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Chapter 1
Markov processes in discrete time

Markov processes are among the most important stochastic processes that are used
to model real live phenomena that involve disorder. This is because the construction
of these processes is very much adapted to our thinking aboutsuch processes. More-
over, Markov processes can be very easily implemented in numerical algorithms.
This allows to numerically simulate even very complicated systems. We will always
imagine a Markov process as a “particle” moving around in state space; mind, how-
ever, that these “particles” can represent all kinds of verycomplicated things, once
we allow the state space to be sufficiently general.

Markov processes can be classified according to the properties of the nature of
time and the properties of their state space. Roughly, we have the following cate-
gories:

(i) discrete time, finite state space
(ii)discrete time, countable state space
(iii)discrete time, general state space
(iv)continuous time, countable state space
(v)continuous time, general state space

The case (i) is elementary and can be studied with the help of elementary lin-
ear algebra. Case (ii) is already much more interesting, andbrings new concepts
such asrecurrenceandtransience. Case (iii) is really not all that more complicated,
although there are new concepts with regard to all ergodicity problems. Case (iv)
is not all that different from case (ii), and the construction basically start from a
discrete time Markov process where each unit of time is replaced by an exponen-
tially distributed random time, whose parameter depends onthe position in space.
Fundamentally new issues here can arise if these parametersare unbounded from
above or not bounded away from zero. Case (v) is really new, and poses challeng-
ing new problems that require some serious tools from functional analysis. A key
new problem here is how to describe such a process in simple terms. You already
know some important examples from stochastic analysis: Brownian motion, Lévy
processes, and processes that are built from these: strong solutions of stochastic
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2 1 Markov processes in discrete time

differential equations. However, this is not all there is, and in this lecture we will
develop a more general theory of continuous time Markov processes.

As a warm-up, we recall in this first chapter the theory of Markov processes with
discrete time with a slightly different twist.

1.1 Markov processes with stationary transition probabilities

In the following we denote byS the state space which we assume to be a Polish
space.B denotes the Borel-σ -algebra onS.

The main building block for a Markov process is the so-calledtransition kernel.

Definition 1.1. A (one step) transition kernel for a discrete time Markov process
with state spaceS is a map,P : N0×S×B → [0,1], with the following properties:

(i) For eacht ∈ N0 andx∈ S, Pt(x, ·) is a probability measure on(S,B).
(ii)For eachA∈ B, andt ∈ N0, Pt(·,A) is aB-measurable function onS.

Definition 1.2. A stochastic processX with state spaceSand index setN0 is a dis-
crete time Markov process with transition kernelP if, for all A∈ B, t ∈ N,

P(Xt ∈ A|Ft−1)(ω) = Pt−1(Xt−1(ω),A),P−a.s.. (1.1.1)

Here{Ft}t∈N0 denotes theσ -algebra generated by the random variablesX0, . . . ,Xt .

This requirement fixes the lawP up to one more probability measure on(S,B),
the so-calledinitial distribution, P0.

Theorem 1.3.Let (S,B) be a Polish space and letP be a transition kernel and
P0 a probability measure on(S,B). Then there exists a unique stochastic process
satisfying (1.1.1) andP(X0 ∈ A) = P0(A), for all A.

In general, we call a stochastic process whose index set supports the action of a
group (or semi-group)stationary(with respect to the action of this (semi) group, if
all finite dimensional distributions are invariant under the simultaneous shift of all
time-indices. Specifically, if our index sets,I , areR+ orZ, resp.N, then a stochastic
process is stationary if for allℓ ∈ N, s1, . . . ,sℓ ∈ I , all A1 . . . ,Aℓ ∈ B, and allt ∈ I ,

P
[
Xs1 ∈ A1, . . . ,Xsℓ ∈ Aℓ

]
= P

[
Xs1+t ∈ A1, . . . ,Xsℓ+t ∈ Aℓ

]
. (1.1.2)

We can express this also as follows: Define the shiftθ , for anyt ∈ I , as(X ◦θt)s≡
Xt+s. ThenX is stationary, if and only if, for allt ∈ I , the processesX andX ◦ θt

have the same finite dimensional distributions.
In the case of Markov processes, a necessary (but not sufficient) condition for

stationarity is the stationarity of the transitions kernels.



1.1 Markov processes with stationary transition probabilities 3

Definition 1.4. A Markov process with discrete timeN0 and state spaceS is said to
havestationary transition probabilities (kernels), if its one step transition kernelPt

is independent oft, i.e., if there is a probability kernelP(x,A)

Pt(x,A) = P(x,A), (1.1.3)

for all t ∈ N, x∈ S, andA∈ B.

Remark 1.5.With the notationPt,s for the transitions kernel from times to timet,
i.e.

P(Xt ∈ A|Fs) = Pt,s(A,Xs),

we could alternatively state that a Markov process hasstationary transition proba-
bilities (kernels), if there exists a family of transition kernelsPt(x,A), s.t.

Ps,t(x,A) = Pt−s(x,A), (1.1.4)

for all s< t ∈N, x∈ S, andA∈ B. Note that there is a potential conflict of notation
betweenPt andPt which should not be confused.

A key concept for Markov processes with stationary transition kernels is the no-
tion of aninvariantdistribution.

Definition 1.6. Let P be the transition kernel of a Markov process with stationary
transition kernels. Then a probability measure,π , on (S,B) is called an invariant
(probability) distribution, if

∫
π(dx)P(x,A) = π(A), (1.1.5)

for all A∈ B. More generally, a positive,σ -finite measure,π , satisfying (1.1.5), is
called aninvariant measure.

Lemma 1.7.A Markov process with stationary probability kernels and initial dis-
tribution P0 = π is a stationary stochastic process, if and only ifπ is an invariant
probability distribution.

Proof. Exercise. ⊓⊔

In the case when the state space,S, is finite, we have seen that there is always at
least one invariant measure, which then can be chosen to be a probability measure. In
the case of general state spaces, while there still will always be an invariant measure
(through a generalisation of the Perron-Frobenius theoremto the operator setting),
there appears a new issue, namely whether there is an invariant measure that is finite,
viz. whether there exists a invariant probability distribution.
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1.2 The strong Markov property

The setting of Markov processes is very much suitable for theapplication of the
notions of stopping times. Recall that for a closed set,D, we set

τD ≡ inf (t > 0 : Xt ∈ D) . (1.2.1)

In fact, one of the very important properties of Markov processes is the fact that we
can split expectations between past and future also at stopping times.

Theorem 1.8.Let X be a Markov process with stationary transition kernels. LetFn

be a filtration such that X is adapted, and let T be a stopping time. Let F and G be
F -measurable functions, and let F in addition be measurable with respect to the
pre-T-σ -algebraFT . Then

E [1IT<∞FG◦θT |F0] = E
[
1IT<∞FE′ [G|F ′

0

]
(XT)

∣∣F0
]

(1.2.2)

whereE′ andF ′ refer to an independent copy, X′, of the Markov process X.

Proof. We have

E [1IT<∞FG◦θT |F0] (1.2.3)

= E [E [1IT<∞FG◦θT |FT ] |F0]

= E [1IT<∞FE [G◦θT |FT ] |F0] .

Now E [G◦θT |FT ] depends only onXT (and will thus often be denoted simply as
E [G◦θT|XT ]) and by stationarity is equal toE′ [G|F ′

0] (XT), which yields the claim
of the theorem. ⊓⊔

1.3 Markov processes and martingales

We now take a different look at Markov processes that will become important and
more difficult in the continuous time case. First we want to see how the transition
kernels can be seen as operators acting on spaces of measuresrespectively spaces
of function.

If µ is a σ -finite measure onS, andP is a Markov transition kernel, we define
the measureµP as

µP(A)≡
∫

S
P(x,A)µ(dx), (1.3.1)

and similarly, for thet-step transition kernel,Pt ,

µPt(A)≡
∫

S
Pt(x,A)µ(dx). (1.3.2)

By the Markov property, we have
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µPt(A) = µPt(A). (1.3.3)

Note that the action of ? on measures conserves the total mass, i.e.

µP(Σ) =

∫

S
P(x,S)µ(dx) = µ(S). (1.3.4)

The action on measures has of course the following natural interpretation in terms
of the process: ifP(X0 ∈ A) = µ(A), then

µ(Xt ∈ A) = µPt(A). (1.3.5)

Alternatively, if f is a bounded, measurable function onS, we define

(P f)(x)≡
∫

S
f (y)P(x,dy), (1.3.6)

and
(Pt f )(x) ≡

∫

S
f (y)Pt(x,dy), (1.3.7)

where again
Pt f = Pt f . (1.3.8)

Lemma 1.9.Let ‖ f‖∞ ≡ supx∈S| f (x) denote the supremums norm. Then for any
bounded function f ,

‖P f‖∞ ≤ ‖ f‖∞. (1.3.9)

Proof. Simply note that

‖P f‖∞ =

∥∥∥∥
∫

S
P(x,dy) f (y)

∥∥∥∥
∞
≤ ‖ f‖∞

∫

S
P(x,dy) = ‖ f‖∞. (1.3.10)

⊓⊔

We say thatPt is a semi-group acting on the space of measures, respectively
on the space of bounded measurable functions. The interpretation of the action on
functions is given as follows.

Lemma 1.10.Let Pt be a Markov semi-group acting on bounded measurable func-
tions f . Then

(Pt f )(x) = E( f (Xt)|F0)(x)≡ Ex f (Xt ). (1.3.11)

Proof. We only need to show this fort = 1. Then, by definition,

Ex f (X1) =
∫

S
f (y)P[X1 ∈ dy|F0](x) =

∫

S
f (y)P(x,dy).

⊓⊔

Notice that, by telescopic expansion, we have the elementary formula
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Pt f − f =
t−1

∑
s=0

Ps(P−1I) f ≡
t−1

∑
s=0

PsL f , (1.3.12)

where we callL≡P−1I the (discrete) generator of our Markov process (this formula
will have a complete analog in the continuous-time case).

An interesting consequence is the following observation:

Lemma 1.11.[Discrete time martingale problem]. Let L be the generator of a
Markov process, Xt , and let f be a bounded measurable function. Then

Mt ≡ f (Xt)− f (X0)−
t−1

∑
s=0

L f (Xs) (1.3.13)

is a martingale.

Proof. Let t, r ≥ 0. Then

E(Mt+r |Ft ) = E( f (Xt+r )|Ft )−E( f (X0)|Ft )−
t+r−1

∑
s=0

E(L f (Xs)|Ft )

= Pr f (Xt )− f (Xt)+ f (Xt)− f (X0)

−
t+r−1

∑
s=t

E(L f (Xs)|Ft)−
t−1

∑
s=0

E(L f (Xs)|Ft )

= f (Xt )− f (X0)−
t−1

∑
s=0

(L f (Xs)

+Pr f (Xt)− f (Xt)−
r−1

∑
s=0

Ps(L f (Xt ))

= Mt +0. (1.3.14)

This proves the lemma.⊓⊔

Remark 1.12.(1.3.13) is of course the Doob decomposition of the processf (Xt ),
since∑t−1

s=0L f (Xs) is a previsible process.

What is important about this observation is that it gives rise to a characterisation
of the generator that will be extremely useful in the generalcontinuous time setting.

Namely, one can ask whether the requirement thatMt be a martingale given a
family of pairs( f ,L f ) characterises fully a Markov process.

Theorem 1.13.Let X be a discrete time stochastic process on a filtered spacesuch
that X is adapted. Then X is a Markov process with transition kernel P≡ 1I+L, if
and only if, for all bounded measurable functions, f , the expression on the right-
hand side of (1.3.13) is a martingale.
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Proof. Lemma 1.11 already provides the “only if” part, so it remainsto show the
“if” part.

First, if we assume thatX is a Markov process, settingr = 1 in (1.3.13) and
taking conditional expectations givenF0, we see thatE f (X1)− f (X0) = (L f )(X0),
implying that the transition kernel must be 1I+L.

It remains to show thatX is indeed a Markov process. To see this, we just use the
above calculation, which gives

E( f (Xt+r )|Ft ) = E(Mt+r |Ft)+ f (X0)

+
t−1

∑
s=0

(L f )(Xs)+
t+r−1

∑
s=t

E((L f )(Xs)|Ft)

= Mt + f (X0)+
t−1

∑
s=0

(L f )(Xs)+
t+r−1

∑
s=t

E((L f )(Xs)|Ft)

= f (Xt )+
r−1

∑
s=0

E((L f )(Xt+s)|Ft) (1.3.15)

Now let againr = 1. Then

E( f (Xt+1)|Ft) = f (Xt)+ (L f )(Xt) = ((1I+L) f )(Xt )≡ P f(Xt), (1.3.16)

In view of the definition of discrete time Markov processes, choosing f = 1IA, for
A∈ B(S), this gives (1.1.1), and henceX is a Markov process. Thus the theorem is
proven. ⊓⊔

In view of continuous time Markov processes it is, however, instructive to see
that we can also derive easily the more general fomula

E( f (Xt+s)|Ft) = (1I+L)s f (Xt )≡ Ps f (Xt ), (1.3.17)

from the martingale problem. We have seen that it holds fors= 1; Now proceed by
induction: assume that it holds for all bounded measurable functions fors≤ r −1.
We must show that it then also holds fors= r. To do this, we use (1.3.15) and use
the induction hypothesis for the terms in the sum (wheres≤ r −1) with f replaced
by L f . This gives

E( f (Xt+r )|Ft) = f (Xt)+
r−1

∑
s=0

((1I+L)sL f )(Xt ) (1.3.18)

= f (Xt)+
r−1

∑
s=0

(((1I+L)s(L+1I) f )(Xt )− ((1I+L)s f )(Xt))

= ((1I+L)r f ) (Xt),

as claimed. Hence (1.3.17) holds for alls, by induction.

Remark 1.14.The analog of this theorem in the continuous time case will bring out
the full strength of this approach. A crucial point is that itwill not be necessary



8 1 Markov processes in discrete time

to consider all bounded functions, but just sufficiently rich classes. This allows to
formulate martingale problems even then one cannot write down the generator in a
explicit form. The idea of characterising Markov processesby the associated mar-
tingale problem goes back to Stroock and Varadhan, see [16].

1.4 Harmonic functions and martingales

We have seen that measures that satisfyµL = 0 are of special importance in the
theory of Markov processes. Also of central importance are functions that satisfy
L f = 0. In this section we will assume that the transition kernelsof our Markov
processes have bounded support, so that for someK < ∞, |Xt+1−Xt | ≤ K < ∞ for
all t.

Definition 1.15.Let L be the generator of a Markov process. A measurable function
that satisfies

L f (x) = 0,∀x∈ S, (1.4.1)

is called aharmonic function. A function is calledsubharmonic(resp. super-
harmonic, if L f ≥ 0, resp.L f ≤ 0.

Theorem 1.16.Let Xt be a Markov process with generator L. Then, a non-negative
function f is

(i) harmonic, if and only if f(Xt ) is a martingale;
(ii)subharmonic, if and only if f(Xt) is a submartingale;
(iii)super-harmonic, if and only if f(Xt) is a supermartingale;

Proof. Simply use Lemma 1.11.⊓⊔

Remark 1.17.Theorem 1.16 establishes a profound relationship between potential
theory and martingales. It also explains, the strange choice of super and sub in mar-
tingale theory.

A nice application of the preceding result is the maximum principle.

Theorem 1.18.Let X be a Markov process and let D be a bounded open domain
such thatEτDc < ∞. Assume that f is a non-negative subharmonic function on D.
Then

sup
x∈D

f (x)≤ sup
x∈Dc

f (x). (1.4.2)

Proof. Let us defineT ≡ τDc. Then, f (XT) is a submartingale, and thus

E( f (XT)|F0)(x)≥ f (x). (1.4.3)

SinceXT ∈ Dc, it must be true that
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sup
y∈Dc

f (y)≥ E( f (XT)|F0)(x)≥ f (x), (1.4.4)

for all x∈ D, hence the claim of the theorem. Of course we used again the Doob’s
optional stopping theorem.⊓⊔

The theorem says that (sub) harmonic functions take on theirmaximum on the
boundary, since of course the setDc in (1.4.2) can be replaced by a subset,∂D ⊂ Dc

such thatPx(XT ∈ ∂D) = 1. The above proof is an example of how intrinsically
analytic results can be proven with probabilistic means. The next section will further
develop this theme.

1.5 Dirichlet problems

Let us now consider a connected bounded open subset ofS. We define the stopping
timeT ≡ τDc.

If g is a measurable function onD, we consider the Dirichlet problem associated
to a generator,L, of a Markov process,X:

−(L f )(x) = g(x), x∈ D, (1.5.1)

f (x) = 0, x∈ Dc.

Theorem 1.19.Assume thatET < ∞. Then (1.5.1) has a unique solution given by

f (x) = E

(
T−1

∑
t=0

g(Xt)
∣∣F0

)
(x) (1.5.2)

Proof. Consider the martingaleMt from Lemma 1.11. We know from Doob’s op-
tional stopping theorem (see e.g. [15]) thatMT is also a martingale. Moreover,

MT = f (XT)− f (X0)−
T−1

∑
t=0

(L f )(Xt ) = 0− f (X0)−
T−1

∑
t=0

(L f )(Xt ). (1.5.3)

But we wantf such that−L f = g onD. Thus, (1.5.3) seen as a problem forf , reads

MT =− f (X0)+
T−1

∑
t=0

g(Xt). (1.5.4)

Taking expectations conditioned onF0, yields

0=− f (X0)+E

(
T−1

∑
t=0

g(Xt)
∣∣F0

)
, (1.5.5)

or
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f (x) = Ex

(
T−1

∑
t=0

g(Xt)

)
(1.5.6)

Here we relied of course on Doob’s optimal stopping theorem forEMT = 0.
Thus any solution of the Dirichlet problem is given by (1.5.6). To verify exis-

tence, we just need to check that (1.5.6) solves−L f = g onD. To do this we use the
Markov property “backwards”, to see that

P f(x) = PEx

(
T−1

∑
t=0

g(Xt)

)
= Ex

[
T−1

∑
t=1

g(Xt)

]
(1.5.7)

= Ex

[
T−1

∑
t=0

g(Xt)

]
−g(x) = f (x)−g(x).

⊓⊔
We see that the Markov process produces a solution of the Dirichlet problem. We

can express the solution in terms of an integral kernel, called the Green’s kernel,
GD(x,dy), as

f (x) =
∫

GD(x,dy)g(y)≡ Ex

(
T−1

∑
t=0

g(Xt)

)
, (1.5.8)

or, in more explicit terms,

GD(x,dy) =
∞

∑
t=0

Pt
D(x,dy), (1.5.9)

where

Pt
D(x,dy) =

∫

D
P(x,dz1)

∫

D
P(z1,dz2)

∫

D
. . .

∫

D
P(zt−1,dy). (1.5.10)

Note that
∫

D P(x,dz)< 1.
The preceding theorem has an obvious extension to more complicated boundary

value problems.
Let D ⊂ Sbe as above and specify functionsg: D →R, u: Dc →R andk: D →

[−k̄,∞) with k̄< 1. Consider the following set of equations for an unknown function
f :

(−L f )(x)+ k(x) f (x) = g(x), ∀x∈ D, (1.5.11)

f (x) = u(x), ∀x∈ Dc.

The following theorem provides a stochastic representation of the solution of such
Dirichlet problems.

Theorem 1.20.Let X be a discrete-time Markov process with generator L. Assume
that D is such that

Ex
[
τDc(1− k̄)τDc

]
< ∞. (1.5.12)
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Then the Dirichlet problem(1.5.11)has a unique solution given by

f (x) = Ex

[
τDc−1

∑
s=0

s

∏
u=0

1
1+ k(Xu)

g(Xs)+
τDc−1

∏
u=0

1
1+ k(Xu)

u(XτDc)

]
.

Proof. The most convenient way to prove Theorem 1.20 is again via themartin-
gale problem characterisation of Markov processes. Indeed, we check that, for any
bounded functionf ,

Mt ≡
t−1

∏
s=0

1
1+ k(Xs)

f (Xt )− f (X0)

+
t−1

∑
s=0

s

∏
u=0

1
1+ k(Xu)

[k(Xs) f (Xs)− (L f )(Xs)] (1.5.13)

is a martingale. Moreover, Doob’s optional stopping theorem applies forMτDc under
condition (1.5.12). Thus as before, iff solves the Dirichlet problem (1.5.11), it must
hold that

0 = ExMτc
D
= Ex

(
τDc−1

∏
s=0

1
1+ k(Xs)

u(XτDc)− f (x)

+
τDc−1

∑
s=0

s

∏
u=0

1
1+ k(Xu)

g(Xs)

)
, (1.5.14)

which implies that (1.5.13) must hold. Finally one shows that this solves the Equa-
tion (1.5.11) as in the proof of Theorem 1.19.⊓⊔

Note that the solution to the Dirichlet problem is unique, unless the homogeneous
problem

(−L f )(x)+ k(x) f (x) = 0, ∀x∈ D,
f (x) = 0, ∀x∈ Dc,

(1.5.15)

admits a non-zero solution. The most interesting case for usis whenk ≡ λ is con-
stant. In that case, if (1.5.15) admits a non-zero solution,thenλ is called aneigen-
valueand the corresponding solution aneigenfunctionof the Dirichlet problem.

Theorem 1.20 is a two way game: it allows to produce solutionsof analytic prob-
lems in terms of stochastic processes, and it allows to compute interesting proba-
bilistic problems analytically. As an example, assume thatDc=A∪Bwith A∩B= /0.
Seth= 1IA. Then, clearly, forx∈ D,

Exh(XT) = Px(XT ∈ A)≡ Px(τA < τB), (1.5.16)

and soPx(XT ∈A) can be represented as the solution of the boundary value problem
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(L f )(x) = 0, x∈ D, (1.5.17)

f (x) = 1, x∈ A,

f (x) = 0, x∈ B.

This is a generalisation of theruin problem for the random walk.
Exercise.Derive the formula forPx(τA < τB) directly from the Markov property
without using Lemma 1.11.

1.6 Feynman-Kac formulas

The formalism expained in the preceding section has a usefulextension to the solu-
tion of time-dependent problems of the form

∂t f (x, t)−L f (x, t)+ k(x) f (x, t) = g(x), x∈ S, t ∈ [0,T], (1.6.1)

f (x,T) = ψ(x), x∈ S, (1.6.2)

where∂t f (x, t) ≡ f (x, t)− f (x, t −1) denotes the discrete deriative with respect to
time.k,g,ψ are given functions, andT is a fixed time.

To obtain a stochstic representation of the solution of suchequations, we proceed
by extending the telescopic expansions that yield martingales to functionsf that
depend on bothXt andt. This alows to show that

Mt ≡
t−1

∏
s=0

1
1+ k(Xs)

f (Xt , t)− f (X0,0) (1.6.3)

+
t−1

∑
s=0

s

∏
u=0

1
1+ k(Xu)

[k(Xs) f (Xs,s)− (L f )(Xs,s)+ ∂s f (Xs,s)] ,

where∂s f (X,s)≡ f (X,s)− f (X,s−1), is a martingale. Therefore, fort < T,

E(MT |Ft) = Mt . (1.6.4)

Now the left-hand side of (1.6.4) is equal to
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t−1

∏
s=0

1
1+ k(Xs)

E

(
T−1

∏
s=t

1
1+ k(Xs)

ψ(XT)|Ft

)
− f (X0,0) (1.6.5)

+
t−1

∑
s=0

s

∏
u=0

1
1+ k(Xu)

g(Xs)

+
T−1

∑
s=t

t−1

∏
u=0

1
1+ k(Xu)

E

( s

∏
u=t

1
1+ k(Xu)

g(Xs)
∣∣∣Ft

)

= Mt −
t−1

∏
s=0

1
1+ k(Xs)

f (Xt , t)

+
t−1

∏
s=0

1
1+ k(Xs)

E

(
T−1

∏
s=t

1
1+ k(Xs)

ψ(XT)+
T−1

∑
s=t

s

∏
u=t

1
1+ k(Xu)

g(Xs)
∣∣∣Ft

)
.

Thus we arrive at the representation of the solution of (1.6.1)

f (x, t) = E

(
T−1

∏
s=t

1
1+ k(Xs)

ψ(XT)+
T−1

∑
s=t

s

∏
u=t

1
1+ k(Xu)

g(Xs)
∣∣∣Ft

)
(x). (1.6.6)

This representation is called aFeynman-Kac formula. In the case wheng≡ 0 and
k≡ 0, it simplifies to

f (x, t) = E(ψ(XT)|Ft )(x) = Exψ(XT−t). (1.6.7)

So far we have considered the case without boundary conditions. From the deriva-
tion above, it is, however, also easy to see how to deal with problems of the form

∂t f (x, t)−L f (x, t)+ k(x) f (x, t) = g(x), x∈ D, t ∈ [0,T], (1.6.8)

f (x, t) = ψ(x), x∈ Dc, t ∈ [0,T], (1.6.9)

f (x,T) = ψ(x), x∈ S.

Namely, defining the optional timêT ≡ T ∧ τDc , and noticing thatMT̂ is always a
martingale, we obtain Thus we arrive at the representation of the solution of (1.6.1)

f (x, t) = E

(
T̂−1

∏
s=t

1
1+ k(Xs)

ψ(XT̂)+
T̂−1

∑
s=t

s

∏
u=t

1
1+ k(Xu)

g(Xs)
∣∣∣Ft

)
(x). (1.6.10)

1.7 Doob’sh-transform

Let us consider a Markov process,X, with generatorP−1. We may want to consider
modifications of the process. One important type modification is to condition it to
reach some set in particular places (e.g. consider a random walk in a finite interval;
we may be interested to consider this walk conditioned on thefact that it exits on a
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specific side of the interval; this may correspond to consider a sequence of games
conditioned on the player to win).

How and when can we do this, and what is the nature of the resulting process?
In particular, is the resulting process again a Markov process, and if so, what is its
generator?

As an example, let us try to condition a Markov process to hit adomainB for the
first time in a subsetA⊂ B. We may assume thatEτB < ∞. Defineh(x) ≡ Px[τA =
τB], if x 6∈ B. Let P be the law ofX. Let us define a new measure,Ph, on the space
of paths as follows: IfY is aFt -measurable random variable, then

Eh[Y|F0] =
1

h(X0)
E[h(Xt)Y|F0]. (1.7.1)

Lemma 1.21.With the notation above, if Y is aFτB−1-measurable function,

Eh
x[Y] = Ex[Y|τA = τB]. (1.7.2)

Proof. This is an application of the strong Markov property. By definition,

Eh
x[Y] =

1
h(x)

Ex[Yh(XτB−1)] (1.7.3)

=
1

h(x)
Ex
[
YE′[1IτA=τB|F ′

0](XτB−1)
]

=
1

h(x)
Ex [YE [1IτA=τB|FτB−1]]

=
1

Px[τA = τB]
Ex [Y1IτA=τB]

= Ex[Y|τA = τB].

Here the first equality is just the definition ofh and reproduces the form of the right-
hand side of the strong Markov property; the second equalityis the strong Markov
property; the last equality uses that fact that the event{τA = τB} depends only on
what happens afterτB−1, and so 1IτA=τBθτB−1 = 1IτA=τB. ⊓⊔

Let us now look at the transformed measurePh in the general case. The first thing
to check is of course whether this defines in a consistent way aprobability measure.
Some thought shows that all that we need is the following lemma.

Lemma 1.22.Let Y beFs-measurable. Then, for any t≥ s,

Eh[Y|F0]≡
1

h(X0)
E[h(Xs)Y|F0] =

1
h(X0)

E[h(Xt)Y|F0]. (1.7.4)

In particular,Ph[Ω |F0] = 1.

Proof. Just introduce a conditional expectation:
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E[h(Xt)Y|F0] = E[E[h(Xt)Y|Fs]|F0] = E[YE[h(Xt)|Fs]|F0], (1.7.5)

and use thath(Xt) is a martingale

= E[Yh(Xs)|F0],

from which the result follows. ⊓⊔

This lemma shows in particular, why it is important thathbe a harmonic function.
Now we turn to the question of whether the lawPh is a Markov process. To this

end we turn to the martingale problem. We will show that thereexists a generator,
Lh, such that

Mh
t ≡ f (Xt )− f (X0)−

t−1

∑
s=0

(Lh f )(Xs) (1.7.6)

is a martingale under the lawEh, i.e. that, fort > t ′,

Eh[Mh
t |Ft′ ] = Mh

t′ . (1.7.7)

Note first that, by definition

Eh[Mh
t |Ft′ ] =

1
h(Xt′)

E[h(Xt) f (Xt)|Ft′ ]− f (X0)−
t′−1

∑
s=0

(Lh f )(Xs)

−
t−1

∑
s=t′

1
h(Xt′)

E[h(Xs)L
h f (Xs)|Ft′ ]. (1.7.8)

The middle terms are part ofMh
t′ and we must considerE[ f (Xt)h(Xt)|Ft′ ]. This is

done by applying the martingale problem forP and the functionf h. This yields

E[ f (Xt)h(Xt)|Ft′ ] = f (Xt′ )h(Xt′)+
t−1

∑
s=t′

E[(L( f h))(Xs)|Ft′ ]

Inserting this in (1.7.8) gives

Eh[Mh
t |Ft′ ] = f (Xt′)− f (X0)−

t′−1

∑
s=0

(Lh f )(Xs)

+
1

h(Xt′)

t−1

∑
s=t′

[
E[(L( f h))(Xs)|Ft′ ]−E[h(Xs)L

h f (Xs)|Ft′ ]
]

= Mh
t′

+
1

h(Xt′)

t−1

∑
s=t′

[
E[(L( f h))(Xs)|Ft′ ]−E[h(Xs)L

h f (Xs)|Ft′ ]
]
.

The second term will vanish if we chooseLh defined throughL f (x)= h(x)−1(L(h f))(x),
i.e.
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Lh f (x) ≡ 1
h(x)

∫
P(x,dy)h(y) f (y)− f (x). (1.7.9)

Hence we see that underPh, X solves the martingale problem corresponding to
the generatorLh, and so is a Markov process with transition kernelPh = Lh+1. The
processX underPh is called the (Doob)h-transform of the original Markov process.
Exercise.As a simple example, consider a simple random walk on{−N,−N+
1, . . . ,N}. Assume we want to condition this process on hitting+N before−N.
Then let

h(x) = Px[τN = τ{N}∪{−N}] = Px[τN < τ−N].

Computeh(x) and use this to compute the transition rates of theh-transformed walk?
Plot the probabilities to jump down in the new process!



Chapter 2
Continuous time martingales

Martingales play a truly fundamental rôle in the theory of stochastic processes in
discrete time, and in particular we have seen an intimate connection between mar-
tingales and Markov processes. In this course we will seriously engage in the study
of continuous time processes where this relation will play an even more central rôle.
Therefore, we begin with the extension of martingale theoryto the continuous time
setting. We will see that this will go quite smoothly, but we will have to worry about
a number of technical details. Most of the material in this Chapter is from Rogers
and Williams [15].

2.1 Càdlàg functions

In the example of Brownian motion we have seen that we could construct this con-
tinuous time process on the space of continuous functions. This setting is, however,
too restrictive for the general theory. It is quite important to allow for stochastic
processes to have jumps, and thus live on spaces of discontinuous paths. Our first
objective is to introduce a sufficiently rich space of such functions that will still be
manageable.

Definition 2.1. A function f : R+ →R is called acàdlàg 1 function, iff

(i) for everyt ≥ 0, f (t) = lims↓t f (s), and
(ii)for every t > 0, f (t−) = lims↑t f (s) exists.

Recall that this definition should remind you of distribution functions. In fact, a
probability distribution function is a non-decreasing càdlàg function.

It will be important to be able to extend functions specified on countable sets to
càdlàg functions.

Definition 2.2. A functiony : Q+ →R is calledregularisable, iff

1 From “continue à droite, limites à gauche”.

17
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(i) for everyt ≥ 0, limq↓t y(q) exists finitely, and
(ii)for every t > 0, y(t−) = limq↑t y(s) exists finitely.

Regularisability is linked to properties of upcrossings. We define this important
concept for functions from the rationals toR.

Definition 2.3. Let y : Q+ → R, N ∈ N and let a < b ∈ R. Then the number
UN(y, [a,b]) ∈ N∪ {∞} of upcrossings of[a,b] by y during the interval[0,N] is
the supremum over allk ∈ N, such that there are rational numbersqi, r i ∈ Q, i ≤ k
with the property that

0≤ q1 < r1 < · · ·< qk < rk ≤ N

and
y(qi)< a< b< y(r i), for all 1≤ i ≤ k.

Theorem 2.4.Let y: Q+ → R. Then y is regularisable if and only if, for all N∈ N

and a< b∈ R,
sup{|y(q)| : q∈Q∩ [0,N]}< ∞, (2.1.1)

and
UN(y, [a,b])< ∞. (2.1.2)

Proof. Let us first show that the two conditions are sufficient. To do so, assume
that limsupq↓t y(q) > lim infq↓t y(q). Then chooseb> a such that limsupq↓t y(q) >
b> a> lim infq↓y(q). Then, forN > t, y(q) must cross[a,b] infinitely many times,
i.e.UN(y, [a,b]) = +∞, contradicting assumption (2.1.2). Thus the limit limq↓t y(q)
exists, and by (2.1.1) it is finite. The same argument appliesto the limit from below.

Next we show that the conditions are necessary. Assume that for someN y(q) is
unbounded on[0,N]. Then for anyn there existsqn such that|y(qn)| > n. The set
∪n{qn} must be infinite, since otherwiseq will be infinite on a finite set, contradict-
ing the assumption that it takes values inR. Hence this set has at least one accumu-
lation point,t. But then either limq↑t y(q) or limq↓t y(q) must be infinite, hencey is
not regularisable.

Assume now thatUN(y; [a,b]) = ∞. Definet ≡ inf{r ∈ R+ : Ur(y; [a,b]) = ∞}.
Then there are infinitely many upcrossings of[a,b] in any interval[t − ε, t] or in the
interval[t, t + ε], for anyε > 0. In the first case, this implies that limsupq↑t y(y)≥ b
and liminfq↑t y(y) ≤ a, which precludes the existence of that limit. In the second
case, the same argument precludes the existence of the limitlimq↓t y(y).

One of the main points of Theorem 2.4 is that it can be used to show that the
property to be regularisable is measurable.

Corollary 2.5. Let {Yq,q∈ Q+} be a stochastic process defined on(Ω ,F ,P) and
let

G≡ {ω ∈ Ω : q→Yq(ω) is regularisable} (2.1.3)

Then G∈ F .
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Proof. By Theorem 2.4, to check regularisability we have to take countable inter-
sections and unions of finite dimensional cylinder sets which are all measurable.
Thus regularisability is a measurable property.

Next we observe that from a regularisable function we can readily obtain a càdlàg
function by taking limits from the right.

Theorem 2.6.Let y: Q+ → R be a regularisable function. Define, for any t∈ R+,

f (t)≡ lim
q↓t

y(q). (2.1.4)

Then f is càdlàg .

The proof is obvious and left to the reader.

2.2 Filtrations, supermartingales, and càdlàg processes

We begin with a probability space(Ω ,G ,P). We define a continuous time filtration
Gt , t ∈ R+ essentially as in the discrete time case.

Definition 2.7. A filtration (Gt , t ∈R+) of (Ω ,G ,P) is an increasing family of sub-
σ -algebrasGt , such that, for 0≤ s< t,

Gs ⊂ Gt ⊂ G∞ ≡ σ

(
⋃

r∈R+

Gr

)
⊂ G . (2.2.1)

We call(Ω ,G ,P;(Gt , t ∈ R+)) a filtered space.

Definition 2.8. A stochastic process,{Xt , t ∈R+}, is calledadaptedto the filtration
{Gt , t ∈ R+}, if, for everyt, Xt is Gt -measurable.

Definition 2.9. A stochastic process,X, on a filtered space is called amartingale, if
and only if the following hold:

(i) The processX is adapted to the filtration{Gt , t ∈ R+};
(ii)For all t ∈ R+, E|Xt |< ∞;
(iii)For all s≤ t ∈ R+,

E(Xt |Gs) = Xs, a.s.. (2.2.2)

Sub- and super-martingales are define in the same way, with “=” in (2.2.2) replaced
by “≥” resp. “≤”.

We see that so far almost nothing changed with respect to the discrete time setup.
Note in particular that if we take a monotone sequence of points tn, thenYn ≡ Xtn is
a discrete time martingale (sub, super) wheneverXt is a continuous time martingale
(sub, super).

The next lemma is important to connect martingale properties to càdlàg properties.
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Lemma 2.10.Let Y be a supermartingale on a filtered space(Ω ,G ,P;(Gt , t ∈R+)).
Let t∈ R+ and let q(−n), n∈ N, such that q(−n) ↓ t, as n↑ ∞. Then

lim
q(−n)↓t

Yq(−n)

exists a.s. and inL 1.

Proof. This is an application of the Lévy-Doob downward theorem (see [1], Thm.
4.2.9).

Spaces of càdlàg functions are the natural setting for stochastic processes. We
define this in a strict way.

Definition 2.11.A stochastic process is called a càdlàg process, if all its sample
paths are càdlàg functions. càdlàg processes that are (super,sub) martingales are
called càdlàg (super,sub) martingales.

Remark 2.12.Note that we do not just ask that almost all sample paths are càdlàg .

2.3 Doob’s regularity theorem

We will now show that the setting of càdlàg functions is in fact suitable for the
theory of martingales.

Theorem 2.13.Let (Yt , t ∈ R+) be a supermartingale defined on a filtered space
(Ω ,G ,P,(Gt , t ∈R+)). Define the set

G≡ {ω ∈ Ω : the mapQ+ ∋ q→Yq(ω) ∈ R is regularisable}. (2.3.1)

Then G∈ G andP(G) = 1. The process X defined by

Xt(ω)≡
{

limq↓t Yq(ω), if ω ∈ G,

0, else
(2.3.2)

is a càdlàg process.

Proof. The proof makes use of our observations in Theorem 2.4. Thereare only
countably many triples(N,a,b) with N ∈ N, a< b∈ Q. Thus in view of Theorem
2.4, we must show that with probability one,

sup
q∈Q∩[0,N]

|Yq|< ∞, (2.3.3)

and
UN([a,b];Y|Q)< ∞, (2.3.4)



2.3 Doob’s regularity theorem 21

whereY|Q denotes the restriction ofY to the rational numbers.
To do this, we will use discrete time approximations ofY. Let D(m)⊂Q∩ [0,N]

be an increasing sequence of finite subsets ofQ converging toQ∩ [0,N] asm↑ ∞.
Then

P

[
sup

q∈Q∩[0,N]

|Yq|> 3c

]
= lim

m↑∞
P

[
sup

q∈D(m)

|Yq|> 3c

]
(2.3.5)

≤ c−1(4E|Y0|+3E|YN|) ,

by Lemma 4.4.15 in [1]. Takingc ↑ ∞ (2.3.3) follows. Note that we used the unifor-
mity of the maximum inequality in the number of steps!

Similarly, using the upcrossing estimate of Theorem 4.2.2 in [1], we get that

E [UN([a,b];Y|Q] = lim
m↑∞

E
[
UN([a,b];Y|D(m))

]
< ∞ ≤ E|YN|+ |a|

b−a
, (2.3.6)

uniformly in m, and so (2.3.4) also follows.
Now Theorem 2.4 implies the asserted result.

We may think that Theorem 2.13 solves all problems related tocontinuous time
martingales. Simply start with any supermartingale and then pass to the càdlàg
regularization. However, a problem of measurability arises. This can be seen in the
most trivial example of a process with a single jump. LetYt be defined for anyω ∈Ω
as

Yt(ω) =

{
0, if t ≤ 1,

q(ω), if t > 1,
(2.3.7)

whereEq = 0. Let Gt be the natural filtration associated to this process. Clearly,
for t ≤ 1, Gt = { /0,Ω}. Yt is a martingale with respect to this filtration. The càdlàg
version of this process is

Xt(ω) =

{
0, if t < 1,

q(ω), if t ≥ 1,
(2.3.8)

Now first, Xt is not adapted to the filtrationGt , sinceX1 is not measurable with
respect toG1. This problem can also not be remedied by a simple modification on
sets of measure zero, sinceP[X1 =Y1]< 1. In particular,Xt is not a martingale with
respect to the filtrationGt , since

E[X1+ε |G1] = 0 6= X1.

We see that the right-continuous regularization ofY at the point of the jump an-
ticipates information from the future. If we want to developour theory on càdlàg
processes, we must take this into account and introduce a richer filtration that con-
tains this information.
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Definition 2.14.Let (Ω ,G ,P,(Gt , t ∈ R+)) be a filtered space. Define, for anyt ∈
R+,

Gt+ ≡
⋂

s>t

Gs =
⋂

Q∋q>t

Gq (2.3.9)

and let
N (G∞)≡ {G∈ G∞ : P[G] ∈ {0,1}} . (2.3.10)

Then thepartial augmentation, (Ht , t ∈ R+), of the filtrationGt is defined as

Ht ≡ σ(Gt+,N (G∞)). (2.3.11)

The following lemma, which is obvious from the constructionof càdlàg versions,
justifies this definition.

Lemma 2.15.If Yt is a supermartingale with respect to the filtrationGt , and Xt

is its càdlàg version defined in Theorem 2.13, then Xt is adapted to the partially
augmented filtrationHt .

The natural question is whether in this settingXt is a supermartingale. The next
theorem answers this question and is to be seen as the completion of Theorem 2.13

Theorem 2.16.With the assumptions and notations of Lemma 2.15, the process Xt

is a supermartingale with respect to the filtrationsHt . Moreover, X is a modification
of Y if and only if Y is right-continuous in the sense that, forevery t∈ R+,

lim
s↓t

E|Yt −Ys|= 0. (2.3.12)

Proof. This is now pretty straight-forward. Fixs > t, and take a decreasing se-
quence,s> q(n) ∈Q, of rational points converging tot. Then

E[Ys|Gq(n)]≤Yq(n).

By the Lévy-Doob downward theorem (Theorem 4.2.9 in [1]),

E[Ys|Gt+] = lim
n↑∞

E[Ys|Gq(n)]≤ lim
q↓t

Yq = Xt .

Thus
E[Ys|Ht ]≤ Xt .

Next takeu≥ t andq(n) ↓ u. Then

E[Yq(n)|Ht ]≤ Xt .

On the other hand, Lemma 2.10 and Theorem 2.13,Yq(n) → Xu in L 1, so

E[Xu|Ht ] = lim
n↑∞

E[Yq(n)|Ht ]≤ Xt .

HenceX is a supermartingale with respect toHt .
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The last statement is obvious since

lim
s↓t

E|Yt −Ys|= lim
s↓t

E|Yt −Xt +Xt −Ys|= E|Yt −Xt |.

With the partial augmentation we have found the proper setting for martingale
theory. Henceforth we will work on filtered spaces that are already partially aug-
mented, that is our standard setting (called theusual settingin [15]) is as as follows:

Definition 2.17.A filtered càdlàg space is a quadruple(Ω ,F ,P,(Ft , t ∈ R)),
where(Ω ,F ,P) is a probability space andFt is a filtration ofF that satisfies
the following properties:

(i) F is P-complete (contains sets of outer-P measure zero).
(ii)F0 contains all sets ofP-measure 0.
(iii)Ft = Ft+, i.e.Ft is right-continuous.

If (Ω ,G ,P,(Gt , t ∈R+)) is a filtered space, then the the minimal enlargement of
this space,(Ω ,F ,P,(Ft , t ∈ R+)) that satisfies the conditions (i),(ii),(iii) is called
the right-continuous regularization of this space.

On these spaces everything is now nice.
The following lemma details how a right-continuous regularization is achieved.

Lemma 2.18.If (Ω ,G ,P,(Gt , t ∈ R+)) is filtered space, and(Ω ,F ,P,(Ft , t ∈
R+)) its right-continuous regularization, then

(i) F is theP-completion ofG (i.e. the smallestσ -algebra containingG and all
sets ofP-outer measure zero;

(ii)If N denotes the set of allP-null sets inF , then

Ft ≡
⋂

u>t

σ(Gu,N ) = σ(Gt+,N ); (2.3.13)

(iii) If F ∈ Ft , then there exists G∈ Gt+ such that

F∆G∈ N , (2.3.14)

where F∆G denotes the symmetric difference of the sets F and G.

Proof. Exercise.

Proposition 2.19.The process X constructed in Theorem 2.13 is a supermartingale
with respect to the filtrationFt .

Proof. Since by (2.3.14)Ft andHt differ only by sets of measure zero,E(Xt+s|Ft )
andE(Xt+s|Ht ) differ only on null sets and thus are versions of the same conditional
expectation.

We can now give a version of Doob’s regularity theorem for processes defined
on càdlàg spaces.
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Theorem 2.20.Let (Ω ,F ,P,(Ft , t ∈ R+)) be a filtered càdlàg space. Let Y be an
adapted supermartingale. Then Y has a càdlàg modification, Z, if and only if the
map t→ EYt is right-continuous, in which case Z is a càdlàg supermartingale.

Proof. SinceY is a supermartingale, for anyu≥ t, E(Yu)|Ft) ≤Yt , a.s.. Construct
the processX as in Theorem 2.13 Then

E(Xt |Ft) = E

(
lim
u↓t

Yu|Ft

)
= lim

u↓t
E(Yu|Ft)≤Yt , a.s.. (2.3.15)

sinceYu ↓Yt in L 1. SinceXt is adapted toFt , this impliesXt ≤Yt , a.s..
If now E(Yt) is right-continuous, then limu↓t EYu = EYt , while from theL 1-

convergence ofYu to Xt , we getEXt = limu↓t EYu = EYt . HenceEXt = EYt , and so,
since alreadyXt ≤Yt , a.s.,Xt =Yt , a.s., i.e.Xt is the càdlàg modification ofY. If, on
the other hand,EYt fails to be right-continuous at some pointt, then it follows that
Xt <Yt with positive probability, and so the càdlàg processXt is not a modification
of Y.

2.4 Stopping times

The notions around stopping times that we will introduce in this section will be very
important in the sequel, in particular also in the theory of Markov processes. We
have to be quite a bit more careful now in the continuous time setting, event though
we would like to have everything resemble the discrete time setting.

We consider a filtered space(Ω ,G : P,(Gt , t ∈ R+)).

Definition 2.21.A mapT : Ω → [0,∞] is called aGt-stopping time if

{T ≤ t} ≡ {ω ∈ Ω : T(ω)≤ t} ∈ Gt ,∀t ≤ ∞. (2.4.1)

If T is a stopping time, then thepre-T-σ -algebra,GT , is the set of allΛ ∈ G such
that

Λ ∩{T ≤ t} ∈ Gt ,∀t ≤ ∞. (2.4.2)

With this definition we have all the usual elementary properties of pre-T-σ -
algebras:

Lemma 2.22.Let S,T be stopping times. Then:

(i) If S≤ T, thenGS⊂ GT .
(ii)GT∧S= GT ∩GS.
(iii)If F ∈ GS∨T , then F∩{S≤ T} ∈ GT .
(iv)GS∨T = σ(GT ,GS).

Proof. Exercise.
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It will be useful to talk also about stopping time with respect to the filtrations
Gt+.

Definition 2.23.A mapT : Ω → [0,∞] is called aGt+-stopping time if

{T < t} ≡ {ω ∈ Ω : T(ω)< t} ∈ Gt ,∀t ≤ ∞. (2.4.3)

If T is aGt+-stopping time, then thepre-T-σ -algebra,GT+, is the set of allΛ ∈ G

such that
Λ ∩{T < t} ∈ Gt ,∀t ≤ ∞. (2.4.4)

Lemma 2.24.Let Sn be a sequence ofGt-stopping times. Then:

(i) if Sn ↑ S, then S is aGt stopping time;
(ii)if Sn ↓ S, then S is aGt+-stopping time andGS+ =

⋂
n∈NGSn+.

Proof. Consider case (i). SinceSn is increasing, the sequence of sets{Sn ≤ t} ∈ Gt

is decreasing, and its limit is also inGt . In case (ii), since ifSn ↓ S, {S< t} contains
all sets{Sn < t}. On the other hand, for anyε > 0, there existsn0 < ∞, such that
{S≤ t − ε} ⊂ {Sn < t} for all n ≥ n0. Hence the event{S< t} is contained in⋃

n{Sn ≤ t}, and by the previous observation,{S< t}=⋃n{Sn ≤ t} ∈ Gt .

Definition 2.25.A processXt , t ∈ R+ is calledGt -progressive if, for every t ≥ 0,
the restriction of the map(s,ω)→ Xs(ω) to [0, t]×Ω is B([0, t]×Gt-measurable.

The notion of a progressive process is stronger than that of an adapted process.
The importance of the notion of progressiveness arises fromthe fact thatT-stopped
progressive processes are measurable with respect to the respective pre-T σ -algebra.

The good news is that in the usual càdlàg world we need not worry:

Lemma 2.26.An adapted càdlàg process with values in a metrisable space,(S,B(S)),
is progressive.

Proof. The whole idea is to approximate the process by a piecewise constant one,
to use that this is progressive, and then to pass to the limit.To do this, fixt and set,
for s< t, (we will always understandX(s) = Xs)

Xn(s,ω)≡ X((k+1)2−nt,ω), if k2−nt ≤ s< [k+1]2−nt.

For n fixed, checking measurability of the mapXn involves the inspection of only
finitely many time points, i.e.

(Xn)−1 (B) = {(ω ,s) ∈ Ω × [0, t] : Xn(s,ω) ∈ B}
= {(ω ,s) ∈ Ω × [0, t] : Xn(k(s)2−nt,ω) ∈ B}

wherek(s) = max{k∈ N : k2−nt ≤ s}. The latter set is clearly measurable.
Finally, Xn converges pointwise toX on [0, t], and soX shares the same measur-

ability properties.
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Exercise: Show why the right-continuity of paths is important. Can youfind an
example of an adapted process that is not progressive?

Lemma 2.27.If X is progressive with respect to the filtrationGt and T is aGt-
stopping time, then XT is GT measurable.

Proof. For t ≥ 0 let Ω̂t ≡ {ω : T(ω) ≤ t}. DefineĜt to be the sub-σ -algebra ofGt

such that any setA∈ Ĝt is in Ω̂t . Let ρ : Ω̂t → [0, t]× Ω̂t be defined by

ρ(ω)≡ (T(ω),ω).

Define further the map̂Xt : [0, t]× Ω̂t → Sby

X̂t(s,ω)≡ Xs(ω).

Note that the map̂Xt is measurable with respect toB([0, t])×Gt due to the pro-
gressiveness ofX. ρ is measurable with respect toGt by the definition of stopping
times and the obvious measurability of the identity map. HenceX̂t ◦ρ as map from
Ω̂t → S is Gt- measurable.

Then we can write, forω ∈ Ω̂t , XT(ω) = X̂t ◦ρ(ω), and hence, for any Borel set
Γ

{ω ∈ Ω : XT(ω) ∈ Γ }∩{T ≤ t} = {ω ∈ Ω̂t : XT(ω) ∈ Γ }
= (X̂t ◦ρ)−1(Γ ) ∈ Ĝt ⊂ G ,

which proves the measurability ofXT .

2.5 Entrance and hitting times

Already in the case of discrete time Markov processes we haveseen that the notion
of hitting times of certain sets provides particularly important examples of stopping
times. We will here extend this discussion to the continuoustime case. It is quite
important to distinguish two notions of hitting and first entrance time. They differ
in the way the position of the process at time 0 is treated.

Definition 2.28.Let X be a stochastic process with values in a measurable space
(E,E ). LetΓ ∈ E . We call

τΓ (ω)≡ inf{t > 0 : Xt(ω) ∈ Γ } (2.5.1)

thefirst hitting timeof the setΓ ; we call

∆Γ (ω)≡ inf{t ≥ 0 : Xt(ω) ∈ Γ } (2.5.2)

thefirst entrance timeof the setΓ . In both cases we infimum is understood to yield
+∞ if the process never entersΓ .
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Recall that in the discrete time case we have only worked withτΓ , which is in
fact the more important notion.

We will now investigate cases when these times are stopping times.

Lemma 2.29.Consider the case when E is a metric space and let F be a closed set.
Let X be a continuous adapted process. Then∆F is a Gt-stopping time andτF is a
Gt+-stopping time.

Proof. Let ρ denote the metric onE. Then the mapx→ ρ(x,F) is continuous, and
hence the mapω → ρ(Xq(ω),x) is Gq measurable, forq ∈ Q+. Since the paths
Xt(ω) are continuous,∆F(ω)≤ t if and only if

inf
q∈Q∩[0,t]

{
ρ(Xq(ω),F)

}
= 0.

and so∆F is measurable w.r.t.Gt . For τF the situation is slightly different at time
zero. Let us define, forr > 0,∆ r

F ≡ inf{t ≥ r : Xt ∈ F}. Obviously, from the previous
result,Dr

F is aGt -stopping time. On the other hand,{τF > 0} if and only if there
existsδ > 0, such that, for allQ ∋ r > 0, ∆ r

F > δ . But clearly, the event

Aδ ≡ ∩Q∋r>0{∆ r
F > δ}

is Gδ -measurable, and so the event

{τF = 0}= {τF > 0}c = ∩δ>0Ac
δ

is G0+-measurable and soτF is aGt+-stopping time.

To see where the difference in the two times comes from, consider the process
starting at the boundary ofF. Then∆F = 0 can be deduced from just that knowledge.
On the other hand,τF may or may not be zero: it could be that the process leavesF
and only returns after some timet, or it may stay a little while inF , in which case
τF = 0; to distinguish the two cases, we must look a little bit intothe future!

2.6 Optional stopping and optional sampling

We have seen the theory of discrete time Markov processes that martingale proper-
ties of processes stopped at stopping times are important. We want to recover such
results for càdlàg processes.

In the sequel we will work on a filtered càdlàg space(Ω ,F ,P,(Ft , t ∈R+)) on
which all processes will be defined and adapted.

Our aim is the followingoptional sampling theorem:

Theorem 2.30.Let X be a càdlàg submartingale and let T,S beFt - stopping times.
Then for each M< ∞,
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E(X(T ∧M)|FS)≥ X(S∧T ∧M), a.s.. (2.6.1)

If, in addition,

(i) T is finite a.s.,
(ii)E|X(T)|< ∞, and
(iii)limM↑∞E(X(M)1IT>M) = 0,

then
E(X(T)|FS)≥ X(S∧T), a.s.. (2.6.2)

Equality holds in the case of martingales.

Proof. In order to prove Theorem 2.30 we frst prove a result for stopping times
taking finitely many values.

Lemma 2.31.Let S,T beFt stopping times that take only values in the set{t1, . . . , tm},
0≤ t1 < · · ·< tm ≤ ∞. If X is aFt -submartingale, then

E(X(T)|FS)≥ X(S∧T), a.s.. (2.6.3)

Proof. We need to prove that for anyA∈ FS,

E(1IAX(T))≥ E(1IAX(T ∧S)) . (2.6.4)

Now we can decomposeA= ∪m
i=1A∩{S= ti}. Hence we just have to prove (2.6.4)

with A replaced byA∩{S= ti}, for any i = 1, . . .m. Now, sinceA ∈ FS, we have
thatA∩{S= ti} ∈ Fti . We will first show that

E(X(T)|Fti )≥ X(T ∧ ti). (2.6.5)

To do this, note that

E
(
X(T ∧ tk+1)|Ftk

)
= E

(
X(tk+1)1IT>tk +X(T)1IT≤tk |Ftk

)
(2.6.6)

= E
(
X(tk+1)|Ftk

)
1IT>tk +X(T)1IT≤tk

≤ X(tk+1)1IT>tk +X(T)1IT≤tk

= X(tk∧T), a.s..

SinceS= S∧ tm, this gives (2.6.5) fori = m−1. Then we can iterate (2.6.6) to get
(2.6.5) for generali.

Using (2.6.4), we can now deduce that

E
(
1IA∩{S=ti}X(T)

)
= E

(
1IA∩{S=ti}E(X(T)|Fti )

)
(2.6.7)

≥ E(1IAX(T ∧ ti))

= E(1IAX(T ∧S))

as desired. This concludes the proof of the lemma.
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We now continue the proof of the theorem through approximation arguments.
Let Sn = (k+1)2−n, if S∈ [k2−n,(k+1)2−n), andT(n) = ∞, if T = ∞; defineT(n)

in the same way. Fixα ∈ R andM > 0. Then the preceeding lemma implies that

E

(
X(T(n)∧M)∨α|FS(n)

)
≥ X(T(n)∧S(n)∧M)∨α, a.s.. (2.6.8)

SinceFS⊂ FS(n) , it follows that

E

(
X(T(n)∧M)∨α|FS

)
≥ E

(
X(T(n)∧S(n)∧M)∨α|FS

)
, a.s.. (2.6.9)

Again from using Lemma 2.31, we get that

α ≤ X(T(n)∧M)∨α ≤ E
(
X(M)∨α|FT(n)

)
, a.s.,

and thereforeX(T(n) ∧M)∨ α is uniformly integrable. SimilarlyX(T(n) ∧S(n) ∧
M)∨α is uniformly integrable. Therefore we can pass to the limitn ↑ ∞ in (2.6.9)
and obtain, using thatX is right-continuous,

E(X(T ∧M)∨α|FS)≥ E(X(T ∧S∧M)∨α|FS) , a.s.. (2.6.10)

Since this relation holds for allα, we may letα ↓ −∞ to get (2.6.1). Using the
additional assumptions onT; we can pass to the limitM ↑ ∞ and get (2.6.2) in this
case: First, the a.s. finiteness ofT implies that

lim
M↑∞

X(T ∧S∧M) = X(T ∧S), a.s.,

Do deal with the left-hand side, write

E(X(T ∧M)|FS) = E(X(T)|FS)

+ E(X(M)1IT>M|FS)−E(X(T)1IT>M|FS)

The first term in the second line converges to zero by Assumption (iii), since

|E(X(M)1IT>M|FS)| ≤ E(|X(M)|1IT>M|FS)

and
EE(|X(M)|1IT>M|FS) = E(|X(M)|1IT>M) ↓ 0.

The mean of the absolute value of the second term is bounded by

E(|X(T)|1IT>M) ,

which tends to zero by dominated convergence due to Assumtions (i) and (ii).

A special case of the preceeding theorem implies the following corollary:

Corollary 2.32. Let X be a càdlàg (super, sub )martingale, and let T be a stopping
time. Then XT ≡ XT∧t is a (super, sub) martingale.
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In the case of uniformly integrable supermartingales we getDoob’s optional sam-
pling theorem:

Theorem 2.33.Let X be a uniformly integrable or a non-negative càdlàg supermartingale.
Let S and T be stopping times with S≤ T. Then XT ∈ L 1 and

E(X∞|FT)≤ XT , a.s. (2.6.11)

and
E(XT |FS))≤ XS, a.s., (2.6.12)

with equality in the uniformly integrable martingale case.

Proof. The proof is along the same lines of approximation with discrete super-
martingales as in the preceding theorem and uses the analogous results in discrete
time (see [15], Thms (59.1,59.5)).



Chapter 3
Markov processes in continuous time

In this chapter we develop the theory of Markov processes in continuous time with
general state space. We would expect that much that is true indiscrete time carries
over, but on the technical level, we will encounter many analytical problems that
were absent in the discrete time setting. The need for studying continuous time pro-
cesses is motivated in part from the fact that they arise a natural limits of discrete
time processes. You have already seen this in the case of Brownian motion, and the
same holds for certain classes of Lévy processes. We will also see that they lend
themselves in may respects to simpler, or more elegant computations and are there-
fore used in many areas of applications, e.g. mathematical finance. In the remainder
of this section,Sdenotes at least a Lousin space, and in fact you may assumeS to
be Polish. In this section we will restrict our attention totime-homogeneousMarkov
process. Markov processes in continuous time are define analogously to those in
discrete time. The following definition is provisional.

Definition 3.1. A stochastic processX with state spaceS and index setR+ is a
continuous time Markov process with stationary transitionkernelPt if, for all A∈B,
t ∈ N,

P(Xt+s ∈ A|Ft)(ω) = Ps(Xt(ω),A),P−a.s.. (3.0.1)

Here{Ft}t∈N0 denotes theσ -algebra generated by the random variablesX0, . . . ,Xt .

The specific requirements on transition kernels will be discussed in detail below.

Notation: In this sectionSwill usually denote a metric space. ThenB(S,R)≡ B(S)
will be the space of real valued, bounded, measurable functions onS;C(S,R)≡C(S)
will be the space of continuous functions,Cb(S,R) ≡ Cb(S) the space of bounded
continuous functions, andC0(S,R)≡C0(S) the space of bounded continuous func-
tions that vanish at infinity. ClearlyC0(S)⊂Cb(S)⊂C(S)⊂ B(S).

31
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3.1 Markov jump processes

The simplest class of Markov processes with continuous timecan be constructed
“explicitly” from Markov processes with discrete time. They are called Markov
jump processes. The idea is simple: take a discrete time Markov process, sayYn,
and make it into a continuous time process by randomizing thewaiting times be-
tween each move in such a way as to make the resulting process Markovian.

Let us be more precise. LetYn, Yn ∈ S, n ∈ N, be some discrete time Markov
process with transition kernelP and initial distributionµ . Let m(x) : S→ R+ be a
uniformly bounded, measurable function. To avoid complications, we will assume
that 0< infx∈Sm(x) ≤ supx∈Sm(x) < ∞. Let ei , i ∈ N, be a family of independent
exponential random variables with mean 1, defined on the sameprobability space
(Ω ,F ,P) asYn, and letYn and theex be mutually independent. Then define the
process

S(n)≡
n−1

∑
i=0

eim(Yi). (3.1.1)

S(n) is called aclock process. It is supposed to represent the time at which then-th
jump is to take place. We define the inverse function

S−1(t)≡ sup{n : S(n)≤ t} . (3.1.2)

Then set
X(t)≡YS−1(t). (3.1.3)

Theorem 3.2.The process X(t) defined through (3.1.3) is a continuous time Markov
process with càdlàg paths.

Proof. We can express what we would expect to play the role of a transition kernel
as follows:

Pt(x,A)≡ Px (Xt ∈ A) =
∞

∑
n=0

Px(Yn ∈ A,S(n)≤ t < S(n+1)). (3.1.4)

This is just saying that the eventXt ∈ A can be realized by the process making
exactlyn jumps before timet and the jump-chainY being inA at discrete timen.
Now let us consider

Px(Xt+s ∈ A|Ft) (3.1.5)

It is clear thatFt contains the information on whatXt is and on when the last (say
thek-th) jump beforet occurred, say at timet − r. Since that time,Yk = Xt . SinceY
is Markov, the event{Xt+s ∈ A} can only depend on this information, and is in fact
given by

Px (Xt+s ∈ A|Ft) =
∞

∑
n=0

PXt (Yn ∈ A,S(n)≤ t + r + s< S(n+1)|S(1)> r) . (3.1.6)

But due to the fact that the random variablee0 is exponentially distributed,
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P(e1m(Xt)− r ≥ a|e1m(Xt)− r ≥ 0) = P(e1m(Xt)≥ a) , (3.1.7)

so that

PXt (Yn ∈ A,S(n)≤ t + r + s< S(n+1)|S(1)> r) (3.1.8)

= PXt (Yn ∈ A,S(n)≤ t + s< S(n+1))

so that indeed the conditional probability depends only onXt , proving thatX is a
Markov process. The fact thatX has càdlàg paths is obvious from the construction.
⊓⊔

It is clear from the construction that the transition probability kernel P and the
functionm determine the transition kernelsPt completely. We will now make this
connection more explicit. kernel. First we observe that

lim
t↓0

Pt(x,A) = 1Ix∈A. (3.1.9)

This follows simply from the fact that

Px(Yn ∈ A,S(n)≤ t < S(n+1)) ≤ P [Sn ≤ t]≤ P

[
m̄

n−1

∑
i=0

ei ≤ t

]
(3.1.10)

=
∞

∑
k=n

(t/m̄)k

k
e−t/m̄,

wherem̄≡ infx∈Sm(x). Similarly we see that

lim
t↓0

t−1 (Px(Xt ∈ A)−1Ix∈A)

= lim
t↓0

t−1 (1Ix∈A(P(m(x)e1 > t)−1)+Px(Y1 ∈ A,S(1)≤ t))

= (P(x,A)−1Ix∈A) lim
t↓0

t−1P(m(x)e1 ≤ t)

= (P(x,A)−1Ix∈A) lim
t↓0

t−1(1−e−t/m(x)) =
1

m(x)
L(x,A). (3.1.11)

We will denote the right-hand side of (3.1.11) byG and call it thegeneratorof the
Markov jump processX. By the Markov property, it follows that we get a more
general result:

Lemma 3.3.For any t≥ 0,

d
dt

Pt(x,A) = (PtG)(x,A) = (GPt)(x,A). (3.1.12)

Proof. Using the Markov property we get theChapman-Kolmogorov equation,

Px (Xt+h ∈ A) = Px(Px (Xt+h ∈ A|Ft)) =

∫

S
Ph(y,A)Pt(x,dy). (3.1.13)
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This implies that

lim
h↓0

h−1 (Pt+h(x,A)−Pt(x,A)) =
∫

S
lim
h↓0

h−1 (Ph(y,A)−1Iy∈A)Pt(x,dy) (3.1.14)

=

∫

S
G(y,A)Pt(x,dy)m(y)P(y,A) ≡ (PtG)(x,A).

Alternatively, we can write

lim
h↓0

h−1(Pt+h(x,A)−Pt(x,A)) =
∫

S
lim
h↓0

h−1Pt(y,A)
(
Ph(x,dy)−1Ix∈dy

)
(3.1.15)

=

∫

S
Pt(y,A)G(x,dy) ≡ (GPt)(x,A).

This proves the lemma.⊓⊔

We can view Eq. (3.1.12) as a differential equation forPt ,

d
dt

Pt(x,A) = GPt(x,A), (3.1.16)

which has the solution

Pt = exp(tG)≡
∞

∑
n=0

tn

n!
Gn, (3.1.17)

whereGn is defined as then-fold application ofG from the right. This can be made
rigorous if we think ofP as an operator acting on bounded measurable functions.G
is a bounded operator on this space,

‖G f‖∞ = sup
x∈S

∣∣∣∣
∫

S

1
m(x)

P(x,dy) f (y)

∣∣∣∣ ≤ ‖ f‖∞, (3.1.18)

so
‖L‖ ≤ ‖1/m‖∞ < ∞, (3.1.19)

where the last inequality holds by assumption. Then the series∑∞
n=0

tn
n! G

n is abso-
lutely convergent in norm and defines a bounded operator, exp(tG). This operator
solves the differential equation, which has a unique solution with initial condition
P0 = 1I.

So for Markov jump processes we have a nice picture: the process is uniquely
determined by the initial condition and a single operatorG, the generatorof the
process. The transition kernel is given by exp(tG).

The bad news is that this construction relied on the boundedness of the operator
G, which in turn relied on the fact that the jump rates,m, where uniformly bounded.
Many Markov processes do not fall into this class: Brownian motion, Lévy jump
processes with infinite Lévy measure, etc.. In the next sections we will investigate
what can be salvaged from this nice picture in the general case.
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3.2 Semi-groups, resolvents, generators

The main building block for a time homogeneous Markov process is the so called
transition kernel,P : R+×S×B → [0,1].

3.2.1 Transition functions and semi-groups

We now give the precise definition of continuous time Markov processes. In the se-
quel we will always assume that we are dealing with stochastic processes on càdlàg
spaces that satisfy theusual assumptions(see Definition 2.17. In particular, all fil-
trations are assumed to be right-continuous.

Definition 3.4. A Markov transition function, Pt is a family of kernelsPt : S×
B(S)→ [0,1] with the following properties:

(i) For eacht ≥ 0 andx∈ S, Pt(x, ·) is a measure on(S,B) with Pt(x,S)≤ 1.
(ii)For eachA∈ B, andt ∈ R+, Pt(·,A) is aB-measurable function onS.
(iii)For any t,s≥ 0,

Ps+t(x,A)) =
∫

Pt(y,A)Ps(x,dy). (3.2.1)

We can now make the definition of continuous time Markov processes more pre-
cise.

Definition 3.5. A stochastic processX with state spaceS and index setR is a
continuous time homogeneous Markov process with lawP on a filtered space
(Ω ,F ,P,(Ft , t ∈ R+)) with transition functionPt , if it is adapted toFt and, for
all boundedB-measurable functionsf , t,s∈ R+,

E [ f (Xt+s)|Fs] (ω) = (Pt f )(Xs(ω)), a.s.. (3.2.2)

It will be very convenient to think of the transition kernelsas bounded linear
operators on the space of bounded measurable functions onS, B(S,R), acting as

(Pt f )(x) ≡
∫

S
Pt(x,dy) f (y). (3.2.3)

The Chapman-Kolmogorov equations (iii) then take the simple form PsPt = Pt+s.
Pt can then be seen as asemi-groupof bounded linear operators. Note that we also
have the dual action ofPt on the space of probability measures via

(µPt)(A)≡
∫

S
µ(dx)Pt(x,A). (3.2.4)

Of course we then have the duality relation

(µPt)( f ) =
∫

S
µ(dx)(Pt f )(x) = µ (Pt f ) ,
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for f ∈ B(S,R).

Remark 3.6.The conditionsPt(x,S) ≤ 1 may look surprising, since you would ex-
pectPt(x,S) = 1; the latter is in fact the standard case, and is sometimes called an
“honest” transition function. However, one will want to deal with the case when
probability is lost, i.e. when the process can “die”. In fact, there are several scenar-
ios where this is useful. First, if our state space is not compact, we may want to
allow for our processes toexplode, resp. go to infinityin finite time. Such phenom-
ena happen in deterministic dynamical systems, and it wouldbe too restrictive to
to exclude this option for Markov chains, which we think of asstochastic dynam-
ical systems. Another situation concerns open state spaces with boundaries where
we want to stop the process upon arrival at the boundary. Finally, we might want to
consider processes thatdiewith certain rates out of pure spite.

In all these situations, it is useful to consider a compactification of the state space
by adjoining a so-calledcoffin state, usually denoted by∂ . This state will always
be considered absorbing. A dishonest transition function then becomes honest if
considered extended to the spaceS∪∂ . These extensions will sometimes be called
P∂

t . To be precise, we will set

(i) P∂
t (x,A)≡ Pt(x,A), for x∈ S,A∈ B(S),

(ii)P∂
t (∂ ,∂ ) = 1,

(iii)P∂
t (x,∂ ) = 1−Pt(x,S).

We will usually not distinguish the semi-group and its honest extension when talking
aboutS∂ -valued processes.

It is not hard to see, by somewhat tedious writing, that the transition functions
(and an initial distribution) allow to express finite dimensional marginals of the law
of the Markov process. This also allows to construct a process on the level of the
Daniell-Kolmogorov theorem. The really interesting questions in continuous time,
however, require path properties. Given a semi-group, can we construct a Markov
process with càdlàg paths? Does the strong Markov property hold? We will see that
this will involve analytic regularity properties of the semi-groups.

Another issue is that semi-groups are somewhat complicatedand in almost no
cases (except some Gaussian processes, like Brownian motion) can they be written
down explicitly. In the case of discrete time we have seen therôle played by the
generator (respectively one-step transition probabilities). The corresponding object,
the infinitesimal generator of the semi-group, will be seen to play an even more
important rôle here. In fact, our goal in this section is to show how and when we
can characterize and construct a Markov process by specifying a generator. This is
fundamental for applications, since we are more likely to beable to describe the
law of the instantaneous change of the state of the system, then its behavior at all
times. This is very similar to the theory of differential equations: there, too, the
modeling input is the prescription of the instantaneous change of state, described by
specifying some derivatives, and the task of the theory is tocompute the evolution
at later times.
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Eq. (3.2.1) allows us to think of Markov kernels as operatorson the Banach space
of bounded measurable functions.

Definition 3.7. A family, Pt of bounded linear operators onB(S,R) is calledsub-
Markov semi-group, if for all t ≥ 0,

(i) Pt : B(S,R)→ B(S,R);
(ii)if 0 ≤ f ≤ 1, then 0≤ Pt f ≤ 1;
(iii)for all s> 0, Pt+s = PtPs;
(iv)if fn ↓ 0, thenPt fn ↓ 0.

A sub-Markov semigroup is callednormal if P0 = 1. It is calledhonest, if, for all
t ≥ 0, Pt1= 1.

Exercise.Verify that the transition functions of Brownian motion (Eq. (6.18) in [1])
define a honest normal semi-group.

In the sequel we assume thatPt is measurablein the sense that the map(x, t)→
Pt(x,A), for anyA∈ B, is B(S)×B(R+)-measurable.

Let us now assume thatPt is a family of Markov transition kernels. Then we may
define, forλ > 0, theresolvent, Rλ , by

(Rλ f )(x) ≡
∫ ∞

0
e−λ t(Pt f )(x)dt =

∫

S
Rλ (x,dy) f (y), (3.2.5)

where theresolvent kernel, Rλ (x,dy), is defined as

Rλ (x,A)≡
∫ ∞

0
e−λ tPt(x,A)dt. (3.2.6)

The following properties of asub-Markovian resolventare easily established:

(i) For all λ > 0, Rλ is a bounded operator fromB(S,R) to B(S,R);
(ii)if 0 ≤ f ≤ 1 then 0≤ Rλ f ≤ λ−1;
(iii)for λ ,µ > 0,

Rλ −Rµ = (µ −λ )Rλ Rµ ; (3.2.7)

(iv)if fn ↓ 0, thenRλ fn ↓ 0.

Moreover, ifPt is honest, thenRλ 1= λ−1, for all λ > 0.
Eq. (3.2.7) is called theresolvent identity. To prove it, use the identity

∫
e−λ se−µt f (s+ t)dsdt=

∫
e−λ u−e−µu

µ −λ
f (u)du.

Our immediate aim will be to construct the generator of the semi-group. To mo-
tivate the following, let us look at this in the case of jump processes, i.e. when the
generator is a bounded operator. In this case we search an operator G such that
Pt = exp(tG). Then, formally, we see that

Rλ =
∫ ∞

0
e−λ teGtdt =

1
λ −G

. (3.2.8)
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This should make sense, becauseeGt is bounded (by one), so that the integral con-
verges at infinity for anyλ > 0.

Finally, we can recoverG from Rλ : set

Gλ ≡ λ (λRλ −1) =
G

1−G/λ
;

formally, at leastGλ → G, if λ ↑ ∞.
While the above discussion makes sense only for boundedG, we can define, for

λ > 0, exp(tGλ ), sinceGλ is bounded, and we will see that (under certain circum-
stances, exp(tGλ )→ Pt , asλ ↑ ∞.

3.2.2 Strongly continuous contraction semi-groups

These manipulations become rigorous in the context of so calledstrongly continuous
contraction semi-groups(SCCSG) and constitute the famous Hille-Yosida theorem.

Definition 3.8. Let B0 be a Banach space. A family,Pt : B0 → B0, of bounded linear
operators is called astrongly continuous contraction semigroupif the following
conditions are verified:

(i) for all f ∈ B0, limt↓0‖Pt f − f‖= 0:
(ii)‖Pt‖ ≤ 1, for all t ≥ 0;
(iii)PtPs = Pt+s, for all t,s≥ 0.

Here‖ · ‖ denotes the operator norm corresponding to the norm onB0.

Lemma 3.9.If Pt is a strongly continuous contraction semigroup, then, for any f ∈
B0, the map t→ Pt f is continuous.

Proof. Let t ≥ s≥ 0. We need to show thatPt f − Ps f tends to zero in norm as
t − s↓ 0. But

‖Pt f −Ps f‖ = ‖Ps(Pt−s f − f )‖ ≤ ‖Pt−s f − f‖,
which tends to zero by property (i). Note that we needed all three defining proper-
ties!. ⊓⊔

Note that continuity allows to define the resolvent through a(limit of) Riemann
integrals,

Rλ f ≡ lim
T↑∞

∫ T

0
e−λ tPt f .

The inherited properties of such anRλ motivate theDefinitionof a strongly con-
tinuous contraction resolvent (SCCR).

Definition 3.10.Let B be a Banach space, and letRλ , λ > 0, be a family of bounded
linear operators onB. ThenRλ is called acontraction resolvent, if
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(i) λ‖Rλ‖ ≤ 1, for all λ > 0;
(ii)the resolvent identify (3.2.7) holds.

A contraction resolvent is calledstrongly continuous, if in addition

(iii)lim λ↑∞ ‖λRλ f − f‖= 0.

Exercise.Verify that the resolvent of a strongly continuous contraction semi-group
is a strongly continuous contraction resolvent.

Lemma 3.11.Let Rλ be a contraction resolvent on B0. Then the the range of Rλ is
independent ofλ , and the closure of its range coincides with the space of functions,
h, such thatλRλ h→ h, asλ ↑ ∞.

Proof. Both observations follow from the resolvent identity. Letµ ,λ > 0, thenRµ =
Rλ (1+(λ −µ)Rµ . Thus, ifg is in the range ofRµ , then it is also in the range ofRλ :
if g= Rµ f , theng= Rλ h, whereh= (1+(λ −µ)Rµ) f ! Denote the common range
of theRλ by R.

Moreover, ifh∈ R, thenh= Rµg, and so

(λRλ −1)h= (λRλ −1)Rµg=
µ

λ − µ
Rµg− λRλ

λ − µ
g

SinceλRλ is bounded, it follows that the right-hand side tends to zero, asλ ↑ ∞.
Also, if h is in the closure ofR, the there existhn ∈ R, such thathn → h; then

‖λRλ h−h‖ ≤ ‖λRλ hn−hn‖+ ‖hn−h‖+ ‖λRλ( f − fn)‖,

and sinceλRλ is a contraction, the right hand side can be made as small as desired
by lettingn andλ tend to infinity. Finally, it is clear that ifh= limλ↑∞ λRλ h, thenh
must be in the closure ofR. ⊓⊔

As a consequence, the restriction of a contraction resolvent to the closure of
its range is strongly continuous. Moreover, for a strongly continuous contraction
resolvent, the closure of its range is equal toB0, and so the range ofRλ is dense in
B0.

We now come to the definition of an infinitesimal generator.

Definition 3.12.Let B0 be a Banach space and letPt , t ∈ R+ be a strongly contin-
uous contraction semigroup. We say thatf is in the domain ofG, D(G), if there
exists a functiong∈ B0, such that

lim
t↓0

‖t−1(Pt f − f )−g‖= 0. (3.2.9)

For suchf we setG f = g if g is the function that satisfies (3.2.9).

Remark 3.13.Note that we define the domain ofG at the same time asG. In gen-
eral,G will be an unbounded (e.g. a differential) operator whose domain is strictly
smaller thanB0. Some authors (e.g. [6]) describe the generator of a Markov process
as a collections of the pairs of functions( f ,g) satisfying (3.2.9).
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The crucial fact is that the resolvent is related to the generator in the way antici-
pated in (3.2.8).

Lemma 3.14.Let Pt be a strongly continuous contraction semigroup on B0. Then
the operators Rλ and(λ −G) are inverses.

Proof. Let g ∈ B0 and let f = Rλ g. We want to show first that(λ −G) f = g, i.e.
that if f is in the range ofRλ , then it is in the domain ofG andG f = λ f +g. But

λ f − t−1(Pt f − f ) = t−1( f (1+λ t)−Pt f )

As t ↓ 0, we may replace(1+λ t) by eλ t and write

lim
t↓0

λ f − t−1(Pt f − f ) = lim
t↓0

eλ tt−1(Rλ g−e−λ tPtRλ g)

Now
e−λ tPtRλ g=

∫ ∞

0
e−λ (t+sPt+sgds=

∫ ∞

t
e−λ sPsgds,

and so

t−1(Rλ g−e−λ tPtRλ g) = t−1
∫ t

0
e−λ sPsgds.

By continuity ofPt , the latter expression converges tog, ast ↓ 0, so we have shown
that(λ −G)Rλ g= g, and thatRλ g∈ D(G).

Next we takef ∈ D(G). Thenε−1(Pt+ε f −Pt f ) = Pt(ε−1(Pε f − f ) → PtG f .
Thus,

d
dt

Pt f = PtG f.

Integrating this relation gives that

Pt f − f =
∫ t

0
PsG f ds.

Multiplying with e−λ t and integrating gives

Rλ f −λ−1 f = λ−1Rλ G f,

which shows that forf ∈ D(G), Rλ (λ −G) f = f , and in particularf ∈ R. Thus
D(G) = R. This concludes the proof of the lemma.⊓⊔

3.2.3 The Hille-Yosida theorem

We now prove the fundamental theorem of Hille and Yosida thatallows us to con-
struct a semi-group from the resolvent.
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Theorem 3.15.Let Rλ be a strongly continuous contraction resolvent on a Banach
space B0. Then there exists auniquestrongly continuous contraction semi-group,
Pt , t ∈ R, on B0, such that, for allλ > 0 and all f ∈ B0,

∫ ∞

0
e−λ tPt f dt = Rλ f . (3.2.10)

Moreover, if
Gλ ≡ λ (λRλ −1) (3.2.11)

and
Pt,λ ≡ exp(tGλ ) , (3.2.12)

then
Pt f = lim

λ↑∞
Pt,λ f . (3.2.13)

Proof. When proving the Hille-Yosida theorem we must take care not to assume the
existence of a semi-group. So we want to rely essentially on the resolvent identity.

We have seen before that the range,R, of Rλ is independent ofλ and dense in
B0, due to the assumption of strong continuity. Now we want to show thatRλ is a
bijection. Note that we cannot use Lemma 3.14 here because inits prove we used
the existence ofPt . Namely, leth ∈ B0 such thatRλ h = 0. Then,by the resolvent
identity,

Rµh= (1− (λ − µ)Rµ)Rλ h= 0,

for everyµ . But by strong continuity, limµ↑∞ µRµh= h, so we must have thath= 0.
Therefore, there exists an inverse,R−1

λ , of Rλ , with domain equal toR, such that
for all h∈ B0, R−1

λ Rλ h= h, and forg∈R, Rλ R−1
λ g= g. Moreover, by the resolvent

identity,
Rλ R−1

µ = (Rµ +(µ −λ )Rλ Rµ)R
−1
µ = 1+(µ −λ )Rλ .

Thus
R−1

µ − (µ −λ ) = R−1
λ , (3.2.14)

which we may rewrite as

R−1
λ −λ = R−1

µ − µ ≡−G (3.2.15)

in other words, there exists an operatorG with domainD(G) = R, such that, for all
λ ,

1
λ −G

= Rλ . (3.2.16)

We now show the following lemma:

Lemma 3.16.Let Gλ be defined in (3.2.11). Then, f∈ D(G) if and only if

lim
λ↑∞

Gλ f ≡ g

exists. Then G f= g.
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Proof. Let first f ∈ D(G). Then

Gλ f = λ (λRλ −1) f = λRλ (λ −R−1
λ ) f = λRλ G f,

and by strong continuity, limλ↑∞ λRλ G f = G f , as claimed.
Assume now that limλ↑∞ Gλ f = g. The by the resolvent identity,

RµGλ f = λ
(

µRµ −λRλ
λ − µ

)
f =

λ µ
λ − µ

Rµ f − λ
λ − µ

λRλ f .

As λ ↑ ∞, the right-hand side clearly tends toµRµ f − f , while the left hand side, by
assumption, tends toRµg. Hence,

f = µRµ f −Rµg= Rµ(µ f −g).

Therefore,f ∈ R, and

G f = (µ −R−1
µ )Rµ(µ f −g) = µ f −R−1

µ Rµ(µ f −g) = µ f − µ f +g= g.

⊓⊔

We now continue the proof of the theorem. Note thatGλ is bounded, and so by
the standard properties of the exponential map, we have the following three facts:

(i) Pt,λ Ps.λ = Pt+s,λ .
(ii)lim t↓0 t−1(Pt,λ −1) = Gλ .
(iii)Pt,λ −1=

∫ t
0 Ps,λ Gλ ds.

Moreover, since‖λRλ‖ ≤ 1, from the definition ofPt,λ it follows that

‖Pt,λ‖ ≤ e−λ tetλ‖λ Rλ | ≤ 1.

Now the resolvent identity implies that the operatorsRλ andRµ commute for all
λ ,µ > 0, and so all derived operators commute. Thus we have the telescopic expan-
sion

Pt,λ −Pt,µ = Pt,λ P0,µ −P0,λPt,µ (3.2.17)

=
n

∑
k=1

(
Pkt/n,λ P(n−k)t/n,µ −P(k−1)t/n,λP(n−k+1)t/n,µ

)

=
n

∑
k=1

P(k−1)t/n,λ P(n−k)t/n,µ
(
Pt/n,λ −Pt/n,µ

)
.

By the bound on‖Pt,λ‖, it follows that for anyf ∈ B0,

‖Pt,λ f −Pt,µ f‖ ≤ n‖Pt/n,λ f −Pt/n,µ f‖
= n

∥∥(Pt/n,λ −1
)

f −
(
Pt/n,µ −1

)
f
∥∥ .
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Passing to the limitn ↑ ∞, and using (ii), we conclude that

‖Pt,λ f −Pt,µ f‖ ≤ t‖Gλ f −Gµ f‖. (3.2.18)

This implies the existence of limλ↑∞ Pt,λ f ≡Pt f whenever limλ↑∞ Gλ f exists, hence
by Lemma 3.16 for allf ∈ D(G). Moreover, the convergence is uniform int on
compact sets, so the mapt → Pt f is continuous. SinceD(G) = R is dense inB0,
andPt,λ are uniformly bounded in norm, these results in fact extendsto all functions
f ∈ B0. The familyPt inherits all properties of a SCCSG from the properties ofP,λ .

It remains to show that (3.2.10) holds. To do so, note that
∫ ∞

0
e−λ tPt,µ f dt =

∫ ∞

0
e−t(λ−Gµ ) f dt =

1
λ −Gµ

f

As µ tends to infinity, the left-hand side converges to
∫ ∞

0 e−λ tPt f , and, using the
resolvent identity, the right hand side is shown to tend toRλ f . Namely,

1
λ −Gµ

=
1

λ + µ − µ2Rµ
=

1
λ + µ

+
µ2Rµ

(λ + µ)(λ + µ − µ2Rµ)
. (3.2.19)

The first term converges to zero. For the second, we write

µ2Rµ

(λ + µ)(λ + µ − µ2Rµ)
=

µ2

(λ + µ)2

Rµ

1− µ2

λ+µ Rµ
. (3.2.20)

For γ > 0, to be choose later, we continue

Rµ

1− µ2

λ+µ Rµ
=

RµRγ

Rγ − µ2

λ+µ RµRγ
(3.2.21)

=
RµRγ

Rγ − µ2

λ+µ
Rγ−Rµ

µ−γ

=
RµRγ

Rγ

(
1− µ2

(λ+µ)(µ−γ)

)
+ µ2

λ+µ
Rµ

µ−γ

.

Now chooseγ such that µ2

(λ+µ)(µ−γ) = 1, that isγ = λ µ/(λ + µ). We get

1
λ −Gµ

=
1

λ + µ
+

µ2

(λ + µ)2Rγ . (3.2.22)

As µ ↑ ∞, γ → λ , and henceRγ → Rλ , and so the claim follows. This concludes the
prove of the theorem.⊓⊔

The Hille-Yosida theorem clarifies how a strongly continuous contraction semi-
group can be recovered from a resolvent. To summarize where we stand, the theorem
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asserts that if we have a strongly continuous contraction resolvent family,Rλ , then
there exists a unique operator,G, such thatRλ = (λ −G)−1, and a strongly contin-
uous contraction semigroup,Pt , such thatRλ is its resolvent. Then the operatorG
will in fact have to be the generator ofPt , from what we already know.

One might rightly ask if we canstart from a generator: of course, the answer is
yes: if we have linear operator,G, with D(G) ⊂ B0, this will generate a strongly
continuous contraction semi-group, if the operators(λ −G)−1 exist for all λ > 0
and form a strongly continuous contraction resolvent family.

One may not be quite happy with this answer, which leaves a lotto verify. It
would seem nicer to have a characterization of when this is true in terms of direct
properties of the operatorG.

In the next theorem (sometimes also called the Hille-Yosidatheorem, see [6]),
formulates such conditions.

Theorem 3.17.A linear operator, G, on a Banach space, B0, is the generator of a
strongly continuous contraction semi-group, if and only ifthe following hold:

(i) The domain of G,D(G), is dense in B0.
(ii)G is dissipative, i.e. for all λ > 0 and all f ∈ D(G),

‖(λ −G) f‖ ≥ λ‖ f‖. (3.2.23)

(iii)There exists aλ > 0 such thatrange(λ −G) = B0.

Proof. By theorem 3.15, we just have to show that the family(λ −G)−1 is a strongly
continuous contraction resolvent, if and only if (i)–(iii)hold. In fact, we have seen
that properties (i)–(iii) are satisfied by the generator associated to a strongly con-
tinuous contraction resolvent: (i) was shown at the beginning of the proof of Thm.
3.15, (ii) is a consequence of the bound‖λRλ‖ ≤ 1: Note that

1≥ sup
f∈B0

‖λRλ f‖
‖ f‖ ≥ sup

g∈D(G)

‖λRλ (λ −G)g‖
‖(λ −G)g‖ = sup

g∈D(G)

λ‖g‖
‖(λ −G)g‖ .

Finally, since for any functionf ∈ B0,

(λ −G)Rλ f = f ,

any suchf is in the range of(λ −G).
It remains to show that these conditions are sufficient, i.e.that under them, if

Rλ ≡ (λ −G)−1 is a strongly continuous contraction resolvent.
We need to recall a few notions from operator theory.

Definition 3.18.A linear operator,G, on a Banach space,B0, is calledclosed, if and
only if its graph, the set

Γ (G)≡ {( f ,G f) : f ∈ D(G)} ⊂ B0×B0 (3.2.24)

is closed in the product topology. Equivalently,G is closed if for any sequencefn ∈
D(G) such thatfn → f andG fn → g, f ∈ D(G) andg= G f .
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Lemma 3.19.If G is the generator of a strongly continuous contraction semi-group
on a Banach space B0, then G is closed.

Proof. The proof relies on the fact that for anyfn ∈ D(G),

Pt fn− fn =
∫ t

0
PsG fnds. (3.2.25)

Now take a sequencefn ∈ D(G) such thatfn converges tof ∈ B0, such thatG fn →
g∈ B0. SincePt is bounded, it follows that

Pt f − f =
∫ t

0
Psgds. (3.2.26)

By the continuity ofPt ,
lim
t↓0

t−1(Pt f − f ) = g, (3.2.27)

so f ∈ D(G) andG f = g. ThusG is closed. ⊓⊔

Definition 3.20. If G is a closed operator onB0, then a numberλ ∈C is an element
of theresolvent set, ρ(G), of G, if and only if

(i) (λ −G) is one-to-one;
(ii)range(λ −G) = B0,
(iii)Rλ ≡ (λ −G)−1 is a bounded linear operator onB0.

It comes as no surprise that wheneverλ ,µ ∈ ρ(G), then the resolventsRλ ,Rµ
satisfy the resolvent identity. (Exercise:Prove this!).

Another important fact is that if for someλ ∈ C, λ ∈ ρ(G), then there exists a
neighborhood ofλ that is contained inρ(G). Namely, if|λ −µ |< 1/‖Rλ‖, then the
series

R̂µ ≡
∞

∑
n=0

(λ − µ)nRn+1
λ

converges and defines a bounded operator. Moreover, forg∈ D(G), a simple com-
putation shows that

R̂µ(µ −G)g= g,

and for anyf ∈ B0,
(µ −G)R̂µ f = f .

HenceR̂µ = (µ −G)−1, range(µ −G) = B0, and soµ ∈ ρ(G). Thus,ρ(G) is an
open set.

We will first show that (i) and (ii) imply thatG is closed.

Lemma 3.21.Let G be a dissipative operator and letλ > 0 be fixed. Then G is
closed if and only ifrange(λ −G) is closed.
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Proof. Let us first show that the range of(λ −G) is closed ifG is closed. Take
fn ∈ D(G) and assume that(λ −G) fn → h. SinceG is dissipative,‖(λ −G)( fn−
fn+k)‖ ≥ λ‖ fn− fn+k‖, so fn is a Cauchy sequence. Therefore, the sequencefn has
a limit, f ∈ B0. But then

G fn = (G−λ ) fn+λ fn → λ f −h,

soG fn converges, and sinceG is closed, it holds thatf ∈ D(G) andG f = λ f −h,
i.e.(λ −G) f = h, so thath∈ range(λ −G). But this means that any sequence in the
range ofλ −G that converges has its limit inrange(λ −G), so this range is closed.

On the other hand, ifrange(λ −G) is closed, then take someD(G) ∋ fn → f
andG fn → g. Then(λ −G) fn → λ f −g in the range of(λ −G). Thus there exists
f0 ∈ D(G), such that

(λ −G) f0 = λ f −g.

But sinceG is dissipative, if(λ −G) fn → (λ −G) f0, then fn → f0, so f0 = f . Hence
(λ −G) f = λ f −g, or G f = g. Hencef is in the domain andg in the range ofG,
soG is closed. ⊓⊔

It follows that if the range of(λ −G) is closed for someλ > 0, then it is closed
for all λ > 0.

The next lemma establishes that the resolvent set of a closeddissipative operator
contains(0,∞), if some point in(0,∞) is in the resolvent set.

Lemma 3.22.If G is a closed dissipative operator on B0, then the setρ+(G) ≡
ρ(G)∩ (0,∞) is either empty or equal to(0,∞).

Proof. We will show thatρ+(G) is open and closed in(0,∞). First, sinceρ(G)
is open, its intersection with(0,∞) is relatively open. Let nowλn ∈ ρ+(G) and
λn → λ ∈ (0,∞). For anyg∈ B0, and anyn we can definegn = (λ −G)Rλng. Then

‖gn−g‖ = ‖(λ −G)Rλng− (λn−G)Rλng‖= ‖(λ −λn)Rλng‖
≤ λ−1

n (λ −λn)‖g‖

which tends to zero asn ↑ ∞. Note that the inequality used the dissipativity ofG.
Therefore, the range of(λ −G) is dense inB0; but from the preceding lemma we
know that the range of(λ −G) is closed. Hencerange(λ −G) = B0. But sinceG
is dissipative, if‖ f −g‖ > 0, then‖(λ −G) f − (λ −G)g‖ > 0, and so(λ −G) is
one-to one. Finally, for anyg∈ B0, f = (λ −G)−1g is in D(G). Then dissipativity
shows that

‖g‖= ‖(λ −G) f‖ ≥ λ‖ f‖= λ‖(λ −G)−1g‖,
so that(λ −G)−1 is bounded byλ−1 on B0. Thusλ ∈ ρ+(G), and henceρ+(G) is
closed. ⊓⊔

We now continue with the proof of the theorem. We know from (ii) and (iii) and
Lemma 3.21 thatG is closed andrange(λ −G) = B0 for all λ > 0. Moreover, (iii)
asserts that for someλ > 0, the range ofλ −G is B0. This λ is then also in the
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resolvent set, and so we know by Lemma 3.22 thatρ+(G) = (0,∞). In the proof of
that lemma we have also shown thatλ‖Rλ‖ ≤ 1. As we have already explained, the
resolvent identity holds for allλ > 0, soRλ is a contraction resolvent family.

All what remains to prove is the strong continuity. Let firstf ∈ D(G). Then we
can write

‖λRλ f − f‖= λ‖Rλ ( f −λ−1(λ −G) f )‖ ≤ λ−1‖G f‖.

Since f ∈ D(G), G f ∈ B0, and‖G f‖ < ∞, so the right hand side tends to zero as
λ ↑ ∞.

ThusλRλ f → f for all f in D(G). For generalf , sinceD(G) is dense inB0,
take a sequencefn ∈ D(G) such thatfn → f . Then,

‖λRλ f − f‖ ≤ ‖λRλ ( f − fn)‖+ ‖λRλ fn− fn‖+ ‖ f − fn‖

and so
limsup

λ↑∞
‖λRλ f − f‖ ≤ 2‖ f − fn‖.

Since the right-hand side can be made as small as desired by taking n↑ ∞, it follows
that‖λRλ f − f‖ → 0, as claimed. ThusRλ ≡ (λ −G)−1 is a strongly continuous
contraction resolvent family, and the theorem is proven.⊓⊔

One may find the the conditions (i)–(iii) of Theorem 3.17 are just as difficult
to verify then those of Theorem 3.15. In particular, it does not seem easy to check
whether an operator is dissipative.

The following lemma, however, can be very helpful.

Lemma 3.23.Let S be a complete metric space. A linear operator, G, on C0(S)
is dissipative, if for any f∈ D(G), if y ∈ S is such that f(y) = maxx∈S f (x), then
G f(y)≤ 0.

Proof. Since f ∈ C0(S) vanishes at infinity, there existsy such that| f (y)| = ‖ f‖.
Assume without loss of generality thatf (y) ≥ 0, so thatf (y) is a maximum. For
λ > 0, letg≡ f −λ−1G f . Then

max
x

f (x) = f (y) ≤ f (y)−λ−1G f(y) = g(y)≤ max
x

g(x).

Since the same holds for the function− f , we also get that

min
x

f (x)≥ min
x

g(x),

and henceG is dissipative. ⊓⊔

Definition 3.24.A linear operator satisfying the hypothesis of Lemma 3.23 issaid
to satisfy thepositive maximum principle.
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Examples

We can verify the conditions of Theorem 3.17 in some simple examples.

• Let S= [0,1], G = 1
2

d2

dx2 , B0 = C([0,1]), equipped with the sup-norm, and let
D(G) = { f ∈C2([0,1] : f ′(0) = f ′(1) = 0}. Since hereS is compact, clearly any
continuous function takes on its maximum at some pointy∈ [0,1]. If y∈ (0,1),

then clearly1
2

d2

dx2 f (y) ≤ 0; if y = 0, for 0 to be a maximum, sincef ′(0) = 0,
the second derivative must be non-negative; the same is trueif y= 1. ThusG is
dissipative.
The fact theD(G) is dense is clear from the definition. To show that the range of
λ −G is B([0,1]), we must show that the equation

λ f − 1
2

f ′′ = g (3.2.28)

with boundary conditionsf ′(0) = f ′(1) = 0 has a solution inC2([0,1]) for all
g ∈ C([0,1]). Such a solution can be written down explicitly. In fact, (wejust
consider the caseλ = 1, which is enough)

f (x) = e
√

2x
∫ x

0
e−

√
2t
∫ t

0
g(s)dsdt+K cosh(

√
2x), (3.2.29)

with

K =−
√

2e
√

2∫ 1
0 e−

√
2t ∫ t

0 g(s)dsdt+
∫ 1
0 g(s)ds√

2sinh(
√

2)
.

is easily verified to solve this problem uniquely.
(ii)The same operator as above, but replace[0,1] with R, B0 =C0(R), andD(G) =

C2
0(R). We first show that the range ofRλ is contained inC2

b(R). Let f be given
by f = Rλ g with g∈ C0(R). Rλ is the resolvent corresponding to the Gaussian
transition kernel

Pt(x,dy)≡ 1√
2πt

e−
(x−y)2

2t dy.

Thus

f (x) ≡ (Rλ g)(x) =
∫ ∞

0
e−λ t

∫ ∞

−∞

1√
2πt

e−
(x−y)2

2t g(y)dydt.

Now one can show that
∫ ∞

0
e−λ t 1√

2πt
e−

(x−y)2

2t dt =
1√
2λ

e−
√

2λ |x−y|,

and so

f (x) =
∫

1√
2λ

e−
√

2λ |x−y|g(y)dy.

Hence
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f ′(x) =−
∫ x

−∞
e−

√
2λ |x−y|g(y)dy+

∫ ∞

x
e−

√
2λ |x−y|g(y)dy. (3.2.30)

Thus, differentiating once more,

f ′′(x) = −2g(x)+
√

2λ
∫ x

−∞
e−

√
2λ |x−y|g(y)dy (3.2.31)

+
√

2λ
∫ ∞

x
e−

√
2λ |x−y|g(y)

= −2g(x)+2λ f (x).

Hencef ′′ ∈C0(R), sorange(Rλ )⊂C2
0(R). Moreover,f solves (3.2.28) and thus

G− λ = ∆/2− λ is the inverse ofRλ . Since this operator mapsC2
0(R) into

C0(R), we see thatC2
0(R) ⊂ D(G). HenceC2

0(R) = D(G), ∆/2 is closed and is
the generator of our semigroup.

(iii)If we replace in the previous exampleR with Rd, then the the result will not
carry over. In fact,∆ with domainC2

b(R
d) is not a closed operator inRd if d ≥ 2.

Namely, if we get a solution of the equation

(λ −∆/2) f = g

with g ∈ C0(R
d), then we only know that∆ f ∈ C0(R

d), which does not imply
that f ∈C2

0(R
d). This may appear disappointing, because it says that1

2∆ is not
the generator of Brownian motion ind ≥ 2. Rather, the generator of BM will be
theclosureof 1

2∆ . We will come back to this issue in a systematic way when we
discuss the martingale problem approach to Markov processes.

3.3 Feller-Dynkin processes

We will now turn to a special class of Markov semi-groups thatwill be seen to have
very nice properties. Our setting is that the state space is alocally compact Hausdorff
space with countable basis (but think ofRd if you like). The point is that we do not
assume compactness. We will, however, consider the one-point compactification of
such a space obtained by adding a “coffin state”,∂ , (“infinity”) to it. Then S∂ ≡S∪∂
is a compact metrisable space.

We will now place ourselves in the setting where the Hille-Yosida theorem work,
and make a specific choice for the underlying Banach space, namely we will work
on the the spaceC0(S) of continuous functions vanishing at infinity. This will actu-
ally place a restriction of the semi-groups to preserve thisspace. This (and similar
properties) is known as theFeller property.

Definition 3.25.A Feller-Dynkin semigroupis a strongly continuous sub-Markov
semigroup,Pt , acting on the spaceC0(S), that is:

(i) for all t ≥ 0,
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Pt : C0(S)→C0(S); (3.3.1)

(ii)For all f ∈C0(S) such that 0≤ f ≤ 1, 0≤ Pt f ≤ 1;
(iii)For all t,s≥ 0, Pt+s = PtPs;
(iv)For all f ∈C0(S), limt↓0P f f − f‖= 0.

Note that the condition (iii) which is a property of sub-Markov semi-groups (see
Definition 3.7 is now added again. This is because we want Feller-Dynkin semi-
groups to be associated to Markov processes.

It is very convenient that the sufficient criterion for dissipativity, theposivitive
maximum principle, also ensures positivity.

Lemma 3.26.Let G be a linear operator with domain and range in C0(S) that sat-
isfies the Conditions (i) and (iii) of the Hille-Yosida theorem 3.17 with B0 =C0(S),
and that satisfies the positive maximum principle (Definition 3.24). Then G is the
generator of a Feller-Dynkin semi-group.

Proof. In view of what we know, we only have to show that the semi-group gener-
ated byG maps positive functions to positive functions. Notice firstthat if f ∈D(G)
is a function such that infy∈S f (y) = f (x)< 0, then

inf
y∈S

(λ −G) f (y)≤ (λ −G) f (x)≤ λ f (x) < 0. (3.3.2)

But that means that(λ −G) f ≥ 0 only if f ≥ 0, or thatRλ maps positive functions
to positive functions. From this it follows easily that the same is true for the semi-
group. Next,

etGλ = e−λ tetλ 2Rλ = e−λ t
∞

∑
n=0

(tλ 2)n

n
Rn

λ , (3.3.3)

so also this operator maps positive functions to positive functions. Finally we know
thatPt = limλ↑∞ etGλ , and taking the limit preserves the positivity property.⊓⊔

Remark 3.27.In fact, less is necessary. It is easy to see that ifG satisfies the positive
maximum principle on a dense subset of its domain, then the conclusions of Lemma
3.26 remain valid. (Exercise!) This is important in applications, since often we can
do explicit computations with generators only on such sets.

We can now connect back to Markov transition kernels.

Theorem 3.28.Let Pt be a Feller-Dynkin semigroup. Then there exists a sub-
Markov transition kernel Pt(x,dy), such that for all f∈C0(S),

(Pt f )(x) =
∫

S
Pt(x,dy) f (y). (3.3.4)

The semigroup can be naturally extended to B0(S) by the right-hand side of Eq.
(3.3.4)
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Proof. It is an analytic fact that follows from the Riesz representation theorem, that
to any strongly continuous contraction semigroup corresponds a sub-Markov kernel,
Pt(x,dy), such that(Pt f )(x) =

∫
SPt(x,dy) f (y), for all f ∈C0(S).

To see this recall that the Riesz representation theorem asserts that for any linear
map,L, from the space of continuous functionsC(S) there corresponds a unique
measure,µ , such that

L f =
∫

S
f (y)µ(dy).

If moreoverL1= 1, this measure will be a probability measure.
Thus for anyx∈ S, there exists a probability measurePt(x,dy), such that for any

continuous functionf

(Pt f )(x) =
∫

f (y)Pt(x,dy).

SincePt f is measurable, we also get that
∫

f (y)Pt(x,dy) is measurable. Finally,
using the monotone class theorem, one shows thatPt(x,A) is measurable for any
Borel setA, and hencePt(x,dy) is a probability kernel, and in fact a sub-Markov
kernel. ⊓⊔

Note that, since we are in a setting where the Hille-Yosida theorem applies and
that there exists a generator,G, exists on a domainD(G) ⊂ C0(S). Note that then
we have forf ∈ D(G) the formula

G f(x) ≡ lim
t↓0

t−1
(∫

S
Pt(x,dy) f (y)− f (x)

)
(3.3.5)

Therefore, iff attains its maximum at a pointx, then
∫

S
Pt(x,dy) f (y)≤ f (x),

and soG f(x) ≤ 0, if f (x) ≥ 0 (this condition is not needed ifPt is honest).
Dynkin’s maximum principle states that this property characterizes the domain

of the generator. Let us explain what we mean by this.

Definition 3.29.Let G,C be two linear operators with domainsD(G),D(C), re-
spectively. We say thatC is anextensionof G, if

(i) D(G)⊂ D(C), and
(ii)For all f in D(G), G f =C f .

Lemma 3.30.Let G be a generator of a Feller-Dynkin semigroup and let C be an
extension of G. Assume that if f∈D(C) and f attains its maximum in x with f(x)≥
0, then C f(x)≤ 0. Then G=C.

Proof. Note first thatC = G if C f = f implies f = 0. To see this, letg ≡ f −C f
undh= R1g. But R1g∈ D(G) and thus

h−Ch= h−Gh= g= f −C f.
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Hencef −h=C( f −h), and sof = h. In particularf ∈ D(G).
Now let f ∈ D(C) andC f = f . We see that iff attains its maximum atx with

f (x) ≥ 0, then under the hypothesis of the lemma,C f(x) ≤ 0. SinceC f = f , this
means thatf (x) =C f(x) = 0. Thus maxy f (y) = 0. Applying the same argument to
− f , it follows that miny f (y) = 0. ⊓⊔

The now turn to the central result of this section, the existence theorem for Feller-
Dynkin processes.

Theorem 3.31.Let Pt be a Feller-Dynkin semigroup on C0(S). Then there exists a
strong Markov process with values in S∂ and càdlàg paths and transition kernel Pt .

Remark 3.32.Note that the unique existence of the Markov process on the level of
finite dimensional distributions does not require the Feller property.

Proof. First, the Daniell-Kolmogorov theorem guarantees the existence of a unique
process on the product space(S∂ )R+ , provided the finite dimensional marginals sat-
isfy the compatibility conditions. This is easily verified just as in the discrete time
case using the Chapman-Kolmogorov equations.

We now want to show that the paths of this process are regularisable, and finally
that regularization entrains just a modification. For this we need to get martingales
into the game.

Lemma 3.33.Let g∈C0(S) and g≥ 0. Set h= R1g. Then

0≤ e−tPth≤ h. (3.3.6)

If Y is the corresponding Markov process, e−th(Yt) is a supermartingale.

Proof. Let us first prove (3.3.6). The lower bound is clear sincePt and henceRλ
map positive function to positive functions. Next

e−sPsh= e−sPsR1g = e−sPs

∫ ∞

0
e−uPugdu (3.3.7)

=

∫ ∞

s
e−uPugdu≤ R1g= h.

Now e−th(Yt) is a supermartingale since

E[e−s−th(Yt+s|Gt ] = e−s−tPsh(Yt)≤ e−th(Yt),

where of course we used (3.3.6) in the last step.⊓⊔

As a consequence of the previous lemma, the functionse−qh(Yq) are regularis-
able, i.e. limq↓t e−qh(Yq) exists for allt almost surely.

Now we can take a countable dense subset,g1,g2, . . . , of elements ofC0(S), and
set hi = R1gi . The setH = {hi}i∈N separates points inS∂ , while almost surely,
e−qhi(Yq) is regularisable for alli ∈N. But thenXt ≡ limq↓t Yq exists for allt, almost
surely and is a càdlàg process.
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Finally we establish thatX is a modification ofY. To do this, let f ,g ∈ C0(S).
Then

E[ f (Yt )g(Xt)] = lim
q↓t

E[ f (Yt )g(Yq)] = lim
q↓t

E[ f (Yt )Pt−qg(Yt)] = E[ f (Yt )g(Yt)]

where the first inequality used the definition ofXt and the third the strong con-
tinuity of Pt . By an application of the monotone class theorem, this implies that
E[ f (Yt ,Xt)] = E[ f (Yt ,Yt)] for any bounded measurable function onS∂ ×S∂ , and
hence in particularP[Xt =Yt ] = 1. ⊓⊔

The previous theorem allows us to henceforth consider Feller-Dynkin Markov
processes defined on the space of càdlàg functions with values in S∂ (with the ad-
ditional property that, ifXt = ∂ or Xt− = ∂ , thenXs = ∂ for all s≥ t). We will
henceforth think of our Markov processes as defined on that space (with the usual
right-continuous filtration).

3.4 The strong Markov property

Of course our Feller-Dynkin processes have the Markov property. In particular, ifζ
is aFt measurable function andf ∈C0(S), then

E[ζ f (Xt+s)] = E[ζPs f (Xt)]. (3.4.1)

Of course we want more to be true, namely as in the case of discrete time Markov
chains, we want to be able to split past and future at stoppingtimes. To formulate
this, we denote as usual byθt the shift acting onΩ , via

X(θtω)s ≡ (θtX)(ω)s ≡ X(ω)s+t . (3.4.2)

We then have the followingstrong Markov property:

Theorem 3.34.Let T be aFt+stopping time, and letP be the law of a Feller-Dynkin
Markov process, X. Then, for all bounded random variablesη , if T is a stopping
time, then

E[θT η |FT+] = EXT [η ], (3.4.3)

or equivalently, for allFT+ -measurable bounded random variablesξ ,

E[ξ θTη ] = E[ξEXT [η ]], (3.4.4)

Proof. We again use the dyadic approximation of the stopping timeT defined as

T(n)(ω)≡
{

k2−n, if (k−1)2−n ≤ T(ω)< k2−n,k∈ N

+∞, if T(ω) = +∞.

ForΛ ∈ FT+ we set
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Λn,k ≡ {ω ∈ Ω : T(n)(ω) = 2−nk}∩Λ ∈ Fk2−n.

Let f be a continuous function onS. Then

E
[

f (XT(n)+s)1IΛ
]
= ∑

k∈N∪{+∞}
E

[
f (Xk2−n+s)1IΛn,k

]
(3.4.5)

= ∑
k∈N∪{+∞}

E

[
Ps f (Xk2−n)1IΛn,k

]

= E
[
Ps f (XT(n))1IΛ

]

Now let n tend to infinity: by right-continuity of the paths,

XT(n)+s → XT+s,

for anys≥ 0. Sincef is continuous, it also follows that

f (XT(n)+s)→ f (XT+s),

andsince, by the Feller property, Ps f is also continuous, it holds that

Ps f (XT(n))→ Ps f (XT)

Note that finally working with Feller semi groups has payed off!
Now, by dominated convergence,

E [ f (XT+s)1IΛ ] = E [Ps f (XT1IΛ ]

To conclude the proof we must only generalize this result to more general func-
tions, but this is done as usual via the monotone class theorem and presents no par-
ticular difficulties (e.g. we first see that 1IΛ can be replaced by any boundedFT+-
measurable function; next through explicit computation one shows that instead of
f (XT+s) we can put∏n

i=1 fi(XT+si ), and then we can again use the monotone class
theorem to conclude for the general case.⊓⊔

3.5 The martingale problem

In the context of discrete time Markov chains we have encountered a characteri-
zation of Markov processes in terms of the so-calledmartingale problem. While
this proved quite handy, there was nothing really profoundly important about its
use. This will change in the continuous time setting. In fact, the martingale problem
characterizations of Markov processes, originally proposed by Stroock and Varad-
han, turns out to be the “proper” way to deal with the theory inmany respects.

Let us return to the issues around the Hille-Yosida theorem.In principle, that
theorem gives us precise criteria to recognize when a given linear operator generates
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a strongly continuous contraction semigroup and hence a Markov process. However,
if one looks at the conditions carefully, one will soon realize that in many situations
it will be essentially impractical to verify them. The pointis that the domain of a
generator is usually far too big to allow us to describe the action of the generator on
all of its elements. E.g., in Brownian motion we want to thinkof the generator as
the Laplacian, but, except ind = 1, this is not the case. We really can describe the
generator only on twice differentiable functions, but thisis not the domain of the
full generator, but only a dense subset.

Let us discuss this issue from the functional analytic pointof view first. We have
already defined the notion of the (linear) extension of a linear operator.

First, we call theclosure, G, of a linear operator,G, the minimal extension ofG
that is closed. An operator that has a closed linear extension is calledclosable.

Lemma 3.35.A dissipative linear operator, G, on B0 whose domain,D(G), is dense
in B0 is closable, and the closure ofrange(λ −G) is equal torange(λ −G) for all
λ > 0.

Proof. Let fn ∈D(G) be a sequence such thatfn → f , andG fn → g. We would like
to associate with any suchf the valueg and then defineG f = g for all achievablef
that would then be the desired closed extension ofG. So all we need to show that if
f ′n → f andG f ′n → g′, theng′ = g. Thus, in fact all we need to show is that iffn → 0,
andG fn → g, theng= 0. To do this, consider a sequence of functionsgn ∈ D(G)
such thatgn → g. Such a sequence exists becauseD(G) is dense inB0. Using the
dissipativity ofG, we get then

‖(λ −G)gn−λg‖= lim
k↑∞

‖(λ −G)(gn+λ fk)‖ ≥ lim
k↑∞

λ‖gn+λ fk‖= λ‖gn‖.

Note that in the first inequality we used that 0= limk fk andg= limk G fk. Dividing
by λ and taking the limitλ ↑ ∞ implies that

‖gn‖ ≤ ‖gn−g‖.

Sincegn−g→ 0, this impliesgn → 0 and henceg= 0.
The identification of the closure of the range with the range of the closure follows

from the observation made earlier that a range of a dissipative operator is closed if
and only if it is closed. ⊓⊔

As a consequence of this lemma, if a dissipative linear operator on B0, G, is
closable, and if the range ofλ −G is dense inB0, then its closure is the generator of
a strongly continuous contraction semigroup onB0.

These observations motivate the definition of acoreof a linear operator.

Definition 3.36.Let G be a linear operator on a Banach spaceB0. A subspaceD ⊂
D(G) is called acorefor G, if the closure of the restriction ofG to D is equal toG.

Lemma 3.37.Let G be the generator of a strongly continuous contraction semi-
group on B0. Then a subspace D⊂ D(G) is a core for G, if and only if D is dense
in B0 and, for someλ > 0, range(λ −G|D) is dense in B0.
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Proof. Follows from the preceding observations.⊓⊔

The following is a very useful characterization of a core in our context.

Lemma 3.38.Let G be the generator of a strongly continuous contraction semi-
group, Pt , on B0. Let D be a dense subset ofD(G). If, for all t ≥ 0, Pt : D → D, then
D is a core [in fact it suffices that there is a dense subset, D0 ⊂ D, such that Pt maps
D0 into D].

Proof. Let f ∈ D0 and set

fn ≡
1
n

n2

∑
k=0

e−λ k/nPk/n f .

By hypothesis,fn ∈ D. By strong continuity,

lim
n↑∞

(λ −G) fn = lim
n↑∞

1
n

n2

∑
k=0

e−λ k/nPk/n(λ −G) f (3.5.1)

=
∫ ∞

0
e−λ tPt(λ −G) f

= Rλ (λ −G) f = f

Thus, for anyf ∈ D0, there exists a sequence of functions,(λ −G) fn ∈ range(λ −
GD), that converges tof . Thus the closure of the range of(λ −G|D) containsD0.
But sinceD0 is dense inB0, the assertion follows from the preceding lemma.⊓⊔

Example. LetG be the generator of Brownian motion. ThenC∞(Rd) is a core forG
andG is the closure of12∆ with this domain.

To show thatC∞ is a core, since obviouslyC∞ is dense in the space of continuous
functions, by the preceding lemma we need only to show thatPt mapsC∞ to C∞.
But this is obvious from the explicit formula for the transition function of Brownian
motion. Thus it remains to check that the restriction ofG to C∞ is 1

2∆ , which is a
simple calculation (we essentially did that in [1]). HenceG is the closure of12∆ .

We see that these results are nice, if we know already the semigroup. In more
complicated situations, we may be able to write down the action of what we want to
be the generator of the Markov process we want to construct onsome (small) space
of function. The question when is how to know whether this specifies a (unique)
strongly continuous contraction semigroup on our desired space of functions, e.g.
C0(S)? We may be able to show that it is dissipative, but then, isrange(λ −G) dense
in C0?

The martingale problem formulation is a powerful tool to address such question.
We begin with a relatively simple observation.

Lemma 3.39.Let X be a Feller-Dynkin process with transition function Pt and gen-
erator G. Define, for f,g∈ B(S),
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Mt ≡ f (Xt )−
∫ t

0
g(Xs)ds. (3.5.2)

Then, if f∈ D(G) and g= G f , Mt is aFt -martingale.

Proof. The proof goes exactly as in the discrete time case.

E[Mt+u|Ft ] = E[ f (Xt+u)|Ft ]−
∫ t

0
(G f)(Xs)ds−

∫ t+u

t
E[G f(Xs)|Ft ]ds(3.5.3)

= (Pu f )(Xt)−
∫ t

0
(G f)(Xs)ds−

∫ u

0
(PsG f)(Xt )ds

= f (Xt )−
∫ t

0
(G f)(Xs)ds

+(Pu f )(Xt )− f (Xt)−
∫ u

0
(PsG f)(Xt)ds

= Mt +(Pu f )(Xt )− f (Xt)−
∫ u

0
(PsG f)(Xt)ds.

But

(PsG f)(z) =
d
ds

(Ps f )(z),

and so

(Pu f )(Xt )− f (Xt)−
∫ u

0
(PsG f)(Xt)ds= 0,

from which the claim follows. ⊓⊔

By “the martingale problem” we will consider the inverse problem associated to
this observation.

Definition 3.40.Given a linear operatorG with domainD(G), a S-valued process
defined on a filtered càdlàg space(Ω ,F ,P,(Ft , t ∈R+)), is called a solution of the
martingale problem associated to the operatorG, if for any f ∈ D(G), Mt defined
by (3.5.2) is aFt -martingale.

Remark 3.41.One may relax the càdlàg assumptions. Ethier and Kurtz [6] work in
a more general setting, which entails a number of subtletiesregarding the relevant
filtrations that I want to avoid.

One of the key points in the theory of martingale problems will be the fact thatG
may not need to be the full generator (i.e. the generator withmaximal domain), but
just a core, i.e. an operator defined on a smaller subspace of functions. This really
makes the power of this approach.

Before we continue, we need some new notion of convergence inBanach spaces.

Definition 3.42.A sequencefn ∈ B(S) is said to convergepointwise boundedlyto a
function f ∈ B(S), iff

(i) supn‖ fn‖∞ < ∞, and
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(ii)for everyx∈ S, limn↑∞ fn(x) = f (x).

A set M ∈ B(S) is called bp-closed, if for any sequencefn ∈ M s.t. bp− lim fn =
f ∈ B(S), then f ∈ M. The bp-closure of a setD ⊂ B(S) is the smallest bp-closed
set inB(S) that containsD. A setM is called bp-dense, if its closure isB(S).

Lemma 3.43.Let fn be such that bp− lim fn = f and bp− lim G fn = G f . Then, if
fn(Xt)−

∫ t
0(G fn)(Xs) is a martingale for all n, then f(Xt )−

∫ t
0(G f)(Xs) is a martin-

gale.

Proof. Straightforward, since the fact that supn‖ fn‖ < ∞ and supn‖G fn‖ < ∞ al-
lows to use dominated convergence.⊓⊔

The implication of this lemma is that to find a unique solutionof the martingale
problem, it suffices to know the generator on a core.

Proposition 3.44.Let G1 be an operator withD(G1) andrange(G1), and let G be
an extension of G1. Assume that the bp-closures of the graphs of G1 and G are the
same. Then a stochastic process X is a solution for the martingale problem for G if
and only if it is a solution for the martingale problem for G1.

Proof. Follows from the preceding lemma.⊓⊔

The strategy will be to understand when the martingale problem has a unique
solution and to show that this then is a Markov process. In that sense it will be
comforting to see that only dissipative operators can give rise to the solution of
martingale properties.

We first prove a result that gives an equivalent characterization of the martingale
problem.

Lemma 3.45.Let Ft be a filtration and X an adapted process. Let f,g ∈ B(S).
Then, forλ ∈ R, (3.5.2) is a martingale if and only if

e−λ t f (Xt)+

∫ t

0
e−λ s(λ f (Xs)−g(Xs))ds (3.5.4)

is a martingale.

Proof. The details are left as an exercise. To see why this should be true, think of
Pλ

t ≡ e−λ tPt as a new semi-group. Its generator should be(G−λ ), which suggests
that (3.5.4) should be a martingale whenever (3.5.2) is, andvice versa. ⊓⊔

Lemma 3.46.Let G be a linear operator with domain and range in B(S). If a so-
lution for the martingale problem for G exists for any initial condition X0 = x ∈ S,
then G is dissipative.
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Proof. Let f ∈ D(G) andg= G f . Now use that (3.5.4) is a martingale withλ > 0.
Taking expectations and sendingt to infinity gives thus

f (X0) = f (x) = E

[∫ ∞

0
e−λ s(λ f (Xs)−g(Xs))ds

]

and thus,

| f (x)| ≤
∫ ∞

0
e−λ sE|λ f (Xs)−g(Xs)|ds≤

∫ ∞

0
e−λ s‖λ f −g‖= λ−1‖λ f −g‖ds,

which proves thatG is dissipative. ⊓⊔

Next, we know that martingales usually have a càdlàg modification. This sug-
gests that, provided the set of functions on which we have defined our martingale
problem is sufficiently rich, this property should carry over to the solution of the
martingale problem as well. The following theorem shows when this holds.

Theorem 3.47.Assume that S is separable, and thatD(G)⊂Cb(S). Suppose more-
over thatD(G) is separating and contains a countable subset that separates points.
If X is a solution of the associated martingale problem and iffor any ε > 0 and
T < ∞ there exists a compact set Kε,T ⊂ S, such that

P(∀t ∈ [0,T]∩Q : Xt ∈ Kε,T)> 1− ε, (3.5.5)

then X has càdlàg modification.

Proof. By assumption there exists a sequencefi ∈ D(G) that separates points inS.
Then

M(i)
t ≡ fi(Xt)−

∫ t

0
gi(Xs)ds

with gi ≡ G fi are martingales and so by Doob’s regularity theorem regularisable
with probability one; since

∫ t
0 gi(Xs)ds is manifestly continuous, if follows that

fi(Xt) is regularisable. In fact there exists a set of full measuressuch that allfi(Xt))
are regularisable. Moreover, by hypothesis (3.5.5), the set {Xt(ω), t ∈ [0,T]} has
compact closure for almost allω for all T. Let Ω ′ denote the set of full measure
where all the properties above hold. Then, for allω ∈ Ω ′, and allt ≥ 0, there exists
sequencesQ ∋ sn ↓ t, such that limsn↓t Xsn(ω) exists and whence

fi(lim
sn↓t

Xsn(ω)) = lim
Q∋s↓t

fi(Xs(ω)).

Since the sequencefi separates points, it follows that limQ∋s↓t Xs(ω)≡Yt(ω) exists
for all t. In fact,X has a càdlàg regularization. Finally we need to show thatfi(Yt) =
fi(Xt) , a.s., in order to show thatY is a modification ofX. But this follows from the
fact that the integral term in the formula forMt is continuous int, and hence

fi(Yt) = E fi(Yt)|Ft ]E fi(Yt)|Ft ] = lim
s↓t

E( fi(Xs)|Ft) = fi(Xt), a.s.
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by the fact thatM(i)
t is a martingale. ⊓⊔

3.5.1 Uniqueness

We have seen that solutions to the martingale problem provide candidates for nice
Markov processes. The main issues to understand is when a martingale problem has
a uniquesolution, and whether in that case is represents a Markov process. When
talking about uniqueness, we will of course always think that an initial distribution,
µ0, is given. The data for the martingale problem is thus a pair(G,µ), whereG is a
linear operator with its domainD(G) andµ is a probability measure onS.

The following first result is not terribly surprising.

Theorem 3.48.Let S be separable and let G be a linear dissipative operator on
B(S) with D(G) ⊂ B(S). Suppose there exists G′ with D(G′) ⊂ D(G) such that G
is an extension of G′. LetD(G′) = range(λ −G′)≡ L, and let L be separating. Let
X be a solution for the martingale problem for(G,µ). Then X is a Markov process
whose semigroup on L is generated by the closure of G′, and the martingale problem
for (G,µ) has a unique solution.

Proof. AssumeG′ closed. We know that it generates a unique strongly continuous
contraction semigroup onL, hence a unique Markov process with generatorG′.
Thus we only have to show that the solution of the martingale problem satisfies the
Markov property with respect to that semigroup.

Let f ∈ D(G′) andλ > 0. Then, by Lemma 3.45,

e−λ t f (Xt)+

∫ t

0
e−λ s(λ f (Xs)−G′ f (Xs))ds

is a martingale,

f (Xt ) = E

[∫ ∞

0
e−λ s(λ f (Xt+s−G′ f (Xt+s))

)
ds
∣∣∣Ft

]
. (3.5.6)

To see this note that for anyT > 0, by simple algebra,

∫ T

0
e−λ s(λ f (Xt+s−G′ f (Xt+s))

)
ds (3.5.7)

= eλ t
∫ t+T

0
e−λ s(λ f (Xs)−G′ f (Xs))

)
ds−eλ t

∫ t

0
e−λ s(λ f (Xs)−G′ f (Xs))

)
ds

= eλ t
[∫ t+T

0
e−λ s(λ f (Xs)−G′ f (Xs))

)
ds+e−(t+T f (Xt+T)

]
−e−Tλ f (Xt+T)

−eλ t
∫ t

0
e−λ s(λ f (Xs)−G′ f (Xs))

)
ds

Hence,
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E

[∫ T

0
e−λ s(λ f (Xt+s)−G′ f (Xt+s))

)
ds
∣∣∣Ft

]
(3.5.8)

= f (Xt)+eλ t
∫ t

0
e−λ s(λ f (Xs)−G′ f (Xs))

)
ds

−e−λ TE
[

f (Xt+T)
∣∣Ft
]
−eλ t

∫ t

0
e−λ s

(
λ f (Xs)−G′ f (Xs))

)
ds

= f (Xt)−e−λ TE
[

f (Xt+T)
∣∣Ft
]
.

LettingT tend to infinity, we get (3.5.6).
We will use the following lemma.

Lemma 3.49.Let Pt be a SCCSG on B0 and G its generator. Then, for any f∈ B0,

lim
n↑∞

(1−n−1G)−[nt] f = Pt f . (3.5.9)

Proof. SetV(t)≡ (1− tG]−1. We want to show thatV(1/n)[tn]→ Pt . But

n[V(1/n) f − f ] = n
[
(1−n−1G)−1 f − f

]
= n

[
(n−G)−1 f − f

]
= Gn f ,

whereGn is the Hille-Yosida approximation ofG. Hence

V(1/n)tn f =
[
1+n−1Gn

]tn
.

Now one can show that for any linear contractionB (Exercise!),

‖Bn f −en(B−1) f‖ ≤
√

n‖B f − f‖|.

We will apply this for B = 1
nGn + 1 (check that this is a contraction sinceG is

dissipative). Thus
∥∥∥
[
1+n−1Gn

]tn
f −exp(tGn) f

∥∥∥ ≤ n−1/2‖Gn f‖.

Since the right-hand side converges to zero forf ∈ ∆(G), and exp(tGn) f → Pt f , by
the Hille-Yosioda theorem, we arrive at the claim of the lemma for f ∈ ∆(G). But
since∆(G) is dense, the result holds for allB0 by standard arguments.

Now from (3.5.6) withλ = n and f ∈ L,

(1−n−1G′)−1 f (Xt) = n
1

n−G′ f (Xt) (3.5.10)

= E

[
n
∫ ∞

0
e−nsf (Xt+s)ds

∣∣∣Ft

]

= E

[∫ ∞

0
e−s f (Xt+n−1s)ds

∣∣∣Ft

]
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Iterating this formula and re-arranging the resulting multiple integrals, and using the
formula for the area of thek-dimensional simplex, gives

(1−n−1G′)−[nu] f (Xt) (3.5.11)

= E

[∫ ∞

0
e−s1−s2···−s[un] f (Xt+n−1(s1+···+s[un])

)ds1 . . .ds[un]

∣∣∣Ft

]

= E

[∫ ∞

0
e−s s[un]−1

Γ ([un])
f (Xt+n−1s)ds

∣∣∣Ft

]

We write, for f ∈ D(G′),

E
[

f (Xt+n−1s)|Ft
]
= E [ f (Xt+u)|Ft ]+E

[∫ s/n

u
G′ f (Xt+v)dv

∣∣Ft

]

and insert this into (3.5.11). Finally, since

∫ ∞

0
e−s s[un]−1

Γ ([un])
ds= 1,

we arrive at

(1−n−1G′)−[nu] f (Xt ) = E
[

f (Xt+u)
∣∣Ft
]

(3.5.12)

+ E

[∫ ∞

0
e−s s[un]−1

Γ ([un])

∫ s/n

u
G′ f (Xt+v))dvds

∣∣∣Ft

]

We are finished if the second term tends to zero. But, re-expressing the volume of
the sphere through multiply integrals, we see that

∣∣∣∣∣E
[∫ ∞

0
e−s s[un]−1

Γ ([un])

∫ s/n

u
G′ f (Xt+v))dvds

∣∣∣Ft

]∣∣∣∣∣ (3.5.13)

≤ ‖G′ f‖∞

∫ ∞

0
ds1 . . .ds[un]

∣∣n−1(s1+ · · ·+ s[un])−u
∣∣e−s1−···−s[un]

But the last integral is nothing but the expectation of
∣∣∣n−1 ∑[un]

i=1ei −u
∣∣∣ whereei are

iid exponential random variable. Hence the law of large numbers implies that this
converges to zero. Thus we have the desired relation

Pu f (Xt) = E[ f (Xt+u)|Ft ]

for all f ∈ D(G′). In the usual way, this relation extends to the closure ofD(G′)
which by assumption isL. ⊓⊔

Finally we establish an important uniqueness criterion andthe strong Markov
property for solutions of uniquely posed martingale problems.
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Theorem 3.50.Let S be a separable space and let G be a linear operator on B(S).
Suppose that the for any initial distribution,µ , any two solutions, X,Y, of the mar-
tingale problem for(G,µ) have the sameone-dimensionaldistributions, i.e. for any
t ≥ 0, P(Xt ∈ A) = P(Yt ∈ A) for any Borel set A. Then the following hold:

(i) Any solution of the martingale problem for G is a Markov process and any two
solutions of the martingale problem with the same initial distribution have the
same finite dimensional distributions (i.e. uniqueness holds).

(ii)If D(G) ⊂ Cb(S) and X is a solution of the martingale problem with càdlàg
sample paths, then for any a.s. finite stopping time,τ,

E[ f (Xt+τ )|Fτ ] = E[ f (Xt+τ )|Xτ ], (3.5.14)

for all f ∈ B(S).
(iii)If in addition to the assumptions in (ii), there existsa càdlàg solution of the

martingale problem for any initial measure of the formδx, x∈ S, then the strong
Markov property holds, i.e.

E[ f (Xt+τ )|Fτ ] = Pt f (Xτ ). (3.5.15)

Proof. Let X be the solution of the martingale problem with respect to some fil-
trationGt . We want to prove that it is a Markov process. LetF ∈ Gr have positive
probability. The, for any measurable setB let

P1(B)≡
E [1IFE[1IB|Gr ]]

P(F)
(3.5.16)

and

P2(B)≡
E [1IFE[1IB|Xr ]]

P(F)
. (3.5.17)

LetYs ≡ Xr+s. We see that, sinceE[ f (Xr)|Xr ] = f (Xr) = E[ f (Xr )|Gr ],

P1(Y0 ∈ Γ ) = P2(Y0 ∈ Γ ) = P[Xr ∈ Γ |F ] (3.5.18)

Now chose any 0≤ t1 < t2 < · · ·< tn+1, f ∈ D(G), g= G f , andhk ∈ B(S), (k∈ N.
Define

η(Y)≡
(

f (Ytn+1)− f (Ytn)−
∫ tn+1

tn
g(Ys)ds

) n

∏
k=1

hk(Ytk). (3.5.19)

Y is a solution of the martingale problem if and only ifEη(Y) = 0 for all possible
choices of the parameters (Check this!).

Now E [η(Xr+·)|Gr ] = 0, sinceX is a solution of the martingale problem. A for-
tiori, E [η(Xr+·)|Xr ] = 0, and so

E1[η(Y)] = E2[η(Y)] = 0,



64 3 Markov processes in continuous time

whereEi denote the expectation w.r.t. the measuresPi . Hence,Y is a solution to the
martingale problem forG under bothP1 andP2, and by (3.5.18),

E1[ f (Yt )] = E2[ f (Yt)],

for any bounded measurable function. Thus, for anyF ∈ Gr ,

E [1IFE[ f (Xr+s)|Gr ]] = E [1IFE[ f (Xr+s)|Xr ]] ,

and hence
E[ f (Xr+s)|Gr ] = E[ f (Xr+s)|Xr ].

ThusX is a Markov process.
To prove uniqueness one proceeds as follows. LetX andY be two solutions of

the martingale problem for(G,µ). We want to show that

E

[
n

∏
k=1

hk(Xtk)

]
= E

[
n

∏
k=1

hk(Ytk)

]
. (3.5.20)

By hypothesis, this holds forn = 1, so we will proceed by induction, assuming
(3.5.20) for allm≤ n. For with we define two new measures

P̃(B) ≡ E
[
1IB ∏n

k=1hk(Xtk)
]

E
[
∏n

k=1hk(Xtk)
] , (3.5.21)

Q̃(B) ≡ E
[
1IB ∏n

k=1hk(Ytk)
]

E
[
∏n

k=1hk(Ytk)
] . (3.5.22)

SetX̃t ≡ Xt+tn andỸt ≡ Yt+tn. As in the proof of the Markov property,̃X andỸ are
solutions of the martingale problems underP̃ andQ̃, respectively. Now fort = 0, we
get from the induction hypothesis that

ẼP f (X̃0) = ẼQ f (Ỹ0)

where the expectations are w.r.t. the measures defined above. ThusX̃ andỸ have
the same initial distribution. Now we can use the fact the by hypothesis, any two
solutions of our martingale problem with the same initial conditions have the same
one-dimensional distributions. But this provides immediately the assertion form=
n+1 and concludes the inductive step.

The proofs of the strong properties (ii) and (iii) follows from similar con-
structions using stopping timesτ instead ofr, and optional sampling theorem for
bounded continuous functions of càdlàg martingales. E.g.,to get (ii), note that

E[η(Xτ+s)|Gτ ] = 0.

For part (iii) we construct the measuresPi replacingr by τ and so get instead of the
Markov property the strong Markov property.⊓⊔
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Note that in the above theorem, we have made no direct assumptions on the
choice ofD(G) (in particular, it need not separate point, as in the previous the-
orem). The assumption is implicit in the requirement that uniqueness of the one-
dimensional marginals must be satisfies. This is then also the main message: a
martingale problem that gets uniqueness of the one-dimensional marginals implies
uniqueness of the finite dimensional marginals. This theorem is in fact the usual way
to prove uniqueness of solutions of martingale problems.

Duality.

One still needs methods to verify the hypothesis of the last theorem. A very useful
one is the so-called duality method.

Definition 3.51.Consider two separable metric spaces(S,ρ) and(E, r). Let G1,G2

be two linear operators onB(S), resp.B(E). Let µ ,ν be probability measures on
S, resp.E, α : S→ R, β : E → R, f : S×E → R, measurable functions. Then the
martingale problems for(G1,µ) and(G2,ν) aredual with respect to( f ,α,β ), of
for any solution,X, of the martingale problem for(G1,µ) and any solutionY of
(G2,ν), the following hold:

(i)
∫ t

0(|α(Xs)|+ |β (Ys)|)ds< ∞, a.s.,
(ii)

∫
E

[∣∣∣ f (Xt ,y)exp

(∫ t

0
α(Xs)ds

)∣∣∣
]

ν(dy)< ∞, (3.5.23)

∫
E

[∣∣∣ f (x,Yt )exp

(∫ t

0
β (Ys)ds

)∣∣∣
]

µ(dx)< ∞, (3.5.24)

(iii)and,

∫
E

[∣∣∣ f (Xt ,y)exp

(∫ t

0
α(Xs)ds

)∣∣∣
]

ν(dy) (3.5.25)

=

∫
E

[∣∣∣ f (x,Yt )exp

(∫ t

0
β (Ys)ds

)∣∣∣
]

µ(dx)

for anyt ≥ 0.

Proposition 3.52.With the notation of the definition, letM ⊂ M1(S) contain the
set of all one-dimensional distributions of all solutions of the martingale problem
for G1 for which the distribution of X0 has compact support. Assume that(G1,µ)
and (G2,δy) are dual with respect to( f ,0,β ) for everyµ with compact support
and any y∈ E. Assume further that the set{ f (·,y) : y ∈ E} is separating onM .
If for every y∈ E there exists a solution of the martingale problem(G2,δy), then
uniqueness holds for eachµ in the martingale problem(G1,µ).
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Proof. Let X andX̃ be solutions for the martingale problem for(G1,µ) whereµ
has compact support, and letYy be a solution to the martingale problem(G2,δy).
By duality we have then that

E[ f (Xt ,y)] =
∫
E

[
f (x,Yy

t )exp

(∫ t

0
β (Yy

s )ds

)]
µ(dx) = E[ f (X̃t ,y)] (3.5.26)

Now we assumed that the class of functions{ f (·,y) : y∈ E} is separating onM , so
the one-dimensional marginals ofX andX̃ coincide.

If µ does not have compact support, take a compact setK with µ(K) > 0 and
consider the two solutionsX andX̃ conditioned onX0 ∈ K, X̃0 ∈ K. They are so-
lutions of the martingale problem for the initial distribution conditioned onK, and
hence have the same one-dimensional distributions. Thus

P[Xt ∈ Γ |X0 ∈ K] = P[X̃t ∈ Γ |X̃0 ∈ K]

for any K, which again implies, sinceµ is inner regular, the equality of the one
dimensional distributions and thus uniqueness by Theorem 3.50. ⊓⊔

This theorem leaves a lot to good guesswork. It is more or lessan art to find dual
processes and there are no clear results that indicate when and why this should be
possible. Nonetheless, the method is very useful and widelyapplied.

Let us see how one might wish to go about finding duals. Let us assume that we
have two independent processes,X,Y, on spacesS1,S2, and two functionsg,h ∈
B(S1×S2), such that

f (Xt ,y)−
∫ t

0
g(Xs,y)ds (3.5.27)

and

f (x,Yt )−
∫ t

0
h(x,Ys)ds (3.5.28)

are martingales with respect to the natural filtrations forX, respectivelyY. Then
(3.5.25) is the integral of

d
ds

E

[
f (Xs,Yt−s)exp

(∫ s

0
α(Xu)du+

∫ t−s

0
β (Yu)du

)]
. (3.5.29)

Computing (assuming that we can pull the derivative into theexpectation) gives that
(3.5.29) equals

E

[(
g(Xs,Yt−s)−h(Xs,Yt−s)+ (α(Xs)−β (Yt−s)) f (Xs,Yt−s)

)

×exp

(∫ s

0
α(Xu)du+

∫ t−s

0
β (Yu)du

)]
. (3.5.30)

This latter quantity is equal to zero, if
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g(x,y)+α(x) f (x,y) = h(x,y)+β (y) f (x,y). (3.5.31)

To see how this can be used, we look at the following simple example. LetS1 =
R andS2 = N0. The processX has generatorG1 defined on smooth functions by
G1 = d2

dx2 − x d
dx andY has generatorG2 f (y) = y(y− 1)( f (y−2)− f (y)). Clearly

the processY can be realized as a Markov jump process that jumps down by 2 and
is absorbed in the states 0 and 1. The Second process is calledOrnstein-Uhlenbeck
process. Now choose the functionf (x,y) = xy. If X is a solution of the martingale
problem forG1, we get, assuming the necessary integrability conditions,that will
be satisfied if the initial distribution ofX0 has bounded support), that

Xy
t −

∫ t

0

(
y(y−1)Xy−2

s − yXy
s

)
ds (3.5.32)

are martingales. Of course, this suggest to choose

g(x,y) = y(y−1)xy−2− yxy, (3.5.33)

Similarly,

xYt −
∫ t

0
Ys(Ys−1)

(
xYs−2− xYs

)
ds (3.5.34)

is a martingale and hence

h(x,y) = y(y−1)
(
xy−2− xy) . (3.5.35)

Now we may setα = 0 and see that we can satisfy (3.5.31) by putting

β (y) = y2−2y. (3.5.36)

Thus we get

E

[
XY0

t

]
= E

[
XYt

0 exp

(∫ t

0

(
Y2

u −2Yu
)

du

)]
. (3.5.37)

This explains in a way what is happening here: the jump processY together with the
initial distribution of the processX determines the moments of the processXt . One
may check that in the present case, these are actually growing sufficiently slowly to
determine the distribution ofXt , this in turn is, as we know, sufficient to determine
the law of the processX.

In fact, we can use (3.5.37) to compute the moments of the limititing distribution
of Xt ast ↑ ∞. Let firstY0 = 2k+1. Then the processYt is absorbed in the state+1,
and hence,

lim
t↑∞

E

[
X2k+1

t

]
= E

[
X

Yτ1
0 exp

(∫ τ1

0

(
Y2

u −2Yu
)

du

)]
(3.5.38)

= E

[
X0exp

(∫ τ1

0

(
Y2

u −2Yu
)

du

)
exp

(
−
∫ ∞

τ1

du

)]
= 0.
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The last equality holds sinceτ1 is finite almost surely, and even theEexp
(∫ τ1

0

(
Y2

u −2Yu
)

du
)
<

∞.
If Y0 = 2k, then the processY is absorbed in the state zero, and we get

lim
t↑∞

E

[
X2k

t

]
= E

[
exp

(∫ τ0

0

(
Y2

u −2Yu
)

du

)]
. (3.5.39)

An elementary computation shows that this expectation equals ∏k
ℓ=1(2ℓ−1). This

implies that the limiting distribution is the standard normal distribution.
The general structure we encounter in this example is rathertypical. One will

often try to go for an integer-valued dual process that determines the moments of
the process of interest. Of course, success is not guaranteed.

We still need to verify when the formal computation of the derivative in (3.5.29)
can be justified. Basically, we need integrabiliy conditions that justify the use of the
Leibnitz rule.

Lemma 3.53.Let f : R2
+ → R be absolutely contiuous in each variable for almost

all values of the other variable, and assume that the partialderivatives are abso-
lutely integrable, i.e., for all T> 0,

∫ T

0

∫ T

0

∣∣∣∣
∂

∂xi
f (x1,x2)

∣∣∣∣dx1dx2 < ∞. (3.5.40)

Then, for almost all t≥ 0,

f (t,0)− f (0, t) =
∫ t

0

(
∂

∂x1
f (s, t − s)− ∂

∂x2
f (s, t − s)

)
ds. (3.5.41)

Proof. To prove the result, integrate the right-hand side overt and use Fubini’s
theorem. This yields the integral over the left-hand side. Differentiating give the
claim of the lemma.

We see that in order to justify the formula (3.5.37), we have to provide conditions
(3.5.40) for the rather complicated fuctions appearing there. The following theorem
provides such conditions.

Theorem 3.54.Let X,Y be independent processes on S1,S2. Let f,g,h,α,β be as
in Definition 3.51. Assume that for all T> 0, there exist an integrable random vari-
ables VT and a constant CT , such that

sup
r,s,t≤T

(|α(Xr)|+1)| f (Xs,Yt)| ≤ VT (3.5.42)

sup
r,s,t≤T

(|β (Xr)|+1)| f (Xs,Yt)| ≤ VT

sup
r,s,t≤T

(|α(Xr)|+1)|g(Xs,Yt)| ≤ VT

sup
r,s,t≤T

(|β (Xr)|+1)|g(Xs,Yt)| ≤ VT ,
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and ∫ T

0
(|α(Xu)|+ |β (Yu)|)du≤CT . (3.5.43)

Assume that f(Xt ,y) and f(x,Yt ) are martingales as above. Then

E

[
f (Xt ,Y0)exp

(∫ t

0
α(Xu)du

)]
−E

[
f (X0,Yt)exp

(∫ t

0
β (Yu)du

)]
(3.5.44)

E

[(
g(Xs,Yt−s)−h(Xs,Yt−s)+ (α(Xs)−β (Yt−s)) f (Xs,Yt−s)

)

×exp

(∫ s

0
α(Xu)du+

∫ t−s

0
β (Yu)du

)]
. (3.5.45)

Proof. The proof of this theorem is fairly technical and can be foundin [6].

The tricky part in the use of duality is to guess good functions f and a good dual
processY. To show existence for the dual process is often not so hard. We will now
turn briefly to the existence question in general.

3.5.2 Existence

We have seen that a uniquely solvable martingale problem provides a way to con-
struct a Markov process. We need to have ways to produce solutions of martingale
problems. The usual way to do this is through approximationsand weak conver-
gence.

Lemma 3.55.Let G be a linear operator with domain and range in Cb(S). Let
Gn,n ∈ N be a sequence of linear operators with domain and range in B(S). As-
sume that, for any f∈ D(A), there exists a sequence, fn ∈ D(Gn) , such that

lim
n↑∞

‖ fn− f‖= 0,andlim
n↑∞

‖Gn fn−G f‖= 0. (3.5.46)

If for each n, Xn is a solution of the martingale problem for Gn with càdlàg sample
paths, and if Xn converges to X weakly, then X is a càdlàg solution to the martingale
problem for G.

Remark 3.56.By weak convergence of processes we understand more precisely
the weak convergence of the law of the process defined on the Skorokhod space
DS[0,∞). See Section 7.

Proof. Let 0≤ ti ≤ t < sbe elements of the setC (X)≡{u∈R+ :P[Xu =Xu−] = 1}.
Let hi ∈Cb(S), i ∈ N. Let f , fn be as in the hypothesis of the lemma. Then
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E

[(
f (Xs)− f (Xt)−

∫ s

t
G f(Xu)du

) k

∏
i=1

hi(Xti )

]
(3.5.47)

= lim
n↑∞

E

[(
fn(X

n
s )− fn(X

n
t )−

∫ s

t
G fn(X

n
u )du

) k

∏
i=1

hi(X
n
ti )

]

= 0

Here we used that the Now the complement of the setC (X) is at most countable,
and then the relation (3.5.47) carries over to all pointsti ≤ t < s. But this implies
thatX solves the martingale problem forG. ⊓⊔

The usefulness of the result is based on the following lemma,which implies that
we can use Markov jump processes as approximations.

Lemma 3.57.Let S be compact and let G be a dissipative operator on C(S) with
dense domain and G1 = 0. Then there exists a sequence of positive contraction
operators, Tn, on B(S) given by transition kernels, such that, for f∈ D(G),

lim
n↑∞

n(Tn−1) f = G f. (3.5.48)

Proof. I will only roughly sketch the ideas of the proof, which is closely related to
the Hille-Yosida theorem. In fact, fromG we construct the resolvent(n−G)−1 on
the range of(n−G). Then for a dissipativeG, the operatorsn(n−G)−1 are bounded
(by one) onrange(n−G). Thus, by the Hahn-Banach theorem, they can be extended
to C(S) as bounded operators. Using the Riesz representation theorem one can then
associate ton(n−G)−1 a probability measure, s.t.

n(n−G)−1 f (x) =
∫

f (y)µn(x,dy),

and hencen(n−G)−1 ≡ Tn defines a Markov transition kernel. Finally, ist remains
to show thatn(Tn−1) f = nG

n−G f = TnG f converges toG f , for f ∈ D(G). To do so,
we only need to show thatTn f → f . For this let f ∈ D(G). Then

Tn f = f +(n−G)−1G f = f +n−1n(n−G)−1G f. (3.5.49)

SinceG is dissipative,‖n(n−G)−1G f‖ ≤ ‖G f‖< ∞, and so the second term tends
to zero in norm. SinceTn is bounded, the result extends to the closure of the domain
of G. This concludes the proof.⊓⊔

The point of the lemma is that it shows that the martingale problem forG can be
approximated by martingale problems withboundedgeneratorsGn ≡ n(Tn−1) that
act like

Gn f (x) = n
∫
( f (y)− f (x))µn(x,dy).

For such generators, the construction of a solution can be done explicitly in various
ways, e.g. by constructing the transition function throughthe convergent series for
exp(tGn).
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Such Markov processes areMarkov jump processeswhich we have already en-
countered in Section 3.1. There we have seen that they can be constructed explicitly
as a time change of a discrete time Markov chain. Thus existence is no problem.

Lemma (3.57) the suitably converging generators. To use Lemma (3.55), we only
need that the associated processes converge weakly. The standard way to proceed
here is to establishtightnessof the sequencesXn. This can actually be established
under the previous hypothesis, by showing that for anyT > 0 andε > 0, there exists
a compact setKε,T ⊂ S, such that

inf
n
P(∀0≤t≤TXn(t) ∈ Kε,T)≥ 1− ε. (3.5.50)

This uses that the processesXn are solutions of martingale problems. For details and
proofs, see [6], in particular Chapter 3.

Tightness implies the existence of a convergent subsequence whose limit,X, will
be a solution of the martingale problem forG. If uniqueness can be shown for this
martingale problem, then this also implies that there can beonly one limit point and
hence the sequenceXn converges.





Chapter 4
Stochastic differential equations

4.1 Stochastic integral equations

We will define the notion of stochastic differential equations first.
We want to construct stochastic processes where the velocities are given as func-

tions of time and position, and that have in addition a stochastic component. We will
consider the case where the stochastic component comes froma Brownian motion,
Bt . Such an equation should look like

dXt = b(t,Xt)dt+σ(t,Xt)dBt , (4.1.1)

with prescribed initial conditionsX0 = x0. The interpretation of such an equation is
not totally straightforward, due to the termσ(t,Xt)dBt . We will interpret such an
equation as the integral equation

Xt = x0+

∫ t

0
b(s,X(s))ds+

∫ t

0
σ(s,X(s))dBs, (4.1.2)

where the integral with respect toB is understood as the Itô stochastic integral de-
fined in the last chapter. The functionsb,σ are in the most general setting assumed
to be locally bounded and measurable.

The questions one is of course interested are those of existence and uniqueness
of solutions to such equations, as well as that of propertiesof solutions. We begin
by discussing the notions of strong and weak solutions.

4.2 Strong and weak solutions

We will denote byW the Polish spaceC(R+,R
n) of continuous paths and we denote

by H the corresponding Borel-σ -algebra, and byHt ≡ σ{xs,s≤ t} the filtration
generated by the paths up to timet.

73
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The formal set-up for a stochastic differential equation involves an initial con-
ditions and a Brownian motion, all of which require a probability space. We will
denote this by

(Ω ,F ,P,{Ft},ξ ,B), (4.2.1)

where

(i) (Ω ,F ,P,{Ft}) is a filtered space satisfying the usual conditions;
(ii)B is a Brownian motion (onRd), adapted toFt ,
(iii)ξ is aF0-measurable random variable.

The minimal orcanonicalset-up hasΩ =Rn×W,P= µ×Q, whereµ is the law of
ξ andQ is Wiener measure andFt the usual augmentation ofF 0

t ≡ σ{ξ ,Bs,s≤ t}.
The precise definition ofpath-wise uniquenessof a SDE is as follows:

Definition 4.1. For a SDE, path-wise uniqueness holds, if the following holds: For
any set-up(Ω ,F ,P,{Ft},ξ ,B), and any two continuous semi-martingalesX and
X′, such that ∫ t

0
(|b(s,Xs)|+ |σ(s,Xs)|2)ds< ∞, (4.2.2)

and the same condition forX′ hold and both processes solve the SDE with this initial
conditionξ and this Brownian motionB,

P[Xt = X′
t , ∀t] = 1. (4.2.3)

If a SDE admits for any setup(Ω ,F ,P,{Ft},ξ ,B) exactly one continuous semi-
martingale as solution, we say that the SDE isexact.

The notion ofstrong solutionsis naturally associated with the setting of exact
SDE’s.

Definition 4.2. A strong solution of a SDE is a function,

F : Rn×W →W, (4.2.4)

such that
F−1(Ht)⊂ B(Rn)× H̄t ,∀t ≥ 0, (4.2.5)

and on any set-up(Ω ,F ,P,{Ft},ξ ,B), the process

X = F(ξ ,B)

solves the SDE.H̄t is the augmentation ofHt with respect to the Wiener measure.

Existence and uniqueness results in the strong sense can be proven in a very simi-
lar way as in the case of ordinary differential equations, using Gronwall’s inequality
and the Picard iteration scheme.

The general approach is to assume local Lipshitz conditions, to prove existence of
solutions for finite times, and then glue solutions togetheruntil a possible explosion.

Let us give the basic uniqueness and existence results, essentially due to Itô.
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Theorem 4.3.Assume thatσ and b are bounded measurable, and that in addition
there exists an open set U⊂ R, and T> 0, such that there exists K< ∞, s.t.

|σ(t,x)−σ(t,y)|+ |b(t,x)−b(t,y)| ≤ K|x− y|, (4.2.6)

for all x,y∈U, t < T. Let X,Y be two solutions of (4.1.2) (with the same Brownian
motion B), and set

τ ≡ inf{t ≥ 0 : Xt 6∈UorYt 6∈U}. (4.2.7)

Then, ifE[X0−Y0]
2 = 0, it follows that

P [X(t ∧ τ) =Y(t ∧ τ),∀0≤ t ≤ T] = 1. (4.2.8)

Proof. The proof is based on Gronwall’s lemma and very much like the determinis-
tic analog. We compute

E

[
max
0≤s≤t

(X(s∧ τ)−Y(s∧ τ))2
]

(4.2.9)

≤ 2E

[
max
0≤s≤t

(∫ s∧τ

0
(σ(u,X(u))−σ(u,Y(u)))dBu

)2
]

+2E

[
max
0≤s≤t

(∫ s∧τ

0
(b(u,X(u))−b(u,Y(u)))du

)2
]

≤ 8E

[∫ t∧τ

0
(σ(u,X(u))−σ(u,Y(u)))2du

]

+2tE

[∫ t∧τ

0
(b(u,X(u))−b(u,Y(u)))2du

]

≤ 2K2(t +4)E

[∫ t∧τ

0
(X(u)−Y(u))2 du

]

≤ 2K2(4+ t)
∫ t

0
E

[
max

0≤u≤s
(X(u∧ τ)−Y(u∧ τ))2ds

]
.

Note that in the first inequality we used that(a+b)2 ≤ 2a2+2b2, in the second we
used the Schwartz inequality for the drift term and Doob’sL2-maximum inequality
for the diffusion term; the next inequality uses the Lipshitz condition and in the last
we used Fubini’s theorem.

Gronwall’s inequality then implies that

E

[
max

0≤t≤T
(X(t ∧ τ)−Y(t ∧ τ))2

]
= 0.

This is most easily proven as follows: Letf be a non-negative function that satisfies
the integral equationf (t)≤ K

∫ t
0 f (s)ds. SetF(t) =

∫ t
0 f (s)ds. Then



76 4 Stochastic differential equations

0≤ d
dx

(
e−tKF(t)

)
≤ e−Kt (−KF(t)+ f (t))≤ 0,

and hencee−tKF(t) ≤ 0, meaning thatF(t) ≤ 0. But sinceF is the integral of the
non-negative functionf , this means thatf (t) = 0.

Thus we have in particular thatP[max0≤t≤T |Xt −Yt |= 0] = 1 as claimed. ⊓⊔

Finally, existence of solutions (for finite times) can be proven by the usual Picard
iteration scheme under Lipschitz and growth conditions.

Theorem 4.4.Let b,σ satisfy the Lipshitz conditions (4.2.6) and assume that

|b(t,x)|2+ |σ(t,x)|2 ≤ K2(1+ |x|2). (4.2.10)

Let ξ be a random vector with finite second moment, independent of Bt , and letFt

be the usual augmentation,Ft , of the filtration associated with B andξ . Then there
exists a continuous,Ft -adapted process X which is astrong solutionof the SDE
with initial conditionξ . Moreover, X is square integrable, i.e. for any T> 0, there
exists C(T,K), such that, for all t≤ T,

E|Xt |2 ≤C(K,T)(1+E|ξ |2)eC(K,T)t . (4.2.11)

Proof. We define a map,F, from the space of continuous adapted processedX,
uniformly square integrable on[0,T], to itself, via

F(X)t ≡ ξ +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs. (4.2.12)

Note that the square integrability ofF(X) needs the growth conditions (4.2.10)
Exercise: Prove this!
As in (4.2.9)

E

(
sup

0≤t≤T
(F(X)t −F(Y)t)

)2

(4.2.13)

≤ 2E

(
sup

0≤t≤T

(∫ t

0
(σ(Xs)−σ(Ys))dBs

)2
)

+2E

(
sup

0≤t≤T

(∫ t

0
(b(Xs)−b(Ys))ds

)2
)

≤ 2K2(1+T)
∫ T

0
E sup

0≤s≤t
(Xs−Ys)

2dt

and hence

E

(
sup

0≤t≤T
(Fk(X)t −Fk(Y)t)

)2

≤ CkT2k

k!
E

(
sup

0≤t≤T
(Xt −Yt)

)2

. (4.2.14)
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Thus, forn sufficiently large,Fn is a contraction, and hence has a unique fixed point
which solves the SDE.⊓⊔

Remark 4.5.The conditions for existence above are not necessary. In particular,
growth conditions are important only when the solutions canactually reach the
regions there the coefficients become too big. Formulationsof weaker hypothesis
for existence and uniqueness can be found for instance in [11], Chapter 14. Their
verification in concrete cases can of course be rather tricky.

We will now consider a weaker form of solutions, in which the solution is not
constructed from the BM, but the BM comes from the solution. This is like in the
martingale problem formulation, and we will soon see the equivalence of the two
concepts.

Definition 4.6. A stochastic integral equation

Xt = X0+

∫ t

0
σ(s,Xs)dBs+

∫ t

0
b(s,Xs)ds (4.2.15)

has aweak solutionwith initial distribution µ , if there exists a filtered space
(Ω ,F ,P,{Ft}), satisfying the usual conditions, and continuous martingalesX and
B, such that

(i) B is anFt -Brownian motion;
(ii)X0 has lawµ ;
(iii)
∫ t

0(|σ(s,Xs)|2+ |b(s,Xs)|)ds< ∞, a.s., for allt;
(iv)(4.2.15) holds.

Definition 4.7. A solution of (4.2.15) is unique in law (orweakly unique), if when-
everXt andX′

t are two solutions such that the laws ofX0 andX′
0 are the same, then

the laws ofX andX′ coincide.

Example. The following simple example illustrates the difference between strong
and weak solutions. Consider the equation

Xt = X0+

∫ t

0
sign(Xs)dBs. (4.2.16)

Here we define sign(x) = −1, if x ≤ 0, and sign(x) = +1, if x > 0. Obviously,
[X]t =

∫ t
0 dt= t,, so for any solution,Xt , that is a continuous local martingale, Lévy’s

theorem implies thatXt is a Brownian motion, if it exists. In particular, we have weak
uniqueness of the solution. Moreover, we can easily construct a solution: LetXt be
a Brownian motion and set

Bt ≡
∫ t

0
sign(Xs)dXs. (4.2.17)

ThendBs = sign(Xs)dXs, and hence
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∫ t

0
sign(Xs)dBs =

∫ t

0
sign(Xs)

2dXs =

∫ t

0
dXs = Xt −X0,

so the pair(X,B) yields a weak solution! Note that the Brownian motion is con-
structed fromX, not the other way around! On the other hand, there is no path-wise
uniqueness: Let, say,X0 = 0. Then, ifXt is a solution, so is−Xt . Of course being
Brownian motions, they have the same law. Note that the correspondingBt in the
construction above would be the same. Moreover, the Brownian motion of (4.2.17)
is measurable with respect to the filtration generated by|Xt | which is smaller than
that ofXt ; thus,Xt is not adapted to the filtration generated by the Brownian motion.
Hence we see that there is indeed not necessarily a solution of this SDE for anyB,
and so this SDE does not have a strong solution.

Remark 4.8.The example (and in particular the last remark) is hiding an interesting
fact and concept, that oflocal time. This is the content of the following theorem due
to Tanaka:

Theorem 4.9.Let X be a continuous semi-martingale. Then there exists a contin-
uous increasing adapted process,{ℓt , t ≥ 0}, called the local time ofX at 0, such
that

|Xt |− |X0|=
∫ t

0
sign(Xs)dXs+ ℓt . (4.2.18)

ℓt grows only when X is zero, i.e.

∫ t

0
1Xs6=0dℓs = 0. (4.2.19)

Proof. The proof uses Itô’s formula and an applroximation of the absolute value
by C∞ functions. Chose some non-decreasing smooth funtionφ that is equal to−1
for x ≤ 0 and equal to+1 for x ≥ 1. Then takefn(x) suc thatf ′n(x) = φ(nx) with
fn(0) = 0. Then Itô’s formula gives

fn(Xt)− fn(X0) =

∫ t

0
f ′n(Xs)dXs+

1
2

∫ t

0
f ′′n (Xs)d[X]s. (4.2.20)

We denote the last term byCn
t . ClearlyCn

t is non-decreasing, and sincef ′′ vanishes
outside the interval[0,1/n], we have that

∫ t

0
1IXs6∈[0,1/n]dCn

s = 0. (4.2.21)

It is also important to note thatfn(x) converges to|x| uniformly, and fn converges
to the sign from below.

To prove the convergence ofCn
t , we just have to prove the convergence of the

stochastic integrals.
Now consider the canonical decomposition of the semi-martingaleXt = X0 +

Mt +At , whereAt can be assumed of finite variation andMt bounded; otherwise use
localisation. We bound the stochastic integrals with respect toMt andAt seperately.
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The first is controlled be the bound
∥∥∥∥
∫ ∞

0

(
sign(Xs)− f ′n(Xs)

)
dMs

∥∥∥∥
2

2
≤ E

∫ ∞

0

(
sign(Xs)− f ′n(Xs)

)2
d[M]s. (4.2.22)

By the uniform convergence of the integrand to zero, it follows that the right-hand
side tends to zero. Then Doob’s maximum inequatlity impliesthat

P

(
sup
t≤∞

∣∣∣∣
∫ ∞

0

(
sign(Xs)− f ′n(Xs)

)
dMs

∣∣∣∣> ε
]
≤ ε−2E

∫ ∞

0

(
sign(Xs)− f ′n(Xs)

)2
d[M]s,

(4.2.23)
which tends to zero withn. Taking possibly subsequences, we get almost sure con-
vergence of the supremum, possibly by choosing subsequences.

The control of the integral with respect toAt is similar and simpler. Note that the
convergence off ′n is monotone. From here the claimed result follows easily.⊓⊔

Note that this theorem implies that in the example above,Bt = |Xt |−ℓt , and since
ℓt depends only on|X|, the measurability properties claimed above hold.

The connection between weak and strong solutions is clarified in the following
theorem due to Yamada and Watanabe. It essentially says thatweak existence and
path-wise uniqueness imply the existence of a strong solution, and in turn weak
uniqueness.

Theorem 4.10.An SDE is exact if and only if

(i) there exists a weak solution, and
(ii)solutions are path-wise unique.

Then uniqueness in law also holds.

The proof of this theorem may be found in [14]

4.3 Weak solutions and the martingale problem

We will now show a deep and important connection between weaksolutions of
SDEs and the martingale problem.

The remarkable thing is that these issues can be cooked down again to the study
of martingale problems. We do the computations for the one-dimensional case, but
clearly everything goes through in thed-dimensional case exactly in the same way.

Let us first observe that, using Itô’s formula, given that theequation (4.1.2) has a
solution, then it is a solution of a martingale problem.

Lemma 4.11.Assume that X solves (4.1.2). Define the family of operator Gt on the
space of C∞-functions f: R→ R, as
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Gt ≡
1
2

σ2(t,x)
d2

dx2 +b(t,x)
d
dx

. (4.3.1)

Then X is a solution of the martingale problem for Gt .

Remark 4.12.We need here in fact a slight generalisation of the notion of martin-
gale problems in order to include time-inhomogeneous processes. For a family of
operatorsGt with common domainD , we say that a processXt is a solution of the
martingale problem, if for allf : S→R in D ,

f (Xt)−
∫ t

0
(Gs f )(Xs)ds (4.3.2)

is a margingale. A simple way of relating this to the usual martingale problem is to
consider an process(t,Xt) on the spaceR+×S. Then the operator̃G = (∂t +Gt)
can be seen as on ordinary generator with domain a subset ofB(R+×S). If f is in
this domain, the martingale should be

Mt ≡ f (t,Xt)− f (0,X0)−
∫ t

0
(∂s f (s,Xs)+ (Gs f )(s,Xs))ds. (4.3.3)

Restricting the domain of̃G to functions of the formf (t,x) = γ(t)g(x), this reduces
to

Mt ≡ g(Xt)γ(t)−g(X0)g(0)−
∫ t

0
(∂sγ(s)g(Xs)+ (Gsg)(Xs,s)γ(s))ds. (4.3.4)

We see immediately, by settingγ(t) ≡ 1, that is(t,Xt) makes (4.3.4) a martingale,
thenXt solves the time dependent martingale problem (4.3.2). On the other hand it
is also easy to see that ifXt makes (4.3.2) a martingale then(t,Xt) makes (4.3.4) a
martingale. Note that we have seen this already in the special caseγ(t) = exp(λ t).

Proof. For later use we will derive a more general result. Letf : R+×R→ R. We
use Itô’s formula to express

f (t,Xt)− f (0,X0) =

∫ t

0
∂s f (s,Xs)ds+

∫ t

0
∂x f (s,Xs)dXs (4.3.5)

+
1
2

∫ t

0
∂ 2

x f (s,Xs)d[X]s.

Now
dXs = b(s,Xs)ds+σ(s,Xs)dBs.

We set

Mt ≡ Xt −
∫ t

0
b(s,Xs)ds

and note that this is by (4.1.2) equal to
∫ t

0 σ(s,Xs)dBs, and hence a martingale. More-
over,

[M]t =
∫ t

0
σ(s,Xs)

2d[B]s =
∫ t

0
σ(s,Xs)

2ds.
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Hence

f (t,Xt )− f (0,X0) =

∫ t

0
∂x f (s,Xs)b(s,Xs)ds

+

∫ t

0
∂s f (s,Xs)ds+

1
2

∫ t

0
σ(s,Xs)∂ 2

x f (s,Xs)ds

+
∫ t

0
∂x f (s,Xs)dMs,

or

f (t,Xt)− f (0,X0)−
∫ t

0
[∂s f (s,Xs+(G f)(s,Xs)]ds=−

∫ t

0
∂x f (s,Xs)dMs, (4.3.6)

where the right-hand side is a martingale, which means thatX solves the martingale
problem, as desired.⊓⊔

This observation becomes really useful through the converse result.

Theorem 4.13.Assume that b andσ are locally bounded as above and assume
that in additionσ−1 is locally bounded. Let Gt be given by (4.3.1). Assume that X
is a continuous solution to the martingale problem for(G,δx0), then there exists a
Brownian motion, B, such that(X,B) is a solution to the stochastic integral equation
(4.1.2).

Proof. We know that for everyf ∈C∞(R),

f (Xt )− f (X0)−
∫ t

0
(Gs f )(s,Xs)ds (4.3.7)

is a continuous martingale. Choosingf (x) = x, it follows that

Xt −X0−
∫ t

0
b(s,Xs)ds≡ Mt (4.3.8)

is a continuous martingale. Essentially we want to show thatthis martingale is pre-
cisely the stochastic integral term in (4.1.2). To do this, we need to compute the
bracket ofM. For this we consider naturally (4.3.7) withf (x) = x2. To simplify the
notation, let us assume without loss of generality thatX0 = 0. This gives

X2
t −2

∫ t

0
Xsb(s,Xs)ds−

∫ t

0
σ2(s,Xs)ds= M̂t , (4.3.9)

whereM̂ is a martingale. Thus
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M2
t = X2

t −2Xt

∫ t

0
b(s,Xs)ds+

(∫ t

0
b(s,Xs)ds

)2

(4.3.10)

= 2
∫ t

0
Xsb(s,Xs)ds+

∫ t

0
σ2(s,Xs)ds+ M̂t

− 2Xt

∫ t

0
b(s,Xs)ds+

(∫ t

0
b(s,Xs)ds

)2

.

I claim that

2
∫ t

0
Xsb(s,Xs)ds−2Xt

∫ t

0
b(s,Xs)ds+

(∫ t

0
b(s,Xs)ds

)2

(4.3.11)

is also a martingale. By partial integration,

∫ t

0
Xsb(s,Xs)ds= Xt

∫ t

0
b(s,Xs)ds−

∫ t

0

∫ s

0
b(u,Xu)dudXs.

Thus (4.3.11) equals

−2
∫ t

0

∫ s

0
b(u,Xu)dudXs+

(∫ t

0
b(s,Xs)ds

)2

=−2
∫ t

0

∫ s

0
b(u,Xu)dudMs,

which is a martingale. Hence

M2
t −

∫ t

0
σ2(s,Xs)ds (4.3.12)

is a martingale, so that by definition of the quadratic variation process,

∫ t

0
σ2(s,Xs)ds= [M]t .

Now set

B(t)≡
∫ t

0

1
σ(s,Xs)

dMs.

Then

[B]t =
∫ t

0

1
σ(s,Xs)2 d[M]s = t,

so by Lévy’s theorem,B(t) is Brownian motion, and it follows thatX solves (4.1.2)
with this particular realization of Brownian motion.⊓⊔

We can summarize these findings in the following theorem.

Theorem 4.14.Let Py be a solution of the martingale problem associated to the
operator G defined in (4.3.1) starting in y. Then there existsa weak solution of the
SDE (4.1.2) with lawPy. Conversely, if there is a weak solution of (4.1.2), then there
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exists a solution of the martingale problem for (4.3.1). Uniqueness in law holds if
and only if the associated martingale problem has a unique solution.

In other words, solutions of our stochastic integral equation are Markov processes
with generator given by the closure of the second order (elliptic) differential operator
G given by (4.3.1). To study their existence and uniqueness, we can use the tools
we developed in the theory of Markov processes. Note that we state the theorem
without the boundedness assumption onσ−1 from Theorem 4.13, which in fact can
be avoided with some extra work.

As a consequence, we sketch two existence and uniqueness results for weak so-
lutions.

Theorem 4.15.Consider the SDE with time-independent coefficients,

dXt = b(Xt)+σ(Xt)dBt , (4.3.13)

in Rd where the coefficients bi andσi j are bounded and continuous. Then for any
measureµ such that ∫

‖x‖2mµ(dx)< ∞, (4.3.14)

for some m> 0, there exists a weak solution to (4.3.13) with initial measure µ .

Proof. We only have to prove that the martingale problem with generator

G f(y) = ∑
i

bi(y)∂i f (y)+
1
2 ∑

i, j ,k

σik(y)σk j(y)∂i∂ j f (y),

for f ∈ C2
0(R

d) has a solution. To do this, we construct an explicit solutionfor a
sequence of operatorsG(n) that converge toG and deduce from this the existence of
the solution of the martingale problem forG.

To do this, lett(n)j = j2−n and setφn(t) = t(n)j 1I
t∈[t(n)j ,t(n)j+1)

. Then set

b(n)(t,y)≡ b(y(φn(t)), σ (n)(t,y)≡ σ(y(φn(t)).

Then define the processesX(n)
t by

X(n)
0 = ξ (4.3.15)

X(n)
t = X(n)

t
(n)
j

+b(X(n)

t
(n)
j

)(t − t(n)j )+σ(X(n)

t
(n)
j

)(Bt −B
t
(n)
j
), t ∈ (t(n)j , t(n)j+1].

We will denote the laws of the processesX(n) by P(n). One easily verifies that the
processesX(n) solves the integral equation

X(n)
t = ξ +

∫ t

0
b(n)(s,X(n))ds+

∫ t

0
σ (n)(s,X(n))dBs. (4.3.16)

But thenX(n) solves the martingale problem for the (time dependent) operator
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(G(n)
t f )(y) ≡∑

i
b(n)i (t,y)∂i f (y(t))+

1
2 ∑

i, j ,k

σ (n)
ik (t,y)σ (n)

k j (t,y)∂i∂ j f (y(t)). (4.3.17)

The first thing to show is that the laws of this family of processes are tight. For
this one uses the criterion given by Proposition 7.21. The basic ingredient is the
following:

E

∥∥∥X(n)
t −X(n)

s

∥∥∥
2m

≤Cm(t − s)m (4.3.18)

for 0 ≤ t,s≤ T, whereCm is uniform in n and depends only on the bound on the
coefficients of the sde. Moreover,

E‖X(n)
0 ‖2m ≤C′

m < ∞ (4.3.19)

by assumption. To prove (4.3.18), we write

E

∥∥∥X(n)
t −X(n)

s

∥∥∥
2m

≤ E

∥∥∥∥
∫ t

s
bn(u,X

(n)
u )du

∥∥∥∥
2m

(4.3.20)

+E

∥∥∥∥
∫ t

s
σn(u,X

(n)
u )dBu

∥∥∥∥
2m

(4.3.21)

≤ (t − s)2mE sup
u∈[s,t]

∥∥∥bn(u,X
(n)
u )
∥∥∥

2m
(4.3.22)

+KmE

(∫ t

s

∥∥∥σn(u,X
(n)
u )
∥∥∥

2
du

)m

(4.3.23)

≤ C(m)(t − s)m (4.3.24)

Here we used the inequality (valid for local martingales

E|Mt |2m ≤ KmE[M]mt , (4.3.25)

for the martingale
∫ t

s σ(u,X(n))dBu. This inequality is a special case of the so-called
Burkholder-Davis-Gundy inequality, which we will state and proof below.

Then Prohorov’s theorem implies that the sequence is conditionally compact, so
that we can at least extract a convergent subsequence. Hencewe may assume that
P(n) converges weakly to some probability measureP∗. We want to show that the
process whose law isP∗ solves the martingale problem for the operatorG.

For f ∈C2
0(R

d), one checks thatG(n) f (y)→ G f(y). Then Lemma (3.55) implies
thatP∗ is a solution of the martingale problem and hence a weak solution of the sde
exists. ⊓⊔

Remark 4.16.Note that we cheat a little here. Namely, the operatorsGn and the form
of the approximating integral equations are more general than what we have previ-
ously assumed in that the coefficientsb(n)(t,y) andσ (n)(t,y) depend on the past of
the functiony and not only on the value ofy at timet. There is, however, no seri-
ous difficulty in generalising the entire theory to that case. The only crucial property
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that needs to be maintained is that the coefficients remain progressive processes with
respect to the filtrationFt .

Remark 4.17.The preceeding theorem can be extended rather easily to the case
whenb andσ are time-dependent, and even to the case when they are bounded,
continuous progressive functionals.

Remark 4.18.The boundedness conditions on the coefficients can be replaced by
the condition

‖b(y)‖2+ ‖σ(y)‖2 ≤ K
(
1+ ‖y‖2) , (4.3.26)

if the bound for the initial condition holds for somem> 1. The proof is simiar to
the one given above, but requires to bound a moment of the maximum ofXn

t via a
Gronwall argument together with the BDG inequalities. I leave this as an exercise.

We now state the Burkholder-Davis-Gundy inequality.

Lemma 4.19.Let M be a continuous local martingale. Then, for every m> 0, there
exist universal constants km,Km depending only on m, such that, for any stopping
time T,

kmE[M]mT ≤ E

(
sup

0≤s≤T
|Ms|

)2m

≤ KmE[M]mT . (4.3.27)

Proof. The following proof (which is taken from [14]) is based on thefollowing
simple lemma, called the “goodλ inequality”. It is a nice eexample of how to use
the margingale property to prove powerful inequalities.

Lemma 4.20.Let X,Y be non-negative random variables. Assume that there exists
β > 1, such that for allλ >,δ > 0,

P(X > β λ ,Y ≤ δλ )≤ ψ(δ )P(X > λ ) , (4.3.28)

whereψ(δ ) ↓ 0, asδ ↓ 0. Then for any function positive, increlasing function F:

R+ →R+, such that F(0) = 0 andsupx>0
F(αx)
F(x) < ∞, there exists a constant C such

that
EF(X)≤CEF(Y). (4.3.29)

Remark 4.21.Clearly, anyF(x) = xm, for anym> 0, satisfies the hypothesis of the
lemma trivially, since(αx)m/xm = αm does not depend onx.

Proof. The statement is non-trivial only ifEF(Y) < ∞. We may also assume that
EF(X) < ∞. Now chooseγ such that for allx, F(x/β ) ≥ γF(x). Such a number
must exist be hypothesis onF . We integrate both sides of (4.3.28) w.r.t.F(dλ ) and
get, using partial integration,
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ψ(δ )EF(X) ≥
∫ ∞

0
F(dλ )E1IY/δ≤λ<X/β (4.3.30)

= E

(∫ X/β

0
F(dλ )−

∫ Y/δ

0
F(dλ )

)

+

= EF(X/β )−EF(Y/δ )
≥ γEF(X)−EF(Y/δ ).

Now we solve this forEF(X) to get

EF(X)≤ EF(Y/δ )
γ −ψ(δ )

(4.3.31)

We can chooseδ so small thatψ(δ )≤ γ/2. Then there existsµ such thatF(x/δ )≤
µF(x), for all x> 0. This proves the inequality withC= 2µ/γ. ⊓⊔

We have to establish the inquality (4.3.28) forX = M∗
T ≡ supt≤T Mt andY =

[M]
1/2
T . Recall that for any continuous martingaleNt starting in zero, forτx ≡ inf(t :

Nt = x), anda< 0< b,
P(τb < τa)≤−a/(b−a). (4.3.32)

Now fix β > 1,λ > 0, and 0< δ < (β −1). Setτ ≡ inf(t : |Mt |> λ ). Define

Nt ≡ (Mt+τ −Mτ)
2− ([M]t+τ − [M]t). (4.3.33)

One easily checks thatNt is a continuous local martingale. Now condsider the event

{M∗
T ≥ β λ , [M]

1/2
T ≤ δλ}. Now on this event, we have that

sup
t≤T

Nt ≥ (β −1)2λ 2− δ 2λ 2, (4.3.34)

and
inf
t≤T

Nt ≥−δ 2λ 2. (4.3.35)

This implies that on this event,Nt hits (β −1)2λ 2−δ 2λ 2 before−δ 2λ 2, and so by
(4.3.32),

P

(
M∗

T ≥ β λ , [M]
1/2
T ≤ δλ |Fτ

)
≤ δ 2/(β −1)2. (4.3.36)

From this it follows that

P

(
M∗

T ≥ β λ , [M]
1/2
T ≤ δλ

)
≤ δ 2/(β −1)2P(τ < T) = d2/(β −1)2P(|M∗

T |> λ ) .
(4.3.37)

This proves (4.3.28) and hence

EF(M∗
T)≤CEF([M]

1/2
T ). (4.3.38)

The converse inequality is obtained by the same procedure but chosing ofY = M∗
T

andX = [M]
1/2
T . ⊓⊔
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A uniqueness result is interestingly tied to a Cauchy problem.

Lemma 4.22.If for every f∈ C∞
0 (R

d) the Cauchy problem

∂u(t,x)
∂ t

= (Gu)(t,x), (t,x) ∈ (0,∞)×Rd (4.3.39)

u(0,x) = f (x), x∈ Rd

has a solution in C([0,∞)×Rd)∩C(1,2)((0,∞)×Rd) that is bounded in any strip
[0,T]×Rd, then any two solutions of the martingale problem for G with the same
initial distribution have the same finite dimensional distributions.

Proof. Given the solutionu let g(t,x)≡ u(T − t,x). Theng solves, for 0≤ t ≤ T,

∂g(t,x)
∂ t

+(Gsg)(t,x) = 0, (t,x) ∈ (0,∞)×Rd (4.3.40)

g(T,x) = f (x), x∈ Rd

Then it follows from (4.3.6) thatg(t,Xt) is a local martingale for any solution of the
martingale problem. Hence

Ex f (XT) = Exg(T,XT) = Exg(0,X0) = g(0,x), (4.3.41)

is the same for any solution. This implies uniqueness of the one-dimensional distri-
butions. ⊓⊔

Now Theorem 3.50 implies immediately the following corollary:

Corollary 4.23. Under the assumptions of the preceeding lemma, weak uniqueness
holds for the SDE corresponding to the generator G.

4.4 Weak solutions from Girsanov’s theorem

Girsanov’s theorem provides a very efficient and explicite way of constructing weak
solutions of certain SDE’s.

Theorem 4.24.Consider the stochastic differential equation

dXt = b(t,Xt)+dBt , 0≤ t ≤ T, (4.4.1)

for fixed T. Assume that b: [0,T]×Rd is measurable and satisfies, for some K< ∞,

‖b(t,x)‖ ≤ K(1+ ‖x‖). (4.4.2)

Then for any probability measureµ on Rd there exists a weak solution of (4.4.1)
with initial law µ .
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Proof. Let X be a family of Brownian motions starting inx∈R under lawsPx. Then

Zt ≡ exp

(∫ t

0
b(s,Xs) ·dXs−

1
2

∫ t

0
‖b(s,Xs)‖2ds

)
(4.4.3)

is a martingale underPx. Thus Girsanov’s theorem says that under the measureQx

such thatdQx
dPx

= ZT , the process

Wt ≡ Xt −X0−
∫ t

0
b(s,Xs)ds (4.4.4)

for 0≤ t ≤ T is a Brownian motion starting in 0. Thus we have a pair(Xt ,Wt) such
that

Xt = X0+

∫ t

0
b(s,Xs)ds+Wt , (4.4.5)

holds for 0≤ t ≤ T, andWt is a Brownian motion, underQx. This shows that we
have a weak solution of (4.4.1).⊓⊔

A complementary result also provided criteria for uniqueness in law.

Theorem 4.25.Assume that we have weak solutions(X(i),W(i)), i = 1,2, on filtered

spaces(Ω (i),F (i),P(i),F
(i)
t ), of the SDE (4.24) with the same initial distribution.

If

P(i)
[∫ T

0
‖b(t,X(i)

t ‖2dt < ∞
]
= 1, (4.4.6)

for i = 1,2, then(X(1),W(1)) and(X(2),W(2)) have the same distribution under their
respective probability measuresP(i).

Proof. Define stopping times

τ(i)k ≡ T ∧ inf

{
0≤ t ≤ T :

∫ t

0
‖b(t,X(i)

t ‖2dt = k

}
. (4.4.7)

We define the martingales

ξ (k)
t (X(i))≡ exp

(
−
∫ t∧τ(i)k

0
b(s,X(i)

s )dW(i)
s − 1

2

∫ t∧τ(i)k

0
‖b(s,X(i)

s )‖2ds

)
, (4.4.8)

and the corresponding transformed measuresP̃
(i)
k . Then by Girsanov’s theorem,

X(i)

t∧τ(i)k

≡ X(i)
0 +

∫ τ(i)k

0
b(s,X(i)

s )ds+W(i)

t∧τ(i)k

(4.4.9)

is a Brownian motion with unital distributionµ , stopped atτ(i)k . In particular, these

processes have the same law fori = 1,2. Now theW(i) and the stopping timesτ(i)k
can be expressed in terms of these processes, and probabilities of events of the form
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{((X(i)
t1 ,W(i)

t1 ), . . . (X(i)
tn ,W(i)

tn )) ∈ Γ ,τ(i)k = tn},

for any collectionst1 < t2 < · · ·< tn thus have the same probabilities. Passing to the

limit k ↑ ∞ using that due to our assumption,P(i)[τ(i)k = T]→ 1 we get uniqueness
in law for the entire time interval[0,T]. ⊓⊔

4.5 Large deviations

In this section we will give a short glimpse in what is know as the theory of large
deviations large deviationsin the context of simple diffusions. I will emphasize the
use of Girsanov’s theorem and skid over numerous other interesting issues. There
are many nice books on large deviation theory, in particular[3, 4, 8].

We begin with a discussion ofSchilder’s theoremfor Brownian motion.
A we know very well, a Brownian motionBt starting at the origin will, at time

t, typically be found at a distance not greater than
√

t from the origin, in particular,
Bt/t converges to zero a.s. We will be interested in computing theprobabilities that
the BM follows an exceptional path that lives on the salet. To formalize this idea, we
fix a time scaleT (which we might also call 1/ε), and a smooth pathγ : [0,1]→Rd.
We want to estimate

P

[
sup

0≤s≤1
‖T−1BsT− γ(s)‖ ≤ ε

]
. (4.5.1)

It will be convenient to adopt the notation‖ f‖∞ ≡ sup0≤s≤1‖ f (s)‖. We will first
prove a lower bound on the probabilities of the form (4.5.1).

Lemma 4.26.Let B be Brownian motion, set BT
s ≡ T−1BTs, and letγ be a smooth

path inRd starting in the origin. Then

lim
ε↓0

lim
T↑∞

T−1 lnP
[
‖BT − γ‖∞ ≤ ε

]
≥−I(γ)≡−1

2

∫ 1

0
‖γ̇(s)‖2ds. (4.5.2)

Proof. For notational simplicity we consider the cased = 1 only. Note thatBT
s =

T−1BsT has the same distribution asT−1/2Bs. Thus we must estimate the probabili-
ties

P

[
sup
t≤1

‖Bt −
√

Tγ(t)‖ ≤
√

Tε
]
. (4.5.3)

To do this, we observe that by Girsanov’s theorem, the process

B̂t ≡ Bt −
√

Tγ(t) (4.5.4)

is a Brownian motion under the measureQ defined through

dQ
dP

= exp

(√
T
∫ t

0
γ̇(s)dBs−

T
2

∫ t

0
‖γ̇(s)‖2ds

)
. (4.5.5)
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Hence

P

[
‖B−

√
Tγ‖∞ ≤

√
Tε
]

(4.5.6)

= P

[
‖B̃‖∞ ≤

√
Tε
]

= EQ

[
e−

√
T
∫ 1
0 γ̇(s)dBs+

T
2
∫ 1
0 ‖γ̇(s)‖2ds1I‖B̃‖∞≤

√
Tε

]

= EQ

[
e−

√
T
∫ 1
0 γ̇(s)dB̃s− T

2
∫ 1
0 ‖γ̇(s)‖2ds1I‖B̃‖∞≤

√
Tε

]

= e−
T
2
∫ 1
0 ‖γ̇‖2(s)dsQ

[
‖B̃‖∞ ≤

√
Tε
]
EQ

[
e−

√
T
∫ 1
0 γ̇(s)dB̃s

∣∣∣∣‖B̃‖∞ ≤
√

Tε
]

= e−
T
2
∫ 1
0 ‖γ̇(s)‖2dsP

[
‖B‖∞ ≤

√
Tε
]
EP

[
e−

√
T
∫ 1
0 γ̇(s)dBs

∣∣∣∣‖B‖∞ ≤
√

Tε
]
.

Now we may use Jensen’s inequality to get that

EP

[
e−

√
T
∫ 1
0 γ̇(s)dBs

∣∣‖B‖∞ ≤
√

Tε
]

(4.5.7)

≥ exp

(
−
√

TEP

[∫ 1

0
γ̇(s)dBs

∣∣∣∣‖B‖∞ ≤
√

Tε
])

= 1.

On the other hand, it is easy to see, using e.g. the maximum inequality, that, for any
ε > 0,

lim
T↑∞

P

[
‖B‖∞ ≤

√
Tε
]
= 1. (4.5.8)

Hence,

liminf
T↑∞

T−1 lnP
[
‖B−

√
Tγ‖∞ ≤

√
Tε
]
≥−1

2

∫ t

0
‖γ̇(s)‖2ds, (4.5.9)

which is the desired lower bound.⊓⊔

To prove a corresponding upper bound, we proceed as follows.Fix n∈N and set
tk = k/n, k= 0, . . .n. Setα ≡ T/n. Let L be the linear interpolation ofBT

s such that
for all tk, BT

tk = Ltk . Then
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P
[
‖BT −L‖∞ > δ

]
≤

n

∑
k=1

P

[
max

tk−1≤t≤tk
‖BT

t −Lt‖> δ
]

≤ nP

[
max

0≤t≤α
‖BT

t −Lt‖> δ
]

= nP

[
max

0≤t≤α
‖Bt −

t
α

Bα‖> δ
√

T

]

≤ nP

[
max

0≤t≤α
‖Bt −

t
α

Bα‖> δ
√

T

]

≤ nP

[
max

0≤t≤α
‖Bt‖> δ

√
T/2

]
,

where we used that max0≤t≤α ‖Bt − t
α Bα‖ > x implies that max0≤t≤α ‖Bt‖ > x/2.

The last probability can be estimated using the following exponential inequality (for
one-dimensional Brownian motion)

P[ sup
0≤s≤t

|Bs|> xt]≤ 2exp

(
−x2t

2

)
(4.5.10)

which is obtained easily using thatZt ≡ exp
(
αBt − 1

2α2t
)

is a martingale and ap-
plying Doob’s submartingale inequality (see the proof of the Law of the iterated
logarithm in [1]).

This gives us

P

[
max

0≤t≤α
‖Bt‖> δ

√
T/2

]
≤ dP

[
max

0≤t≤α
|Bt |> δ

√
T/2

√
d

]
(4.5.11)

≤ = 2de−
δ2n2T

8d

and so

P
[
‖BT −L‖∞ > δ

]
≤ n2e−

δ2n2T
8d (4.5.12)

which can be made as small as desired by choosingn large enough.
The simplest way to proceed now is to estimate the probability that the value of

theaction functional, I , onL, has an exponential tail with rateT, i.e. that, forn large
enough,

limsup
T↑∞

T−1 lnP [I(L)≥ λ ]≤ λ . (4.5.13)

This is proven easily using the exponential Chebyshev inequality, since

I(L) =
n
2

n

∑
k=1

∥∥∥BT
tk+1

−BT
tk

∥∥∥
2
=

1
2T

dn

∑
i=1

η2
i

whereηi are iid standard normal random variables. But

Eeρη2
i ≤Cλ ≤ ∞,
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for all ρ < 1, and so

P

[
1

2T

dn

∑
i=1

η2
i > λ

]
≤ e−ρλ TEeρ ∑nd

i=1η2
i /2 (4.5.14)

≤ e−ρλ TCnd
ρ

for all ρ < 1, and so (4.5.13) follows, for anyn.
We can deduce from the two estimates the following version ofthe upper bound:

Proposition 4.27.Let Kλ ≡ {φ : I(φ)≤ λ}. Then

limsup
T↑∞

T−1 lnP
[
dist(BT,Kλ )≥ δ

]
≤−λ . (4.5.15)

Clearly the meaning of this proposition is that the probability to find a Brow-
nian that is not near a path whose action is less thanλ has probability less than
exp(−λT).

The two bounds, together with the fact that the levels setsKλ (of I are compact (a
fact we will not prove), imply the usual formulation of alarge deviation principle:

Theorem 4.28.For any Borel set A⊂W,

− inf
γ∈intA

I(φ) ≤ lim inf
T↑∞

T−1 lnP
[
BT ∈ A

]
(4.5.16)

≤ limsup
T↑∞

T−1 lnP
[
BT ∈ A

]
≤− inf

γ∈Ā
I(φ),

whereintA andĀ denote the interior respectively closure of A.

The next step will be to pass to an analogous result for the solution of the SDE
(4.4.1) with a scaled down Brownian term. i.e. we want to consider the equation

Xt = T−1/2Bt +
∫ t

0
b(Xs)ds. (4.5.17)

(for notational simplicity we take zero initial conditions). The easiest (although
somewhat particular) way to do this is to construct the mapF : W →W, as

F(γ) = f , (4.5.18)

where f is the solution of the integral equation

f (t) =
∫ t

0
b( f (s))ds+ γ(t). (4.5.19)

We may use Gronwall’s lemma to show that this mapping is continuous. ThenX =
F(BT), and

P[X ∈ A] = P[BT ∈ F−1(A)]. (4.5.20)
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Hence, since the continuous map maps open/reps. closed setsin open/resp. closed
sets, we can use LDP for Brownian motion to see that

P[X ∈ A]≤ sup
γ∈F−1(Ā)

I(γ) = sup
F(γ)∈Ā

I(γ) = sup
γ∈Ā

I(F−1(γ)), (4.5.21)

and similarly for the lower bound. Hence the processXT satisfies a large deviation
principle with rate functioñI(γ) = I(F−1(γ)), and since

F−1(γ)(t) = γ(t)−
∫ t

0
b(γs)ds,

Ĩ(γ) =
1
2

∫ 1

0
‖γ̇s−b(γs)‖2ds (4.5.22)

This transportation of a rate function from one family of processes to their image is
called sometimes acontraction principle.

Properties of action functionals

. The rate functionI(γ) has the form of a classical action functional in Newtonian
mechanics, i.e. it is of the form

I(γ) =
∫ t

0
L (γ(s), γ̇(s),s)ds, (4.5.23)

where the Lagrangian,L , takes the special form

L (γ(s), γ̇(s),s) = ‖γ̇(s)−b(γ(s),s)‖2
2. (4.5.24)

The principle of least action in classical mechanics then states that the systems fol-
lows a the trajectory of minimal action subject to boundary conditions. This leads
to the Euler-Lagrange equations,

d
dt

∂
∂ γ̇

L (γ, γ̇,s) =
∂

∂γ
L (γ, γ̇,s). (4.5.25)

In our case, these take the form

d2

dt2
γ(t) =

∂
∂ t

b(γ(t), t)+b(γ(t), t)
∂

∂γ(t)
b(γ(t), t). (4.5.26)

One can readily identify a special class of solution of this second order equation,
namely solutions of the first order equations

γ̇(t) = b(γ(t), t), (4.5.27)
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which have the property that they yield absolute minima of the action,I(γ) = 0. Of
course, being first order equations, they admit only one boundary or initial condition.

Typical questions one will ask in the probabilistic contextare: what is the proba-
bility of a solution connectinga andb in time t. The large deviation principle yields
the ansert

P [|X0−a| ≤ d, |Xt −b| ≤ δ ]∼ exp

(
−ε−1 inf

γ:γ(0)=a,γ(t)=b
I(γ)

)
, (4.5.28)

which leads us to solve (4.5.26) subject to boundary conditionsγ(0) = a,γ(t) =
b. In general this will not solve (4.5.27), and thus the optimal solution will have
positive action, and the event under consideration will have an exponentially small
probability. On the other hand, under certain conditions one may find a zero-action
solution if one does not fix the time of arrival at the endpoint:

P [|X0−a| ≤ d, |Xt −b| ≤ δ , for somet < ∞]

∼ exp

(
−ε−1 inf

γ:γ(0)=a,γ(t)=b,for somet∞
I(γ)

)
. (4.5.29)

Clearly the infimum will be zero, if the solution of the initial value problem (4.5.27)
with γ(0) = a has the property that for somet < ∞, γ(t) = b, or if γ(t)→ b, ast ↑ ∞.

Exercise.Consider the case of one dimension withb(x)=−x. Compute the minimal
action for the problem (4.5.28) and characterize the situations for which a minimal
action solution exists.

A particularly interesting question is related to the so calledexit problem. Assume
that we we consider an event as in (4.5.29) that admits an zero-action pathγ, such
that γ(0) = a,γ(T) = (b). Define the time reversed patĥγ(t) ≡ γ(T − t). Clearly
d
dt γ̂(t) =−γ̇(T − t). Hence a simple calculation shows that

I(γ̂)− I(γ) = 2
∫ T

0
b(γ(s)) · γ̇(s)ds=

∫

γ
b(γ)dγ. (4.5.30)

Let us now specialize to the case when the vector fieldb is the gradient of a potentia,
b(x) = ∇F(x). Then

∫

γ
b(γ)dγ = F(γ(T))−F(γ(0)) = F(b)−F(a). (4.5.31)

Hence
I(γ̂) = I(γ)+F(b)−F(a), (4.5.32)

If I(γ) = 0, thenI(γ̂) = F(b)−F(a), and this is the miminal possible value for any
curve going fromb to a. This shows the remarkable fact that the most likely path
going uphill against a potential is the time-reversal of thesolution of the gradient



4.6 SDE’s from conditioning: Doob’sh-transform 95

flow. Estimates of this type are the basis of the so-called Wentzell-Freidlin theory
[8].

4.6 SDE’s from conditioning: Doob’sh-transform

With Girsanov’s theorem we have seen that drift can be produced through a change
of measure. Another important way in which drift can arise isconditioning. We have
seen this already in the case of discrete time Markov chains.Again we will see that
the martingale formulation plays a useful rôle.

As in the discrete case, the key result is the following.

Theorem 4.29.Let X be a Markov process, i.e. a solution of the martingale problem
for an operator G and let h be a strictly positive harmonic function. Define the
measurePh s.t. for anyFt measurable random variable,

Eh
x[Y] =

1
h(x)

Ex[h(Xt)Y]. (4.6.1)

ThenPh is the law of a solution of the martingale problem for the operator Gh

defined by

(Gh f )(x) ≡ 1
h(x)

(Lh f)(x). (4.6.2)

As an important example, let us consider the case of Brownianmotion in a do-
main D ⊂ Rd, killed in the boundary ofD. We will assume thatD is a harmonic
function inD and letτD the first exit time ofD. Then

Gh =
1
2

∆ +
∇h
h

·∇,

and hence under the lawPh, the Brownian motion becomes the solution of the SDE

dXt =
∇h(Xt)

h(Xt)
dt+dBt . (4.6.3)

On the other hand, we have seen that, ifh is the probability of some event, e.g.

H(x) = Px[XτD ∈ A],

for someA∈ ∂D, then
Ph[·] = P[·|XτD ∈ A] (4.6.4)

This means that the Brownian motion conditioned to exitD in a given place can be
represented as a solution of an SDE with a particular drift. For instance, letd = 1,
and letD = (0,R). Consider the Brownian motion conditioned to leaveD at R. It is
elementary to see that
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Px[XτD = R] = x/R.

Thus the conditioned Brownian motion solves

dXt =
1
Xt

dt+dBt . (4.6.5)

Note that we can takeR↑ ∞ without changing the SDE. Thus, the solution of (4.6.5)
is Brownian motion conditioned to never return to the origin. This is understandable,
as the strength of the drift away form zero goes to infinity (quickly) near 0. Still,
it is quite a remarkable fact that conditioning can be exactly reproduced by the
application of the right drift.

Note that the process defined by (4.6.5) has also another interpretation. Let
W = (W1, . . . ,Wd) bed-dimensional Brownian motion. SetRt = ‖W(t)‖2. ThenRt

is called theBessel processwith dimensiond. It turns out that this process is also
the (weak) solution of a stochastic differential equation,namely:

Proposition 4.30.The Bessel process in dimension d is a weak solution of

dRt =
d−1
2Rt

+dBt . (4.6.6)

Proof. Let us first construct the Brownian motionBt from thed-dimensional Brow-
nian motionsW as follows. Set

B(i)
t ≡

∫ t

0

Wi(s)
Rs

dWi(s)

and

Bt ≡
d

∑
i=1

B(i)
t .

The processes inB(i)
t are continuous square integrable martingales since

E

(∫ t

0

Wi(s)
Rs

dWi(s)

)
= E

∫ t

0

(
Wi(s)

Rs

)2

ds≤ t;

Moreover the

[B]t =∑
i, j
[B(i),B( j)]t = ∑

i

∫ t

0

(
Wi(s)

Rs

)2

ds= t,

so by Lévy’s theorem,B is Brownian motion. Thus we can write (4.6.6) as

dRt = ∑
i

1
Rt

dWi(t)+
1
2

d−1
Rt

dt.

But this is precisely the result of applying Itô’s formula tothe function f (W) =
‖W‖2. Note that this derivation is slightly sloppy, since the function f is not differ-
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entiable at zero, but the result is correct anyway (for a fully rigorous proof see e.g.
[12], Chapter 3.3). ⊓⊔

In particular, we see that the one-dimensional Brownian motion conditioned to
stay strictly positive for all positive times is the 3-dimensional Bessel process. This
shows in particular that in dimension 3 (and trivially higher), Brownian motion
never returns to the origin. Looking at the SDE describing the Bessel process, one
might guess that the value ofd, as soon asd > 1, should not be so important for this
property, since there is always a divergent drift away from 0. We will now show that
this is indeed the case.

Proposition 4.31.Let Rt be the solution of the SDE (4.6.6) with d≥ 2 and initial
condition R0 = r ≥ 0. Then

P [∀t > 0 : Rt > 0] = 1. (4.6.7)

Proof. Let first r > 0. Let

τk ≡ inf
{

t ≥ 0 : Rt = k−k
}
,

σk ≡ inf {t ≥ 0 : Rt = k}
andTk ≡ τk ∧σk∧n. Now use Itô’s formula for the functionh(RTk), whereh(x) =

1
1−α x−α+1, if (d− 1)/2 = α 6= 1, andh(x) = lnx, if d = 2. The point is thath

is a harmonic function w.r.t. the operatorG = d2

dx2 +α 1
x

d
dx, and henceh(Rt) is a

martingale. Moreover, sinceTk is a bounded stopping time, it follows that

Er
[
h
(
RTk

)]
= h(r). (4.6.8)

Finally,

Er
[
h
(
RTk

)]
= h(k)Pr [Tk = σk]+h(k−k)Pr [Tk = τk]+h(Bn)Pr [Tk = n]. (4.6.9)

Hence

Pr [Tk = τk]≤
h(r)

h(k−k)
≤
{

k−(α−1)kr−α+1, if d 6= 2,
ln r

k lnk , if d = 2.
(4.6.10)

Now all what is left to show is thatP[n< τk∧σk] ↓ 0, asn ↑ ∞. But this is obvious
from the fact thatRt ≥ r +Bt , andP0[Bt ≤ n] tends to zero asn ↑ ∞. Hence,

lim
n↑∞

Pr [Tk = τk] = Pr [τk < σk]

which in turn tends to zero withk. Now setτ ≡ inf{t > 0 : Bt = 0}. For everyk,
τk < τ, so that, again sinceσk ↑ ∞, a.s.,

P [τ < ∞]≤ lim
k↑∞

Pr [τ < σk]≤ lim
k↑∞

Pr [τk < σk] = 0. (4.6.11)
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This proves the caser > 0. Forr = 0, just use that, by the strong Markov property,
for anyε > 0,

P0 [Rt > 0,∀ε < t < ∞] = E0PBε [[Rt > 0,∀0< t < ∞] = 1, (4.6.12)

sinceP0[Rε > 0] = 1. Finally letε ↓ 0 to complete the proof.⊓⊔

Remark 4.32.The method used above is important beyond this example. It has a
useful generalization in that one need not chose forh a harmonic function. In fact
all goes through ifh is chosen to be super-harmonics. In many situations it may
be difficult to find a harmonic function, whereas one may well be able to to find a
useful super-harmonic function.



Chapter 5
SDE’s and partial differential equations

Already in the context of discrete time Markov processes we have seen that the
martingale problem formulation of Markov processes leads to an interesting con-
nection between probability theory and linear boundary value problems. In the case
of stochastic differential equations, this connections become even more profound
leads to the connection between diffusion processes and potential theory which can
be seen as one of the mathematical highlights of stochastic analysis. The classical
case relates only to Brownian motion, but the extension to more general second
order stochastic differential equations is quite straight-forward. Note that we will
henceforth switch notation and denote generators byL rather thanG, as the letter
G will be needed to denote Green’s functions. For analytic background on elliptic
partial differential equations the standard reference is the textbook [10] by Gilbarg
and Trudiger.

5.1 The Dirichlet problem

We consider the stochastic differential equation of the previous chapter with time-
independent drift and dispersion matrix

dXt = b(Xt)dt+σ(Xt)dBt , (5.1.1)

in Rd. We have seen that the (weak) solutions of this equation are astrong Markov
process with generator whose restriction toC2(Rd) is given by

L =
1
2

d

∑
i, j=1

ai j (x)
∂ 2

∂xi∂x j
+

d

∑
i=1

bi(x)
∂

∂xi
, (5.1.2)

where thediffusion matrix ais given by

99
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ai j (x) =
d

∑
k=1

σik(x)σk j(x). (5.1.3)

In the sequel we will always assume that the dispersion matric σ is non-degenerate
and hence the diffusion matrix is strictly positive, i.e. for all x∈ Rd, a(x) defines a
strictly positive quadratic form. Ifa is strictly positive, then the operatorL is called
elliptic. If in some domainD ⊂ Rd,

∑
i, j

ai j (x)ξiξ j ≥ δ‖ξ‖2,

for all x∈ D, then we callL uniformly elliptic in D.
The classicalDirichlet problemassociated with an elliptic operatorL and a

domain,D, is described as follows (we assume here thatD is bounded). LetD ⊂ R

and continuous functionsgD̄→R, k : D̄ → [0,∞), andu : ∂D →R be given. can we
find a continuous functionf : D̄ → R, such that

−(L f )(x)+ k(x) f (x) = g(x),∀x∈ D (5.1.4)

f (x) = u(x),∀x∈ ∂D. (5.1.5)

Remark 5.1.The Dirichlet problem can also be posed ifu is not a continuous func-
tion on the boundary ofD. In that case the condition thatf be continuous on̄D
must be replaced by that condition that, for allx∈ ∂D, whenever a sequencexn ∈ D
converges tox, then f (xn)→ u(x).

It is rather straightforward to see that the existence of a solution of such a problem
implies a stochastic representation. Namely:

Theorem 5.2.Assume that f solves the Dirichlet problem above, and let X bea
weak solution of the SDE (5.1.1). LetτD ≡ inf{t ≥ 0 : Xt 6∈ D}. If

ExτD < ∞, ∀x∈ D, (5.1.6)

then

f (x) = Ex

[
f (XτD)exp

(
−
∫ τD

0
k(Xs)ds

)
(5.1.7)

+

∫ τD

0
g(Xs)exp

(
−
∫ t

0
k(Xs)ds

)
dt

]

Proof. The key to this result is the following lemma:

Lemma 5.3.Let Ft be a filtration and X an adapted process. Let f,g,k ∈ B(S).
Then f(Xt)−

∫ t
0(L f )(Xs)ds is a martingale if and only if

Mt ≡ e−
∫ t
0 k(Xs)dsf (Xt )+

∫ t

0
e−

∫ s
0 k(Xr )dr (k(Xs) f (Xs)− (L f )(Xs))ds (5.1.8)
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is a martingale.

Proof. The proof of this lemma follows from Proposition 4.1.1 in [1]. Just choose
for M(t) the martingalef (Xt)−

∫ t
0(L f )(Xs)dsand forV(t) the process exp

(
−∫ t

0 k(Xs)ds
)
.

Then it is a slightly tedious but straightforward computation (that uses Fubini’s the-
orem at the right moment) to show that the expression in (5.1.8) is of the form
V(t)M(t)− ∫ t

0 M(t)dV(t) and hence a martingale.⊓⊔

We use Lemma 5.3 withg = L f where f solves the Dirichlet problem. Now
sinceExτD < ∞ by assumption, we get from the optional sampling theorem that

ExMτD = ExM0. (5.1.9)

But ExM0 = f (x), while, due to the fact that

ExMτD = Ex

[
e−

∫ τD
0 k(Xs)dsf (XD) (5.1.10)

+

∫ τD

0
e−

∫ s
0 k(Xr )dr (k(Xs) f (Xs)−L f (Xs))ds

]

= Ex

[
e−

∫ τD
0 k(Xs)dsf (XD)+

∫ τD

0
e−

∫ s
0 k(Xr )drg(Xs)ds

]

which is what we claimed. ⊓⊔

It is interesting to note that the finiteness of the expectation of the exit timeτD is
quite easily ensured (for bounded domains) from a rather weak ellipticity condition.

Lemma 5.4.Let D be open and bounded inRd, and assume that for some1≤ ℓ≤ d,

min
x∈D̄

aℓℓ(x)> 0. (5.1.11)

ThenExτD < ∞, for all x∈ D.

Proof. Seta= minx∈D̄ aℓℓ(x), b≡maxx∈D̄ ‖b(x)‖, andq≡ minx∈D̄xℓ. Let ν > 2b/a.
Consider the smooth functionh(x) =−µeνxℓ , with µ > 0 to be chosen later. Clearly

−L h(x) = µeνxℓ

(
1
2

ν2aℓℓ(x)+νbℓ(x)

)
≥ 1

2
µνaeνb (ν −2b/a).

Now we can choseµ such that the right-hand side is larger than 1, and soL h(x)≤
−1, for all x∈ D. But

h(Xt∧τD)−
∫ t∧τD

0
L h(Xs)ds

is a martingale, and so

−Ex

∫ t∧τD

0
L h(Xs)ds= h(x)−Exh(Xt∧τD),

or
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h(x)−Exh(Xt∧τD)≥ Ex(t ∧ τD)

and hence
Ex(t ∧ τD)≤ max

y∈D̄
|h(y)|< ∞.

Passing to the limitt ↑ ∞ impliesExτD < ∞. ⊓⊔

The previous results give a stochastic representation formula for solutions of the
Dirichlet problem, assuming that a solution to the Dirichlet problem and a weak
solution of the SDE exist. One may ask whether one can use thisrepresentation
to prove the existence of solutions of the Dirichlet problem? We will address this
question in the simpler context of Brownian motion.

Brownian motion and potential theory.

Let us now consider the setting whereL = 1
2∆ andXt is Brownian motion inRd.

Let us begin with the simplest boundary value problem

∆ f (x) = 0, x∈ D, (5.1.12)

f (x) = u(x), x∈ ∂D.

We assume thatu is bounded and continuous. From the theorem above, an obvious
candidate solution is

f (x) = Exu(BτD). (5.1.13)

Now f clearly satisfies the boundary conditions, and it is also nothard to show hat
∆ f (x) = 0 for x ∈ D. There are various ways ti show this. Note first that we can
write, with Pt the semi-group corresponding to the Brownian motion starting atx
that

(Pt f )(x) = Ex [(1IτD>t +1IτD≤t)EXt [u(BτD)]] (5.1.14)

= Ex [1IτD>tEXt [u(BτD)]]+Ex [1IτD≤tEXt [u(BτD)]] .

Now in the first term we can use the Markov property to see that

Ex [1IτD>tEXt [u(BτD)]] = Ex[u(BτD)] = f (x) (5.1.15)

while the second satisfies the bound

|Ex [1IτD≤tEXt [u(BτD)]] | ≤ max
x∈∂D

u(x)Px [τD ≤ t] . (5.1.16)

If dist(x,Dc) = r > 0, then is follows easily that

Px [τDc ≤ t]≤ Px

[
sup

0≤s≤t
|Bs| ≤ r

]
≤ 2de−r2/2t , (5.1.17)
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and in particular
lim
t↓0

t−1Px [τD ≤ t] = 0, (5.1.18)

for anyx∈ D. This then implies that

1
2

∆ f (x) = lim
t↓0

t−1([Pt −1I] f )(x) = 0. (5.1.19)

We see that all that remains to show to establish thatf solves the Dirichlet prob-
lem is the continuity off at the boundary ofD. 1

As we will see, the continuity property is linked to regularity properties of the
boundary ofD.

Definition 5.5. Define the stopping timeσD ≡ inf{t > 0 : Bt ∈ Dc} (note the differ-
ence toτD when we start the process in the boundary ofD!). A point, z∈ ∂D, is
calledregular , if Pz[σD = 0] = 1.

Thus a regular point has the property that the Brownian motion starting at it will
essentially immediately return to the boundary. An irregular point is one from which
Brownian motion can immediately escape intoD.

Remark 5.6.It follows from the so-calledBlumenthal-Getoor0−1-law (Lemma 5.7
below) that If a pointz is not regular, thenPz[σD = 0] = 0.

Lemma 5.7.[Blumenthal-Getoor0-1-law] Let Bt be a d-dimensional Brownian
motion, starting in x, on a filtered space(Ω ,F̃ ,Px,F̃t) whereF̃ is the usual aug-
mentation of the natural filtration,Ft , generated be the Brownian motion. Then, if
F ∈ F̃0, Px[F ] ∈ {0,1}.

Proof. If F ∈ F̃0, thenF differs from some setG∈ F0 only by aPx-null set. But
sinceG must be of the formG= {B0 ∈ A} for some Borel setA, it follows that

Px[F ] = Px[G] = 1IA(x) ∈ {0,1}.

⊓⊔

The following theorem establishes that the Dirichlet problem is solvable (uniquely)
for bounded regular domains.

Theorem 5.8.Let d≥ 2 and let z∈ ∂D be fixed. Then the following statements are
equivalent:

(i) For any bounded measurable function u: ∂D →R which is continuous at z,

lim
D∋x→z

Exu(BτD) = u(z). (5.1.20)

1 Clearly continuity is essential: without asking it there isno point in the problem, since it would
admit lots of solutions, e.g. zero inD andu on ∂D.
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(ii)z is a regular point for D.
(iii)For all ε > 0,

lim
D∋x→z

Px[τD > ε] = 0. (5.1.21)

Proof. We first proof that (i) implies (ii). From the remark 5.6, we know that if
the origin is irregular, thenPz[σD = 0] = 0. We will use the fact that ind ≥ 2, the
probability that Brownian motion visits any given point is zero, and in particular the
probability that it returns to its starting point is zero. Thus, if Kr denotes the ball of
radiusr aroundz,

lim
r↓0

Pz[BσD ∈ Kr ] = Pz[BσD = z] = 0.

Now fix r such thatPz[BσD ∈Kr ]< 1/4 and chose a sequenceδn, 0< δn < r, tending
to zero. Letτn ≡ inf{t ≥ 0 : ‖Bt‖ ≥ δn}. ThenPz[τn ↓ 0] = 1, and so limnPz[τn <
σD] = 1. Moreover, on{τn < σD} we have thatBτn ∈ D. Thus forn so large that
Pz[τn < σD]≥ 1/2, we have then that

1
4
≥ Pz[BσD ∈ Kr ]≥ Pz[BσD ∈ Kr ,τn < σn] (5.1.22)

= Ez[1Iτn<σDPz[BσD ∈ Kt |Fτn]

=

∫

D∩∂Kδn

Pz[τn < σD,Bτn ∈ dx]Px[BσD ∈ Kr ]

≥ inf
x∈D∩Kδn

Px[BτD ∈ Kr ]

∫

D∩Kδn

Pz[τn < σD,Bτn ∈ dx]

= inf
x∈D∩∂Kδn

Px[BτD ∈ Kr ]Pz[τn < σD]

≥ 1
2

inf
x∈D∩∂Kδn

Px[BτD ∈ Kr ].

HencePxn[BτD ∈ Kr ] ≤ 1
2 for somexn ∈ D ∩ Kδn. Now choose a continuous

bounded function,f , with f (z) = 1, f (x) ≤ 1, x ∈ Kr , and f (x) = 0, x 6∈ Kr . For
such functions we get

limsup
n

Exn f (BτD)≤ limsup
n

Pxn[BτD ∈ Kr ]≤
1
2
< 1= f (z),

so that (i) cannot hold. Therefore (i) implies (ii).
Let us now show that (ii) implies (iii). Notice that the function

gδ (x) ≡ Px[Bs ∈ D;δ ≤ s≤ ε] = Ex[PBδ [τD > ε − δ ]] (5.1.23)

=

∫
Py[τD > ε − δ ]Px[Bδ ∈ dy]

is continuous inx. But

gδ (x) ↓ g(x)≡ Px[Bs ∈ D;0< s≤ ε] = Px[σD > ε],
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Fig. 5.1 Setting in the proof of (i) implies (ii)

asδ ↓ 0, so thatg is upper semi-continuous. This implies that

limsup
x→z

Px[τD > ε]≤ limsup
x→z

Px[σD > ε] = limsup
x→z

g(x)≤ g(z) = 0,

where the last inequality comes from the regularity ofz, i.e. (ii). Thus we have (iii)
from (ii).

Finally we show that (iii) implies (i). We start from the observation thatPx[max0≤t≤ε ‖Bt −
B0‖< r] is independent ofx and converges to one asε ↓ 0. Now

Px[‖BτD −B0‖< r] ≥ Px

[{
max
0≤t≤ε

‖Bt −B0‖< r

}
∩{τD ≤ ε}

]

≥ P0

[{
max

0≤t≤ε
‖Bt‖< r

}]
−Px [τD ≤ ε] .

Whenx → z, by (iii) the second term vanishes for allε, and lettingε ↓ 0, the first
term tends to one. Thus we get that

lim
D∋x→z

Px [‖BτD − x‖< r] = 1.
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Thus

|Ex f (BτD)− f (z)| ≤ |Ex f (BτD)− f (z)| (5.1.24)

≤ |Ex

[
1I‖BτD−x‖<r( f (BτD)− f (z))

]
|

+2 max
y∈∂D

| f (y)|Px[‖BτD − x‖ ≥ r]

Clearly all three terms vanish asx→ zandr ↓ 0 by the continuity at zero and bound-
edness off . ⊓⊔

The preceeding theorems imply that the Dirichlet problem has a unique solution
if and only if any point in the boundary ofD is regular. Otherwise, no solution exists.
Moreover, the solution has the stochastic representation (5.1.14).

Th following proposition gives a sufficient verifiable criteria for regularity.

Proposition 5.9.A point, z∈ ∂D is regular if there exists a cone, A, with vertex z,
such that, for some r> 0, A∩Kr(z)⊂ Dc.

Proof. Let C > 0 denote the fraction of the surface ofKr(z) that lies withinA. Let
K(n) ≡ Kr/n(z), andAn ≡ A∩∂K(n). Now τD = 0 if Bτ

K(n)
∈ An for arbitrary largen,

i.e.{τD = 0} ⊃ limsupn{Bτ
K(n)

∈ An}. Thus

D

Kr (z)

A

A regular point

An irregular point

Fig. 5.2 A domain with one irregular point violating the cone-condition
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Pz[τD = 0] ≥ Pz[limsup
n

{Bτ
K(n)

∈ An}] (5.1.25)

≥ limsup
n

Pz[Bτ
K(n)

∈ An] =C> 0.

The fact that thenPz[τD = 0] = 1 follows from the fact that the event in question is
in F0+ and the Blumenthal-Getoor zero-one law.⊓⊔

A slightly more abstract criterion is interesting because it involves the notion of
a barrier.

Definition 5.10.Let D ⊂Rd be open anda∈ ∂D. A continuous functionv : D̄ →R

that is harmonic inD, positive inD̄\{a}, and zero ata is called abarrier.

Proposition 5.11.Let D be bounded and a∈ ∂D. If there exists a barrier at a, then
a is regular.

Proof. Let v be a barrier. Letf : ∂D → R and defineM ≡ supx∈∂D | f (x)|. For any
ε > 0, we can findδ > 0, such that forx∈ ∂D and|x−a| ≤ δ , | f (x)− f (a)| ≤ ε.
Choosek such thatkv(x)≥ 2M(x), for x∈ D̄ and|x−a| ≥ δ . Then| f (x)− f (a)| ≤
ε + kv(x), for all x∈ ∂D. Thus

|Ex f (BτD)− f (a)≤ ε + kExv(BτD)≤ ε + kv(x),

for all x∈ D. Now sincev is continuous andv(a) = 0, it follows that

limsup
d∋x→a

|Ex f (Bτd)− f (a)| ≤ ε,

for all ε > 0, hence condition (i) of Theorem 5.8 holds anda is regular. ⊓⊔

To show that the discussion of regular points is not empty, let us look at a classical
example of a point that is not regular. This is calledLebesgue’s thorn. Let d = 3,
and define, forεn, n∈ N such thatεn ↓ 0, the sets

E ≡
{
(x1,x2,x3) : −1< x1 < 1;x2

2+ x2
3 < 1

}
; (5.1.26)

Fn ≡
{
(x1,x2,x3) : 2−n ≤ x1 ≤ 2−n+1;x2

2+ x2
3 ≤ εn

}
; (5.1.27)

D ≡ E\
⋃

n∈N
Fn. (5.1.28)

LetBt ≡ (B(1)
t ,B(s)

t ,B(3)
t ) be three dimensional Brownian motion. We know form our

discussion of the Bessel-processes that(B(2)
t ,B(3)

t ) will never hit the point(0,0), i.e.

P

[
∃t > 0 : (B(2)

t ,B(3)
t ) = (0,0)

]
= 0.

ThusBt will never hit the compact set

Kn ≡
{
(x1,x2,x3) : 2−2 ≤ x1 ≤ 2−n+1;x2

2+ x2
3 = 0

}
;
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Since moreover‖Bt‖→∞, a.s., almost all paths remain some positive distance away
form the setKn, and hence, the probability that a path enters anε-neighborhood of
it can be made as small as desired by choosingε small enough. In particular, one
can chooseεn so small that

P [∃t > 0 : Bt ∈ Fn]≤ 3−n.

But unlessBt (starting at 0) immediately returns toD, i.e. if σD = 0, Bt must enter
the set

⋃
n∈N Fn, so that

P0[σD = 0] ≤ P [∃t > 0,∃n : Bt ∈ Fn] (5.1.29)

≤
∞

∑
n=1

P [∃t > 0 : Bt ∈ Fn]≤
∞

∑
n=1

3−n < 1.

Hence 0 is not regular.

5.2 Maximum principle and Harnack-inequalities

The relation between harmonic functions and martingales has a number of further
implications.

The first of these is themean value property.

Lemma 5.12.Let D be a bounded domain,τD the first hitting time of a Markov
process with generatorL . Let z∈ D be fixed. Assume thatEzτD < ∞. DefineµD as
the probability measure on∂D given by

µD(dx) = Pz[XτD ∈ dx] . (5.2.1)

Then, a if a function h: D →R is harmonic in D, it holds that,
∫

∂D
µD(dx)h(x) = h(z). (5.2.2)

Proof. Use the fact thath(xτD) is a martingale. ⊓⊔
The measureµD(dx) is called theexit distribution. It is absolutely continuous

with respect to the Euclidean surface measure,nD(dx) on ∂D.
An immediate consequence of the mean value property is themaximum princi-

ple:

Theorem 5.13.Let h be harmonic in an open, connected domain D. If h achieves
its supremum in D, then it is constant.

Proof. Let h(x) = supy∈D h(y) = M. Let DM ≡ {y∈ D : h(y) = M}. Sinceh is con-
tinuous, this set is closed. Moreover, by the mean value property, for anyy ∈ DM,
for any ballBr(y)⊂ D
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M = h(y) =
∫

∂Br (y)
µBr (y)(dz)h(z),

which implies that forµBr (y)-almost allz∈ ∂Br(y), h(z) = M. Since bothh is con-
tinuous (andµBr (y) is is absolutely continuous with respect to the surface measure,
h(y) = M for all y ∈ ∂Br(y). But thenDM is open, and being open and closed, it
must coincide withD. ⊓⊔

A more subtle consequence of the martingale property for harmonic functions
are theHarnack-inequalities.

We consider first the case of Brownian motion. LetR> 0 and letBR(x) the ball
of radiusR centered atx. By symmetry, we have thePx

[
τBR(x) ∈ dz

]
is the uniform

distribution on∂BR(x). Hence, by the mean value property,

h(x) =
1∫

BR(x)
ddy

∫ R

0
dr
∫

∂Br (x)
h(z)σBr (x)(dz) (5.2.3)

=
1

V(BR)

∫

BR(x)
h(y)ddy.

I.e., the value ofh(x) equals to its spatial average over the ball of radiusR. Now let
y∈ BR(x) andr sucht thatBr(y)⊂ BR(x). Clearly we have again that

h(y) =
1

V(Br)

∫

Br (y)
h(z)ddz. (5.2.4)

Now let h be anon-negativeharmonic function. Then it follows that

h(x)≥ 1
V(BR)

∫

Br (y)
h(z)ddz=

V(Br)

V(BR)
h(y) =

( r
R

)d
h(y). (5.2.5)

From these basic estimates one can now derive the the Harnackinequality.

Theorem 5.14.Let D′ ⊂ D be two connected open sets. Let h be a non-negative
harmonic fucntion with respect to Brownian motion on D⊂ Rd. Then there exists a
constant K, depending only on D,D′, such that

sup
x∈D′

h(x)≤ K inf
x∈D′

h(x). (5.2.6)

Proof. Fory∈ D′ chooseR such thatB4R(y)⊂ D. Then for any two points,x1,x2 ∈
BR(y), the previous inequalities imply that

h(x1) =
1

V(BR)

∫

BR(x1)
h(z)ddz≤ 1

V(BR)

∫

B2R(y)
h(z)ddz, (5.2.7)

h(x2) =
1

V(B3R)

∫

B3R(x2)
h(z)ddz≥ 1

V(B3R)

∫

B2R(y)
h(z)ddz,

Hence
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sup
x∈BR(y)

h(x)≤ 3d inf
x∈BR(y)

h(x). (5.2.8)

Now let x1 andx2 in D̄′ be such thath(x1) = supx∈D′ h(x), h(x2) = infx∈D′ h(x).
Now let γ be a closed arc joiningx1 and x2 in D. ChooseR such that 4R <
dist(γ,Dc). This arc can, by the Heine-Borel theorem, be covered by a finite number,
N, of balls of radiusR, whereN depends only onD andD′. Then we an compare
h(x1) andh(x2) by using he estimate (5.2.8) not more thanN times, hence

h(x1)≤ 3dNh(x2). (5.2.9)

This proves the theorem.⊓⊔

There are obvious extensions of the Harnack inequality beyond Brownian motion
(for analytic proofs in the general case of elliptic SDE’s, see [10]). In fact, inspect-
ing the proof all we used on Brownian motion beyond the martingale property of
harmonic functions was the uniformity of the exit distribution on balls. Moreover, it
is clear that to get a Harnack inequalty, we do not really needuniformity, but upper
and lower bounds on the density of the exit distribution are sufficient.

Theorem 5.15.Let X be a continuous strong solution of an SDE. Let D⊂ Rd be a
bounded open domain. Assume that there exist constants,0< c<C< ∞, depending
only on D, such that, for any ball BR(x)⊂ D,

c≤
Px

(
XτBR

∈ dy
)

σBR(dy)
≤C. (5.2.10)

Then any harmonic function h satisfies a Harnack inequality in D, in the sense that
for any D′ ⊂ D, there exists a constant K, such that (5.2.6) holds.

The proof is on the exact same lines as that of the previous theorem and will be
left as an exercise.



Chapter 6
Reversible diffusions

In this Chapter we turn to more explicit computations in the context of diffusion
processes with small diffusivity. We will exploit the some special structures in the
context of reversible processes.

6.1 Reversibility

The theory of Markov processes that we have developed so far can be seen as a
theory of operators acting either on bounded functions (thesemi-group action of
functions), or on measures. In special cases we can replace this by aL2 theory with
respect to certain measures.

Let Pt by a strongly continuous contraction semi-group acting on aspaceB(S ).
Assume that a measure,µ , onS, is invariant with respect toPt . Then the action ofPt

can be extended to theL2 spaceL2(S,µ).

Lemma 6.1.Let f be in L2(S,µ) where µ is invariant with respect to Pt . Then
(Pt f ) ∈ L2(S,µ).

Proof. We will show that theL2-norm ofPt f is controlled by that off . Namely,

∫
µ(dx) [(Pt f )(x)]2 =

∫
µ(dx)

[∫
Pt(x,dy) f (y)

]2

(6.1.1)

≤
∫

µ(dx)
∫

Pt(x,dy) f (y)2
∫

Pt(x,dy)

≤
∫

µ(dx)
∫

Pt(x,dy) f (y)2 =
∫

µ(dx) f (x)2

Note that we used the Cauchy-Schwarz inequality and the invariance ofµ . ⊓⊔
Having anL2-action ofPt , we can naturally define its adjoint,P∗

t , via
∫

µ(dx) f (x)(Ptg)(x) =
∫

µ(dx)(P∗
t f ) (x)g(x), (6.1.2)

111
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for all f ,g ∈ L2(S,µ). One may check thatP∗ is itself a Markov semigroup that
generates the time-reversed process toX, in the sense that(P∗

t f ) (Xt) = f (X0).

Definition 6.2. A measure,µ , onS is called reversible with respect toPt , if, for all
functions f ,g∈ L2(S,µ),

∫
f (x)(Ptg)(x)µ(dx) =

∫
g(x)(Pt f )(x)µ(dx) (6.1.3)

Lemma 6.3.If µ is a reversible probability measure for Pt , thenµ is an invariant
probability measure for Pt .

Proof. Clearly f = 1 is inL2(S,µ). Hence we have
∫
(µPt)(dx)g(x) =

∫
(Ptg)(x)µ(dx) =

∫
g(x)µ(dx). (6.1.4)

for all bounded measurable functionsg, henceµ is invariant. ⊓⊔

Note that the converse is not true in general, i.e. an invariant measure is not
necessarily reversible.

Thus, we may also say that that a measure is reversible with respect toPt , if Pt is
self-adjointon the spaceL2(S,µ).

The terminology “reversible measure” is customary, but actually irritating. The
reversibility property is one of the Markov process, resp. the semi-group, and not
one of the measure. So I prefer to call a Markov semi-group reversible, if there exits
a measure,µ , such thatPt is symmetric in the spaceL2(S,µ), i.e. that (6.1.3) holds.

One of the nice things is that a SCCSG that is reversible is a contraction in the
L2-space, by Lemma 6.1.

The notions above introduced through the semi-group extendto the generator of
a Markov process. Thus, for an invariant measureµ , we can define the adjoint,L ∗

of a generatorL , such that
∫

µ(dx)(L ∗g)(x) f (x) =
∫

µ(dx)g(x)(L f )(x), (6.1.5)

for all f ,g ∈ D(L ) such thatL f ,L g∈ L2(S,µ). Note that, ifµ is a probability
measure, the second condition is automatically verified. A reversible Markov pro-
cess is then characterized by the fact that its generator is self-adjoint inL2(S,µ) for
some invariant measureµ .

Theorem 6.4.Let µ be a reversible measure for a Markov process. Then the gener-
ator, L , defines a non-negative definite quadratic form,

E ( f ,g)≡−
∫

µ(dx)g(x)(L f )(x), (6.1.6)

called theDirichlet form .
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Proof. First, due to the fact thatL is self-adjoint,E ( f , f ) is real for all f in D(L ).
Moreover, by definition, we have that for suchf and ifE ( f , f ) < ∞,

E ( f , f ) = lim
t↓0

t−1
∫

µ(dx) f (x)( f (x)− (Pt f )(x)) . (6.1.7)

But
∫

µ(dx) f (x)( f (x)− (Pt f )(x)) = ‖ f‖2
2,µ −

∫
µ(dx) f (x)(Pt f )(x)

≥ ‖ f‖2
2,µ −‖ f‖2,µ‖Pt f‖2,µ ≥ ‖ f‖2

2,µ −‖ f‖2,µ‖ f‖2,µ = 0, (6.1.8)

where we used Cauchy-Schwarz and Lemma 6.1. This implies that the limit, too, is
non-negative. ⊓⊔

Remark 6.5.The formE can be extended to the set{ f : E ( f , f )< ∞} which mostly
is larger than the domain ifL . There is an entire theory that allows to use this fact
to construct a Markov process from a Dirichlet form. For a detailed treatment, see
e.g. the book [9] by Fukushima et al..

SinceL is positive and self-adjoint, it can be written in the formL = A∗A, with
A positive, and the Dirichlet form then has the form

E ( f ,g) =
∫

µ(dx)A f(x)Ag(x). (6.1.9)

6.2 Reversible diffusions

We will now look at reversibility issues in the context of diffusions. The formal
adjoint of the operatorL given in (5.1.2) is

L
∗g(x) =

1
2 ∑

i, j

∂ 2

∂xi∂x j
ai j (x)g(x)−∑

i

∂
∂xi

bi(x)g(x) (6.2.1)

=
1
2 ∑

i, j
ai j (x)

∂ 2

∂xi∂x j
g(x)

+∑
i

(

∑
j

∂ai j (x)

∂x j
−bi(x)

)
∂

∂xi
g(x)

+

(
1
2 ∑

i j

∂ 2

∂xi∂x j
ai j (x)−∑

i

∂
∂xi

bi(x)

)
g(x).

We can see that this is equal toL if and only if

∑
j

∂ai j (x)
∂x j

= 2bi(x), (6.2.2)



114 6 Reversible diffusions

for all i = 1, . . .d. Thus (6.2.2) is a condition for the diffusion to be reversible with
respect to Lebesgue measure.

Next we may want to look for a reversible measureµ(dx) = eF(x)dx, i.e. a re-
versible measure that is absolutely continuous w.r.t. Lebesgue measure. This will be
the case if

(L ∗(geF)(x) = eF(x)
L g.

But

(L ∗(geF)(x) = eF(x) 1
2 ∑

i, j

ai j (x)
∂ 2g(x)
∂xi∂x j

(6.2.3)

+eF(x)∑
i, j

ai j (x)
∂g(x)

∂xi

∂F(x)
∂x j

+eF(x) 1
2 ∑

i, j
ai j (x)g(x)

[
∂ 2F(x)
∂xi∂x j

+
∂F(x)

∂xi

∂F(x)
∂x j

]
g(x)

+eF(x)∑
i

(

∑
j

∂ai j (x)

∂x j
−bi(x)

)(
∂F(x)

∂xi
g(x)+

∂g(x)
∂xi

)

+eF(x)

(
1
2 ∑

i j

∂ 2

∂xi∂x j
ai j (x)−∑

i

∂
∂xi

bi(x)

)
g(x)

The first condition for reversibility is then that

∑
j

(
ai j (x)

∂F(x)
∂x j

+
∂ai j

∂x j

)
= 2bi(x). (6.2.4)

or

2bi(x) = e−F(x)∑
j

∂
∂x j

(
ai j (x)e

F(x)
)
. (6.2.5)

In particular, in the simples case whenai j (x) = δi j , we get a necessary and suffi-
cient condition

2bi(x) =
∂

∂xi
F(x), (6.2.6)

i.e. the drift must be the gradient of a potentialF (up to the factor 2). In that case
the generator takes the very suggestive form

L =
1
2

e−F(x)∇eF(x)∇. (6.2.7)

The corresponding Dirichlet form then can be written as

E ( f ,g) =−
∫

µ(dx) f (x)(L g)(x) =
1
2

∫
µ(dx)〈∇ f (x),∇g(x)〉, (6.2.8)

where〈·, ·〉 denotes the inner product inRd.
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6.3 Equilibrium measure, equilibrium potential, and capacity

In the following we will return to the general case of SDE corresponding to a gen-
erator that is a uniformly elliptic differential operatorL with coefficients satisfying
Lipschitz conditions (so that unique strong solutions to the SDE exist).

A
D

Fig. 6.1 Capacitor

LetD be a open domain inRd with ∂D=A∪B, with A∩B= 0. Then the solution
of the Dirichlet problem

L h(x) = 0,x∈ D (6.3.1)

h(x) = 1,x∈ A

h(x) = 0,x∈ B

is called theequilibrium potentialof thecapacitor(A,B). Recall that, forx∈ D,

h(x) = Px[τA < τB]. (6.3.2)

Remark 6.6.The boundary conditions here are not continuous, so recall Remark 5.1.
We do not assume thatD is connected.

Remark 6.7.The names here come from the classical case whenL =∆/2. Then the
Dirichlet problem is a classical problem of electrostatics. The setsA andB corre-
spond to two metal plates attached to a battery that imposes aconstant voltage (po-
tential) difference between the plates. The solution of this problem then describes
the electrostatic potential (whose gradient is the electrostatic field).

Next we consider the inhomogeneous Dirichlet problem,

−(L f )(x) = g, x∈ D (6.3.3)

f (x) = 0, x∈ ∂D

We have seen that, if this problem has a unique solution, thenit has the probabilistic
representation
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f (x) = Ex

∫ τD

0
g(Xt) = Ex

∫ τD

0

∫

D
PD

t (x,dy)g(y)dt, (6.3.4)

wherePD
t (x,dy) is the sub-Markov semi-group associated to the generatorL D of

the process killed when exitingD. Thus we define theGreen kernel,

GD(x,dy)≡ Ex

∫ τD

0
PD

t (x,dy)dt (6.3.5)

in terms of which the solution of (6.3.3) can be written as

f (x) =
∫

D
g(y)GD(x,dy)≡ (GDg)(x). (6.3.6)

Note the similarity with theresolventof the semigroup. In fact, one may define

G(λ )
D (x,dy)≡ Ex

∫ τD

0
e−λ tPD

t (x,dy)dt (6.3.7)

ThenGλ
D exists for allλ > 0 even ifExτD = ∞, and

fλ (x) =
∫

D
g(y)G(λ )

D (x,dy)≡ (G(λ )
D g)(x) (6.3.8)

solves the Dirichlet problem

(−L −λ ) fλ (x) = g,x∈ D (6.3.9)

h(x) = 0,x∈ ∂D

Note that it is of course an interesting question (to which wewill return), to ask for

which values ofλ we can still defineG(λ )
D for givenD.

The Green kernel will often have a density with respect to Lebesgue measure,
i.e.

GD(x,dy) = GD(x,y)dy. (6.3.10)

The functionGD(x,y) is then called theGreen function.
Let us now look at the relation between equilibrium potential and the Dirichlet

form in the case of a reversible diffusion. Let us try to computeE (h,h). One might
be tempted to think thatE (h,h) = 0, sinceL h(x) = 0 except on the boundary of the
setsA andB. But of course on these,L h may be singular, since no differentiability
assumptions are made on the boundary. So we may interpretL h as a measure that
is concentrated on the boundaries ofA andB. Sinceh vanishes on∂B, we get that

E (h,h) =−
∫

∂A
µ(x)(L h)(dx). (6.3.11)

The measure(−L h)(dx) is called theequilibrium measureassociated to the capac-
itor A,B.
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To understand this better, let us return to the caseai j (x) ≡ δi j . We then have the
following integral formula, known as thefirst Green’s formula.

Theorem 6.8.Let D be a regular domain and letφ ,ψ be in C2(D). LetL be given
by (5.1.2). Then

∫

D
dxeF(x)(〈∇φ(x),∇ψ(x)〉−ψ(x)(2L φ)(x)

)
(6.3.12)

=

∫

∂D
eF(x)ψ(x)∂n(x)φ(x)dσD(x),

where∂n(x) denotes the inner normal derivative at x∈ ∂D.

Proof. In the caseF = 0 this formula a classical. The extension to the general case
is by a straightforward computation.⊓⊔

Remark 6.9.An immediate consequence of this identity is the so-calledsecond
Green’s formula,

∫

D
eF(x)dx

(
φ(x)(2L ψ)(x)−ψ(x)(2L φ)(x)

)
(6.3.13)

=

∫

∂D
eF(x)(ψ(x)∂n(x)φ(x)−φ(x)∂n(x)ψ(x))dσD(x)

The second Green’s formula gives rise to the integral representation of a solution of
the Dirichlet boundary value problem,

−(L f )(x) = 0, x∈ D, (6.3.14)

f (x) = u(x), x∈ ∂D,

in terms of thePoisson kernel, namely

f (x) =
∫

∂D
eF(y)−F(x)u(y)∂n(y)GD(y,x)dσD(y). (6.3.15)

Using the first Green’s formula, we can give a precise relation between equilib-
rium potential and capacity. Namely, settingφ = ψ = h in (6.3.14), we see that

∫

D
dxeF(x)〈∇h(x),∇h(x)〉=

∫

A
eF(x)∂n(x)h(x)dσA(x), (6.3.16)

i.e. we have that onA the equilibrium measure,(−L h)(x) is given by

eA,B(dx)≡ ∂n(x)h(x)dσA(x). (6.3.17)

The quantity

cap(A,B)≡
∫

A
eF(x)∂n(x)h(x)dσA(x), (6.3.18)
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is called thecapacityof the capacitorA,B. In electrical language, it is the total
charge on the plateA. Using relation (6.3.16), we see that alternatively, the capacity
is also the totalenergyof the potentialh.

Last exit distribution and equilibrium measure.

It will be nice to have a probabilistic interpretation of theequilibrium measure that
will at the same time explain whyLh really becomes a surface measure.

We see that, forx in A, we should have something like

−(L h)(x) = lim
t↓0

t−1(1−Pt)(h(x)) (6.3.19)

= lim
t↓0

t−1Ex (1−PXt [τA < τB])

= lim
t↓0

t−1ExPXt [τB < τA] .

Let us define thelast exit time, LA, from A as

LA ≡ sup{0< 0< τB : Xt ∈ A}, (6.3.20)

with the convention sup /0= 0 Note that this is obviously no stopping time and that

Px[LA > 0] = Px[τA < τB]≡ h(x). (6.3.21)

Note that we can write the expression in the last line of (6.3.19) as

ExPXt [τB < τA] = Px[0< LA < t].

Hence we set
ψt(z)≡ t−1Pz[0< LA < t] . (6.3.22)

Let us also define thelast exit distribution, L(x,dy), onA, by

L(x,dy) ≡ Px [XLA− ∈ dy;LA > 0] . (6.3.23)

We want to prove the following lemma:

Lemma 6.10.Let f be a continuous function on̄D. Then

lim
t↓0

∫
GD(x,y)ψt(y) f (y)dy=

∫

A
L(x,dy) f (y). (6.3.24)

Proof. Without loss let f ≥ 0. Using the representation of the Green function
through the semigroup (6.3.5) we get
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∫
GD(x,y)ψt(y) f (y)dy = Ex

∫ τB

0
ψt(Xs) f (Xs)ds (6.3.25)

= t−1
∫ ∞

0
Ex [ f (Xs)PXs[0< L < t]]ds

= t−1
∫ ∞

0
Ex [ f (Xs)1Is<L<s+t ]ds

= Ex

[
0< LA ≤ t; t−1

∫ La

0
f (Xs)ds

]

+Ex

[
t < LA; t−1

∫ La

LA−t
f (Xs)ds

]
.

First, both terms in the last line are obviously uniformly bounded ast ↓ 0. Moreover,

Ex

[
0< LA ≤ t; t−1

∫ La

0
f (Xs)ds

]
≤CEx [0< LA ≤ t] ↓ 0, (6.3.26)

ast ↓ 0. Finally, by continuity off ,

lim
t↓0

Ex

[
t < LA; t−1

∫ La

LA−t
f (Xs)ds

]
= Ex [0< LA; f (XLA−)ds] . (6.3.27)

Integrating overA gives the claim of the lemma.⊓⊔

From Lemma (6.10) one can deduce that the family of measuresψt(y)dy con-
verges to a measuree(dy) onA. Moreover, this measure satisfies

GD(x,y)e(dy) = L(x,dy). (6.3.28)

Integrating this formula overA, we arrive at the expression
∫

A
GD(x,y)e(dy) =

∫

A
L(x,dy) = h(x). (6.3.29)

Hencee(dy) satisfies the defining relation of the equilibrium measure
Thus we have proven a very interesting and useful relation between the equilib-

rium potential, the equilibrium measure, and the Green function.

Theorem 6.11.Let as before A⊂ D be open sets with smooth boundary. Then, for
all x ∈ D,

h(x) =
∫

∂A
GD(x,y)eA,D(dy). (6.3.30)

Remark 6.12.Is is instructive to think about this result in the followingway. We
have already seen that we may want to think ofL h as a measure. Then we have
that

−(L h)(x)dx= eA,D(dx), x∈ D, (6.3.31)

h(x) = 0, x∈ ∂D.
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Then the solution of this problem in terms of the Green function is precisely the
expression (6.3.30). Note that (6.11) holds also inA, with h(x) = 1.

This formula for the Green function gives of course corresponding formulas for
solutions of Dirichlet problems. E.g., if we consider for some functiong the Dirich-
let problem

−(L f )(x) = g(x), x∈ D (6.3.32)

f (x) = 0, x∈ ∂D,

then of coursef (x)=
∫

D dyGD(x,y)g(y). By symmetry,GD(x,y)= eF(y)−F(x)GD(y,x),
and so

∫

D
dxeF(x)h(x)g(x) =

∫

D
dxh(x)

∫

∂A
eF(x)g(x)GD(y,x)e

F(y)−F(x)eA,D(dy)

=
∫

∂A
eF(y)

∫

D
GD(y,g)g(x)eA,D(dy)

=

∫

∂A
eF(y) f (y)eA,D(dy). (6.3.33)

Introducing the probability measure

νA,D(dy)≡ eF(y)eA,D(dy)
cap(A,D)

, (6.3.34)

on ∂A, this gives

∫

∂A
νA,D(dy) f (y) =

1
cap(A,D)

∫

D
dxeF(x)h(x)g(x). (6.3.35)

As a particular example we get, withg(x) = 1,

∫

∂A
νA,D(dy)EyτD =

1
cap(A,D)

∫

D
dxeF(x)h(x). (6.3.36)

Dirichlet principle

. We have seen that the equilibrium Dirichlet form computed on the equilibrium
potential gives the capacity. We will how show that the equilibrium potential is the
solution of a variational problem.

Theorem 6.13.With the notations and assumptions above, the following holds. Let
HA,B be the space of continuous functions„ f , on̄D such that,

(i) E ( f , f ,) < ∞, and
(ii) f (x)≥ 1, x∈ A and f(x) ≤ 0, x∈< Dc.
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cap(A,B) = inf
f∈HA,B

E ( f , f ). (6.3.37)

Moreover, ifHA,B 6= /0, the infimum in (6.3.37) is achieved uniquely on the equilib-
rium potential, i.e.cap(A,B) = E (hA,B,hA,B).

Proof. Let us assume that the setHA,B is not empty. Consider a functiong such that
E (g,g)< ∞ and thatg vanishes on both∂B and∂A. Notice that, forh∈ HA,B,

E (h+εg,h+εg)−E (h,h) = 2ε
∫

D\Ā∪B
µ(dx)g(x)(L h)(x)+ε2

E (g,g). (6.3.38)

This implies two things: first, ifL h(x) = 0, thenh is a global minimum ofE in
HA,B. We know already that such a function exists, namely the equilibrium poten-
tial. Next assume that there is another function,f , such thatE ( f , f )) = E (h,h).
Then the identity

E

(
f+h
2 , f+h

2

)
+E

(
f−h
2 , f−h

2

)
=

1
2
E ( f , f )+

1
2
E (h,h), (6.3.39)

implies that

E

(
f+h
2 , f+h

2

)
≤ E (h,h)−E

(
f−h
2 , f−h

2

)
. (6.3.40)

Sinceh is an absolute minimum, this can only hold if

E ( f −h, f −h) = 0. (6.3.41)

But this means that‖∇( f −g)(x)‖2 = 0 µ-almost surely. ⊓⊔

The Dirichlet principle is a powerful tool for asymptotic computations of capaci-
ties, and, hence, as we shall see, much more. To a large extendthis is due to the fact
that it allows for natural upper and lower bounds. The most immediate one of these
is of course given by the elementary observation that

Corollary 6.14. For any function, f∈ HA,B,

cap(A,B)≤ E ( f , f ). (6.3.42)

6.4 The case of dimension one.

The above considerations lead to very explicite answers in the case whend = 1.
The first observation is that all homogeneous boundary valueproblems in this case
can, by linearity, be reduced to computing the equilibrium potential for on interval
(a,b),i.e.
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(L h)(x) = 0, x∈ (a,b) (6.4.1)

h(a) = 0

h(b) = 1

Note also that the general uniformly elliptic case, we can bereduced to the problem
with generator

(L h)(x) =−1
2

f ′′(x)+b(x) f ′(x). (6.4.2)

Note also that, ind = 1, any bounded functionb can be written as a derivative of
another function,F/2, where

F(x) = 2
∫ x

0
b(x)dx. (6.4.3)

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

Fig. 6.2 A potential function on[−3,3]

Thus we are always in the reversible case. Hence we are reduced to solving the
ordinary differential equation

1
2

h′′(x)+b(x)h′(x) = 0, (6.4.4)

which in turn reduces to the first order equation

1
2

u′(x)+b(x)u(x) = 0 (6.4.5)

when we setu= h′. Clearly (6.4.5) has the general solution

u(x) =C1e−F(x) (6.4.6)

and so the general solution of (6.4.4) is
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Fig. 6.3 The corresponding equilibrium potentialPx[τ3 < τ−3]

h(x) =C1

∫ x

0
e−F(y)dy+C2, (6.4.7)

with C1 andC2 integration constants to be determined from the boundary conditions.
In particular, for the equilibrium potential related to theinterval(a,b) we have

h(x) =

∫ x
a e−F(y)dy
∫ b

a e−F(y)dy
. (6.4.8)

Hence the capacity cap(a,b) is readily computed as

cap(a,b) = E (h,h) =
1

2
∫ b

a e−F(y)dy
. (6.4.9)

Some reflection shows that we can get from (6.11) the following formula for the
Green function in(a,b): Forx< y,

G(a,b)(x,y) =
hx,{a,b}(y)

ex,b
(6.4.10)

= F(x) 1−hx,b(y)

cap(x,b)

= eF(x)

∫ b
y e−F(z)dz
∫ b
x e−F(z)dz

1
2
∫ b
x e−F(z)dz

=
1
2

eF(x)
∫ b

y
e−F(z)dz

and fory< x,

G(a,b)(x,y) =
1
2

eF(y)
∫ y

a
e−F(z)dz. (6.4.11)
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6.5 Another view on one-dimensional diffusions

We have seen in the previous section that the computation of the equilibrium po-
tential in one-dimensional case allows to compute the Greenfunction and hence to
essentially solve everything that can be expressed in termsof Dirichlet problems.

We will now take a different look at the same issue. The perspective will be
more on the level of the process. We will see that the solutionof a 1d SDE can be
constructed from Brownian motion in a way that will exhibit again the crucial rôle.

Let us recall that the harmonic functions we encountered canbe written in the
form

Px(τa < τb) =
s(x)− s(a)
s(b)− s(a)

, (6.5.1)

wheres(x) is an increasing function whose derivative ise−F(x). The functions is
usually called thescale functionRecall that in the case of Brownian motion,s(x) =
x. Now letB be Brownian motion and consider the processYt = s−1(Bt). Clearly we
have that

PY
x (τa < τb) = PB

s(x)(τs(a) < τs(b)) =
s(x)− s(a)
s(b)− s(a)

, (6.5.2)

(here the superscripts indicate that the probabilities arew.r.t. the corresponding
processes) hence the process has the same harmonic functionas the one solving
dXt =

1
2F ′(Xt)dt+dBt . Is it the same process? No, but using Itô’s formula, we see

thatZt ≡ s(Xt) satisfies

dZt = s′(Xt)dXt +
1
2

s′′(Xt)dt (6.5.3)

= s′(Xt)dBt +
1
2
(s′(Xt)F

′(Xt)+ s′′(Xt))dt

= s′
(
s−1(Xt)

)
dBt ,

which is of the form
dZt = g(Zt)dBt . (6.5.4)

We will show that any solution of an SDE of the form (6.5.4) is atime change of
Brownian motion.

Theorem 6.15.Let g be a measurable function such that g(x)≥ δ > 0. Then (6.5.4)
has a unique weak solution. Moreover, there exists a Brownian motion, B, such that

Zt = B(γt), (6.5.5)

whereγt ≡ inf{u : A(u)> t}, and

A(t)≡
∫ t

0
g(B(u)−2du. (6.5.6)

Proof. Clearly we have that th ifZ solves (6.5.4), then
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d[Z]t = g(Zt)
2dt. (6.5.7)

On the other hand,
[B][Z]t = [Z]t . (6.5.8)

Inverting this relation we may write

B(t) = Zτ(t), (6.5.9)

whereτ(t) is the inverse time change, i.e.

[Z]τ(t) =
∫ τ(t)

0
g(Zu)

2du= t. (6.5.10)

Differentiating this latter relation we get

1= g(Zτ(t))
2τ ′(t) = g(B(t))2τ ′(t). (6.5.11)

Hence

τ ′(t) =
1

g(B(t))2 , (6.5.12)

and hence

τ(t) =
∫ t

0

1
g(B(u))2du, (6.5.13)

τ being the inverse of the time change, we see that the time change[Z]t is really the
inverse of the functionτ, which is given purely in terms of the Brownian motionB.
⊓⊔

It remains to generalize the first part of our construction. Thus consider the gen-
eral form of the SDE

dXt = b(Xt)dt+σ(Xt)dBt , (6.5.14)

with σ > 0. We know already that the equilibrium potential will be of the form
(6.5.1) withs being an integral of

s′(x) = e−
∫ x
0 2b(z)/σ2(z)dz. (6.5.15)

AgainZt = s(Xt) then has the same harmonic function as Brownian motion, and the
same calculation as in (6.5.3) shows thatZt is a solution of (6.5.4), this time with

g(x) = s′(s−1(x))σ(s−1(x)). (6.5.16)

We summarize these results in the following theorem.

Theorem 6.16.Assume thatσ(x)> 0, as long as
∫ x

0 b(z)σ−2(z)<∞ exists for x∈ I,
then the SDE has a unique weak solution given by

Xt = s−1 (B(γt)) , (6.5.17)
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whereγt is the continuous inverse of the function

At ≡
∫ t

0

1
g(B(u))2du, (6.5.18)

where g is given by (6.5.16), and B is Brownian motion.

The strong point of this result is that very little regularity is required for the
drift or difussivity. For example, this theorem allows to make sense of theBrownian
motion in a Brownian potential: Let W(t) be a realization of a Brownian motion,
and consider the formal expression

dXt =W′(Xt)dt+dBt . (6.5.19)

SinceW is not differentiable, this expression is formal. However,the corresponding
potential,W, is well defined, and so is the scale functions(x) = exp(W(x)). Thus
we can interpret the process obtained from Eqs. (6.5.17)-(6.5.18) as the solution of
(6.5.19).

6.6 Brownian local time and speed measures

The aim of this section is to give an alternative representation of the time change
formula that will give rise to the possibility to construct even larger classes of one
dimensional diffusion processes. At the same time we will deepen the discussion
of local timethat was initiated in Theorem 4.9. The following discussiondraws on
lecture notes by Steve Lalley.

Let us first observe what would be the natural notion of a occupation measure.
Let A∈ B(R) be a Borel subset of the real line. Then we can introduce

Γt(A)≡
∫ t

0
1IA(Bs)ds (6.6.1)

as a random measure on(R,B(R)). The main result we will use and need, is the
following theorem.

Theorem 6.17.With probability one, for each t< ∞, the occupation measureΓt is
absolutely continuous with respect to Lebesgue measure, and it density, lxt , is jointly
continuous in t and x.

lxt is called thelocal timeof Brownian motion atx. We have already seen that the
local time at zero can be represented as a stochastic integral via an extension of Itô’s
formula (Tanaka’s formula). This gives the representation

lat ≡ |Bt −a|− |B0−a|−
∫ t

0
sign(Bs−a)dBs. (6.6.2)

We will first show that
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Theorem 6.18.There exists a version of the process{lat ,a ∈ R, t ∈ R+} that is
jointly continuous in t and a.

Proof. We will deal with a fixed time horizonT < ∞. Define

ξ1(a, t)≡
∫ t

0
sign(Bs−a)dBs (6.6.3)

and
ξ2(a, t)≡ |Bt −a|− |B0−a|. (6.6.4)

Obviouslyξ2 is jointly continuous, sinceB is continuous. Thus we need to prove
that ξ1 has a jointly continuous version. The tool to prove this is a lemma due to
Kolmogorov.

Lemma 6.19.Letξ be a stochastic process indexed byRn with values in a complete
metric space with metricρ . If there exist positive constants,α,β ,ε, such that

E(ρ(ξx,ξy))
α ≤ β |x− y|n+ε , (6.6.5)

for all x,y∈Rn, then there exists a continuous version of X.

We apply this theorem to the processξ1(·, t), t ∈ [0,T]. We may also consider the
process on a bounded interval. Then it will be enough to show that

E |ξ1(x, t)− ξ1(y, t)|p ≤ C|x− y|2+δ (6.6.6)

E
∣∣ξ1(x, t)− ξ1(x, t

′)
∣∣p ≤ C|t − t ′|2+δ

Now

|ξ1(x, t)− ξ1(y, t)| =
∣∣∣∣
∫ t

0
(sign(Bs−a)− sign(Bs−b))dBs

∣∣∣∣

≤ 2
∫ t

0
1I(x,y)(Bs)dBs. (6.6.7)

Hence, using the Burkholder inequalities,

E |ξ1(x, t)− ξ1(y, t)|2m ≤ 22mE

∣∣∣∣
∫ t

0
1I(x,y)(Bs)dBs

∣∣∣∣
2m

(6.6.8)

≤ Cm22mE

∣∣∣∣
∫ t

0
1I(x,y)(Bs)ds

∣∣∣∣
2m

.

In the final expression we can now estimate
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E

∣∣∣∣
∫ t

0
1I(x,y)(Bs)ds

∣∣∣∣
2m

(6.6.9)

= m!
∫

0≤t1≤tm−1≤···≤tm≤t
P [Bt1 ∈ (x,y), . . . ,Btm ∈ (x,y)]

≤ m!
∫

0≤t1≤tm−1≤···≤tm≤t
E

[
PB0(Bt1 ∈ (x,y)]PBt1

(Bt2 ∈ (x,y)) . . .

. . .PBtm−1(Btm
∈ (x,y))

]

≤ m!(y− x)m
√

t
m
.

The corresponding estimate for different times is similar.⊓⊔

With this absolutely continuous local time process we can ofcourse write the
time change function (6.5.18) in the form

At =

∫ t

0

1
g(Bu)2 du=

∫
dx

1
g(x)2

∫ t

0
δBu(x)du=

∫
m(dz)lzt , (6.6.10)

wherem(dz) = g−2(z)dz and lzt is the density of the Brownian local time process.
The measurem(z) is called hespeed measure(essentially it tells us how the local
time of Brownian motion is transformed to the time of the new process in the point
z). . This formulation gives rise to an even wider class of one-dimensional diffusions
that can be constructed as time changes of Brownian motion through more general
speed measures. Note that these processes are all Markovian, which is not a trivial
fact (see [15], Chapter III.21 and [14], Chapter V.47).

6.7 The one-dimensional trap model and a singular diffusion

In the following we show that these processes are not totallyhypothetical, but that
they can arise from more or less reasonable discrete models.

In the following we will give the construction of a random motion in a random
environment that was studied by Fontes, Isopi, and Newman some years ago [7].

We begin be prescribing a random environment onZ as a family of iid random
variables,τi , i ∈ Z, whose distribution will be be assumed to satisfy

lim
t↑∞

tαP[τ1 > t] = 1 (6.7.1)

for α < 1. Note that this implies in particular thatEτ1 = +∞. Our next ingredient
will be a continuous time, unbiased simple random walk,Zk, k∈ N, onZ.

(Note that a continuous time random walk can be described as follows: LetYk,
k ∈ N, be a discrete time simple random walk onZ (i.e.Yk = ∑k

i=1ui , whereui are
iid with P[ui = ±1] = 1

2). Let C(k) = ∑k−1
i=0 ei , whereei , i ∈ N, are iid exponential

random variables with rate 1. Then
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Zt =YC−1(t) (6.7.2)

whereC−1 is the inverse ofC,

f−1(t) = inf{k : f (k) > t}. (6.7.3)

We will now construct a continuous time process a time changeof the simple
radom walkZ as follows. Define the so-calledclock process

S(u)≡
∫ u

0
τZr dr (6.7.4)

The processX is then defined, for a given realization of the random variablesτi , as

Xt = ZS−1(u) (6.7.5)

We now want to re-write the clock process in terms of a speed measure. For this we
define the local time process ofZ as

L( j, t) =
∫ t

0
1IZu= jdu. (6.7.6)

Then we can re-write the clock process as

S(u) = ∑
j∈Z

τ j L( j,u). (6.7.7)

One sees easily that there is a complete analogy between the construction of a dif-
fusion from Brownian motion.

We now consider a rescaling of space and time to obtain a continuous process
limit. Clearly we have from (a complete analog of) Donsker’sinvariance principle
that

lim
ε↓0

εZt/ε2 = Bt . (6.7.8)

Now assume that for someβ ,

ε2S−1(ε−β t)≡ S−1
ε (t)→ Σ−1(t), (6.7.9)

then
Xε

t ≡ εXε−β t = εZε−2S−1
ε (t) ≡ Zε

S−1
ε (t)

(6.7.10)

and we may expect that
Zε

S−1
ε (t)

→ BΣ−1(t). (6.7.11)

The question is thus to see whether and to what the processε2S−1(ε−β t), respec-
tively its inverse,

Sε(u)≡ εβ S(u/ε2), (6.7.12)

converges. Now
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εβ S(u/ε2) = ∑
i∈Z

εβ τiL(i,u/ε2)≡ ∑
i∈Z

εβ τiLε(ε i,u), (6.7.13)

where by definitionLε (ε i,u) = L(i,u/ε2).We may expect this to converge to the
local time process of Brownian motion. On the other hand, we can think of the sum
as an integral over the random measure

mε(dx)≡ ∑
i∈Z

δiε(dx)τiεβ , (6.7.14)

i.e.
Sε(t) =

∫
mε(dx)Lε (x, t), (6.7.15)

It is a curious fact that in distribution,
∫

mε(dx)Lε (x, t) =
∫

mε(dx)lxt (6.7.16)

This is due to the fact that the local time density of Brownianmotion on an integer
point i before visiting one of its neighbors is an exponential random variable with
mean one. To see this, observe that the continuous time simple random walk onZ
can be coupled to a Brownian motion: consider the measurem0(dx) ≡ ∑i∈Z δi(dx)
as a speed measure and letỸt be the time change of a Brownian motionBt with this
speed measure. This is a Markov process that spends all of itstime on the integers
and jumps with infinite speed between them. It is clear that this process visits the
sites i ± 1 with equal probability afteri. Moreover, form the fact that the process
observed on the sitesi is Markov, the waiting time ati before the process reaches
i ±1 is exponential. Its mean value is given byE0ℓ

0
τ1∧τ−1

. Using Tanaka’s formula
for the local time of Brownian motion, we get

E0ℓ
0
τ1∧τ−1

= E0
∣∣Bτ1∧τ−1

∣∣= 1. (6.7.17)

Thus we see that we have indeed a relisation of the processY as timechange of
Brownian motion.

Thus we have actually immediately an expression of our (rescaled) processXε

immediately as a time change of Brownian motion with speed measuremε .
Thus the key question is whethermε(dx) converges. this will be the case, due to

(6.7.1), ifβ = 1/α. This follows from a more general result about the convergence
of so-called extremal processes.

(for a proof see, e.g., [13]):

Theorem 6.20.Assume that Xi are iid random variables that satisfy

lim
n↑∞

ε−1P[Xi > uε(c)] = ν(c). (6.7.18)

whereν is an increasing (respectively decreasing) function. Then, the point process

∑
i∈Z

δ(iε,u−1
ε (Xi))

(6.7.19)
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converges in distribution to the Poisson point process,R onR+×R with intensity
measure dt×dν(x) (respectively−dν if ν is decreasing).

Using the property (6.7.1), we see that in our case, withuε(c)≡ ε−1/αc, we have
that

ε−1P[τ1 > ε−1/αc] = c−α [ε−1/αc]αP[τ1 > ε−1/αc]→ c−α .

Thus the theorem yields

Corollary 6.21. The point process

Rε ≡ ∑
i∈Z

δ(iε,ε1/α τi)
→ R (6.7.20)

converges to the Poisson point process onR×R+ with intensity measure dt×
αc−1−αdc.

One can show that this implies that, ifα < 1, the measures

mε(dx) =
∫

Rε(dx,dt)t (6.7.21)

converge to the measure

m(dx)≡
∫

R(dx,dt)t. (6.7.22)

Note of course that we are speaking of random measures here. So what converges
is the distribution of these random measures. In proper terms, we would have to
equip the space of measures with a topology (e.g. the vague topology) and speak of
weak convergenceof the family of random measures with respect to this underlying
topology.

One can easily check that the measurem(dx) is singular (in fact it is a pure
point measure) with respect to Lebesgue’s measure. Nonetheless one can use it to
construct a singular diffusion as a time change of Brownian motion form it, that will
be the natural candidate for the limit process in our model.

It is known that if a sequence of (point) measures,νn, converges to a point mea-
sureν (in a suitable topology that I will not discuss here), then the corresponding
time-changed processes converge to the process with time change obtained from the
speed measureν.

Can we apply this fact in our case, when the measuresµε converge only in
weakly? The answer is yes, in general due to Skorohod’s theorem, that states that
weak convergence of a family of random variables,Xn, is equivalent to the existence
of a another family,X̄n, such that for eachn, Xn andX̄n have the same distribution,
while X̄n converges almost surely.
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A coupling

. It is an amusing observation that in the case of our random measuresmε , this
construction can be made in a very explicit way. It will also exhibit a deep relation
between these measures and Lévy processes.

Let us first briefly recall what anα-stable Lévy subordinator,U , is. There are
in fact at least two ways to describe it: one is to say thatU is a non-decreasing
stationary process with independent increments whose Laplace transform is given
by

Ee−λU(x) = exp

[
xα
∫ ∞

0
(e−λ w−1)w−1−αdw

]
. (6.7.23)

Another way to characterize it is to say that it is the distribution function onR
associated with the measurem(dx), normalized s.t.U(0) = 0 (see my lecture notes
on ageing [2]).

Now introduce the scaling functionG such that

P[U(1)≤ G(a)] = P[τ0 ≤ a]. (6.7.24)

Then define
τε

i ≡ G−1
(

ε−1/α (U(ε(i +1)−U(ε i))
)
. (6.7.25)

Lemma 6.22.The family of random variablesτε
i , i ∈ Z is iid andτε

i has the same
distribution asτ1.

Proof. The proof of this lemma follows form the fact that the subordinatorU is
α-stable, i.e. thatε−1/αU(ε) has the same law asU(1). ⊓⊔

Using these random variables we can construct measures

m̄ε ≡ ∑
i∈Z

ε1/α τε
i δε i , (6.7.26)

which now converge almost surely tom, where of course the the distribution func-
tion of thism is used asU in the construction of theτε

i . In the case whenG is the
identity, this is quite straightforward, whereas in the general case some care is re-
quired to show this fact (see [7]). The key is that by the assumptions on the law of
τi , G is close to linear at infinity and soε1/αG−1(ε−1/αx)→ x, asε ↓ ∞.

The existence of a non-trivial scaling limit for this model have far-reaching con-
sequences for its long time asymptotics. In particular, it implies so-calledaging
behavior. This notion refers to the long-time behavior of of certaincorrelation func-
tionsof the process, e.g.

R(tw, t)≡ P[Xt+tw = Xtw]. (6.7.27)

One says that a process shows aging, if

lim
tw↑∞

R(tw,θ t) = f (θ ), (6.7.28)
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for some non-trivial functionf . Now in our case we have that

R(tw,θ t) = P[Xtw(1+θ = Xtw] = P[Xt
−1/α
w

1+θ = Xt
−1/α
w

1 ]. (6.7.29)

Again we may expect this to converge to

P
[
BΣ(1+θ) = BΣ(1)

]
, (6.7.30)

which would be our desiredageing functionexpressed in term of the limiting pro-
cess.





Chapter 7
Appendix: Weak convergence

In this short section we collect some necessary material forunderstanding the con-
vergence of sequences of stochastic processes with path properties. This will allow
us to put the analysis of the Donsker theorem into a general framework.

7.1 Some topology

We consider the general setup on a compact Hausdorff space,J. We denote byC(J)
the Banach space of bounded, continuous real-valued functions equipped with the
supremum norm. We denote byM1(J) the space of probability measures onJ. We
denote byC(J)∗ the space of bounded linear functionalsC(J)→R onC(J).

We need two basic facts from functional analysis:

Theorem 7.1.[Stone-Weierstrass theorem]Let A be a sub-algebra of C(J) that con-
tains constant functions and separates points of J, i.e. forany x∈ J there exits
f ,g∈ A such that f(x) 6= g(x). Then A is dense in C(J).

Theorem 7.2.[Riesz representation theorem]Let φ be a positive linear functional
φ : C(J) → R with Φ(1) = 1. Then there exists a unique inner regular probability
measure,µ ∈ M1(J), such that

φ( f ) = µ( f ) =
∫

J
f dµ . (7.1.1)

Recall (see [1] page 12) that a measure isinner regular, if for any Borel set,B,
µ(B) = sup{µ(K),K ⊂ B, compact}. We have shown there already, that ifJ is a
compact metrisable space, then any probability measure on it is inner regular.

The weak-∗ topology on the spaceC(J)∗ is obtained by choosing sets of the form

Bf1,..., fn,ε(φ0)≡ {φ ∈C(J)∗ : ∀1≤i≤n|φ( fi)−φ0( fi)|< ε} (7.1.2)

135
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with n ∈ N,ε > 0, fi ∈ C(J) as a basis of neighborhoods. The ensuing space is a
Hausdorff space.

When speaking of convergence on topological spaces, it is useful to extend the
notion of convergence of sequences to that ofnets.

Definition 7.3. A directed set, D, is a partially ordered set all of whose finite subsets
have an upper bound inD. A net is a family(xα ,α ∈ D) indexed by a directed set.

If (xα ,α ∈ D) is a net in a topological space,E, thenxa → x if, for every open
neighborhood,G, of x, there existsa0 ∈ D such that for allα ≥ α0, xα ∈ G.

Lemma 7.4.A netφα in C(J)∗ converges in the weak-* topology to some element,
φ , if and only if, for all f ∈C(J), φα( f )→ φ( f ).

Proof. Let us prove first the “if” part. Then for anyf , and anyε, there exists
α f , such that for allα ≥ α f , φα( f )− φ( f )| < ε. Now take any neighborhood
Bf1,..., fn,ε(φ). Then, letα0 ≡ maxn

i=1α fi , and it follows thatφα ∈ Bf1,..., fn,ε(φ), for
α ≥ α0, henceφa → φ . For the converse, we have that for anyn∈N, any collection
f1, . . . , fn, and anyε > 0, there existsα0 such that, ifφα0 ∈ Bf1,..., fn,ε (φ), then for
all α ≥ α0, φα ∈ Bf1,..., fn,ε (φ). Thus to show that for any givenf , φα( f ) → φ( f )
we just have to use this fact withBf ,ε(φ).

One of the most important facts about the weak-∗ topology is Alaoglu’s theo-
rem. The spaceC(J)∗ is in fact a Banach space equipped with the norm‖φ‖ ≡
supf∈C(J)

φ( f )
‖ f‖∞

Theorem 7.5.The unit ball

{φ ∈C(J)∗ : ‖φ‖ ≤ 1} (7.1.3)

is compact in the weak-∗ topology.

(for a proof, see any textbook on functional analysis, e.g. Dunford and Schwartz
[5]).

The importance for us is that when combined with the Riesz representation the-
orem, it yields:

Corollary 7.6. The set of inner regular probability measures on a compact Haus-
dorff space is compact in the weak-∗ topology.

Proof. By the Riesz representation theorem, each inner regular probability measure
corresponds to a unique increasing functional,φ ∈C(J)∗ with φ(1) = 1. Since the
function f ≡ 1 is the largest function such that‖ f‖∞ ≤ 1, it follows that‖φ‖ ≤
φ(1) = 1. Hence this set is a subset of the unit ball. Moreover, the set of increasing
(in the sense of non-decreasing) linear functionals mapping 1 to 1 is closed, and
hence, as a closed subset of a compact set, compact.

Corollary 7.7. The set of probability measures on a compact metrisable space is
compact in the weak-∗ topology.
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Proof. By Theorem 1.2.6 in [1], any probability measure on a compactmetrisable
space is inner regular, hence the restriction to inner regular measures in Corollary
7.6 can be dropped in this case.

As a matter of fact, in the compact metrisable case we get evenmore.

Theorem 7.8.Let J be a compact metrisable space. Then C(J) is separable, and
M1(J) equipped with the weak-∗ topology is compact metrisable.

Proof. We may takeJ to be metric with metricρ . SinceJ is separable (any compact
metric space is separable), there is a countable dense set ofpoints,xn, n∈N. Define
the functions

hn(x)≡ ρ(x,xn).

The functionshn separate points inJ, i.e. if x 6= y, then there existsn such that
hn(x) 6= hn(y). Now letA be the set of all functions of the form

q1I+ ∑
n1,...,nr ;k1,...,kr

q(n1, . . . ,nr ;k1, . . . ,kr)h
k1
n1
. . .hkr

nr

where allq’s are rational. Then the closure ofA is an algebra containing all con-
stant functions and separating points inJ. The Stone-Weierstrass theorem asserts
therefore that the countable setA is dense inC(J), soC(J) is separable.

Now let fn, n ∈ N, be a countable dense subset ofC(J). Consider the mapΦ :
M1(J)→V ≡×n∈N[−‖ fn‖∞,‖ fn‖∞], given by

Φ(µ) = (µ( f1),µ( f2), . . . ).

This map is one to one. Namely, assume thatµ 6= ν, butΦ(µ) = Φ(ν). Then on the
one hand, there must existsf ∈C(J) such thatµ( f ) 6= ν( f ), while for alln, µ( fn) =
ν( fn). But there are sequencesfi ∈ A such thatfi → f . Thus limi µ( fi) = lim i ν( fi),
and by dominated convergence, both limits equalµ( f ), resp.ν( f ), which must be
equal contrary to the assumption. Moreover, the setA determines convergence, i.e.
a netµα converges toµ (in the weak-∗ topology , ifµα( fn)→ µ( fn), for all fn ∈ A.
But the product spaceV is compact and metrisable (by Tychonoff’s theorem), and
from the above,M1(J) is homeomorphic to a compact subset of this space. Thus it
is compact and metrisable.

Let us remark that a metric onM1(J) can be defined by

ρ̂(µ ,ν)≡
∞

∑
n=1

2−n
(

1−e−|µ( fn)−ν( fn)|
)
. (7.1.4)

7.2 Polish and Lousin spaces

When dealing with stochastic processes, an obviously important space is that of
continuous, real valued functions onR+. We will call
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W ≡C([0,∞),R). (7.2.1)

This space is not compact, so we have to go slightly beyond theprevious setting.

Lemma 7.9.The space W equipped with the topology of uniform convergence on
compact sets is a Polish space. Theσ -algebra,A , of cylinders generated by the
projectionsπt : W →R, πt(w) = w(t), is the Borel-σ -algebra on W.

Proof. We can metrise the topology onW by the metric

ρ(w1,w2)≡
∞

∑
n=1

2−n ρn(w1,w2)

1+ρn(w1,w2)
,

where
ρn(w1,w2)≡ sup

0≤t≤n
|w1(t)−w2(t)|.

Then it inherits its properties form the metric spaceC([0,n),R) equipped with the
uniform topology.

Now the mapsπt are continuous, and henceA ⊂ B(W). On the other hand, for
continuous functions,wi ,

ρn(w1,w2) = sup
q∈Q∩[0,n]

|w1(q)−w2(q)|,

so thatρn and henceρ areA -measurable. Now letF be a closed subset ofW. Take
a countable dense subset ofF , saywn,n∈ N. Then

F = {w∈W : inf
n

ρ(w,wn) = 0},

which (since all is countable) implies thatF ∈ A , and thusA = B(W).

This (and the fact that quite similarly the corresponding spaces of càdlàg functions
are Polish) implies that we can most of the time assume that wewill be working on
Polish probability spaces. In the construction of stochastic processes we have actu-
ally been working on Lousin spaces (and used the fact that these are homeomorphic
to a Borel subset of a compact metric space). The next theoremnicely clarifies that
Polish spaces are even better.

Theorem 7.10.A topological space is Polish, if and only if it is homeomorphic to a
Gδ subset (i.e. a countable intersection of open subsets) of a compact metric space.
In particular, every Polish space is a Lousin space.

Proof. We really only care about the “only if” part and only give its proof. LetSbe
our Polish space. We will actually show that it can be embedded in aGδ subset of
the compact metrisable spaceJ ≡ [0,1]N. Let ρ be a metric onS, and setρ̂ = ρ

1+ρ .
This is an equivalent metric that is bounded by 1. Chose a countable dense subset
xn, n∈ N, of Sand define
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α(x)≡ (ρ̂(x,x1), ρ̂(x,x2), . . . ).

Let us show thatα is a homeomorphism fromS to its image,α(S) ⊂ [0,1]N. For
this we must show that a sequence of elementsx(n) converges tox, if and only if

ρ̂(x(n),xk)→ ρ̂(x,xk),

for all k. The only if direction foillow from the continuity of the map̂ρ(·,xk). To
show the other direction, note that by the triangle inequality

ρ̂(x(n),x) ≤ ρ̂(x(n),xk)+ ρ̂(xk,x).

Therefore, for allk,
limsupρ̂(x(n),x) ≤ 2ρ̂(xk,x). (7.2.2)

Now take a sequence ofxk that converges tox. Then (7.2.2) implies that limsup̂ρ(x(n),x)≤
0, and sox(n)→, as desired.

Next, letd be a metric onJ. By continuity of the inverse mapα−1 on the image
of S, for anyn∈ N we can find 1/2n≥ δ > 0, such that the pre-image of the ball
Bd(α(x),δ )∩α(S) has diameter smaller than 1/n (with respect to the metriĉρ).

Now think ofα(S) as a subset ofJ. Let ᾱ(S) be its closure. Forn given, letUn be
the union of all pointsx∈ ᾱ(S) such that it has a neighborhood,Nn,x in J such that
α−1(Nn,x∩α(S)) hasρ̂-diameter at most 1/n. Note that by what we just showed,
all points inα(S) belong toUn. Now we show thatUn is open inᾱ(S): if x ∈ Un,
andy∈ ᾱ(S) is close enough tox, theny∈ Nn,x, and the setNn,x may serve asNn,y,
so thaty∈Un. ThusUn is open.

Now let x ∈ ⋂nUn. Choose for anyn a point xn ∈ α(S) ∩⋂k≤n Nk,x. Clearly
d(x,xn) ≤ 1/n and hencexn → x. Moreover, for anyr ≥ n, both xr ∈ Nn,x and
xn ∈ Nn,x, so thatρ̂(α−1(xr),α−1(xn)) ≤ 1/n. Thusα−1(xn) is a Cauchy sequence
in complete metric space, and soα−1(xn) → y∈ S. Thus, sinceα is a homeomor-
phism,xn → α(y) in J, and clearlyα(y) = x, implying thatα(S) =

⋂
nUn. Finally,

sinceUn is open inᾱ(S), there are open setsVn such thatUn = ᾱ(S)∩Vn. Hence

α(S) = ᾱ(S)∩
(
⋂

n

Vn

)
.

Remember that we want to show thatα(S) is a countable intersection of open sets:
all that remains to show that is thatᾱ(S) is such a set, but this is obvious in a metric
space:

ᾱ(S) =
⋂

n

{y∈ J : d(y,α(S))< 1/n}.

On the space of probability measures on Lousin spaces we introduce a the weak-
∗ topology with respect to the set of bounded continuous functions (the boundedness
having been trivial in the compact setting). Convergence inthis topology is usually
calledweak convergence, which is bad, since it is not what weak convergence would
be in functional analysis. But that is how it is, anyway.
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Let us state this as a definition:

Definition 7.11.Let Sbe a Lousin space. LetCb(S) be the space of bounded, contin-
uous functions onS, and letM1(S) be the space of probability measures onS. Then
a net,µα ∈M1(S) convergesweaklyto µ ∈M1(S), if and only if, for all f ∈Cb(S),

µa( f )→ µ( f ). (7.2.3)

Weak convergence is related to convergence in probability.

Lemma 7.12.Assume that Xn is a sequence of random variables with values in a
Polish space such that Xn → X in probability, where X is a random variable on the
same probability space. Letµn,µ denote their distributions. Thenµn → µ weakly.

Proof. Let us first show that convergence in probability implies convergence of
µn( f ) if f be a bounded uniformly continuous function. Then there there exists
C < ∞ such that| f (x)| ≤ C and for anyδ > 0 there existsε = ε(δ ) such that
ρ(x− y)≤ ε implies| f (x)− f (y)| ≤ δ . Clearly

|µn( f )− µ( f )| = |E( f (Xn)− f (X))|
≤
∣∣E
[
( f (Xn)− f (X))1Iρ(Xn−X)≤ε

]∣∣

+
∣∣E
[
( f (Xn)− f (X))1Iρ(Xn−X)>ε

]∣∣
≤ δ +CP(ρ(Xn−X)> ε) (7.2.4)

Since the second term on the right tends to zero asn ↑ ∞ for any ε > 0, for any
δ > 0,

limsup
n↑∞

|µn( f )− µ( f )| ≤ δ ,

hence
lim
n↑∞

|µn( f )− µ( f )|= 0,

as claimed.
To conclude the prove, we must only show that convergence ofµn( f ) to µ( f )

for all absolutely continuous functions implies that the same holds for all bounded
continuous functions. To this end we use that iff is a bounded continuous function,
then there exists s sequence of uniformly continuous functions, fk, such that‖ fk−
f‖∞ → 0. One then has the decomposition

|µn( f )− µ( f )| ≤ µn(| f − fk|)+ |µn( fk)− µ( fk)|+ µ(| fk− f |).

by unifrom convergence offk to f , the first term is smaller thanε/3, provided
only k is large enough; the second bracket is smaller thanε/3 if n≥ n0(k); the last
bracket is smaller thanε/3, of k is large enough, independent ofn. Hence choosing
k ≥ k0 andn ≥ n0(k), we see that for anyε > 0, there existsn0, s.t. for n ≥ n0,
|µn( f )− µ( f )| ≤ ε.

The following characterization of weak convergence is important, but the proof
is somewhat technical and will be skipped (try as an exercise).
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Proposition 7.13.Let µα be a net of elements ofM1(S) where S is a Lousin space.
Then the following conditions are equivalent:

(i) µα → µ weakly;
(ii)for every closed F⊂ S,limsupµα(F)≤ µ(F);
(iii)for every open G⊂ S,lim inf µα(G)≥ µ(G);

Thus, if B∈ B(S) with µ(∂B) = 0, then, ifµα → µ , thenµα(B)→ µ(B).

We will use this proposition to prove the fundamental resultthat the weak topol-
ogy onM1(S) is metrisable ifS is Lousin. This is very convenient, and in particular
will allow us to never use nets anymore!

Theorem 7.14.Let S be a Lousin space and let J be the compact metrisable space
such that S is homeomorphic to one of its Borel subsets, B. Letµ̂ be the extension
of (the natural image of1) µ on B on J such that̂µ(J\B) = 0. The mapµ → µ̂ is
a homeomorphisms fromM1(S) to the set{ν ∈ M1(J) : ν(B) = 1} in the weak
topologies. Therefore, the weak topology onM1(S) is metrisable.

Proof. We must show that, ifµα is a net inM1(S) andµ ∈ M1(S), then the condi-
tions

(i) µα( f )→ µ( f ),∀ f ∈Cb(S), and
(ii) µ̂α( f )→ µ̂( f ),∀ f ∈C(J)

are equivalent. Assume that (i) holds. Letf ∈C(J) and setfB = f 1IB. Clearly fB is
bounded onB, and ifφ : S→B is our homeomorphism, theng≡ fB◦φ is a bounded
function onS, andµn(g) = µ̂n( fB) = µ̂n( f ). Thus (i) implies (ii).

Now assume that (ii) holds. LetF ⊂ S be a closed. Then there exists a closed
subset,Y, of J such thatF = φ−1(B∩Y). By Proposition 7.13,

limsupµα(F) = limsupµ̂α(B∩Y) = limsupµ̂α(Y)

≤ µ̂(Y) = µ̂(B∩Y) = µ(F).

Hence again by Proposition 7.13, (i) holds.
Now that we have shown that the spaceM1(S) is homeomorphic to a subspace of

the compact metrisable spaceM1(J) (because of Theorem 7.2.1),M1(S) is metris-
able.

We now introduce the very important concept oftightness. The point here is the
following. We already know, from the Kolmogorov-Daniell theorem, that the finite
dimensional marginals of a process determine its law. It is frequently possible, for a
sequence of processes, to prove convergence of of the finite dimensional marginals.
However, to have path properties, we want to construct the process on a more suit-
able space of, say, continuous or càdlàg paths. The questionis whether the sequence
converges weakly to a probability measure on on this space. For this purpose it is

1 That is, ifA∈ B(J), thenµ̂(A) ≡ µ(φ−1(A∩B))
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useful to have a compactness criterion for set of probability measures (e.g. for the
sequence under consideration). This is provided by the famousProhorov theorem.

We need to recall the definition of conditional compactness.

Definition 7.15.LetSbe a topological space. A subset,J⊂S, is calledconditionally
compactif its closure in the weak topology is compact.J is calledconditionally
sequentially compact, if its closure is sequentially compact. IfS is a metrisable
space, then any conditionally compact set is conditionallysequentially compact.

Remark 7.16.The termsconditionally compactandrelatively compactare used in-
terchangebly by different authors with the same meaning.

The usefulness of this notion for us lies in the following. Assume that we are
given a sequence of probability measures,µn, on some space,S. If the set{µn,n∈
N}, is conditionally sequentially compact in the weak topology, then there exist
limit points, µ ∈ M1(S), and subsequences,nk), such thatµnk → µ , in the weak
topology. E.g., if we take as our spaceS the space of càdlàg paths, if our sequence
of meaures is tight, the limit points will be probability measures on càdlàg paths.

Definition 7.17.A subset,H ⊂ M1(S) is calledtight, if and only if there exists, for
anyε > 0, a compact setKε ⊂ S, such that, for allµ ∈ H,

µ(Kε )> 1− ε. (7.2.5)

Theorem 7.18 (Prohorov).If S is a Lousin space, then a subset H⊂ M1(S) is
conditionally compact, if it is tight.

If S is a Polish space then any conditionally compact subset of M1(S) is tight.
Moreover, since the spacesM1(S) are metrisable under both hypothesis, con-

ditionally compact may be replaced by sequentially conditionally compact in both
statements.

Proof. We prove the first (and most important statement). Let againJ be the com-
pact metrisable space, and letφ be a homeomorphiosmφ : Σ → B ⊂ J, for some
Borel setB. We know thatM1(J) is compact metrisable, so that every subset of it
is conditionally compact. Since compactness and sequential compactness are equiv-
alent in our setting, we know that any sequence,µ̂n ∈ M1(J) has limit points in
M1(J). Now letH = {µn,n∈N} ⊂ M1(S) be tight. Letµ̂N ≡ µn◦φ−1. Let µ̂ be a
limit point of the sequencêµn. We want to show that̂µ is the image of a probability
measure onS, and thusµ ≡ µ̂ ◦φ exists and is a limt point of the sequenceµn. For
this we need to show that̂µ(B) = 1. Now letKε be the compact set inSsuch that
µn(Kε )> 1− ε. Then, by Proposition 7.13,

µ̂(φ(Kε ))≥ limsup
n

µ̂n(φ(Kε )) = limsup
n

µn(Kε)≥ 1− ε,

for all ε > 0, and soµ̂(B) = 1, as desired.
The proof of the less important converse will be skipped.
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We will consider an application of the Prohorov theorem in the case whenS is
the space,W, of continuous paths defined in (7.2.1).

This is based on theArzelà–Ascoli theoremthat characterizes conditionally com-
pact set inW.

Theorem 7.19.A subset,Γ ⊂W is conditionally compact if and only if the follow-
ing hold:

(i) sup{|w(0)| : w∈ Γ }< ∞;
(ii)∀N∈N limδ↓0supw∈Γ ∆(δ ,N,w) = 0, where

∆(δ ,N.w) ≡ sup{|w(t)−w(s)| : t,s∈ [0,N], |t − s|< δ} . (7.2.6)

For the proof, see texts on functional analysis, e.g. [5].
The Arzelà–Ascoli theorem allows us to describe conditionally compact sets in

W.
This allows us to formulate the following tightness-criterion.

Theorem 7.20.A subset, H⊂ M1(W), is conditionally compact (equiv. tight), if
and only if:

(i) limc↑∞ supµ∈H µ (|w(0)|> c) = 0;
(ii)for all N ∈ N and all ε > 0, limδ↓0supµ∈H µ (∆(δ ,N,w) > ε) = 0, where∆ is

defined in (7.2.6)

Proof. We give only the prove of the relevant “if” direction. We should find a com-
pact subset ofW of measure aritrarily close to one for all measures inH. Clearly,
we can do this by giving a conditionally compact set,Γε , of measureµ(Γε)> 1− ε,
since then its closure is a compact set of at least the same measure. Now assume
that (i) and (ii) hold. Then take, for givenε, C such that the set

A≡ {w∈W : |w(0)| ≤C}

satisfies, for allµ ∈ H, µ(A)≤ 1− ε/2. By (ii) we can choseδ (n,N) such that the
sets

An,N ≡ {w∈W : ∆(δ ,N,w) ≤ 1/n}

satisfy, for allµ ∈ H, µ(An,N)≥ 1− ε2−(n+N+2). Then the set

Γ ≡ A∩
⋂

n,N∈N
An,N

satisfiesµ(Γ )> 1− ε, for all µ ∈ H.
This proves this part of the theorem.

The continuity module∆(δ ,N,w) looks difficult to use due to the appearance of
the supremum overt,s. The following proposition gives moment condition that is
easier to use.
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Proposition 7.21.Let µ be the law of a continuous stochastic processes X on
Wiener space. Then conditions (i) and two of Theorem 7.20 canbe replaced by
the conditions

(i)’)supX∈H E|X0|ν < ∞,
(ii’)For all N ∈ N, supX∈H E|Xt −Xs|α ≤CN|t − s|1+β , for all 0≤ s, t ≤ N,

for someα,β ,ν > 0 and CN < ∞.

Proof. The assertion concerning condition (i) follows trivially.The intresting part is
to show that (ii’) implies (ii). We fixN and for simplicity setN= 1. By Chebychev’s
inequality, we get from (ii) that

P [|Xt −Xs| ≥ ε]≤Cε−α |t − s|1+β . (7.2.7)

Now take a dyadic sequence of timetn
k = k2−n and setεn = e−γn for someγ > 0.

Then
P

[
|Xtnk

−Xtnk−1
| ≥ εn

]
≤C2−n(1+β−αγ). (7.2.8)

Thus a trivial estimate shows that for anyn,

P

[
2n

max
k=1

∣∣∣Xtnk
−Xtnk−1

∣∣∣≥ εn

]
≤C2−n(β−αγ). (7.2.9)

Note that this is exponentially small and hence summable provided that we choose
γ < β/α, which is always possible. Therefore, by the Borel-Cantelli lemma, with
probability one, the events in (7.2.9) happen only for finitely manyn. Let us call the
last such valuen∗(ω).

Now any pointt can be approximated by a sequence of diadic point of ordern,
which we calltn = kn(t)2−n, such that|tn− t−1| = 2−n while tn → t. Similarly we
call sn a sequence of dyadic points converging tos. SinceX is continuous, it follows
thatXtn → Xt andXsn → Xs.

Givensandt, let n0 be the smallest value such thattn0 = sn0. Then by telescopic
expansion,

Xt −Xs=
∞

∑
n=n0+1

(
Xtn −Xtn−1 −Xsn +Xsn−1

)
. (7.2.10)

Thus

|Xt −Xs| ≤
∞

∑
n=n0+1

(
|Xtn −Xtn−1|+ |Xsn −Xsn−1|

)
. (7.2.11)

For eacht,s, such that|t − s| ≤ 2−n∗(ω), we haven0 ≥ n∗(ω), and thus, on a set of
probability one, for such,t,s,

|Xt −Xs| ≤ 2
∞

∑
j=n+1

2− jγ =
2−nγ

1−2γ ≤ 2
1−2−γ |t − s|γ . (7.2.12)

Let P denote the law ofX. Therefore, we have shown that for allP∈ H, there exists
ΩP ⊂Ω s such thatP(ΩP) = 1 and for allω ∈ ΩP, there existδ (ω), such that for all
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s, t ∈ [0,N] with |s− t| ≤ δ (ω), |Xt(ω)−Xs(ω)| ≤CN|s− t|γ , which will be smaller
thenε for |s− t| small enough. Now defineΩP,δ = {ω ∈ ΩP : δ (ω)≤ δ}. Then, for
CNδ γ < ε,

P

(
sup

s,t∈[0,N]:|s−t|<δ
|Xt −Xs|> ε

)
≤ PX

(
ΩP,δ

)
. (7.2.13)

But ΩP,δ ↓ /0, asδ ↓ 0, uniformly inP∈ H. But this implies that

lim
δ↓0

sup
P∈H

P

(
sup

s,t∈[0,N]:|s−t|<δ
|Xt −Xs|> ε

)
= 0, (7.2.14)

as desired. This concludes the proof of the proposition.⊓⊔

Finally we come to the most important result of this chapter.

Lemma 7.22.Let µn,µ be probability measures in W. Thenµn converges weakly to
µ , if and only if

(i) the finite dimensional distributions ofµn converge to those ofµ ;
(ii)the family{µn,n∈N} is tight.

Proof. Let us first show the “if” direction. From tightness and Prohorov’s theo-
rem it follows that the family{µn,n ∈ N} is conditionally sequentially compact,
so that there are subsequences,n(k), along whichµn(k) converges weakly to some
measureµ . Assume that there is another subsequence,m(k), such thatµm(k) con-
verges weakly to a measureν. But then also the finite dimensional distibutions of
µn(k), respectively,µm(k), converge to those ofµ , repectivelyν. But by (i), the finite
dimensional marginals ofµn converge, so thatµ andν have the same finite dimen-
sional marginals, and hence, are the same measures. Since this holds for any limit
point, it follows thatµn → µ , weakly.

The “only if” direction: first, the projection to finite dimensional marginals is
a continuous map, hence weak convergence implies that of themarginals. Second,
Prohorov’s theorem in the case of the Polish spaceW implies that the existence
of sequential limits, hence sequential conditional compactness, hence conditional
compactness implies tightness.

Exercise.As an application of this theorem, you are invited to prove Donsker’s
theorem (Theorem 6.3.3 in [1]) without using the Skorokhod embedding that was
used in in the last section of [1]. Note that we already have: (i) convergence of the
finite dimensional distributions (Exercise in [1]) and the existence of BM onW.
Thus all you need to prove tightness of the sequencesSn(t). Note that here it pays
to chose the linealy interpolated version (6.3) in [1].

Finally, we give a useful characterisation of weak convergence, known as Sko-
rokhod’s theorem, that may appear somewhat surprising at first sight. It is, however,
extremely useful.

Theorem 7.23.Let S be a Lousin space and assume theµn,µ are probability mea-
sures on S. Assume thatµn → µ weakly. Then there exists a probability space
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(Ω ,F ,P) and random variables Xn with law µn, and X with lawµ , such that
Xn → X P-almost surely.

Proof. The proof is quite simple in the case whenS=R. In that case, weak conver-
gence is equivalent to convergence of the distribution function, Fn(x) = µ([−∞,x])
at all continuity points of the limit,F . In that case we chose the probability
spaceΩ = [0,1], P the uniform measure on[0,1] and define the random variables
Xn(x) = F−1

n (x). Then clearly

P(Xn ≤ z) = P(x≤ Fn(z)) = Fn(z)

so that indeedXn has the desired law. On the other hand,Fn(x) converges toF(x) at
all continuity points ofF , and one can check that the same is true forF−1

n , implying
almost sure convergence ofXn.

In the general case, the prove is quite involved and probablynot very enlighten-
ing....

Skorohod’s theorem is very useful if one wants to prove convergence of func-
tionals of probability distributions.
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7.3 The càdlàg spaceDE[0,∞)

In the general theory of Markov processes it will be important that we can treat the
space of càdlàg functions with values in a metric space as a Polish space much like
the space of continuous functions. The material from this section is taken from [6]
where omitted proofs and further details can be found.

7.3.1 A Skorokhod metric

We will now construct a metric on càdlàg space which will turnthis space into a
complete metric space. This was first don by Skorokhod. In fact, there are various
different metrics one may put on this space which will give rise to different conver-
gence properties. This is mostly related to the question whether each jump in the
limiting function is associated to one, several, or no jumpsin approximating func-
tions. A detailed discussion of these issues can be found in [17]. Here we consider
only one case.

Definition 7.24.Let Λ denote the set of all strictly increasing mapsλ : R+ → R+,
such thatλ is Lipshitz continuous and

γ(λ )≡ sup
0≤t<s

∣∣∣∣ln
λ (s)−λ (t)

s− t

∣∣∣∣< ∞. (7.3.1)

Forx,y∈ DE[0,∞), u∈ R+, andλ ∈ Λ , set

d(x,y,λ ,u)≡ sup
≥0

ρ (x(t ∧u),y(λ (t)∧u)) . (7.3.2)

Finally, theSkorohod metriconDE[0,∞) is given as

d(x,y)≡ inf
λ∈Λ

(
γ(λ )∨

∫ ∞

0
e−ud(x,y,u,λ )du

)
. (7.3.3)

To get the idea behind this definition, note that withλ the identity, this is just the
metric on the space of continuous functions. The rôle of theλ is to make the distance
of two functions that look much the same except that they jumpat two points very
close to each other by sizable amount. E.g., we clearly want the functions

xn(t) = 1I[1/n,∞](t)

to converge to the function
x∞(t) = 1[0,∞](t).

This is wrong under the sup-norm, since supt ‖xn(t)−x∞(t)‖= 1, but it will be true
under the metricd (Exercise!).
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Lemma 7.25.d as defined a above is a metric on DE[0,∞).

Proof. We first show thatd(x,y) = 0 impliesy= x. Note that ford(x,y) = 0, it must
be true that there exists a sequenceλn such thatγ(λ0) ↓ 0 and limn↑∞ d(x,y,λn,u) =
0; one easily checks that then

lim
n↑∞

sup
0≤t≤T

|λn(t)− t|= 0,

and hencex(t) = y(t) at all continuity points ofx. But sincex andy are càdlàg , this
impliesx= y.

Symmetry follow from the fact thatd(x,y,λ ,u) = d(y,x,λ−1,u) and thatγ(λ ) =
γ(λ−1).

Finally we need to prove the triangle inequality. A simple calculation shows that

d(x,z,λ2 ◦λ1,u)≤ d(x,y,λ1,u)+d(y,z,λ2,u).

Finally γ(λ1 ◦λ2) ≤ γ(λ1)+ γ(λ2), and putting this together one derivesd(x,z) ≤
d(x,y)+d(y,z).

Exercise:Fill in the details of the proof of the triangle inequality.
The next theorem completes our task.

Theorem 7.26.If E is separable, then DE[0,∞) is separable, and if E is complete,
then DE[0,∞) is complete.

Proof. The proof of the first statement is similar to the proof of the separability of
C(J) (Theorem 7.8) and is left to the reader. To prove completeness, we only need
to show that every Cauchy sequence converges. Thus letxn ∈ DE[0,∞) be Cauchy.
Then, for any constantC> 1, and anyk ∈ N, there exist valuesnk, such that for all
n,m≥ nk, d(xn,xm)≤C−k. Then we can select sequencesuk, andλk, such that

γ(λk)∨d(xnk,xnk+1,λk,uk)≤ 2−k.

Then, in particular,

µk ≡ lim
m↑∞

λk+m◦λk+m−1◦ · · · ◦λk+1◦λk

exists and satisfies
γ(µk)≤ ∑

m=k∞
γ(λm)≤ 2−k+1.

Now
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sup
t≥0

ρ
(
xnk(µ

−1
k (t)∧uk),xnk+1(µ

−1
k+1(t)∧uk)

)

= sup
t≥0

ρ
(
xnk(µ

−1
k (t)∧uk),xnk+1(λk(µ−1

k+1(t))∧uk)
)

= sup
t≥0

ρ
(
xnk(t ∧uk),xnk+1(λ

−1
k (t)∧uk)

)

≤ 2−k.

Therefore, by the completeness ofE, the sequence of functionszk ≡ xnk(µ
−1
k (t))

converges uniformly on compact intervals to a functionz. Eachzk being càdlàg , so
z is also càdlàg . Sinceγ(µk)→ 0, it follows that

lim
k↑∞

sup
0≤t≤T

ρ(xnk(µ
−1
k (t)),z(t)) = 0,

for all T, and henced(xnk,z)→ 0. Since a Cauchy sequence that contains a conver-
gent subsequence converges, the proof is complete.

To use Prohorov’s theorem for proving convergence of probability measures on
the spaceDE[0,∞), we need first a characterisation of compact sets.

The first lemma states that the closure of the space of step functions that are uni-
formly bounded and where the distance between steps is uniformly bounded from
below is compact:

Lemma 7.27.LetΓ ⊂ E be compact andδ > 0 be fixed. Let A(Γ ,δ ) denote the set
of step functions, x, in DE[0,∞) such that

(i) x(t) ∈ Γ , for all τ ∈ [0,∞), and
(ii)sk(x)− sk−1(x)> d, for all k∈ N,

where
sk(x)≡ inf{t > sk−1(x) : x(t) 6= x(t−)}.

Then the closure of A(Γ ,δ ) is compact.

We leave the prove as an exercise.
The analog of the modulus of continuity in the Arzelà-Ascolitheorem on càdlàg

space is the following: Forx∈ DE[0,∞), δ > 0, andT < ∞, set

w(x,δ ,T)≡ inf
ti

max
i

sup
s,t∈[ti−1,ti )

ρ(x(s),x(t)), (7.3.4)

where the first infimum is over all collections 0= t0 < t1 < · · ·< tn−1 < T < tn, with
ti − ti−1 > δ , for all i.

The following theorem is the analog of the Arzelà-Ascoli theorem:

Theorem 7.28.Let E be a complete metric space. Then the closure of a set A⊂
DE([0,∞) is compact, if and only if,

(i) For every rational t≥ 0, there exists a compact setΓt ⊂ E, such that for all x∈A;
x(t) ∈ Γt .
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(ii)For each T< ∞,
lim
δ↓0

sup
x∈A

w(x,δ ,T) = 0. (7.3.5)

A proof of this result can be found, e.g. in [6].
Based on this theorem, we now get the crucial tightness criterion:

Theorem 7.29.Let E be complete and separable, and let Xα be a family of pro-
cesses with càdlàg paths. Then the family of probability laws, µα , of Xα , is condi-
tionally compact, if and only if the following holds:

(i) For everyη > 0 and rational t≥ 0, there exists a compact set,Γη,t ⊂ E, such that

inf
α

µα (x(t) ∈ Γη,t)≥ 1−η , (7.3.6)

and
(ii)For everyη > 0 and T< ∞, there existsδ > 0, such that

sup
α

µα (w(x,δ ,T)≥ η)≤ η . (7.3.7)

An application of the preceeding theorem to the case of Lévy processes allows
us to prove that the processes constructed in Section 1 from Poisson point processes
do indeed have càdlàg paths with probability one, i.e. they have a modification that
are Lévy processes.
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