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1. Introduction.

In these lectures we will discuss Markov processes with a particular interest for a phenom-

enon called metastability. Basically this refers to the existence of two or more time-scales

over which the system shows very different behaviour: on the short time scale, the systems

reaches quickly a “pseudo-equilibrium” and remains effectively in a restricted subset of the

available phase space; the particular pseudo-equilibrium that is reached will depend on the

initial conditions. However, when observed on the longer time scale, one will occasionally

observe transitions from one such pseudo-equilibrium to another one. In many cases (as we

will see) there exists one particular time scale for each such pseudo-equilibrium; in other cases

of interest, several or even many such distinct pseudo-equilibria exist having the same time

scale of exit. Mathematically speaking, our interest is to derive the (statistical) properties

of the process on these long time scales from the given description of the process on the

microscopic time scale. In principle, our aim should be an effective model for the motion at

the long time scale on a coarse grained state space; in fact, disregarding fast motion leads us

naturally to consider a reduced state space that may be labelled in some way by the quasi

equilibria.

The type of situation we sketched above occurs in many situations in nature. The classical

example is of course the phenomenon of metastability in phase transitions: if a (sufficiently

pure) container of water is cooled below freezing temperature, it may remain in the liq-

uid state for a rather long period of time, but at some moment the entire container freezes

extremely rapidly. In reality, this moment is of course mostly triggered by some slight ex-

ternal perturbation. Another example of the same phenomenon occurs in the dynamics of

large bio-molecules, such as proteins. Such molecules frequently have several possible spatial

conformations, transitions between which occur sporadically on often very long time scales.

Another classical example is metastability in chemical reactions. Here reactants oscillate

between several possible chemical compositions, sometimes nicely distinguished by different

colours. This example was instrumental in the development of stochastic models for metasta-

bility by Eyring, Kramers and others [Ey,Kr,...]. Today, metastable effects are invoked to

explain a variety of diverse phenomena such as changes in global climate systems both on

earth (ice-ages) and on Mars (liquid water presence), structural transitions on eco- and oeco

systems, to name just a few examples.

Most modelling approaches attribute metastability to the presence of some sort of ran-

domness in the underlying dynamics. Indeed, in the context of purely deterministic systems,
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once several equilibrium positions for the dynamics exist, transitions between such equilibria

are impossible. It is then thought that metastable effects occur due to the presence of (small)

random perturbations that should reflect the influence of unresolved degrees of freedom on

very fast scales.

Mathematically, metastability is studied in a number of contexts of which we mention the

following:

(i) Small random perturbations of dynamical systems. Here one considers a classical

dynamical system in R
d with some added small stochastic noise term. This leads to a

stochastic differential equation of the type

dxǫ(t) = fǫ(xǫ(t))dt +
√
egǫ(xǫ(t))dW (t) (1.1)

Such systems have been extensively investigated e.g. in the work of Freidlin and Wentzell

[FW] and Kifer [Ki1]. They have their origin in the work of Kramers [Kr].

(ii) Markov chains with exponentially small transition rates. Here we are dealing with

Markov chains with discrete state space that are almost deterministic in the sense that the

transition probabilities are either exponentially close to one or exponentially close to zero,

in some small parameter ǫ. Such systems emerge in the analysis of Wentzell and Freidlin

and are studied there. They found renewed interest in the context of low temperature

dynamics for lattice models in statistical mechanics [OS1,OS2,Ce,BACe] and also in the

analysis of stochastic algorithms for the solution of optimisation problems (“simulated

annealing”) [Ca,CaCe]. Recent result using the methods outlined here can be found in

[BM,BdHN].

(iii) Glauber dynamics of mean field [CGOV,MP1,MP2,BEGK1] or lattice [SS] spin systems.

Metastability in stochastic dynamics of spin systems is not restricted to the zero tem-

perature limit, but happens whenever there is a first order phases transition. At finite

temperature, this is much harder to analyse in general. The reason is that it is no longer

true that the process on the micro-scale is close to deterministic, but that such a statement

may a t best be meaningful on a coarse grained scale. Mean field models lend themselves

to such a course graining in a particularly nice way, and in many cases it is possible to con-

struct an effective coarse grained Markovian dynamics that then is in some sense similar

to the problems mentioned in (i).

The traditional methods to analyse such systems are
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(a) Large deviations. Wentzell and Freidlin introduced the method of large deviations on

path space in order to obtain a rigorous analysis of the probability for the deviations of

solutions of the stochastic differential equations (1.1) from the solutions of the deterministic

limiting equations. This method has proven very robust and has been adapted to all of

the other contexts. The price to pay for generality is limited precision. In general, only

the exponential rates of probabilities can be computed precisely. Frequently this is good

enough in applications, but sometimes more precise results are desirable. In certain cases,

refined estimates could, however, be obtained [Day].

(b) Asymptotic perturbation theory. As we will see in detail in the course of these lec-

tures, many key quantities of interest concerning Markov processes can be characterized

as solutions of certain systems of linear equations, that are or are structurally similar

to boundary value problems in partial differential equations. In particular cases of sto-

chastic differential equations with small noise, or discrete versions whereof, one may use

methods from perturbation theory of linear differential operators with the variance of the

noise playing the rôle of a small parameter. This has been used widely in the physics

literature on the subject (see e.g. the book by Kolokoltsov [Ko] for detailed discussions

and further reference), however, due to certain analytic difficulties, with the exception of

some very particular cases, a rigorous justification of these methods was not given. A

further shortcoming of the method is that it depends heavily on the particular types of

Markov processes studied and does not seem to be universally applicable. Very recently,

Helffer, Nier and Klein have been able to develop a new analytic approach that allows

to develop rigorous asymptotic expansion for the small eigenvalues for diffusion processes

[HK,HKN,Nie].

(c) Spectral and variational methods. Very early on it was noted that there should be a

clear signature of metastability in the nature of the generator (or transition matrix) of the

Markov process considered. To see this, note that if the Markov process was effectively

reducible, i.e. had in stead of quasi invariant sets there were truly invariant sets, then the

generator would have a degenerate eigenvalue zero with multiplicity equal to the number

of invariant sets. Moreover, the eigenfunctions could be chosen as the indicator functions

of these sets. It is natural to believe that a perturbed version of this picture remains true

in the metastable setting. The computation of small eigenvalues and “spectral gaps” has

thus be a frequent theme in the subject. Computations of eigenvalues can be done using

variational representations of eigenvalues, and a number of rather precise results could be

achieved in this way, e.g. in the work of Mathieu [Mat] and Miclo [Mi].
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In these lectures I will explain an approach to metastability that is in some sense mixing

ideas from (ii) and (iii) and that proves to be applicable in a wide variety of situations. One

of its goals is to obtain a precise characterization of metastability in terms of spectral charac-

teristics, and in particular a quantitatively precise relation between eigenvalues and physical

quantities such as exit times from metastable domains. The main novel idea in this approach,

that was developed in collaboration with M. Eckhoff, V. Gayrard, and M. Klein over the last

years, is the systematic use of the so called “Newtonian capacity”, a fundamental object in

potential theory, and its variational representation. This will allow us to get in a rigorous

way results that are almost as precise as those obtained from perturbation theory in a rather

general context. In particular, we will see that certain structural relations between capacities,

exit times and spectral characteristics hold without further model assumptions under some

reasonable assumptions on what is to be understood by the notion of metastability.

I plan to structure these lectures as follows.

1. A brief review of basics notions from the theory of Markov processes: transition ma-

trix, generator, stopping times, Kolmogorov’s forward equations, Feynman-Kac formula,

invariant and reversible measures.

2. A short course on potential theory (for discrete state space, discrete time Markov chains).

Dirichlet problems, Green’s function, Poisson kernel, equilibrium potential, equilibrium

measure, capacity, Dirichlet forms and Dirichlet principle.

3. A representation formula for the Greens function.

4. Some attempts towards rigorous definitions of metastability. Induced Markov chains.

5. Metastable exit times in terms of capacities.

6. Computations of capacities in some examples. The Eyring-Kramers formula.

7. Metastability and spectral theory.
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2. A short review of basic notions from the theory of Markov processes.

A stochastic process {Xt}t∈I , Xt ∈ Γ is called a Markov process with index set I and state

space Γ, if, for any collection t1 < · · · < tn < t ∈ I,

P [Xt ∈ A|Xtn
= xn, . . . ,Xt1 = x1] = P [Xt ∈ A|Xtn

= xn] (2.1)

for any Borel set A ∈ B(Γ). Here I is always an ordered set, in fact either N or R. In the

former case we call call the process a discrete time Markov chain, the second case is referred

to as a continuous time Markov process. A further distinction concerns the nature of the

state space Γ. This may be finite, countable, or uncountable (’continuous’) .

A key quantity in all cases is

p(s, t, x, dy) ≡ P (Xt ∈ dy|Xs = x) (2.2)

By (2.1), p(t, s, , x, y) determines uniquely the law of the Markov process. Here we have

denoted by dy the natural uniform measure on Γ, i.e. if Γ ⊂ R
d it is Lebesgue measure, and

if Γ is discrete it is just the counting measure on Γ. Of course p(s, t, x, dy) is a probability

measure for any values of s, t, x. Conversely, any family of probability measures p(s, t, x, dy)

satisfying

p(s, s, x, dy) = δx(dy) (2.3)

and the relation for s < t′ < t,

p(s, t, x, dy) =

∫
p(s, t′, x, dz)p(t′, t, z, dy) (2.4)

defines a Markov process. If p(s, t, dx, y) is a function of t−s only, we call the Markov process

time-homogeneous and set

p(s, t, x, dy) ≡ pt−s(x, dy) (2.5)

We will only be concerned with time-homogeneous Markov processes henceforth. In the

case of discrete time the transition kernel is fully determined by the one-step transition

probabilities, called transition matrix in the discrete space case,

p(x, dy) ≡ p1(x, dy) (2.6)

If space is discrete, we can of course write more simply p(x, y); this object is then called the

transition matrix.
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Property (2.4) is often called the semi-group property and the transition kernel pt(x, dy)

is called a Markov semi-group. In continuous time, one defines the generator (of the semi-

group)1

L ≡ lim
τ↓0

t−1(1 − pt) (2.7)

It then follows that conversely

pt = e−tL (2.8)

We will find it sometimes convenient to define a “generator” also in the discrete time case by

setting

L ≡ 1 − p1 (2.9)

We will frequently think of pt and L as operators acting on functions f on Γ as

ptf(x) ≡
∫

Γ

pt(x, dy)f(y) (2.10)

respectively on measures ρ on Γ, via

ρpt(dy) ≡
∫

Γ

ρ(dx)pt(x, dy) (2.11)

If ρ0(dy) = P(X0 ∈ dy), then

ρ0pt(dx) ≡ ρt(dx) = P(Xt ∈ dx) (2.12)

ρt is called the law of the process at time t started in ρ at time 0. It is easy to see from the

semi-group property that ρt satisfies the equation

∂

∂t
ρt(x, dy) = −ρtL(x, dy) (2.13)

resp., in the discrete case

ρt+1(x, dy) = −ρtL(x, dy) (2.14)

This equation is called the Focker-Planck equation. A probability measure µ on Γ is called

an invariant measure for the Markov process Xt if it is a stationary solution of (2.13), i.e. if

µpt(dx) = µ(dx) (2.15)

for all t ∈ I. Note that (2.15) is equivalent to demanding that

µL = 0 (2.16)

1In the literature, one often defines the generator with an extra minus sign. I prefer to work with positive

operators.
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A priori the natural function space for the action of our operators is L∞(Γ) for the action

from the left, and locally finite measures for the action on the right. Given an invariant

measure µ, there is, however, also a natural extension to the space L2(Γ, µ) . In fact, pt is

a contraction on this space, and L is a positive operator. To see this, just use the Schwartz

inequality to show that
∫
µ(dx)

(∫
pt(x, dy)f(y)

)2

≤ µ(dx)

∫
pt(x, dy)f(y)2 =

∫
µ(dy)f(y)2 (2.17)

L is in general not a bounded operator in L2, and its domain is sometimes just a dense

subspaces.

Within this L2-theory, it is natural to define the adjoint operators p∗t and L∗ via
∫
µ(dx)g(x)p∗t f(x) ≡

∫
µ(dx)f(x)p∗t g(x) (2.18)

respectively ∫
µ(dx)g(x)L∗f(x) ≡

∫
µ(dx)f(x)Lg(x) (2.19)

for any pair of functions f, g. We leave it as an exercise to show that p∗t and L∗ are Markov

semi-groups, resp. generators, whenever µ is an invariant measure. Thus they define an

adjoint or reverse process. In the course of these lectures we will mainly be concerned with

the situation where pt and L are self-adjoint, i.e. when pt = p∗t and L = L∗. This will entrain

a number of substantial simplifications. Results on the general case can often be obtained

by comparison with symmetrized processes, e.g. the process generated by (L+ L∗)/2. Note

that whenever a Markov generator is self-adjoint with respect to a measure µ, then this

measure is invariant (Exercise!). We call Markov processes whose generator is self-adjoint

with respect to some probability measure reversible. The invariant measure is then often

called the reversible measure (although I find this expression abusive; symmetrizing measure

would be more appropriate).

Working with reversible Markov chains brings the advantage to make full use of the theory

of self-adjoint operators, which gives far richer results then in the general case. In many

applications one can work by choice with reversible Markov processes, so that in practical

terms this restriction is not too dramatic.

Hitting times.

Henceforth we denote by Px the law of the process conditioned on X0 = x. For any

(measurable) set D ⊂ Γ we define the hitting time τD as

τD ≡ inf (t > 0 : Xt ∈ D) (2.20)
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Note that τD is a stopping time, i.e. the random variable τD depends only on the behaviour

of Xt for t ≤ τD. Denoting by Ft sigma-algebra generated by {Xs}o≤s≤t, we may say that

the event {τD ≤ t} is measurable with respect to Ft. The notion of a stopping time is of

course fundamental in the theory of Markov processes. There are many interesting times

that can be defined that are not stopping times. In particular, the last exit time of a set,

τ̂D ≡ sup (t ≥ 0 : Xt ∈ D) (2.21)

Clearly, the event {τ̂D ≤ t} depends on whether or not the processes decides to enter D at

some time after t and thus is not Ft measurable. We will very rarely (if ever) work with

random times that are not stopping times. Stopping times are sometimes also called optional

random variables with respect to {Xt,Ft}.

The laws of certain hitting times will be the most important objects of our analysis.
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3. Discrete space, discrete time Markov chains.

We will now turn to our main tools for the analysis of metastable systems. To avoid

technical complications and to focus on the key ideas, we will first consider only the case of

discrete (or even finite) state space and discrete time (the latter is no restriction). We set

p1(x, y) = p(x, y). We will also assume that our Markov chain is irreducible, i.e. that for

any x, y ∈ Γ, there is t ∈ N such that pt(x, y) > 0. If in addition Γ is finite, this implies the

existence of a unique invariant (probability) measure µ. We will also assume the our Markov

chain is reversible.

Equilibrium potential, equilibrium measure and capacity. Given two disjoint subsets

A,D, of Γ, and x ∈ Γ, we are interested in

Px[τA < τD] (3.1)

One of our first, and as we will see main tasks is to compute such probabilities. We consider

first the case of discrete time and space.

If x 6∈ A ∪D, we make the elementary observation that the first step away leads either to

D, and the event {τA < τD} fails to happen, or to A, in which case the event happens, or

to another point y 6∈ A ∪D, in which case the event happens with probability Py[τA < τD].

Thus

Px[τA < τD] =
∑

y∈A

p(x, y) +
∑

y 6∈A∪D

p(x, y)Py[τA < τD] (3.2)

We call an equation based on this reasoning a forward equation. Note that we can write this

in a nicer form if we introduce the function

hA,D(x) =





Px[τA < τD], if x 6∈ A ∪D
1, ifx ∈ A

0, if x ∈ D

(3.3)

Then (3.2) implies that for x 6∈ A ∪D,

hA,D(x) =
∑

y∈Γ

p(x, y)hA,D(y) (3.4)

In other words, the function hA,D solves the boundary value problem

LhA,D(x) =0 for x ∈ Γ\(A ∪D)

hA,D(x) =1 for x ∈ A

hA,D(x) =0 for x ∈ D

(3.5)
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If we can show that the problem (3.4) has a unique solution, then we can be sure to have

reduced the problem of computing probabilities Px[τA < τD] to a problem of linear algebra.

Proposition 3.1:If Γ is a finite set, and A,D are not empty. Assume that for any x, y ∈ Γ,

there exists n <∞ such that pn(x, y) > 0. then the problem (3.4) has a unique solution.

Proof: Assuming that (3.4) has two solution implies that there is a non-zero solution of the

problem
Lf(x) =0 for x ∈ Γ\(A ∪D)

f(x) =0 for x ∈ D ∪A
(3.6)

If f is not zero, it must have a positive maximum (or a negative minimum) somewhere

in Γ\D\A. Let this maximum (or minimum) be taken at the point be x∗. Assume for

definiteness that x∗ is a positive maximum. But then

f(x∗) =
∑

y∈Γ

p(x, y)f(y) ≤ max
y∈Γ

f(y) (3.7)

where equality can only hold if f(y) = f(x∗) for all y such that p(x, y) > 0. Thus, by

hypothesis, f(y) = f(x∗) on this set. Iterating this argument shows that in fact f(y) = f(x∗)

for any y for which pn(x, y) > 0, for some n, i.e. for all of Γ. This implies f(x) ≡ 0. ♦

Remark: What we used here is a version of the maximum principle for harmonic func-

tion. It says that a harmonic function (i.e. a function that solves an equation Lf = 0 on

some bounded open set where L is the generator of a Markov process) takes its maximum

(minimum) on the “boundary” of that set.

The function hA,D is called the equilibrium potential of the capacitor A,B. The fact that

Px[τA < τD] = hA,D(x) (3.8)

for x ∈ Γ\(A∪D) is the first fundamental relation between the theory of Markov chains and

potential theory.

The next question is what happens for x ∈ D? Naturally, using the same reasoning as the

one leading to (3.2), we obtain that

Px[τA < τD] =
∑

y∈A

p(x, y) +
∑

y∈Γ\(A∪D)

p(x, y)Py[τA < τD] =
∑

y∈Γ

p(x, y)hA,D(y) (3.9)

It will be even more convenient to define, for all x ∈ Γ

eA,D(x) ≡ −(LhA,D)(x) (3.10)
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Then

Px[τA < τD] =





hA,D(x), ifx ∈ Γ\(A ∪D)

eA,D(x), ifx ∈ D

1 − eD,A(x) ifx ∈ A

(3.11)

Let us now define the capacity of the capacitor A,D as

cap(A,D) ≡
∑

x∈D

µ(x)eA,D(x) (3.12)

By the properties of hA,D it is easy to see that we can write

∑

x∈D

µ(x)eA,D(x) =
∑

x∈Γ

µ(x)(1 − hA,D(x))(−LhA,,D)(x)

=
∑

x∈Γ

µ(x)hA,D(x)(LhA,,D)(x) −
∑

x∈Γ

µ(x)LhA,,D)(x)
(3.13)

Since µ(x)L = 0, we get that

cap(A,D) =
∑

x∈Γ

µ(x)hA,D(x)(LhA,,D)(x) ≡ Φ(hA,D) (3.14)

where

Φ(h) ≡
∑

x∈Γ

µ(x)h(x)Lh(x) =
1

2

∑

x,y

µ(x)p(x, y) (h(x) − h(y))2 (3.15)

is called the Dirichlet form associated to the Markov process with generator L. The repre-

sentation of the capacity in terms of the Dirichlet form will turn out to be of fundamental

importance. The reason for this is the ensuing variational representation, known as the

Dirichlet principle:

Theorem 3.2: Let HA
D denote the space of functions

HA
D ≡ (h : Γ → [0, 1], h(x) = 1, x ∈ A,h(x) = 0, x ∈ D) (3.16)

Then

cap(A,D) = inf
h∈HA

D

Φ(h) (3.17)

Moreover, the variational problem (3.16) has a unique minimizer that is given by the equilib-

rium potential hA,D.

Proof: Differentiating Φ(h) with respect to h(x) (for x ∈ Γ\(A ∪D)) yields

∂

∂h(x)
Φ(h) = 2µ(x)Lh(x) (3.18)
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Thus if h minimizes Φ and h(x) ∈ (0, 1), it must be true that Lh(x) = 0. If h(x) = 0, then

we can at first only deduce that Lh(x) ≥ 0, but since then Lh(x) = −∑y p(x, y)h(y) and

h must be non-negative, the only possibility is that Lh(x) = 0. Similar reasoning applies in

the case h(x) = 1, and any minimizer must satisfy Lh(x) = 0. Since we have already seen

that the Dirichlet problem (3.3) has a unique solution, the theorem is proven. ♦

While in general the capacity is a weighted sum over certain probabilities, if we choose for

the set D just a point x ∈ Γ, we get that

Px[τA < τx] =
1

µ(x)
cap(A,x) (3.19)

We will call these quantities sometimes escape probabilities. We see that they have, by virtue

of Theorem 3.2 a direct variational representation. They play a crucial rôle in what will

follow. Let us note the fact that cap(x, y) = cap(y, x) implies that

µ(x)Px[τy < τx] = µ(y)Py[τx < τy] (3.20)

which is sometimes helpful to get intuition. Note that this implies in particular that

Px[τy < τx] ≤ µ(y)

µ(x)
(3.21)

which is quite often already a useful bound (provided of course µ(y) < µ(x)).

Monotonicity and inequalities. The Dirichlet principle allows us in a rather trivial man-

ner to get upper bounds on capacities (and hence on escape probabilities). Namely, trivially,

if h is any function in HA
D, then

cap(A,D) ≤ Φ(h) (3.22)

Thus any intuitive guess on how the equilibrium potential may look like will give an upper

bound, and the better the guess the better the bound will be. Note that the set over which the

infimum is taken has rather simple constraints, so that ones imagination is not restraint be

complicated constraints that need to be verified. We will see later how one can systematically

work on ones skill on guessing. While the option for upper bounds is a feature of any

variational representation, the Dirichlet principle has the most enjoyable feature that it also

provides for a simple technique to get lower bounds. This feature is a consequence that the

Dirichlet form Φ is a monotone increasing function of the transition probabilities p(x, y) for

x 6= y, while it is independent on the values p(x, x). More precisely we have.
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Theorem 3.3: Assume that Φ and Φ̃ are Dirichlet forms associated to two Markov chains

P , P̃ with state space Γ. Assume that the transition probabilities p and p̃ are given, for x 6= y,

by

p(x, y) =

√
µ(y)

µ(x)
g(x, g)

p̃(x, y) =

√
µ(y)

µ(x)
g̃(x, g)

(3.23)

where g(x, y) = g(y, x), g̃(x, y) = g̃(y, x), and for all x 6= y,

g̃(x, y) ≤ g(x, y) (3.24)

Then for any non-intersecting sets A,D ⊂ Γ,

cap(A,D) ≥ c̃ap(A,D) (3.25)

Proof: It is obvious that for any function h ∈ HA
D,

Φ(h) ≥ Φ̃(h) (3.26)

Thus

cap(A,D) = Φ(hA,D) ≥ Φ̃(hA,D) ≥ inf
h∈HA

D

Φ̃(h) = c̃ap(A,D) (3.27)

which proves the theorem.♦

Theorem 3.3 will mostly be used by simply setting some of the transition probabilities

p(x, y) equal to zero. It is clear that if enough of these are set to zero, we obtain a chain

where everything can be, computed easily. But then it is likely that the lower bound obtained

will be very bad (like zero). The trick will be to guess which transitions can be switched off

without altering the capacities too much, and still to simplify enough to be able to compute it.

How to do this is quite an art, just as the choice of a good test function is for the upper bound.

We will see how one can somewhat systematically use both bounds iteratively to arrive at

good guesses that in some cases lead to (almost) coinciding upper and lower bounds.

It is now time that we learn how to compute things in at least one simple setting, the

one-dimensional nearest neighbor random walk.
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4. The one-dimensional chain.

We will now consider the example of a one-dimensional nearest neighbor random walk (with

inhomogeneous rates). For reasons that will become clear later, we introduce a parameter

ǫ > 0 and think of our state space as a one-dimensional “lattice” of spacing ǫ, that is we take

Γ ⊂ ǫZ, and transition probabilities

p(x, y) =





√
µ(y)
µ(x)g(x, y), ify = x± ǫ,

1 − p(x, x+ ǫ) − p(x, x− ǫ), ifx = y,

0, else

(4.1)

where µ(x) > 0, and g is such that p(x, x) ≥ 0.

Exercise 4.1: Show that any nearest neighbor walk can be written in this form, i.e. show

that µ(x) can be expressed in terms of the transition rates p(x, y).

Exercise 4.2: Show that a possible choice is (for x 6= y)

p(x, y) =





1
2 , ify = x± ǫ andµ(y) > µ(x)

1
2

µ(y)
µ(x) , ify = x± ǫ andµ(y) ≤ µ(x)

0, else

(4.2)

What is special about this choice?

Equilibrium potential. Due to the one-dimensional nature of our process, we only equi-

librium potentials we have to compute are of the form

hb,a(x) = Px[τb < τa] (4.3)

where a < x < b. The equations (3.5) then reduce to the one-dimensional discrete boundary

value problem

p(x, x+ ǫ)(h(x+ ǫ) − h(x)) + p(x, x− ǫ)(h(x− ǫ) − h(x)) = 0, a < x < b

h(a) = 0

h(b) = 1

(4.4)

Note that the first equation can be conveniently written as

p(x, x+ ǫ)(h(x + ǫ) − h(x)) = p(x, x− ǫ)(h(x) − h(x− ǫ)) (4.5)

Setting d(x) = h(x) − h(x− ǫ), we get that

d(x+ ǫ) =
p(x, x− ǫ)

p(x, x+ ǫ)
d(x) (4.6)



16 Section 4

so that

d(x) =

x−ǫ∏

z=a+ǫ

p(z, z − ǫ)

p(z, z + ǫ)
d(a+ ǫ) (4.7)

Using reversibility, the product can be be written as

x−ǫ∏

z=a+ǫ

p(z, z − ǫ)

p(z, z + ǫ)
=

x−ǫ∏

z=a+ǫ

µ(z)

µ(x+ ǫ)

p(z, z − ǫ)

p(z + ǫ, z)
=
µ(a+ ǫ)

µ(x)

p(a+ ǫ, a)

p(x, x− ǫ)
(4.8)

But

h(x) = d(x) + d(x− ǫ) + d(x− 2ǫ) + · · · + d(a+ ǫ) + h(a) (4.9)

so that

h(x) =
x∑

y=a+ǫ

µ(a+ ǫ)

µ(y)

p(a+ ǫ, a)

p(y, y − ǫ)
d(a+ ǫ) + h(a) (4.10)

Now h(a) = 0, it remains to determine d(a+ ǫ) from the condition h(b) = 1, i.e.

1 =

b∑

y=a+ǫ

µ(a+ ǫ)

µ(y)

p(a+ ǫ, a)

p(y, y − ǫ)
d(a+ ǫ) (4.11)

i.e.

d(a+ ǫ) =
1

∑b
y=a+ǫ

µ(a+ǫ)
µ(y)

p(a+ǫ,a)
p(y,y−ǫ)

(4.12)

Hence

h(x) =

∑x
y=a+ǫ

µ(a+ǫ)
µ(y)

p(a+ǫ,a)
p(y,y−ǫ)∑b

y=a+ǫ
µ(a+ǫ)

µ(y)
p(a+ǫ,a)
p(y,y−ǫ)

=

∑x
y=a+ǫ

1
µ(y)

1
p(y,y−ǫ)∑b

y=a+ǫ
1

µ(y)
1

p(y,y−ǫ)

(4.13)

Example. Let the transition rates be defined as in Exercise 2, and let

µ(x) = exp(−f(x)/ǫ) (4.14)

with e.g.

f(x) =
1

4
x4 − 1

2
c2x2 + k(ǫ) (4.15)

f has its two (local and global) minima at ±c and for 0 < ǫ ≪ 1, this implies that µ is

concentrated near the two points ±c. Note that with this choice of rates, if f(x+ ǫ) > f(x),

p(x, x+ ǫ) =
1

2
e(f(x)−f(x+ǫ))/ǫ ≈ 1

2
e−f ′(x) (4.16)
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that is, the probability to make a step upwards in the “landscape” described by f is expo-

nentially decreasing in the slope of f . These are thus reasonable transition probabilities for

a walker in a mountainous landscape.

One of the most interesting questions is then to compute Px[τc < τ−c]. (We assume that

c ∈ ǫZ). Obviously, due to the simple geometry of our problem, Px[τc < τ−c] = 0, if x < −c,
and Px[τc < τ−c] = 1, if x > c. If −c < x < c, Eq. (4.13) gives

Px[τc < τ−c] =

∑x
y=−c+ǫ e

+f(y)/ǫ

∑0
y=−c+ǫ e

+f(y)/ǫ +
∑c

y=ǫ e
+f(y−ǫ)/ǫ

(4.17)

for x ≤ 0. For small ǫ, such integrals can easily be analysed using simple saddle point

approximations. Looking at the denominator, it is clear that its main contribution comes

from the terms in the sum where f(x) is maximal, i.e. from a small neighborhood of 0. A

simple way to estimate such sums is by approximating with integrals.

Px[τc < τ−c] ≈
∫ x

−c
exp

(
+(y4

4
− c2y2

2
)/ǫ
)
dy

∫ c

y=−c
exp

(
+(y4

4 − c2y2

2 )/ǫ
)
dy

(4.18)

The quality of this approximation by integrals differs: If the integrand has its maximum in

the interior of the domain of integration, the sum and the integral differ by at most a factor

(1 + O(
√
ǫ)). If the integrand has its maximum at the boundary, they differ by a constant

depending on the derivative of f at the boundary. In the latter case one con however estimate

the sum itself quite easily. More details on how to compute integrals and sums of this form

are given in Appendix 1.

The integral in the denominator is easily estimated

∫ c

−c

exp

(
+(
y4

4
− c2y2

2
)/ǫ

)
dy =

√
2πǫ

c2
(1 +O(ǫ)) (4.19)

The treatment of the denominator depends a little on the values of x. If x < 0 − δ, for δ >,

independent of ǫ, the integral is dominated by the contribution from a neighborhood of size

ǫ1−γ , for any γ > 0. Thus a first order expansion in the exponent gives the leading value,

and one finds that
∫ x

y=−c

exp

(
+(
x4

4
− c2x2

2
)/ǫ

)
dy = exp

(
(
x4

4
− c2x2

2
)/ǫ

)
ǫ

x3 − c2x
(1 +O(ǫ)) (4.20)

so that we have

Px[τc < τ−c] ≈ exp

(
(
x4

4
− c2x2

2
)/ǫ

)
c
√

2ǫ√
π(x3 − c2x)

(4.21)
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A more precise evaluation of the actual discrete sum gives that actually

Px[τc < τ−c] ≈ exp

(
(
x4

4
− c2x2

2
)/ǫ

)
c
√

2ǫ√
π(1 − e−x3+c2x)

(4.22)

We see that this probability is exponentially small, since (x4

4
− c2x2

2
) < 0, and up to the

prefactor behaves just like µ(0)/µ(x).

By the same argument, for x > 0, we get that

Px[τc < τ−c] = 1 − exp

(
(
x4

4
− c2x2

2
)/ǫ

)
c
√

2ǫ√
π(1 − e−x3+c2x)

(1 +O(
√
ǫ)) (4.23)

Being a bit more careful, one can show that the formulas (4.22) and (4.23) still hold if

|x| ≫ ǫ1/2, while for |x| ∼ ǫ1/2, we can expand the exponent around zero to second order and

get effectively

Pǫ1/2z[τc < τ−c] =

√
2c2

π

∫ z

−∞

e−c2z2/2dz (4.24)

Similarly, if x is close to −c we have to modify formula (4.23) and take the quadratic term

in the Taylor expansion of f into account. Since we will soon compute this probability for

x = −c, we will not do the computation here.

We have seen in our example that the formulas obtained for the equilibrium potential in

the one-dimensional model yield quite explicit and precise answers in some cases.

Aside: A diffusion approximation. It is instructive to compare at this point the discrete

Markov chain with its diffusion counterpart. Without going into details, we may consider a

continuous state continuous time Markov process on R with generator

Lǫ = −ǫ d
2

dx2
+ f ′(x)

d

dx
(4.25)

Also for this process it is true that, for x ∈ (x, b),

Px[τa < τb] = hb,a(x) (4.26)

where hb,a solves the boundary value problem

Lǫhb,a(x) = 0, x ∈ (a, b)

hb,a(x) = 0, x ≤ a

hb,a(x) = 1, x ≥ b

(4.27)
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Since we are in dimension one, this problem is reduced to solving an ordinary second order

differential equation of a particularly nice form, namely

(
−ǫ d

dx
+ f ′(x)

)
h′(x) = 0 (4.28)

If we solve first for h′, we see that the general solution is

h′(x) = cef(x)/ǫ (4.29)

and hence

h(x) = c

∫ x

d

exp(f(y)/ǫ)dy (4.30)

it remains to determine the two integration constants c and d from the boundary conditions

h(a) = 0, h(b) = 1. The first condition implies readily d = a, and the second c = 1∫
b

a
exp(f(x)/ǫ)

,

so that we get

hb,a(x) =

∫ x

a
exp(f(y)/ǫ)dy

∫ b

a
exp(f(y)/ǫ)dy

(4.31)

We see that this is the same as the approximation to the equilibrium potential in the discrete

case, after we approximated the sums in (4.17) by integrals. The diffusion process generated

by Lǫ is thus similar to our Markov chain. It is usually called the diffusion approximation to

the random walk. Note that there is a difference here from the more familiar limit theorems

(law of large numbers, central limit theorem): we do not really take a limit, but we compare

two processes with finite values of ǫ. As one sees, some computations are more easily done

in the continuous case, and this model is somehow the standard toy model for a metastable

system.

Capacities. We now continue the analysis of this model by computing capacities. We

consider

Pa[τb < τa] ≡ eb,a(a) (4.32)

Eq. (3.10) becomes in this case

eb,a(a) = p(a, a+ ǫ)h(a+ ǫ) + p(a, a− ǫ)h(a− ǫ)

= p(a, a+ ǫ)h(a+ ǫ)
(4.33)
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since h(a− ǫ) = 0. Inserting the formula (4.13) for h, we get

eb,a(a) =p(a, a+ ǫ)

∑a+ǫ
y=a+ǫ

1
µ(y)

1
p(y,y−ǫ)∑b

y=a+ǫ
1

µ(y)
1

p(y,y−ǫ)

=

p(a,a+ǫ)
µ(a+ǫ)p(a+ǫ,a)∑b

y=a+ǫ
1

µ(y)
1

p(y,y−ǫ)

=
1

∑b
y=a+ǫ

µ(a)
µ(y)

1
p(y,y−ǫ)

(4.34)

Consequently, we get for the capacity

cap(a, b) =
1

∑b
y=a+ǫ

1
µ(y)

1
p(y,y−ǫ)

(4.35)

Remark: Formula (4.35) suggests another common “electrostatic” interpretation of capac-

ities, namely as “resistances”. In fact, if we interpret µ(x)p(x, x − ǫ) = µ(x − ǫ)p(x − ǫ, x)

as the conductance of the “link” (resistor) (x − ǫ, x), then by Ohm’s law, formula (4.35)

represents the conductance of the chain of resistors from a to b. This interpretation is not

restricted to the one-dimensional chain, but holds in general for reversible Markov chains.

The capacity of the capacitor (A,D) may then be seen as the conductance of the resistor

network between the two sets. In this context, the monotonicity properties of the capacities

obtain a very natural interpretation: removing a resistor or reducing its conductivity can

only decrease the conductivity of the network. There is a very nice account on the resistor

network interpretation of Markov chains and some of its applications in a book by Doyle and

Snell2. I will not overly insist on this interpretation in these lectures, since all what is ever

used about it are the inequalities that follow from the Dirichlet principle, but whoever likes

to think in terms of electric networks may of course do so.

Example.In our example, we see that

cap(−c, c) =
1

2
∑0

y=−c+ǫ e
+f(y)/ǫ + 2

∑c
y=ǫ e

+f(y−ǫ)/ǫ
(4.36)

Note that the capacity depends on the choice of the invariant measure (while the probabilistic

quantities will not). A natural choice here is to choose µ as a probability measure. That

means that k(ǫ) must be chosen such that
∑

x∈ǫZ

exp(−f(x)/ǫ) = 1 (4.37)

2P.G. Doyle and J.L. Snell, “Random walks and electrical networks”, Carus Mathematical Monographs,

22, Mathematical Association of America, Washington, DC, 1984; note that there is a reprint available for

free on the Internet: http://front.math.ucdavis.edu/math.PR/0001057.
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But ∑

x∈ǫZ

exp(−f(x)/ǫ) ≈ ǫ−1

∫
dx exp(−f(x)/ǫ)

≈ 2 exp

(
−k(ǫ)/ǫ+

c4

4ǫ

)
ǫ−1

∫
dx exp

(
−2c2x2

2ǫ

)

= 2e−k(ǫ)/ǫ+ c4

4ǫ ǫ−1

√
2ǫπ

2c2

= 2exp

(
−k(ǫ)/ǫ+

c4

4ǫ

)√
2π

2c2ǫ

(4.38)

or

ek(ǫ)/ǫ = 2exp

(
c4

4ǫ

)√
2π

2c2ǫ
(4.39)

For later reference, we write the ensuing explicit form for the invariant measure

µ(x) =
1

2
exp

(
−(x4/4 − c2x2/2 + c4/4)/ǫ

)
√

2c2ǫ

2π
(1 +O(

√
ǫ)) (4.40)

Note that it is easy to remember the factor
√
ǫ: The sum over µ(x) is dominated by the about

1/
√
ǫ terms that fall in a neighborhood of size

√
ǫ of the positions of the absolute minima of

f(x); also, the absolute minimum of f is essentially zero.

Combining this with the estimate (4.19), we see that

cap(−c, c) =
1√
2

c2ǫ

4π
exp

(
− c

4

4ǫ

)
(1 +O(

√
ǫ)) (4.41)

Consequently we get for the escape probability from −c:

P−c[τc < τ−c] =

√
c2ǫ

8π
exp

(
− c

4

4ǫ

)
(4.42)

Exercise 4.3: Show that the same formula holds for cap(−a, b) whenever a, b > 0!

It is instructive to look at what we could easily get as an upper bound from the variational

representation of the capacity. This just requires us to guess a candidate for the equilibrium

potential. We have to find a function h that equals 0 at −c and 1 at c. Clearly it will be

optimal to set h(x) = 0 for all x ≤ −c and h(x) = 1 for all x ≥ c. Between −c and c h has

to go from 0 to 1. The Dirichlet form basically counts the square of the gradient weighted

with the measure µ. Thus it will be good to concentrate the gradient where the measure

µ(u) is small, which is near zero. The simplest choice would then be h(x) = 0, for x < 0, and

h(x) = 1, for x ≥ 0. This yields the bound

cap(−c, c) ≤ µ(−ǫ)p(−ǫ, 0) = µ(0) = exp
(
−c4/(4ǫ)

)
√
c2ǫ

4π
(4.43)
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Comparing with the true answer, this is not such a bad bound; in fact, it is off only by about

a factor of 1/
√
ǫ. Being a little more careful, one can get a bound that differs from the correct

answer only by a multiplicative constant:

Exercise 4.4: Choose a test function

h(x) =





0, x ≤ √
ǫ

ǫ−1/2(x+
√
ǫ)/2, −√

ǫ < x <
√
ǫ

1, x ≥ √
e

(4.44)

and show that this yields an upper bound for the capacity that has the correct behaviour as

a function of ǫ.

We conclude our example by computing the capacity cap(−c,−a) for a > 0. Then

cap(−c,−a) =
1∑−a

y=−c+ǫ e
+f(y)/ǫ

(4.45)

In that case the sum is dominated by the contribution from terms close to x = −a, and the

same arguments that lead to (4.20) show that

cap(−c,−a) =
1

(1 − e−a3+c2a)

√
2c2ǫ

2π
exp

(
(−a

4

4
+
c2a2

2
)/ǫ

)
(1 +O(

√
ǫ)) (4.46)

Hence

P−c[τ−a < τ−c] =
1

(1 − e−a3+c2a)
exp

(
(−a

4

4
+
c2a2

2
)/ǫ

)
(1 + 0(

√
ǫ)) (4.47)

5. Mean hitting times.

We now return to the general setting of Section 3. Our next task is to derive formulas for

the mean values of hitting times τA. As in Section 3 we first derive a forward equation for

ExτA by considering what can happen in the first step:

ExτA =
∑

y∈A

p(x, y) +
∑

y 6A

p(x, y)(1 + EyτA) (5.1)

if x 6∈ A. If we define a function

wA(x) ≡
{

ExτA, ifx ∈ Γ\A
0, ifx ∈ A

(5.2)

we see that (5.1) can be written in the nicer form

wA(x) =
∑

y∈Γ

p(x, y)wA(y) + 1 (5.3)



Metastability 23

we see that (5.1) can be written in the nicer form

wA(x) =
∑

y∈Γ

p(x, y)wA(y) + 1 (5.4)

for x 6∈ A;i.e. wA solves the inhomogeneous Dirichlet problem

LwA(x) = 1, x ∈ G\A
wA(x) = 0, x ∈ A

(5.5)

Note that for x ∈ A we can compute ExτA by considering the first step:

ExτA =
∑

y∈A

p(x, y) +
∑

y 6∈A

p(x, y)(1 + EyτA) (5.6)

or in compact form

ExτA = PwA(x) + 1 = −LwA(x) + 1 (5.7)

We will sometimes have to consider mean hitting times under the condition that some other

set is avoided, e.g. for A ∩ D = ∅, we consider ExτA1IτAτD
. Using the same reasoning as

before, we see that the function

wA,D(x) ≡
{

ExτA1IτA<τD
, ifx ∈ Γ\(A ∪D)

0, ifx ∈ A ∪D (5.8)

satisfies the Dirichlet problem

LwA,D(x) = hA,D(x), x ∈ G\(A ∪D)

wA,D(x) = 0, x ∈ A ∪D
(5.9)

where hA,D is the equilibrium potential.

Equations (5.5) and (5.9) are special cases of the general Dirichlet problem

Lf(x) = g(x), x ∈ Γ\B
f(x) = 0

(5.10)

for some set B and some function f . We have seen in Proposition 3.1 that the homogeneous

boundary value problem (i.e. if g ≡ 0) has the unique solution f(x) ≡ 0. This implies that

the problem (5.10) has a unique solution that can (by linearity) be represented in the form

f(x) =
∑

y∈Γ\B

GΓ\B(x, y)g(y) (5.11)
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Of course, GΓ\B is simply the matrix inverse of the matrix LΓ\B whose elements are

LΓ\B(x, y) = L(x, y), x, y ∈ Γ\B
LΓ\B(x, y) = 0, x ∈ B ∨ y ∈ B

(5.12)

We will call LΓ\B the Dirichlet operator on Γ\B. Note that while L is a positive operator, due

to Proposition 3.1, LΓ\B is strictly positive whenever B 6 ∅. The inverse operator GΓ\B(x, y)

is usually called the Green’s function.

We see that we would really like to compute this Green’s function. What we will actually

show now is that the Green’s function can be computed in terms of equilibrium potentials and

equilibrium measures. To see this, let us return to (3.10) and interpret this as an equation

for hD,A where the boundary conditions are only prescribed on A but not on D: Note first

that since hA,D(x) = 1 − hD,A(x), (3.10) can also be written as

eA,D(x) = LhD,A(x) (5.13)

This can be rewritten as
LhD,A(x) = 0, x ∈ Γ\(A ∪D)

LhD,A(x) = eA,D(x), x ∈ D

hD,A(x) = 0, x ∈ A

(5.14)

Thus we can write

hD,A(x) =
∑

y∈D

GΓ\A(x, y)eA,D(y) (5.15)

Now consider a solution of the Dirichlet problem (5.10). Multiplying f(x) by µ(x)eB,x(x),

for x ∈ Γ\B, and then using the representation (5.11) we get

f(x)µ(x)eB,x(x) =
∑

y∈Γ\B

GΓ\B(x, y)g(y)µ(x)eB,x(x) (5.16)

Now due to the symmetry of L,

GΓ\B(x, y)µ(x) = GΓ\B(y, x)µ(y) (5.17)

Inserting this into (5.16) and using (5.15) backwards with D = {x} and A = B, we get

f(x)µ(x)eB,x(x) =
∑

y∈Γ\B

GΓ\B(y, x)eB,x(x)µ(y)g(y)

=
∑

y∈Γ\B

µ(y)hx,B(y)
(5.18)
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or

f(x) =
∑

y∈Γ\B

µ(y)hx,B(y)

µ(x)eB,x(x)
g(y) (5.19)

Since this is true for all functions g comparing with (5.11) we read off that

Proposition 5.1: The Dirichlet Green’s function for any set B ⊂ G can be represented in

terms of the equilibrium potential and capacities as

GΓ\B(x, y) =
µ(y)hx,B(y)

cap(B,x)
(5.20)

We now get immediately the desired representations for the mean times:

ExτA =
∑

y∈Γ\A

µ(y)hx,A(y)

cap(A,x)
(5.21)

and

ExτA1IτA<τD
=

∑

y∈Γ\A∪D

µ(y)hx,A∪D(y)

cap(A ∪D,x) hA,D(y) (5.22)

or

Ex [τA|τA < τD] =
1

hA,D(x)

∑

y∈Γ\A∪D

µ(y)hx,A∪D(y)

cap(A ∪D,x) hA,D(y) (5.23)

These formulas will proof to be excessively useful in the sequel.

The one-dimensional chain. In the case of the one-dimensional chain of Section 4 we have

all the ingredients to compute the mean arrival times explicitly. In fact, inserting (4.13) and

(4.35) into (5.21), we get in this case (w.r.g. let a < x)

Exτa =
x∑

z=a+ǫ

1

µ(z)

1

p(z, z − ǫ)




x−ǫ∑

y=a+ǫ

∑y
z=a+ǫ

µ(y)
µ(z)

1
p(z,z−ǫ)∑x

z=a+ǫ
1

µ(z)
1

p(z,z−ǫ)

+
∞∑

y=x

µ(y)




=

x−ǫ∑

y=a+ǫ

y∑

z=a+ǫ

µ(y)

µ(z)

1

p(z, z − ǫ)
+

∞∑

y=x

x∑

z=a+ǫ

µ(y)

µ(z)

1

p(z, z − ǫ)

(5.24)

Exercise 5.1: Verify by explicit computation that the formula (5.24) provides a solution for

the boundary value problem (5.2).

Diffusion approximation. In the particular case µ(x) = ef(x)/ǫ, we can verify that if we

approximate the solution (5.24) by

wa(x) =

∫ x

a

dy

∫ y

a

e(f(z)−f(y))/ǫdz +

∫ ∞

x

dy

∫ x

a

e(f(z)−f(y))/ǫdz (5.25)
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x < a, then wa(x) solves the boundary value problem

Lǫwa(x) = 1, , x < a

wa(x) = 0, x = a
(5.26)

with the additional boundary condition that d
dx
wa(x) ↓ 0, as x→ ∞. Here Lǫ is the operator

defined in (4.26). In fact it is not very difficult to find this solution directly. The first step is

to guess a particular solution of the equation

−ǫ d
dx
g(x) + f ′(x)g(x) = 1 (5.27)

One easily verifies that g(x) = ǫ−1
∫∞

x
e(f(x)−f(y))/ǫdy solves this equation. Thus the general

solution of (5.27) is

g(x) + Cef(x)/ǫ (5.28)

Hence wa must be of he form

wa(x) =

∫ x

a

(
g(y) + Cef(y)/ǫ

)
dy (5.29)

where the choice of the lower integration boundary already ensures the correct boundary

condition wa(a) = 0. The choice C = 0 is then imposed by the natural condition that while

it is natural that that the mean hitting time should tend to infinity with x, the derivative

should not blow up, and actually go to zero, if the drift f ′(x) tends to infinity. It is a small

exercise to verify that (5.29) with C = 0 and (5.25) are the same.

It s instructive to go back to our ’double well example’ and investigate the behaviour of

e.g. Exτ−c. Our formula in the diffusion approximation yields then

Exτ−c = ǫ−1

∫ x

−c

dyef(y)/ǫ

∫ ∞

y

dze−f(z))/ǫ (5.30)

We see that as long as x > 0, there is essentially no dependence on x: The first integral is

always dominated by the contribution from a small neighborhood of zero, while the second

gets its contribution from a neighborhood of −c. Using the Laplace asymptotics as explained

before and in the appendix, we obtain

i) For −c < y < c,
∫ ∞

y

dze−f(z))/ǫ = e−f(c)/ǫ

√
2πǫ

|f ′′(c)| (1 +O(ǫ)) (5.31)
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ii) For x > 0,
∫ x

−c

dyef(y)/ǫ = ef(0)/ǫ

√
2πǫ

|f ′′(0)| (1 +O(ǫ)) (5.32)

Therefor we get in particular

Ecτ−c = e(f(0)−f(c))/ǫ

√
(2π)2

|f ′′(c)f ′′(0)| (1 +O(ǫ)) (5.33)

This is (particular case of) the celebrated Eyring-Kramers formula for the transition time

between two metastable states in the case of the one-dimensional chain (resp. the one-

dimensional diffusion) in a double well potential. Note that only properties of f at the

start point c and at the “saddle point”, 0, enter the formula.

As x < 0, the expected time begins to decrease: The first integral picks up only a contri-

bution of ef(x)/ǫ, and the mean time is of order exp((f(x) − f(c))/ǫ). This may still appear

surprisingly long: should the process not simply go in at time of order 1/ǫ to −c? Of course

we know that the process will do just that with enormous probability. Nonetheless, with

probability of order exp((f(x) − f(0))/ǫ) it will decide to go to c first; but in this case the

mean time of arrival is given by (5.33). Multiplying this with the probability of doing things

this way yields the result. We see here a first instance of what we will have to beware of all

the time: events of extremely small probability may often dominate mean values.

This interpretation is supported by the observation that the mean time to reach either −c
or c from any point x is very small. In fact, in the diffusion approximation we have now to

solve the boundary value problem of the form (5.26) with zero boundary conditions in both

−c and c. Since the general form of the solution of the equation Lǫw{−c,c}(x) is of the form

given in (5.29), the second boundary condition (we consider the case −c < x < c) allows to

determine C. In fact we must have

w{−c,c}(c) =

∫ c

−c

(
g(y) + Cef(y)/ǫ

)
dy = 0 (5.34)

i.e.

C = −
∫ c

−c
dy g(y)

∫ c

−c
dy ef(y)/ǫ

(5.35)

so that

w{−c,c}(x) = ǫ−1

∫ x

−c

dy ef(y)/ǫ

(∫ ∞

y

dz e−f(z)/ǫ −
∫ c

−c
dz ef(z)/ǫ

∫∞

z
dw e−f(w)/ǫ

∫ c

−c
dz ef(z)/ǫ

)

=

∫ c

−c
dz ef(z)/ǫ

∫ x

−c
dy ef(y)/ǫ

∫ z

y
dw e−f(w)/ǫ

ǫ
∫ c

−c
ef(z)/ǫ

(5.36)
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The computation of this integral using the Laplace method is somewhat tedious (as there are

a number of cases to distinguish), and I will not write down the details of the computation.

The result is:

w{−c,c}(c) =





| ln ǫ|
(

1
|f ′′(−c)|

+ 1
|f ′′(0)

|
)

+O(1), if x = 0

| ln ǫ| 1
|f ′′(−c)| +O(1), if − c < x < 0

(5.37)

Here we assume x fixed independent of ǫ. Of course, in a neighborhood of order
√
ǫ about 0

, the function interpolates between the two domains, and in a neighborhood of order
√
ǫ of

−c, the function behaves like |x− c|√ǫ.

The ln ǫ behaviour of the mean time is clearly related to the difficulty the process has to

move in a neighborhood of the critical points. Starting at 0, it takes a time of order | ln ǫ to

“get away from 0” by a distance considerably larger than
√
ǫ. Then the gradient of f is strong

enough to impose a ballistic motion towards a neighborhood of order
√
ǫ of c or −c. There

again the process slows down and needs time of order | ln ǫ| to actually hit the minimum of

f .

Exercise 5.2: Interpret our results on the mean transition time in light of the formula (5.23).

Exercise 5.3: Derive a formula for Ex [τ−c|τ−c < τc]. Interpret the result in terms of the

behaviour of the process.

Renewal equations. The application of Proposition 5.1 may not appear very convincing,

as we can actually solve the Dirichlet problems directly. On the other hand, even if we admit

that the Dirichlet variational principle gives us a good tool to compute the denominator, i.e.

the capacity, we still do not know how to compute the equilibrium potential. We will now

show that a surprisingly simple argument provides a tool that allows us to reduce, for our

purposes, the computation of the equilibrium potential to that of capacities.

The basis of our argument is the trivial observation that if the process starting at a point

x wants to realise the event {τA < τD}, it may do so by going to A immediately and without

returning to x again, or it may return to x without either going to A or to D. Clearly, once

the process returns to x it is in the same position as at the starting time, and we can use

the (strong) Markov property to separate the probability of what happened before the first
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return to x to whatever will happen later. Formally:

Px[τA < τD] = Px[τA < τD∪x] + Px[τx < τA∪D ∧ τA < τD]

= Px[τA < τD∪x] + Px[τx < τA∪D]Px[τA < τD]
(5.38)

We call this a renewal equation. We can solve this equation for Px[τA < τD]:

Px[τA < τD] =
Px[τA < τD∪x]

1 − Px[τx < τA∪D]
=

Px[τA < τD∪x]

Px[τA∪D < τx]
(5.39)

By elementary monotonicity properties this representation yields the bound

Px[τA < τD] ≤ Px[τA < τx]

Px[τD < τx]
=

cap(x,A)

cap(x,D)
(5.40)

Of course this bound is useful only if cap(x,A)
cap(x,D)

< 1, but since Px[τA < τD] = 1− Px[τD < τA],

the applicability of this bound is quite wide. It is quite astonishing how far the simple use of

this renewal bound will take us.

Exercise 5.4.Use the bound (5.40) in the case of the one dimensional chain with invariant

measure exp(−ǫ−1f(x)) and compare with the exact value. When is the approximation

good?
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Some numerical illustrations in our one-dimensional example.
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The function f(x) with c = 1.
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Equilibrium potential h−c,c(x) in the case c = 1 for ǫ = 0.01 and ǫ = 0.001
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Mean hitting time Exτ−c in the case c = 1 for ǫ = 0.01 and ǫ = 0.001
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The times to reach either of the two minima are dramatically shorter:
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Exτ−c∪c for ǫ = 0.05 and ǫ = 0.011.



Metastability 33

The numerical evaluation of these quantities is rather tricky. Here is what standard Math-

ematica gives for ǫ = 0.1.
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3

3.5

4

4.5

5
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6. Metastability.

We come now to a general definition of metastability in the context of discrete Markov

chains. We may draw some intuition form the example of the one-dimensional chain with

invariant measure exp(−ǫ−1f(x)). Assume that f(x) has a set of local minima M ≡
{x1, . . . , xn}. Then obviously there exists a local maximum zi between any two neighboring

minima xi and xi+1. This leads to a natural partition of the real line (resp. ǫZ) into valleys

Ai = (zi, zi+1) (6.1)

containing the minimum xi. The following facts are easily checked from our explicit formulae:

(i) For any y ∈ Ai,

Py[τxi
< τM\xi

] >
1

2
(6.2)

(ii) For any y ∈ Γ,

EyτM ≤ Cǫ−1| ln ǫ| (6.3)

and

Py[τM < τy] ≥ Cǫ1/2 (6.4)

(iii) For any xi ∈ M,

Exi
τM\xi

≈ e(min(f(zi),f(zi+1))−f(xi))/ǫ (6.5)

respectively

Pxi
[τM\xi

< τxi
] ≈ e−(min(f(zi),f(zi+1))−f(xi))/ǫ (6.6)

In simple terms, wherever the process starts, it will go quickly to one minimum (and more

precisely to the one in the valley it started in) and then take a very long time to go to another

minimum. This corresponds to our intuitive notion of metastability. We shall see that it is

quite reasonable to define metastability in general by simply requiring properties like this

above.

Definition 6.1: Assume that Γ is a discrete set. Then a Markov processes Xt is metastable

with respect to the set of points M ⊂ Γ, if

supx∈M Px[τM\x < τx]

infy 6∈M Py[τM < τy]
≤ ρ≪ 1 (6.7)
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Remark: More properly we should speak of ρ-metastbility. However, in most cases we will

think of metastability of an asymptotic property of a family of Markov processes indexed by

a parameter ǫ such that the corresponding constant ρ(ǫ) tends to zero with ǫ.

We will see that Definition 6.1 is (at least if Γ is finite) equivalent to an alternative

definition involving averaged hitting times.

Definition 6.2: Assume that Γ is a finite discrete set. Then a Markov processes Xt is

metastable with respect to the set of points M ⊂ Γ, if

infx∈M ExτM\x

supy 6∈M EyτM
≥ 1/ρ≫ 1 (6.8)

We will show that without further assumptions on the particular properties of the Markov

chain we consider, the fact that a set of metastable states satisfying the condition of Definition

6.1 exists implies a number of structural properties of the chain.

Ultrametricity.

An important fact that allows to obtain general results under our Definition of metastabil-

ity is the fact that it implies approximate ultrametricity of capacities. This has been noted

in [BEGK2].

Lemma 6.3: Assume that x, y ∈ Γ, D ⊂ Γ. Then, if for 0 < δ < 1
2
, cap(y,D) ≤ δcap(y, x),

then
1 − 2δ

1 − δ
≤ cap(x,D)

cap(y,D)
≤ 1

1 − δ
(6.9)

Proof: The key idea of the proof is to use the probabilistic representation of capacities and

renewal type arguments involving the stong Markov property. It would be nice to have a

purely analytic proof of this lemma.

We first prove the upper bound. We write

cap(x,D) = cap(D,x) =
∑

z∈D

µ(z)ex,D(z) =
∑

z∈D

µ(z)Pz[τx < τD] (6.10)

Now
Pz[τx < τD] = Pz[τx < τD, τy < τD] + Pz[τx < τD, τy ≥ τD]

Pz[τx < τD, τy < τD] + Pz[τx < τD∪y]Px[τD < τy]

= Pz[τx < τD, τy < τD] + Pz[τx < τD∪y]
Px[τD < τy∪x]

Px[τD∪y < τx]

(6.11)
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Here we used the Markov property at the optinal time τx to split the second probability into

a product, and then the renewal equation (5.39). Now by assumption,

Px[τD < τy∪x]

Px[τD∪y < τx]
≤ Px[τD < τx]

Px[τy < τx]
≤ δ (6.12)

Inserting (6.12) into (6.11) we arrive at

Pz[τx < τx
D] ≤ Pz[τy < τD, τx < τD] + δPz[τx < τD∪y] ≤ Pz[τy < τD] + δPz[τx < τD] (6.13)

Inserting this inequality into (6.10) implies

cap(x,D) ≤
∑

z∈D

µ(z)Pz[τy < τD] + δ
∑

z∈D

µ(z)Pz[τx < τD] = cap(y,D) + δcap(xD) (6.14)

which implies the upper bound.

The lower bound follows by observing that from the upper bound we get that cap(x,D) ≤
δ

1−δ cap(x, y). Thus reversing the rôle of x and y, the resulting upper bound for cap(y,D)
cap(x,D) is

precisely the claimed lower bound. ♦

Lemma 6.3 has the following immediate corollary, which is the version of the ultrametric

triangle inequality we are looking for:

Corollary 6.4: Let x, y, z ∈ M. Then

cap(x, y) ≥ 1

3
min (cap(x, z), cap(y, z)) (6.15)

Valleys. In the sequel it will be useful to have the notion of a “valley” or “attractor” of a

point in M. We set for x ∈ M,

A(x) ≡
{
z ∈ Γ |Pz[τx = τM] = sup

y∈M
Pz[τy = τM]

}
(6.16)

Note that valleys may overlap, but from Lemma 6.3 it follows easily that the intersection

has a vanishing invariant mass. The notion of a valley in the case of a process with invariant

measure exp(−f(x)/ǫ) coincides with this notion.

More prescisely, the next Corollary will show that if y belongs to the valley of m ∈ M, then

either the capacity cap(y,M\m) is essentially the same as cap(m,M\m), or the invariant

mass of y is excessively small. That is to say that within each valley there is a subset that



Metastability 37

“lies below the barrier defined by the capacity cap(m,M\m), while the rest has virtually no

mass, i.e. the process never really gets there.

Corollary 6.5: Let m ∈ M, y ∈ A(m), and D ⊂ M\m. Then either

1

2
≤ cap(m,D)

cap(y,D)
≤ 3

2
(6.17)

or

µ(y) ≤ 3|M| µ(y)

cap(y,M)
cap(m,D) (6.18)

Proof: Lemma 6.3 implies that if cap(m, y) ≥ 3cap(m,D), then (6.17) holds. Otherwise,

µ(y)

µ(m)
≤ 3

µ(y)

cap(y,m)

cap(m,D)

µ(m)
(6.19)

Since y ∈ A(m), we have that Py [τm ≤ τM] ≥ 1/|M|. On the other hand, the renewal

estimate yields

Py [τm ≤ τM] ≤ cap(y,m)

cap(y,M)
(6.20)

Hence

cap(y,M) ≤ |M|cap(y,m) (6.21)

which yields (6.18).♦

Mean entrance times.

We will now derive a very convenient expression for the mean time of arrival in a subset

J ⊂ M of the metastable points. This will be based on our general representation formula

for mean arival times (5.21) together with the renewal based inequality for the equilibrium

potential and the ultrametric inequalities for the capacities that we just derived under the

hypothesis of Definition 6.1.

Let x ∈ M, x 6∈ J ⊂ M. We want to compute ExτJ . Our starting point is the following

equation, that is immediate from (5.21)

ExτJ =
µ(x)

cap(x, J)

∑

y∈Jc

µ(y)

µ(x)
hx,J\x(y) (6.22)

We want to estimate the summands in the sum (6.22). We will set infy µ(y)−1cap(y,M) =

a. The following lemma provides the necessary control over the equilibrium potentials ap-

pearing in the sum.
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Lemma 6.6: Let x ∈ M and J ⊂ M with x 6∈ J . Then:

(i) If x = m, either

hx,J (y) ≥ 1 − 3

2
|M|a−1 cap(x, J)

µ(y)
(6.23)

or

µ(y) ≤ 3|M|a−1cap(m,J) (6.24)

(ii) If m ∈ J , then

µ(y)hx,J (y) ≤ 3

2
|M|a−1cap(m,x) (6.25)

(iii) If m 6∈ J ∪ x, then either

hx,J (y) ≤ 3
cap(m,x)

cap(m,J)
(6.26)

and

hx,J (y) ≥ 1 − 3
cap(m,J)

cap(m,x)
(6.27)

or

µ(y) ≤ 3|M|a−1 max (cap(m,J), cap(m,x)) (6.28)

Proof: We make use of the fact that by Lemma 6.2,

0 ≤ hx,J (y) ≤ cap(y, x)

cap(y, J)
(6.29)

and

1 ≥ hx,J (y) ≥ 1 − cap(y, J)

cap(y, x)
(6.30)

In case (i), we anticipate that only (6.30) will be useful. To get the first dichotomy, we use

Corollary 6.5 to replace the numerator by cap(m,J). To get the second assertion, note simply

that
cap(m,J)

cap(y,m)
≤ µ(y)cap(m,J)

cap(y, x)µ(m)

µ(m)

µ(y)
(6.31)

and rewrite this inequality for µ(y)
µ(m) .

In case (ii), we use (6.29) and apply Corollary 6.5 to cap(y, x).

In case (iii), we admit both possibilities and apply the corollary to both the numerators

and the denominators. ♦
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Remark: Case (iii) in the preceding lemma is special in as much as it will not always give

sharp estimates, namely whenever cap(m,J) ∼ cap(m, y). If this situation occurs, and the

corresponding terms contribute to leading order, we cannot get sharp estimates with the tools

we are exploiting here, and better estimates on the equilibrium potential will be needed.

Let us now apply this lemma to the computation of the sum (6.22) (we ignore the fact

that the sets A(m) may not be disjoint, as the overlaps give no significant contribution).

∑

y∈Mc

µ(y)

µ(x)
hx,J (y) =

∑

m∈M

µ(m)

µ(x)

∑

y∈A(m)\J

µ(y)

µ(m)
hx,J (y) ≡

∑

m∈M

µ(m)

µ(x)
L(m) (6.32)

(we ignore the fact that the sets A(m) may not be disjoint, as the overlaps give no significant

contribution).

We now estimate the terms L(m) with the help of Lemma 6.6.

Lemma 6.7: Let us assume that either |Γ| is finite, or that µ(y) has the property that
∑

y:µ(y)≤δ µ(y) ≤ Cδ, for some finite C. With the notation introduced above and the assump-

tions of Lemma 6.6, we have that

(i) If m = x

L(x) ≤ µ(A(x))

µ(x)
(6.33)

and

L(x) ≥ µ(A(x))

µ(x)

(
1 − 6C|M|a−1 cap(x, J)

µ(A(x))

)
(6.34)

(ii) If m ∈ J , then

L(m) ≤ Ca−1|M|cap(m,x)

µ(m)

∣∣{y ∈ A(m) : µ(y) ≥ a−1|M|cap(m,x)}
∣∣ (6.35)

for some constant C independent of ǫ.

(iii) If m 6∈ J ∪ x, then

L(m) ≤ µ(A(m))

µ(m)
(6.36)

Moreover,

(iii.1) if cap(m,J) ≤ 1
3
cap(m,x), then

L(m) ≥ µ(A(m))

µ(m)

(
1 − 3

cap(m,J)

cap(m,x)

)(
1 − C|M|a−1 cap(m,x)

µ(A(m))

)
(6.37)
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and

(iii.2) if cap(m,J) ≥ 1
3cap(m,x), then

L(m) ≤ µ(A(m))

µ(m)

cap(m,x)

cap(m,J)
+ C|M|a−1 cap(m,J)

µ(m)
(6.38)

Proof: Basically the proof consists in inserting the estimates for the equilibrium potentials

from Lemma 6.6 into the formulae for L(m). In case (i) we obtain the upper bound trivially

from the fact that hx,J (y) ≤ 1. For the lower bound we use that, for any ǫ > 0,

L(x) ≥
∑

y:µ(y)≥3|M|ǫ−1a−1cap(x,J)

µ(y)

µ(x)

(
1 − 3

2
|M|cap(x, J)

µ(x)

)

≥
(
1 − a

2

)

µ(A(x))

µ(x)
−

∑

y:µ(y)<3|M|ǫ−1a−1cap(x,J)

µ(y)

µ(x)




≥ µ(A(x))

µ(x)

(
1 − C3|M|ǫ−1a−1 cap(x, J)

µ(A(x))

)(
1 − ǫa

2

)

(6.39)

If ρ is sufficiently small one may choose ǫ such as to obtain the claimed estimate (6.34).

In the case we just use (6.25), unless µ(y) is so small that the bound h ≤ 1 is even better,

to get

L(m) ≤
∑

y∈A(m)\m:µ(y)≥cap(m,x)

3

2
|M|a−1 cap(m,x)

µ(m)
+C

cap(m,x)

µ(m)
(6.40)

In case (iii), the upper bound (6.36) is trivial, but only sensible if cap(m,x) ≤ cap(m,J).

In this case the corresponding lower bound follows very much like in case (i). In the opposite

case we use (6.26) resp. (6.28) to arrive at our conclusion.♦

Remark: The statement of Lemma 6.7 looks a little complicated due to the rather explicit

error terms. Ignoring all small factors, its statement boils down to:

(i) There is always the term

L(x) ≈ µ(A(x))

µ(x)

(ii) If m ∈ J , roughly,

L(m) ≤ cap(m,x)

µ(m)



Metastability 41

(iii) If m 6∈ J ∪ x, it is always true that

L(m) ≤ µ(A(m))

µ(m)

i.e. roughly of order one. This bound is achieved, if

(iii.1) cap(m,J) ≪ cap(m,x), whereas in the opposite case

(iii.2) cap(m,J) ≫ cap(m,x),

L(m) ≤ max

(
cap(m,x)

µ(m)
,
cap(m,x)

cap(m,J)

)

Of course these arguments use that quantities like µ(m)
µ(A(m)) are not too small, i.e. that

the most massive points in a metastable set have a reasonably large mass (compared to say,

ρ(ǫ)). If this condition is violated, the idea to represent metastable sets by single points is

clearly mislead. We will discuss later what has to be done in such cases.

Taking into account that the L(m) appear with the prefactor µ(m)/µ(x) in the expression

(6.32), we see that contributions from case (ii) are always sub-dominant; in particular, when

J = M\x, the term m = x gives always the main contribution. The terms from case (iii)

have a chance to contribute only if µ(m) ≥ µ(x). If that is the case, and we are in sub-case

(iii.1), they indeed contribute, and potentially dominate the sum. In sub-case (iii.2) they

may still contribute, if
µ(m)cap(m,x)

µ(x)cap(m,J)
=

Px[τm < τx]

Pm[τJ < τm]

is not small, which is to say when the process typically visits m often before it visits J .

We summarise these results in the following proposition:

Proposition 6.8:With the notation and under the assumptions of Lemma 6.7,

ExτJ =
µ(A(x))

cap(x, J)
(1 +O(ρ))

+
∑

m∈M\J\x

cap(m,J)≤ 1
3
cap(m,x)

µ(A(m))

cap(x, J)

(
1 −O

(
cap(m,J)

cap(m,x)

))

+
∑

m∈M\J\x

cap(m,J)> 1
3
cap(m,x)

O

(
µ(A(m))

cap(x, J)

cap(m,x)

cap(m,J)
+

µ(x)

cap(x, J)

cap(m,J)

µ(x)

)

+
∑

m∈J

O
(
Ca−1|M|

∣∣{y ∈ A(m) : µ(y) ≥ a−1|M|cap(m,x)}
∣∣)
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where here all O(·) terms are to be understood as upper bounds.

A case of special interest occurs when J contains all points in M that ’lie lower than’ x,

i.e. if J = Mx ≡ {m ∈ M : µ(m) ≥ δµ(x)}, for some δ ≪ 1 to be chosen. We will call the

corresponding time τMx
the metastable exit time from x. In fact, it is reasonable to consider

this the time when the process has definitely left x, since the mean time to return to x from

Mx is definitely larger than (or at most equal in degenrate cases) ExτMx
. Nicely enough,

these mean times can be computed very precisely:

Theorem 6.9: Let x ∈ M and J ⊂ M\x be such a that for all m 6∈ J ∪ x either

µ(m) ≪ µ(x) or cap(m,J) ≫ cap(m,x), then

ExτJ =
µ(A(x))

cap(x, J)
(1 +O(ρ)) (6.41)

Proof: The proof of this result is straightforward from (6.22), (6.32) and Lemma 6.6.♦

Remark: In much the same way one can compute conditional mean times such as Ex[τJ |τJ ≤
τI ]. Formulae are given in [BEGK1,BEGK2] and we will not go into these issues any further

here.

Finally we want to compute the mean time to reach M starting from a general point.

Lemma 6.10: Let z 6∈ M. Then

EzτM ≤ a−2 (|{y : µ(y) ≥ µ(z)|} + C) (6.42)

Proof: Using Lemma 6.2, we get that

EzτM ≤ µ(z)

cap(z,M)

∑

y∈Mc

µ(y)

µ(z)
max

(
1,

cap(y, z)

cap(y,M)

)

=
µ(z)

cap(z,M)

∑

y∈Mc

µ(y)

µ(z)
max

(
1,

Py[τz < τy]

Py[τM < τy]

)

≤ sup
y∈Mc

(
µ(y)

cap(y,M)

)2 ∑

y∈Mc

max

(
µ(y)

µ(z)
,Pz[τy < τz]

)

≤ sup
y∈Mc

(
µ(y)

cap(y,M)

)2

 ∑

y:µ(y)≤µ(z)

µ(y)

µ(z)
+

∑

y:µ(y)>µ(z)

1




≤ sup
y∈Mc

(
µ(y)

cap(y,M)

)2

(C + |{y : µ(y) > µ(z)}|)

(6.43)
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which proves the lemma.♦

Remark: If Γ is finite (resp. not growing to fast with ǫ), the above estimate combined with

Theorem 6.9 shows that the two definitions of metastability we have given in terms of mean

times rep. capacities are equivalent. On the other hand, in the case of infinite state space Γ,

we cannot expect the supremum over EzτM to be finite, which shows that our first definition

was somewhat naive. We will later see that this definition can rectified in the context of

spectral estimates.
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7. Metastability and spectral theory.

We now turn to the characterisation of metastability through spectral data. The connec-

tion between metastable behaviour and the existence of small eigenvalues of the generator

of the Markov process has been realised for a very long time. Some key references are

[D1,D2,D3,FW,GS,HKS,KoMak,Ma,Mi,Sc,W1,W2].

We will show that Definition 6.1 implies that the spectrum of L decomposes into a cluster

of |M| very small real eigenvalues that are separated by a gap from the rest of the spectrum.

To avoid complications we will assume that |Γ| s finite throughout this section.

Basic notions. Let ∆ ⊂ Γ. We say that λ ∈ C is an eigenvalue for the Dirichlet problem,

resp. the Dirichlet operator LD, with boundary conditions in D if the equation

Lf(x) = λf(x), x ∈ Γ\D
f(x) = 0, x ∈ D

(7.1)

has a non-zero solution f . f ≡ fλ is then called an eigenfunction. If D = ∅ we call the

corresponding values eigenvalues of L. From the symmetry of the operator L it follows that

any eigenvalue must be real; moreover, since L is positive, all eigenvalues are positive. If

Γ is finite and D 6= ∅, the eigenvalues of the corresponding Dirichlet problem are strictly

positive, while O is an eigenvalue of L itself with the constant function the corresponding

eigenfunction.

If λ is not an eigenvalue of LD, the Dirichlet problem

(L− λ)f(x) = g(x), x ∈ Γ\D
f(x) = 0, x ∈ D

(7.2)

has a unique solution and the solution can be represented in the form

f(x) =
∑

y∈Γ\D

Gλ
Γ\D(x, y)g(y) (7.3)

where Gλ
Γ\D(x, y) is called the Dirichlet Green’s for L− λ.

Equally, the boundary value problem

(L− λ)f(x) = 0, x ∈ Γ\D
f(x) = φ(x), x ∈ D

(7.4)
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has a unique solution in this case and we denote by Hλ
Ω the associated solution operator.

Of particular importance will be the λ-equilibrium potential (of the capacitor (A,D)), hλ
A,D,

defined as the solution of the Dirichlet problem

(L− λ)hλ
A,D(x) = 0, x ∈ (A ∪D)c

hλ
A,D(x) = 1, x ∈ A

hλ
A,D(x) = 0, x ∈ D

(7.5)

We may define analogously the λ-equilibrium measure

eλ
D,A(x) ≡ (L− λ)hλ

A,D(x) (7.6)

Alternatively, eλ
A,D on A, is the unique measure on A, such that

hλ
A,D(x) =

∑

y∈A

Gλ
Dc(x, y)eλ

A,D(y) (7.7)

If λ 6= 0, the equilibrium potential still has a probabilistic interpretation in terms of the

Laplace transform of the hitting time τA of the process starting in x and killed in D. Namely,

we have for general λ, that, with u(λ) ≡ − ln(1 − λ),

hλ
A,D(x) = Exe

u(λ)τA1IτA<τD
(7.8)

for x ∈ (A ∪ D)c, whenever the right-hand side exists. Note that the left hand side is in

general the meromorphic extension (in λ ∈ C) of the probabilistically defined right-hand

side.

A priori estimates. The first step of our analysis consists in showing that the matrix LM

that has Dirichlet conditions in all the points of M has a minimal eigenvalue that is not

smaller than O(a2).

The basis for a priori estimates of eigenvalues is the variational representation of the

principle eigenvalue:

Lemma 7.1: The principal (smallest) eigenvalue, λD, of the Dirichlet operator LD satisfies

λD = inf
f :f(x)=0,x∈D

Φ(f)

‖f‖2
2,µ

(7.9)

where ‖f‖2,µ ≡
(∑

x∈Γ µ(x)f(x)2
)1/2
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Proof: Since LD is a positive operator, there exists A such that L = A∗A. If λ is the

smallest eigenvalue of LD, then
√
λ is the smallest eigenvalue of A and vice versa. But

λ =

(
inf

f :f(x)=0,x∈D

‖Af‖2,µ

‖f‖2,µ

)2

= inf
f :f(x)=0,x∈D

‖Af‖2
2,µ

‖f‖2
2,µ

= inf
f :f(x)=0,x∈D

Φ(f)

‖f‖2
2,µ

(7.10)

The following is a simple application due to Donsker and Varadhan [DV]

Lemma 7.2: Let λD denote the infimum of the spectrum of LD. Then

λD ≥ 1

supz∈Γ\D EzτD
(7.11)

Proof: Consider any function φ : Γ → R satisfying φ(x) = 0 for x ∈ ∆. We will use the

elementary fact that for all x, y ∈ Γ and C > 0

φ(y)φ(x) ≤ 1

2
(φ(x)2C + φ(y)2/C) (7.12)

with C ≡ ψ(y)/ψ(x), for some positive function ψ to get a lower bound on Φ(φ):

Φ(φ) =
1

2

∑

x,y

µ(x)p(x, y) (φ(x) − φ(y))2

= ‖φ‖2
2,µ −

∑

x,y 6∈D

µ(x)p(x, y)φ(x)φ(y)

≥ ‖φ‖2
2,µ −

∑

x,y

µ(x)p(x, y)
1

2

(
φ(x)2ψ(y)/ψ(x) + φ(y)2ψ(x)/ψ(y)

)

= ‖φ‖2
2,µ −

∑

x6∈D

µ(x)φ(x)2
∑

y p(x, y)ψ(y)

ψ(x)

(7.13)

Now chose ψ(x) = wD(x) (defined in (5.2). By (5.4), this yields

Φ(φ) ≥ ‖φ‖2
2,µ − ‖φ‖2

2,µ +
∑

x6∈D

µ(x)φ(x)2
1

wD(x)

=
∑

x6∈D

µ(x)φ(x)2
1

wD(x)
≥ ‖φ‖2

2,µ sup
x∈Dc

1

wD(x)
= ‖φ‖2

2,µ

1

infx∈Dc ExτD

(7.14)

Since this holds for all φ that vanish on D,

λD = inf
φ:φ(x)=0,x∈D

Φ(φ)

‖φ‖2
2,µ

≥ 1

infx∈Dc ExτD
(7.15)
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as claimed. ♦

In the case when Γ is a finite set, (7.11) together with the estimate of Lemma 6.10 will

yield a sufficiently good estimate.

If we combine this result with the estimate from Lemma 6.10, we obtain the following

proposition.

Proposition 7.3: Let λ0 denote the principal eigenvalue of the operator LM. Then there

exists a constant C > 0, independent of ǫ, such that for all ǫ small enough,

λ0 ≥ Ca2 (7.16)

Remark: Proposition 7.3 links the fast time scale to the smallest eigenvalue of the Dirichlet

operator, as should be expected. Note that the relation is not very precise. We will soon

derive a much more precise relation between times and eigenvalues for the cluster of small

eigenvalues.

Characterization of small eigenvalues. We will now obtain a representation formula

for all eigenvalues that are smaller than λ0. It is clear that there will be precisely |M| such

eigenvalues. This representation was exploited in [BEGK2], but already in 1973 Wentzell put

forward very similar ideas (in the case of general Markov processes). As will become clear,

this is extremely simple in the context of discrete processes (see [BGK] for the more difficult

continuous case.

The basic idea is to use the fact that the solution of the Dirichlet problem

(L− λ)f(x) = 0, x 6∈ M
f(x) = φx, x ∈ M

(7.17)

which exists uniquely if λ < λ0, already solves the eigenvalue equation Lφ(x) = λφ(x)

everywhere except possibly on M. It is natural to try to choose the boundary conditions φx,

x ∈ M carefully in such a way to achieve that (L− λ)f(x) = 0 holds also on M. Note that

we have |M| free parameters for as many equations. Moreover, by linearity,

f(y) =
∑

x∈M

φxh
λ
x,M\x(y) (7.18)

Thus the system of equations to be solved can be written as

0 =
∑

x∈M

φxLh
λ
x,M\x(m) ≡

∑

x∈M

φxe
λ
x,M\x(m), ∀m ∈ M (7.19)
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Thus, if this equations have a solution φxx ∈ M other than φx ≡ 0, λ is an eigenvalue. On

the other hand, if λ is an eigenvalue smaller than λ0 with eigenfunction φλ, then we may

take φx ≡ φλ(x) in (7.17). Then, obviously, f(y) = φλ(y) solves (7.17) uniquely, and it must

be true that (7.19) has a non-zero solution. From this we can conclude that

Let us denote by EM(λ) the |M| × |M|- matrix

(EM(λ))xy ≡ eλ
z,M\z(x) (7.20)

Since the condition for (7.17) to have a non-zero solution is precisely the vanishing of the

determinant of Eλ
M, we can now conclude that:

Lemma 7.4: A number λ < λ0 is an eigenvalue of L if and only if

det EM(λ) = 0 (7.21)

Expanding in λ. Anticipating that we are interested in small λ, we want to re-write the

matrix EM in a more convenient form. To do so let us set

hλ
x(y) ≡ hx(y) + ψλ

x(y) (7.22)

where hx(y) ≡ h0
x(y) and consequently ψλ

x(y solves the inhomogeneous Dirichlet problem

(L− λ)ψλ
x (y) = λhx(y), y ∈ Γ\M
ψλ

x(y) = 0, y ∈ M
(7.23)

From (7.23) we can conclude immediately that ψλ
x is small compared to hx in the L2(Γ, µ)

sense when λ is small, since

ψλ
x = λ(LM − λ)−1hx (7.24)

Using that for symmetric operators, ‖(L− a)−1‖ ≤ 1
dist(spec(L),a)

, we see that

‖ψλ
x‖2,µ ≤ λ

λ0 − λ
‖hx‖2,µ (7.25)

We are however not content with this, since this implies only very poor pointwise estimates.

To get much better pointwise comparison estimates we proceed differently. Note first that

equation (7.23) implies also

Lψλ
x(y) = λhλ

x(y), y ∈ Γ\M
ψλ

x(y) = 0, y ∈ M
(7.26)
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Thus
hλ

x(y)

hx(y)
= 1 + λ

∑

z 6∈M

1

hx(y)
GΓ\M(y, z)hx(z)

hλ
x(z)

hx(z)
(7.27)

Now put M ≡ maxz∈Γ\M
hλ

x(z)
hx(z) . Note that M <∞ since by the maximum principle, hx(y) >

0 for all y ∈ Γ\M. We get from (7.27) that

M ≤ 1 + λM max
y∈Γ\M

∑

z 6∈M

1

hx(y)
GΓ\M(y, z)hx(z) (7.28)

Now by symmetry of G\M,

1

hx(y)
GΓ\M(y, z)hx(z) =

µ(z)

µ(y)

1

hx(y)
GΓ\M(z, y)hx(z)

= µ(z)
1

hx(y)

hz,M(y)hx(z)

cap(z,M)

=
µ(z)

cap(z,M)
Py [τz < τM|τx = τM]

(7.29)

Note that we used (5.20) to represent the Green’s function and then the Markov property to

get that

Py [τzτM, τx = τM] = Py [τz < τM] Pz [τx = τM] (7.30)

Inserting this identity yields

∑

z 6∈M

1

hx(y)
GΓ\M(y, z)hx(z) = (Ey [τx|τx = τM]) ≤ a−1|Γ| (7.31)

Therefore, M ≤ 1 + λa−1|Γ|M or

M ≤ 1

1 − λa−1|Γ| (7.32)

where a is defined after (6.22) and by hypothesis not too small. Thus we conclude that

Lemma 7.5: assume that 0 ≤ λ≪ a−1|Γ|. Then for all y ∈ Γ,

0 ≤ hλ
x(y) − hx(y) ≤ hx(y)

λa−1|Γ|
1 − λa−1|Γ| (7.33)

Lemma 7.6:

(EM(λ))xz = µ(x)−1

(
1

2

∑

y 6=y′

µ(y′)p(y′, y)[hz(y
′) − hz(y)][hx(y′) − hx(y)]

− λ
∑

y

µ(y)
(
hz(y)hx(y) + hx(y)ψλ

z (y)
)
) (7.34)
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Proof: Note that

(L− λ)hλ
z (x) = (L− λ)hz(x) + (L− λ)ψλ

z (x) = Lhz(x) − λhz(x) + (L− λ)ψλ
z (x) (7.35)

Now,

Lhz(x) =
µ(x)

µ(x)
hx(x)Lhz(x) (7.36)

The function µ−1(y′)hx(y′)Lhz(y
′) vanishes for all y′ 6= x. Thus, by adding a huge zero,

Lhz(x) =µ(x)−1
∑

y′∈Γ

µ(y′)hx(y′)Lhz(y
′)

= µ(x)−1 1

2

∑

y,y′∈Γ

µ(y′)p(y′, y))[hz(y
′) − hz(y)][hx(y′) − hx(y)]

(7.37)

there the second inequality is obtained just as in the derivation of the representation of the

capacity through the Dirichlet form. Similarly,

(L− λ)ψλ
z (x) = µ(x)−1

∑

y′∈Γ

µ(y′)
(
hx(y′)(L− λ)ψλ

z (y′) − λ1Iy′ 6=xhx(y′)hz(y
′)
)

(7.38)

Since ψλ
z (y) = 0 whenever y ∈ M, and Lhx(y) vanishes whenever y 6∈ M, using the symmetry

of L, we get that the right-hand side of (7.38) is equal to

−λµ(x)−1
∑

y′∈Γ

(
µ(y′)hx(y′)(ψλ

z (y′) + 1Iy′ 6=xhx(y′)hz(y
′)
)

(7.39)

Adding the left-over term −λhz(x) = −λhx(x)hz(x) from (7.35) to (7.38), we arrive at (7.34).

♦

Remark: Note that we get an alternative probabilistic interpretation of Lhz(x) as

Lhz(x) =

{ −Px[τz ≤ τM], if , z 6= x

Px[τM\x < τx] if z = x
(7.40)

We are now in a position to relate the small eigenvalues of L to the eigenvalues of the

classical capacity matrix. Let us denote by ‖ · |2 ≡ ‖ · ‖2,µ.

Theorem 7.7: If λ < λ0 is an eigenvalue of L, then there exists an eigenvalue µ of the

|M| × |M|-matrix K whose matrix elements are given by

Kzx =
1
2

∑
y 6=y′ µ(y′)p(y′, y)[hz(y

′) − hz(y)][hx(y′) − hx(y)]

‖hz‖2‖hx‖2

≡ Φ(hz , hx)

‖hz‖2‖hx)‖2

(7.41)



Metastability 51

such that λ = µ (1 +O(ρ).

Proof: The proof will rely on the following general fact.

Lemma 7.8: Let A be a finite dimensional self-adjoint matrix. Let B(λ) be a Lipschitz

continuous family of bounded operators on the same space that satisfies the bound ‖B(λ)‖ ≤
δ + λC, and ‖B(λ) − B(λ′)‖ ≤ C|λ − λ′| for 0 ≤ δ ≪ 1, and 0 ≤ C < ∞. Assume that A

has k eigenvalues λ1, . . . , λk in an interval [0, a] with a < δ/C. Then

(i) Any solution of the equation

det(A− λ(1I +B(λ))) = 0 (7.42)

λ′1 satisfies |λ′i − λi| ≤ 4δλi, for some i ∈ 1, . . . , k.

(ii) There exists δ0 > 0 and a0 > 0, such that for all δ < δ0, and a ≤ a0, equation (7.42) has

exactly k solutions λ′1, . . . , λ
′
k and each solution satisfies |λ′i − λi| ≤ 4δλi.

(iii) If the eigenvalue λi is simple and isolated with minj 6=i |λi − λj | ≥ bλi with b > 2δ, then if

λ′i is a solution of (7.42) with > λ′i − λi| ≤ 4δλi, then there exists a unique solution c of

the equation

(A− λ′i(1I +B(λ′i)))c = 0 (7.43)

Moreover, if ci denotes the normalized eigenfunction of A with eigenvalue λi, then

‖c− c0‖2 ≤ 2λ′iδ

(b− 6δ)
(7.44)

Proof: We first show (ii). If (7.42) holds, then there exist a non-zero vector c such that

(A− λ)c = λB(λ)c (7.45)

or

c =
λ

A− λ
B(λ)c (7.46)

Thus

‖c‖2 ≤ λ‖(A− λ)−1‖‖B(λ)‖‖c‖2 (7.47)

Since c is non-zero, this means that

λ‖(A− λ)−1‖‖B(λ)‖ ≥ 1 (7.48)
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Now since A is symmetric, we have that

‖(A − λ)−1‖ ≤ max
i

1

|λi − λ| (7.49)

and so
k

min
i=1

|λi − λ| ≤ λ‖B(λ)‖ ≤ λ(δ + Cλ) (7.50)

which implies (i).

To prove (ii), Let us consider the operator A(λ) ≡ A(1+B(λ))−1. It is plain that λ solves

(7.42) if and only if λ is an eigenvalue of A(λ). Since A(λ) = A+ AB(λ)(1 + B(λ))−1, and

‖AB(λ′)(1 + B(λ′))−1‖ ≤ a 2δ
1−2δ , by standard perturbation theory, A(λ) has k eigenvalues

that satisfy |λi(λ
′)− λi| ≤ 4δ. Moreover, by the Lipschitz continuity of B(λ), it follows that

|λi(λ
′) − λi(λ

′′)| ≤ Ca|λ′ − λ′′| (7.51)

But now, if Ca < 1, (7.51) implies the existence of a fix-point λ that satisfies λi(λ) = λ. This

yields (ii).

To prove (iii) note first that the existence of a solution of (7.43) is obvious. The remaining

properties folow from the assumption that the eigenspace of λi is one-dimensional. Namely,

let c be of the form ci + δc, with (ci, δc) = 0. Inserting this into Eq. (7.43) and multiplying

with δc > from the left yields

(δc, (A − λ)ci) + (δc, (A − λ)δc) = λ(δc,B(λ)c) (7.52)

wich implies that

‖δc‖2
2(b− 4δλi) ≤ λi(1 + 4δ)2δ(‖δc‖2

2 + ‖δc‖2) (7.53)

resp.

‖δc‖2 ≤ λi(1 − 4δ)2δ

b− 7δλi
(7.54)

Uniqueness of c follows from the fact that the operator A − λ′i(1 − B(λ′i)) restricted to the

subspace orthogonal to ci is bounded from below by (b− 6δλi) and thus is invertible. ♦

We now return to the proof of Theorem 7.7. First we divide the row x of the matrix E(λ)

by ‖hx‖2 and multiply by µ(x), and then divide the columns by ‖hz‖2, to obtain a symmetric

matrix G(λ) with identical determinant that can be written as

G(λ) = K − λ1I − λB(λ) (7.55)
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where

B(λ)zx =

∑
y µ(y)hz(y)hx(y)

(
1Ix6=y + ψλ

x(y)/hx(y)
)

‖hz‖2‖hx‖2
(7.56)

Note that G(λ) is symmetric. We must estimate the operator norm of B(λ) We will use the

corresponding standard estimator
(∑

x,z∈MB2
zx

)1/2

.

We first deal with the off-diagonal elements that have no additional λ or other small factor

in front of them.

Lemma 7.9: There is a constant C <∞ such that

max
x6=z∈M

∑
y∈Γ µ(y)hx(y)hz(y)

‖hx‖2‖hz‖2
≤ Ca−1 max

m∈M
µ(m)−1cap(m,M\m) ≤ ρ(ǫ) (7.57)

Proof: Note first by the estimate (5.40) the equilibrium potentials hx(y) are essentially equal

to one on A(x). Namely,

1 ≥ hx(y) ≥ 1 − cap(y,M\x)
cap(y, x)

(7.58)

By Corollary 6.4, cap(y,M\x) ≤ 2cap(x,Mx), or µ(y) ≤ 3‖M|a−1cap(x,Mx).

Thus

∑

y∈A(x)

µ(y)hx(y)2 ≥
∑

y∈A(x)

µ(y)≥3‖M|a−1cap(x,Mx)

(
1 − cap(x,M\x)

cap(y, x)

)2

≥
∑

y∈A(x)

µ(y)≥3‖M|a−1cap(x,Mx)

µ(y) −
∑

y∈A(x)

2
µ(y)

cap(y, x)
cap(x,M\x)

= µ(A(m))

(
1 − 3|A(m)||M‖a−1 cap(x,M\x)

µ(A(m))

)

≥ µ(A(m)) (1 −O(ρ))

(7.59)

Thus the denominator in (7.57) is bounded from below by

√ ∑

y∈A(x)

µ(y)h2
x(y)

∑

y∈A(y)

µ(y)h2
z(y) ≥

√
µ(A(x))µ(A(z))(1 −O(ρ)) (7.60)

To bound the numerators, we will use Lemma 6.6 in the special situation when J = M\x.

Lemma 7.10: For any x 6= z ∈ M,

∑

y∈Γ

µ(y)hx(y)hz(y) ≤ Cρ
√
µ(x)µ(z) (7.61)
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Proof: By (ii) of Lemma 6.7, if y ∈ A(m), then

(i) If m = z, either

µ(y) ≤ 3

2
µ(x)a−1|M|cap(m,x)

µ(x)
(7.62)

or

µ(y)hx(y)hz(y) ≤
3

2
µ(x)a−1|M|cap(m,x)

µ(x)
(7.63)

(ii) If m = x,

µ(y) ≤ 3

2
µ(z)a−1|M|cap(m, z)

µ(z)
(7.64)

or

µ(y)hx(y)hz(y) ≤
3

2
µ(z)a−1|M|cap(m, z)

µ(z)
(7.65)

(iii) Let m 6∈ {x, z}, and assume w.r.g. that cap(m,x) ≥ cap(m, z). Then, if cap(m, y) >

3cap(m, z), already

µ(y)
√
hx(y)hz(y) ≤

3

2

√
µ(x)µ(z)a−1|M|

√
cap(m,x)cap(m, z)

µ(x)µ(z)
(7.66)

while otherwise

µ(y) ≤ 3µ(y)
cap(m, z)

cap(y,m)
≤ 3a−1|M|

√
cap(m, z)cap(m,x) (7.67)

Summing over y yields e.g. in case (i)

∑

y∈A(m)

µ(y)hx(y)hy(y) ≤ C
∣∣{y ∈ A(m) : µ(y) ≥ 32a−1|M|cap(m,x)

}∣∣

× a−1|M|cap(m,x)

(7.68)

and in case (ii) the same expression with x replaced by z. The case (iii) is concluded in the

same way.

This implies the statement of the lemma.♦

Remark: Note that the estimates in the proof of Lemma 7.9 also imply that

µ(A(x)(1 −O(ρ(ǫ)) ≤
∑

y

µ(y)hx(y)2 ≤ µ(A(x)(1 +O(ρ(ǫ)) (7.69)
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The remaining contribution to the matrix elements of B(λ) are of order λ, and thus the

crudest estimates will suffice:

Lemma 7.11: If λ0 denotes the principal eigenvalue of the operator L with Dirichlet

boundary conditions in M, then

∣∣∣∣∣∣

∑

y∈Γ

µ(y)
(
hz(y)ψ

λ
x (y)

)
∣∣∣∣∣∣

≤ λ

(λ0 − λ)
‖hz‖2‖hx‖2

(7.70)

Proof: Recall that ψλ
x solves the Dirichlet problem (7.23). But the Dirichlet operator LM−λ

is invertible for λ < λ0 and is bounded as an operator on ℓ2(Γ, µ) by 1/(λ0 − λ). Thus

‖ψλ
x |22 ≤

(
λ

λ0 − λ

)2

‖hx‖2
2 (7.71)

The assertion of the lemma now follows from the Cauchy-Schwartz inequality. ♦

As a consequence of the preceding lemmata, we see that the matrix B(λ) is indeed bounded

in norm by

‖B(λ)‖ ≤ Cρ(ǫ) + c
λ

λ0 − λ
(7.72)

The theorem follows from Lemma 7.8.♦

The computation of the eigenvalues of the capacity matrix is now in principle a finite,

though in general not trivial problem. The main difficulty is of course the computation of

the capacities and induction coefficients. Capacities can be estimated quite efficiently, as we

will see in the next section, the off-diagonal terms however, pose in general a more serious

problem, although in many practical cases exact symmetries may be very helpful (since after

all, the sum of the off-diagonal terms is given by the diagonal ones). On the other hand, a

particularly nice situation arises when no symmetries are present.

In fact we will prove the following theorem.

Proposition 7.12: Assume that there exists x ∈ M such that for some δ ≪ 1

δ
cap(x,M\x)

‖hx‖2
2

≥ max
z∈M\x

cap(z,M\z)
‖hz‖2

2

(7.73)
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Then the largest eigenvalue of L below λ0 is given by

λx =
cap(x,M\x)

‖hx‖2
2

(1 +O(δ)) (7.74)

and all smaller eigenvalues of L satisfy

λ ≤ C
√
δλx (7.75)

Moreover, the eigenvector, φ, corresponding to the largest eigenvalues normalized s.t. φx = 1

satisfies φz ≤ Cδ, for z 6= x.

Remark: This may look strange: we can compute the largest of the small eigenvalues, while

we should think that we would be most interested in computing the smallest eigenvalues

first. However, the logic is the same as that of our overall approach: we begin by controlling

the large part of the spectrum to gain successively control over the smaller eigenvalues. So

we must compute λ0 first, then the largest of the remaining |M| eigenvalues, then we can

compute the second largest, etc.

Proof: By the Cauchy-Schwartz inequality,

Φ(hx, hz) =

∣∣∣∣∣∣
1

2

∑

y,y′

µ(y′)p(y′, y)[hx(y′) − hx(y)][hz(y
′) − hz(y)]

∣∣∣∣∣∣
≤
√

cap(x,M\x)cap(z,M\z)

(7.76)

Thus
∣∣K2

zx

∣∣ ≤ KxxKzz (7.77)

Whence by assumption,

‖Ǩ‖ ≤ Kxx

√
δ|M| + δ2|M|2 (7.78)

Since obviously K̂ has one eigenvalue Kxx with the obvious eigenvector and all other eigenval-

ues are zero, the announced result follows from perturbation theory. Let f0 be the eigenvector

of eigenvalue λ ≡ Kxx, and write v = f0 + g, where g is chosen orthogonal to f0, for the full

eigenvector of K. We have

(K̂ + Ǩ)(f0 + g) = λ(f0 + g) (7.79)

Since K̂g = 0, it follows that

Kxxf0 + Ǩf0 + Ǩg = λ(f0 + g) (7.80)

resp.

(λ− Ǩ)g = (Kxx − λ+ Ǩ)f0 (7.81)
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Using our bounds on ‖Ǩ‖ and |λ−Kxx|, it follows that

‖g‖2 ≤ Kxx

√
δ|M| + δ2|M|2

Kxx(1 − C
√
δ)

= C
√
δ (7.82)

♦

Theorem 7.12 has the following simple corollary, that allows in many situations a complete

characterization of the small eigenvalues of L.

Theorem 7.13: Assume that we can construct a sequence of metastable sets Mk ⊃
Mk−1 ⊃ · · · ⊃ M2 ⊃ M1 = x0, such that for any i, Mi\Mi−1 = xi is a single point, and

that each Mi satisfies the assumptions of Theorem 7.12. Then L has k eigenvalues

λi =
cap(xi,Mi−1)

µ(A(xi))
(1 +O(δ)) (7.83)

As a consequence,

λi =
1

Exi
τMxi

(1 +O(δ) (7.84)

The corresponding normalized eigenfunction is given by

ψi(y) =
hxi,Mi−1

(y)

‖hxi,Mi−1
‖2

+
i−1∑

j=1

O(δ)
hxi,Mj−1

(y)

‖hxi ,Mj−1
‖2

(7.85)

Proof: The idea behind this theorem is simple. Let the sets Mi of the corollary be given by

Mi = {x1, . . . , xi}. Having computed the largest eigenvalue, λk, of L, we only have to search

for eigenvalues smaller than λk. If we could be sure that the principal Dirichlet eigenvalue

ΛMk−1
is (much) larger than k − 1st eigenvalue of L, then we could do so as before but

replacing the set M ≡ Mk by Mk−1 everywhere. λk−1 would then again be the largest

eigenvalue of a capacity matrix involving only the points in Mk−1. Iterating this procedure

we would arrive at the conclusion of the theorem. Thus, Theorem 7.13 will follow directly

from the following

Lemma 7.14: Under the assumptions of Theorem 7.13, it is true that

λMℓ = λℓ+1(1 +O(δ)) (7.86)

Moreover, the corresponding eigenfunction ψMℓ
is given by

ψMℓ
(y) =

hxℓ+1,Mℓ
(y)

‖hxℓ+1,Mℓ
(y)‖2

(1 +O(λ)) (7.87)
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Proof: The proof is very simple. We use the same strategy as for the computation of the

usual eigenvalues, that is we search a solution of the eigenvalue problem

(L− λ)ψMℓ
(x) = 0, x ∈ Γ\Mℓ

ψMℓ
(x) = 0, x ∈ Γ\Mℓ

(7.88)

among the solutions of the Dirichlet problem

(L− λ)f(x) = 0, x ∈ Γ\Mℓ

f(x) = 0, x ∈ Γ\Mℓ

f(xℓ+1) = 1

(7.89)

Of course we recognize that f(x) = hλ
xℓ+1,Mℓ

(x), and the condition for λ to be an eigenvalue

smaller than λMℓ+1
is simply

(L− λ)hλ
xℓ+1,Mℓ

(xℓ+1) = 0 (7.90)

But this can be written as

cap(xℓ+1,Mℓ) − λ
(
‖hxℓ+1,Mℓ

‖2
2 + (hxℓ+1,Mℓ

, ψλ
xℓ+1,Mℓ

)µ

)
= 0 (7.91)

which gives in fact

λ =
cap(xℓ+1,Mℓ)

‖hxℓ+1,Mℓ
‖2
2

(1 +O(λ/λMℓ+1
)) (7.92)

which up to the error terms equals λℓ+1. The corresponding eigenfunction is simply (up

to normalization) hλ
xℓ+1,Mℓ

(x). Using Lemma 7.5 to compare hλ with h, we arrive at the

conclusion of the Lemma.♦

Remark: Of course we need not stop here. We can actually compute all the k − ℓ small

eigenvalues of the Dirichlet operator LMℓ in exactly the same way we did for L itself, except

that the values of φx for x ∈ Mℓ are now frozen to zero. It is not surprising that the outcome

of this proceedure will simply be that the i− th eigenvalue of LMℓ is essentially equal to the

ℓ + ith eigenvalue of L. Also, the eigenfunctions will be almost the same, except that the

terms corresponding to x ∈ Mℓ are set to zero.

The theorem is now immediate except for the statement (7.84). To conclude, we need to

show that cap(xℓ+1,Mℓ) = cap(xℓ,Mxℓ
). To see this, note first that Mℓ ⊃ Mxℓ

. For if

there was x ∈ Mxℓ
that is not contained in Mℓ, then cap(x,Mℓ\x) ∼ cap(xℓ+1,Mℓ), while
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‖hxℓ+1,Mℓ
2 ≤ ‖hx,Mℓ+1\x 2, contradicting the assumption in the construction of the set Mℓ.

Thus cap(xℓ+1,Mℓ) ≥ cap(xℓ,Mxℓ
).

Similarly, if there was any point x ∈ Mℓ for which cap(xℓ+1,Mℓ) < cap(xℓ,Mxℓ
), then

this point would have been associated to a larger eigenvalue in an earlier stage of the con-

struction and thus would have already been removed from MMℓ+1 before xℓ+1 is being

removed.

This observation allows us to finally realize that the k smallest eigenvalues of L are precisely

the inverses of the mean (metastable) exit times from the metastable points M. ♦

Exponential law of the exit time.

The spectral estimates can be used to show that the law of the metastable exit times are

close to exponential, provided the non-degeneracy hypothesis of Theorem 7.12 hold. Note

that

Px[τMx
> t] =

∑

x1,...,xt 6∈Mx

p(x, x1)

t−1∏

i=1

p(xi, xi+1) =
∑

y 6∈Mx

(
PMx

)t
xy

(7.93)

To avoid complications, let us assume that the P is positive (in particular that P has no

eigenvalues close to −1. This can be avoided e.g. by imposing that p(x, x) > 0). We now

introduce the projection operators Π on the eigenspace of the principal eigenvalue of PMℓ .

Then
(
PMx

)t
xy

=
∑

y 6∈Mx

((
PMx

)t
Π
)

xy
+
∑

y 6∈Mx

((
PMx

)t
Πc
)

xy
(7.94)

Using our estimate for the principal eigenfunction of LMx the first term in (7.94) equals

(
1 − λMx

)t ∑

y 6∈Mx

hx,Mx
(y)

‖hx,Mx
(y)‖2

(1 + 0(λMx )) ∼ e−λMx t (7.95)

The remaining term is bounded in turn by

e−λMx
2 t

which under our assumptions decays much faster to zero than the first term.
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8. Computation of capacities.

We have seen so far that in metastable dynamics we can largely reduce the computation

of key quantities to the computation of capacities. The usefulness of all this thus depends

on how well we can compute capacities. While clearly the universality of our approach ends

here, and model specific properties have to enter the game, it is rather surprising to what

extent precise computations of capacities are possible in a multitude of specific systems. In

the following I give some basic principles that work in many cases, but that are not fool-proof.

I have mostly models in mind that are short range, in models with long range jumps things

are a bit more involved.

8.1. General principles. The key to success is the variational representation of capacities

through the Dirichlet principle, i.e. Eq. (3.17). The Dirichlet principle immediately yields

two avenues towards bounds:

• Upper bounds via judiciously chosen test functions

• Lower bounds via monotonicity of the Dirichlet form in the transition probabilities via

simplified processes.

These two principles are well-known and give rise to the so-called “Rayleigh’s short-cut

rules” in the language of electric networks (see e.g. [DS] and references wherein). In the con-

text of metastable systems, the usefulness of these principle can be enhanced by an iterative

method.

The key idea of iteration is to get first of all control of the minimizer in the Dirichlet

principle, i.e. the equilibrium potential. In metastable systems, when we are interested in

computing e.g. the capacity cap(Bx, By) where Bx, By represent two metastable sets, our

first goal will always be to identify domains where hBx,By
(z) is close to zero or close to one.

This is done with the help of the renewal estimate of Lemma 6.2. While with looks cyclic at

first glance (we need to know the capacities in order to estimate the equilibrium potential,

which we want to use in order to estimate capacities....) it yields a tool to enhance “poor”

bounds in order to get good ones. Thus the first step in the program is to get a first estimate

on capacities of the form cap(z,B) for arbitrary z,B.

(i) Choose a roughly ok looking test function for the upper bound.

(ii) Dramatically simplify the state space of the process to obtain a system that can be solved

exactly for the lower bound. In most examples, this leads to choosing a one-dimensional
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or quasi-one-dimensional system.

(iii) Insert the resulting bounds in (4.4) to obtain bounds on hBx,By
(z).

Using this bound we can now identify the set

• Dx ≡ {z : hBx,By
(z) < δ}

• Dy ≡ {z : hBx,By
(z) > 1 − δ}

for δ ≪ 0 suitably chosen.

If the complement of the set Dx ∪Dy contains no further metastable set, we define

• I ≡ {z ∈ (Dx ∪Dy)c : µ(z) < ρ supw∈(Dx∪Dy)c µ(w)}

for ρ≪ 1 conveniently chosen.

Let us denote by S ≡ (Dx ∪Dy ∪ I)c.

The idea is that the set I will be irrelevant for the value of the capacity, no matter what

value hBx,By
(z) takes where, and that the sets Dx and Dy give no contribution to the capacity

to leading order. The only problem is thus to find the equilibrium potential, or a reasonably

good approximation to it on the set S. We return to this problem shortly. Of course this

idea can only make sense if the sets Dx and Dy can be connected through S. If that is not

the case, we will have to analyse the set (Dx ∪Dy)c more carefully.

(Dx ∪ Dy)c contains further metastable sets, say w, then it will be possible to identify

domains Dw on which hBx,By
(z) takes on a constant values cw (to be determined later).

Note that this can be done again with the help of the renewal bounds; The starting point (in

the discrete case) is of course the observation that

hBx,By
(z) = Pz[τBx

< τBy
] = Pz[τBx

< τBy
, τw < τBx

] + Pz[τBx
< τBy

, τw ≥ τBx
]

≤ Pz[τw < τBx∪By
]Pw[τBx

< τBy
] + δ

= Pz[τw < τBx∪By
]cw + δ

(8.1)

The problem, to be solved with the help of (4.4) and the a priori bounds on capacities is thus

to determine the set of points for which Pz[τw < τBx∪By
] > 1 − δ.

Once with is done, we proceed as in the former case, but increasing the set Dx∪Dy in their

definition of I to D ≡ Dx ∪Dy ∪Dw1
∪ · · · ∪Dwk

if k such sets can be identified. It should

now be the case that the set Dx ∪Dy ∪ Dw1
∪ · · · ∪ Dwk

∪ S is connected. The remaining
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problem consists then in the determination of the equilibrium potential on the set S and of

the values cwi
.

At this stage we can then obtain upper and lower bounds in terms of variational problems

that involve only the sets S; to what extend these problems then can be solved depends on

the problem at hand.

Upper bound. To obtain the upper bound, we choose a test-function h+ with the properties

that
h+(z) =1, z ∈ Dx

h+(z) =0, z ∈ Dy

h+(z) =cwi
, z ∈ Dwi

(8.2)

where the constants cwi
are determined only later. On I, the function h+ can be chosen

essentially arbitrarily, while on S, we chose h+ such that it optimizes the restriction of the

Dirichlet form to S with boundary conditions implied by (8.2) on ∂S ∩ ∂D. Finally, the

constants cwi
are determined by minimizing the result as a function of these constants.

Lower bound. For the lower bound, we use that if h∗ denotes the true minimizer, then

Φ(h∗) ≥ ΦS(h∗) (8.3)

where ΦS is the restriction of the Dirichlet form to the subset S, i.e.

ΦS(h) =
1

2

∑

x∨y∈S
x∧y∈S∪D

µ(x)p(x, y)[h(x) − h(y)]2 (8.4)

Finally we minorize ΦS(h∗) by taking the infimum over all h on S, with boundary conditions

imposed by what we know a priori about the equilibrium potential. In particular we know

that these boundary conditions are close to constants on the different components of D. Of

course we do not really know the constants cwi
, but taking the infimum over these, we surely

are on the safe side.

Thus, if we can show that the minimizers in the lower bound differ little from the min-

imizers with constant boundary conditions, we get upper and lower bounds that coincide

up to small error terms. Of course in general, it may remain difficult to actually compute

these minimizers. However, the problem is greatly reduced in complexity with respect to

the original problem, and in many instances this problem can be solved quite explicitly (see

[BEGK1,BM]).
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Example 1. Markov chains with exponentially small transition probabilities.

We will now consider an class of examples where the program outlined above works very

nicely. These are (reversible) Markov chains on a finite state space with exponentially small

transition probabilities. This example was studied in [BM].

Let a function H : Γ → R+ be given. We will think of Γ as a graph with edge set E(Γ).

We now consider transition probabilities

p(x, y) =





Ce−β[H(y)−H(x)]+ , if (x, y) ∈ E(Γ)

1 −∑y:(x,y)∈E(Γ) p(x, y), ifx = y

0, else

(8.5)

The invariant distribution of this process is

µβ(x) =
e−βH(x)

∑
x∈Γ e

−βH(x)
(8.6)

Here we will think of β as a large parameter. As a consequence, transitions that would

increase the value H(x(t)) are exponentially unlikely.

A relevant example of class is the Stochastic Ising model, where Γ = {−1,+1}Λ, Λ ⊂ Z
d,

and

H(x) = HΛ(x) = −
∑

i,j∈Λ:‖i−j‖2=1

xixj − h
∑

i∈Λ

xi (8.7)

In Glauber dynamics, the edges of the graph Γ are taken to be the pairs (x, y) where y can

be obtained from x by changing exactly one of the components xi by a factor −1. In this

example the graph Γ is simply connected. In Kawasaki dynamics edges are pairs (x, y) where

y is obtained from x by exchanging the values of two coordinates i, j with ‖i − j‖2 = 1.

This dynamics conserves the total magnetization m =
∑

i xi. Thus the actual state space

decomposes in invariant subspaces. In both cases, the parameter β is called the inverse

temperature, and the Markov chains are supposed to model the dynamics of a magnetic

system, resp. a lattice gas at low temperatures.

In the sequel we will assume to be in the situation of a Glauber dynamics. In particular,

we assume that Γ is simply connected.

Let M be the set of local minima ofH. We would like to compute, for two points x, y ∈ M,

the capacity cap(x, y) asymptotically for β ↑ ∞. It is clear that the strategy to minimize

the Dirichlet form with boundary conditions 0 in x and 1 in y must be to move the gradient
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as close as possible to the regions where H is as large as possible. To do this, we need to

introduce the notion of essential saddles.

We call a one-dimensional subgraph ω a path. If ω is any path with starting point in x

and endpoint in y, it is obvious that any function h satisfying the boundary conditions 0 and

1 in x, y must change from 0 to 1 along any such path. For a given path, it would be nice

to concentrate that change at the place where H(ω(t)) is maximal; looking at the path for

which this maximum is minimal indicates the lowest unavoidable height where some gradient

needs to be put. Thus we define the communication height between x and y as

Ĥ(x, y) := min
ω:x→y

max
z∈ω

H(z) (8.8)

The set of all points that realize the mini-max in (8.8) is sometimes called the set of essential

saddles, S(x, y). A particularly simple situation occurs when for each saddle point, one can

find an optimal path from x to y that passes only through this particular saddle. We will

for simplicity assume to be in this situation. Then it is clear topologically that there exists

a seperatrix Σ between x and y with the property that

(i) any path ω from x to y intersects Σ, and for any point z in Σ there is a path ω from x to

y whose intersection with Σ is z.

(ii) minz∈ΣH(z) = Ĥ(x, y). We will furthermore assume that the set S(x, y) is totally dis-

connected in Γ.

Clearly Σ separates the state space into subsets Γx and Γy such that Γx ∪Γy ∪Σ = Γ. The

upper bound on the capacities can now be achieved by setting h(z) = 0, z ∈ Γx, h(z) = 1,

z ∈ Γy, and optimizing over the remaining variables h(z), z ∈ Σ. Unsurprisingly, the values of

h(z) in Σ\S will be insignificant, and the problem decomposes typically into a finite number

of variational problems that can be solved by hand exactly.

Finally, to get a lower bound, one reduces the state space to the subgraph consisting of

(i) the connected components Mx and My of Γx ∩{z : H(z) < Ĥ(x, y)} and Γy ∪{z : H(z) <

Ĥ(x, y)} that contains x and y, respectively.

(ii) The set S together with all edges that connect S to Mx and My, and those connecting

points in S.

To prove that the two bounds obtained in this way are asymptotically the same, one only

needs to prove that for z ∈ Mx, hy,x(z) ≤ Ce−βa, for some a > 0. To do so, we use the



Metastability 65

inequality

hy,x(z) ≤ cap(z, y)

cap(z, x)
(8.9)

The upper bound for the numerator is easily obtained through the upper bound on cap(x, y)

which we already have. The lower bound on the denominator is obtained by reducing the state

space to a single path ω from z to y. Since the latter capacity can be computed explicitly, it

follows easily that

max
z∈Mx

hy,x(z) ≤ Ce−β(Ĥ(x,y)−maxz∈Mx H(z)) ≤ Ce−βa (8.10)

for some a > 0. In the same way,

inf
z∈My

hy,x(z) ≥ Ce−β(Ĥ(x,y)−maxz∈My H(z)) ≥ 1 − Ce−βa (8.11)

Now, under the assumption that all saddle points are isolated and simple (in the sense that

through each saddle point there exists a path ω from x to y such that the level Ĥ(x, y) is

attained only in this point), the lower bound takes the form

capa(x, y) ≥ inf
h(z)∈[0,1],z∈S(x,y)

∑

z∈S(x,y)

µ(z)
∑

z′∈Mx∪My

p(z, z′)[h(z) − h(z′)]2 (8.12)

Obviously, the solution of this variational problem is

h(z) =

∑
z′∈Mx∪My

p(z, z′)h(z′)
∑

z′∈Mx∪My
p(z, z′)

, z ∈ S(x, y) (8.13)

Obviously, h(z) differs from the minimizer appearing in the upper bound only by a term that

is smaller than e−βa. Therefore, the upper and lower bounds are equal up to a term of order

∑

z∈S(x,y)

µ(z)e−βa = e−βĤ(x,y)e−βa (8.14)

which is by a factor of e−βa smaller than the principal contribution.

Let us note that the situation considered above holds in the case of the stochastic Ising

model with Glauber dynamics. Proving this fact requires some rather complicated analysis of

the function H(σ). For more details see the paper [BM]. In the case of Kawasaki dynamics,

the situation is quite more complicated. In that case, saddle point form “plateaus” and the

associated variational problems are more complicated. Still, one can reduce the problem to

the analysis of problems involving just the simple random walk on certain domains of Z
d.
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Example 2: Discrete diffusions in d > 1. A second example are random walks in a

potential landscape that generalize our example from Chapter 4 to dimensions greater than

one. These examples , that also emerge in the dynamics of certain mean-field spin systems,

was the original motivation of our work on metastability and was studied in [BEGK1].

We take our state space Γ as a (subset of the) d-dimensional “lattice” of spacing ǫ, that is

we take Γ = Γǫ ⊂ (ǫZ)d, and transition probabilities

p(x, y) =





1
2d
e−[F (y)−F (x)]+ , if ‖y − x‖2 = ǫ,

1 −∑d
k=1(p(x, x+ ǫeµ) − p(x, x− ǫeµ), if x = y,

0, else

(8.15)

where F = Fǫ is a smooth function bounded from below satisfying .
∑

x∈Γ exp(−F (x)/ǫ) = 1.

This chain has invariant measure

µ(x) = exp(−F (x)/ǫ) (8.16)

with f(x) a smooth function on G with a finite number of local minima in G.

Given two local minima of F , the reasoning towards the computation of the capacity

cap(x, y) is essentially the same as in the preceding example. The only difference here is that

since now elementary transition probabilities are not close to zero for steps in any direction,

in particular in the vicinity of critical points, it will not be true that the equilibrium potential

will be close to zero resp. one already one step below the “saddle points” S. Of course we

have seen this also already in the one-dimensional case.

Let us form simplicity consider the situation where we have two local minima at x and y

and a single saddle point z∗ between them. We also assume to be in the generic situation

when the matrix of second derivatives of the function F at z∗ has no zero-eigenvalue. We

will make the further simplifying assumption that the eigenvectors of this matrix are parallel

to the lattice directions3. We call the lattice direction corresponding to the unique negative

eigenvalue of this matrix the 1-direction.

(i) The upper bound. From the explicit computations in the one-dimensional case we may

expect that the equilibrium potential hx,y(z) behaves roughly like 1 − exp(−F (z)/ǫ) within

the level set F (z) < F (z∗) containing x, and exp(−F (z) in the one containing y. Let us take

a strip, Σ, of width C
√
ǫ| ln ǫ| around the stable manifold of z∗ (for simplicity assume that

3The results remain true without this assumptions, but the proofs become considerably more complicated

in the general case.
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there are no further critical points), which we will further more rectify in such a way that it

becomes rectangular and fitting to the lattice at least up to a distance C ′
√
e| ln ǫ| of z∗. We

denote this small rectangular region by D. The complement of Σ decomposes into the two

sets Mx and My. The point is then that within Σ\D, the invariant measure is smaller than

ǫc exp(−F (z∗)/ǫ) for some positive c if C and C ′ are chosen appropriately.

contribution

x

y

h=1

h=0

irrelevant

critical 

Then we choose our ansatz for the upper bound as follows

h+(z)0

{
1, if z ∈Mx

0, if z ∈My

(8.17)

For z in D, h+(z) is chosen to be a function of z1 only, e.g. h+(z) = f(z1) where f is chosen

in an optimal way. Moreover, in Σ\D, h+(z) may be set to anything.

Inserting this ansatz into the Dirichlet form, we see that

cap(x, y) ≤ inf
f

1

2

∑

z∈M

µ(z)
∑

±p(z, z ± ǫe1)[f(z1) − f(z1 ± ǫ)]2 +O
(
ǫce−F (z∗)/ǫ

)
(8.18)

Now within D, we can Taylor expand

µ(z)

= exp
(
−F (z∗)/ǫ+ |λ1|(z∗1 − z1)2/2ǫ− λ2(z

∗
2 − z2)2/2ǫ− · · · − λd(z

∗
d − zd)2/2ǫ+O(ǫ1/2| ln ǫ|3)

)

(8.19)

We see that we can fully neglect the correction term in the exponent, since this gives only

a multiplicative error of order 1 + O
(
ǫ1/2| ln ǫ|3)

)
. The principle term in (8.18) can then be
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written (up to this error) as

inf
f

1

2
exp (−F (z∗)/ǫ)

∑

z2,...,zd

exp
(
−λ2(z

∗
2 − z2)2/2ǫ− · · · − λd(z

∗
d − zd)2/2ǫ

)

×
∑

z1

exp
(
+|λ1|(z∗1 − z1)2/2ǫ

)
p(z1, z1 ± ǫe1)[f(z1) − f(z1 ± ǫ)]2

(8.20)

where we used that under Metropolis dynamics the transition rates p(z, z ± ǫe1) turn out to

depend also only on z1. But now the infimum in all terms of the sum over z2, . . . , zd is reached

for the same function f , which is simply the one realizing the infimum of the corresponding

one-dimensional variational problem. Thus

cap(x, y) ≤ exp (−F (z∗))
∑

z2,...,zd

exp
(
−λ2(z

∗
2 − z2)2/2ǫ− · · · − λd(z

∗
d − zd)2/ǫ

)

× cap0(−Cǫ1/2| ln ǫ|, Cǫ1/2| ln ǫ|)
(
1 +O

(
ec,

√
ǫ| ln ǫ|

)) (8.21)

where by a simple transformation f(zi) → e−|λ1|(z
∗
1−z1)2/2ǫf(z1),

cap0(−Cǫ1/2| ln ǫ|, Cǫ1/2| ln ǫ|)

≡ inf
f :f((z∗

1−Cǫ1/2| ln ǫ|)=1,f((z∗
1+Cǫ1/2| ln ǫ|)=0

1

2

∑

z1

exp
(
−|λ1|(z∗1 − z1)2/2ǫ

)

p(z1, z1 ± ǫe1)[f(z1) − f(z1 ± ǫ)]2

(8.22)

This problem is now easily solved and yields

cap0(−Cǫ1/2| ln ǫ|, Cǫ1/2| ln ǫ|) ∼ 1

d

√
|λ1|ǫ
2π

(8.23)

Finally, estimating the remaining Gaussian sums, we get that

cap(x, y) ≥ e−F (z∗)/ǫ 1

d

√
‖λ1|2π

√
2πǫ

det∇2F (z∗)

(
1 +O

(
ec,

√
ǫ| ln ǫ|

))
(8.24)

(ii) To show that this upper bound gives the correct leading contribution, we use the mono-

tonicity of the Dirichlet form to reduce the graph Γ to just the links in the one-direction

within the set D. Then

cap(x, y) ≥ 1

2

∑

z∈D

∑

±

µ(z) (hx,y(z) − hx,y(z ± ǫei))
2

(8.25)

Clearly,

cap(x, y)

≥ 1

2

∑

z2,...,zd

inf
fz⊥

:fz⊥
(z∗

1−Cǫ1/2| ln ǫ|)=hx.y,fz⊥
(z∗

1+Cǫ1/2| ln ǫ|)=hx,y

1

2

∑

±

µ(z) (−fz⊥
(z1) − fz⊥

(z1 ± ǫ))2

(8.26)
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Now we show, using the renewal argument and crude bounds on hx,y that at the boundaries

of D towards x, resp. y, hx,y is close to one, resp. zero up to an error of order ǫc. It is easy to

solve all the variational problems in (8.26), since they are again one-dimensional. We leave it

as an exercise to show that the corresponding lower bound is essentially equal to the upper

bound (8.25), so that we have indeed established the asymptotic estimate

cap(x, y)

=
1

2

∑

z2,...,zd

inf
fz⊥

:fz⊥
(z∗

1−Cǫ1/2| ln ǫ|)=hx.y,fz⊥
(z∗

1+Cǫ1/2| ln ǫ|)=hx,y

1

2

∑

±

µ(z) (−fz⊥
(z1) − fz⊥

(z1 ± ǫ))
2

×
(
1 +O

(
ec,

√
ǫ| ln ǫ|

))

(8.27)

This last estimate together with our general formulas for the mean transtion times immedi-

ately implies the famous “Eyring-Kramers” formula

Exτy = 2d
2π

|λ1(z∗i )|

√
|det(∇2F (z∗))|√
det(∇2F (x))

e[F (z∗)−F (x)]/ǫ
(
1 +O(ǫ1/2| ln ǫ|)

)
(8.28)

to leading order.
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A1. One-dimensional Laplace method.

In Section 4 we had to compute integrals of the form

∫ b

a

ef(x)/ǫdx (10.1)

for small ǫ and real valued functions f(x). The method commonly used to estimate such

integrals is called Laplace’s method or saddle point method, where the latter is more general

and is applicable also in complex valued situations. I will give here a brief outline how this

method can be used in simple cases to get asymptotic estimates in ǫ for such integrals.

We will assume that a and b are finite, and that f is k-times continuously differentiable in

[a, b]. Note that these conditions can be considerably relaxed. Without loss of generality we

assume that f has a unique global maximum at x∗ ∈ [a, b]. We will assume that x∗ = b. One

should distinguish the cases where f ′(b) = 0 and f ′(b) > 0. I will form simplicity assume

that b and therefore f ′(b) does not depend on ǫ, but it is not difficult to see that the method

can also be adopted to situations (that may by of interest) where b = B(ǫ) depends on ǫ and

e.g. f ′(b(ǫ)) ↓ 0.

The Laplace method is based on three observations:

(i) Depending on how fast f(x) decays away from its maximum, the integral is dominated by

the contribution from a neighborhood [b− δ, b], for suitably chosen δ = δ(ǫ) ↓ 0.

(ii) Within [b− δ, b], we can expand f(x) in a Taylor series to order l < k where the remainder

satisfies a uniform bound of order δl+1. Neglecting this term produces a multiplicative

error of order eCδl+1/ǫ which will be negligible if δ is suitably chosen.

(iii) The exponential function satisfies the bound

∣∣∣∣∣e
y −

n∑

l=0

yl

l!

∣∣∣∣∣ ≤ Cn|y|n+1e|y| (10.2)

This can be used to remove terms in the exponent that are of higher than linear, resp.

quadratic order. What remains are integrals of the form
∫ b

b−δ
e−c(b−x)/ǫ(b − x)mdx, reps.

∫ b

b−δ
e−d(b−x)2/ǫ(b− x)mdx and remainder terms that can be estimated by Cδl+1.

(iv) The remaining integrals are written as e.g.

∫ b

b−δ

e−c(b−x)(b− x)mdx =

∫ 0

−∞

ecx/ǫxl −
∫ −δ

−∞

ex/ǫxl (10.3)
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where the first term on the right is explicitly calculable, while the second can be made

smaller than any desired power of ǫ if δ is chosen large enough (e.g. δ = ǫ1−α, for some

α > 0, in the case when f ′(d) > 0, resp. δ = ǫ1/2−α if the first derivative of f at b

vanishes).

Let us carry through this procedure in the simplest case when f ′(b) > 0 and when we only

get the first correction of order ǫ to the principle result. First,

∫ b−δ

a

ef(x)/ǫ ≤ ef(b)/ǫe−f ′(b)δ/(2ǫ)(b− a) ≤ ef(b)/ǫe−Cǫ−α)C (10.4)

is smaller than any power of ǫ, for small ǫ. Now

∫ d

b−δ

ef(x)/ǫ =

∫ d

b−δ

ef(b)/ǫ−f ′(b)(b−x)/ǫ+f ′′(b)(b−x)2/(2ǫ)+C(b−x)3/ǫdx

=

∫ d

b−δ

ef(b)/ǫ−f ′(b)(b−x)/ǫ+f ′′(b)(b−x)2/(2ǫ)dx

+

∫ d

b−δ

ef(b)/ǫ−f ′(b)(b−x)/ǫ+f ′′(b)(b−x)2/(2ǫ)(e+C(b−x)3/ǫ − 1)dx

(10.5)

The second term is easily bounded by

Cδ3ef(b)/ǫ ≤ Cef(b)/ǫǫ3−3α (10.6)

For the first integral we now write

ef ′′(b)(b−x)2/(2ǫ) = 1+f ′′(b)(b−x)2/(2ǫ)+
(
ef ′′(b)(b−x)2/(2ǫ) − 1 − f ′′(b)(b− x)2/(2ǫ)

)
(10.7)

But on the domain of integration, by

∣∣∣ef ′′(b)(b−x)2/(2ǫ) − 1 − f ′′(b)(b− x)2/(2ǫ)
∣∣∣ ≤ C

δ4

ǫ2
≤ Cǫ2−4α (10.8)

and so
∣∣∣∣∣

∫ b

b−δ

ef(b)/ǫ−f ′(b)(b−x)/ǫ
(
ef ′′(b)(b−x)2/(2ǫ) − 1 − f ′′(b)(b− x)2/(2ǫ)

)∣∣∣∣∣

≤ ef(β)/ǫCǫ2−4α

∫ b

b−δ

e−f ′(b)(b−x)/ǫ

≤ ef(β)/ǫCǫ2−4α

∫ 0

−∞

ef ′(b)x/ǫ

= ef(β)/ǫ ǫ

f ′(b)
Cǫ2−4α

(10.9)
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What is left of our integral is

∫ b

b−δ

ef(b)/ǫ−f ′(b)(b−x)/ǫ

(
1 − f ′′(b)

2ǫ
(b− x)2

)

= ef(b)/ǫ

∫ 0

−∞

ef ′(b)x/ǫ

(
1 − f ′′(b)

2ǫ
x2

)

+ ef(b)/ǫ

∫ −δ

−∞

ef ′(b)x/ǫ

(
1 − f ′′(b)

2ǫ
x2

)

= ef(b)/ǫ

(
ǫ

f ′(b)
+

2ǫ2f ′′(b)

2(f ′(b))2

)

+ Ce−f ′(b)ǫ−α

(10.10)

Collecting all terms we find that

∫ b

a

ef(x)/ǫdx = ef(b)/ǫ

(
ǫ

f ′(b)
+

2ǫ2f ′′(b)

2(f ′(b))2
+ C

(
ǫ2−4α + e−Cǫ−α

))
(10.11)

It should now be clear how this computation has to be modified if f ′(b) = 0, but f ′′(b) < 0,

and how higher order corrections in ǫ can be computed.

The Laplace method can be used in a very similar manner to compute the corresponding

finite sums, e.g.
∑b

x=a+ǫ e
f(x)/ǫ. In the case then f ′(b) > 0, the principal term then becomes

the geometric series

ef(b)/ǫ
∞∑

k=0

e−kf ′(b) = ef(b)/ǫ 1

1 − e−f ′(b)
(10.12)

If f ′(b) = 0, the remaining sum
∞∑

k=0

e−ǫk2f ′′(b)/2 (10.13)

can be approximated by an integral with errors of order
√
ǫ only, i.e.

ǫ

∞∑

k=0

e−ǫk2f ′′(b)/2 =

∫ 0

−∞

e−ǫ−1x2f ′′(b)/2dx(1 +O(
√
ǫ)) (10.14)
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