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Chapter 1
Markov processes in discrete time

Markov processes are among the most important stochasttegses that are used
to model real live phenomena that involve disorder. Thieisause the construction
of these processes is very much adapted to our thinking albichtprocesses. More-
over, Markov processes can be very easily implemented irenigal algorithms.
This allows to numerically simulate even very complicatgstems. We will always
imagine a Markov process as a “particle” moving around itestspace; mind, how-
ever, that these “particles” can represent all kinds of wenyiplicated things, once
we allow the state space to be sufficiently general.

Markov processes can be classified according to the prepestithe nature of
time and the properties of their state space. Roughly, we L@ following cate-
gories:

(i) discrete time, finite state space
(idiscrete time, countable state space
(iiifiscrete time, general state space
(ivontinuous time, countable state space
(v)continuous time, general state space

The case (i) is elementary and can be studied with the helpeaientary lin-
ear algebra. Case (ii) is already much more interesting,baimg@is new concepts
such asecurrenceandtransience Case (iii) is really not all that more complicated,
although there are new concepts with regard to all erggdmibblems. Case (iv)
is not all that different from case (ii), and the constructlmasically start from a
discrete time Markov process where each unit of time is mguldy an exponen-
tially distributed random time, whose parameter dependsherposition in space.
Fundamentally new issues here can arise if these paranagtetsmabounded from
above or not bounded away from zero. Case (v) is really newpases challeng-
ing new problems that require some serious tools from foneti analysis. A key
new problem here is how to describe such a process in simpiesté’ou already
know some important examples from stochastic analysiswBign motion, Lévy
processes, and processes that are built from these: stohumtipes of stochastic
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differential equations. However, this is not all there isdan this lecture we will
develop a more general theory of continuous time Markov ggses.

As a warm-up, we recall in this first chapter the theory of MarRrocesses with
discrete time with a slightly different twist.

1.1 Markov processes with stationary transition probabilties

In the following we denote by the state space which we assume to be a Polish
space # denotes the Boref-algebra ors.
The main building block for a Markov process is the so-caltadsition kernel

Definition 1.1. A (one step) transition kernel for a discrete time Markovgaess
with state spac8is a map,?” : Ng x Sx £ — [0, 1], with the following properties:

(i) For eacht € Ng andx € S, Z%(x,-) is a probability measure aig, %).
(iFor eachA € 4, andt € Ny, Z%(-,A) is a#-measurable function o8

Definition 1.2. A stochastic process with state spac& and index seNy is a dis-
crete time Markov process with transition kerm@lif, for all A€ #,t € N,

P(X € Al 1)(w) = Pt 1(X%-1(w),A),P—as. (1.1.1)
Here{R }icn, denotes ther-algebra generated by the random variablgs. . , X;.

This requirement fixes the lait up to one more probability measure (8 %),
the so-callednitial distribution, P,.

Theorem 1.3.Let (S, %) be a Polish space and le¥” be a transition kernel and
Py a probability measure oS, #). Then there exists a unique stochastic process
satisfying (1.1.1) an@(Xp € A) = Py(A), for all A.

In general, we call a stochastic process whose index sebsispgpe action of a
group (or semi-groupgtationary(with respect to the action of this (semi) group, if
all finite dimensional distributions are invariant undee gimultaneous shift of all
time-indices. Specifically, if our index setsareR ;. orZ, respN, then a stochastic
process is stationary if forafle N, s,...,s, € l,all A;...,A, € B, and allt € 1,

P [Xsl S Al,...7xs/ S Ag} =P [X51+t S A17...,X5(+t S Ag] . (1.1.2)

We can express this also as follows: Define the ghifor anyt € 1, as(X o &) =
Xi+s- ThenX is stationary, if and only if, for alt € |, the processeX and X o &
have the same finite dimensional distributions.

In the case of Markov processes, a necessary (but not saofficgendition for
stationarity is the stationarity of the transitions kemel
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Definition 1.4. A Markov process with discrete tinféy and state spac®is said to
havestationary transition probabilities (kernelgf its one step transition kernep;
is independent df, i.e., if there is a probability kern@(x, A)

gt (XaA) - P(XvA)a (113)
forallt e N, xe S andA e £A.

Remark 1.5With the notation# s for the transitions kernel from timgto timet,
i.e.
]P)(Xt S A|<9Zs) - yt,S(Aa )(s)7

we could alternatively state that a Markov processstagonary transition proba-
bilities (kernels) if there exists a family of transition kerne®s(x, A), s.t.

Pst(%A) =R-s(X,A), (1.1.4)

foralls<t e N, xe S andA € #4. Note that there is a potential conflict of notation
betweenZ?; andP. which should not be confused.

A key concept for Markov processes with stationary traosiernels is the no-
tion of aninvariantdistribution.

Definition 1.6. Let P be the transition kernel of a Markov process with stationary
transition kernels. Then a probability measumeon (S, %) is called an invariant
(probability) distribution, if

/ T(AdX)P(x, A) = TI(A), (1.1.5)

for all A € . More generally, a positiver-finite measurerr, satisfying (1.1.5), is
called aninvariant measure

Lemma 1.7.A Markov process with stationary probability kernels andiah dis-
tribution Ry = s a stationary stochastic process, if and onlytifs an invariant
probability distribution.

Proof. Exercise. O

In the case when the state spaSgs finite, we have seen that there is always at
least one invariant measure, which then can be chosen torbéalyplity measure. In
the case of general state spaces, while there still will ydiee an invariant measure
(through a generalisation of the Perron-Frobenius thedoetine operator setting),
there appears a new issue, namely whether there is an intaméasure that is finite,
viz. whether there exists a invariant probability disttibo.
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1.2 The strong Markov property

The setting of Markov processes is very much suitable foraghyaication of the
notions of stopping times. Recall that for a closed Betwe set

p=inf(t>0:% D). (1.2.2)
In fact, one of the very important properties of Markov preszs is the fact that we
can split expectations between past and future also atisgpgmes.

Theorem 1.8.Let X be a Markov process with stationary transition kernkeét.%,
be a filtration such that X is adapted, and let T be a stoppimgtiLet F and G be
Z-measurable functions, and let F in addition be measurabilk vespect to the
pre-T-o-algebra.%7. Then

E[Ir<wFGo 6r|Fo] = E [Ir-oFE' [G|.Z] (Xr)|Z0] (1.2.2)
whereE’ and.Z’ refer to an independent copy; f the Markov process X.
Proof. We have
E [17 <F Go 67| ] (1.2.3)

=E[E[11<oFGo 67| .77]|F0)]
=E[Ir-oFE[Go 6| .Z7]|F0).
Now E [Go 8r|-%7] depends only oy (and will thus often be denoted simply as

E [Go 6r|Xr]) and by stationarity is equal # [G|.#] (X7), which yields the claim
of the theorem. O

1.3 Markov processes and martingales

We now take a different look at Markov processes that willdme important and
more difficult in the continuous time case. First we want te Bew the transition
kernels can be seen as operators acting on spaces of me@spestively spaces
of function.

If uis ao-finite measure o1%, andP is a Markov transition kernel, we define
the measurgP as

UP(A) = /P(x,A)u(dx), (1.3.1)
S
and similarly, for the-step transition kerneR,

UR(A) = /S R (% A)u(d). (1.3.2)

By the Markov property, we have
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HR(A) = P! (A). (1.3.3)

Note that the action of ? on measures conserves the total heass
HP(E) = [P Su(d) = u(S) (1.3.4)

The action on measures has of course the following natutedgretation in terms
of the process: iP(Xp € A) = U(A), then

H(X% € A) = UR(A). (1.3.5)

Alternatively, if f is a bounded, measurable functiongmwe define

/ F(y)P(x,dy), (1.3.6)
and
/ f(y)R(x,dy), (1.3.7)
where again
Rf=Pf. (1.3.8)

Lemma 1.9.Let || f|lo = Supes|f(X) denote the supremums norm. Then for any
bounded function f,
1P Hleo < [[fleo- (1.3.9)

Proof. Simply note that

Pt~ [Pocante

<Iflle [Py = [flle.  (1310)

00

O

We say that? is a semi-group acting on the space of measures, respgctivel
on the space of bounded measurable functions. The intatjgref the action on
functions is given as follows.

Lemma 1.10.Let R be a Markov semi-group acting on bounded measurable func-
tions f. Then

(RF)() =E(f(X)[-F0) (X) = Exf(X). (1.3.11)
Proof. We only need to show this far= 1. Then, by definition,
Ext () = [ 1)PD € dyFl 00 = [ Fy)POcdy)
s
O

Notice that, by telescopic expansion, we have the elemgfdanula
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t—1 t—1
Rf—f=SPRP-—1)f =S RLT, (1.3.12)

where we callL = P— 1 the (discrete) generator of our Markov process (this fdem
will have a complete analog in the continuous-time case).
An interesting consequence is the following observation:

Lemma 1.11.[Discrete time martingale problem]. Let L be the generatdrao
Markov process, {and let f be a bounded measurable function. Then

~1
M = f(X) — f(Xo) —tzOLf(xs) (1.3.13)

is a martingale.

Proof. Lett,r > 0. Then

t+r—1
E(Musr| 71) = E(f () | 52) — E(F0X0)] ) — +zo E(LF (X))

=P f(X) — F(X)+ f(X) — f(Xo)
t4r—1 -1

- Zl E(Lf(Xs)[7) — Z}E(Lf(xs)lft)

t—-1

= 104) - 106) ~ 3 (L10Y

r—1
+P (%) — (%) - ZOPS(Lf(Xt))
S=
= M +0. (1.3.14)
This proves the lemma.O

Remark 1.12(1.3.13) is of course the Doob decomposition of the prod¢Xs),
sincey 3L f(Xs) is a previsible process.

What is important about this observation is that it gives ttsa characterisation
of the generator that will be extremely useful in the geneoatinuous time setting.

Namely, one can ask whether the requirement ifkabe a martingale given a
family of pairs(f,Lf) characterises fully a Markov process.

Theorem 1.13.Let X be a discrete time stochastic process on a filtered spade
that X is adapted. Then X is a Markov process with transitiem&l P= 1+ L, if
and only if, for all bounded measurable functions, f, thereggion on the right-
hand side of (1.3.13) is a martingale.
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Proof. Lemma 1.11 already provides the “only if” part, so it remaoshow the
“if” part.

First, if we assume thaX is a Markov process, setting= 1 in (1.3.13) and
taking conditional expectations givefy, we see tha f (X1) — f(Xo) = (LT)(Xo),
implying that the transition kernel must betL.

It remains to show thaX is indeed a Markov process. To see this, we just use the
above calculation, which gives

E(f(Xe4r)[F1) = E(Mir[F1) + F(Xo)
t—1 tr—1

+2 L0+ 3 E(LHEOIFA)

t+r—1

~1
=Mt+f(><o)+t2)(Lf)(Xs)+ Zl E((LT)(Xs)|#)

r—1
=100+ 3 B(LH 069 7) (1.3.15)

Now let agairr = 1. Then
E(f(X11)[ ) = £(X) + (LF)(X) = (A+L)F)(X%) =Pf(X),  (1.3.16)

In view of the definition of discrete time Markov processdmasingf = 1, for
A€ A(S), this gives (1.1.1), and hendeis a Markov process. Thus the theorem is
proven. 0O

In view of continuous time Markov processes it is, howewuestructive to see
that we can also derive easily the more general fomula

E(f (%) |- 71) = (1+L)°F(X) = PF(X), (1.3.17)

from the martingale problem. We have seen that it holds ferl; Now proceed by
induction: assume that it holds for all bounded measurabietfons fors<r — 1.
We must show that it then also holds #®+ r. To do this, we use (1.3.15) and use
the induction hypothesis for the terms in the sum (wiserer — 1) with f replaced
by Lf. This gives

r-1
E(f(Xer)%) = (%) + Z)((]HL)SLf)(Xt) (1.3.18)
r-1
= f(X)+ ;(((ﬂ FLL+)F)(X) — (T+L)°F) (%))
= ((1+L)f) (%),

as claimed. Hence (1.3.17) holds for silby induction.

Remark 1.14The analog of this theorem in the continuous time case wiitighout
the full strength of this approach. A crucial point is thawitl not be necessary
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to consider all bounded functions, but just sufficientlyhridasses. This allows to
formulate martingale problems even then one cannot writendbe generator in a
explicit form. The idea of characterising Markov procedsgshe associated mar-
tingale problem goes back to Stroock and Varadhan, see [16].

1.4 Harmonic functions and martingales

We have seen that measures that satigfy— 0 are of special importance in the
theory of Markov processes. Also of central importance aretions that satisfy
Lf = 0. In this section we will assume that the transition kerrélsur Markov
processes have bounded support, so that for démewo, |X1— X | < K < o for
allt.

Definition 1.15. Let L be the generator of a Markov process. A measurable function
that satisfies
Lf(x) =0,vxe S (1.4.1)

is called aharmonic function A function is calledsubharmonic(resp. super-
harmonic if Lf >0, respLf <O0.

Theorem 1.16.Let X be a Markov process with generator L. Then, a non-negative
function f is

(i) harmonic, if and only if {X;) is a martingale;
(isubharmonic, if and only if £X;) is a submartingale;
(liipuper-harmonic, if and only if {X;) is a supermartingale;

Proof. Simply use Lemma 1.11.0

Remark 1.17Theorem 1.16 establishes a profound relationship betwetamfal
theory and martingales. It also explains, the strange etafisuper and sub in mar-
tingale theory.

A nice application of the preceding result is the maximumgiple.

Theorem 1.18.Let X be a Markov process and let D be a bounded open domain
such thatE1pe < «. Assume that f is a non-negative subharmonic function on D.
Then

supf(x) < supf(x). (1.4.2)

xeD xeD¢

Proof. Let us definel = 1pc. Then, f(Xr) is a submartingale, and thus
E (f(Xr)[Fo) (%) = f(x). (1.4.3)

SinceXr € D, it must be true that
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Supf(y) > 5(1(X1)| 7o) (9 = 1), (14.4)
Y€Dc

for all x € D, hence the claim of the theorem. Of course we used again tbe'®o
optional stopping theorem.O

The theorem says that (sub) harmonic functions take on thakimum on the
boundary, since of course the &tin (1.4.2) can be replaced by a subgid, c D¢
such thatPy(Xr € dD) = 1. The above proof is an example of how intrinsically
analytic results can be proven with probabilistic meang. fidxt section will further
develop this theme.

1.5 Dirichlet problems

Let us now consider a connected bounded open sub&Wé¢ define the stopping
timeT = 1pc.

If gis a measurable function d», we consider the Dirichlet problem associated
to a generatot,, of a Markov processx:

—(Lf)(x) =g(x), xe€D, (1.5.2)
f(x) =0, xeD°

Theorem 1.19.Assume thaET < . Then (1.5.1) has a unique solution given by

T-1
f(x) =E (;} g(x)\%) ) (15.2)

Proof. Consider the martingalgl; from Lemma 1.11. We know from Doob’s op-
tional stopping theorem (see e.g. [15]) that is also a martingale. Moreover,

T-1 T-1

My = 10) = 106) = 3 (LX) =0—106) = 5 (LN (153

t= t=

But we wantf such that-Lf =gonD. Thus, (1.5.3) seen as a problem foreads
T-1
Mr = —f(Xo) + ZJ 9(%). (1.5.4)
t=
Taking expectations conditioned c#y, yields

T-1
0——f<xo>+E<zog<xt>|%>, (1.5.5)
t=

or
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T-1
— By (;} g<xt>> (1.5.6)

Here we relied of course on Doob’s optimal stopping theorenitiMr = 0

Thus any solution of the Dirichlet problem is given by (1)5.%0 verify exis-
tence, we just need to check that (1.5.6) solvé$ = gonD. To do this we use the
Markov property “backwards”, to see that

T-1 T-1
x) = PEx ( ; g(xt)> = Ex [ Zi g()(;)] (1.5.7)
[ng ] = f(x) —9(x).

We see that the Markov process produces a solution of thetilgtiproblem. We
can express the solution in terms of an integral kerneledate Green’s kernel,

Gp(x,dy), as
/GD (x,dy)g( (Z; (% ) (1.5.8)

or, in more explicit terms,

O

Gp(x,d zmpt .dy), 1.5.9
p(x,dy) t; b (X, dy) (1.5.9)

where
PE)(x,dy):/[;P(x,dzl)'/[.DP(zl,dzz)'/[.D...'/[;P(thl,dy). (1.5.10)

Note that/, P(x,d2) < 1.

The preceding theorem has an obvious extension to more @matgd boundary
value problems.

LetD C Sbhe as above and specify functiagsD — R, u: D¢ — R andk: D —
[—k, o) with k < 1. Consider the following set of equations for an unknowrcfion
f:

(L) + k()

g(x), VxeD, (1.5.11)
f(x) =u

(x), VxeDC

The following theorem provides a stochastic represemaifdhe solution of such
Dirichlet problems.

Theorem 1.20.Let X be a discrete-time Markov process with generator Lufss
that D is such that B
Ex [TDC(l— k)TDC} < 0o, (1.5.12)
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Then the Dirichlet problenfl.5.11)has a unique solution given by
Tpe—1 s 1 Tpc—1 1

f(x) = Ex [ ;) l!]oil-l-k(xu) 9(Xs) + UEL 71+k(xu) U(XrDc)] .

Proof. The most convenient way to prove Theorem 1.20 is again viarthgin-
gale problem characterisation of Markov processes. Indeedheck that, for any
bounded functiorf,

t-1
M= [ i 100~ 10%)
t—-1 s 1

+S;£L1+T(xu) [K(Xs) f(Xs) = (LT)(Xs)] (1.5.13)

is a martingale. Moreover, Doob’s optional stopping thevapplies foiM,. under
condition (1.5.12). Thus as before fiolves the Dirichlet problem (1.5.11), it must
hold that

TD671 1

[ =%

Tpe—1 s 1
"2 ﬂmg(xs>>v (1.5.14)

which implies that (1.5.13) must hold. Finally one showd thés solves the Equa-
tion (1.5.11) as in the proof of Theorem 1.197

O - EXMTD — Ex< U(XTDC) - f(X)

Note that the solution to the Dirichlet problem is uniqudegs the homogeneous
problem
(—Lf)(x)+k(x)f(x) =0, VxeD,

f(x) =0, VxeDS (1.5.15)

admits a non-zero solution. The most interesting case fis whenk = A is con-
stant. In that case, if (1.5.15) admits a non-zero solutioen A is called areigen-
valueand the corresponding solution aigenfunctiorof the Dirichlet problem.

Theorem 1.20 is a two way game: it allows to produce solutidrahalytic prob-
lems in terms of stochastic processes, and it allows to ctenipteresting proba-
bilistic problems analytically. As an example, assume Bfat AUB with ANB=0.
Seth = 1. Then, clearly, fox € D,

Exh(X7) = Px(Xr € A) = Px(Ta < Tg), (1.5.16)

and sadPy(Xr € A) can be represented as the solution of the boundary valuépnob
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(Lf)(x) =0, xeD, (1.5.17)
f(x) =1, xeA,
f(x) =0, xeB.

This is a generalisation of threin problem for the random walk.
Exercise. Derive the formula fofPyx(7a < 1g) directly from the Markov property
without using Lemma 1.11.

1.6 Feynman-Kac formulas

The formalism expained in the preceding section has a uegfehsion to the solu-
tion of time-dependent problems of the form

A f(xt) —Lf(xt)+kX) f(xt)
f(x,T)

g(x), xeStel0,T], (1.6.2)
Y(x), XeS§ (1.6.2)

whered; f(x,t) = f(x,t) — f(x,t — 1) denotes the discrete deriative with respect to
time.k, g,  are given functions, and is a fixed time.

To obtain a stochstic representation of the solution of &aglations, we proceed
by extending the telescopic expansions that yield markgsgt functionsf that
depend on botb andt. This alows to show that

t—1
= LLHT]-(XS) f%,8) - 10,0 (1.6.3)
t—-1 s 1
—|—;£LHT(XU) [k(Xs) f (Xs,8) — (LT)(Xs,8) + 05f (Xs,9)],

wheredsf (X,s) = f(X,s) — f(X,s— 1), is a martingale. Therefore, for< T,
E (Mt|%) = M. (1.6.4)

Now the left-hand side of (1.6.4) is equal to
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-1 1 _
I_L1+k Xs) <|_l 11k xs)‘r“(XT)lJt> — f(X0,0) (1.6.5)
t—1 s
+ZJ|'L1+k
T-1t-1

+z rLHk <r11+.< |7

1
1

1 T-1s
+|—L1+kxs <|_l1+kxs +Z|_l1+|< )

Thus we arrive at the representation of the solution of ..6.

<|_l1+k><s ) +T2ll|ill+k t>(x>- (1.6.6)

This representation is calledrReynman-Kac formulaln the case wheg = 0 and
k=0, it simplifies to

F(xt) = E(W(XT)|%0) (%) = Ex(Xr o). (1.6.7)

So far we have considered the case without boundary conditlerom the deriva-
tion above, it is, however, also easy to see how to deal withlpms of the form

o f(xt) —Lf(xt)+k(x)f(x,t) =g(x), xeD,te[0,T], (1.6.8)
f(xt) = @(x), xeD%te[0,T], (1.6.9)
f(x,T)=y(x), XeS

Namely, defining the optional tim& = T A Tpc, and noticing thaM; is always a
martingale, we obtain Thus we arrive at the representafitimecsolution of (1.6.1)

(rl 11k P +T21|El1+k )(x). (1.6.10)

1.7 Doob’sh-transform

Let us consider a Markov proces§,with generatoP — 1. We may want to consider
modifications of the process. One important type modificaisoto condition it to
reach some set in particular places (e.g. consider a randdkinva finite interval;
we may be interested to consider this walk conditioned origbethat it exits on a
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specific side of the interval; this may correspond to considsequence of games
conditioned on the player to win).

How and when can we do this, and what is the nature of the negyltocess?
In particular, is the resulting process again a Markov psecand if so, what is its
generator?

As an example, let us try to condition a Markov process to dibvimainB for the
first time in a subseA C B. We may assume th#ittg < . Defineh(x) = Px[1a =
1], if X ¢ B. LetP be the law ofX. Let us define a new measuf®,, on the space
of paths as follows: I¥ is a.#;-measurable random variable, then

= _E[h(X)Y|Z). (1.7.1)

Lemma 1.21.With the notation above, if Y is.&;,_1-measurable function,
ERY] = Ex[Y|Ta = T8]. (1.7.2)
Proof. This is an application of the strong Markov property. By diitom,

ED[Y] = hl)Ex[Yr(xer (17.3)

(x
1
1

0 ¢ [V (el 76] ()]

(
= WEX [YE []'ITA:TB |<7§ZTB*1]]

1
= —Ey Y1, =
]P)X[TA — TB] X [ TA*TB]

= EX[Y|TA = TB].
Here the first equality is just the definitionloind reproduces the form of the right-
hand side of the strong Markov property; the second equalitye strong Markov

property; the last equality uses that fact that the eYert= 15} depends only on
what happens afteis — 1, and s0 #,— 501 = Ugp—75. O

Let us now look at the transformed measBfen the general case. The first thing
to check is of course whether this defines in a consistent vipglzability measure.
Some thought shows that all that we need is the following lamm

Lemma 1.22.LetY beZ#s-measurable. Then, for anyts,

_ 1 1
| = ME[h(Xs)”fo] = hiXo)

In particular, P"[Q|.%] = 1.

EP[Y|.Z0 E[h(X)Y|.Zo]. (1.7.4)

Proof. Just introduce a conditional expectation:
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E[h(X)Y|Zo] = E[E[h(X)Y[Z]|#o] = E[YE[h(X)|Zs] | #o, (1.7.5)
and use thali(X;) is a martingale
= E[Yh(Xs)[-F0],
from which the result follows. O

This lemma shows in particular, why it is important thdte a harmonic function.
Now we turn to the question of whether the 1&is a Markov process. To this
end we turn to the martingale problem. We will show that trestists a generator,

LM, such that
t-1

M= (%) — f(Xo) - Z)(th)(XS) (1.7.6)
is a martingale under the la, i.e. that, fort > t’,
ENMM 7] = MP. (1.7.7)
Note first that, by definition
hinh( g1 — _ + _ hh
E" M7y ] = hm,)E[h(N)f(N)I«%] f(Xo) ;(L f)(Xs)
t—1 1
— Y ———Eh(Xs)L"f (Xs)|-Zv]. (1.7.8)
270 :

The middle terms are part &4 and we must considég|f (X )h(X)|-Zv]. This is
done by applying the martingale problem #and the functiorf h. This yields

t—-1

E[f(X)N0G)|F] = F(X)N0%) + 3 E[(L(T)(X) 7]
s=t/
Inserting this in (1.7.8) gives
t'—1
BIM| 7] = £0X) = F00) = 5 (L")(%)
1 = ar h ar
0 &, B0 5] - EROQL (017
=M
1 t—1
e &, EULMI06)1 7] ~BhOQL"f 01 7]

The second term will vanish if we choolstdefined through f (x) = h(x) " 1(L(h f))(x),
i.e.



16 1 Markov processes in discrete time

L (x) = %/ P(x, dy)h(y) f (y) — (). (1.7.9)

Hence we see that und&F, X solves the martingale problem corresponding to
the generatok”, and so is a Markov process with transition kefel= LM+ 1. The
proces underP" is called the (Doobl-transform of the original Markov process.
Exercise.As a simple example, consider a simple random walk{eiN, —N +
1,...,N}. Assume we want to condition this process on hittiny before —N.
Then let

h(X) = PX[TN = T{N}u{fN}] = PX[TN < T,N].

Computeh(x) and use this to compute the transition rates oftir@nsformed walk?
Plot the probabilities to jump down in the new process!



Chapter 2
Continuous time martingales

Martingales play a truly fundamental role in the theory afcsiastic processes in
discrete time, and in particular we have seen an intimateection between mar-
tingales and Markov processes. In this course we will sshjoengage in the study
of continuous time processes where this relation will plag@en more central role.
Therefore, we begin with the extension of martingale theoryre continuous time
setting. We will see that this will go quite smoothly, but wil Wave to worry about
a number of technical details. Most of the material in thigfer is from Rogers
and Williams [15].

2.1 Cadlag functions

In the example of Brownian motion we have seen that we couldtcact this con-
tinuous time process on the space of continuous functidms.setting is, however,
too restrictive for the general theory. It is quite impottém allow for stochastic
processes to have jumps, and thus live on spaces of disaonsrpaths. Our first
objective is to introduce a sufficiently rich space of suchcfions that will still be

manageable.

Definition 2.1. A function f : R, — R is called acadlag * function, iff

(i) for everyt > 0, f(t) = limg f(s), and
(ifor everyt > 0, f(t—) = limgy f(s) exists.

Recall that this definition should remind you of distributtifunctions. In fact, a
probability distribution function is a non-decreasing légdfunction.

It will be important to be able to extend functions specifiedcountable sets to
cadlag functions.

Definition 2.2. A functiony : Q, — R is calledregularisable iff

1 From “continue & droite, limites & gauche”.

17
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(i) for everyt > 0, limgy; y(q) exists finitely, and
(ifor everyt > 0,y(t—) = limq y(s) exists finitely.

Regularisability is linked to properties of upcrossinge Wéfine this important
concept for functions from the rationalsko

Definition 2.3.Let y : Q= — R, N € N and leta < b € R. Then the number
Un(Y, [a,b]) € NU {e} of upcrossings ofa,b] by y during the interval0,N] is
the supremum over all € N, such that there are rational numbgis; € Q, i <k
with the property that

O<gi<rp<--<og<rg<N

and
y(g) <a<b<y(ri), foralll<i<k

Theorem 2.4.Lety: Q; — R. Theny is regularisable if and only if, for all N N
anda< beR,
sup{ly(a)|: g€ QN[O,N]} < o, (2.1.1)

and
Un(y; [a,b]) < . (2.1.2)

Proof. Let us first show that the two conditions are sufficient. To dpassume
that limsug; y(q) > liminfq y(g). Then choosé > a such that limsup, y(q) >
b>a> liminfg y(q). Then, forN > t, y(q) must crosda, b] infinitely many times,
i.e.Un(Y; [a,b]) = 400, contradicting assumption (2.1.2). Thus the limitdipy(q)
exists, and by (2.1.1) it is finite. The same argument apfdiéise limit from below.

Next we show that the conditions are necessary. AssumedahadmeN y(q) is
unbounded 010, N]. Then for anyn there exists), such thaty(dn)| > n. The set
Un{an} must be infinite, since otherwisgwill be infinite on a finite set, contradict-
ing the assumption that it takes values®inHence this set has at least one accumu-
lation point,t. But then either lirg; y(q) or limg; y(q) must be infinite, hencg is
not regularisable.

Assume now than(y; [a,b]) = «. Definet = inf{r € Ry : U;(y;[a,b]) = o}.
Then there are infinitely many upcrossinggab] in any intervalt — €,t] or in the
interval[t,t + ], for anye > 0. In the first case, this implies that lim sypy(y) > b
and liminiy y(y) < a, which precludes the existence of that limit. In the second
case, the same argument precludes the existence of theifimgity(y).

One of the main points of Theorem 2.4 is that it can be used dw ghat the
property to be regularisable is measurable.

Corollary 2.5. Let{Yy,q € Q. } be a stochastic process defined @n, .#,P) and
let
G={we Q:q— Yy(w)is regularisable (2.1.3)

Then Ge .
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Proof. By Theorem 2.4, to check regularisability we have to takentable inter-
sections and unions of finite dimensional cylinder sets e all measurable.
Thus regularisability is a measurable property.

Next we observe that from a regularisable function we cadilgabtain a cadlag
function by taking limits from the right.

Theorem 2.6.Lety: Q. — R be a regularisable function. Define, for angtR

£(t) = limy(q). (2.1.4)
gt

Then f is cadlag .

The proofis obvious and left to the reader.

2.2 Filtrations, supermartingales, and cadlag processes

We begin with a probability spade2,¥,P). We define a continuous time filtration
“%,t € R, essentially as in the discrete time case.

Definition 2.7. Afiltration (¢4,t € Ry) of (Q,¥,P) is an increasing family of sub-
o-algebras4, such that, for < s<t,

%C%C%:a(U%)C%. (2.2.1)

reRy

We call(Q,9,P; (4,t € Ry)) afiltered space.

Definition 2.8. A stochastic proces$X;,t € R. }, is calledadaptedo the filtration
{%4,t € R}, if, for everyt, X is %-measurable.

Definition 2.9. A stochastic proces¥, on a filtered space is callechaartingale if
and only if the following hold:

(i) The procesX is adapted to the filtratioft4,t € R };
(iDForallt e Ry, E|X| < oo;
(iForall s<te R,
E(X|¥%) = Xs, a.s. (2.2.2)

Sub- and super-martingales are define in the same way, witin‘(2.2.2) replaced
by “2” resp. HSHI

We see that so far almost nothing changed with respect tasheete time setup.
Note in particular that if we take a monotone sequence oftptinthenY, = X, is
a discrete time martingale (sub, super) wheneyés a continuous time martingale
(sub, super).

The nextlemma s importantto connect martingale propettieadlag properties.
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Lemma 2.10.LetY be a supermartingale on afiltered spa&e ¢, P; (4,t € R,)).
Lette R} and letd—n), ne N, such that ¢—n) | t, as nf «. Then

lim Yy_
g(-myt 2"

exists a.s. and i??.

Proof. This is an application of the Lévy-Doob downward theorene (g4, Thm.
4.2.9).

Spaces of cadlag functions are the natural setting for agithprocesses. We
define this in a strict way.

Definition 2.11. A stochastic process is called a cadlag process, if all itspéa
paths are cadlag functions. cadlag processes that arer@upemartingales are
called cadlag (super,sub) martingales.

Remark 2.12Note that we do not just ask that almost all sample paths allaga

2.3 Doob’s regularity theorem
We will now show that the setting of cadlag functions is intfagitable for the
theory of martingales.

Theorem 2.13.Let (Y;,t € R;) be a supermartingale defined on a filtered space
(Q,9.P,(4,t € R.)). Define the set

G={we Q:the magd, > q— Yy(w) € Ris regularisablg. (2.3.1)
Then Ge 4 andP(G) = 1. The process X defined by

_ JlimgiYg(w), if weG,
X (w) = {O else (2.3.2)

3
is a cadlag process.

Proof. The proof makes use of our observations in Theorem 2.4. Tarerenly
countably many triple$N,a,b) with N € N, a < b € Q. Thus in view of Theorem
2.4, we must show that with probability one,

sup  |Yg| < oo, (2.3.3)
geQn[O,N]

and
Un([a,b];Y|g) < =, (2.3.4)
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whereY|g denotes the restriction dfto the rational numbers.

To do this, we will use discrete time approximation¥ot.etD(m) C QN [0, N]
be an increasing sequence of finite subset® abnverging toQ N [0,N] asm 1 co.
Then

P| sup |Yg>3c| =IlmP
qeQn[O,N] mteo

sup [Yq| > 3c (2.3.5)
geD(m)

< ¢ L (4E|Yo| + 3EWn]),

by Lemma 4.4.15 in [1]. Taking T o (2.3.3) follows. Note that we used the unifor-
mity of the maximum inequality in the number of steps!
Similarly, using the upcrossing estimate of Theorem 4.2[2], we get that

Elw|+a]

E [Un([a.b]: Y |o] = lim B [Ux (8.0 Y o)) < 0 < =512

(2.3.6)

uniformly in m, and so (2.3.4) also follows.
Now Theorem 2.4 implies the asserted result.

We may think that Theorem 2.13 solves all problems relatembidinuous time
martingales. Simply start with any supermartingale anad thass to the cadlag
regularization. However, a problem of measurability eziskhis can be seen in the
most trivial example of a process with a single jump. ;die defined for anw € Q
as

0 ift<1
Yi(w) =4 Ttss (2.3.7)
g(w), ift>1
wherelEq = 0. Let % be the natural filtration associated to this process. Glearl

fort <1,% ={0,Q}.Y; is a martingale with respect to this filtration. The cadlag
version of this process is

0, ift<1,
X (w) = {q(w), > 1, (2.3.8)

Now first, X is not adapted to the filtratioff, sinceX; is not measurable with
respect ta%;. This problem can also not be remedied by a simple modificatiio

sets of measure zero, sinep<; = Y1] < 1. In particularX; is not a martingale with
respect to the filtratios?, since

E[Xy,¢|91] = 0 # X

We see that the right-continuous regularizatiori¥oét the point of the jump an-
ticipates information from the future. If we want to develogr theory on cadlag
processes, we must take this into account and introducéerriittration that con-
tains this information.
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Definition 2.14.Let (Q,¥,P,(%4,t € R,)) be a filtered space. Define, for ahy

Ry,
Y%=%= () % (2.3.9)
s>t Qag>t
and let
N (%) ={G € % : P[G] € {0,1}}. (2.3.10)

Then thepartial augmentation(.74,t € R), of the filtration% is defined as
IR =0(% 4, N (D)) (2.3.11)

The following lemma, which is obvious from the constructidicadlag versions,
justifies this definition.

Lemma 2.15.If Y; is a supermartingale with respect to the filtratiéfy, and X
is its cadlag version defined in Theorem 2.13, themsXadapted to the partially
augmented filtration4.

The natural question is whether in this settiqgs a supermartingale. The next
theorem answers this question and is to be seen as the canpéfTheorem 2.13

Theorem 2.16.With the assumptions and notations of Lemma 2.15, the moges
is a supermartingale with respect to the filtratiog®§. Moreover, X is a modification
of Y ifand only if Y is right-continuous in the sense thatdeery te R,

imE|Y; — Y¢ = 0. (2.3.12)
slt

Proof. This is now pretty straight-forward. Fig > t, and take a decreasing se-
quences> q(n) € Q, of rational points converging to Then

EYs| %] < Yq(n)-
By the Lévy-Doob downward theorem (Theorem 4.2.9 in [1]),

= i < i = .
E[Yel%] = im E{Yeffn] < lmYa =%

Thus
E[Ys|o4] < X%.

Next takeu >t andq(n) | u. Then
E[Yq(n)|«7ﬁ] < X.
On the other hand, Lemma 2.10 and Theorem 243 — Xu in .#1, so

E[Xul 4] = m ElYon| 4] < X

HenceX is a supermartingale with respect.i.
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The last statement is obvious since

iMEY; — Y| = IME[Y; — X + X — Y| = E[Y; — X/
sit sit

With the partial augmentation we have found the properrsgfior martingale
theory. Henceforth we will work on filtered spaces that aready partially aug-
mented, that is our standard setting (calledubeal settingn [15]) is as as follows:

Definition 2.17.A filtered cadlag space is a quadrufl®@, # P, (4.t € R)),
where (Q, #,P) is a probability space and is a filtration of # that satisfies
the following properties:

(i) 7 isP-complete (contains sets of outBmeasure zero).
(ii) #o contains all sets dP-measure 0.
(iA = S, i.e. Z is right-continuous.

If (Q,49,P,(4,t € R.)) is afiltered space, then the the minimal enlargement of
this space(Q, # P, (%,t € R;)) that satisfies the conditions (i), (ii),(iii) is called
the right-continuous regularization of this space.

On these spaces everything is now nice.
The following lemma details how a right-continuous regiziation is achieved.

Lemma 2.18.1f (Q,¢,P,(4,t € R})) is filtered space, andQ, 7 ,P,(%,t €
R, )) its right-continuous regularization, then

(i) # is theP-completion of¥ (i.e. the smallestr-algebra containing and all
sets ofP-outer measure zero;
(inlf .4+ denotes the set of dl-null sets in%, then

T =()0(%u, N ) =0(%s, N); (2.3.13)

u>t
(iii) If F € .7, then there exists @ %, such that
FAGe .V, (2.3.14)
where FAG denotes the symmetric difference of the sets F and G.
Proof. Exercise.

Proposition 2.19.The process X constructed in Theorem 2.13 is a supermatéinga
with respect to the filtration#.

Proof. Since by (2.3.14%4 and.7#% differ only by sets of measure zef®(X;s|-%)
andE(Xs|#%) differ only on null sets and thus are versions of the sameitiondl
expectation.

We can now give a version of Doob’s regularity theorem forcgises defined
on cadlag spaces.
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Theorem 2.20.Let (Q, #,P,(%,t € R,)) be afiltered cadlag space. LetY be an
adapted supermartingale. Then Y has a cadlag modificatioif,ahd only if the
map t— EY; is right-continuous, in which case Z is a cadlag supermaydie.

Proof. SinceY is a supermartingale, for any> t, E(Y,)|%) < Y;, a.s.. Construct
the procesX as in Theorem 2.13 Then

E(%|7:) =E (lirﬁvu@) =lImE(Y%,|7) <%, as. (2.3.15)
u u

sinceY, | Y in 2. SinceX; is adapted ta7, this impliesX < Y, a.s..

If now E(Y;) is right-continuous, then ligy EY, = EY;, while from the £1-
convergence oY, to X, we getEX; = lim; EY, = EY;. HenceEX; = EY;, and so,
since already; <Y, a.s.. X =Y, a.s., i.e X is the cadlag modification of. If, on
the other handEY; fails to be right-continuous at some potnthen it follows that
Xt < 'Y; with positive probability, and so the cadlag procsss not a modification
of Y.

2.4 Stopping times

The notions around stopping times that we will introducénin section will be very
important in the sequel, in particular also in the theory airkbv processes. We
have to be quite a bit more careful now in the continuous tieténg, event though
we would like to have everything resemble the discrete tiattrg.

We consider a filtered spa¢®.¥ : P, (4.t € R.)).

Definition 2.21. A mapT : Q — [0, ] is called &%-stopping time if
{T<t}={weQ:T(w) <t} € %,Vt <co. (2.4.2)

If T is a stopping time, then thgre-T-g-algebra%r, is the set of al\ € ¢ such
that
AN{T <t} €%, Vt < oo. (2.4.2)

With this definition we have all the usual elementary praperof preT-o-
algebras:

Lemma 2.22.Let ST be stopping times. Then:
HIFS<T,thendsc %.

(ii)g'r/\s =% NYs.

(ii)f F € Ysy1,then FN{S< T} € % .

(V¥s/1 = 0(%1.9s).

Proof. Exercise.
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It will be useful to talk also about stopping time with respexrthe filtrations
Gy

Definition 2.23.AmapT : Q — [0, ] is called &%, -stopping time if
{T<t}={we Q:T(w) <t} e%,Vvt <oco. (2.4.3)

If T is a%. -stopping time, then thpre-T-o-algebrar ., is the set of alh € ¢4
such that
AN{T <t} e 4.Vt <. (2.4.4)

Lemma 2.24.Let S, be a sequence & -stopping times. Then:

() if Sh TS, then S is & stopping time;
(i)if Sp | S, then S is & -stopping time an@s; = Neny Y5+

Proof. Consider case (i). Sinc®, is increasing, the sequence of sE& <t} € %
is decreasing, and its limit is also #. In case (ii), since i, | S, {S< t} contains
all sets{S, < t}. On the other hand, for ang/> 0, there exist$iy < o, such that
{S<t—¢€} Cc {S <t} for all n > ng. Hence the evenfS <t} is contained in
Un{Sy <t}, and by the previous observatigig <t} = U, {Sh <t} € 4.

Definition 2.25. A processX,t € R, is called%-progressiveif, for everyt > 0,
the restriction of the mafs, w) — Xs(w) to [0,t] x Q is £([0,t] x %-measurable.

The notion of a progressive process is stronger than that aflapted process.
The importance of the notion of progressiveness arises therfact thafl -stopped
progressive processes are measurable with respect tefiective pref o-algebra.

The good news is that in the usual cadlag world we need notxvorr

Lemma 2.26.An adapted cadlag process with values in a metrisable sg&cé(S)),
is progressive.

Proof. The whole idea is to approximate the process by a piecewisstaot one,
to use that this is progressive, and then to pass to the Maido this, fixt and set,
for s<t, (we will always understan®(s) = Xs)

X"(s,w) =X ((k+1)2 ", w), ifk2 " <s<[k+12".

For n fixed, checking measurability of the mag involves the inspection of only
finitely many time points, i.e.

(XM 1(B) = {(w,5) € Q x [0,t] : X"(s,w) € B}
= {(w,s) € 2 x [0,t] : X"(k(5)2™ ", w) € B}
wherek(s) = max{k € N: k2"t < s}. The latter set is clearly measurable.

Finally, X" converges pointwise t& on[0,t], and soX shares the same measur-
ability properties.
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Exercise: Show why the right-continuity of paths is important. Can ynd an
example of an adapted process that is not progressive?

Lemma 2.27.If X is progressive with respect to the filtratisg and T is a¥%;-
stopping time, thenXis % measurable.

Proof. Fort > 0O let ﬁLE {ooA:T(oo) < ti Define% to be the subs-algebra of4%
such thatany sék € % isin Q. Letp : Q; — [0,t] x  be defined by

p(w) = (T(w), w).
Define further the map; : [0,t] x Qi — Sby

X (s, w) = Xs(w).

Note that the magX; is measurable with respect t#([0,t]) x % due to the pro-
gressiveness of. p is measurable with respect % by the definition of stopping
times and the obvious measurability of the identity map.déefso p as map from

f)t — Sis%- measurable. R
Then we can write, fow € Q, X7 (w) = X o p(w), and hence, for any Borel set
r
{weQ : Xr(w) eMN{T<t}={weQ: Xr(w)er}
= (Xop) A r)e%c9.

which proves the measurability & .

2.5 Entrance and hitting times

Already in the case of discrete time Markov processes we seep that the notion
of hitting times of certain sets provides particularly imfamt examples of stopping
times. We will here extend this discussion to the continugus case. It is quite
important to distinguish two notions of hitting and first emtce time. They differ
in the way the position of the process at time 0 is treated.

Definition 2.28.Let X be a stochastic process with values in a measurable space
(E,&). Letl" € &. We call

r(w) =inf{t >0: % (w) e} (25.1)
thefirst hitting timeof the set™ ; we call
Ar(w)=inf{t >0:X(w)el} (2.5.2)

thefirst entrance timef the set’ . In both cases we infimum is understood to yield
+oo if the process never entefrs
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Recall that in the discrete time case we have only worked withwhich is in
fact the more important notion.
We will now investigate cases when these times are stoppirest

Lemma 2.29.Consider the case when E is a metric space and let F be a cleted s
Let X be a continuous adapted process. TAers a %-stopping time andg is a
% -stopping time.

Proof. Let p denote the metric oE. Then the max — p(x,F) is continuous, and
hence the mapo — p(Xq(w),x) is ¢4, measurable, fog € Q.. Since the paths
X (w) are continuous)e (w) <t if and only if

inf w),F)t =0.
Lt {pCe(@).F))
and soAr is measurable w.r.t. For 1¢ the situation is slightly different at time
zero. Let us define, far> 0, AL = inf{t >r : X € F}. Obviously, from the previous
result,Di. is a%;-stopping time. On the other hanfltie > 0} if and only if there
existsd > 0, such that, for al) > r > 0, AL > &. But clearly, the event

As = Ngsr-0{4F > 0}
is ¥5-measurable, and so the event
{tr =0} = {1r > 0}° = N5-0A5
is %+-measurable and s@ is a%-stopping time.

To see where the difference in the two times comes from, denshe process
starting at the boundary &f. ThenAg = 0 can be deduced from just that knowledge.
On the other handi= may or may not be zero: it could be that the process leBves
and only returns after some timigor it may stay a little while irF, in which case
1= = 0; to distinguish the two cases, we must look a little bit itite future!

2.6 Optional stopping and optional sampling

We have seen the theory of discrete time Markov processemtndingale proper-
ties of processes stopped at stopping times are importanwat to recover such
results for cadlag processes.

In the sequel we will work on a filtered cadlag space .7 P, (%,t € R.)) on
which all processes will be defined and adapted.

Our aim is the followingoptional sampling theorem

Theorem 2.30.Let X be a cadlag submartingale and letSTbe%; - stopping times.
Then for each M< oo,
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E(X(T AM)|Zs) > X(SAT AM), a.s. (2.6.1)

If, in addition,

() T is finite a.s.,
(INEX(T)| < e, and
(iiDimue E (X(M)T7-m) =0,

then
E(X(T)|-%s) > X(SAT), a.s. (2.6.2)

Equality holds in the case of martingales.

Proof. In order to prove Theorem 2.30 we frst prove a result for stogppimes
taking finitely many values.

Lemma 2.31.Let ST be.%; stopping times that take only values in the{dgt. . . , tm},
0<t) < - <ty < oo If X is a.%-submartingale, then

E(X(T)|-%s) > X(SAT), a.s. (2.6.3)
Proof. We need to prove that for afye Zs,
E(1aX(T)) > E(IaX(T AS)). (2.6.4)

Now we can decompose= U" ;AN {S=t;}. Hence we just have to prove (2.6.4)
with A replaced byAn {S= t.} for anyi = 1,...m. Now, sinceA € .#s, we have
thatAN{S=t;} € F,. We will first show that

E(X(T)|%) > X(T At). (2.6.5)

To do this, note that

(X(T Atki1) |th) E(X tyi1) :“T>tk+X(T)]]T<tk|<%k) (2.6.6)
E (X(tier1)|-P) It + X(T) A1 <y,

X(tir1) Irsy +X(T) Ur <,

X(

tkAT),a.s

IN I

SinceS= SAtn, this gives (2.6.5) for= m— 1. Then we can iterate (2.6.6) to get
(2.6.5) for general.
Using (2.6.4), we can now deduce that

E (Man(s—3X(T)) = E (Iar(si ) EX(T)[A)) (2.6.7)
> E(UaX(T Ati))
— E(IaX(TAS)

as desired. This concludes the proof of the lemma.
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We now continue the proof of the theorem through approxiomasirguments.
LetS = (k+1)2 " if Se k2" (k+1)2™"), andT(™ = oo, if T = o; defineT "
in the same way. Fixr € R andM > 0. Then the preceeding lemma implies that

E (X(T(”) AM)V a|32gn>) >X(TWASY AM)Va, as. (2.6.8)
Since#s C Fqn), it follows that
E (X(T<“> AM)V a|ys) >E (X(T<”> ASM AM)V a|ys) ,as.  (2.6.9)
Again from using Lemma 2.31, we get that
a <X(TWAM)va <E(X(M)Va|Frn),as,

and thereforeX(T(™ A M) v a is uniformly integrable. SimilarlyX (T A S A
M)V a is uniformly integrable. Therefore we can pass to the limteo in (2.6.9)
and obtain, using thaf is right-continuous,

E(X(TAM)ValZs) >EX(TASAM)Va|Zs), as. (2.6.10)

Since this relation holds for alr, we may leta | — to get (2.6.1). Using the
additional assumptions oh; we can pass to the limil 1 « and get (2.6.2) in this
case: First, the a.s. finitenessTofmplies that

IUIT X(TASAM)=X(TAS),a.s,

Do deal with the left-hand side, write
E(X(T AM)[.Fs) = E(X(T)|Fs)
+ E(X(M)I1>m|Fs) —E(X(T)Ir>m|Fs)
The first term in the second line converges to zero by Assumytiii), since
[E(X(M)Ar>m|Fs)| < E(X(M)[Tr>m|Fs)

and
EE ([X(M)[I7>m|-Fs) = E(IX(M)[2r>m) L O.

The mean of the absolute value of the second term is bounded by
E(IX(T)[Zr>m)

which tends to zero by dominated convergence due to Assomfipand (ii).
A special case of the preceeding theorem implies the foligwbrollary:

Corollary 2.32. Let X be a cadlag (super, sub )martingale, and let T be a stappi
time. Then X = X7, is a (super, sub) martingale.
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In the case of uniformly integrable supermartingales wégetb’s optional sam-
pling theorem:

Theorem 2.33.Let X be a uniformly integrable or a non-negative cadlag sopatingale.
Let Sand T be stopping times with<ST'. Then % € .#* and

E (Xe|-77) < X7, 5. (2.6.11)

and
E(XT|ys)) < Xs, a.s, (2.6.12)

with equality in the uniformly integrable martingale case.
Proof. The proof is along the same lines of approximation with ditersuper-

martingales as in the preceding theorem and uses the analogsults in discrete
time (see [15], Thms (59.1,59.5)).



Chapter 3
Markov processes in continuous time

In this chapter we develop the theory of Markov processesitticuous time with
general state space. We would expect that much that is trdisénete time carries
over, but on the technical level, we will encounter many i@l problems that
were absent in the discrete time setting. The need for stgdyontinuous time pro-
cesses is motivated in part from the fact that they arise araldimits of discrete
time processes. You have already seen this in the case ofBaovinotion, and the
same holds for certain classes of Lévy processes. We will sde that they lend
themselves in may respects to simpler, or more elegant ctatipus and are there-
fore used in many areas of applications, e.g. mathematizaidee. In the remainder
of this sectionSdenotes at least a Lousin space, and in fact you may asSume
be Polish. In this section we will restrict our attentiortitne-homogeneoudarkov
process. Markov processes in continuous time are definegmasly to those in
discrete time. The following definition is provisional.

Definition 3.1. A stochastic procesX with state spacé& and index selR, is a
continuous time Markov process with stationary transikemelR if, for all A€ 4,
teN,

P(Xi4s € Al%t) (w) = Ps(X (w),A),P—a.s. (3.0.1)

Here{R }icn, denotes ther-algebra generated by the random variablgs. . , X.

The specific requirements on transition kernels will be uksed in detail below.

Notation: In this sectiorSwill usually denote a metric space. ThB(S R) = B(S)

will be the space of real valued, bounded, measurable fametnS, C(S,R) =C(9)

will be the space of continuous functiort®,(S,R) = C,(S) the space of bounded
continuous functions, ar@y(S,R) = Cy(S) the space of bounded continuous func-
tions that vanish at infinity. Clearlgo(S) C Cy(S) € C(S) C B(S).

31
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3.1 Markov jump processes

The simplest class of Markov processes with continuous tierebe constructed
“explicitly” from Markov processes with discrete time. Thare called Markov
jump processes. The idea is simple: take a discrete time dgpkocess, sayy,
and make it into a continuous time process by randomizingvdiéng times be-
tween each move in such a way as to make the resulting procasoian.

Let us be more precise. L&, Y, € S, n € N, be some discrete time Markov
process with transition kern® and initial distributionu. Letm(x) : S— R be a
uniformly bounded, measurable function. To avoid compiices, we will assume
that 0< infyesm(x) < sup,.sm(X) < . Letg, i € N, be a family of independent
exponential random variables with mean 1, defined on the gaotmbility space
(Q,.7,P) asY,, and letY, and thee, be mutually independent. Then define the
process

n-1
S(n) = Zoe,m(Yi). (3.1.1)

S(n) is called aclock processlt is supposed to represent the time at whichrita
jump is to take place. We define the inverse function

S 1(t) =sup{n: S(n) <t}. (3.1.2)
Then set
X(t) = Yo 1. (3.1.3)

Theorem 3.2.The process ¥) defined through (3.1.3) is a continuous time Markov
process with cadlag paths.

Proof. We can express what we would expect to play the role of a tiansiernel
as follows:

R(XA) =Px(X €A) = i]P’x(Yn € ASn) <t<Sn+1)). (3.1.4)

This is just saying that the eveMd € A can be realized by the process making
exactlyn jumps before time and the jump-chailY being inA at discrete timen.
Now let us consider

Py (Xi1s € A7) (3.1.5)

Itis clear that% contains the information on what is and on when the last (say
thek-th) jump before occurred, say at time— r. Since that timeYy = X;. SinceY

is Markov, the even{X..s € A} can only depend on this information, and is in fact
given by

Py (Xi1s € ALAR) = iJ]P’Xt (YaeAS(n) <t4+r+s<Sn+1)|51)>r). (3.1.6)

But due to the fact that the random variablds exponentially distributed,
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P(eim(X) —r > aleim(X) —r > 0) = P(exm(X) > a), (3.1.7)
so that

Px, (Ya€ A,S(n) <t+r+s<S(n+1)|S(1) >r) (3.1.8)
=Px (\hne A Sn) <t+s<Sn+1))

so that indeed the conditional probability depends onlyXgrproving thatX is a
Markov process. The fact th&thas cadlag paths is obvious from the construction.
O

It is clear from the construction that the transition prabgbkernel P and the
function m determine the transition kerndfs completely. We will now make this
connection more explicit. kernel. First we observe that

i R(¢A) = Tea. (3.1.9)

This follows simply from the fact that

Py(Ya€ASN) <t<S(N+1) <P[S <t <P [n{iq gt] (3.1.10)

(t/rﬁ)keft/n?’

M s

k=n k
wherem= inf,esm(x). Similarly we see that
Hg t (Px (X € A) — Tyen)
= limt 1 (Igea(P(M(x)er > t) — 1) + Py (Y1 € A, S(1) <))

t}0
= (P(x,A) — Tlyca) Ig$t*1P(m(x)q <t)

= (P(x,A) — Iyen) m} t 11— e t/MX)y = %L(x, A). (3.1.11)

We will denote the right-hand side of (3.1.11) Byand call it thegeneratorof the
Markov jump proces¥. By the Markov property, it follows that we get a more
general result:

Lemma 3.3.For any t> 0,

d

i A = (RG)(x A) = (GR)(xA). (3.1.12)
Proof. Using the Markov property we get tiighapman-Kolmogorov equatipn

Px(in €A) = Bu(Bu (Xon € ALF) = [RXAR(XAY.  (3.113)
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This implies that

A (Peon(GA) —ROA) = [ Imh~H (. A) = Jye) R(xdY)  (3.1.14)
= [ CARAMYPA) = (RG)(XA).
Alternatively, we can write

im 02 (Pea(x,A) — R(x /Ilmh LR (Y, A) (Ph(x,dy) — Tey§3.1.15)

—/RM G(x dy) = (GR)(x A).
This proves the lemma.O

We can view Eq. (3.1.12) as a differential equationmor

%H(x,A) = GR(x,A), (3.1.16)
which has the solution .
et
R =exptG) = nZoHG ; (3.1.17)

whereG" is defined as tha-fold application ofG from the right. This can be made
rigorous if we think ofP as an operator acting on bounded measurable funct®ns.
is a bounded operator on this space,

1
Gflle = su /—P . dy) F(y)| < 1o, 3.1.18
6]l —supl [ —=Pixay(s)] <11 (31.18)
SO
LI < 112/mfe < oo, (3.1.19)

where the last inequality holds by assumption. Then thesgi}_, %G” is abso-
lutely convergent in norm and defines a bounded operato(t®xpThis operator
solves the differential equation, which has a unique sofuvith initial condition
Po=1.

So for Markov jump processes we have a nice picture: the psoiseuniquely
determined by the initial condition and a single operdoithe generatorof the
process. The transition kernel is given by &3).

The bad news is that this construction relied on the bouneleslof the operator
G, which in turn relied on the fact that the jump rateswhere uniformly bounded.
Many Markov processes do not fall into this class: Browniastion, Lévy jump
processes with infinite Lévy measure, etc.. In the next@estive will investigate
what can be salvaged from this nice picture in the general.cas
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3.2 Semi-groups, resolvents, generators

The main building block for a time homogeneous Markov predeshe so called
transition kernelP: R, x Sx # — [0, 1].

3.2.1 Transition functions and semi-groups

We now give the precise definition of continuous time Markovgesses. In the se-
quel we will always assume that we are dealing with stocb@sticesses on cadlag
spaces that satisfy thesual assumptionee Definition 2.17. In particular, all fil-
trations are assumed to be right-continuous.

Definition 3.4. A Markov transition functionR is a family of kernelsR : S x
%(S) — [0,1] with the following properties:

(i) For eacht > 0 andx € S, R(x,-) is a measure ofS, %) with P;(x,S) < 1.
(iFor eachA € #, andt € R, R(+,A) is a#-measurable function o8
(iiifFor anyt,s > 0,

Post (% A)) = [ ROLAIR(xdy). (3.2.1)

We can now make the definition of continuous time Markov psses more pre-
cise.

Definition 3.5. A stochastic procesX with state spaceS and index sefR is a
continuous time homogeneous Markov process with &won a filtered space
(Q,.7,P,(%,t € Ry)) with transition functionR, if it is adapted ta% and, for
all boundedz-measurable functionf t,s€ R,

E[f (X5l 75 (@) = (RT) (X6(0)). ass. (32.2)

It will be very convenient to think of the transition kernels bounded linear
operators on the space of bounded measurable functio8sBi, R ), acting as

(RH)(x) E/SH(x,dy)f(y). (3.2.3)
The Chapman-Kolmogorov equations (iii) then take the sarfpfmPsR = B .

R can then be seen assami-groupof bounded linear operators. Note that we also
have the dual action d& on the space of probability measures via

(LR)(A) = /S H(AXR (X A). (3.2.4)

Of course we then have the duality relation

(WR)() = [H(@)(R1K) = H(R).
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for f € B(SR).

Remark 3.6The conditiongP;(x,S) < 1 may look surprising, since you would ex-
pectPy(x,S) = 1; the latter is in fact the standard case, and is sometiniesian
“honest” transition function. However, one will want to deéth the case when
probability is lost, i.e. when the process can “die”. In fabere are several scenar-
ios where this is useful. First, if our state space is not cachpwve may want to
allow for our processes texplode resp. go to infinityin finite time Such phenom-
ena happen in deterministic dynamical systems, and it wbeltbo restrictive to
to exclude this option for Markov chains, which we think ofstischastic dynam-
ical systemsAnother situation concerns open state spaces with boiasdahere
we want to stop the process upon arrival at the boundaryllfimee might want to
consider processes thdie with certain rates out of pure spite.

In all these situations, it is useful to consider a compaseitifon of the state space
by adjoining a so-calledoffin state usually denoted by. This state will always
be considered absorbing. A dishonest transition functi@m tbecomes honest if
considered extended to the sp&ted. These extensions will sometimes be called
P?. To be precise, we will set

() P2 (x,A) = R(x,A), forx € S Ac %(S),
(iR?(0,9) =1,
(iiP? (x,0) = L — R(x,9).

We will usually not distinguish the semi-group and its hdmasension when talking
about¥’-valued processes.

It is not hard to see, by somewhat tedious writing, that thaedition functions
(and an initial distribution) allow to express finite dimarsl marginals of the law
of the Markov process. This also allows to construct a pr@ossthe level of the
Daniell-Kolmogorov theorem. The really interesting qiss in continuous time,
however, require path properties. Given a semi-group, caicanstruct a Markov
process with cadlag paths? Does the strong Markov propelti?iwWe will see that
this will involve analytic regularity properties of the segroups.

Another issue is that semi-groups are somewhat compliGiddn almost no
cases (except some Gaussian processes, like Brownianmhotio they be written
down explicitly. In the case of discrete time we have seenrdite played by the
generator (respectively one-step transition probagd)jtiThe corresponding object,
the infinitesimal generator of the semi-group, will be sesiplay an even more
important r6le here. In fact, our goal in this section is towtow and when we
can characterize and construct a Markov process by spegifygenerator. This is
fundamental for applications, since we are more likely toabk to describe the
law of the instantaneous change of the state of the system,ith behavior at all
times. This is very similar to the theory of differential eqons: there, too, the
modeling input is the prescription of the instantaneousgkaf state, described by
specifying some derivatives, and the task of the theory otapute the evolution
at later times.
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Eq. (3.2.1) allows us to think of Markov kernels as operatorthe Banach space
of bounded measurable functions.

Definition 3.7. A family, R of bounded linear operators @{S R) is calledsub-
Markov semi-group if forall t > 0,

() R:B(SR) = B(SR);

(i)if0 < f<1,thenO<Rf <1;
(iiijor all s> 0,R,s=RP;;

(iv)f f,4 0, thenR f, ] 0.

A sub-Markov semigroup is calledormalif Py = 1. It is calledhonest if, for all
t>0,R1=1.

Exercise.Verify that the transition functions of Brownian motion (E§.18) in [1])
define a honest normal semi-group.

In the sequel we assume thtis measurablén the sense that the mapt) —
R(x,A), foranyA e A, is B(S) x B(R,)-measurable.

Let us now assume thBtis a family of Markov transition kernels. Then we may
define, forA > 0, theresolvent R, by

RNK= [ eMRHMd= [Rix i) (3.2.5)
where theesolvent kernelR, (x,dy), is defined as

Ry (X A) = /O “e MR(x At (3.2.6)

The following properties of aub-Markovian resolverdre easily established:

(i) ForallA > 0, R, is a bounded operator froB(S,R) to B(S,R);
(i)if 0 < f <1thenO< Ry f <AL
(iijor A,u >0,
Ry —Ru=(H—A)R\Ry; (3.2.7)

(V)f fn 10, thenR, fn L 0.

Moreover, ifR is honest, theR,1 = A1, forall A > 0.
Eq. (3.2.7) is called theesolvent identity To prove it, use the identity

. e*)\U _ @ Hu

- —ut _
/e e M f(s+t)dsdt / P

f(u)du.

Our immediate aim will be to construct the generator of thaisgroup. To mo-
tivate the following, let us look at this in the case of jumpgesses, i.e. when the
generator is a bounded operator. In this case we search aatop® such that
R = exptG). Then, formally, we see that

" 00 1
R, = MGl = 3.2.8
A /o e A-G (32.8)
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This should make sense, becaeSkis bounded (by one), so that the integral con-
verges at infinity for any\ > 0.
Finally, we can recoveB from R, : set

G

formally, at leastG, — G, if A 1 co.

While the above discussion makes sense only for boukl&ee can define, for
A >0, exfdtG, ), sinceG, is bounded, and we will see that (under certain circum-
stances, expG, ) — R, asA 7 co.

3.2.2 Strongly continuous contraction semi-groups

These manipulations become rigorous in the context of $edtstrongly continuous
contraction semi-group$SCCSG) and constitute the famous Hille-Yosida theorem.

Definition 3.8. Let By be a Banach space. A family,: By — Bg, of bounded linear
operators is called atrongly continuous contraction semigroifpthe following
conditions are verified:

(i) forall f € B, limg||Rf— f||=0:
(i ||R] <1, forallt >0;
(iRPs= R, forallt,s> 0.

Here|| - || denotes the operator norm corresponding to the noriBgon

Lemma 3.9.1f P, is a strongly continuous contraction semigroup, then, foy & €
Bo, the map t— R f is continuous.

Proof. Lett > s> 0. We need to show thd® f — Psf tends to zero in norm as
t—s] 0. But

IRf—Psf[| = [[R(R-sf — )| < [|R-sf — f],
which tends to zero by property (i). Note that we needed afleéldefining proper-
tiesl. O

Note that continuity allows to define the resolvent throudlinait of) Riemann
integrals,
T
R leim/ e MR,
b =Im R

The inherited properties of such &) motivate theDefinitionof a strongly con-
tinuous contraction resolvent (SCCR).

Definition 3.10. Let B be a Banach space, andiRgt, A > 0, be a family of bounded
linear operators oB. ThenR, is called acontraction resolvenif
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() ARy <1, forallA > 0;
(inthe resolvent identify (3.2.7) holds.

A contraction resolvent is callestrongly continuoudf in addition
(iii)im j4e [[ARy f — || = O.

Exercise.Verify that the resolvent of a strongly continuous conti@csemi-group
is a strongly continuous contraction resolvent.

Lemma 3.11.Let R, be a contraction resolvent orpBThen the the range of)Rs
independent of, and the closure of its range coincides with the space oftions,
h, such thalh Ryh — h, asA 1 c.

Proof. Both observations follow from the resolventidentity. ked > 0, thenR, =
Ry (1+ (A — 4)Ry. Thus, ifgis in the range oRy, then itis also in the range & :
if g=Ryf, theng= Ry h, whereh= (1+ (A — u)Ry) f! Denote the common range
of theR, by Z.

Moreover, ith € %, thenh = R, g, and so

= Rug—

(ARy—~Dh= (AR, ~DRug = 3 F Rug— 7

g

SinceAR, is bounded, it follows that the right-hand side tends to zasa\ 1 .
Also, if his in the closure of#Z, the there exish, € #, such thah, — h; then

[ARvh—h[| < [[ARyhn — | + [[hn — h[[ + [ AR (f — fn)]],

and sincel R, is a contraction, the right hand side can be made as smallsagede
by lettingn andA tend to infinity. Finally, itis clear that ifi = lim , 1., ARy h, thenh
must be in the closure of. O

As a consequence, the restriction of a contraction resbleethe closure of
its range is strongly continuous. Moreover, for a strongiptciuous contraction
resolvent, the closure of its range is equaBtp and so the range @&, is dense in
Bo.

We now come to the definition of an infinitesimal generator.

Definition 3.12. Let By be a Banach space and Rtt € R, be a strongly contin-
uous contraction semigroup. We say thais in the domain ofG, 2(G), if there
exists a functiomg € By, such that

. 1 o
im [t RE~1)—g| =0 (3.2.9)

For suchf we setGf = gif gis the function that satisfies (3.2.9).

Remark 3.13Note that we define the domain Gf at the same time &S. In gen-
eral,G will be an unbounded (e.g. a differential) operator whosmaio is strictly
smaller tharBy. Some authors (e.g. [6]) describe the generator of a Markoegss
as a collections of the pairs of functiof g) satisfying (3.2.9).
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The crucial fact is that the resolvent is related to the getoeiin the way antici-
pated in (3.2.8).

Lemma 3.14.Let R be a strongly continuous contraction semigroup qn Bhen
the operators R and (A — G) are inverses.

Proof. Let g € By and letf = R, g. We want to show first thatA — G)f =g, i.e.
that if f is in the range of#), then it is in the domain o andGf = A f + g. But

Af—tYRf—f)=t"1(f(14+At) —RT)
Ast | 0, we may replacél + At) by €' and write
. 1 ) i ty—1 _ At
'![3’\ f—tY(Rf—f) m}@ t1(Ryg—eRR,g)
Now ° °
e M'RR\g= /0 e ("R, gds= /t e *Pygds
and so .
t"1(Ryg—eRR,g) :t*l/ e SPgds
JO
By continuity ofR, the latter expression convergegtast | 0, so we have shown
that(A — G)R,g=g, and thaR, g € 2(G).

Next we takef € 2(G). Thene *(R..f —Rf) = R(e " }(P:f — f) — RGT.
Thus,

d

Integrating this relation gives that
t
Hf—f:/ PGfds
0

Multiplying with et and integrating gives
Ry f —A1f =A"IR,Gf,

which shows that foff € 2(G), Ry (A —G)f = f, and in particularf € Z. Thus
2(G) = Z. This concludes the proof of the lemmatd

3.2.3 The Hille-Yosida theorem

We now prove the fundamental theorem of Hille and Yosida #flatvs us to con-
struct a semi-group from the resolvent.
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Theorem 3.15.Let R, be a strongly continuous contraction resolvent on a Banach
space B. Then there exists aniquestrongly continuous contraction semi-group,
R, t € R, on B, such that, for alh > 0and all f € By,

/ e MRfdt=R, f. (3.2.10)
0
Moreover, if

Gy =AAR,—1) (3.2.11)
and

R =exp(tG,), (3.2.12)
then

Rf :Mn Raf. (3.2.13)

Proof. When proving the Hille-Yosida theorem we must take caremassume the
existence of a semi-group. So we want to rely essentialljhemésolvent identity.

We have seen before that the rangg,of R, is independent ok and dense in
By, due to the assumption of strong continuity. Now we want msthatR, is a
bijection. Note that we cannot use Lemma 3.14 here becautepnove we used
the existence oR. Namely, leth € By such thatR,h = 0. Then,by the resolvent
identity,

Ruh= (1~ (A — p)Ry)Ryh =0,

for everyu. But by strong continuity, limy. 4R, h = h, so we must have that= 0.
Therefore, there exists an inverﬁg,l, of R, with domain equal t&Z, such that

for allh € By, R, 'Ryh = h, and forg € %, R\ R, 'g = g. Moreover, by the resolvent
identity,
RA\R, = (Ru+ (H=2)R\R)R =14 (01— A)Ry.

Thus
RE—(u—2) =R (3.2.14)

which we may rewrite as
Ri'-A=R'—u=-G (3.2.15)

in other words, there exists an operaBwith domainZ(G) = %, such that, for all

A!
S R (3.2.16)
A — G — )\ . L
We now show the following lemma:

Lemma 3.16.Let G, be defined in (3.2.11). Then& 2(G) if and only if
lIimG, f =
Al?cl A g

exists. Then GE£ g.
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Proof. Letfirst f € 2(G). Then
Gif =A(AR, —1)f =AR,(A —R;)f = AR\ GH,

and by strong continuity, lijv, ARy Gf = Gf, as claimed.
Assume now that liny., G, f = g. The by the resolvent identity,

HRy—ARY\ . Au A
py— f Ruf

CA—u A—
As A T o, the right-hand side clearly tendspid, f — f, while the left hand side, by
assumption, tends 9. Hence,

f=puRyf —Rug=Ry(uf—g).

R“GAf_)\< /\R}\f

Thereforef € #, and
Gf = (u—RHRu(uf —g) = puf —R'Ry(uf —g) = puf —uf+g=g.
O

We now continue the proof of the theorem. Note tBatis bounded, and so by
the standard properties of the exponential map, we havetloeving three facts:

() RAPsa =Rsa-
(ii)limwotil(Pt’A — 1) = G)\ .

(i ) —1= JoPs2Gyds
Moreover, sincgl AR, || < 1, from the definition oR, it follows that

IRl < e MterMfil <1,
Now the resolvent identity implies that the operatBjsand R, commute for all
A,u >0, and so all derived operators commute. Thus we have thectglee expan-
sion

Ba—Ru= Pt}\POLl_PO)\Hu (3.2.17)

z (Ret/nr Pin—igt /s — P 1yt/na Pin—ks1yt/n )

k lt/n)\Pn K)t/n,u (Pt/n)\ _Pt/nu)

HM:\

By the bound orj|R, , ||, it follows that for anyf < By,

RAf=Rufll <nl[Rnrf—Rmufll
=n||(Rna—1)f = (Rmu—1)f|.
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Passing to the limib 1 e, and using (ii), we conclude that
IR T —Rufll <tIGAT — Gy, (3.2.18)

This implies the existence of lim, P ) f =R f whenever lim 1., G, f exists, hence

by Lemma 3.16 for allf € 2(G). Moreover, the convergence is uniformtiron

compact sets, so the map~ R f is continuous. Sinc&(G) = Z is dense irBy,

andF, » are uniformly bounded in norm, these results in fact exténa@d functions

f € Bo. The familyR inherits all properties of a SCCSG from the propertieB pf
It remains to show that (3.2.10) holds. To do so, note that

00 00 1
At _ tA-Gp) £ r
e fdt_/ et -G gt — f
/0 HaIJ 0 A _GIJ

As u tends to infinity, the left-hand side Convergesfgf)e*)‘tl%f, and, using the
resolvent identity, the right hand side is shown to ten&jtd. Namely,
1 1 o U2Ry
A=Gy A+u—p?Ry  A+p (A+H)A+p—p?Ry)

(3.2.19)

The first term converges to zero. For the second, we write

2 2
HRy u Ry
- . 3.2.20
A+WA+H-pRY)  A+w)?1_ KR ( )

Fory > 0, to be choose later, we continue

R R,R
u“z = ZZ 4 (3.2.21)
1- R Ry— o RuRy
RuRy
u?2 Ry—R
Ry—3ti iy

u? u? R
Ry (1~ oty ) + Ay
2 .
Now choosey such thatm =1, thatisy=Apu/(A + u). We get

1 1 u?
p— R-
A Gp Arp ArmEY

(3.2.22)

As i T oo, y— A, and henc®, — Ry, and so the claim follows. This concludes the
prove of the theorem. O

The Hille-Yosida theorem clarifies how a strongly contins@ontraction semi-
group can be recovered from a resolvent. To summarize whestamd, the theorem
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asserts that if we have a strongly continuous contractisolvent family,R,, then
there exists a unique operat@; such thaR, = (A — G)~%, and a strongly contin-
uous contraction semigroup, such thai, is its resolvent. Then the operatGr
will in fact have to be the generator Bf, from what we already know.

One might rightly ask if we castart from a generator: of course, the answer is
yes: if we have linear operatdg, with Z(G) C By, this will generate a strongly
continuous contraction semi-group, if the operators- G)~! exist for allA > 0
and form a strongly continuous contraction resolvent fgmil

One may not be quite happy with this answer, which leaves #oloerify. It
would seem nicer to have a characterization of when thisuis itr terms of direct
properties of the operat@.

In the next theorem (sometimes also called the Hille-Yosidmrem, see [6]),
formulates such conditions.

Theorem 3.17.A linear operator, G, on a Banach space, s the generator of a
strongly continuous contraction semi-group, if and onlh# following hold:

(i) The domain of GZ(G), is dense in B
(G is dissipativei.e. forallA > 0and all f € 2(G),

[(A=G)f[| = A[[f]. (3.2.23)

(iiifhere exists a > 0 such thatrange(A — G) = By.

Proof. By theorem 3.15, we just have to show that the farfly- G) 1 is a strongly
continuous contraction resolvent, if and only if (i)—(ifipld. In fact, we have seen
that properties (i)—(iii) are satisfied by the generatopeisged to a strongly con-
tinuous contraction resolvent: (i) was shown at the begigf the proof of Thm.
3.15, (i) is a consequence of the bouyR, || < 1: Note that

AR [ARY(A —G)g| Allgl
1> sup > sup — A = SUP .
tego 1Tl “geze 1A=0G)dl g (A -Gy

Finally, since for any functiori € By,
A=G)Ryf =1,

any suchf is in the range ofA — G).

It remains to show that these conditions are sufficient,that under them, if
Ry = (A — G)lis a strongly continuous contraction resolvent.

We need to recall a few notions from operator theory.

Definition 3.18. A linear operator(, on a Banach spacBy, is calledclosed if and
only if its graph, the set

r(G)={(f,Gf): f € 2(G)} CByx By (3.2.24)

is closed in the product topology. Equivalentyijs closed if for any sequendg €
2(G) such thatf, — f andGf, — g, f € 2(G) andg = Gf.
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Lemma 3.19.If G is the generator of a strongly continuous contractiomsgroup
on a Banach spacegBthen G is closed.

Proof. The proof relies on the fact that for arfiy e 2(G),
t
R fo— fn :/ PGfds (3.2.25)
0

Now take a sequendg € 2(G) such thatf, converges td € By, such thaGf, —
g € By. SinceR is bounded, it follows that

t
Hf—f:/ Pgds (3.2.26)
JO
By the continuity ofR},
|tifowt*1(af —f)=g, (3.2.27)

sof € 2(G) andGf =g. ThusGis closed. O

Definition 3.20.1f Gis a closed operator dBy, then a numbek € C is an element
of theresolvent seto(G), of G, if and only if

(i) (A —G) is one-to-one;
(il range(A — G) = By,
(ii)Ry = (A — G)~Lis a bounded linear operator &.

It comes as no surprise that whenexep € p(G), then the resolvent], , R,
satisfy the resolvent identityEkercise: Prove this!).

Another important fact is that if for some € C, A € p(G), then there exists a
neighborhood oA that is contained ip(G). Namely, if|A — u| < 1/||R, ||, then the
series

[

R, = ZO(/\ — p)"RyH

n=
converges and defines a bounded operator. Moreovey,da? (G), a simple com-
putation shows that R
Ru(H—G)g=g,
and for anyf € By, R
(ML—G)R,f =f.

Henceﬁu = (u—G)7L, range(u — G) = By, and sou € p(G). Thus,p(G) is an
open set.
We will first show that (i) and (ii) imply tha is closed.

Lemma 3.21.Let G be a dissipative operator and I&t> 0 be fixed. Then G is
closed if and only ifange(A — G) is closed.
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Proof. Let us first show that the range 64 — G) is closed ifG is closed. Take
fn € 2(G) and assume thaf — G) f, — h. SinceG is dissipative||(A — G)(f, —
fark)ll > Allfn— frikll, SO fn is @ Cauchy sequence. Therefore, the sequénbas
a limit, f € Bg. But then

Gfh=(G=A)fa+tAfn—Af—h,

soGf, converges, and sind@ is closed, it holds that € 2(G) andGf =Af —h,
i.e.(A —G)f =h, sothah € range(A — G). But this means that any sequence in the
range ofA — G that converges has its limit mnge(A — G), so this range is closed.
On the other hand, ifange(A — G) is closed, then take son#(G) > f, — f
andGf, — g. Then(A —G)f, = A f —gin the range of A — G). Thus there exists
fo € 2(G), such that
A-=CQ)fo=Af—0g.

But sinceG is dissipative, if A — G) f, — (A — G) fo, thenf, — fo, sofo = f. Hence
(A—=G)f =Af—g,orGf =g. Hencef is in the domain ang in the range of,
soGis closed. O

It follows that if the range of A — G) is closed for som@ > 0, then it is closed
forallA > 0.

The next lemma establishes that the resolvent set of a cthssigative operator
containg(0, «), if some point in(0, e) is in the resolvent set.

Lemma 3.22.If G is a closed dissipative operator ompBthen the sep™(G) =
p(G)N(0,) is either empty or equal t, «).

Proof. We will show thatp™(G) is open and closed i(0,). First, sincep(G)
is open, its intersection witli0, ) is relatively open. Let now, € p™(G) and
An — A € (0,%). For anyg € By, and anyn we can defing, = (A — G)R) 9. Then

lgn—gll = [[(A =G)Ry,g— (A —G)Ry, gll = [[(A = An)Ry, 9|
<A tA =)l

which tends to zero as 1 . Note that the inequality used the dissipativity@f
Therefore, the range dA — G) is dense irBp; but from the preceding lemma we
know that the range afA — G) is closed. Henceange(A — G) = Byp. But sinceG
is dissipative, if| f —g|| > 0, then||(A — G)f — (A —G)g|| > 0, and sa(A — G) is
one-to one. Finally, for ang € By, f = (A — G)'gis in 2(G). Then dissipativity
shows that

gl = 1A =G)f[| = Al =Al(A =G) g,
so that(A — G)~1 is bounded byA = onBy. ThusA € p*(G), and hence™ (G) is
closed. O

We now continue with the proof of the theorem. We know fromdiid (iii) and
Lemma 3.21 thaG is closed andange(A — G) = By for all A > 0. Moreover, (iii)
asserts that for some > 0, the range oA — G is By. This A is then also in the
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resolvent set, and so we know by Lemma 3.22 thafG) = (0, ). In the proof of
that lemma we have also shown thAdiR, || < 1. As we have already explained, the
resolvent identity holds for all > 0, soR, is a contraction resolvent family.

All what remains to prove is the strong continuity. Let fifs€ Z(G). Then we
can write

IARyf = fl = ARy (f =21 (A =G) ) <A~ H|G].

Sincef € Z(G), Gf € By, and||Gf|| < «, so the right hand side tends to zero as
A T oo,

ThusAR, f — f for all f in 2(G). For generalf, since2(G) is dense irBy,
take a sequenck € 2(G) such thatf, — f. Then,

[ARNE = FI| < JIARY(f = o) | + AR o — Ful| + [ — fn|

and so
limsup|[AR, f — f|| < 2| f — fy|.
Ao

Since the right-hand side can be made as small as desirekiby taf o, it follows
that||[AR, f — f|| — 0, as claimed. ThuR, = (A —G) L is a strongly continuous
contraction resolvent family, and the theorem is proven.

One may find the the conditions (i)—(iii) of Theorem 3.17 austjas difficult
to verify then those of Theorem 3.15. In particular, it does seem easy to check
whether an operator is dissipative.

The following lemma, however, can be very helpful.

Lemma 3.23.Let S be a complete metric space. A linear operator, G, gf5C
is dissipative, if for any & 2(G), if y € S is such that (fy) = maxcsf(x), then
Gf(y) <0.

Proof. Sincef € Cy(S) vanishes at infinity, there exisyssuch that f (y)| = || f||.
Assume without loss of generality thaty) > 0, so thatf (y) is @ maximum. For
A >0,letg=f—A"1Gf. Then

maxf (x) = f(y) < f(y) ~A G (y) = g(y) < maxg(x).
Since the same holds for the functierf, we also get that
mxmf(x) > mxlng(x),
and hencé is dissipative. O

Definition 3.24. A linear operator satisfying the hypothesis of Lemma 3.2%xisl
to satisfy thepositive maximum principle
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Examples

We can verify the conditions of Theorem 3.17 in some simplnges.

e LetS=[0,1],G= %5’—;, Bo = C([0,1}), equipped with the sup-norm, and let
2(G) = {f €C?([0,1] : f'(0) = f'(1) = 0}. Since hereSis compact, clearly any
continuous function takes on its maximum at some ppiat0,1]. If y € (0,1),
then cIearIy2d > f(y) <0;if y=0, for 0 to be a maximum, sinc&(0) = 0,
the second derivative must be non-negative; the same isftyue 1. ThusG is
dissipative.

The fact theZ(G) is dense is clear from the definition. To show that the range of
A —Gis B([0,1]), we must show that the equation

Af— %f” —g (3.2.28)

with boundary conditions’(0) = f/(1) = 0 has a solution it€?([0,1]) for all
g € C([0,1]). Such a solution can be written down explicitly. In fact, (just
consider the cask = 1, which is enough)

f(x) = e/ /(;Xe*\/Et /:g(s)dsdtJr K cosh(v/2x), (3.2.29)

ith
" V2e/? [fe V2 [g(s)dsdt+ Jg g(s)ds
V2sinh(v/2)

is easily verified to solve this problem uniquely.

(iThe same operator as above, but replgcé| with R, By = Co(R), and2(G) =
CZ(R). We first show that the range B is contained irC2(R). Let f be given
by f = Ryg with g € Co(R). R, is the resolvent corresponding to the Gaussian
transition kernel

K=-

2

1 (x=y)
x,dy) = ——e 2 dy.
R(x.dy) ot Y.
Thus s
_ (%= y)
f(x) = (Ry0)(X / “/ g(y)dydt

Now one can show that

and so

Hence
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(%) = — / Xw e V2AkYig(y)dy+ / " e VPyigy)dy, (3.2.30)

Thus, differentiating once more,
(9 = ~2909 + V2A [ Xm & V2 hyig(y)dy (3.2.31)

+V24 / " e V2 xYig(y)
= —29(x) + 2A f(x).

Hencef” € Co(R), sorange(R, ) C C3(R). Moreover,f solves (3.2.28) and thus
G—A =A/2— ) is the inverse oR,. Since this operator mag(R) into
Co(R), we see thaC3(R) C 2(G). HenceC3(R) = 2(G), A/2 is closed and is
the generator of our semigroup.

(iii)f we replace in the previous example with RY, then the the result will not
carry over. In factA with domaincg(Rd) is not a closed operator iR? if d > 2.
Namely, if we get a solution of the equation

(A-4/2)f =g

with g € Co(RY), then we only know that\ f € Co(RY), which does not imply
thatf e CS(R"). This may appear disappointing, because it says%hails not

the generator of Brownian motion th> 2. Rather, the generator of BM will be
theclosureof %A. We will come back to this issue in a systematic way when we
discuss the martingale problem approach to Markov prosesse

3.3 Feller-Dynkin processes

We will now turn to a special class of Markov semi-groups thiitbe seen to have
very nice properties. Our setting is that the state spacleaily compact Hausdorff
space with countable basis (but thinkRft if you like). The point is that we do not
assume compactness. We will, however, consider the onmg-painpactification of
such a space obtained by adding a “coffin stade{;infinity”) to it. Then &’ = SUJ

is a compact metrisable space.

We will now place ourselves in the setting where the Hillesia theorem work,
and make a specific choice for the underlying Banach spacegigave will work
on the the spacgy(S) of continuous functions vanishing at infinity. This will aet
ally place a restriction of the semi-groups to preserveshace. This (and similar
properties) is known as theeller property.

Definition 3.25. A Feller-Dynkin semigrous a strongly continuous sub-Markov
semigroupR, acting on the spadgy(S), that is:

(i) forall't >0,
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R 1 Co(S) — ColS): (3.3.1)

(iDForall f e Cyp(S) suchthat< f <1,0<Rf <1;
(iiiForall t,s>0,R:s=RPs;
(ivForall f € Co(S), limyoP¢f — || =0.

Note that the condition (iii) which is a property of sub-Mavksemi-groups (see
Definition 3.7 is now added again. This is because we waneFBlynkin semi-
groups to be associated to Markov processes.

It is very convenient that the sufficient criterion for dissiivity, the posivitive
maximum principlealso ensures positivity.

Lemma 3.26.Let G be a linear operator with domain and range ig(S) that sat-
isfies the Conditions (i) and (iii) of the Hille-Yosida theor 3.17 with B = Cy(S),
and that satisfies the positive maximum principle (Definiso24). Then G is the
generator of a Feller-Dynkin semi-group.

Proof. In view of what we know, we only have to show that the semi-grganer-
ated byG maps positive functions to positive functions. Notice firstt if f € Z(G)
is a function such that ipfs f(y) = f(x) <0, then

im;(/\ —G)flyy <(A-0QG)f(x) <Af(x) <O. (3.3.2)
ye
But that means thdtA —G)f > O only if f > 0, or thatR, maps positive functions
to positive functions. From this it follows easily that themse is true for the semi-
group. Next,
_ 2 e (A"
dOr — g MgA Ry — gt ZO—R”, (3.3.3)
L

so also this operator maps positive functions to positivefions. Finally we know
thatR =1lim) €C1 | and taking the limit preserves the positivity property]

Remark 3.27In fact, less is necessary. It is easy to see th@tsétisfies the positive
maximum principle on a dense subset of its domain, then thelasions of Lemma
3.26 remain valid. (Exercise!) This is important in applioas, since often we can
do explicit computations with generators only on such sets.

We can now connect back to Markov transition kernels.

Theorem 3.28.Let R be a Feller-Dynkin semigroup. Then there exists a sub-
Markov transition kernel {x, dy), such that for all fe Cy(S),

(RN = [T, (3:34)

The semigroup can be naturally extended i by the right-hand side of Eq.
(3.3.4)
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Proof. Itis an analytic fact that follows from the Riesz represé@otatheorem, that
to any strongly continuous contraction semigroup corrads@ sub-Markov kernel,
R(x,dy), such thalR f)(x) = [sR(x,dy)f(y), forall f € Cy(S).

To see this recall that the Riesz representation theoreentasbat for any linear
map, L, from the space of continuous functioB$S) there corresponds a unique

measurey, such that _
Lt = [fyu(y)

If moreoverL1 = 1, this measure will be a probability measure.
Thus for anyx € S, there exists a probability measugéx, dy), such that for any
continuous functiorf
/ f(y)R(x,dy).

SinceR f is measurable, we also get thaf (y)R(x,dy) is measurable. Finally,
using the monotone class theorem, one showsR{{afA) is measurable for any
Borel setA, and hencd? (x,dy) is a probability kernel, and in fact a sub-Markov
kernel. O

Note that, since we are in a setting where the Hille-Yosigmtam applies and
that there exists a generat@, exists on a domai(G) C Cy(S). Note that then
we have forf € 2(G) the formula

tl0

Gf( —hmt1</Rxdy (» (3.3.5)

Therefore, iff attains its maximum at a poirt then

Aauﬂwwwsfux

and soG f(x) <0, if f(x) > 0 (this condition is not neededH is honest).
Dynkin’s maximum principle states that this property cltéesizes the domain
of the generator. Let us explain what we mean by this.

Definition 3.29.Let G,C be two linear operators with domaiig(G), Z(C), re-
spectively. We say th& is anextensiorof G, if

() 2(G) c 2(C), and
(iYForall fin 2(G), Gf =Cf.

Lemma 3.30.Let G be a generator of a Feller-Dynkin semigroup and let C be a
extension of G. Assume that i£fZ(C) and f attains its maximum in x with(X) >
0, then Cf(x) < 0. Then G=C.

Proof. Note first thatC = G if Cf = f implies f = 0. To see this, leg = f —Cf
undh = Ry0. ButRig € 2(G) and thus

h—Ch=h-Gh=g=f—Cf.
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Hencef —h=C(f —h), and sof = h. In particularf € 2(G).

Now let f € 2(C) andCf = f. We see that iff attains its maximum at with
f(x) > 0, then under the hypothesis of the lemr@d(x) < 0. SinceCf = f, this
means thaf (x) = Cf(x) = 0. Thus maxf(y) = 0. Applying the same argument to
—f, it follows that miry f(y) =0. O

The now turn to the central result of this section, the eristeheorem for Feller-
Dynkin processes.

Theorem 3.31.Let R be a Feller-Dynkin semigroup ongCS). Then there exists a
strong Markov process with values il 8nd cadlag paths and transition kernel P

Remark 3.32Note that the unique existence of the Markov process on tred ¢
finite dimensional distributions does not require the Fell@perty.

Proof. First, the Daniell-Kolmogorov theorem guarantees theterise of a unique
process on the product spa@& )®+, provided the finite dimensional marginals sat-
isfy the compatibility conditions. This is easily verifiedst as in the discrete time
case using the Chapman-Kolmogorov equations.

We now want to show that the paths of this process are regalad, and finally
that regularization entrains just a modification. For thesmeed to get martingales
into the game.

Lemma 3.33.Let ge Cy(S) and g> 0. Set h= Ryg. Then
0<e'Rh<h. (3.3.6)
IfY is the corresponding Markov process!ie(Y;) is a supermartingale.

Proof. Let us first prove (3.3.6). The lower bound is clear sifc@and hencer,
map positive function to positive functions. Next

e SPh—e PRig = e P / e UR,gdu (3.3.7)
0
= / e "Pigdu<Rig=nh.
S

Now e th(Y;) is a supermartingale since
Ele > (Y s|%] = e > 'Psh(%) < e 'h(Y),
where of course we used (3.3.6) in the last step.

As a consequence of the previous lemma, the functofib(Yy) are regularis-
able, i.e. limy; € 9h(Yq) exists for allt almost surely.

Now we can take a countable dense sulisety,, . . ., of elements 0€y(S), and
seth; = Rigi. The set’# = {hi}icn separates points i§’, while almost surely,
e 9hi(Yy) is regularisable for alle N. But thenX; = limg; Yq exists for allt, almost
surely and is a cadlag process.
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Finally we establish thaX is a modification ofY. To do this, letf,g € Cy(9).
Then

E[f(%)904)] = im E[ (Y)9(¥)] = im E[f (¥)Rqg(¥)] = E[f (4)g(%)]

where the first inequality used the definition Xf and the third the strong con-
tinuity of B. By an application of the monotone class theorem, this iesplhat
E[f(%,%)] = E[f(%,¥)] for any bounded measurable function 8hx &, and
hence in particulaP[X =Y =1. O

The previous theorem allows us to henceforth consider FBN@kin Markov
processes defined on the space of cadlag functions with/al® (with the ad-
ditional property that, it = d or X%_ = d, thenXs = 2 for all s> t). We will
henceforth think of our Markov processes as defined on ttatesfwith the usual
right-continuous filtration).

3.4 The strong Markov property

Of course our Feller-Dynkin processes have the Markov ptgge particular, ifl
is a.%1 measurable function ande Cy(S), then

E[{f(X1s)] = E[{RsF (X)) (3.4.1)

Of course we want more to be true, namely as in the case ofetiistme Markov
chains, we want to be able to split past and future at stopjnimgs. To formulate
this, we denote as usual Isly the shift acting o2, via

X(Bw)s = (BX)(w)s = X(w)si. (3.4.2)

We then have the followingtrong Markov property

Theorem 3.34.Let T be a%,stopping time, and |t be the law of a Feller-Dynkin
Markov process, X. Then, for all bounded random variabjed T is a stopping
time, then

E[6rn|Fr+] = Ex: [n], (3.4.3)
or equivalently, for all%t, -measurable bounded random variabfgs
E[&6rn] =E[§Ex: [n]], (3.4.4)

Proof. We again use the dyadic approximation of the stopping fintefined as

T (@) = k™" if(k—1)2 "< T(w)<k2 " keN
T 4w, ifT(w) = oo

ForA € 7t we set
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Ak ={we Q:TMW(w) =2""k}NA € Fipn.

Let f be a continuous function d®& Then

E[f(n, 0] = Ng - (0% ns5)Tny (3.4.5)
eNU{+w

_ % E[Pof (X n)dn,,
keNU{+oo}
= E [Psf (Xym) 1]
Now letn tend to infinity: by right-continuity of the paths,
X s = XT+s,

for anys > 0. Sincef is continuous, it also follows that
f (Xt s) = F(XT49),

andsince, by the Feller propertysf is also continuous, it holds that
Psf (X)) — Psf(XT)

Note that finally working with Feller semi groups has payefti of
Now, by dominated convergence,

E[f(Xr1s)Un] = E[Psf (X7 14 ]

To conclude the proof we must only generalize this result toengeneral func-
tions, but this is done as usual via the monotone class theangl presents no par-
ticular difficulties (e.g. we first see thaj, Ican be replaced by any boundéd . -
measurable function; next through explicit computatioe shows that instead of
f(Xr1s) we can puf]iL; fi(Xr4s), and then we can again use the monotone class
theorem to conclude for the general casel

3.5 The martingale problem

In the context of discrete time Markov chains we have encaexdta characteri-
zation of Markov processes in terms of the so-calegtingale problemWhile
this proved quite handy, there was nothing really profouridtiportant about its
use. This will change in the continuous time setting. In,feied martingale problem
characterizations of Markov processes, originally prepdsy Stroock and Varad-
han, turns out to be the “proper” way to deal with the theorsnemy respects.

Let us return to the issues around the Hille-Yosida theodanprinciple, that
theorem gives us precise criteria to recognize when a gimear operator generates
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a strongly continuous contraction semigroup and hence ad¥arocess. However,
if one looks at the conditions carefully, one will soon realthat in many situations
it will be essentially impractical to verify them. The poistthat the domain of a
generator is usually far too big to allow us to describe thmaof the generator on
all of its elements. E.g., in Brownian motion we want to thisfkthe generator as
the Laplacian, but, except th= 1, this is not the case. We really can describe the
generator only on twice differentiable functions, but tisisiot the domain of the
full generator, but only a dense subset.

Let us discuss this issue from the functional analytic pofrview first. We have
already defined the notion of the (linear) extension of adiraperator.

First, we call theclosure G, of a linear operatoiG, the minimal extension o&
that is closed. An operator that has a closed linear extensicalledclosable

Lemma 3.35.A dissipative linear operator, G, orpBvhose domainz(G), is dense
in By is closable, and the closure cdnge(A — G) is equal torange(A — G) for all
A>0.

Proof. Let f, € 2(G) be a sequence such that— f, andG f, — g. We would like
to associate with any sudhthe valueg and then defin& f = g for all achievablef
that would then be the desired closed extensioB.dbo all we need to show that if
fr — f andGf, — d/, theng’ = g. Thus, in fact all we need to show is thafif— 0,
andGf, — g, theng = 0. To do this, consider a sequence of functighg Z(G)
such thag, — g. Such a sequence exists becagq&) is dense irBy. Using the
dissipativity of G, we get then

|2 = G)gn = Agll =lim | (A = G)(gn+Afi)l| = im Al g+ A fl = A gl

Note that in the first inequality we used thatdimy fy andg = limy G fy. Dividing
by A and taking the limifA 1 e implies that

lonll < llgn—gll-

Sinceg, — g — 0, this impliesg, — 0 and hencg = 0.

The identification of the closure of the range with the ranfga@closure follows
from the observation made earlier that a range of a dissgpaperator is closed if
and only ifitis closed. O

As a consequence of this lemma, if a dissipative linear dpean By, G, is
closable, and if the range af— G is dense irBy, then its closure is the generator of
a strongly continuous contraction semigroupBn

These observations motivate the definition abae of a linear operator.

Definition 3.36.Let G be a linear operator on a Banach spBgeA subspac® C
2(G) is called acorefor G, if the closure of the restriction @ to D is equal toG.

Lemma 3.37.Let G be the generator of a strongly continuous contractiemis
group on B. Then a subspace B %(G) is a core for G, if and only if D is dense
in Bp and, for some&\ > 0, range(A — Gp) is dense in B.
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Proof. Follows from the preceding observationsd
The following is a very useful characterization of a core um context.

Lemma 3.38.Let G be the generator of a strongly continuous contractiemis
group, R, on By. Let D be a dense subset@{G). If, forallt >0, R : D — D, then
D is a core [in fact it suffices that there is a dense subsgt D, such that Pmaps
Dy into D].

Proof. Let f € Dg and set

2

o k/nPk/n f

an

1
n

M:

k=0

By hypothesisf, € D. By strong continuity,

. . 1n2 )\k
GV — lim L e Akn N
im(A — G)f HTmmnkzzoe Ryn(A —G)f (3.5.1)

nfoo

:/Ome’“F{(/\—G)f
—R(A—G)f =1

Thus, for anyf € Dy, there exists a sequence of functioffs.— G) f, € range(A —
Gp), that converges td. Thus the closure of the range 0f — Gp) containsDo.
But sinceDy is dense irBy, the assertion follows from the preceding lemmal

Example. LetG be the generator of Brownian motion. THeR(RY) is a core foiG
andG is the closure O%A with this domain.

To show thaC* is a core, since obviously” is dense in the space of continuous
functions, by the preceding lemma we need only to show BhatapsC*® to C*.
But this is obvious from the explicit formula for the tranait function of Brownian
motion. Thus it remains to check that the restrictiorGofo C” is %A, which is a
simple calculation (we essentially did that in [1]). Her@@és the closure O%A.

We see that these results are nice, if we know already thegseup. In more
complicated situations, we may be able to write down theaaif what we want to
be the generator of the Markov process we want to construsbore (small) space
of function. The question when is how to know whether thiscéfEs a (unique)
strongly continuous contraction semigroup on our desipats of functions, e.g.
Co(S)? We may be able to show that it is dissipative, but therange(A — G) dense
in Cy?

The martingale problem formulation is a powerful tool to eet$ such question.

We begin with a relatively simple observation.

Lemma 3.39.Let X be a Feller-Dynkin process with transition functiqraRd gen-
erator G. Define, for fg € B(S),
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t
M, = f()(t)—/o g(Xs)ds (3.5.2)

Then, if fe 2(G) and g= Gf, M is a % -martingale.

Proof. The proof goes exactly as in the discrete time case.

t t+u
EMy ol 71 = Ef %) ] = [ (@ (X)ds— [ EIGT06)|7d8.5.3)

— (D)~ [ (@N0e)ds— [ (PGh6)ds

't
JO

= 100~ [ (GNoeds
HRAHX)— 1040 [ (RGN (X)ds
= M+ (R0~ )~ [ (RGH(x)ds

But q
(RGH (D) = 5 (PN @,

and so

(Puf>(><t>—f(xt)—/o (RGT)(X)ds=0,
from which the claim follows. O

By “the martingale problem” we will consider the inverse lplem associated to
this observation.

Definition 3.40. Given a linear operatd® with domainZ(G), a Svalued process
defined on afiltered cadlag spaee,.#,P, (%,t € R, )), is called a solution of the
martingale problem associated to the oper&pif for any f € 2(G), M; defined
by (3.5.2) is a%;-martingale.

Remark 3.410ne may relax the cadlag assumptions. Ethier and Kurtz [6kvo
a more general setting, which entails a number of subtlesigarding the relevant
filtrations that | want to avoid.

One of the key points in the theory of martingale problemshélthe fact thaG
may not need to be the full generator (i.e. the generatormékimal domain), but
just a core, i.e. an operator defined on a smaller subspacmctidns. This really
makes the power of this approach.

Before we continue, we need some new notion of converger8anach spaces.

Definition 3.42. A sequencd,, € B(S) is said to convergpointwise boundedlp a
function f € B(9), iff

(i) sup, || fallw < o, and
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(ifor everyx € S, liMpte fn(X) = f(X).

A setM € B(S) is called bp-closed, if for any sequentec M s.t.bp—lim f, =
f € B(S), thenf € M. The bp-closure of a s& C B(S) is the smallest bp-closed
set inB(S) that contain®. A setM is called bp-dense, if its closureBgS).

Lemma 3.43.Let f, be such that bp-lim f, = f and bp—limGf, = Gf. Then, if
fn(X) — f(t)(G fn)(Xs) is @ martingale for all n, then ;) — jg(Gf)(Xs) is a martin-
gale.

Proof. Straightforward, since the fact that suidn|| < c and sup||Gfy|| < « al-
lows to use dominated convergencel

The implication of this lemma is that to find a unique solutafrthe martingale
problem, it suffices to know the generator on a core.

Proposition 3.44.Let G; be an operator with7(G;) andrange(G; ), and let G be
an extension of & Assume that the bp-closures of the graphs ph@d G are the
same. Then a stochastic process X is a solution for the ngaténproblem for G if
and only if it is a solution for the martingale problem fog G

Proof. Follows from the preceding lemman

The strategy will be to understand when the martingale protthas a unique
solution and to show that this then is a Markov process. Ih ¢gkase it will be
comforting to see that only dissipative operators can gise to the solution of
martingale properties.

We first prove a result that gives an equivalent charactéoizaf the martingale
problem.

Lemma 3.45.Let .%; be a filtration and X an adapted process. Leg £ B(S).
Then, forA € R, (3.5.2) is a martingale if and only if

e*)‘tf()<t)+/0t e NS (A f(Xe) — g(Xs))ds (3.5.4)

is a martingale.

Proof. The details are left as an exercise. To see why this shoultlukethink of
P} = e MR as a new semi-group. Its generator should®e- A ), which suggests
that (3.5.4) should be a martingale whenever (3.5.2) isyvéredversa. O

Lemma 3.46.Let G be a linear operator with domain and range 3. If a so-
lution for the martingale problem for G exists for any inlt@ondition X = x € S,
then G is dissipative.
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Proof. Let f € 2(G) andg = Gf. Now use that (3.5.4) is a martingale wih> 0.
Taking expectations and sendintp infinity gives thus

1) = 10 = 5| e *(A 1) - g0 ds
and thus,
1001 < [ €M BT ~g0e)ds< [ e AT gl = A HAT ~glds
0 0

which proves tha6 is dissipative. O

Next, we know that martingales usually have a cadlag modificaThis sug-
gests that, provided the set of functions on which we havaé@four martingale
problem is sufficiently rich, this property should carry ote the solution of the
martingale problem as well. The following theorem shows thgs holds.

Theorem 3.47.Assume that S is separable, and thgG) C C,(S). Suppose more-
over thatZ(G) is separating and contains a countable subset that sepaimts.
If X is a solution of the associated martingale problem anfbifany ¢ > 0 and
T < o there exists a compact set K C S, such that

P(Vte[0,TINQ: % eKeT) >1—k, (3.5.5)
then X has cadlag modification.

Proof. By assumption there exists a sequefice 2(G) that separates points
Then

M = 10%) - [ a06)ds

with gi = Gf; are martingales and so by Doob’s regularity theorem retpalale
with probability one; sincef(t, gi(Xs)ds is manifestly continuous, if follows that
fi(X) is regularisable. In fact there exists a set of full meassves that allfi (X))
are regularisable. Moreover, by hypothesis (3.5.5), the ¥gw),t € [0,T]} has
compact closure for almost aib for all T. Let Q" denote the set of full measure
where all the properties above hold. Then, foraak Q’, and allt > 0, there exists
sequence® > s, | t, such that ling : Xs,(w) exists and whence

fi(lim Xs, (w)) (Xs()).

= lim fi
Snit Q>sit
Since the sequendgseparates points, it follows that ligs: Xs(w) = Y (w) exists
for allt. In fact,X has a cadlag regularization. Finally we need to show fiff#t) =
fi(%) , a.s., in order to show thatis a modification oX. But this follows from the
fact that the integral term in the formula fbk is continuous irt, and hence

(%) = B (%) LA (%) 73] = ImE(fi (%) | 70) = fi(X). as.
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by the fact thatvlt“) is a martingale. O

3.5.1 Uniqueness

We have seen that solutions to the martingale problem peaséghdidates for nice
Markov processes. The main issues to understand is whentimgade problem has
a uniquesolution, and whether in that case is represents a Markasegso When
talking about uniqueness, we will of course always think #rainitial distribution,
Lo, is given. The data for the martingale problem is thus a (i), whereGis a
linear operator with its domai(G) andu is a probability measure dB

The following first result is not terribly surprising.

Theorem 3.48.Let S be separable and let G be a linear dissipative operator o
B(S) with Z(G) C B(S). Suppose there exists ®ith 2(G') C Z(G) such that G

is an extension of GLet 2(G’) =range(A —G') =L, and let L be separating. Let
X be a solution for the martingale problem @8, ). Then X is a Markov process
whose semigroup on L is generated by the closurée cdi@l the martingale problem
for (G, 1) has a unigue solution.

Proof. AssumeG’ closed. We know that it generates a unigue strongly contisuo
contraction semigroup oh, hence a unique Markov process with generagar
Thus we only have to show that the solution of the martingeddlem satisfies the
Markov property with respect to that semigroup.

Let f € 2(G') andA > 0. Then, by Lemma 3.45,

e*“f(><t)+/0t e MS(A f(Xs) — G'f(Xs))ds
is a martingale,
(00 =E| [ (M 06s- 10X 47| @59
To see this note that for aily > 0, by simple algebra,

[Te (045 G1(x ) s (35.7)

t+T 't
_ /0 e % (Af(X5) — G'F (X)) ds— em/o e (A f(X) —G'f(Xs))) ds

— it [/Otﬂ e*)\s(/\ f(Xs) — G'f(Xs))) ds+ e(t+Tf(Xt+T)] e T (XuT)
—eN/Ot e (Af(X) - G'f (X)) ds

Hence,
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E { A e (M (X0~ G %9)) d#%} (3.5.8)
= f(><()+ef“'/o'te*"s()\ f(Xs) — G'f(Xs))) ds
—e MTE [ (Xy1)| 7] — /Ot e (A f(X) —G'f(X)))ds

= (%)~ e MTE[f(X7)| A

Letting T tend to infinity, we get (3.5.6).
We will use the following lemma.

Lemma 3.49.Let R be a SCCSG ongand G its generator. Then, for any< By,

lim(1—n~'G) " f = Rf. (3.5.9)

nteo
Proof. SetV (t) = (1—tG| L. We want to show that (1/n)ltn] — R. But
nV(a/nf—fl=n[1-n'G)f—f] =n[(n—G)1f - f] =Gnf,
whereGy, is the Hille-Yosida approximation @&. Hence
V(/n)"f = [14+n1G,)".
Now one can show that for any linear contracti®(Exercise)),
IB"f — "BVt < VABf - f|].

We will apply this forB = %Gn + 1 (check that this is a contraction sinGeis
dissipative). Thus

|[2+ 07260 " f — expltGn) || < n 2G|

Since the right-hand side convergesto zeroffarA(G), and extGn) f — R f, by
the Hille-Yosioda theorem, we arrive at the claim of the learfior f € A(G). But
sinceA(G) is dense, the result holds for & by standard arguments.

Now from (3.5.6) withA =nandf €L,

f(X) (3.5.10)
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Iterating this formula and re-arranging the resulting fplétintegrals, and using the
formula for the area of thke-dimensional simplex, gives

(1-n"1G)"Mf(x) (3.5.11)

- |:/0 e S1%2—Sun f()(t+n*1(sl+---+5[un]))dsl .. dS[un] e%:|

gun-1

/Ooo efsm f ()<t+n15)d5<<%‘|

We write, forf € 2(G'),

=K

*s/N
E [f(xt+nfls)|'%] =E[f(Xu)| A +E {/u G/f(XtJrv)dv‘%}

and insert this into (3.5.11). Finally, since

© S[un]—l
e ds=1,
/o I ([unl)

we arrive at
(1-n"1G&) M (X) = E[f(Xru)| ] (3.5.12)
00 un—1  ,s/n
—s S / a

We are finished if the second term tends to zero. But, re-asprg the volume of
the sphere through multiply integrals, we see that

o o S[un]fl s/n , _
E /0 e — [ (X dvdd A

3.5.13
) (3513)
< ||Glf||m/0 dS_L...dqun] |n71(31+..._|_s[un])—u|efslf"'*5[un]

But the last integral is nothing but the expectatio mflii[ﬂa —u| whereg are

iid exponential random variable. Hence the law of large nerslimplies that this
converges to zero. Thus we have the desired relation

Rt (%) = E[f (%) A]

for all f € 2(G'). In the usual way, this relation extends to the closur&?¢g’)
which by assumptionik. O

Finally we establish an important uniqueness criterion tnedstrong Markov
property for solutions of uniquely posed martingale praige
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Theorem 3.50.Let S be a separable space and let G be a linear operator(®).B
Suppose that the for any initial distributiop, any two solutions, XY, of the mar-
tingale problem for(G, i) have the samene-dimensionalistributions, i.e. for any
t >0, P(X% € A) =P(Y; € A) for any Borel set A. Then the following hold:

(i) Any solution of the martingale problem for G is a Markowpess and any two
solutions of the martingale problem with the same initiadtdbution have the
same finite dimensional distributions (i.e. uniqguenesdsjol

(iIf 2(G) C Cy(S) and X is a solution of the martingale problem with cadlag
sample paths, then for any a.s. finite stopping time,

E[f (%+1)| 72 = E[f O%s0)| X, (35.14)

forall f € B(S).

(iii)f in addition to the assumptions in (ii), there existscadlag solution of the
martingale problem for any initial measure of the fodm x € S, then the strong
Markov property holds, i.e.

E[f(Xet0)|F2] =R (X%). (3.5.15)

Proof. Let X be the solution of the martingale problem with respect to esdifn
tration%;. We want to prove that it is a Markov process. [FeE ¥, have positive
probability. The, for any measurable &:let

P(B) = w (3.5.16)
and
P(B) = w. (3.5.17)
LetYs = X/ ;5. We see that, sind8[f (X)|X] = f(X) = E[f(X)|G],
P(Yoel) =P(YoelN) =P[X e l|F] (3.5.18)

Now chose any & t; <ty < --- <thy1, f € 2(G), g= Gf, andhy € B(S), (ke N.
Define

Tt

100 = (1) = 10%) - |

Jtn

g(vs>ds) kﬁlhkmk). (3.5.19)

Y is a solution of the martingale problem if and onlyfif; (Y) = O for all possible
choices of the parameters (Check this!).

Now E[n(X+.)|%] = 0, sinceX is a solution of the martingale problem. A for-
tiori, E[n(X+.)|%] =0, and so

Ea[n(Y)] =E2[n(Y)] =0,
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whereE; denote the expectation w.r.t. the measigesiencey is a solution to the
martingale problem foG under bothP; andP,, and by (3.5.18),

Ea[f(Y)] = E2[f(W)],
for any bounded measurable function. Thus, for Bny 4,

E[IRE[f (X +5)[%]] = E[IFE[f (X 15) X 1]

and hence

E[f (Xe+)|%] = E[f (X)X

ThusX is a Markov process.
To prove uniqueness one proceeds as follows.X.andY be two solutions of
the martingale problem fqiG, ). We want to show that

E L!ﬂl,]hk(xtk)

By hypothesis, this holds fon = 1, so we will proceed by induction, assuming
(3.5.20) for allm < n. For with we define two new measures

[l hX,)]
P(B) = E [Meer ()]
~ o E[TsMIR g (%))
OB = BN hoe)]

SetX = Xttt andy; = Yi+t,- AS in the proof of the Markov propert}? andY are
solutions of the martingale problems uné&eandQ, respectively. Now fot = 0, we
get from the induction hypothesis that

=K

|£| hk(Ytk)] . (3.5.20)
k=1

(3.5.21)

(3.5.22)

EPf(Xo) = E?f(Yo)

where the expectations are w.r.t. the measures defined abousX andY have
the same initial distribution. Now we can use the fact the pydthesis, any two
solutions of our martingale problem with the same initiahditions have the same
one-dimensional distributions. But this provides imméaliathe assertion fom =
n+ 1 and concludes the inductive step.

The proofs of the strong properties (i) and (iii) followsofn similar con-
structions using stopping timasinstead ofr, and optional sampling theorem for
bounded continuous functions of cadlag martingales. E@get (ii), note that

E['? (Xr+s)|%r] =0.

For part (iii) we construct the measuf@seplacingr by T and so get instead of the
Markov property the strong Markov propertyd
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Note that in the above theorem, we have made no direct asmnapin the
choice of 2(G) (in particular, it need not separate point, as in the previte-
orem). The assumption is implicit in the requirement thaguaness of the one-
dimensional marginals must be satisfies. This is then alsonthin message: a
martingale problem that gets uniqueness of the one-dimeakmarginals implies
uniqueness of the finite dimensional marginals. This thaasén fact the usual way
to prove unigueness of solutions of martingale problems.

Duality.

One still needs methods to verify the hypothesis of the fesbitem. A very useful
one is the so-called duality method.

Definition 3.51. Consider two separable metric spa¢8g) and(E,r). LetG1,G;

be two linear operators oB(S), resp.B(E). Let u,v be probability measures on
SrespE,a:S—R,B:E—R, f:SxE— R, measurable functions. Then the
martingale problems fofGs, 1) and (G, v) aredual with respect to(f, a,3), of
for any solution X, of the martingale problem fo{Gy, ) and any solutiorY of
(Ggp, V), the following hold:

() J(la(X)] + |B(Ys)ds < , as.,

(ii)
/IE Uf(xt,y)exp</ota(xs)ds> H v(dy) < o, (3.5.23)
Je|[fcven( [ pows)||uan <= @52
(iiipnd,
'/]E U f()(t,y)exp(/: a(Xs)ds) H v(dy) (3.5.25)
_ /IE Uf(x,vt)exp</otﬁ(vs)ds) H H(dx)
for anyt > 0.

Proposition 3.52.With the notation of the definition, le# C .#:1(S) contain the
set of all one-dimensional distributions of all solutiorfstioe martingale problem
for G; for which the distribution of Xhas compact support. Assume tfi&, i)
and (G, §y) are dual with respect t@f,0,3) for everyu with compact support
and any ye E. Assume further that the séf(-,y) : y € E} is separating on#.
If for every ye E there exists a solution of the martingale probléBp, Jy), then
uniqueness holds for eaghin the martingale probleniGs, p1).
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Proof. Let X andX be solutions for the martingale problem fi@,, 1) wherep
has compact support, and MY be a solution to the martingale problei@,, dy).
By duality we have then that

Elt00) = [ | 1) exp( [ BO)ds) |t =511 R] - @526

Now we assumed that the class of functigrié-,y) : y € E} is separating on#, so
the one-dimensional marginals ¥fandX coincide.

If u does not have compact support, take a compadt seith p(K) > 0 and
consider the two solutions and X conditioned onX € K, X € K. They are so-
lutions of the martingale problem for the initial distriburt conditioned orK, and
hence have the same one-dimensional distributions. Thus

P[X €I [Xo € K] =P[X € I'[Xo € K]

for any K, which again implies, sincg is inner regular, the equality of the one
dimensional distributions and thus uniqueness by Theoré&th 30

This theorem leaves a lot to good guesswork. It is more ordesst to find dual
processes and there are no clear results that indicate witewtay this should be
possible. Nonetheless, the method is very useful and wilghjied.

Let us see how one might wish to go about finding duals. Let sisras that we
have two independent process&sy, on spaces,, S, and two functiong, h €
B(S1 x &), such that

t
f(%,y) —/0 9(Xs,y)ds (3.5.27)

and .
f(x,Yt)—/ h(x, Ys)ds (3.5.28)
JO

are martingales with respect to the natural filtrationsXorespectivelyy. Then
(3.5.25) is the integral of

d

SE {f(XS,Yts) exp<'/0. Sa(xu)duf :sB(Yu)du>] . (3.5.29)

Computing (assuming that we can pull the derivative intcetkigectation) gives that
(3.5.29) equals

E (Q(X&ths) —h(Xs,Yi—s) + (a(Xs) = B(Yi-s)) f(XSaths))

« exp(/osa(xu)dm— OFSB(YU)d )] . (3.5.30)

This latter quantity is equal to zero, if
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g(xy) +a(x)f(xy) =hxy) + By f(xy). (3.5.31)

To see how this can be used, we look at the following simplengte. LetS; =
R andS, = Ng. The procesX has generato&; defined on smooth functions by
Gy = c?—jz - x(j’—x andY has generatoB; f(y) = y(y— 1)(f(y—2) — f(y)). Clearly
the proces¥ can be realized as a Markov jump process that jumps down byl 2 an
is absorbed in the states 0 and 1. The Second process is @atistein-Uhlenbeck
process. Now choose the functidé(x,y) = ¥. If X is a solution of the martingale
problem forG;, we get, assuming the necessary integrability condititirad, will
be satisfied if the initial distribution 0fy has bounded support), that

><1y—/0t (Yy— 1 2-yx)ds (3.5.32)
are martingales. Of course, this suggest to choose
g(x,y) = y(y— 1% 2 —y¥, (3.5.33)
Similarly,
X /0 Ya(Yo— 1) (2= x%) s (3.5.34)

is a martingale and hence
h(x,y) =y(y—1) (¥ 2 —x). (3.5.35)
Now we may setr = 0 and see that we can satisfy (3.5.31) by putting

B(y) =y*—2y. (3.5.36)
Thus we get

E[X°] —E {xgt exp<'/: (Y2-2¥,)d )} (3.5.37)

This explains in a way what is happening here: the jump p¢tésgether with the
initial distribution of the procesX determines the moments of the proc¥ssOne
may check that in the present case, these are actually ggauificiently slowly to
determine the distribution of;, this in turn is, as we know, sufficient to determine
the law of the procesX.

In fact, we can use (3.5.37) to compute the moments of théitiing distribution
of X; ast 1 . Let firstYy = 2k+ 1. Then the procesg is absorbed in the statel,
and hence,

limE [xﬁkﬂ] —E [ngl exp( /0 "2 -2v,) du)} (3.5.38)

teo
=E [Xoexp(/OT1 (Yu2—2Yu)du) exp(— /:duﬂ =0.
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The last equality holds sinag is finite almost surely, and even thexp(fo* (Y2 — 2Y,) du) <

0,
If Yo = 2k, then the procesg is absorbed in the state zero, and we get

imE x| =E [exp(/(:o (Yuz—zvu)du)]. (3.5.39)

tfoo

An elementary computation shows that this expectationleqgé.,(2¢ — 1). This
implies that the limiting distribution is the standard naidrdistribution.

The general structure we encounter in this example is raypécal. One will
often try to go for an integer-valued dual process that deitezs the moments of
the process of interest. Of course, success is not guathntee

We still need to verify when the formal computation of theidative in (3.5.29)
can be justified. Basically, we need integrabiliy condisidimat justify the use of the
Leibnitz rule.

Lemma 3.53.Let f:R2 — R be absolutely contiuous in each variable for almost
all values of the other variable, and assume that the padeiivatives are abso-
lutely integrable, i.e., for all T> 0,

T T d
// £ (x4, %)| dxadxe < oo. (3.5.40)
o Jo |9%
Then, for almost all £ 0,
(t 0)—f(0t)—/t 9 t(st—9--Lt(st—s )ds (3.5.41)
’ A R Ix > >

Proof. To prove the result, integrate the right-hand side dvend use Fubini’s
theorem. This yields the integral over the left-hand sidigfeBentiating give the
claim of the lemma.

We see that in order to justify the formula (3.5.37), we havgrovide conditions
(3.5.40) for the rather complicated fuctions appearinggh€he following theorem
provides such conditions.

Theorem 3.54.Let XY be independent processes anp. Let f,g,h,a,3 be as
in Definition 3.51. Assume that for all ¥ O, there exist an integrable random vari-
ables \f and a constant €, such that

sup (Ja ()| +1)|f (X6 %)| < Vi (35.42)

rst<T

sup ([B(X)|+ D[ f(Xs,Y)| < Vr

rst<T

sup (|a(X)[+1)|g(Xs Y| < Vr

rst<T

sup (|IB(X)[+1)[g(Xs, )| < Vr,

rst<T
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and

[ a0wl + o) duscr 8543

Assume that #;,y) and f(x,Y;) are martingales as above. Then

E {f()(t,Yo)exp(/ta(Xu)du)] -E |:f(XO,¥[)eXp(/:B(Yu)dU)J3.5.44)

0

E [(g(xs,Yts) —h(Xs,Yt—s) + (@ (Xs) = B(Yi-s)) f(xvatfs))

xexp(/osa(xu)du—i- OtSB(YU)du)]. (3.5.45)

Proof. The proof of this theorem is fairly technical and can be foimi@].

The tricky part in the use of duality is to guess good fundiband a good dual
process’. To show existence for the dual process is often not so haegdvi/now
turn briefly to the existence question in general.

3.5.2 Existence

We have seen that a uniquely solvable martingale problewiges a way to con-
struct a Markov process. We need to have ways to produce@wutf martingale
problems. The usual way to do this is through approximatams weak conver-
gence.

Lemma 3.55.Let G be a linear operator with domain and range ig(S). Let
Gn,n € N be a sequence of linear operators with domain and range(i8) BAs-
sume that, for any € Z(A), there exists a sequence,d Z(Gn) , such that

lim || f, — || = 0,andlim [|Gnf, — G| = 0. (3.5.46)
Nfoo Nfoo

If for each n, X' is a solution of the martingale problem for,@vith cadlag sample
paths, and if X converges to X weakly, then X is a cadlag solution to the mgate
problem for G.

Remark 3.56By weak convergence of processes we understand more gyecise
the weak convergence of the law of the process defined on thekod space
Dgl0, ). See Section 7.

Proof. Let0<t; <t < sbe elements of the s&t(X) = {ue R, : P[X, =X,—] =1}.
Leth; € Cy(S), 1 € N. Let f, f, be as in the hypothesis of the lemma. Then
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(f (Xs) — (% / GF(Xy du> hix ] (3.5.47)
szl(f( ) — fa(X; /an du) e ]

=0

Here we used that the Now the complement of thesgX) is at most countable,
and then the relation (3.5.47) carries over to all pointst < s. But this implies
thatX solves the martingale problem f&:. 0O

The usefulness of the result is based on the following lemwhich implies that
we can use Markov jump processes as approximations.

Lemma 3.57.Let S be compact and let G be a dissipative operator (8) @ith
dense domain and 5= 0. Then there exists a sequence of positive contraction
operators, T, on B(S) given by transition kernels, such that, foef%2(G),

Irgn n(Th—1)f =Gf. (3.5.48)
Proof. | will only roughly sketch the ideas of the proof, which is sédy related to
the Hille-Yosida theorem. In fact, froi® we construct the resolvem — G)~ on
the range ofn— G). Then for a dissipative, the operatora(n—G) ! are bounded
(by one) orrange(n— G). Thus, by the Hahn-Banach theorem, they can be extended
to C(S) as bounded operators. Using the Riesz representatioretinemre can then
associate to(n— G)~* a probability measure, s.t.

n(n=G) (4 = [ f(y)un(xdy)

and hencei(n — G)~! = T, defines a Markov transition kernel. Finally, ist remains
to show than(T,—1)f = %f =TnaGf convergest&f, for f € Z(G). To do so,
we only need to show thdx f — f. For this letf € 2(G). Then

TWf=f+(n-G) Gf=f+nInin-G) Gt (3.5.49)

SinceG is dissipative||n(n— G)~1Gf|| < ||Gf| < «, and so the second term tends
to zero in norm. Sinc@&, is bounded, the result extends to the closure of the domain
of G. This concludes the proof.00

The point of the lemma is that it shows that the martingalélenmm forG can be
approximated by martingale problems witbundedyenerator&, = n(T, — 1) that
act like

Gaf () =n [ (1(y) = F(x))kn(x. )

For such generators, the construction of a solution can he deplicitly in various
ways, e.g. by constructing the transition function throtlgh convergent series for
exp(tGnp).
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Such Markov processes avarkov jump processewvhich we have already en-
countered in Section 3.1. There we have seen that they cammis&racted explicitly
as a time change of a discrete time Markov chain. Thus existsmo problem.

Lemma (3.57) the suitably converging generators. To usenh&(3.55), we only
need that the associated processes converge weakly. Tiiaiavay to proceed
here is to establistightnessof the sequenceX,. This can actually be established
under the previous hypothesis, by showing that forany0 ande > 0, there exists
a compact se, 1 C S, such that

irgf]P’(VoSthXn(t) S KE,T) >1—c¢. (3550)

This uses that the procességsare solutions of martingale problems. For details and
proofs, see [6], in particular Chapter 3.

Tightness implies the existence of a convergent subsegquemase limitX, will
be a solution of the martingale problem f8r If uniqueness can be shown for this
martingale problem, then this also implies that there caorthgone limit point and
hence the sequengg@ converges.






Chapter 4
Stochastic differential equations

4.1 Stochastic integral equations

We will define the notion of stochastic differential equasdirst.

We want to construct stochastic processes where the viekaite given as func-
tions of time and position, and that have in addition a stetbaomponent. We will
consider the case where the stochastic component comesfBrownian motion,
B:. Such an equation should look like

dX = b(t,X)dt + o(t,X)dB, (4.1.1)

with prescribed initial condition¥y = Xp. The interpretation of such an equation is
not totally straightforward, due to the tera(t, X )dB. We will interpret such an
equation as the integral equation

t t
X =%+ [ bsX(s)ds+ [ ofsX(s))dE, (4.12)

where the integral with respect Bis understood as the Itd stochastic integral de-
fined in the last chapter. The functiobgr are in the most general setting assumed
to be locally bounded and measurable.

The questions one is of course interested are those of Bg&stnd uniqueness
of solutions to such equations, as well as that of propedfie®lutions. We begin
by discussing the notions of strong and weak solutions.

4.2 Strong and weak solutions

We will denote byw the Polish spac€(RR ;. ,R") of continuous paths and we denote
by 2# the corresponding Boref-algebra, and by#% = o{xs,s < t} the filtration
generated by the paths up to time

73
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The formal set-up for a stochastic differential equatiorolaes an initial con-
ditions and a Brownian motion, all of which require a proligbspace. We will
denote this by

(Q,# P {#},E,B), (4.2.1)

where

() (Q,7#,P {%}) is afiltered space satisfying the usual conditions;
(ii)B is a Brownian motion (oiRY), adapted taZ,
(ii¢ is a.#p-measurable random variable.

The minimal orcanonicalset-up ha®2 = R"x W, P = u x Q, whereu is the law of
¢ andQ is Wiener measure ang; the usual augmentation @0 =0{&,Bs,s<t}.
The precise definition gfath-wise uniqueness a SDE is as follows:

Definition 4.1. For a SDE, path-wise uniqueness holds, if the following bokbr
any set-upQ,.7,P,{.%},&,B), and any two continuous semi-martingalesnd
X/, such that t

/O(|b(s,xs)|+ |0 (s, Xs)|2)ds < oo, 4.2.2)
and the same condition f& hold and both processes solve the SDE with this initial
conditioné and this Brownian motiois,

P% =X, Wi=L1. (4.2.3)

If a SDE admits for any setuf,.%# P,{%},&,B) exactly one continuous semi-
martingale as solution, we say that the SDE3act

The notion ofstrong solutiongs naturally associated with the setting of exact
SDE'’s.

Definition 4.2. A strong solution of a SDE is a function,
FR"xW =W, (4.2.4)

such that _
FY%) c B(R™) x 4.Vt >0, (4.2.5)

and on any set-up,.% P,{%},¢&,B), the process
X=F(&,B)
solves the SDE%%is the augmentation of4 with respect to the Wiener measure.

Existence and uniqueness results in the strong sense caoMamn a very simi-
lar way as in the case of ordinary differential equationsygi&ronwall’s inequality
and the Picard iteration scheme.

The general approach is to assume local Lipshitz condittorsove existence of
solutions for finite times, and then glue solutions togethndil a possible explosion.

Let us give the basic uniqueness and existence resultsitedlyedue to 1td.
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Theorem 4.3.Assume that and b are bounded measurable, and that in addition
there exists an open set R, and T > 0, such that there exists K =, s.t.

|0(t,%) — o(t,y)| +[b(t.x) ~ b(t.y)| < K|x—yl (4.2.6)

forallx,ye U,t <T.Let XY be two solutions of (4.1.2) (with the same Brownian
motion B), and set
T=inf{t>0:X% ¢UorY; ¢U}. (4.2.7)

Then, ifE[Xo — Yo]? = 0, it follows that
PX(tAT)=Y(tAT),YO<t<T]=1 (4.2.8)

Proof. The proofis based on Gronwall’'s lemma and very much like gtemninis-
tic analog. We compute

E [max(X(s/\ T)—Y(SA r))z] (4.2.9)

0<s<t

0<s<t

SAT 2
< 2E [max (/O (a(u,X(u)) - G(U,Y(u)))dBu) ]

+2E | max ( / T (X (u) — b(u,Y(u)))du) 2]
ANAT

<82 | [ (otux(W) - au.¥(w)?d
t/\T

LR /O b(u,Y(u)))Zdu}

< K21+ 4E U“Tww—wmfmﬂ

< 2K2(4+t)/

t
A E [ max (X(UAT) —Y(uA r))zds} .

O0<u<s

Note that in the first inequality we used ti{at+ b)? < 2a? 4 2b?, in the second we
used the Schwartz inequality for the drift term and Dodlf’snaximum inequality
for the diffusion term; the next inequality uses the Lipaltiondition and in the last
we used Fubini’s theorem.

Gronwall's inequality then implies that

E | max (X(tAT) =Y (tAT))?| =0.

0<t<T

This is most easily proven as follows: LEbe a non-negative function that satisfies
the integral equatiori(t) < K f; f(s)ds SetF(t) = /3 f(s)ds Then
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0< % (e KF (1)) < e X (—KF(t) + f(t)) <O,

and hence'KF (t) < 0, meaning thaF (t) < 0. But sinceF is the integral of the
non-negative functiorf, this means that(t) = 0.
Thus we have in particular thB{max<i<1 |X — Y;| = 0] = 1 as claimed. O

Finally, existence of solutions (for finite times) can beyao by the usual Picard
iteration scheme under Lipschitz and growth conditions.

Theorem 4.4.Let b, o satisfy the Lipshitz conditions (4.2.6) and assume that
Ib(t,x)|? + |o(t,x)|? < KZ(1+ [x[?). (4.2.10)

Let& be a random vector with finite second moment, independent ahB let.%;
be the usual augmentatiof;, of the filtration associated with B arfd Then there
exists a continuous#;-adapted process X which issirong solutiorof the SDE
with initial condition. Moreover, X is square integrable, i.e. for any>T0, there
exists GT,K), such that, forall t< T,

E[X[* < C(K,T)(1+E[§[?)e™ TN, (4.2.11)

Proof. We define a mapk-, from the space of continuous adapted proceséed
uniformly square integrable df, T], to itself, via

t t
F(X); EE+/O b(s,xs)ds+/0 0(s,X6)dBs. (4.2.12)

Note that the square integrability B{ X) needs the growth conditions (4.2.10)
Exercise: Prove this!

Asin (4.2.9)
2
E < sup (F (X); — F(Y)t)> (4.2.13)
o<t<T
t 2
<2E <o§t“£# ( | (ox)- o(Ys»st) )
't 2
28 (é&% ( JACEEE b<vs>>ds> )
< 2K2(1+T) [ E sup (Xe—Yo)2dt
0 0<s<t
and hence

2 CkTZK 2
E( sup (FK(X»—Fk(Y)t)) < E( sup (xt—vt)) (4214
0<t<T k! 0<t<T
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Thus, forn sufficiently largeF" is a contraction, and hence has a unique fixed point
which solves the SDE. O

Remark 4.5The conditions for existence above are not necessary. Hticpiar,
growth conditions are important only when the solutions aeatually reach the
regions there the coefficients become too big. Formulatidngeaker hypothesis
for existence and uniqueness can be found for instance in Chiapter 14. Their
verification in concrete cases can of course be rather tricky

We will now consider a weaker form of solutions, in which tlwdusion is not
constructed from the BM, but the BM comes from the solutiohisTs like in the
martingale problem formulation, and we will soon see theieence of the two
concepts.

Definition 4.6. A stochastic integral equation

1 1
X =xo+/0 o(s,xs)o|35+/o b(s, Xs)ds (4.2.15)

has aweak solutionwith initial distribution u, if there exists a filtered space
(Q,7#,P,{%}), satisfying the usual conditions, and continuous martesj@ and
B, such that

(i) Bis an.%;-Brownian motion;

(i) Xo has lawy;

(i) /5 (T (s, Xs)|2 + |b(s, Xs)|)ds < », a.s., for all;
(ivY4.2.15) holds.

Definition 4.7. A solution of (4.2.15) is unique in law (aveakly uniqug if when-
everX andX/ are two solutions such that the lawsXf andX} are the same, then
the laws ofX andX’ coincide.

Example. The following simple example illustrates the differencéviEen strong
and weak solutions. Consider the equation

t
X = Xo+ /O Sign(Xe)dBs. (4.2.16)

Here we define sigix) = —1, if x < 0, and sigiix) = +1, if x > 0. Obviously,
[X]t = f3dt=t,, so for any solution, that is a continuous local martingale, Lévy’s
theorem implies that; is a Brownian motion, if it exists. In particular, we have \kea
uniqueness of the solution. Moreover, we can easily coas&rgolution: LetX; be

a Brownian motion and set

B = /:sign(xs)dxs. (4.2.17)

ThendBs = sign(Xs)dXs, and hence
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t t t
[ sign(xe)des = [ signixe?ax = [ dx =X -

so the pair(X,B) yields a weak solution! Note that the Brownian motion is con-
structed fromX, not the other way around! On the other hand, there is no wété-
uniqueness: Let, sa)y = 0. Then, ifX; is a solution, so is-X;. Of course being
Brownian motions, they have the same law. Note that the spardingB; in the
construction above would be the same. Moreover, the Brawmiation of (4.2.17)

is measurable with respect to the filtration generate@pywhich is smaller than
that of X;; thus,X; is not adapted to the filtration generated by the Browniarionot
Hence we see that there is indeed not necessarily a soldtibisSDE for anyB,
and so this SDE does not have a strong solution.

Remark 4.8The example (and in particular the last remark) is hidinga@resting
fact and concept, that ddcal time This is the content of the following theorem due
to Tanaka:

Theorem 4.9.Let X be a continuous semi-martingale. Then there existsnéirco
uous increasing adapted procegs;,t > 0}, called the local time ofX at 0, such
that

t
%] — Xo =/0 sign(Xs)dXs + 4. (4.2.18)

4 grows only when X is zero, i.e.

't
/ 1y sodls = O. (4.2.19)
JO

Proof. The proof uses It6’s formula and an applroximation of theohlde value
by C* functions. Chose some non-decreasing smooth fumitivat is equal to-1

for x < 0 and equal to+1 for x > 1. Then takefy(x) suc thatf;(x) = @(nx) with

fn(0) = 0. Then Ité’s formula gives

00X~ 006) = [ 106+ 2 [ H00dXl (8220

We denote the last term I6§}". ClearlyC" is non-decreasing, and sin€é€ vanishes
outside the intervgD, 1/n], we have that

t
/o Txegj0,1/mdCS = 0. (4.2.21)

It is also important to note thét(x) converges tdx| uniformly, andf, converges
to the sign from below.

To prove the convergence 6f, we just have to prove the convergence of the
stochastic integrals.

Now consider the canonical decomposition of the semi-mgaie X, = X +
M; + A, whereA; can be assumed of finite variation addbounded; otherwise use
localisation. We bound the stochastic integrals with resfmeM; andA; seperately.



4.3 Weak solutions and the martingale problem 79

The first is controlled be the bound

H [ tsionx) - i ams| <5 [ (signi) - £506) 7M. @.2.22
0 2 0

By the uniform convergence of the integrand to zero, it foidhat the right-hand
side tends to zero. Then Doob’s maximum inequatlity imptines

P (sup /0 7 (sign(Xe) — f4(Xe)) dMs

t<oo |-

>e| <e28 [ (san0x) - 40)°dMls

(4.2.23)
which tends to zero with. Taking possibly subsequences, we get almost sure con-
vergence of the supremum, possibly by choosing subsegsience

The control of the integral with respectAg is similar and simpler. Note that the
convergence of} is monotone. From here the claimed result follows easily.

Note that this theorem implies that in the example abBye; |X;| — 4, and since
4 depends only ofX|, the measurability properties claimed above hold.

The connection between weak and strong solutions is clavifiehe following
theorem due to Yamada and Watanabe. It essentially sayws/é@t existence and
path-wise uniqueness imply the existence of a strong seluind in turn weak
uniqueness.

Theorem 4.10.An SDE is exact if and only if

(i) there exists a weak solution, and
(i)solutions are path-wise unique.

Then uniqueness in law also holds.

The proof of this theorem may be found in [14]

4.3 Weak solutions and the martingale problem

We will now show a deep and important connection between veediltions of
SDEs and the martingale problem.

The remarkable thing is that these issues can be cooked dymimt@ the study
of martingale problems. We do the computations for the dnmeedsional case, but
clearly everything goes through in tdedimensional case exactly in the same way.

Let us first observe that, using 1td’s formula, given thateljeation (4.1.2) has a
solution, then it is a solution of a martingale problem.

Lemma 4.11.Assume that X solves (4.1.2). Define the family of operat@nGhe
space of C-functions f: R — R, as
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1,2 d

Then X is a solution of the martingale problem far. G

Remark 4.12We need here in fact a slight generalisation of the notion aftim-
gale problems in order to include time-inhomogeneous msE® For a family of
operatorss; with common domair, we say that a proces$ is a solution of the
martingale problem, if for alf : S— R in 2,

100~ [ (Gsh) 06 (4.3.2)

is a margingale. A simple way of relating this to the usualtingele problem is to
consider an procegs, X;) on the spac® . x S. Then the operato® = (¢ + Gt)
can be seen as on ordinary generator with domain a sub8Raf x S). If f isin
this domain, the martingale should be

M = f(t,%) — f(0,Xo) — /(:(dsf(s,xs) + (GsF) (s, Xs))ds (4.3.3)

Restricting the domain d® to functions of the forn (t,x) = y(t)g(x), this reduces
to

Ve = 9O0Y(D) - 900)0(0) — [ (Br(9306) + (G006 Iy(S)ds  (43.4)

We see immediately, by settingt) = 1, that is(t, X ) makes (4.3.4) a martingale,
thenX; solves the time dependent martingale problem (4.3.2). ®wther hand it

is also easy to see thatff makes (4.3.2) a martingale thénX;) makes (4.3.4) a
martingale. Note that we have seen this already in the dpssay(t) = exp(At).

Proof. For later use we will derive a more general result. EefR, x R — R. We
use Ité’s formula to express

(LX)~ 1050 = [ af(sX)dst [ afsx)ax  (435)
JO 0
1 t
+5 || a2i(s XdiX]s

Now
dXs = b(s,Xs)ds+ o (s, Xs)dBs.
We set .
My = % — / b(s, Xe)ds
JO

and note that thisis by (4.1.2) equaljﬁjo(s, Xs)dBs, and hence a martingale. More-
over,

M}, = /: (5, X6)2d[B]s = '/: (s X6)2ds
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Hence
f(t,%)—f(0,X) = /Otﬁxf(axs)b(s,xs)ds
+ '/(: osf (s, Xs)ds—i—%'/(;t 0(s,Xs)02f (s, Xs)ds
+ /0 tﬁxf(s,xs)dMs,
or

f(t,%) — (0, %) — /;[asf(s,str(Gf)(s,xs)]ds= —/(;tﬁxf(s,xs)dMs, (4.3.6)

where the right-hand side is a martingale, which meansXtsatives the martingale
problem, as desired.O

This observation becomes really useful through the corvesult.

Theorem 4.13.Assume that b andr are locally bounded as above and assume
that in additiono ! is locally bounded. Let Gbe given by (4.3.1). Assume that X
is a continuous solution to the martingale problem (& J,), then there exists a
Brownian motion, B, such th@K, B) is a solution to the stochastic integral equation
(4.1.2).

Proof. We know that for everyf € C*(R),
t
(%)~ £00) - [ (Gsf)(s X)ds (4.3.7)
is a continuous martingale. Choosif(x) = x, it follows that

X —Xo— /: b(s, Xs)ds= M, (4.3.8)

is a continuous martingale. Essentially we want to showttiiatmartingale is pre-
cisely the stochastic integral term in (4.1.2). To do thig, meed to compute the
bracket ofM. For this we consider naturally (4.3.7) wiftfx) = x2. To simplify the
notation, let us assume without loss of generality ¥t 0. This gives

t t ~
X2—2 /O Xsb(s, Xs)dS— /0 02(s,Xs)ds— M, (4.3.9)

whereM is a martingale. Thus
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it it 2
M2 = X2 — 2% / b(s, Xs)ds+ ( / b(s, Xs)ds) (4.3.10)
Jo Jo
-t it =R
—2 / Xeb(s, Xs)ds+ / 02(s, Xs)ds-+ N
0 0
t t 2
~ 2% / b(s, Xs)ds-+ ( / b(s, Xs)ds) .
0 0
| claim that
t t t 2
2 / Xeb(s, Xs)ds— 2% / b(s, Xs)ds-+ < / b(s, Xs)ds> (4.3.11)
0 0 0
is also a martingale. By partial integration,

't ot 1 S
/0 Xeb(s, Xs)dS = X /O b(s, Xs)ds— /O /O b(u, X)dudX.

Thus (4.3.11) equals

t s t 2
_2/ / b(u, X)dudX+ </ b(axs)ds>
0 Jo 0
t s
— —2/ / b(u, Xu)dudM,
Jo Jo
which is a martingale. Hence
t
M2 — / 02(s,Xs)ds (4.3.12)
0
is a martingale, so that by definition of the quadratic vasiaprocess,
t
/ 02(s,Xs)ds= [M];.
0

Now set

J— .t 1
B(t) :'/0 g™

Bl = | sancpdMe=t

so by Lévy’s theoremB(t) is Brownian motion, and it follows tha{ solves (4.1.2)
with this particular realization of Brownian motiond

Then

We can summarize these findings in the following theorem.

Theorem 4.14.Let PY be a solution of the martingale problem associated to the
operator G defined in (4.3.1) starting in y. Then there exastgeak solution of the
SDE (4.1.2) with lavi?Y. Conversely, if there is a weak solution of (4.1.2), themghe
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exists a solution of the martingale problem for (4.3.1). dlréness in law holds if
and only if the associated martingale problem has a uniqlgisn.

In other words, solutions of our stochastic integral equredire Markov processes
with generator given by the closure of the second ordepte)idifferential operator
G given by (4.3.1). To study their existence and uniquenesscan use the tools
we developed in the theory of Markov processes. Note thattate she theorem
without the boundedness assumptionoort from Theorem 4.13, which in fact can
be avoided with some extra work.

As a consequence, we sketch two existence and uniquenels fesweak so-
lutions.

Theorem 4.15.Consider the SDE with time-independent coefficients,
dX = b(X) + o (X)dB, (4.3.13)

in RY where the coefficients land gij are bounded and continuous. Then for any
measureu such that

[ X7 < e, (4.3.14)
for some m> 0, there exists a weak solution to (4.3.13) with initial meagu.

Proof. We only have to prove that the martingale problem with getoera
1
Gf(y) =Y byaty) +3 Zkaik(y)okj(y)ddj f(y),
i i.J,

for f € C3(RY) has a solution. To do this, we construct an explicit solufana
sequence of operato@" that converge t@ and deduce from this the existence of
the solution of the martingale problem fGr

To do this, Ieltj(n) = j27"and setp(t) = tj(m]l @ . Then set

te[t}”) A7)
b™(t,y) =b(y(ah(t)), o™ (t,y)=o(y(gn(t)).
Then define the processﬁt&n> by

X\ = & (4.3.15)

X = X0+ X @)= 4") + o) B Byo).t e (1774

We will denote the laws of the processé¥) by P(". One easily verifies that the
processeX (" solves the integral equation

t t
ALJ / b (s, X(M)ds+ / o™ (s X()d B (4.3.16)
0 0

But thenX (™ solves the martingale problem for the (time dependent)aiper
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GV = 3 YAy + 5 3 0 (tY)a (tY)adif(y(V). @3.17)
I

The first thing to show is that the laws of this family of proses are tight. For
this one uses the criterion given by Proposition 7.21. Thecbiagredient is the
following:

2
[ %" - X" " < Cat—9)" (4.3.18)

for0<t,s< T, whereCy, is uniform inn and depends only on the bound on the
coefficients of the sde. Moreover,

E[IX" 2" < C, < o (4.3.19)

by assumption. To prove (4.3.18), we write

(M 2 t IO
IEHX{ X" < g /Sbn(u,xu )du (4.3.20)
t (n) 2m
+E /an(u,xu )dB, (4.3.21)
S
om (n) 2m
< (t—92"E sup |[bn(u, X )H (4.3.22)
ue(st]
't (n) 2 m
+KmIE(/ \on(u,xu )] du) (4.3.23)
JS
< C(m)(t—9)™ (4.3.24)

Here we used the inequality (valid for local martingales
E[M*™ < KnE[M]", (4.3.25)

for the martingalq; o(u,XM)dB,. This inequality is a special case of the so-called
Burkholder-Davis-Gundy inequality, which we will statecaproof below.

Then Prohorov’s theorem implies that the sequence is dondity compact, so
that we can at least extract a convergent subsequence. Mencey assume that
P(" converges weakly to some probability measBteWe want to show that the
process whose law B* solves the martingale problem for the operagor

For f € C3(RY), one checks thas(" f (y) — G f(y). Then Lemma (3.55) implies
thatP* is a solution of the martingale problem and hence a weakieaolof the sde
exists. O

Remark 4.16Note that we cheat a little here. Namely, the opera®rand the form

of the approximating integral equations are more geneaal thhat we have previ-
ously assumed in that the coefficiebt8 (t,y) ando(" (t,y) depend on the past of
the functiony and not only on the value gfat timet. There is, however, no seri-
ous difficulty in generalising the entire theory to that case only crucial property
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that needs to be maintained is that the coefficients remairpssive processes with
respect to the filtratior#.

Remark 4.17The preceeding theorem can be extended rather easily toades c
whenb and o are time-dependent, and even to the case when they are lshunde
continuous progressive functionals.

Remark 4.18The boundedness conditions on the coefficients can be sxplae
the condition
Ib) |2+ o> <K (1+]yl?), (4.3.26)

if the bound for the initial condition holds for sonme> 1. The proof is simiar to
the one given above, but requires to bound a moment of thermamiof X" via a
Gronwall argument together with the BDG inequalities. bie#his as an exercise.

We now state the Burkholder-Davis-Gundy inequality.

Lemma 4.19.Let M be a continuous local martingale. Then, for every ®, there
exist universal constantskKy, depending only on m, such that, for any stopping
time T,
2m
KB MJP < < sup |Ms|) < KnEM]D. (4.3.27)
0<s<T
Proof. The following proof (which is taken from [14]) is based on todlowing

simple lemma, called the “gootl inequality”. It is a nice eexample of how to use
the margingale property to prove powerful inequalities.

Lemma 4.20.Let X,Y be non-negative random variables. Assume that theresexist
B > 1, such that for alA >,d > 0,

P(X>BAY <S8A) < PSP (X > A), (4.3.28)

where(d) | 0, asd | 0. Then for any function positive, increlasing function F
R} — Ry, such that KO) = 0 andsup. % < o, there exists a constant C such
that

EF (X) < CEF(Y). (4.3.29)

Remark 4.21Clearly, anyF (x) = X™, for anym > 0, satisfies the hypothesis of the
lemma trivially, sincgax)™/x™ = a™ does not depend on

Proof. The statement is non-trivial only EEF (Y) < . We may also assume that
EF (X) < . Now choosey such that for allx, F(x/) > yF(x). Such a number
must exist be hypothesis ¢h We integrate both sides of (4.3.28) w.Ft.dA ) and
get, using partial integration,
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WEEF(X) > [ F(N)E 2 x5 (4.3.30)

:E(/OX/BF(dA)—/OY/éF(dA)>+

=EF(X/B)—EF(Y/9)
> yEF (X)) —EF(Y/9).

Now we solve this foiF (X) to get

EF(Y/9)
EF(X) < ———=~ 4.3.31
Y=y ) @330
We can choosé so small thaty(d) < y/2. Then there existg such thaF (x/d) <
uF(x), for all x> 0. This proves the inequality wit = 2 /y. O
We have to establish the inquality (4.3.28) %r= M} = supt M; andY =

[M]%/Z. Recall that for any continuous marting®estarting in zero, fory = inf(t :
N; = x), anda< 0<b,
P(1p < Ta) < —a/(b—a). (4.3.32)

Now fix B > 1,A > 0,and 0< & < (B —1). Sett =inf(t : [M¢| > A). Define
Ne = (Meyr —Mr)? = ((M]esr — [M)y). (4.3.33)

One easily checks théf is a continuous local martingale. Now condsider the event
{M; > BA, [M]%/2 < 0A}. Now on this event, we have that

suph; > (B —1)2A2 - 5%A2, (4.3.34)
t<T

and
i > —5%A2. 3.
t'QiN‘— oA (4.3.35)

This implies that on this everlt hits (8 —1)°A2 — 52A2 before—52A2, and so by
(4.3.32),
P (M1*— > BA,MJY2 < A |yz) <32/(B-1)7 (4.3.36)

From this it follows that

P (M7 > BA MY <62 ) < 62/(B— 1P (T < T) = d?/(B — 12P(IM | > A).
(4.3.37)
This proves (4.3.28) and hence

EF (M}) < CEF (M]¥?). (4.3.38)

The converse inequality is obtained by the same procedurehmsing ofY = My
andX = [Mﬁ/z. O
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A uniqueness result is interestingly tied to a Cauchy proble
Lemma 4.22.If for every fe C3 (RY) the Cauchy problem

au(t,x)
ot
u(0,x) = f(x), xeRY

= (GU)(t,x), (t,X) € (0,00) x RY (4.3.39)

has a solution in €[0,) x RY) nC(12)((0,00) x RY) that is bounded in any strip
[0,T] x RY, then any two solutions of the martingale problem for G wita same
initial distribution have the same finite dimensional disitions.

Proof. Given the solutioru let g(t,x) = u(T —t,x). Theng solves, for <t <T,

a9(t,x)

S T (Gs9)(tX) =0, (t,x) € (0,00) x RY (4.3.40)

o(T.x) = f(x), xeRd

Then it follows from (4.3.6) thag(t, X ) is a local martingale for any solution of the
martingale problem. Hence

Ex f (Xr) = Exg(T, Xr) = Exg(0,Xo) = g(0,X), (4.3.41)

is the same for any solution. This implies uniqueness of tteedimensional distri-
butions. O

Now Theorem 3.50 implies immediately the following corojla

Corollary 4.23. Under the assumptions of the preceeding lemma, weak urégaen
holds for the SDE corresponding to the generator G.

4.4 Weak solutions from Girsanov’s theorem

Girsanov’s theorem provides a very efficient and expliciég wf constructing weak
solutions of certain SDE’s.

Theorem 4.24.Consider the stochastic differential equation
dX =b(t,X%)+dB, 0<t<T, (4.4.1)
for fixed T. Assume that:H0, T] x RY is measurable and satisfies, for some:ko,
[[b(t,x)[| < K(1+[x]]). (4.4.2)

Then for any probability measuge on RY there exists a weak solution of (4.4.1)
with initial law u.
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Proof. Let X be a family of Brownian motions starting ke R under laws>. Then

z= exp</0t b(s, Xe) - dX — %/Ot |b(s,Xs)|2ds) (4.4.3)

is a martingale unde®. Thus Girsanov's theorem says that under the mea3ure
such that‘é%: = Zr, the process

W E><t—><o—/0t b(s, Xs)ds (4.4.4)

for 0 <t < T is a Brownian motion starting in 0. Thus we have a git\W ) such
that

t
X =Xo+ [ b(s Xe)ds+ W, (4.4.5)

holds for 0<t < T, andW is a Brownian motion, unde@y. This shows that we
have a weak solution of (4.4.1).0

A complementary result also provided criteria for uniquxmie law.

Theorem 4 25.Assume that we have weak solutiok§), W), i = 1,2, on filtered

spaceg Q0,70 P0), 21y of the SDE (4.24) with the same initial distribution.
If

T _

p() [/ Ib(t, %" |2dt < oo} ~1, (4.4.6)
fori=1,2, then(X® W) and(X@ ,W®@) have the same distribution under their
respective probablllty measur@é'

Proof. Define stopping times
. -t .
i) =T Ainf {o <t<T: / b, X" ||2dt = k} . (4.4.7)
0

We define the martingales

(i)

Et(">(x<i>):exp<— /Omk b(s, X" )dwd” — /Omk (s, X )|2ds>, (4.4.8)

and the corresponding transformed measﬁﬁ'%sThen by Girsanov’s theorem,

)
X = x ¢ / Nds+w! (4.4.9)
is a Brownian motion with unital distributioa, stopped atlii). In particular, these

processes have the same lawifer 1,2. Now thew () and the stopping timqui>
can be expressed in terms of these processes, and prababilievents of the form
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1O W) 0 W) e ol =t}

for any collections; <t <--- <t, thus have the same probabilities. Passing to the
limit k 1 o0 using that due to our assumpti(ﬂ’\(,i)[ré') =T] — 1 we get uniqueness
in law for the entire time intervdD, T]. O

4.5 Large deviations

In this section we will give a short glimpse in what is know he theory of large
deviations large deviationis the context of simple diffusions. | will emphasize the
use of Girsanov’s theorem and skid over numerous otherastieg issues. There
are many nice books on large deviation theory, in partid@a4, 8].

We begin with a discussion &childer’s theorenfor Brownian motion.

A we know very well, a Brownian motioB; starting at the origin will, at time
t, typically be found at a distance not greater tRérfrom the origin, in particular,
B/t converges to zero a.s. We will be interested in computingthbabilities that
the BM follows an exceptional path that lives on the $ali formalize this idea, we
fix a time scalél (which we might also call A<), and a smooth patp: [0, 1] — R¢.
We want to estimate

| sup [T er - v(9) <. (45.1)
0<s<1

It will be convenient to adopt the notatidii ||cc = SURy<s<1 || T(S)||. We will first

prove a lower bound on the probabilities of the form (4.5.1).

Lemma 4.26.Let B be Brownian motion, setle T 1Brs and lety be a smooth
path inRY starting in the origin. Then

1/ .
imlimT~1 T Vo < el >— z——/ 2 5.
lim fim T InP[[B" —vle <] > -1(y)= -3 | [Vs)lI"ds (4.5.2)

Proof. For notational simplicity we consider the case= 1 only. Note thaBB] =
T 1Bt has the same distribution @s 1/2Bs. Thus we must estimate the probabili-
ties

P [suple—VTyv) < vTe]. 453)
To do this, we observe tr;at by Girsanov’s theorem, the psoces
Bi=B—VTy(t) (4.5.4)
is a Brownian motion under the meas@elefined through

d t_ t .
& —oo(VT [ e 5 [[lits|Pds). (4.5.5)
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Hence
P|[B~VTylo < VTe| (4.5.6)
=P [l < vTe]
=Eq [efﬁfol V(S)stJrIZfolHy(s)szs]ngHwSﬁg}
= Eq [e VTS T RIOI g ]

—eth IMI*(s)dsq [”gnm < \/-T-g} Eg [e\/ffoly(s)dés

Bl < ﬁe]
= e ERIV 8], < vTe| By [eﬁf&V(S>st’”B|m < ﬁg} ,
Now we may use Jensen’s inequality to get that
Ep [ VTRV |B|, < vTe] (4.5.7)
> exp( —vTEz | 1'v<s>dssy||8|m <vTe] ) =1

On the other hand, it is easy to see, using e.g. the maximuwati¢y, that, for any
>0,

lim P (1Bl < vTe| =1 (4.5.8)

Hence,
t
|irTnTinfT*1|nP [HB— VTY|o < \/fs} > —%/ |y(s)||>ds (4.5.9)
o 0

which is the desired lower bound O

To prove a corresponding upper bound, we proceed as follews € N and set
tx =k/n, k=0,...n. Seta = T/n. LetL be the linear interpolation & such that
for all ty, B{( = Ly,. Then



4.5 Large deviations 91

n
P[IB"—Llw>d] < 5P . max ||B[T—Lt||>5}

= kst

<nP| max B — L] > 5]

|0<t<a

— P | max ||B[—%Ba|\ > 5\/T]

[0<t<a

< nP | max ||B[—%Ba|\ > 5\/T]

[0<t<a

< nP | max ||B| > 5\/f/2} ,
l0<t<a

where we used that max<q [|B; — +Bq|| > x implies that maygiq || B[ > x/2.
The last probability can be estimated using the followinganential inequality (for
one-dimensional Brownian motion)

2
P[ sup |Bs| > xt] < 2exp<—x—t) (4.5.10)
0<s<t 2

which is obtained easily using that = exp(aB[ — %azt) is a martingale and ap-
plying Doob’s submartingale inequality (see the proof & ttaw of the iterated
logarithm in [1]).

This gives us

P | max ||B| > 6ﬁ/2] < dP [ max |B| > 5\/T/2\/H} (4.5.11)
o<t<a o<t<a

32%nt
< =2de "B

and so
T 752|"IZT
P[IB" —L|lw > 8] <n2e” s (4.5.12)
which can be made as small as desired by choasiagye enough.

The simplest way to proceed now is to estimate the probwltfilét the value of
theaction functionall, onL, has an exponential tail with ralg i.e. that, fom large
enough,

limsupT 1InP[I(L) > A] <A. (4.5.13)
Ttoo

This is proven easily using the exponential Chebyshev iakgusince

1dn

w="1sy g 2
()_EK; —Ei;r’i

wheren); are iid standard normal random variables. But

T T
’B[k+l - B[k

Ee”T’ < Cy < w,
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forall p <1, and so

[le Zn, >)\] e PATREPIL7/2 (4.5.14)
—PAT ~nd
<ePCy

forall p < 1, and so (4.5.13) follows, for any.
We can deduce from the two estimates the following versicgh®tipper bound:

Proposition 4.27.Let Ky = {@: (@) <A}. Then

limsupT ~InP [dist(B,K,) > 8] < —A. (4.5.15)
TToeo

Clearly the meaning of this proposition is that the prokigbtb find a Brow-
nian that is not near a path whose action is less thdras probability less than
exp(—AT).

The two bounds, together with the fact that the levelskgtf | are compact (a
fact we will not prove), imply the usual formulation ol@rge deviation principle

Theorem 4.28.For any Borel set AW,
— inf 1(@) <liminfT-InP[BT € A 4.5.16
a! (9 < I T inE (8 <A (4519
< limsupT tInP [BT € A] < —infl(g),
THoo yeA
whereintA andA denote the interior respectively closure of A.

The next step will be to pass to an analogous result for théisal of the SDE
(4.4.1) with a scaled down Brownian term. i.e. we want to abersthe equation

X =T712B + /0t b(Xs)ds (4.5.17)

(for notational simplicity we take zero initial conditionsThe easiest (although
somewhat particular) way to do this is to construct the mapVv — W, as

F(y)=f, (4.5.18)

wheref is the solution of the integral equation
/ b(f(s))ds+ y(t). (4.5.19)
We may use Gronwall's lemma to show that this mapping is cootils. TherX =

F(BT), and
P[X € Al =P[B" e F1(A)]. (4.5.20)
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Hence, since the continuous map maps open/reps. closeith £gtsn/resp. closed
sets, we can use LDP for Brownian motion to see that

PX €Al < sup I(y)= sup I(y)=supl(F(y)), (4.5.21)
yeF—1(A) F(y)eA yeA

and similarly for the lower bound. Hence the prock¥sssatisfies a large deviation
principle with rate function(y) = 1 (F~1(y)), and since

F (0 =0 - [ ble)ds

_ 1
) =3 [ I—bow)?ds 4522

This transportation of a rate function from one family of geeses to their image is
called sometimes eontraction principle
Properties of action functionals

. The rate function (y) has the form of a classical action functional in Newtonian
mechanics, i.e. it is of the form

t
l(v)=/o Z(y(s),y(s),9)ds (4.5.23)
where the Lagrangia, takes the special form

Z(¥(s),%(9),8) = [|¥(s) — b(y(s),9) 3. (4.5.24)

The principle of least action in classical mechanics thatestthat the systems fol-
lows a the trajectory of minimal action subject to boundasgditions. This leads
to the Euler-Lagrange equations,

d o . 0 )
In our case, these take the form
Pty = Zoy(t).0) + bly(t).0) = biyv).1) (4.5.26)
dtzy - 0t y 9 y 9 ay(t) y b . gt

One can readily identify a special class of solution of tleisod order equation,
namely solutions of the first order equations

y(t) = b(y(t),1), (4.5.27)
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which have the property that they yield absolute minima efdhtion,| (y) = 0. Of

course, being first order equations, they admit only one 8atyor initial condition.
Typical questions one will ask in the probabilistic contase: what is the proba-

bility of a solution connecting andb in timet. The large deviation principle yields

the ansert

I(y)) , (4.5.28)

ano—a|Sd,|><t—b|g6]~exp(—e1 inf
=a,y!

y-y(0)=ay(t)=b

which leads us to solve (4.5.26) subject to boundary camhty(0) = a, y(t) =
b. In general this will not solve (4.5.27), and thus the optis@ution will have
positive action, and the event under consideration willhaw exponentially small
probability. On the other hand, under certain conditions wray find a zero-action
solution if one does not fix the time of arrival at the endpoint

P[|Xo—al <d,|X —b| < ,for somd < o]

~ —e! inf | : 4.5.29
exp< ¢ y.y(o):a,y(tl)rlb,for someco (V) ( )
Clearly the infimum will be zero, if the solution of the initizalue problem (4.5.27)
with y(0) = a has the property that for sorhe oo, y(t) = b, or if y(t) — b, ast 1 c.

Exercise.Consider the case of one dimension wittt) = —x. Compute the minimal
action for the problem (4.5.28) and characterize the sd@natfor which a minimal
action solution exists.

A particularly interesting question is related to the sdexbdxit problemAssume
that we we consider an event as in (4.5.29) that admits anamion pathy, such
thaty(0) = a,y(T) = (b). Define the time reversed paftit) = y(T —t). Clearly

%y(t) = —y(T —t). Hence a simple calculation shows that

T _ .
7)1 =2 [ biys)-Asids= [biyidy. 4530

Let us now specialize to the case when the vector figdtthe gradient of a potentia,
b(x) = OF(x). Then

/yb(v)dv= F(y(T)) —F(y(0)) =F(b) - F(a). (4.5.31)
Hence

I(y) =1(y)+F(b)—F(a), (4.5.32)

If I(y) =0, thenl (y) = F(b) — F(a), and this is the miminal possible value for any
curve going fromb to a. This shows the remarkable fact that the most likely path
going uphill against a potential is the time-reversal of sb&ution of the gradient
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flow. Estimates of this type are the basis of the so-calledt¥édinFreidlin theory

[8].

4.6 SDE’s from conditioning: Doob’sh-transform

With Girsanov’s theorem we have seen that drift can be predtitrough a change
of measure. Another important way in which drift can ariseasditioning. We have
seen this already in the case of discrete time Markov chaigain we will see that
the martingale formulation plays a useful réle.

As in the discrete case, the key result is the following.

Theorem 4.29.Let X be a Markov process, i.e. a solution of the martingatdofam
for an operator G and let h be a strictly positive harmonic dtion. Define the
measuréPh s.t. for any.%; measurable random variable,

1
h(x)

ThenPh is the law of a solution of the martingale problem for the aer G
defined by

Ey[Y] =

Ex[n(X%)Y]. (4.6.1)

(G')(x) = Wlx)(th)(X)' (4.6.2)

As an important example, let us consider the case of Browmiation in a do-
mainD c RY, killed in the boundary oD. We will assume thab is a harmonic
function inD and lettp the first exit time oD. Then

1, Oh
G'=ZA+—-0
2R

and hence under the la#f, the Brownian motion becomes the solution of the SDE

_ Oh(X)
A(X,)

On the other hand, we have seen thal, ig the probability of some event, e.g.

dX

dt+dB. (4.6.3)

H(X) = Px[Xqp € A,

for someA € dD, then
P[] = P[-|Xep € A (4.6.4)

This means that the Brownian motion conditioned to Exih a given place can be
represented as a solution of an SDE with a particular drit.iRstance, led = 1,
and letD = (0,R). Consider the Brownian motion conditioned to le@vatR. Itis
elementary to see that
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Py[Xr, = R = X/R.

Thus the conditioned Brownian motion solves
dX = %dH—dBt. (4.6.5)

Note that we can tak@ 1 o without changing the SDE. Thus, the solution of (4.6.5)
is Brownian motion conditioned to never return to the origihis is understandable,
as the strength of the drift away form zero goes to infinityi¢gly) near 0. Still,
it is quite a remarkable fact that conditioning can be eyactproduced by the
application of the right drift.

Note that the process defined by (4.6.5) has also anotheapiatation. Let
W = (W, ..., Wy) bed-dimensional Brownian motion. S& = ||W(t)]||2. ThenR
is called theBessel proceswith dimensiond. It turns out that this process is also
the (weak) solution of a stochastic differential equatiwarmely:

Proposition 4.30.The Bessel process in dimension d is a weak solution of

d_ d 4.6.6
R R+B‘ ( )

Proof. Let us first construct the Brownian moti@&p from thed-dimensional Brow-
nian motiondV as follows. Set

tW(s)
o Rs

d
LY

The processes iB[(') are continuous square integrable martingales since

(/ Re dW > /< )dsgt;
Bl = S BY,B0) = Z/: (V%:))st,:t,

1)

BV = [ =-Zdw(s)

and

Moreover the

so by Lévy’s theoremB is Brownian motion. Thus we can write (4.6.6) as

1d-1
dR = ZthW +§Tdt

But this is precisely the result of applying 1t6’s formulattee functionf(W) =
|IW||2. Note that this derivation is slightly sloppy, since thedtion f is not differ-
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entiable at zero, but the result is correct anyway (for a/ftiforous proof see e.g.
[12], Chapter 3.3). O

In particular, we see that the one-dimensional Brownianianatonditioned to
stay strictly positive for all positive times is the 3-dinséonal Bessel process. This
shows in particular that in dimension 3 (and trivially higheBrownian motion
never returns to the origin. Looking at the SDE describiregBlessel process, one
might guess that the value df as soon ad > 1, should not be so important for this
property, since there is always a divergent drift away from/8 will now show that
this is indeed the case.

Proposition 4.31.Let R be the solution of the SDE (4.6.6) with>d2 and initial
condition R =r > 0. Then

Pvt>0:R >0 =1. (4.6.7)

Proof. Let firstr > 0. Let
rkzinf{tZO:thk*k},

ox=inf{t>0:R =k}
andT, = ¢ A ok An. Now use td’s formula for the functioh(Ry, ), whereh(x) =
x99t if (d—1)/2=a # 1, andh(x) = Inx, if d = 2. The point is thah

1-a

is a harmonic function w.r.t. the operatGr= dd—jz + a%%, and hencdh(R) is a
martingale. Moreover, sinck is a bounded stopping time, it follows that

Er [h(Ry)] = h(r). (4.6.8)
Finally,
E [h(Ry)] = h(K)P; [T« = 0] + h(k *)P; [Ti = i) + h(Bn)P; [T« =n].  (4.6.9)
Hence

kf(afl)krfowl’ ifd 75 2,
g ifd=2.

(4.6.10)

PrTk=1] < h?lir)k) < {

Now all what is left to show is tha®[n < 1 A 0] | 0, asn 1 . But this is obvious
from the fact thaR >r + By, andPy[B; < n| tends to zero as 1 «. Hence,

Mﬂ PrTic= 1] = Pr[tc < 0y

which in turn tends to zero with. Now sett = inf{t > 0: B; = 0}. For everyk,
Tk < T, so that, again sincey T «, a.s.,

P[1 < 0] < Ilem Prt<agy < Ilem P, [tk < 0x] = 0. (4.6.11)
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This proves the case> 0. Forr = 0, just use that, by the strong Markov property,
foranye > 0,

Po[R > 0,Ve <t < o] =EgPg,[[R >0,V0 <t < o] =1, (4.6.12)
sincelPy[Re > 0] = 1. Finally lete | O to complete the proof. O

Remark 4.32The method used above is important beyond this example slaha
useful generalization in that one need not chosehfarharmonic function. In fact

all goes through ih is chosen to be super-harmonics. In many situations it may
be difficult to find a harmonic function, whereas one may wellble to to find a
useful super-harmonic function.



Chapter 5
SDE'’s and partial differential equations

Already in the context of discrete time Markov processes weehseen that the
martingale problem formulation of Markov processes leadart interesting con-
nection between probability theory and linear boundaryegroblems. In the case
of stochastic differential equations, this connectionsdnee even more profound
leads to the connection between diffusion processes aredipattheory which can
be seen as one of the mathematical highlights of stochastilysis. The classical
case relates only to Brownian motion, but the extension toengeneral second
order stochastic differential equations is quite strafgimvard. Note that we will
henceforth switch notation and denote generator&bsather tharG, as the letter
G will be needed to denote Green'’s functions. For analytikemund on elliptic
partial differential equations the standard referenchastéxtbook [10] by Gilbarg
and Trudiger.

5.1 The Dirichlet problem

We consider the stochastic differential equation of thevipres chapter with time-
independent drift and dispersion matrix

dX = b(X)dt + o(X)dB, (5.1.1)

in RY. We have seen that the (weak) solutions of this equation ai@ag Markov
process with generator whose restrictio€fgR?) is given by

P d 92 d b2 ,
—Qi;a“(x)—axmxj +i; () 35 (5.1.2)

where thediffusion matrix ais given by

99
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d
aij(x) = 5 ow(X)0kj(x). (5.1.3)
k=1

In the sequel we will always assume that the dispersion mati$ non-degenerate
and hence the diffusion matrix is strictly positive, i.er &l x € RY, a(x) defines a
strictly positive quadratic form. ks strictly positive, then the operat¢f is called
elliptic. If in some domairD ¢ R¢,

> aij(x)é&i&; > JHE
]

for all x € D, then we callZ uniformly ellipticin D.

The classicaDirichlet problemassociated with an elliptic operat®® and a
domain,D, is described as follows (we assume here D& bounded). LeD C R
and continuous functiorgD — R, k: D — [0,), andu: dD — R be given. can we
find a continuous functiofi : D — R, such that

—(ZH)(X) +k(x)f(x) = g(x),¥xe D (5.1.4)
f(x) = u(x),vx € dD. (5.1.5)

Remark 5.1The Dirichlet problem can also be posedifs not a continuous func-
tion on the boundary ob. In that case the condition thdtbe continuous o
must be replaced by that condition that, fonadt /D, whenever a sequengge D
converges t, thenf (x,) — u(x).

Itis rather straightforward to see that the existence of@iem of such a problem
implies a stochastic representation. Namely:

Theorem 5.2.Assume that f solves the Dirichlet problem above, and let )a be
weak solution of the SDE (5.1.1). Let=inf{t > 0:X% ¢ D}. If

Extp <o, V¥YxeD, (5.1.6)

then

f(x) = Ex

f(XrD)exp(— /0 ° k(Xs)ds) (5.1.7)

+ /OTD 9(Xs) exp(— /Ot k(XS)ds> dt]

Proof. The key to this result is the following lemma:

Lemma 5.3.Let % be a filtration and X an adapted process. Leg,k € B(S).
Then f(X) — [3(.Zf)(Xs)ds is a martingale if and only if

M, = e JokOe)dsg () + /0 t e JoKOAr (X ) F(Xs) — (L) (Xs))ds  (5.1.8)
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is a martingale.

Proof. The proof of this lemma follows from Proposition 4.1.1 in [1Just choose

for M(t) the martingale (%) — [5(.Z f)(Xs)dsand forV (t) the process exp- [5 k(Xs)ds).
Then it is a slightly tedious but straightforward compudat{that uses Fubini’s the-
orem at the right moment) to show that the expression in p.i%. of the form
V(t)M(t) — [sM(t)dV(t) and hence a martingale]

We use Lemma 5.3 witly = £ f wheref solves the Dirichlet problem. Now
sincelExTp < o by assumption, we get from the optional sampling theorern tha

ExM = ExMo. (5.1.9)
But ExMo = f(x), while, due to the fact that
ExMy, = Ey [e*forD kXs)dsf (x) (5.1.10)
+ /0 e KX (1 (xe) £ (Xe) — 2T (X)) ds}

_E, [e ng k(Xs)ds¢ (Xp) + /TD e ./gk(x)drg(xs)ds}
0

which is what we claimed. O

It is interesting to note that the finiteness of the expeateadif the exit timerp is
quite easily ensured (for bounded domains) from a rathekwhiaticity condition.

Lemma 5.4.Let D be open and boundedif, and assume that for sorfe< ¢ < d,

minagy(x) > 0. (5.1.11)

xeD
ThenExTp < o, for all x € D.

Proof. Seta= min,.ga.(X), b=max,.g|b(X)|, andg = minpX,. Letv > 2b/a.
Consider the smooth functidrix) = —ue¥*, with i > 0 to be chosen later. Clearly

—Zh(x) = ue"™ (%vzagg(x) + ng(X)) > %uvae"b(v —2b/a).

Now we can chosg such that the right-hand side is larger than 1, and&ux) <

—1, forallxe D. But
tATD

h(Xarp) — A Zh(Xs)ds
is a martingale, and so
tATD
_EX o .,gh(xS)dS: h(X) — EXh()(I/\TD)a
or
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h(x) — Exh(Xarp) > Ex(t A Tp)

and hence

Ex(t A tp) < maxlh(y)| < oo.
yeD

Passing to the limit 1 co implieSExTp < 0. O

The previous results give a stochastic representationdtarfor solutions of the
Dirichlet problem, assuming that a solution to the Diri¢ipeoblem and a weak
solution of the SDE exist. One may ask whether one can usedhpigsentation

to prove the existence of solutions of the Dirichlet probPevile will address this
question in the simpler context of Brownian motion.

Brownian motion and potential theory.

Let us now consider the setting wheft€ = %A andX; is Brownian motion inRd.
Let us begin with the simplest boundary value problem

Af(x) =0, xeD, (5.1.12)
f(x) = u(x), xeaDb.

We assume that is bounded and continuous. From the theorem above, an abviou
candidate solution is
f(X) - Exu(BrD). (5.1.13)

Now f clearly satisfies the boundary conditions, and it is alschaodl to show hat
Af(x) =0 for x € D. There are various ways ti show this. Note first that we can
write, with B the semi-group corresponding to the Brownian motion stgrétx
that

(RF)(X) = Ex[(Arp>t + Arp<t) Ex [U(Brp)]] (5.1.14)
= Ex [Trp>tEx [U(Brp)]] + Ex[Arp<tEx [U(Brp)]] -

Now in the first term we can use the Markov property to see that
Ex [Urp>tEx [U(Brp )]] = Ex[U(Br, )] = (%) (5.1.15)
while the second satisfies the bound

[Ex [Bapa B [U(Bro )] | < Maxu(P o < 1], (5.1.16)

If dist(x,D) =r > 0, then is follows easily that

Py [Tpe <t] < Py [ sup |Bs| < r} < 2de*r2/2‘, (5.1.17)

0<s<t
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and in particular
Iti[rgtflPX[rD <t]=0, (5.1.18)

for anyx € D. This then implies that

1 por—1
EAf(x)_|t|[gt ([R—1]f)(x) =0. (5.1.19)
We see that all that remains to show to establish treilves the Dirichlet prob-
lem is the continuity off at the boundary ob. *
As we will see, the continuity property is linked to regutgnproperties of the
boundary oD.

Definition 5.5. Define the stopping timep = inf{t > 0 : B; € D°} (note the differ-
ence torp when we start the process in the boundanppdf A point, z<€ dD, is
calledregular, if P;[op = 0] = 1.

Thus a regular point has the property that the Brownian matiarting at it will
essentially immediately return to the boundary. An irregploint is one from which
Brownian motion can immediately escape ilto

Remark 5.6lt follows from the so-calle@lumenthal-Getood — 1-law (Lemma 5.7
below) that If a pointzis not regular, thei®,[op = 0] = 0.

Lemma 5.7.[Blumenthal-Getoor0-1-law] Let By be a d-dimensional Brownian
motion, starting in X, on a filtered spa¢@,.7, Py, .% ) where.Z is the usual aug-
mentation of the natural filtrationZ;, generated be the Brownian motion. Then, if

F € Zo, Py[F] € {0,1}.

Proof. If F € 3‘70, thenF differs from some se® € .% only by aPy-null set. But
sinceG must be of the forn = {By € A} for some Borel se, it follows that

Px[F] = Px[G] = Ia(x) € {0,1}.
O

The following theorem establishes that the Dirichlet peobis solvable (uniquely)
for bounded regular domains.

Theorem 5.8.Let d > 2 and let ze dD be fixed. Then the following statements are
equivalent:

(i) For any bounded measurable function @D — R which is continuous at z,

lim Exu(Br,) = u(2). (5.1.20)

Dox—z

1 Clearly continuity is essential: without asking it therenis point in the problem, since it would
admit lots of solutions, e.g. zero Mandu on dD.
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(ii)z is a regular point for D.
(iiifor all € >0,
lim Py[1p > €] =0. (5.1.21)
D>x—z

Proof. We first proof that (i) implies (ii). From the remark 5.6, wedm that if
the origin is irregular, thei®;[op = 0] = 0. We will use the fact that id > 2, the
probability that Brownian motion visits any given point ire, and in particular the
probability that it returns to its starting point is zero.UBhif K, denotes the ball of
radiusr aroundz,

Iri?g P;[Bop € Ki] =P;[Bg, =2 =0.

Now fix r such thal;[Bg, € Kr] < 1/4 and chose a sequengig 0 < &, < r, tending

to zero. Letr, = inf{t > 0: ||Bt|| > dn}. ThenP,[1, | 0] = 1, and so limP;[1, <

op] = 1. Moreover, on{T, < dp} we have thaB;, € D. Thus forn so large that

P,[th < op] > 1/2, we have then that

1

2 = PelBop € K] > P[Bo, €Ki, T < 0 (5.1.22)
= IEz[:“rn<o|3]P)z[BoD S Kt|jrn]

= / Pz[‘[n < UDaBTn S dx]Px[Bg'D S Kr]
. DﬁﬁKén

Y

xelg)r;]fK% ]P)X[BTD (S Kr] ./DmKdn ]P)z[.[n < O-D7 B'[n (S dX]

= inf Py[Br, € K/]P,[Tnh < 0Op]
XEDO(?K&“

1
> - inf  Py[Br € K]
~ 2xeDNdKs, x(Bro € K]

HencePy, By, € Ki]
bounded functionf, wit
such functions we get

% for somex, € DNK;,. Now choose a continuous

<
hf(z=1, f(x) <1,xeK, andf(x) =0, x ¢ K;. For

limsupEy, f (Bry) < limsupPx,[Br, € K] < % <1l=f1(2),
n n

so that (i) cannot hold. Therefore (i) implies (ii).
Let us now show that (ii) implies (iii). Notice that the furan

g5(x) = Px[Bs € D; 6 < s < g] = Ex[Pg,[TD > £ — 0] (5.1.23)
- /]P’y[TD > £~ 5]Py(Bs € dy]
is continuous irx. But

05(X) L 9(X) =Px[Bs € D;0 < s< ] =Py[op > €],
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Fig. 5.1 Setting in the proof of (i) implies (ii)

asod | 0, so thag is upper semi-continuous. This implies that

limsupP[1p > €] < limsupPx[op > €] = limsupg(x) < g(z) =0,
X—2Z X—2Z X—Z

where the last inequality comes from the regularitg,afe. (ii). Thus we have (iii)
from (ii).

Finally we show that (iii) implies (i). We start from the olvsation thafPx[maxo<i<¢ || Bt —
Bo|| < r] is independent of and converges to one as. 0. Now

Pl Br, ~Boll <1] > P | { max |~ 8ol <1 f {0 < )

> Py Ho@t@é'&” < r}] —Py[mp < ¢g].

Whenx — z, by (iii) the second term vanishes for all and lettinge | O, the first
term tends to one. Thus we get that

DQQZPX[”BTD —x|<r=1
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Thus
|Exf(Brp) — f(2)] < [Exf(Br,) — f(2)] (5.1.24)

< [Bx [ 1y xj<r(1(Bro) — (@) |
+2max|f (y) (| Bry x| = 1
yedD

Clearly all three terms vanish as— zandr | 0 by the continuity at zero and bound-
ednessof. 0O

The preceeding theorems imply that the Dirichlet problesmdanique solution
if and only if any pointin the boundary & is regular. Otherwise, no solution exists.
Moreover, the solution has the stochastic representaiidni).

Th following proposition gives a sufficient verifiable criifor regularity.

Proposition 5.9.A point, ze dD is regular if there exists a cone, A, with vertex z,
such that, for somer 0, ANK;(z) c D°.

Proof. Let C > 0 denote the fraction of the surfacef(z) that lies withinA. Let
KW =K, )n(2), andAq = AndK ™. Now 1p = 0 if Bz, € An for arbitrary largen,
ie.{tp=0}> Iimsug{BrMm € An}. Thus

A regular point

A

<Y

An irregular point

Fig. 5.2 A domain with one irregular point violating the cone-cortit
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P (1o =0] > ]P’Z[Iimnsup{BTK(n) € An}] (5.1.25)
> Iimfup]P’z[BTK(n) eA)=C>0.
The fact that thef?,[1p = 0] = 1 follows from the fact that the event in question is
in %o+ and the Blumenthal-Getoor zero-one lavz

A slightly more abstract criterion is interesting becausevolves the notion of
abarrier.

Definition 5.10.Let D ¢ RY be open and € dD. A continuous functiow: D — R
that is harmonic iD, positive inD\{a}, and zero a& is called abarrier.

Proposition 5.11.Let D be bounded and@a dD. If there exists a barrier at a, then
a is regular.

Proof. Letv be a barrier. Lef : D — R and defineM = sup,p | f(X)|. For any
€ >0, we can findd > 0, such that fox € dD and|x—a| < 9, |f(x) — f(a)| < e&.
Choosek such thakv(x) > 2M(x), for x € D and|x—a| > . Then|f(x) — f(a)| <
€+ kv(x), for allx € dD. Thus

|Exf(Bry) — f(a) < €+ KExV(Byy) < €+ kv(x),
for all x € D. Now sincev is continuous angi(a) = 0, it follows that

limsup|Exf(Bg,) — f(a)| <&,

dox—a
for all € > 0, hence condition (i) of Theorem 5.8 holds and regular. O

To show that the discussion of regular points is not emptyddook at a classical
example of a point that is not regular. This is callezbesgue’s thornLetd = 3,
and define, fok,, n € N such thatk, | 0, the sets

E={(x,%,Xs) —1<x < 1X5+x5 < 1}; (5.1.26)
Fo={(x,%, %) 12 "< x <278+ X8 < &n}; (5.1.27)
D=E\JFn (5.1.28)

neN

LetB; = (Bt(l>, Bt(s), Bt(3>) be three dimensional Brownian motion. We know form our
discussion of the Bessel-processes (Béﬁ), B§3)) will never hit the point0,0), i.e.

P [Ht >0:(8?,8Y) = (0,0)} —0.
ThusB; will never hit the compact set

Kn={(x1,%2,%s) 12 2 <3 <2 "4x5 4+ x5 =0};
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Since moreovelfB|| — o, a.s., almost all paths remain some positive distance away
form the sei,, and hence, the probability that a path enters-aeighborhood of

it can be made as small as desired by choosisgall enough. In particular, one
can choose, so small that

P[E3t>0:B e <3

But unlessB; (starting at 0) immediately returns @, i.e. if op = 0, B; must enter
the setJpen Fn, SO that

Po[op =0] < P[3t >0,3,: B € Ry (5.1.29)
< Z]P’[Et>0:B[an]§ 23*”<1.
n=1 n=1

Hence 0 is not regular.

5.2 Maximum principle and Harnack-inequalities

The relation between harmonic functions and martingalssshaumber of further
implications.
The first of these is thmean value property

Lemma 5.12.Let D be a bounded domaimp the first hitting time of a Markov
process with generata’. Let ze D be fixed. Assume th& 1p < . Defineup as
the probability measure odD given by

Hp(dX) =P, [Xq, € dX. (5.2.1)

Then, aif a function hD — R is harmonic in D, it holds that,
AD Lo (dh(X) = h(2). (5.2.2)

Proof. Use the fact that(x, ) is a martingale. O

The measureip(dx) is called theexit distribution It is absolutely continuous
with respect to the Euclidean surface measns¢dx) on dD.
An immediate consequence of the mean value property isndeémum princi-

ple:

Theorem 5.13.Let h be harmonic in an open, connected domain D. If h achieves
its supremum in D, then it is constant.

Proof. Leth(x) = sugcph(y) =M. LetDy = {y € D : h(y) = M}. Sinceh s con-
tinuous, this set is closed. Moreover, by the mean valuegstgpfor anyy € Dy,
for any ballB;(y) c D
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M:hy:/ U, (y)(d2)h(2),
(y) Joen) B (y) (d2)h(2)

which implies that forug, () -almost allz € dB; (y), h(z) = M. Since both is con-
tinuous (andug, (y) is is absolutely continuous with respect to the surface oeas
h(y) = M for all y € 9B, (y). But thenDy, is open, and being open and closed, it
must coincide wittD. O

A more subtle consequence of the martingale property fambarc functions
are theHarnack-inequalities

We consider first the case of Brownian motion. Bet- 0 and letBgr(x) the ball
of radiusR centered at. By symmetry, we have thy [Tg, ) € dZ] is the uniform
distribution ondBg(x). Hence, by the mean value property,

‘R .
h(x) = 5 /O dr [9 CERCE (5.2.3)
d

ot

fBR(X)d
= [ hojdty

V(BR) /Br(x) '

l.e., the value oh(x) equals to its spatial average over the ball of radRuslow let
y € Br(X) andr sucht thaB; (y) C Br(x). Clearly we have again that

1
) = 78 /B » h(z)d’z. (5.2.4)

Now leth be anon-negativénarmonic function. Then it follows that

r

1 V(B /Ty
) > g /B | 2= Gretshy) = (%) ho). (5.2.5)

From these basic estimates one can now derive the the Hamepkality.

Theorem 5.14.Let D' C D be two connected open sets. Let h be a non-negative
harmonic fucntion with respect to Brownian motion orcRY. Then there exists a
constant K, depending only on D/, such that

suph(x) < Kxigglh(x). (5.2.6)

xeD’

Proof. Fory € D’ chooseR such thaBsr(y) C D. Then for any two pointsg, x; €
Br(y), the previous inequalities imply that

B 1 ' d ' d
nea) = \m -/BR(Xl) n@dz= V(Br) -/BZR(Y) n@dz 527
>

1 1
hxzz—/ h(z)d%z / h(z)d%z,
(e) V(Bgr) /Bar(x) @ V(Bsr) /Bx(y) @

Hence
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sup h(x) <39 inf h(x). (5.2.8)
xeBR(Y) XEBR(Y)

Now let x; andx; in D be such thah(x;) = sup,.p h(X), h(x2) = infyepy h(X).
Now let y be a closed arc joiningg and x; in D. ChooseR such that & <
dist(y, D). This arc can, by the Heine-Borel theorem, be covered byta finimber,
N, of balls of radiusR, whereN depends only o andD’. Then we an compare
h(x1) andh(xz) by using he estimate (5.2.8) not more thitimes, hence

h(x1) < 39Nh(xp). (5.2.9)
This proves the theorem.OO

There are obvious extensions of the Harnack inequality hésownian motion
(for analytic proofs in the general case of elliptic SDE&e $10]). In fact, inspect-
ing the proof all we used on Brownian motion beyond the mgetie property of
harmonic functions was the uniformity of the exit distrilaumt on balls. Moreover, it
is clear that to get a Harnack inequalty, we do not really negfbrmity, but upper
and lower bounds on the density of the exit distribution afé@ent.

Theorem 5.15.Let X be a continuous strong solution of an SDE. Let R be a
bounded open domain. Assume that there exist cons@asits < C < o, depending
only on D, such that, for any ball#x) C D,

_ Py (XTBR € dy)

oy S C. (5.2.10)

Then any harmonic function h satisfies a Harnack inequatity, in the sense that
for any D' C D, there exists a constant K, such that (5.2.6) holds.

The proof is on the exact same lines as that of the previowse¢heand will be
left as an exercise.



Chapter 6
Reversible diffusions

In this Chapter we turn to more explicit computations in tlatext of diffusion
processes with small diffusivity. We will exploit the sonaesial structures in the
context of reversible processes.

6.1 Reversibility

The theory of Markov processes that we have developed scafabe seen as a
theory of operators acting either on bounded functions g#ai-group action of
functions), or on measures. In special cases we can repisdeytal. theory with
respect to certain measures.

Let R by a strongly continuous contraction semi-group acting spaceB(.¥).
Assume that a measune, onS, is invariant with respect tg. Then the action o
can be extended to the spacel.?(S ).

Lemma 6.1.Let f be in 12(S,u) where u is invariant with respect to P Then
(Rf) € L2 (S p).
Proof. We will show that thd_2-norm of R f is controlled by that of . Namely,

[w@ RO = [ [Reayio] ©11)
< [ ui@9 [Aedy )2 [Recay
< [ [Roxayf)? = [u@i?

Note that we used the Cauchy-Schwarz inequality and theianee ofu. 0O

Having anL2-action ofR, we can naturally define its adjoir®;, via
[ HE9T0(RE00 = [ (e (R') (g0 (6.1.2)

111
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for all f,g € L?(S,u). One may check tha®* is itself a Markov semigroup that
generates the time-reversed procesX.tm the sense thdB*f) (X ) = f(Xo).

Definition 6.2. A measurey, on Sis called reversible with respect B, if, for all
functionsf,g € L?(S ),

[ 100(ROMM(E) = [gRDEM(EY (6.1.3)

Lemma 6.3.1f u is a reversible probability measure fof,Rhenu is an invariant
probability measure forP

Proof. Clearly f = 1 isinL?(S,u). Hence we have

J R (@090 = [ (RO = [ gou(dx. (6.1.4)
for all bounded measurable functiogishenceu is invariant. O

Note that the converse is not true in general, i.e. an inmarnaeasure is not
necessarily reversible.

Thus, we may also say that that a measure is reversible veigece toR, if R is
self-adjointon the space?(S, u).

The terminology “reversible measure” is customary, butially irritating. The
reversibility property is one of the Markov process, re$g. $emi-group, and not
one of the measure. So | prefer to call a Markov semi-grougrstble, if there exits
a measurey, such tha® is symmetric in the spade?(S, u), i.e. that (6.1.3) holds.

One of the nice things is that a SCCSG that is reversible ism&raction in the
L2-space, by Lemma 6.1.

The notions above introduced through the semi-group extetite generator of
a Markov process. Thus, for an invariant meaguyae can define the adjoini’™
of a generatorZ, such that

/u (d¥)(£*q) /u (dX)g(x) (L)), (6.1.5)

for all f,g € 2() such thatZf,.#g € L?(S,u). Note that, ifu is a probability
measure, the second condition is automatically verifiedeversible Markov pro-
cess is then characterized by the fact that its generatelfiadjoint inL?(S, ) for
some invariant measuge

Theorem 6.4.Let u be a reversible measure for a Markov process. Then the gener-
ator, ., defines a non-negative definite quadratic form,

- [ m(@xgx) (1)), (6.1.6)

called theDirichlet form.
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Proof. First, due to the fact tha?’ is self-adjoint£’(f, f) is real for allf in 2(.Z).
Moreover, by definition, we have that for su€land if &(f, f) < o,

E(f, f)= Itiigtfl/u(dx)f(x)(f(x)—(Hf)(x)). (6.1.7)
But

JHE@OTR (109 = RO = [1F13,~ [ W@ THIRDX)
> £ = ¥R e = 11913 = 2l 2 = 0. (6.0.8)

where we used Cauchy-Schwarz and Lemma 6.1. This impli¢gtdimit, too, is
non-negative. O

Remark 6.5The formé&’ can be extended to the geft: £(f, f) < o} which mostly
is larger than the domain i¥#. There is an entire theory that allows to use this fact
to construct a Markov process from a Dirichlet form. For aadetl treatment, see
e.g. the book [9] by Fukushima et al..

Since.? is positive and self-adjoint, it can be written in the forh= A*A, with
A positive, and the Dirichlet form then has the form

£(f,g) = /u(dx)Af(x)Ag(x). (6.1.9)

6.2 Reversible diffusions

We will now look at reversibility issues in the context of fdi§ions. The formal
adjoint of the operataZ givenin (5.1.2) is

" 1o 02 0
L0 = 33 s 000-F Bg  (62.)
1] 1 |
2
= 3 3 00 5505 O

We can see that this is equal g if and only if

z M = 2bj(x), (6.2.2)

] 0Xj
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foralli=1,...d. Thus (6.2.2) is a condition for the diffusion to be revelesiwith
respect to Lebesgue measure.

Next we may want to look for a reversible measur@x) = eF¥dx, i.e. a re-
versible measure that is absolutely continuous w.r.t. Egbe measure. This will be
the case if

(27 (g) (0 =¥ 2g.

But
(£ (96" )(x) = eF<X>% > ( >j;9(§2 (6.2.3)
Pl AP

1]
daij ( JF (x) ag(x)
IZ(Z aJxJ B )( a%; 909+ 0% )
02 by (X
i ZamxJ Z_ |

The first condition for reversibility is then that

; (a;,- (X) ag)ij i i—i';) = 2bj(x). (6.2.4)
or
2bi(x z o ( >) . (6.2.5)
In particular, in the simples case whap(x) = &;, we get a necessary and suffi-
cient condition
2bi(x) = %F(X), (6.2.6)

i.e. the drift must be the gradient of a potenta(up to the factor 2). In that case
the generator takes the very suggestive form

7= %ﬁw o0, (6.2.7)

The corresponding Dirichlet form then can be written as
3 1 3
- [ (Z£90 = 5 [ MA(OF0.000),  (62.8)

where(-,-) denotes the inner product &
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6.3 Equilibrium measure, equilibrium potential, and capadty

In the following we will return to the general case of SDE esponding to a gen-
erator that is a uniformly elliptic differential operat&f with coefficients satisfying
Lipschitz conditions (so that unique strong solutions ®3DE exist).

Fig. 6.1 Capacitor

LetD be a open domain iR9 with dD = AUB, with ANB = 0. Then the solution
of the Dirichlet problem

Zh(x) =0,xe D (6.3.1)
h(x) = 1L,xe A
h(x) =0,xeB

is called theequilibrium potentiabf the capacitor(A, B). Recall that, foxx € D,
h(x) = Px[1a < Tg]. (6.3.2)

Remark 6.6The boundary conditions here are not continuous, so reeafld®k 5.1.
We do not assume thatis connected.

Remark 6.7The names here come from the classical case w#ienA /2. Then the
Dirichlet problem is a classical problem of electrostatitlse setsA andB corre-
spond to two metal plates attached to a battery that imposesstant voltage (po-
tential) difference between the plates. The solution of groblem then describes
the electrostatic potential (whose gradient is the elstata field).

Next we consider the inhomogeneous Dirichlet problem,
—(Zf)(x) =g,xeD (6.3.3)
f(x) =0,xedD

We have seen that, if this problem has a unique solution,ittes the probabilistic
representation
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= /OTD 9(%) = Ex /OTD /D RO (x,dy)g(y)dt, (6.3.4)

whereRP (x,dy) is the sub-Markov semi-group associated to the gener#toof
the process killed when exiting. Thus we define th&reen kerngl

p(x dy) = / Pt (x,dy)dt (6.3.5)

in terms of which the solution of (6.3.3) can be written as

= /D 9(y)Gp(x,dy) = (Gpg)(X)- (6.3.6)

Note the similarity with theesolventof the semigroup. In fact, one may define
"D
O (x, dy) = By / e PP (x, dy)dt (6.3.7)
JO
ThenG)‘D exists for allA > 0 even ifEx1p = o, and

0= [ aw)es’(xay = (599 (6.38)
solves the Dirichlet problem

(—Z—-A)fA(x) =g,xeD (6.3.9)
h(x) = 0,xe dD

Note that it is of course an interesting question (to whichwilereturn), to ask for
which values ofA we can still defineGl(D’\> for givenD.
The Green kernel will often have a density with respect todsgine measure,
ie.
Gp(x,dy) = Gp(x,y)dy. (6.3.10)

The functionGp(x,y) is then called th&reen function

Let us now look at the relation between equilibrium potdrdiad the Dirichlet
form in the case of a reversible diffusion. Let us try to comegfi(h, h). One might
be tempted to think thaf (h,h) = 0, sinceZh(x) = 0 except on the boundary of the
setsA andB. But of course on theseZh may be singular, since no differentiability
assumptions are made on the boundary. So we may integfinets a measure that
is concentrated on the boundaries®adindB. Sinceh vanishes o@B, we get that

&£(h,h) = —/dAu(x)(.fh)(dx). (6.3.11)

The measuré—.Z’h)(dx) is called theequilibrium measurassociated to the capac-
itor A, B.
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To understand this better, let us return to the @ge&) = &;. We then have the
following integral formulg known as thdirst Green’s formula

Theorem 6.8.Let D be a regular domain and let, ¢ be in G(D). Let. be given
by (5.1.2). Then

/ dx 0 ((0p(x), TY(x)) — W(x)(2Z9)(x)) (6.3.12)
& ()0 9(x) dop (¥),

oD

wheredy ) denotes the inner normal derivative a&xD.

Proof. In the casé= = 0 this formula a classical. The extension to the general case
is by a straightforward computation]

Remark 6.9An immediate consequence of this identity is the so-cafledond
Green'’s formula

& ax(000@Z W0 - w022 9)) (6:313)
& ) (Y00 9 ~ 9 $(X)) dop (¥

~ Joo

The second Green’s formula gives rise to the integral remtasion of a solution of
the Dirichlet boundary value problem,

—(Zf)(x) =0, xeDb, (6.3.14)
f(x) =u(x), xe€dD,

in terms of thePoisson kernel namely
10 = [ & F0u(y)any Go(yx)don (y) (6.3.15)
aD

Using the first Green’s formula, we can give a precise ratdbietween equilib-
rium potential and capacity. Namely, settipg= ¢ = hin (6.3.14), we see that

/ dx ™ (Th(x), Th(x / FMQ, . h(x)doa(X), (6.3.16)
i.e. we have that oA the equilibrium measuré;—#h)(x) is given by

e s(dX) = Ihxh(X)doa(X). (6.3.17)

The quantity
cap(A,B) = /eF oh()doa(X), (6.3.18)
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is called thecapacityof the capacitorA,B. In electrical language, it is the total
charge on the platd. Using relation (6.3.16), we see that alternatively, theacity
is also the totaénergyof the potentiah.

Last exit distribution and equilibrium measure.

It will be nice to have a probabilistic interpretation of thguilibrium measure that
will at the same time explain whiyh really becomes a surface measure.
We see that, fox in A, we should have something like

—(Zh)(x) = |ti£grl(1— R)(h(x)) (6.3.19)
— Itii‘g t 1By (1— Py, [Ta < T8])

= limt YEPy, [15 < Ta].
im xPx [T < Ta]

Let us define théast exit time L, fromA as
La=supf0<0<18: % € A}, (6.3.20)
with the convention sup@ 0 Note that this is obviously no stopping time and that
Py[La > O] = Px[1a < 18] = h(X). (6.3.21)
Note that we can write the expression in the last line of (®Bas
ExPx, [T < Ta] = Px[0 < La < t].

Hence we set
W(2) =t P,[0< La <t]. (6.3.22)

Let us also define thiast exit distributionL(x, dy), onA, by
L(x,dy) =Px[X,— € dy;La>0]. (6.3.23)
We want to prove the following lemma:

Lemma 6.10.Let f be a continuous function @ Then
im [ Golxy) () f(y)dy= [ Lixayf(y). (6.3.24)

Proof. Without loss letf > 0. Using the representation of the Green function
through the semigroup (6.3.5) we get
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/Go(x,y)wt(y)f(y)dy: EX/OTB e (Xs) f(Xs)ds (6.3.25)
. rl/mEX [f(Xe)Px.[0 < L < t]]ds
0

—tt /O Ey [ (Xo)TscL <511 dS

La
= Ex {o< LAgt;rl/ f(XS)ds]
0

La
+Ex [t < LA;tfl/ f(Xs)ds] .
JLa—t
First, both terms in the last line are obviously uniformlyinded a$ | 0. Moreover,
La
Ex {O <La< t;tfl/ f(Xs)ds] <CEx[0<La<t]{O, (6.3.26)
0
ast | 0. Finally, by continuity off,

La

Itiig Ex [t < LA;t’l/ f(XS)ds] =Ex[0< La; f(XL,-)dS. (6.3.27)
La—t

Integrating oveA gives the claim of the lemma.O

From Lemma (6.10) one can deduce that the family of measja@sdy con-
verges to a measusgdy) on A. Moreover, this measure satisfies

Gp(x,y)e(dy) = L(x,dy). (6.3.28)

Integrating this formula oveh, we arrive at the expression
J Gotxyje(dy) = [ Lix.dy) =h(x). (6.3.29)

Hencee(dy) satisfies the defining relation of the equilibrium measure
Thus we have proven a very interesting and useful relatitwdzn the equilib-
rium potential, the equilibrium measure, and the Greentfanc

Theorem 6.11.Let as before AC D be open sets with smooth boundary. Then, for
allx € D,

h(x) = /0 AGo(x,y)eA,D(dy). (6.3.30)

Remark 6.12ls is instructive to think about this result in the followingay. We
have already seen that we may want to think®h as a measure. Then we have
that

—(Zh)(x)dx = eap(dx), xeD, (6.3.31)
h(x) =0, xeaD.
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Then the solution of this problem in terms of the Green fuorcis precisely the
expression (6.3.30). Note that (6.11) holds alsé,iwith h(x) = 1.

This formula for the Green function gives of course corresliog formulas for
solutions of Dirichlet problems. E.g., if we consider fonsfunctiong the Dirich-
let problem

—(Zf)(x) =g(x), xeD (6.3.32)
f(x) =0, xedD,

then of coursd (x) = [, dyGo (X, Y)g(y). By symmetryGp (x,y) = eF¥)-FXGp(y,x),
and so

[, 0xE 900 = [ axi || & gGo(y e Weno(dy)
/b D ..5A
_ [ W / Go(y, 9)g(X)eap(dy)
A JD

— : eF(Y)f(y)eA’D(dy). (6333)
A

Introducing the probability measure

_ & Weap(dy)
ondA, this gives
3 1 3
vap(dy)f :7/dx€(x>hx X). 6.3.35
[ ao @i = sy [ axdheog (6.3.35)
As a particular example we get, wigfix) = 1,
1
. )
/ﬁAVA,D(dy)EyrD ca;iA,D)/DdXé: h(x). (6.3.36)

Dirichlet principle

. We have seen that the equilibrium Dirichlet form computedtive equilibrium
potential gives the capacity. We will how show that the ealftilim potential is the
solution of a variational problem.

Theorem 6.13.With the notations and assumptions above, the followingshdlet
€A be the space of continuous functions, f, Drsuch that,

(i) &(f,f,) <o, and
(iNf(x) > 1,xe Aand f(x) <0, xe< DE.
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capA,B) = inf &(f,f). (6.3.37)

fesap

Moreover, if7Za g # 0, the infimum in (6.3.37) is achieved uniquely on the equilib-
rium potential, i.ecapA,B) = &(hag,hag).

Proof. Let us assume that the s# g is not empty. Consider a functigsuch that
£(09,9) < « and thaig vanishes on bot#B anddA. Notice that, foth € 7,

£(h+eg.h+eg)— £ (hh) =26 /[;\KUB (dx)g(x)(2h) () + £2£(g,g). (6.3.38)

This implies two things: first, ifZh(x) = 0, thenh is a global minimum of’ in
s s. We know already that such a function exists, namely thelibguim poten-
tial. Next assume that there is another functibnsuch that€’(f, f)) = &(h,h).
Then the identity

1 1
f+h f+h f-h f-hy _ = =
(5 50) v (G0 50) = 56010+ 56 ), (6:3.39)
implies that
s (4. 5) <sthn -6 (2 50). (6:3.40)
Sinceh is an absolute minimum, this can only hold if
E(f—hf—h)=0. (6.3.41)
But this means thatd(f — g)(x)||2 = 0 p-almost surely. O

The Dirichlet principle is a powerful tool for asymptoticroputations of capaci-
ties, and, hence, as we shall see, much more. To a large ekisrgldue to the fact
that it allows for natural upper and lower bounds. The moshé@diate one of these
is of course given by the elementary observation that

Corollary 6.14. For any function, fe J#apg,

cap(A,B) < &(f, f). (6.3.42)

6.4 The case of dimension one.

The above considerations lead to very explicite answerbkéncase when = 1.
The first observation is that all homogeneous boundary valaklems in this case
can, by linearity, be reduced to computing the equilibriumteptial for on interval
(a,b),i.e.
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(Zh)(x) =0, xe (ab) (6.4.1)

Note also that the general uniformly elliptic case, we careggeiced to the problem
with generator

(Zh)(x) = —%f”(x)+b(x)f’(x). (6.4.2)

Note also that, ird = 1, any bounded functioh can be written as a derivative of
another functionk- /2, where

F(x) =2 /0 " b(x)dx (6.4.3)

Fig. 6.2 A potential function orj—3,3]

Thus we are always in the reversible case. Hence we are r@duselving the
ordinary differential equation

%h”(x) +b(x)h'(x) =0, (6.4.4)

which in turn reduces to the first order equation

200+ b(X)u(x) = 0 (6.4.5)

when we seti = h'. Clearly (6.4.5) has the general solution
u(x) = Cie F (6.4.6)

and so the general solution of (6.4.4) is
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Fig. 6.3 The corresponding equilibrium potent®|[13 < T7_3]

X

h(x) :Cl/ e "Wdy+G;, (6.4.7)

Jo
with C; andC; integration constants to be determined from the boundanrglitions.
In particular, for the equilibrium potential related to théerval (a,b) we have

—F(y)
h(x) = f?beidy . (6.4.8)
ja e Fdy
Hence the capacity cép,b) is readily computed as
capa,b) =&(h,h) = ! (6.4.9)

2[PeFdy

Some reflection shows that we can get from (6.11) the follgwWiormula for the
Green function ina,b): Forx <y,

hx,{a,b} (Y)
b
Fool— hxb(Y)
capx,b)
jf e F@dz
F(x e Fodz

1
2PeF@dz

b
_ }eﬂx)/ o Fdgy
2 y

G(ayb)(x,y) = (6410)

and fory < X,

1 y
Gap)(xy) = éeF(y)/a e "@dz (6.4.11)
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6.5 Another view on one-dimensional diffusions

We have seen in the previous section that the computatiolneoéquilibrium po-
tential in one-dimensional case allows to compute the Gheection and hence to
essentially solve everything that can be expressed in tefidgichlet problems.
We will now take a different look at the same issue. The pextdge will be
more on the level of the process. We will see that the soluifom 1d SDE can be
constructed from Brownian motion in a way that will exhibjfzan the crucial réle.
Let us recall that the harmonic functions we encounteredbeawritten in the
form
s(x) —s(a)
s(b) —s(a)’

wheres(x) is an increasing function whose derivativeeis ). The functions is
usually called thescale functiorRecall that in the case of Brownian motis(x) =
X. Now letB be Brownian motion and consider the procgss s*l(B[). Clearly we
have that

Py(Ta< 1p) = (6.5.1)

s(x) —s(@)
s(b) —s(a)’

(here the superscripts indicate that the probabilitiesvarg. the corresponding
processes) hence the process has the same harmonic fuastibe one solving
dX = %F’(Xt)dt—l—dB[. Is it the same process? No, but using Itd’s formula, we see
thatZ; = s(X) satisfies

PY(Ta < Tv) = Pgy) (Ts(a) < Top)) = (6.5.2)

dZ = g (X)dX% + %s’/(xt)dt (6.5.3)

— $(X)dB + %(d(xt)F’(x{) +/(%))dt

=9 (s ' (X)) dB,

which is of the form
dz = g(z)dB:. (6.5.4)

We will show that any solution of an SDE of the form (6.5.4) israe change of
Brownian motion.

Theorem 6.15.Let g be a measurable function such thé&t)g> o > 0. Then (6.5.4)
has a unique weak solution. Moreover, there exists a Browmiation, B, such that

Z =B(y), (6.5.5)

wherey = inf{u: A(u) >t}, and

t
At) = /0 g(B(u) 2du. (6.5.6)

Proof. Clearly we have that th ¥ solves (6.5.4), then
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d[Z]; = g(Z)?dt. (6.5.7)

On the other hand,
Bliz), = [Zh- (6.5.8)

B(t) = Zy), (6.5.9)

wheret(t) is the inverse time change, i.e.

Z]ew) = /Or(t) 9(Zu)’du=t. (6.5.10)
Differentiating this latter relation we get
1=0(Zr))*T'(t) = 9(B(1))T'(1). (6.5.11)
Hence 1
T'(t) = )G (6.5.12)
and hence . 1
T(t) = /O SEa (6.5.13)

7 being the inverse of the time change, we see that the timegetiZh is really the
inverse of the functiom, which is given purely in terms of the Brownian motiBn
O

It remains to generalize the first part of our constructidmug consider the gen-
eral form of the SDE

d% = b(X)dt + o (%)dB, (6.5.14)

with o > 0. We know already that the equilibrium potential will be betform
(6.5.1) withs being an integral of

S(x)=e" J326(2)/0%(2)dz, (6.5.15)

Againz; = s(X;) then has the same harmonic function as Brownian motion,tand t
same calculation as in (6.5.3) shows thats a solution of (6.5.4), this time with

g0 =S (s (x))a (s *(x)). (6.5.16)
We summarize these results in the following theorem.

Theorem 6.16.Assume thatr(x) > 0, as long asfg b(z)o?(z) < « exists for x I,
then the SDE has a unique weak solution given by

X =s 1(B(y)), (6.5.17)
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wherey is the continuous inverse of the function

At:/o SEa™ (6.5.18)

where g is given by (6.5.16), and B is Brownian motion.

The strong point of this result is that very little regulgris required for the
drift or difussivity. For example, this theorem allows tokaaense of thBrownian
motion in a Brownian potentialLet W(t) be a realization of a Brownian motion,
and consider the formal expression

dX =W (X)dt+ dB. (6.5.19)

SinceW is not differentiable, this expression is formal. Howetkee, corresponding
potential W, is well defined, and so is the scale funct&r) = exp(W(x)). Thus
we can interpret the process obtained from Egs. (6.5.15)4@8) as the solution of
(6.5.19).

6.6 Brownian local time and speed measures

The aim of this section is to give an alternative represamaif the time change
formula that will give rise to the possibility to construatem larger classes of one
dimensional diffusion processes. At the same time we wilpda the discussion
of local timethat was initiated in Theorem 4.9. The following discussilbaws on
lecture notes by Steve Lalley.

Let us first observe what would be the natural notion of a oatiap measure.
LetA € B(R) be a Borel subset of the real line. Then we can introduce

[i(A) = /0t 1a(Bs)ds (6.6.1)

as a random measure 0R, Z(R)). The main result we will use and need, is the
following theorem.

Theorem 6.17.With probability one, for each & «, the occupation measurg is
absolutely continuous with respect to Lebesgue measuddt density, f, is jointly
continuous int and x.

I¥is called thdocal timeof Brownian motion ak. We have already seen that the
local time at zero can be represented as a stochastic intégea extension of [té’s
formula (Tanaka's formula). This gives the representation

1
I{"E|B[—a|—|Bo—a|—/0 sign(Bs— a)dBs. (6.6.2)

We will first show that
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Theorem 6.18.There exists a version of the procefl§,a € R,t € R, } that is
jointly continuousint and a.

Proof. We will deal with a fixed time horizoil < «. Define

Si(at) = /0t sign(Bs — a)dBs (6.6.3)

and
&(at) =B —a —[Bo—al. (6.6.4)

Obviously &, is jointly continuous, sinc® is continuous. Thus we need to prove
that&; has a jointly continuous version. The tool to prove this ig@mra due to
Kolmogorov.

Lemma 6.19.Leté be a stochastic process indexed®ywith values in a complete
metric space with metrip. If there exist positive constants, 3, €, such that

]E(p(EXaEy))a SB'X_y|n+£7 (665)
for all x,y € R", then there exists a continuous version of X.

We apply this theorem to the process-,t), t € [0, T]. We may also consider the
process on a bounded interval. Then it will be enough to slhauv t

E[&1(x,t) — &1 (yt)|P < Clx—y[>™° (6.6.6)
E|&(x.t) — & (x.t)|P < Clt—t|?+°

Now
E2061) — Ea(0)| = \ / t(sigr(&—a)—sigr(Bs—b»st‘
< 2/(;t 1y (Bo)dBs, (6.6.7)

Hence, using the Burkholder inequalities,

2m

t
E|&1(0t) — &()12" < 22"‘15‘ AP (6.6.9)

t 2m
< szsz‘ / ]l(xly)(BS)ds‘ .
A

In the final expression we can now estimate
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it 2m
QAm“M&m% (6.6.9)

=m!/ P[By € (X,Y),---, Bty € (X,Y)]
0<t;<tj1<

e tm<t

<m | E [P By, € (xY)]Ph, (B, € (x3))-..
0<ty <tm_1 <+ <tm<t

Py (B € (X))]
<mli(y—x)™A"
The corresponding estimate for different times is similan.

With this absolutely continuous local time process we caoafrse write the
time change function (6.5.18) in the form

t 1 1t ,
A¢:/0 —g(Bu)Zdu:/dXW/o 5Bu(x)du:/m(dz)lt, (6.6.10)

wherem(dz) = g~%(z)dzandI? is the density of the Brownian local time process.
The measuren(z) is called hespeed measugessentially it tells us how the local
time of Brownian motion is transformed to the time of the newagess in the point
2). . This formulation gives rise to an even wider class of diraensional diffusions
that can be constructed as time changes of Brownian motroadih more general
speed measures. Note that these processes are all Markewigh is not a trivial
fact (see [15], Chapter 111.21 and [14], Chapter V.47).

6.7 The one-dimensional trap model and a singular diffusion

In the following we show that these processes are not totgihothetical, but that
they can arise from more or less reasonable discrete models.
In the following we will give the construction of a random rwot in a random
environment that was studied by Fontes, Isopi, and Newmiare s@ars ago [7].
We begin be prescribing a random environmen#oas a family of iid random
variables;, i € Z, whose distribution will be be assumed to satisfy

ItiTmt“]P’[rl >t]=1 (6.7.1)

for a < 1. Note that this implies in particular th&ir; = +oco. Our next ingredient
will be a continuous time, unbiased simple random wZlkk € N, onZ.

(Note that a continuous time random walk can be describedlmsve: LetY,
k € N, be a discrete time simple random walk Br{i.e. Yx = z}‘:lui, whereu; are
iid with P[u; = £1] = %). LetC(k) = z:‘;ola, whereg, i € N, are iid exponential
random variables with rate 1. Then
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Zt =Ye1() (6.7.2)

whereC~1 s the inverse o€,
f1(t) = inf{k: f(k) >t}. (6.7.3)

We will now construct a continuous time process a time charfghe simple
radom walkZ as follows. Define the so-callediock process

U
S(u) E/ 7. dr (6.7.4)
0
The procesX is then defined, for a given realization of the random vadsah|, as
X =Zgy) (6.7.5)
We now want to re-write the clock process in terms of a speeasare. For this we

define the local time process dfas

t
L(j,t) :/ 1z,_;du. (6.7.6)
0
Then we can re-write the clock process as

S(u) = EZ TiL(j,u). (6.7.7)

J

One sees easily that there is a complete analogy betweewniséaction of a dif-
fusion from Brownian motion.

We now consider a rescaling of space and time to obtain araomis process
limit. Clearly we have from (a complete analog of) Donskémgriance principle
that

li =B:. 6.7.8
im 2;)c2 = By (6.7.8)
Now assume that for sonfg
25 e Py =51 (t) —» =7(1), (6.7.9)
then
XE=€eX, p = €2, 251y = Z%l(t) (6.7.10)
and we may expect that
Z;gl(t) — Bz—l(t). (6711)

The question is thus to see whether and to what the praé&ss (¢ Pt), respec-
tively its inverse,

S(u) = eP(u/e?), (6.7.12)
converges. Now
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ePs(u/e?) = 'ZZSB tiL(i,u/e?) = %55 TiLe (&, U), (6.7.13)

ie ic

where by definition_g (&i,u) = L(i,u/?).We may expect this to converge to the
local time process of Brownian motion. On the other hand, arethink of the sum
as an integral over the random measure

me(dx) = _szg(dx)rieﬁ, (6.7.14)

St = /mg(dx)Lg(x,t), (6.7.15)

It is a curious fact that in distribution,
/mg(dx)Lg(x,t) _ /mg(dx)ltx (6.7.16)

This is due to the fact that the local time density of Browmagtion on an integer
pointi before visiting one of its neighbors is an exponential rand@riable with
mean one. To see this, observe that the continuous timeesiraptiom walk orZ
can be coupled to a Brownian motion: consider the measyféx) = i<z & (dx)

as a speed measure and¥iebe the time change of a Brownian motiBpwith this
speed measure. This is a Markov process that spends alltohéon the integers
and jumps with infinite speed between them. It is clear thiatphocess visits the
sitesi + 1 with equal probability after. Moreover, form the fact that the process
observed on the sitdss Markov, the waiting time ait before the process reaches
i + 1 is exponential. Its mean value is given ]EW%ALI. Using Tanaka'’s formula
for the local time of Brownian motion, we get

]Eo’ggl/\'[,l = ]EO ’BT]_/\T,J_’ =1 (6717)

Thus we see that we have indeed a relisation of the pro¢esstimechange of
Brownian motion.

Thus we have actually immediately an expression of our élesiy procesXé
immediately as a time change of Brownian motion with speedsuaem.

Thus the key question is whetheg (dx) converges. this will be the case, due to
(6.7.1),if B = 1/a. This follows from a more general result about the convecgen
of so-called extremal processes.

(for a proof see, e.g., [13]):

Theorem 6.20.Assume that are iid random variables that satisfy

Ir#n £ P[X > ug(c)] = v(c). (6.7.18)

wherev is an increasing (respectively decreasing) function. Tliea point process

Z 6(i£,ug1(>q)) (6.7.19)
IEZ
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converges in distribution to the Poisson point procegn R x R with intensity
measure di dv(x) (respectively-dv if v is decreasing).

Using the property (6.7.1), we see that in our case, witls) = £ /¢, we have
that
e Py > e Y =c e V9 P[1y > £ Y] — ¢ O,

Thus the theorem yields

Corollary 6.21. The point process

Rs = Z 605’51/0(“) — % (6720)
iEZ

converges to the Poisson point process®x R, with intensity measure dt
—1-a
ac dc.

One can show that this implies thataf< 1, the measures

me(dx) — /Rg(dx, di)t (6.7.21)

converge to the measure i
m(dx) = / R(dx dt)t. (6.7.22)

Note of course that we are speaking of random measures hereh& converges
is the distribution of these random measures. In propergemwe would have to
equip the space of measures with a topology (e.g. the vagadoigy) and speak of
weak convergenagf the family of random measures with respect to this undegly
topology.

One can easily check that the measmielx) is singular (in fact it is a pure
point measure) with respect to Lebesgue’s measure. Ndesthene can use it to
construct a singular diffusion as a time change of Browniation form it, that will
be the natural candidate for the limit process in our model.

It is known that if a sequence of (point) measungs,converges to a point mea-
surev (in a suitable topology that | will not discuss here), thea torresponding
time-changed processes converge to the process with tiamgelobtained from the
speed measune

Can we apply this fact in our case, when the measugesonverge only in
weakly? The answer is yes, in general due to Skorohod’s ¢énecthat states that
weak convergence of a family of random variablgg,is equivalent to the existence
of a another familyX,, such that for each, X, andX, have the same distribution,
while X, converges almost surely.
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A coupling

. It is an amusing observation that in the case of our randomsaresmg, this
construction can be made in a very explicit way. It will alsdibit a deep relation
between these measures and Lévy processes.

Let us first briefly recall what aa-stable Lévy subordinatod, is. There are
in fact at least two ways to describe it: one is to say thas a non-decreasing
stationary process with independent increments whoseatagransform is given
by

Ee AVX — exp[xa/ (e 1w %w| . (6.7.23)
0

Another way to characterize it is to say that it is the disttiln function onR
associated with the measurgédx), normalized s.tU (0) = 0 (see my lecture notes
on ageing [2]).

Now introduce the scaling functia@ such that

PU(1) < G(a)] = P[1o < al. (6.7.24)

Then define
f=G1 (e’l/"’ (U(ei +1)_U(ei))). (6.7.25)

Lemma 6.22.The family of random variableg’, i € Z is iid and 7¥ has the same
distribution asrt;.

Proof. The proof of this lemma follows form the fact that the suboedorU is
a-stable, i.e. that~1/9U (g) has the same law &5(1). O

Using these random variables we can construct measures

me= Y eV o, (6.7.26)
i€Z

which now converge almost surely ng where of course the the distribution func-
tion of thismis used a&J in the construction of thef. In the case whef is the
identity, this is quite straightforward, whereas in the gah case some care is re-
quired to show this fact (see [7]). The key is that by the aggions on the law of
1, Gis close to linear at infinity and se#/9G (e~ Y%x) — x, as¢e | o.

The existence of a non-trivial scaling limit for this modeMe far-reaching con-
sequences for its long time asymptotics. In particulanmplies so-calledaging
behavior This notion refers to the long-time behavior of of certedmrelation func-
tionsof the process, e.g.

R(tw,t) = P[Xeat,, = Xil- (6.7.27)
One says that a process shows aging, if

Jim R(tu, 0t) = (0), (6.7.28)
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for some non-trivial functiorf. Now in our case we have that

- tV;l/or

—1/a
R(tw, 0t) = P[Xy, (110 = %] =P[X{Tg =X" . (6.7.29)
Again we may expect this to converge to
P [Bs(1+6) = Bs(n)) » (6.7.30)

which would be our desiredgeing functiorexpressed in term of the limiting pro-
cess.






Chapter 7
Appendix: Weak convergence

In this short section we collect some necessary materialiiderstanding the con-
vergence of sequences of stochastic processes with patarpies. This will allow
us to put the analysis of the Donsker theorem into a genexaldwork.

7.1 Some topology

We consider the general setup on a compact Hausdorff spadk, denote byC(J)
the Banach space of bounded, continuous real-valued anscéquipped with the
supremum norm. We denote by (J) the space of probability measuresanie
denote byC(J)* the space of bounded linear function@ld) — R onC(J).

We need two basic facts from functional analysis:

Theorem 7.1.[Stone-Weierstrass theorebgt A be a sub-algebra of(@) that con-
tains constant functions and separates points of J, i.eafor xe J there exits
f,g € Asuch that {x) # g(x). Then A is dense in(@).

Theorem 7.2.[Riesz representation theoreh®t ¢ be a positive linear functional
@:C(J) — R with (1) = 1. Then there exists a unique inner regular probability
measurep € .#1(J), such that

(p(f):u(f):/deu. (7.1.1)

Recall (see [1] page 12) that a measurmiger regular, if for any Borel setB,
u(B) = sup{u(K),K c B,compac}. We have shown there already, thatlifs a
compact metrisable space, then any probability measurei®mner regular.

The weakx topology on the spad@(J)* is obtained by choosing sets of the form

Bry,...tne () = {9 € CQ)" : Vaci<nl (i) — ¢°(fi)| < €} (7.1.2)

135



136 7 Appendix: Weak convergence

with n € N ¢ > 0, fi € C(J) as a basis of neighborhoods. The ensuing space is a
Hausdorff space.

When speaking of convergence on topological spaces, itéfil® extend the
notion of convergence of sequences to thaieth

Definition 7.3. A directed setD, is a partially ordered set all of whose finite subsets
have an upper bound . A netis a family (xq,a € D) indexed by a directed set.

If (xq,a0 € D) is a net in a topological spack, thenxy — x if, for every open
neighborhoodG, of x, there existsy € D such that for allr > ag, X4 € G.

Lemma 7.4.A netgy in C(J)* converges in the weak-* topology to some element,
@, if and only if, for all f € C(J), @ () — @(f).

Proof. Let us prove first the “if” part. Then for any, and anye, there exists
as, such that for alla > as, @ (f) — @(f)| < €. Now take any neighborhood
Bt,,...te(@). Then, letag = max' ; ay, and it follows thatg, € By, 1, (@), for

o > ag, hencep, — @. For the converse, we have that for ang N, any collection
f1,..., fa, and anye > 0, there existsrg such that, ifgn, € Br,.._1, (@), then for
all a > ag, @ € By, 1,¢(¢). Thus to show that for any givehy g, (f) — ¢(f)
we just have to use this fact wik ¢ ().

One of the most important facts about the wealopology is Alaoglu’s theo-

rem. The spac€(J)* is in fact a Banach space equipped with the ndjmfj =

o(f)
SURkc) T

Theorem 7.5.The unit ball

{peC):llol <1} (7.1.3)
is compact in the weak-topology.

(for a proof, see any textbook on functional analysis, eunford and Schwartz
[5]).

The importance for us is that when combined with the Riesressmtation the-
orem, it yields:

Corollary 7.6. The set of inner regular probability measures on a compaatdda
dorff space is compact in the weakepology.

Proof. By the Riesz representation theorem, each inner regulaapitity measure
corresponds to a unique increasing functioged C(J)* with ¢(1) = 1. Since the
function f = 1 is the largest function such thaf|l.. < 1, it follows that||¢@| <
@(1) = 1. Hence this set is a subset of the unit ball. Moreover, thefsacreasing
(in the sense of non-decreasing) linear functionals mapfimo 1 is closed, and
hence, as a closed subset of a compact set, compact.

Corollary 7.7. The set of probability measures on a compact metrisableespgac
compact in the weak-topology.
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Proof. By Theorem 1.2.6 in [1], any probability measure on a compaetrisable
space is inner regular, hence the restriction to inner eggukasures in Corollary
7.6 can be dropped in this case.

As a matter of fact, in the compact metrisable case we getmeea.

Theorem 7.8.Let J be a compact metrisable space. Théd)Gs separable, and
#1(J) equipped with the weaktopology is compact metrisable.

Proof. We may takel to be metric with metrig@. Sincel is separable (any compact
metric space is separable), there is a countable densepsants,x,, n € N. Define
the functions

hn(X) = p(X,Xn).

The functionsh, separate points id, i.e. if x # y, then there exists such that
hn(X) # hn(y). Now letA be the set of all functions of the form

qll + Z( q(nl,...,nr;kl,...,kr)hﬁi...hﬁr
ny,..., Ny Kq,..., kr

where allg’s are rational. Then the closure Afis an algebra containing all con-
stant functions and separating pointslinThe Stone-Weierstrass theorem asserts
therefore that the countable gets dense irC(J), soC(J) is separable.

Now let fh, n € N, be a countable dense subsett¢f). Consider the ma® :
AM4(3) =V = Snen[ || folle, | fall ], given by

This map is one to one. Namely, assume fhat v, but®(u) = ®(v). Then on the
one hand, there must exists C(J) such thau(f) # v(f), while foralln, p(fy) =
v(fn). But there are sequencéss A such thatfi — f. Thus lim p(fi) =lim; v(f;),

and by dominated convergence, both limits equé), resp.v(f), which must be
equal contrary to the assumption. Moreover, thefsgétermines convergence, i.e.

a netuq converges tqu (in the weakx topology , if g (fn) — p(fn), forall f, € A.

But the product spacé is compact and metrisable (by Tychonoff's theorem), and
from the above,#1(J) is homeomorphic to a compact subset of this space. Thus it
is compact and metrisable.

Let us remark that a metric a3 (J) can be defined by

[ee]

plp,v) =y 27" (1— e K =vif)l) (7.1.4)
(wv)=327( )

7.2 Polish and Lousin spaces

When dealing with stochastic processes, an obviously itapbispace is that of
continuous, real valued functions @&n . We will call
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W = C([0,),R). (7.2.1)
This space is not compact, so we have to go slightly beyondrin@ous setting.

Lemma 7.9.The space W equipped with the topology of uniform convesgenc
compact sets is a Polish space. Thiealgebra, .7, of cylinders generated by the
projectionsrg : W — R, 15(w) = w(t), is the Borelg-algebra on W.

Proof. We can metrise the topology &M by the metric

[

Wi, Wp) = 2*”7p”(W1’W2) ,
P, w2) n; 1+ pn(Wi, Wp)

where
Pn(wi, W) = sup |wy(t) —wa(t)].
0<t<n
Then it inherits its properties form the metric sp&i¢0,n),R) equipped with the
uniform topology.
Now the mapgt are continuous, and heneg C #(W). On the other hand, for
continuous functionsy;,

Pn(w1,w2) = sup |wi(q) —wz(q)],
qeQn(o,n]

so thatp, and hence are.«v-measurable. Now lét be a closed subset @f. Take
a countable dense subsetrafsayw,,n € N. Then

F = {weW:infp(wwn) =0},

which (since all is countable) implies thate <7, and thusey = Z(W).

This (and the fact that quite similarly the correspondirarss of cadlag functions
are Polish) implies that we can most of the time assume thatilvbe working on
Polish probability spaces. In the construction of stodbgsbcesses we have actu-
ally been working on Lousin spaces (and used the fact thaéthee homeomorphic
to a Borel subset of a compact metric space). The next thepiesty clarifies that
Polish spaces are even better.

Theorem 7.10.A topological space is Polish, if and only if it is homeomagdb a
G; subset (i.e. a countable intersection of open subsets) ofrgpact metric space.
In particular, every Polish space is a Lousin space.

Proof. We really only care about the “only if” part and only give itopf. LetSbe
our Polish space. We will actually show that it can be embddde G5 subset of
the compact metrisable spate= [0,1]". Let p be a metric or§, and sep = %.
This is an equivalent metric that is bounded by 1. Chose ateblendense subset
*n, N € N, of Sand define
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Cf(X) = (ﬁ(X,X]_),ﬁ(X,XZ),...).

Let us show thatr is a homeomorphism fror8 to its image,a(S) c [0,1]". For
this we must show that a sequence of elemgfris converges te, if and only if

PX(), %) — P (X, %),

for all k. The only if direction foillow from the continuity of the map(-,x«). To
show the other direction, note that by the triangle inedyali

p(x(n),%) < P(X(N), %) + P (X, X)-

Therefore, for alk,
limsupp(x(n),x) < 20Xk, X). (7.2.2)

Now take a sequence gf that converges . Then (7.2.2) implies that lim sy(x(n), x) <
0, and sx(n) —, as desired.

Next, letd be a metric ord. By continuity of the inverse mag ! on the image
of S for anyn € N we can find ¥2n > & > 0, such that the pre-image of the ball
Bqa(a(x),d) Na(S) has diameter smaller tharii (with respect to the metrip).

Now think of a(S) as a subset af. Let a(S) be its closure. Fon given, letU,, be
the union of all pointx € a(S) such that it has a neighborhodd, in J such that
a~1(NnxNa(S)) hasp-diameter at most /n. Note that by what we just showed,
all points ina(S) belong toU,. Now we show that), is open ina(S): if x € Uy,
andy € a(S) is close enough tg, theny € N, x, and the selNn x may serve asl, y,
so thaty € U,. ThusUy, is open.

Now let x € N,Un. Choose for anyn a pointx, € a(S) N(k<nNix. Clearly
d(X,xn) < 1/n and hencex, — x. Moreover, for anyr > n, both x, € Nhx and
Xn € Nnx, SO thatp(a~1(x),a 1(xy)) < 1/n. Thusa—1(x,) is a Cauchy sequence
in complete metric space, and 80(x,) — y € S. Thus, sincax is a homeomor-
phism,x, — a(y) in J, and clearlya (y) = x, implying thata (S) = (N, Un. Finally,
sinceUp is open ina (S), there are open setg such that), = a(S) NV,. Hence

a(S =a(9n (ﬂvn> .

Remember that we want to show tlea(S) is a countable intersection of open sets:
all that remains to show that is tha{S) is such a set, but this is obvious in a metric
space:
a(S)=({yed:d(y.a(s) < 1/n}.
n

On the space of probability measures on Lousin spaces vealinte a the weak-
* topology with respect to the set of bounded continuous fanst(the boundedness
having been trivial in the compact setting). Convergendaistopology is usually
calledweak convergenghich is bad, since it is not what weak convergence would
be in functional analysis. But that is how it is, anyway.
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Let us state this as a definition:

Definition 7.11. Let Sbe a Lousin space. L&, (S) be the space of bounded, contin-
uous functions o1, and let.#;(S) be the space of probability measures®ihen
anet,Uq € #1(S) convergesveaklyto u € .#1(S), if and only if, for all f € Cy(S),

Half) = (). (7.2.3)

Weak convergence is related to convergence in probability.

Lemma 7.12.Assume that Xis a sequence of random variables with values in a
Polish space such that,X- X in probability, where X is a random variable on the
same probability space. Let,, u denote their distributions. Them, — u weakly.

Proof. Let us first show that convergence in probability implies@gence of
un(f) if f be a bounded uniformly continuous function. Then thereetexists
C < o such that|f(x)| < C and for anyd > 0 there existss = £(J) such that
p(x—y) < g implies|f(x) — f(y)| < d. Clearly

[ (F) — pu(F)] = [E(f(Xn) — F(X))]
< B [(F (%) = (X)) Tp(xp—x)<e ] |
+[E[(f (%) = F(X) Dpxy—x)>¢] |
< 0+CP(p(Xn—X) > €) (7.2.4)

Since the second term on the right tends to zera &%o for any € > 0, for any
0>0,
lim sup|pn( f) — p(f)| < 3,
nfoo
hence
mlun(f)—u(ﬂl =0,

as claimed.

To conclude the prove, we must only show that convergenge,@f) to u(f)
for all absolutely continuous functions implies that thensaholds for all bounded
continuous functions. To this end we use thdt i§ a bounded continuous function,
then there exists s sequence of uniformly continuous fanstify, such thaf| fy —
f|lo — 0. One then has the decomposition

In(F) = p(H)] < pin(|F = ) + [1n(fic) — p(fi) [+ p ([ fic = £1)-

by unifrom convergence ofy to f, the first term is smaller thaa/3, provided
only kis large enough; the second bracket is smaller #yaéhif n > ng(k); the last
bracket is smaller thaa/3, ofk is large enough, independentrofHence choosing
k > ko andn > ng(k), we see that for ang > 0, there exists, s.t. forn > n,

lun(f) —p(f)[ <e.
The following characterization of weak convergence is ingoat, but the proof
is somewhat technical and will be skipped (try as an exexcise
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Proposition 7.13.Let iy be a net of elements o#3(S) where S is a Lousin space.
Then the following conditions are equivalent:

(1) Ha — p weakly;
(i)for every closed FC S,limsuppq (F) < u(F);
(iijor every open GC S,liminf g (G) > u(G);

Thus, if Be #A(S) with u(dB) = 0, then, ifuy — y, thenpy(B) — 1 (B).

We will use this proposition to prove the fundamental rethdt the weak topol-
ogy on.Z1(S) is metrisable ifSis Lousin. This is very convenient, and in particular
will allow us to never use nets anymore!

Theorem 7.14.Let S be a Lousin space and let J be the compact metrisable spac
such that S is homeomorphic to one of its Borel subsets, Bl lbetthe extension

of (the natural image j u on B on J such thafi(J\B) = 0. The mapu — [1 is

a homeomorphisms from#:(S) to the set{v € .#1(J) : v(B) = 1} in the weak
topologies. Therefore, the weak topology.@f (S) is metrisable.

Proof. We must show that, ifiq is a netin#1(S) andu € .#1(S), then the condi-
tions

() Ha(F) = p(F),¥f € Cy(S), and
(i) e (F) = 1(F), ¥ € CQ)

are equivalent. Assume that (i) holds. Lfe€ C(J) and setfg = f1g. Clearly fg is
bounded o8, and if @ : S— Bis our homeomorphism, they= fgo @is a bounded
function onS, andun(g) = fin(fs) = fn(f). Thus (i) implies (ii).

Now assume that (i) holds. Lét C Sbe a closed. Then there exists a closed
subsetY, of J such thaF = ¢~1(BNY). By Proposition 7.13,

limsuppq (F) = limsupfia (BNY) = limsupfig (Y)
< [i(Y) = A(BNY) = u(F).

Hence again by Proposition 7.13, (i) holds.

Now that we have shown that the spa#& (S) is homeomorphic to a subspace of
the compact metrisable spae# (J) (because of Theorem 7.2.1)71(S) is metris-
able.

We now introduce the very important conceptightness The point here is the
following. We already know, from the Kolmogorov-Danielktbrem, that the finite
dimensional marginals of a process determine its law. heigdently possible, for a
sequence of processes, to prove convergence of of the fimndional marginals.
However, to have path properties, we want to construct thegss on a more suit-
able space of, say, continuous or cadlag paths. The quéstidrether the sequence
converges weakly to a probability measure on on this spamethiis purpose it is

I Thatis, ifA € #(J), thenfi(A) = p(@~1(ANB))
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useful to have a compactness criterion for set of probghbiliéasures (e.g. for the
sequence under consideration). This is provided by the @@fimhorov theorem
We need to recall the definition of conditional compactness.

Definition 7.15. Let Sbe a topological space. A subsét; S, is calledconditionally
compactif its closure in the weak topology is compagdtis calledconditionally
sequentially compacif its closure is sequentially compact. &is a metrisable
space, then any conditionally compact set is conditiorsstyuentially compact.

Remark 7.16The termsconditionally compacandrelatively compacare used in-
terchangebly by different authors with the same meaning.

The usefulness of this notion for us lies in the following.sAme that we are
given a sequence of probability measunag,on some spac& If the set{un,n €
N}, is conditionally sequentially compact in the weak topgladpen there exist
limit points, 4 € .#:1(S), and subsequences), such thatu, — u, in the weak
topology. E.g., if we take as our spaB¢he space of cadlag paths, if our sequence
of meaures is tight, the limit points will be probability neesies on cadlag paths.

Definition 7.17.A subsetH C .#1(S) is calledtight, if and only if there exists, for
anye > 0, a compact sé{; C S, such that, for alu € H,

H(Ke) >1—e. (7.2.5)

Theorem 7.18 (Prohorov).If S is a Lousin space, then a subsettH#1(S) is
conditionally compagtif it is tight.
If S is a Polish space then any conditionally compact sublsefdS) is tight.
Moreover, since the space#;(S) are metrisable under both hypothesis, con-
ditionally compact may be replaced by sequentially conddily compact in both
statements.

Proof. We prove the first (and most important statement). Let agdia the com-
pact metrisable space, and lgtbe a homeomorphiosm : ~ — B C J, for some
Borel setB. We know that#(J) is compact metrisable, so that every subset of it
is conditionally compact. Since compactness and seqlientigpactness are equiv-
alent in our setting, we know that any sequeniegs .#1(J) has limit points in
A1(3). Now letH = {un,n € N} C .#(S) be tight. Letfiy = pno @ L. Let fI be a
limit point of the sequencfy,. We want to show thaf is the image of a probability
measure o1$, and thusu = [l o @ exists and is a limt point of the sequenge For
this we need to show thgi(B) = 1. Now letK, be the compact set i such that
Un(Kg) > 1— €. Then, by Proposition 7.13,

f(p(Ke)) = limsupfin(@(Ke)) = limsuppn(Ke) > 1 — ¢,

forall € > 0, and sq(B) = 1, as desired.
The proof of the less important converse will be skipped.
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We will consider an application of the Prohorov theorem ia tiase wheis is
the spaceyV, of continuous paths defined in (7.2.1).

This is based on th&rzela—Ascoli theoreitinat characterizes conditionally com-
pact set inv.

Theorem 7.19.A subset[” C W is conditionally compact if and only if the follow-
ing hold:

(i) sup{|w(0)| :we T} < oo;
(i) VNen lim s o SURye A(,N,w) = 0, where

A(S,N.w) = sup{|w(t) —w(s)| : t,s€ [O,N],|t —s| < d}. (7.2.6)

For the proof, see texts on functional analysis, e.g. [5].

The Arzela—Ascoli theorem allows us to describe conditigr@ompact sets in
W.

This allows us to formulate the following tightness-crioer.

Theorem 7.20.A subset, HC .#1(W), is conditionally compact (equiv. tight), if
and only if:

(i) limepes SUR, ey 1 (JW(0)| > €) = O
(iffor all N € N and all € > 0, lim;oSup,cy K (A(3,N,w) > €) = 0, whereA is
defined in (7.2.6)

Proof. We give only the prove of the relevant “if” direction. We staéind a com-
pact subset ofV of measure aritrarily close to one for all measuresiinClearly,
we can do this by giving a conditionally compact dgt,of measureu () > 1— ¢,
since then its closure is a compact set of at least the samsungedNow assume
that (i) and (ii) hold. Then take, for gives) C such that the set

A={weW:|w(0)| <C}

satisfies, for alu € H, u(A) < 1—¢/2. By (ii) we can chos&(n,N) such that the
sets
An={weW:A(6,N,w) <1/n}

satisfy, for allu € H, u(Ann) > 1— e2-(MN+2) Then the set

r=An (1 A

nNeN

satisfiesu(") > 1—¢, forall yu € H.
This proves this part of the theorem.

The continuity module\ (d, N, w) looks difficult to use due to the appearance of
the supremum overs. The following proposition gives moment condition that is
easier to use.
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Proposition 7.21.Let u be the law of a continuous stochastic processes X on
Wiener space. Then conditions (i) and two of Theorem 7.20beareplaced by
the conditions

() BuUpcen E[Xo]" < o,
(i"ForallN € N, supcy E|X — Xo|% < Cn|t— /P, forall 0< st <N,

for somea,3,v > 0and Gy < co.

Proof. The assertion concerning condition (i) follows triviallshe intresting part is
to show that (ii") implies (ii). We fixN and for simplicity seN = 1. By Chebychev’s
inequality, we get from (ii) that

P[|X — Xs| > €] < Ce |t —s**A. (7.2.7)

Now take a dyadic sequence of tirtffe= k2" and sete, = e " for somey > 0.
Then

i {|xt£ e sn} < C2nt+p-ay), (7.2.8)
Thus a trivial estimate shows that for amy
2I"I
P [rpalx X x{h‘ > sn} <2 nB-ay), (7.2.9)

Note that this is exponentially small and hence summableiged that we choose
y < B/a, which is always possible. Therefore, by the Borel-Cantethma, with
probability one, the events in (7.2.9) happen only for figiteanyn. Let us call the
last such value*(w).

Now any pointt can be approximated by a sequence of diadic point of arder
which we callt, = ky(t)27", such thaft, —t_;| = 27" while t, — t. Similarly we
call s, a sequence of dyadic points converging.t8inceX is continuous, it follows
thatX,, — X andXs, — Xs.

Givensandt, let ng be the smallest value such tligt= s,,. Then by telescopic
expansion,

[ee]

X—=Xs= Y (X=X 1= Xey+Xs,4) - (7.2.10)
n=np+1
Thus .
X=X < 5 (X = Xep |+ Xey = Xs,41) - (7.2.11)
n=np+1

For eacht,s, such thaft —s| < 2" (@) we haveny > n*(w), and thus, on a set of
probability one, for such, s,
27 2

< —|t—g". 2.
1_2v—1_27v|t S| (7.2.12)

X=X <2 § 2=
j=n+1

Let P denote the law oK. Therefore, we have shown that for BlE H, there exists
Qp C Q ssuch thaP(Qp) =1 and for allw € Qp, there exisd(w), such that for all
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s,t € [0,N] with [s—t]| < d(w), [ X (w) — Xs(w)| < Cnl|s—t]Y, which will be smaller
thene for |[s—t| small enough. Now defin@p 5 = {w € Qp : 5(w) < &}. Then, for
CnoY < &,

P ( sup X=X > £> <P (Qps) - (7.2.13)
ste[ON]:|s—t|<d '
ButQp;s | 0, asd | 0, uniformly inP € H. But this implies that
lim supP sup X —Xs| > €| =0, (7.2.14)
Ol0PeH  \ ste[ON]:|s—t|<d

as desired. This concludes the proof of the propositidn.
Finally we come to the most important result of this chapter.

Lemma 7.22.Let un, u be probability measures in W. Theg converges weakly to
U, if and only if

(i) the finite dimensional distributions ¢, converge to those qf;
(ilthe family { tn, n € N} is tight.

Proof. Let us first show the “if” direction. From tightness and Prohds theo-
rem it follows that the family{ un,n € N} is conditionally sequentially compact,
so that there are subsequencgg), along whichpi, converges weakly to some
measureu. Assume that there is another subsequentk), such thatu, con-
verges weakly to a measuve But then also the finite dimensional distibutions of
Hn(k)» respectivelypin, , converge to those gf, repectivelyv. But by (i), the finite
dimensional marginals qf, converge, so that andv have the same finite dimen-
sional marginals, and hence, are the same measures. Sist®lids for any limit
point, it follows thatu, — u, weakly.

The “only if” direction: first, the projection to finite dimeional marginals is
a continuous map, hence weak convergence implies that ehénginals. Second,
Prohorov’s theorem in the case of the Polish spacemplies that the existence
of sequential limits, hence sequential conditional corpess, hence conditional
compactness implies tightness.

Exercise. As an application of this theorem, you are invited to provenSl@r’s
theorem (Theorem 6.3.3 in [1]) without using the Skorokhotedding that was
used in in the last section of [1]. Note that we already hayegnvergence of the
finite dimensional distributions (Exercise in [1]) and thdstence of BM onW.
Thus all you need to prove tightness of the sequefgés$. Note that here it pays
to chose the linealy interpolated version (6.3) in [1].

Finally, we give a useful characterisation of weak conveoge known as Sko-
rokhod’s theorem, that may appear somewhat surprisingsasfght. It is, however,
extremely useful.

Theorem 7.23.Let S be a Lousin space and assumejtheu are probability mea-
sures on S. Assume thaf — u weakly. Then there exists a probability space
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(Q,.7,P) and random variables Xwith law u,, and X with lawu, such that
Xn — X P-almost surely.

Proof. The proofis quite simple in the case wh&e: R. In that case, weak conver-
gence is equivalent to convergence of the distributiontioncF,(x) = p([—o,x])

at all continuity points of the limitFF. In that case we chose the probability
spaceQ = [0,1], P the uniform measure off, 1] and define the random variables
Xn(X) = Fy1(x). Then clearly

PX <2)=P(x<F(2) =Fn(2)

so that indeed, has the desired law. On the other halR¢g(x) converges té-(x) at
all continuity points ofr, and one can check that the same is trud=fot, implying
almost sure convergence .

In the general case, the prove is quite involved and probadilyery enlighten-

ing....

Skorohod’s theorem is very useful if one wants to prove coysece of func-
tionals of probability distributions.
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7.3 The cadlag spac®g|[0, )

In the general theory of Markov processes it will be impartaat we can treat the
space of cadlag functions with values in a metric space asish”pace much like
the space of continuous functions. The material from thitice is taken from [6]
where omitted proofs and further details can be found.

7.3.1 A Skorokhod metric

We will now construct a metric on cadlag space which will tthiis space into a
complete metric space. This was first don by Skorokhod. Ity there are various
different metrics one may put on this space which will giserio different conver-
gence properties. This is mostly related to the questiorthenesach jump in the
limiting function is associated to one, several, or no junmpapproximating func-
tions. A detailed discussion of these issues can be fountiih Here we consider
only one case.

Definition 7.24.Let A denote the set of all strictly increasing mapsR, — R,
such thafA is Lipshitz continuous and

y(A) = sup InM’ < 00, (7.3.2)
O<t<s -
Forx,y € Dg[0,), u€ R, andA € A, set
d(x,y,A,u) =supp (X(t Au),y(A(t) Au)). (7.3.2)
>0

Finally, theSkorohod metrion Dg [0, «) is given as

d(x,y)z/\irelj\ (y()\)\//oooe”d(x,y,u,/\)du). (7.3.3)

To get the idea behind this definition, note that witthe identity, this is just the
metric on the space of continuous functions. The rble oftigto make the distance
of two functions that look much the same except that they jairavo points very
close to each other by sizable amount. E.g., we clearly viefunctions

Xn(t) = j1/n.e) (1)
to converge to the function
Xoo (t) = 10,0 (1)

This is wrong under the sup-norm, since g (t) — X (t)|| = 1, but it will be true
under the metrid (Exercise!).
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Lemma 7.25.d as defined a above is a metric og[D, «).

Proof. We first show thatl(x,y) = 0 impliesy = x. Note that ford(x,y) = 0, it must
be true that there exists a sequengsuch thaty(Ao) | 0 and limye, d(X, Y, An,u) =
0; one easily checks that then

lim sup |An(t) —t| =0,
nteo o<t<T

and hence(t) = y(t) at all continuity points ok. But sincex andy are cadlag , this
impliesx =Y.

Symmetry follow from the fact that(x,y,A,u) = d(y,x,A ~*,u) and thaty(A) =
y(A—h).

Finally we need to prove the triangle inequality. A simplé&uaation shows that

d(xa Za)\zo/\lau) S d(xaya/\lau) +d(y727/\27u)-

Finally y(A10A2) < y(A1) + y(A2), and putting this together one derivid, z) <
d(x,y) +d(y,2).

Exercise:Fill in the details of the proof of the triangle inequality.
The next theorem completes our task.

Theorem 7.26.If E is separable, then P[0, ) is separable, and if E is complete,
then D:[0, ) is complete.

Proof. The proof of the first statement is similar to the proof of teparability of
C(J) (Theorem 7.8) and is left to the reader. To prove compleves only need
to show that every Cauchy sequence converges. Thug &Dg [0, ) be Cauchy.
Then, for any constar@@ > 1, and any € N, there exist valuesy, such that for all
n,m> ng, d(Xn,Xm) < C X, Then we can select sequencgsandAy, such that

YMK) V d(Xns X, 15 Ak, U) < 27K
Then, in particular,

Hc = lim Ay mo Akym-10-+-0 Ak 0 Ak
mfeo

exists and satisfies
Vi) < Y y(Am) <276
2

Now
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supp (X (Hic 1) A U)X, (M (1) A i)
= SUPP (b4 H(8) A ) X,y (A (£) A k)
= SUPD (X (£ ). X (A L(t) Aw))
< 2k,
Therefore, by the completenessBf the sequence of functiorg = xnk(ugl(t))

converges uniformly on compact intervals to a funczoBachz being cadlag , so
zis also cadlag . Sincg(uk) — O, it follows that

lim sup p(xn (14 (1)), 21)) = O,
Too o<t <T

for all T, and hencel(x,,,z) — 0. Since a Cauchy sequence that contains a conver-

gent subsequence converges, the proof is complete.

To use Prohorov’s theorem for proving convergence of priibameasures on
the spac®g |0, »), we need first a characterisation of compact sets.

The first lemma states that the closure of the space of stepidms that are uni-
formly bounded and where the distance between steps israrifdounded from
below is compact:

Lemma 7.27.Letl" C E be compact and > 0 be fixed. Let A", d) denote the set
of step functions, x, in B0, «) such that
() x(t) e I, forall T € [0,), and
(i)sk(x) — sc-1(x) >d, forallke N,
where
s(X) =inf{t > g 1(X) : x(t) #x(t—)}.
Then the closure of &, §) is compact.

We leave the prove as an exercise.
The analog of the modulus of continuity in the Arzela-As¢b&orem on cadlag
space is the following: For € Dg[0,), & > 0, andT < o, set

w(x,6,T) =infmax sup p(x(s),x(t)), (7.3.4)

T steftyt)

where the first infimum is over all collections9ty <t; < --- <th_1 < T < tp, With
ti—ti_1 > 9, foralli.
The following theorem is the analog of the Arzela-Ascolidghem:

Theorem 7.28.Let E be a complete metric space. Then the closure of a set A
De([0, ) is compact, if and only if,

(i) For every rational t> 0, there exists a compact detC E, such that for all x A;
X(t) € I1.
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(ifForeach T < oo,
limsupw(x,6,T) =0. 7.3.5
6l0 xeApN( ) ( )
A proof of this result can be found, e.g. in [6].
Based on this theorem, we now get the crucial tightnesgionite

Theorem 7.29.Let E be complete and separable, and Igt be a family of pro-
cesses with cadlag paths. Then the family of probabilityslauy, of X, is condi-
tionally compact, if and only if the following holds:

(i) For everyn > 0 and rational t> 0, there exists a compact sé},; C E, such that
igfl-la (X(t) € Myp) > 1—n, (7.3.6)

and
(iilFor everyn > 0and T < o, there exist® > 0, such that

SUPHa (W(X,8,T) >1n) <n. (7.3.7)
a

An application of the preceeding theorem to the case of Léoggsses allows
us to prove that the processes constructed in Section 1 foissdh point processes
do indeed have cadlag paths with probability one, i.e. tfeela modification that
are Lévy processes.



References

10.

11.

12.

13.

14.

15.

. Anton Bovier. Stochastic processes. Lecture notes, Bomiversity, 2009.
. Anton Bovier. Extremes, sums, Lévy processes, and ageegjure notes, Bonn University,

2011.

. Amir Dembo and Ofer ZeitounLarge deviations techniques and applicatipnslume 38 of

Applications of Mathematics (New Yorl§pringer-Verlag, New York, second edition, 1998.

. Frank den Hollandet.arge deviationsvolume 14 ofFields Institute MonographsAmerican

Mathematical Society, Providence, RI, 2000.

. Nelson Dunford and Jacob T. Schwartzinear operators. Part.l Wiley Classics Library.

John Wiley & Sons Inc., New York, 1988. General theory, Whth aissistance of William G.
Bade and Robert G. Bartle, Reprint of the 1958 original, Aégilnterscience Publication.

. Stewart N. Ethier and Thomas G. KurtdMarkov processes. Characterization and conver-

gence Wiley Series in Probability and Mathematical Statistieeobability and Mathematical
Statistics. John Wiley & Sons Inc., New York, 1986.

. L. R. G. Fontes, M. Isopi, and C. M. Newman. Random walk$ witongly inhomogeneous

rates and singular diffusions: convergence, localizatind aging in one dimensionAnn.
Probab, 30(2):579-604, 2002.

. M. I. Freidlin and A. D. WentzellRandom perturbations of dynamical systeamsume 260 of

Grundlehren der Mathematischen Wissenschaften [FundeahBrinciples of Mathematical
Sciences] Springer-Verlag, New York, 1984. Translated from the Rarsby Joseph Sziics.

. Masatoshi Fukushima, Yoichi Oshima, and Masayoshi TaKeitlichlet forms and symmetric

Markov processesolume 19 ofde Gruyter Studies in Mathematid#/alter de Gruyter & Co.,
Berlin, extended edition, 2011.

David Gilbarg and Neil S. TrudingeElliptic partial differential equations of second order
volume 224 ofGrundlehren der Mathematischen Wissenschaften [Fund&hBrinciples of
Mathematical SciencesBpringer-Verlag, Berlin, second edition, 1983.

Jean JacodCalcul stochastique et problemes de martingal@tume 714 of_ecture Notes in
Mathematics Springer, Berlin, 1979.

loannis Karatzas and Steven E. ShreBeownian motion and stochastic calculu6raduate
Texts in Mathematics. Springer, New York, 1988.

M.R. Leadbetter, G. Lindgren, and H. Rootzdfxtremes and related properties of random
sequences and process&pringer Series in Statistics. Springer-Verlag, New Yasa3.

L. C. G. Rogers and David WilliamDiffusions, Markov processes, and martingales. Vol.
2. Wiley Series in Probability and Mathematical StatistiBsobability and Mathematical
Statistics. John Wiley & Sons Inc., New York, 1987. 1t6 célsu

L. C. G. Rogers and David William®&iffusions, Markov processes, and martingales. Vol. 1
Cambridge Mathematical Library. Cambridge Universityd8teCambridge, 2000. Founda-
tions, Reprint of the second (1994) edition.

151



152 References

16. Daniel W. Stroock and S. R. Srinivasa Varadh®khultidimensional diffusion processesol-
ume 233 ofGrundlehren der Mathematischen Wissenschaften [Fundeah@ninciples of

Mathematical SciencesBpringer-Verlag, Berlin, 1979.
17. W. Whitt. Stochastic-process limitSpringer Series in Operations Research. Springer-\erlag

New York, 2002.



Index

B(S), 31
C(S), 31
Co(9), 31
Cy(9), 31
h-transform
Doob, 94
Doob’s, 13

adapted process, 19
augmentation
partial, 21

Bessel process, 96
Blumenthal-Getoor 0-1-law, 103
Burkholder-Davis-Gundy inequality, 84

cadlag function, 17

cadlag process, 19

capacity, 118
Chapman-Kolmogorov equation, 34
Chapman-Kolmogorov equations, 35
closable, 55

closed operator, 44

closurel, 49

coffin state, 36

contraction principle, 93

contraction resolvent, 38
contraction semigroup, 38

core, 55

Dirichlet form, 112
Dirichlet principle, 121
Dirichlet problem, 9
dissipative operator, 44, 58
Doob
h transform, 13
h-transform, 94

Doob decomposition, 6
duality, 65

eigenfunction, 11
eigenvalue, 11
elliptic, 100

uniformly, 100
equilibrium measure, 117
extension, 55

Feller

property, 49
Feller-Dynkin process, 52
Feller-Dynkin semigroup, 49
Feynman-Kac formula, 13
function spaces, 31

generator, 6, 33
Green function, 116
Green kernel, 116
Green’s formula, 117

harmonic function, 8
Harnack inequality, 109
Hille-Yosida theorem, 40, 44
honest, 36

inequality
Burkholder-Davis-Gundy, 84
initial distribution, 2
inner regular, 66
invariant
distribution, 3
measure, 3
invariant measure, 112

jump process, 71

153



154

large deviation principle, 92
local time, 78, 126

Markov jump process, 71
Markov process, 2
continuous time, 31
stationary, 2
Markov property
strong, 4, 53
martingale
problem, 6
sub, 19
super, 19
martingale problem, 54, 57, 79
existence, 69
uniqueness, 60
maximum principle, 8, 108
measure
invariant, 112
reversible, 112
metrix
Skorokhod, 134

normal semi-group, 37

optional sampling, 27
Ornstein-Ulenbeck process, 67

partial augmentation, 21
Poisson kernel, 117
Poisson process
of extremes, 130
positive maximum principle, 47, 50
process
adapted, 19
progressive, 25
progressive process, 25

regular point, 103
regularisable, 18

Index

regularisable function, 17
resolvent, 37
strongly continuous contraction, 38
resolvent identity, 37
resolvent set, 45
reversibility, 112
reversible
measure, 112
process, 112

scale function, 124
SCCR, 38
SCCSG, 38
Schilder’s theorem, 92
semi-group, 35, 37
semigroup

Feller-Dynkin, 49
Skorokhod metric, 134
speed measure, 128
stationary process, 2
stochastic differential equation, 73
stochastic integral equation, 73
strong Markov property, 4
strong solution, 73
strongly continuous, 38
strongly continuous, 38
sub-Markovian, 37

tightness, 71
transition kernel, 2, 35
stationary, 2

uniqueness
inlaw, 77
path-wise, 74
weak, 77

upcrossings, 18

weak solution, 73



