = Bt −
∫ t

0 Xds. Thus we know that Wt

is a local martingale. To show that it is Brownian motion, it suffices

to compute its bracket. But since
∫ t

0
Xsds is an ordinary integral, it is

of bounded variation and hence [W ]t = [B]t = t, so W as a continuous

local martingale with bracket t is Brownian motion by Lévy’s theorem.

In the special case when Wt = Bt − bt, Zt = exp
(
bBt − 1

2b
2t
)
.

Let us now consider a Brownian motion Bt in R and let for b ∈ R τb
be the first hitting time of b, Tb ≡ inf{t > 0 : Bt ≥ b}. Using a simple

symmetry argument and the strong Markov property, one can show that

P0[Tb < t] = 2P0[Bt ≥ b] =

√
2

π

∫ ∞

b/
√
t

e−x2/2dx, (4.45)

and hence the probability density of this variable is

P0[Tb ∈ dt] =
|b|√
2πt2

e−b2/2t,
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and, for a ≥ 0,

Ee−aTb = e−|b|
√
2a.

Now consider Wt = Bt − µt. Let Zt ≡ eµBt−µt2/2. The we have that

under the measure Pµ, defined by Pµ(A) = EZt1IA, the process Wt is

a Brownian motion, or Bt under P
µ is a Brownian motion with drift µ.

Since on the set {Tb ≤ t}, Tt∨Tb
= ZTb

, the optional sampling theorem

implies

Pµ[Tb ≤ t] = E1{Tb≤t}Zt (4.46)

= E[1{Tb≤t}E[Zt|FTb∨t]]

= E[1{Tb≤t}ZTb∨t]

= E[1{Tb≤t}ZTb
]

= E

[
1{Tb≤t}e

µb− 1
2µ

2Tb

]

=

∫ t

0

eµb−
1
2µ

2sP0[Tb ∈ ds]

Differentiating, we get that

P
µ
0 [Tb ∈ dt] =

|b|√
2πt2

e−(b−µt)2/2t. (4.47)

One can also conclude that

P0[Tb <∞] = eµb−|µb|,

so that if b and µ have the same sign, the drifted Brownian motion

reaches the level b with probability one, whereas in the opposite case

the level b is hit with probability strictly smaller than one.

Novikov’s condition As we have noted, the process Z in Girsanov’s

construction is a martingale if and only if EZt = 1, for all t ∈ R+.

We need verifiable criteria for this to hold. The following proposition

that we take from [12], gives such a criterion, also known as Novikov’s

condition.

Proposition 4.4.13 Let M be a continuous local martingale starting

in zero. If

E exp

(
1

2
[M ]∞

)
<∞, (4.48)

for all t ∈ R+, then Zt is a unifomrly integrable martingale.
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Proof. We show first that M is a uniformly integrable martingale and

that E exp
(
1
2M∞

)
< ∞. In fact, (4.48) implies that M is a martingale

bounded in L2, and hence uniformly integrable. Next,

exp
(
1
2M∞

)
= Z1/2

∞ exp
(
1
4 [M ]∞

)

so that by the Cauchy-Schwarz inequality,

E exp
(
1
2M∞

)
≤ [Z∞]1/2

[
E exp

(
1
2 [M ]∞

)]1/2 ≤
[
E exp

(
1
2 [M ]∞

)]1/2
<∞.

Now sinceMt is a uniformly integrable martingale,Mt = E [L∞|Ft], and

exp
(
1
2Mt

)
≤ E

[
exp

(
1
2M∞

)
| |Ft

]
.

Therefore, exp
(
1
2Mt

)
is in L1 and a submartingale. Then for any stop-

ping time, T ,

exp
(
1
2MT

)
≤ E

[
exp

(
1
2M∞

)
| |FT

]
,

which shows that the family {exp
(
1
2LT

)
, T stopping time} is uniformly

integrable. Now set, for 0 < a < 1, Y
(a)
t ≡ exp

(
aMt

1+a

)
and Z

(a)
t ≡

exp
(
aMt − a2

2 [Mt]
)
. Then

Z
(a)
t = Za2

t

(
Y

(a)
t

)1−a2

.

Then for A ∈ F∞ and T a stopping time, by Hölder’s inequality

E

[
1IAZ

(a)
T

]
≤ E [ZT ]

a2

E

[
1AY

(a)
T

]1−a2

≤ E

[
1AY

(a)
T

]1−a2

≤ E
[
1IA exp

(
1
2MT

)]2a(1−a)

where the second inequality used that Z is a submartingale and the last is

Jensen’s inequality. This implies that the family {Z(a)
T , T stopping time}

is uniformly integrable. Hence Z(a)x is a uniformly integrable martin-

gale. It follows that

1 = E

[
Z(a)
∞

]
≤ E [Z∞]

a2

E
[
exp

(
1
2M∞

)]2a(1−a)
.

Turning this arround and letting a ↑ 1, we get E [Z∞] ≥ 1, hence

E [Z∞] = 1.
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Stochastic differential equations

5.1 Stochastic integral equations

We will define the notion of stochastic differential equations first.

We want to construct stochastic processes where the velocities are

given as functions of time and position, and that have in addition a

stochastic component. We will consider the case where the stochastic

component comes from a Brownian motion, Bt. Such an equation should

look like

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (5.1)

with prescribed initial conditions X0 = x0. The interpretation of such

an equation is not totally straightforward, due to the term σ(t,Xt)dBt.

We will interpret such an equation as the integral equation

Xt = x0 +

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dBs, (5.2)

where the integral with respect to B is understood as the Itô stochastic

integral defined in the last chapter. The functions b, σ are in the most

general setting assumed to be locally bounded and measurable.

The questions one is of course interested are those of existence and

uniqueness of solutions to such equations, as well as that of properties

of solutions. We begin by discussing the notions of strong and weak

solutions.

5.2 Strong and weak solutions

We will denote by W the Polish space C(R+,R
n) of continuous paths

and we denote by H the corresponding Borel-σ-algebra, and by Ht ≡
σ{xs, s ≤ t} the filtration generated by the paths up to time t.

105
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The formal set-up for a stochastic differential equation involves an ini-

tial conditions and a Brownian motion, all of which require a probability

space. We will denote this by

(Ω,F ,P, {Ft}, ξ, B), (5.3)

where

(i) (Ω,F ,P, {Ft}) is a filtered space satisfying the usual conditions;

(ii) B is a Brownian motion (on Rd), adapted to Ft,

(iii) ξ is a F0-measurable random variable.

The minimal or canonical set-up has Ω = Rn ×W , P = µ×Q, where µ

is the law of ξ and Q is Wiener measure and Ft the usual augmentation

of F0
t ≡ σ{ξ, Bs, s ≤ t}.

The precise definition of path-wise uniqueness of a SDE is as follows:

Definition 5.2.1 For a SDE, path-wise uniqueness holds, if the follow-

ing holds: For any set-up (Ω,F ,P, {Ft}, ξ, B), and any two continuous

semi-martingales X and X ′, such that∫ t

0

(|b(s,Xs)|+ |σ(s,Xs)|2)ds <∞, (5.4)

and the same condition for X ′ hold and both processes solve the SDE

with this initial condition ξ and this Brownian motion B,

P[Xt = X ′
t, ∀t] = 1. (5.5)

If a SDE admits for any setup (Ω,F ,P, {Ft}, ξ, B) exactly one continu-

ous semi-martingale as solution, we say that the SDE is exact.

The notion of strong solutions is naturally associated with the setting

of exact SDE’s.

Definition 5.2.2 A strong solution of a SDE is a function,

F : Rn ×W →W, (5.6)

such that

F−1(Ht) ⊂ B(Rn)× H̄t, ∀t ≥ 0, (5.7)

and on any set-up (Ω,F ,P, {Ft}, ξ, B), the process

X = F (ξ, B)

solves the SDE. H̄t is the augmentation ofHt with respect to the Wiener

measure.
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Existence and uniqueness results in the strong sense can be proven in

a very similar way as in the case of ordinary differential equations, using

Gronwall’s inequality and the Picard iteration scheme.

The general approach is to assume local Lipshitz conditions, to prove

existence of solutions for finite times, and then glue solutions together

until a possible explosion.

Let us give the basic uniqueness and existence results, essentially due

to Itô.

Theorem 5.2.1 Assume that σ and b are bounded measurable, and that

in addition there exists an open set U ⊂ R, and T > 0, such that there

exists K <∞, s.t.

|σ(t, x) − σ(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y|, (5.8)

for all x, y ∈ U, t < T . Let X,Y be two solutions of (5.2) (with the same

Brownian motion B), and set

τ ≡ inf{t ≥ 0 : Xt 6∈ UorYt 6∈ U}. (5.9)

Then, if E[X0 − Y0]
2 = 0, it follows that

P [X(t ∧ τ) = Y (t ∧ τ), ∀0 ≤ t ≤ T ] = 1. (5.10)

Proof. The proof is based on Gronwall’s lemma and very much like the

deterministic analog. We compute

E

[
max
0≤s≤t

(X(s ∧ τ) − Y (s ∧ τ))2
]

(5.11)

≤ 2E

[
max
0≤s≤t

(∫ s∧τ

0

(σ(u,X(u))− σ(u, Y (u)))dBu

)2
]

+2E

[
max
0≤s≤t

(∫ s∧τ

0

(b(u,X(u))− b(u, Y (u)))du

)2
]

≤ 8E

[∫ t∧τ

0

(σ(u,X(u))− σ(u, Y (u)))2du

]

+2tE

[∫ t∧τ

0

(b(u,X(u))− b(u, Y (u)))2du

]

≤ 2K2(t+ 4)E

[∫ t∧τ

0

(X(u)− Y (u))
2
du

]

≤ 2K2(4 + t)

∫ t

0

E

[
max
0≤u≤s

(X(u ∧ τ)− Y (u ∧ τ))2 ds
]
.

Note that in the first inequality we used that (a+ b)2 ≤ 2a2+2b2, in the
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second we used the Schwartz inequality for the drift term and Doob’s

L2-maximum inequality for the diffusion term; the next inequality uses

the Lipshitz condition and in the last we used Fubini’s theorem.

Gronwall’s inequality then implies that

E

[
max
0≤t≤T

(X(t ∧ τ)− Y (t ∧ τ))2
]
= 0.

This is most easily proven as follows: Let f be a non-negative function

that satisfies the integral equation f(t) ≤ K
∫ t

0
f(s)ds. Set F (t) =∫ t

0
f(s)ds. Then

0 ≤ d

dx

(
e−tKF (t)

)
≤ e−Kt (−KF (t) + f(t)) ≤ 0,

and hence e−tKF (t) ≤ 0, meaning that F (t) ≤ 0. But since F is the

integral of the non-negative function f , this means that f(t) = 0.

Thus we have in particular that P[max0≤t≤T |Xt − Yt| = 0] = 1 as

claimed.

Finally, existence of solutions (for finite times) can be proven by the

usual Picard iteration scheme under Lipschitz and growth conditions.

Theorem 5.2.2 Let b, σ satisfy the Lipshitz conditions (5.8) and as-

sume that

|b(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + |x|2). (5.12)

Let ξ be a random vector with finite second moment, independent of Bt,

and let Ft be the usual augmentation, Ft, of the filtration associated with

B and ξ. Then there exists a continuous, Ft-adapted process X which

is a strong solution of the SDE with initial condition ξ. Moreover, X

is square integrable, i.e. for any T > 0, there exists C(T,K), such that,

for all t ≤ T ,

E|Xt|2 ≤ C(K,T )(1 + E|ξ|2)eC(K,T )t. (5.13)

Proof. We define a map, F , from the space of continuous adapted

processed X , uniformly square integrable on [0, T ], to itself, via

F (X)t ≡ ξ +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs. (5.14)

Note that the square integrability of F (X) needs the growth conditions

(5.12)

Exercise: Prove this!

As in (5.11)
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E

(
sup

0≤t≤T
(F (X)t − F (Y )t)

)2

(5.15)

≤ 2E

(
sup

0≤t≤T

(∫ t

0

(σ(Xs)− σ(Ys))dBs

)2
)

+2E

(
sup

0≤t≤T

(∫ t

0

(b(Xs)− b(Ys))ds

)2
)

≤ 2K2(1 + T )

∫ T

0

E sup
0≤s≤t

(Xs − Ys)
2
dt

and hence

E

(
sup

0≤t≤T
(F k(X)t − F k(Y )t)

)2

≤ CkT 2k

k!
E

(
sup

0≤t≤T
(Xt − Yt)

)2

.

(5.16)

Thus, for n sufficiently large, Fn is a contraction, and hence has a unique

fixed point which solves the SDE.

Remark 5.2.1 The conditions for existence above are not necessary.

In particular, growth conditions are important only when the solutions

can actually reach the regions there the coefficients become too big.

Formulations of weaker hypothesis for existence and uniqueness can be

found for instance in [10], Chapter 14. Their verification in concrete

cases can of course be rather tricky.

We will now consider a weaker form of solutions, in which the solution

is not constructed from the BM, but the BM comes from the solution.

This is like in the martingale problem formulation, and we will soon see

the equivalence of the two concepts.

Definition 5.2.3 A stochastic integral equation

Xt = X0 +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds (5.17)

has a weak solution with initial distribution µ, if there exists a filtered

space (Ω,F ,P, {Ft}), satisfying the usual conditions, and continuous

martingales X and B, such that

(i) B is an Ft-Brownian motion;

(ii) X0 has law µ;

(iii)
∫ t

0
(|σ(s,Xs)|2 + |b(s,Xs)|)ds <∞, a.s., for all t;

(iv) (5.17) holds.



110 5 Stochastic differential equations

Definition 5.2.4 A solution of (5.17) is unique in law (or weakly unique),

if whenever Xt and X
′
t are two solutions such that the laws of X0 and

X ′
0 are the same, then the laws of X and X ′ coincide.

Example. The following simple example illustrates the difference be-

tween strong and weak solutions. Consider the equation

Xt = X0 +

∫ t

0

sign(Xs)dBs. (5.18)

Here we define sign(x) = −1, if x ≤ 0, and sign(x) = +1, if x > 0.

Obviously, [X ]t =
∫ t

0
dt = t,, so for any solution, Xt, that is a continuous

local martingale, Lévy’s theorem implies that Xt is a Brownian motion,

if it exists. In particular, we have weak uniqueness of the solution.

Moreover, we can easily construct a solution: Let Xt be a Brownian

motion and set

Bt ≡
∫ t

0

sign(Xs)dXs. (5.19)

Then dBs = sign(Xs)dXs, and hence
∫ t

0

sign(Xs)dBs =

∫ t

0

sign(Xs)
2dXs =

∫ t

0

dXs = Xt −X0,

so the pair (X,B) yields a weak solution! Note that the Brownian

motion is constructed from X , not the other way around! On the other

hand, there is no path-wise uniqueness: Let, say, X0 = 0. Then, if

Xt is a solution, so is −Xt. Of course being Brownian motions, they

have the same law. Note that the corresponding Bt in the construction

above would be the same. Moreover, the Brownian motion of (5.19)

is measurable with respect to the filtration generated by |Xt| which

is smaller than that of Xt; thus, Xt is not adapted to the filtration

generated by the Brownian motion. Hence we see that there is indeed

not necessarily a solution of this SDE for any B, and so this SDE does

not have a strong solution.

Remark 5.2.2 The example (and in particular the last remark) is hid-

ing an interesting fact and concept, that of local time. This is the content

of the following theorem due to Tanaka:

Theorem 5.2.3 Let X be a continuous semi-martingale. Then there

exists a continuous increasing adapted process, {ℓt, t ≥ 0}, called the

local time of X at 0, such that

|Xt| − |X0| =
∫ t

0

sign(Xs)dXs + ℓt. (5.20)



5.2 Strong and weak solutions 111

ℓt grows only when X is zero, i.e.
∫ t

0

1Xs 6=0dℓs = 0. (5.21)

Proof. The proof uses Itô’s formula and an applroximation of the abso-

lute value by C∞ functions. Chose some non-decreasing smooth funtion

φ that is equal to −1 for x ≤ 0 and equal to +1 for x ≥ 1. Then take

fn(x) suc that f ′
n(x) = φ(nx) with fn(0) = 0. Then Itô’s formula gives

fn(Xt)− fn(X0) =

∫ t

0

f ′
n(Xs)dXs +

1

2

∫ t

0

f ′′
n (Xs)d[X ]s. (5.22)

We denote the last term by Cn
t . Clearly C

n
t is non-decreasing, and since

f ′′ vanishes outside the interval [0, 1/n], we have that
∫ t

0

1IXs 6∈[0,1/n]dC
n
s = 0. (5.23)

It is also important to note that fn(x) converges to |x| uniformly, and

fn converges to the sign from below.

To prove the convergence of Cn
t , we just have to proce the convergence

of the stochastic integrals.

Now consider the canonical decomposition of the semi-martingaleXt =

X0 + Mt + At, where At can be assumed of finite variation and Mt

bounded; otherwise use localisation. We bound the stochastic integrals

with respect to Mt and At seperately. The first is controlled be the

bound

∥∥∥∥
∫ ∞

0

(sign(Xs)− f ′
n(Xs)) dMs

∥∥∥∥
2

2

≤ E

∫ ∞

0

(sign(Xs)− f ′
n(Xs))

2
d[M ]s.

(5.24)

By the uniform convergence of the integrand to zero, it follows that

the right-hand side tends to zero. Then Doob’s maximum inequatlity

implies that

P

(
sup
t≤∞

∣∣∣∣
∫ ∞

0

(sign(Xs)− f ′
n(Xs)) dMs

∣∣∣∣ > ε

]
≤ ε−2E

∫ ∞

0

(sign(Xs)− f ′
n(Xs))

2
d[M ]s,

(5.25)

which tends to zero with n. Taking possibly subsequences, we get almost

sure convergence of the supremum, possibly by choosing subsequences.

The control of the integral with respect to At is similar and simpler.

Note that the convergence of f ′
n is monotone. From here the claimed

result follows easily.
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Note that this theorem implies that in the example above, Bt =

|Xt|− ℓt, and since ℓt depends only on |X |, the measurability properties

claimed above hold.

The connection between weak and strong solutions is clarified in the

following theorem due to Yamada and Watanabe. It essentially says

that weak existence and path-wise uniqueness imply the existence of a

strong solution, and in turn weak uniqueness.

Theorem 5.2.4 An SDE is exact if and only if

(i) there exists a weak solution, and

(ii) solutions are path-wise unique.

Then uniqueness in law also holds.

The proof of this theorem may be found in [14]

5.3 Weak solutions and the martingale problem

We will now show a deep and important connection between weak solu-

tions of SDEs and the martingale problem.

The remarkable thing is that these issues can be cooked down again

to the study of martingale problems. We do the computations for

the one-dimensional case, but clearly everything goes through in the

d-dimensional case exactly in the same way.

Let us first observe that, using Itô’s formula, given that the equation

(5.2) has a solution, then it is a solution of a martingale problem.

Lemma 5.3.5 Assume that X solves (5.2). Define the family of oper-

ator Gt on the space of C∞-functions f : R → R, as

Gt ≡
1

2
σ2(t, x)

d2

dx2
+ b(t, x)

d

dx
. (5.26)

Then X is a solution of the martingale problem for Gt.

Remark 5.3.1 We need here in fact a slight generalisation of the no-

tion of martingale problems in order to include time-inhomogeneous pro-

cesses. For a family of operatorsGt with common domain D, we say that

a process Xt is a solution of the martingale problem, if for all f : S → R

in D,

f(Xt)−
∫ t

0

(Gsf)(Xs)ds (5.27)

is a margingale. A simple way of relating this to the usual martingale
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problem is to consider an process (t,Xt) on the space R+ × S. Then

the operator G̃ = (∂t + Gt) can be seen as on ordinary generator with

domain a subset of B(R+ × S). If f is in this domain, the martingale

should be

Mt ≡ f(t,Xt)− f(0, X0)−
∫ t

0

(∂sf(s,Xs) + (Gsf)(s,Xs))ds. (5.28)

Restricting the domain of G̃ to functions of the form f(t, x) = γ(t)g(x),

this reduces to

Mt ≡ g(Xt)γ(t)− g(X0)g(0)−
∫ t

0

(∂sγ(s)g(Xs) + (Gsg)(Xs, s)γ(s)) ds.

(5.29)

We see immediately, by setting γ(t) ≡ 1, that is (t,Xt) makes (5.29)

a martingale, then Xt solves the time dependent martingale problem

(5.27). On the other hand it is also easy to see that if Xt makes (5.27)

a martingale then (t,Xt) makes (5.29) a martingale. Note that we have

seen this already in the special case γ(t) = exp(λt).

Proof. For later use we will derive a more general result. Let f :

R+ × R → R. We use Itô’s formula to express

f(t,Xt)− f(0, X0) =

∫ t

0

∂sf(s,Xs)ds+

∫ t

0

∂xf(s,Xs)dXs (5.30)

+
1

2

∫ t

0

∂2xf(s,Xs)d[X ]s.

Now

dXs = b(s,Xs)ds+ σ(s,Xs)dBs.

We set

Mt ≡ Xt −
∫ t

0

b(s,Xs)ds

and note that this is by (4.25) equal to
∫ t

0
σ(s,Xs)dBs, and hence a

martingale. Moreover,

[M ]t =

∫ t

0

σ(s,Xs)
2d[B]s =

∫ t

0

σ(s,Xs)
2ds.

Hence
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f(t,Xt)− f(0, X0) =

∫ t

0

∂xf(s,Xs)b(s,Xs)ds

+

∫ t

0

∂sf(s,Xs)ds+
1

2

∫ t

0

σ(s,Xs)∂
2
xf(s,Xs)ds

+

∫ t

0

∂xf(s,Xs)dMs,

or

f(t,Xt)−f(0, X0)−
∫ t

0

[∂sf(s,Xs+(Gf)(s,Xs)]ds = −
∫ t

0

∂xf(s,Xs)dMs,

(5.31)

where the right-hand side is a martingale, which means that X solves

the martingale problem, as desired.

This observation becomes really useful through the converse result.

Theorem 5.3.6 Assume that b and σ are locally bounded as above and

assume that in addition σ−1 is locally bounded. Let Gt be given by (5.26).

Assume that X is a continuous solution to the martingale problem for

(G, δx0), then there exists a Brownian motion, B, such that (X,B) is a

solution to the stochastic integral equation (5.2).

Proof. We know that for every f ∈ C∞(R),

f(Xt)− f(X0)−
∫ t

0

(Gsf)(s,Xs)ds (5.32)

is a continuous martingale. Choosing f(x) = x, it follows that

Xt −X0 −
∫ t

0

b(s,Xs)ds ≡Mt (5.33)

is a continuous martingale. Essentially we want to show that this mar-

tingale is precisely the stochastic integral term in (5.2). To do this, we

need to compute the bracket ofM . For this we consider naturally (5.32)

with f(x) = x2. To simplify the notation, let us assume without loss of

generality that X0 = 0. This gives

X2
t − 2

∫ t

0

Xsb(s,Xs)ds−
∫ t

0

σ2(s,Xs)ds = M̂t, (5.34)

where M̂ is a martingale. Thus
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M2
t = X2

t − 2Xt

∫ t

0

b(s,Xs)ds+

(∫ t

0

b(s,Xs)ds

)2

(5.35)

= 2

∫ t

0

Xsb(s,Xs)ds+

∫ t

0

σ2(s,Xs)ds+ M̂t

− 2Xt

∫ t

0

b(s,Xs)ds+

(∫ t

0

b(s,Xs)ds

)2

.

I claim that

2

∫ t

0

Xsb(s,Xs)ds− 2Xt

∫ t

0

b(s,Xs)ds+

(∫ t

0

b(s,Xs)ds

)2

(5.36)

is also a martingale. By partial integration,
∫ t

0

Xsb(s,Xs)ds = Xt

∫ t

0

b(s,Xs)ds−
∫ t

0

∫ s

0

b(u,Xu)dudXs.

Thus (5.36) equals

−2

∫ t

0

∫ s

0

b(u,Xu)dudXs +

(∫ t

0

b(s,Xs)ds

)2

= −2

∫ t

0

∫ s

0

b(u,Xu)dudMs,

which is a martingale. Hence

M2
t −

∫ t

0

σ2(s,Xs)ds (5.37)

is a martingale, so that by definition of the quadratic variation process,
∫ t

0

σ2(s,Xs)ds = [M ]t.

Now set

B(t) ≡
∫ t

0

1

σ(s,Xs)
dMs.

Then

[B]t =

∫ t

0

1

σ(s,Xs)2
d[M ]s = t,

so by Lévy’s theorem, B(t) is Brownian motion, and it follows that X

solves (5.2) with this particular realization of Brownian motion.

We can summarize these findings in the following theorem.



116 5 Stochastic differential equations

Theorem 5.3.7 Let Py be a solution of the martingale problem associ-

ated to the operator G defined in (5.26) starting in y. Then there exists

a weak solution of the SDE (5.2) with law Py. Conversely, if there is

a weak solution of (5.2), then there exists a solution of the martingale

problem for (5.26). Uniqueness in law holds if and only if the associated

martingale problem has a unique solution.

In other words, solutions of our stochastic integral equation are Markov

processes with generator given by the closure of the second order (ellip-

tic) differential operator G given by (5.26). To study their existence and

uniqueness, we can use the tools we developed in the theory of Markov

processes. Note that we state the theorem without the boundedness as-

sumption on σ−1 from Theorem 5.3.6, which in fact can be avoided with

some extra work.

As a consequence, we sketch two existence and uniqueness results for

weak solutions.

Theorem 5.3.8 Consider the SDE with time-independent coefficients,

dXt = b(Xt) + σ(Xt)dBt, (5.38)

in Rd where the coefficients bi and σij are bounded and continuous. Then

for any measure µ such that∫
‖x‖2mµ(dx) <∞, (5.39)

for some m > 0, there exists a weak solution to (5.38) with initial mea-

sure µ.

Proof. We only have to prove that the martingale problem with gener-

ator

Gf(y) =
∑

i

bi(y)∂if(y) +
1

2

∑

i,j,k

σik(y)σkj(y)∂i∂jf(y),

for f ∈ C2
0 (R

d) has a solution. To do this, we construct an explicit

solution for a sequence of operators G(n) that converge to G and deduce

from this the existence of the solution of the martingale problem for G.

To do this, let t
(n)
j = j2−n and set φn(t) = t

(n)
j 1I

t∈[t
(n)
j ,t

(n)
j+1)

. Then set

b(n)(t, y) ≡ b(y(φn(t)), σ(n)(t, y) ≡ σ(y(φn(t)).

Then define the processes X
(n)
t by
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X
(n)
0 = ξ (5.40)

X
(n)
t = X

(n)

t
(n)
j

+ b(X
(n)

t
(n)
j

)(t− t
(n)
j ) + σ(X

(n)

t
(n)
j

)(Bt −B
t
(n)
j

), t ∈ (t
(n)
j , t

(n)
j+1].

We will denote the laws of the processesX(n) by P (n). One easily verifies

that the processes X(n) solves the integral equation

X
(n)
t = ξ +

∫ t

0

b(n)(s,X(n))ds+

∫ t

0

σ(n)(s,X(n))dBs. (5.41)

But then X(n) solves the martingale problem for the (time dependent)

operator

(G
(n)
t f)(y) ≡

∑

i

b
(n)
i (t, y)∂if(y(t))+

1

2

∑

i,j,k

σ
(n)
ik (t, y)σ

(n)
kj (t, y)∂i∂jf(y(t)).

(5.42)

The first thing to show is that the laws of this family of processes are

tight. For this one uses the criterion given by Proposition ??. The basic

ingredient is the following:

E

∥∥∥X(n)
t −X(n)

s

∥∥∥
2m

≤ Cm(t− s)m (5.43)

for 0 ≤ t, s ≤ T , where Cm is uniform in n and depends only on the

bound on the coefficients of the sde. Moreover,

E‖X(n)
0 ‖2m ≤ C′

m <∞ (5.44)

by assumption. To prove (5.43), we write

E

∥∥∥X(n)
t −X(n)

s

∥∥∥
2m

≤ E

∥∥∥∥
∫ t

s

bn(u,X
(n)
u )du

∥∥∥∥
2m

(5.45)

+E

∥∥∥∥
∫ t

s

σn(u,X
(n)
u )dBu

∥∥∥∥
2m

(5.46)

≤ (t− s)2mE sup
u∈[s,t]

∥∥∥bn(u,X(n)
u )

∥∥∥
2m

(5.47)

+KmE

(∫ t

s

∥∥∥σn(u,X(n)
u )

∥∥∥
2

du

)m

(5.48)

≤ C(m)(t − s)m (5.49)

Here we used the inequality (valid for local martingales

E|Mt|2m ≤ KmE[M ]mt , (5.50)

for the martingale
∫ t

s σ(u,X
(n))dBu. This inequality is a special case
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of the so-called Burkholder-Davis-Gundy inequality, which we will state

and proof below.

Then Prohorov’s theorem implies that the sequence is conditionally

compact, so that we can at least extract a convergent subsequence.

Hence we may assume that P (n) converges weakly to some probabil-

ity measure P ∗. We want to show that the process whose law is P ∗

solves the martingale problem for the operator G.

For f ∈ C2
0 (R

d), one checks that G(n)f(y) → Gf(y). Then Lemma

(3.4.27) implies that P ∗ is a solution of the martingale problem and

hence a weak solution of the sde exists.

Remark 5.3.2 Note that we cheat a little here. Namely, the opera-

tors Gn and the form of the approximating integral equations are more

general than what we have previously assumed in that the coefficients

b(n)(t, y) and σ(n)(t, y) depend on the past of the function y and not

only on the value of y at time t. There is, however, no serious difficulty

in generalising the entire theory to that case. The only crucial property

that needs to be maintained is that the coefficients remain progressive

processes with respect to the filtration Ft.

Remark 5.3.3 The preceeding theorem can be extended rather easily

to the case when b and σ are time-dependent, and even to the case when

they are bounded, continuous progressive functionals.

Remark 5.3.4 The boundedness conditions on the coefficients can be

replaced by the condition

‖b(y)‖2 + ‖σ(y)‖2 ≤ K
(
1 + ‖y‖2

)
, (5.51)

if the bound for the initial condition holds for some m > 1. The proof

is simiar to the one given above, but requires to bound a moment of

the maximum of Xn
t via a Gronwall argument together with the BDG

inequalities. I leave this as an exercise.

We now state the Burkholder-Davis-Gundy inequality.

Lemma 5.3.9 Let M be a continuous local martingale. Then, for every

m > 0, there exist universal constants km,Km depending only on m,

such that, for any stopping time T ,

kmE[M ]mT ≤ E

(
sup

0≤s≤T
|Ms|

)2m

≤ KmE[M ]mT . (5.52)

Proof. The proof (which is taken from [14]) is based on the following

simple lemma, called the “good λ inequality”.
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Lemma 5.3.10 Let X,Y be non-negative random variables. Assume

that there exists β > 1, such that for all λ >, δ > 0,

P (X > βλ, Y ≤ δλ) ≤ ψ(δ)P (X > λ) , (5.53)

where ψ(δ) ↓ 0, as δ ↓ 0. Then for any function positive, increlasing

function F , such that supx>0
F (αx)
F (x) <∞, there exists a constant C such

that

EF (X) ≤ CEF (Y ). (5.54)

Proof. The statement is non-trivial only if EF (Y ) < ∞. We may also

assume that EF (X) < ∞. Now choose γ such that for all x, F (x/β) ≥
γF (x). Such a number must exist be hypothesis on F . We integrate

both sides of (5.53) w.r.t. F (dλ) and get, using partial integration,

ψ(δ)EF (X) ≥
∫ ∞

0

Fdλ)E1IY/δ≤λ<X/β (5.55)

= E

(∫ X/β

0

F (dλ) −
∫ Y/δ

0

F (dλ)

)

+

≥ EF (X/β)− EF (Y/δ) ≥ γEF (X)− EF (Y/δ).

Now we solve this for EF (X) to get

EF (X) ≤ EF (Y/δ)

γ − ψ(δ)
(5.56)

We can choose δ so small that ψ(δ) ≤ γ/. Then there exists µ such

that F (x/δ) ≤ µF (x), for all x > 0. This proves the inequality with

C = 2µ/γ.

We have to establish the inquality (5.53) for X = M∗
T ≡ supt≤T Mt

and Y = [M ]
1/2
T . Recall that for any continuous martingale Nt starting

in zero, for τx ≡ inf(t : Nt = x), and a < 0 < b,

P (τa < τb) ≤ −a/(b− a). (5.57)

Now fix β > 1, λ > 0, and 0 < δ < (β − 1). Set τ ≡ inf(t : |Mt| > λ).

Define

Nt ≡ (Mt+τ −Mτ )
2 − ([M ]t+τ − [M ]t). (5.58)

One easily checks that Nt is a continuous local martingale. Now cond-

sider the event {M∗
T ≥ βλ, [M ]

1/2
T ≤ δλ}. Now on this event, we have

that

sup
t≤T

Nt ≥ (β − 1)2λ2 − δ2λ2, (5.59)
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and

inf
t≤T

Nt ≥ −δ2λ2. (5.60)

This implies that on this event, Nt hits (β− 1)2λ2 − δ2λ2 before −δ2λ2,
and so by (5.57),

P

(
M∗

T ≥ βλ, [M ]
1/2
T ≤ δλ|Fτ

)
≤ δ2/(β − 1)2. (5.61)

From this it follows that

P

(
M∗

T ≥ βλ, [M ]
1/2
T ≤ δλ

)
≤ δ2/(β−1)2P (τ < T ) = d2/(β−1)2P (|M∗

T | > 0λ) .

(5.62)

This proves (5.53) and hence

EF (M∗
T ) ≤ CEF ([M ]

1/2
T ). (5.63)

The converse inequality is obtained by the same procedure but chosing

of Y =M∗
T and X = [M ]

1/2
T .

A uniqueness result is interestingly tied to a Cauchy problem.

Lemma 5.3.11 If for every f ∈ C∞
0 (Rd) the Cauchy problem

∂u(t, x)

∂t
= (Gu)(t, x), (t, x) ∈ (0,∞)× Rd (5.64)

u(0, x) = f(x), x ∈ Rd

has a solution in C([0,∞)×Rd)∩C(1,2)((0,∞)×Rd) that is bounded in

any strip [0, T ]× Rd, then any two solutions of the martingale problem

for G with the same initial distribution have the same finite dimensional

distributions.

Proof. Given the solution u let g(t, x) ≡ u(T − t, x). Then g solves, for

0 ≤ t ≤ T ,

∂g(t, x)

∂t
+ (Gsg)(t, x) = 0, (t, x) ∈ (0,∞)× Rd (5.65)

g(T, x) = f(x), x ∈ Rd

Then it follows from (5.31) that g(t,Xt) is a local martingale for any

solution of the martingale problem. Hence

Exf(XT ) = Exg(T,XT ) = Exg(0, X0) = g(0, x), (5.66)

is the same for any solution. This implies uniqueness of the one-dimensional

distributions.

Now Theorem 3.4.25 implies immediately the following corollary:
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Corollary 5.3.12 Under the assumptions of the preceeding lemma, weak

uniqueness holds for the SDE corresponding to the generator G.

5.4 Weak solutions from Girsanov’s theorem

Girsanov’s theorem 4.4.11 provides a very efficient and explicite way of

constructing weak solutions of certain SDE’s.

Theorem 5.4.13 Consider the stochastic differential equation

dXt = b(t,Xt) + dBt, 0 ≤ t ≤ T, (5.67)

for fixed T . Assume that b : [0, T ]× Rd is measurable and satisfies, for

some K <∞,

‖b(t, x)‖ ≤ K(1 + ‖x‖). (5.68)

Then for any probability measure µ on Rd there exists a weak solution

of (5.67) with initial law µ.

Proof. Let X be a family of Brownian motions starting in x ∈ R under

laws Px. Then

Zt ≡ exp

(∫ t

0

b(s,Xs) · dXs −
1

2

∫ t

0

‖b(s,Xs)‖2ds
)

(5.69)

is a martingale under Px. Thus Girsanov’s theorem says that under the

measure Qx such that dQx

dPx
= ZT , the process

Wt ≡ Xt −X0 −
∫ t

0

b(s,Xs)ds (5.70)

for 0 ≤ t ≤ T is a Brownian motion starting in 0. Thus we have a pair

(Xt,Wt) such that

Xt = X0 +

∫ t

0

b(s,Xs)ds+Wt, (5.71)

holds for 0 ≤ t ≤ T , and Wt is a Brownian motion, under Qx. This

shows that we have a weak solution of (5.67).

A complementary result also provided criteria for uniqueness in law.

Theorem 5.4.14 Assume that we have weak solutions (X(i),W (i)), i =

1, 2, on filtered spaces (Ω(i),F (i),P(i),F (i)
t ), of the SDE (5.4.13) with the

same initial distribution. If

P(i)

[∫ T

0

‖b(t,X(i)
t ‖2dt <∞

]
= 1, (5.72)
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for i = 1, 2, then (X(1),W (1)) and (X(2),W (2)) have the same distribu-

tion under their respective probability measures P(i).

Proof. Define stopping times

τ
(i)
k ≡ T ∧ inf

{
0 ≤ t ≤ T :

∫ t

0

‖b(t,X(i)
t ‖2dt = k

}
. (5.73)

We define the martingales

ξ
(k)
t (X(i)) ≡ exp

(
−
∫ t∧τ

(i)
k

0

b(s,X(i)
s )dW (i)

s − 1

2

∫ t∧τ
(i)
k

0

‖b(s,X(i)
s )‖2ds

)
,

(5.74)

and the corresponding transformed measures P̃
(i)
k . Then by Girsanov’s

theorem,

X
(i)

t∧τ
(i)
k

≡ X
(i)
0 +

∫ τ
(i)
k

0

b(s,X(i)
s )ds+W

(i)

t∧τ
(i)
k

(5.75)

is a Brownian motion with unital distribution µ, stopped at τ
(i)
k . In

particular, these processes have the same law for i = 1, 2. Now the W (i)

and the stopping times τ
(i)
k can be expressed in terms of these processes,

and probabilities of events of the form

{((X(i)
t1 ,W

(i)
t1 ), . . . (X

(i)
tn ,W

(i)
tn )) ∈ Γ, τ

(i)
k = tn},

for any collections t1 < t2 < · · · < tn thus have the same probabilities.

Passing to the limit k ↑ ∞ using that due to our assumption, P(i)[τ
(i)
k =

T ] → 1 we get uniqueness in law for the entire time interval [0, T ].

5.5 Large deviations

In this section we will give a short glimpse in what is know as the theory

of large deviations large deviations in the context of simple diffusions.

I will emphasize the use of Girsanov’s theorem and skid over numerous

other interesting issues. There are many nice books on large deviation

theory, in particular [?, ?, ?].

We begin with a discussion of Schilder’s theorem for Brownian motion.

A we know very well, a Brownian motion Bt starting at the origin will,

at time t, typically be found at a distance not greater than
√
t from the

origin, in particular, Bt/t converges to zero a.s. We will be interested

in computing the probabilities that the BM follows an exceptional path

that lives on the sale t. To formalize this idea, we fix a time scale T
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(which we might also call 1/ε), and a smooth path γ : [0, 1] → Rd. We

want to estimate

P

[
sup

0≤s≤1
‖T−1BsT − γ(s)‖ ≤ ε

]
. (5.76)

It will be convenient to adopt the notation ‖f‖∞ ≡ sup0≤s≤1 ‖f(s)‖.
We will first prove a lower bound on the probabilities of the form (5.76).

Lemma 5.5.15 Let B be Brownian motion, set BT
s ≡ T−1BTs, and let

γ be a smooth path in Rd starting in the origin. Then

lim
ε↓0

lim
T↑∞

T−1 lnP
[
‖BT − γ‖∞ ≤ ε

]
≥ −I(γ) ≡ −1

2

∫ 1

0

‖γ̇(s)‖2ds.
(5.77)

Proof. For notational simplicity we consider the case d = 1 only. Note

that BT
s = T−1BsT has the same distribution as T−1/2Bs. Thus we

must estimate the probabilities

P

[
sup
t≤1

‖Bt −
√
Tγ(t)‖ ≤

√
Tε

]
. (5.78)

To do this, we observe that by Girsanov’s theorem, the process

B̂t ≡ Bt −
√
Tγ(t) (5.79)

is a Brownian motion under the measure Q defined through

dQ

dP
= exp

(√
T

∫ t

0

γ̇(s)dBs −
T

2

∫ t

0

‖γ̇(s)‖2ds
)
. (5.80)

Hence

P

[
‖B −

√
Tγ‖∞ ≤

√
Tε
]

(5.81)

= P

[
‖B̃‖∞ ≤

√
Tε
]

= EQ

[
e−

√
T

∫
1
0
γ̇(s)dBs+

T
2

∫
1
0
‖γ̇(s)‖2ds1I‖B̃‖∞≤

√
Tε

]

= EQ

[
e−

√
T

∫ 1
0
γ̇(s)dB̃s−T

2

∫ 1
0
‖γ̇(s)‖2ds1I‖B̃‖∞≤

√
Tε

]

= e−
T
2

∫
1
0
‖γ̇‖2(s)dsQ

[
‖B̃‖∞ ≤

√
Tε
]
EQ

[
e−

√
T

∫
1
0
γ̇(s)dB̃s

∣∣∣∣‖B̃‖∞ ≤
√
Tε

]

= e−
T
2

∫ 1
0
‖γ̇(s)‖2dsP

[
‖B‖∞ ≤

√
Tε
]
EP

[
e−

√
T

∫ 1
0
γ̇(s)dBs

∣∣∣∣‖B‖∞ ≤
√
Tε

]
.

Now we may use Jensen’s inequality to get that
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EP

[
e−

√
T

∫ 1
0
γ̇(s)dBs

∣∣‖B‖∞ ≤
√
Tε
]

(5.82)

≥ exp

(
−
√
TEP

[∫ 1

0

γ̇(s)dBs

∣∣∣∣‖B‖∞ ≤
√
Tε

])
= 1.

On the other hand, it is easy to see, using e.g. the maximum inequality,

that, for any ε > 0,

lim
T↑∞

P

[
‖B‖∞ ≤

√
Tε
]
= 1. (5.83)

Hence,

lim inf
T↑∞

T−1 lnP
[
‖B −

√
Tγ‖∞ ≤

√
Tε
]
≥ −1

2

∫ t

0

‖γ̇(s)‖2ds, (5.84)

which is the desired lower bound.

To prove a corresponding upper bound, we proceed as follows. Fix

n ∈ N and set tk = k/n, k = 0, . . . n. Set α ≡ T/n. Let L be the linear

interpolation of BT
s such that for all tk, B

T
tk

= Ltk . Then

P
[
‖BT − L‖∞ > δ

]
≤

n∑

k=1

P

[
max

tk−1≤t≤tk
‖BT

t − Lt‖ > δ

]

≤ nP

[
max
0≤t≤α

‖BT
t − Lt‖ > δ

]

= nP

[
max
0≤t≤α

‖Bt −
t

α
Bα‖ > δ

√
T

]

≤ nP

[
max
0≤t≤α

‖Bt −
t

α
Bα‖ > δ

√
T

]

≤ nP

[
max
0≤t≤α

‖Bt‖ > δ
√
T/2

]
,

where we used that max0≤t≤α ‖Bt− t
αBα‖ > x implies that max0≤t≤α ‖Bt‖ >

x/2. The last probability can be estimated using the following exponen-

tial inequality (for one-dimensional Brownian motion)

P[ sup
0≤s≤t

|Bs| > xt] ≤ 2 exp

(
−x

2t

2

)
(5.85)

which is obtained easily using that Zt ≡ exp
(
αBt − 1

2α
2t
)
is a martin-

gale and applying Doob’s submartingale inequality (see the proof of the

Law of the iterated logarithm in [?]).

This gives us
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P

[
max
0≤t≤α

‖Bt‖ > δ
√
T/2

]
≤ dP

[
max
0≤t≤α

|Bt| > δ
√
T/2

√
d

]
(5.86)

≤ = 2de−
δ2n2T

8d

and so

P
[
‖BT − L‖∞ > δ

]
≤ n2e−

δ2n2T
8d (5.87)

which can be made as small as desired by choosing n large enough.

The simplest way to proceed now is to estimate the probability that

the value of the action functional, I, on L, has an exponential tail with

rate T , i.e. that, for n large enough,

lim sup
T↑∞

T−1 lnP [I(L) ≥ λ] ≤ λ. (5.88)

This is proven easily using the exponential Chebyshev inequality, since

I(L) =
n

2

n∑

k=1

∥∥∥BT
tk+1

−BT
tk

∥∥∥
2

=
1

2T

dn∑

i=1

η2i

where ηi are iid standard normal random variables. But

Eeρη
2
i ≤ Cλ ≤ ∞,

for all ρ < 1, and so

P

[
1

2T

dn∑

i=1

η2i > λ

]
≤ e−ρλTEeρ

∑nd
i=1 η2

i /2 (5.89)

≤ e−ρλTCnd
ρ

for all ρ < 1, and so (5.88) follows, for any n.

We can deduce from the two estimates the following version of the

upper bound:

Proposition 5.5.16 Let Kλ ≡ {φ : I(φ) ≤ λ}. Then

lim sup
T↑∞

T−1 lnP
[
dist(BT,Kλ) ≥ δ

]
≤ −λ. (5.90)

Clearly the meaning of this proposition is that the probability to find

a Brownian that is not near a path whose action is less than λ has

probability less than exp(−λT ).
The two bounds, together with the fact that the levels sets Kλ (of I

are compact (a fact we will not prove), imply the usual formulation of a

large deviation principle:
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Theorem 5.5.17 For any Borel set A ⊂W ,

− inf
γ∈intA

I(φ) ≤ lim inf
T↑∞

T−1 lnP
[
BT ∈ A

]
(5.91)

≤ lim sup
T↑∞

T−1 lnP
[
BT ∈ A

]
≤ − inf

γ∈Ā
I(φ),

where intA and Ā denote the interior respectively closure of A.

The next step will be to pass to an analogous result for the solution

of the SDE (5.67) with a scaled down Brownian term. i.e. we want to

consider the equation

Xt = T−1/2Bt +

∫ t

0

b(Xs)ds. (5.92)

(for notational simplicity we take zero initial conditions). The easiest

(although somewhat particular) way to do this is to construct the map

F : W →W , as

F (γ) = f, (5.93)

where f is the solution of the integral equation

f(t) =

∫ t

0

b(f(s))ds+ γ(t). (5.94)

We may use Gronwall’s lemma to show that this mapping is continuous.

Then X = F (BT ), and

P[X ∈ A] = P[BT ∈ F−1(A)]. (5.95)

Hence, since the continuous map maps open/reps. closed sets in open/resp.

closed sets, we can use LDP for Brownian motion to see that

P[X ∈ A] ≤ sup
γ∈F−1(Ā)

I(γ) = sup
F (γ)∈Ā

I(γ) = sup
γ∈Ā

I(F−1(γ)), (5.96)

and similarly for the lower bound. Hence the processXT satisfies a large

deviation principle with rate function Ĩ(γ) = I(F−1(γ)), and since

F−1(γ)(t) = γ(t)−
∫ t

0

b(γs)ds,

Ĩ(γ) =
1

2

∫ 1

0

‖γ̇s − b(γs)‖2 ds (5.97)

This transportation of a rate function from one family of processes to

their image is called sometimes a contraction principle.
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Properties of action functionals . The rate function I(γ) has the

form of a classical action functional in Newtonian mechanics, i.e. it is

of the form

I(γ) =

∫ t

0

L(γ(s), γ̇(s), s)ds, (5.98)

where the Lagrangian, L, takes the special form

L(γ(s), γ̇(s), s) = ‖γ̇(s)− b(γ(s), s)‖22. (5.99)

The principle of least action in classical mechanics then states that the

systems follows a the trajectory of minimal action subject to boundary

conditions. This leads to the Euler-Lagrange equations,
d

dt

∂

∂γ̇
L(γ, γ̇, s) = ∂

∂γ
L(γ, γ̇, s). (5.100)

In our case, these take the form

d2

dt2
γ(t) =

∂

∂t
b(γ(t), t) + b(γ(t), t)

∂

∂γ(t)
b(γ(t), t). (5.101)

One can readily identify a special class of solution of this second order

equation, namely solutions of the first order equations

γ̇(t) = b(γ(t), t), (5.102)

which have the property that they yield absolute minima of the action,

I(γ) = 0. Of course, being first order equations, they admit only one

boundary or initial condition.

Typical questions one will ask in the probabilistic context are: what

is the probability of a solution connecting a and b in time t. The large

deviation principle yields the ansert

P [|X0 − a| ≤ d, |Xt − b| ≤ δ] ∼ exp

(
−ε−1 inf

γ:γ(0)=a,γ(t)=b
I(γ)

)
,

(5.103)

which leads us to solve (5.101) subject to boundary conditions γ(0) =

a, γ(t) = b. In general this will not solve (5.102), and thus the optimal

solution will have positive action, and the event under consideration

will have an exponentially small probability. On the other hand, under

certain conditions one may find a zero-action solution if one does not fix

the time of arrival at the endpoint:

P [|X0 − a| ≤ d, |Xt − b| ≤ δ, for some t <∞]

∼ exp

(
−ε−1 inf

γ:γ(0)=a,γ(t)=b,for some t∞
I(γ)

)
. (5.104)
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Clearly the infimum will be zero, if the solution of the initial value

problem (5.102) with γ(0) = a has the property that for some t < ∞,

γ(t) = b, or if γ(t) → b, as t ↑ ∞.

Exercise. Consider the case of one dimension with b(x) = −x. Com-

pute the minimal action for the problem (5.103) and characterize the

situations for which a minimal action solution exists.

A particularly interesting question is related to the so called exit prob-

lem. Assume that we we consider an event as in (5.104) that admits an

zero-action path γ, such that γ(0) = a, γ(T ) = (b). Define the time

reversed path γ̂(t) ≡ γ(T − t). Clearly d
dt γ̂(t) = −γ̇(T − t). Hence a

simple calculation shows that

I(γ̂)− I(γ) = 2

∫ T

0

b(γ(s)) · γ̇(s)ds =
∫

γ

b(γ)dγ. (5.105)

Let us now specialize to the case when the vector field b is the gradient

of a potentia, b(x) = ∇F (x). Then∫

γ

b(γ)dγ = F (γ(T ))− F (γ(0)) = F (b)− F (a). (5.106)

Hence

I(γ̂) = I(γ) + F (b)− F (a), (5.107)

If I(γ) = 0, then I(γ̂) = F (b) − F (a), and this is the miminal possible

value for any curve going from b to a. This shows the remarkable fact

that the most likely path going uphill against a potential is the time-

reversal of the solution of the gradient flow. Estimates of this type are

the basis of the so-called Wentzell-Freidlin theory [?].

5.6 SDE’s from conditioning: Doob’s h-transform

With Girsanov’s theorem we have seen that drift can be produced through

a change of measure. Another important way in which drift can arise

is conditioning. We have seen this already in the case of discrete time

Markov chains. Again we will see that the martingale formulation plays

a useful rôle.

As in the discrete case, the key result is the following.

Theorem 5.6.18 Let X be a Markov process, i.e. a solution of the

martingale problem for an operator G and let h be a strictly positive

harmonic function. Define the measure Ph s.t. for any Ft measurable

random variable,
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Eh
x[Y ] =

1

h(x)
Ex[h(Xt)Y ]. (5.108)

Then Ph is the law of a solution of the martingale problem for the oper-

ator Gh defined by

(Ghf)(x) ≡ 1

h(x)
(Lhf)(x). (5.109)

As an important example, let us consider the case of Brownian motion

in a domain D ⊂ Rd, killed in the boundary of D. We will assume that

D is a harmonic function in D and let τD the first exit time of D. Then

Gh =
1

2
∆ +

∇h
h

· ∇,

and hence under the law Ph, the Brownian motion becomes the solution

of the SDE

dXt =
∇h(Xt)

h(Xt)
dt+ dBt. (5.110)

On the other hand, we have seen that, if h is the probability of some

event, e.g.

H(x) = Px[XτD ∈ A],

for some A ∈ ∂D, then

Ph[·] = P[·|XτD ∈ A] (5.111)

This means that the Brownian motion conditioned to exit D in a given

place can be represented as a solution of an SDE with a particular drift.

For instance, let d = 1, and let D = (0, R). Consider the Brownian

motion conditioned to leave D at R. It is elementary to see that

Px[XτD = R] = x/R.

Thus the conditioned Brownian motion solves

dXt =
1

Xt
dt+ dBt. (5.112)

Note that we can take R ↑ ∞ without changing the SDE. Thus, the

solution of (5.112) is Brownian motion conditioned to never return to

the origin. This is understandable, as the strength of the drift away

form zero goes to infinity (quickly) near 0. Still, it is quite a remarkable

fact that conditioning can be exactly reproduced by the application of

the right drift.
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Note that the process defined by (5.112) has also another interpreta-

tion. Let W = (W1, . . . ,Wd) be d-dimensional Brownian motion. Set

Rt = ‖W (t)‖2. Then Rt is called the Bessel process with dimension d.

It turns out that this process is also the (weak) solution of a stochastic

differential equation, namely:

Proposition 5.6.19 The Bessel process in dimension d is a weak solu-

tion of

dRt =
d− 1

2Rt
+ dBt. (5.113)

Proof. Let us first construct the Brownian motion Bt from the d-

dimensional Brownian motions W as follows. Set

B
(i)
t ≡

∫ t

0

Wi(s)

Rs
dWi(s)

and

Bt ≡
d∑

i=1

B
(i)
t .

The processes in B
(i)
t are continuous square integrable martingales since

E

(∫ t

0

Wi(s)

Rs
dWi(s)

)
= E

∫ t

0

(
Wi(s)

Rs

)2

ds ≤ t;

Moreover the

[B]t =
∑

i,j

[B(i), B(j)]t =
∑

i

∫ t

0

(
Wi(s)

Rs

)2

ds = t,

so by Lévy’s theorem, B is Brownian motion. Thus we can write (5.113)

as

dRt =
∑

i

1

Rt
dWi(t) +

1

2

d− 1

Rt
dt.

But this is precisely the result of applying Itô’s formula to the function

f(W ) = ‖W‖2. Note that this derivation is slightly sloppy, since the

function f is not differentiable at zero, but the result is correct anyway

(for a fully rigorous proof see e.g. [11], Chapter 3.3).

In particular, we see that the one-dimensional Brownian motion condi-

tioned to stay strictly positive for all positive times is the 3-dimensional

Bessel process. This shows in particular that in dimension 3 (and triv-

ially higher), Brownian motion never returns to the origin. Looking at
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the SDE describing the Bessel process, one might guess that the value of

d, as soon as d > 1, should not be so important for this property, since

there is always a divergent drift away from 0. We will now show that

this is indeed the case.

Proposition 5.6.20 Let Rt be the solution of the SDE (5.113) with

d ≥ 2 and initial condition R0 = r ≥ 0. Then

P [∀t > 0 : Rt > 0] = 1. (5.114)

Proof. Let first r > 0. Let

τk ≡ inf
{
t ≥ 0 : Rt = k−k

}
,

σk ≡ inf {t ≥ 0 : Rt = k}

and Tk ≡ τk ∧ σk ∧ n. Now use Itô’s formula for the function h(RTk
),

where h(x) = 1
1−αx

−α+1, if (d − 1)/2 = α 6= 1, and h(x) = lnx, if

d = 2. The point is that h is a harmonic function w.r.t. the operator

G = d2

dx2 + α 1
x

d
dx , and hence h(Rt) is a martingale. Moreover, since Tk

is a bounded stopping time, it follows that

Er [h (RTk
)] = h(r). (5.115)

Finally,

Er [h (RTk
)] = h(k)Pr[Tk = σk] + h(k−k)Pr[Tk = τk] + h(Bn)Pr[Tk = n].

(5.116)

Hence

Pr[Tk = τk] ≤
h(r)

h(k−k)
≤
{
k−(α−1)kr−α+1, if d 6= 2,
ln r
k ln k , if d = 2.

(5.117)

Now all what is left to show is that P[n < τk ∧ σk] ↓ 0, as n ↑ ∞. But

this is obvious from the fact that Rt ≥ r +Bt, and P0[Bt ≤ n] tends to

zero as n ↑ ∞. Hence,

lim
n↑∞

Pr[Tk = τk] = Pr[τk < σk]

which in turn tends to zero with k. Now set τ ≡ inf{t > 0 : Bt = 0}.
For every k, τk < τ , so that, again since σk ↑ ∞, a.s.,

P [τ <∞] ≤ lim
k↑∞

Pr [τ < σk] ≤ lim
k↑∞

Pr [τk < σk] = 0. (5.118)

This proves the case r > 0. For r = 0, just use that, by the strong

Markov property, for any ε > 0,
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P0 [Rt > 0, ∀ε < t <∞] = E0PBε
[[Rt > 0, ∀0 < t <∞] = 1, (5.119)

since P0[Rε > 0] = 1. Finally let ε ↓ 0 to complete the proof.

Remark 5.6.1 The method used above is important beyond this ex-

ample. It has a useful generalization in that one need not chose for h a

harmonic function. In fact all goes through if h is chosen to be super-

harmonics. In many situations it may be difficult to find a harmonic

function, whereas one may well be able to to find a useful super-harmonic

function.



Bibliography
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[8] K. Ito. Stochastic processes. Lecture Notes Series, No. 16. Matematisk
Institut, Aarhus Universitet, Aarhus, 1969.
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