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Preface

These notes grew out of various older versions of lecture notes on ageing

and on extreme value theory. After working for a number of years on

problems related to so-called ageing in the dynamics of disordered sys-

tems, mainly spin glasses, it became increasingly clear that in studying

all these different models, that there was a operational mode at work

in all of them, the interplay between extreme values and averaging in

the theory of sums of random variables. The general theory of sums

of independent random variables goes back at least to Gnedenko and

Kolmogorov [26] from about 1950. Later, also situations with depen-

dent random variables were studied intensely, under, as Durrett and

Resnick [19] put it, “a bewildering assortment of assumptions”. Durrett

and Resnick in 1978 give a clear picture of the situation, emphasizing

the connection between convergence of an extremal process to a Poisson

point process and the convergence of the corresponding sum process to

the associated Lévy process, and formulating a clear and distinct set

of conditions for these things to happen. It appears that these very

beautiful results are not very widely known in the community at large.

The purpose of these lecture notes is thus twofold. On the one hand,

I want to give a concise presentation of the connection between extreme

values theory and Poisson point processes on the one hand, and pure

jump Lévy processes and limit theorems for sums of random variables

on the other. We will see, in particular, very clearly, that the dependence

problem enters only at the level of the question whether the extremal

process converges to a Poisson process. Many conditions for this to hold

are known.

The second aspect will be applications of these observations to dis-

ordered systems. This will concern partition functions of disordered

systems, such as the random energy model, but more than that the scal-
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iv 0 Preface

ing properties of Markov jump processes in random environments, viz.

ageing. It has long emerged that the clock process associated to these

models plays a major part and, being a sum of in general dependent

random variables, it is natural that the general limit theorems for such

sums play a major rôle here. In general, there is still no free lunch, and

verifying the hypothesis of the abstract theorems in concrete models is

not immediate, but as I will explain in a variety of illustrative examples,

there is a general strategy at work here, too.

I hope that these notes will help to advertise a central part of classical

probability and demonstrate that amazing results can be wrought out

of it in modern applications.

The insights I have gained over the years in this subject came from my

collaborators, Gérard Ben Arous, Jǐŕı Černý and Véronique Gayrard.

With Gérard and Jǐŕı [2] we first learned how to view the asymptotic

clock as a sum of the extremes of a correlated process. Véronique, in

her seminal series of papers [23, 24, 15], made the clear connection to

the work of Durrett and Resnick and showed how to apply this in the

context of a frozen random environment. I also learned a lot from Irina

Kurkova when studying the problem of local energy statistics in random

media, and from her and Mathias Löwe when analysing the fluctuations

of the partition function of the REM (where in fact we rediscovered a lot

of general wisdom from the theory of sums of triangular arrays). I wish

to thank all of them for the pleasure of working together and exploring

the fascinating world of probability theory.

These notes were written to a large part while I was holding a Lady

Davies Visiting Professorship at the Technion, Haifa, and was staying

at the William-Davidson Faculty of Industrial Engineering and Manage-

ment. I would like to thank Dima Ioffe and the other colleagues at the

Technion for their kind hospitality and the friendly atmosphere there. I

thank the Lady Davies foundation for the financial support that made

this stay possible.

Haifa, July 2010 Anton Bovier
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Introduction

These lectures are motivated by recent research on certain properties

of the dynamics of highly disordered systems, in particular spin glasses.

More than 20 years ago, physicist began to investigate such systems and

discovered some peculiar universal properties that they called ageing.

About ten years ago, a small group of mathematicians became inter-

ested in this phenomenon and a systematic investigation of a number

of models was started. While many deep probles remain unanswered,

some understanding of the reasons begind what was going on emerged.

Interestingly, this links back to some of the most classical parts of proba-

bility, extreme value theory and the fundamental limit theorems for sums

of random variables, and hence Lévy processes. In these lectures I will

tell this story backwards, exposing first the classical theory of Poisson

convergence and stable Lévy processes and in the end explaining their

appearance in the dynamics of disordered systems.

1.1 Characterisation of ageing

The term ageing refers to properties of a dynamical system out of equi-

librium. In principle, this property refers to real (physical) systems. In

the widest sense we can describe it as follows. Assume a systems is

prepared (produced) at some initial time t0. Then the system is left to

itself. After some time tw (called waiting time), an experimentalist may

perform some measurement on the system. The question is, whether

the experimentalist will be able to deduce the elapsed waiting time from

his observation. If the answer is yes, we will say that the system ages,

otherwise it does not.

1



2 1 Introduction

Of course, this is a very general characterization and we will be inter-

ested in more specific situations.

In these lectures we will be concerned with mathematical models that

correspond to this behavior. Again, one could look at very general dy-

namical systems, but we will confine our interest exclusively to Markov

processes in random environments.

Let us introduce some notation.

1.2 Markov jump processes in random environments

The models we will ben interested in general are Markov jump processes

in random environments. We construct them with a particular twist

that will suit our purposes.

Our arena will be a sequence of loop-free graphs, Gn(Vn, En) with set

of vertices Vn and set of edges En. Not that this sequence may consist

of a single element, if the cardinality of Vn is infinite.

A random environment will be a family of positive random variable,

τn(x), x ∈ Vn, defined on some abstract probability space, (Ω,F ,P). We

will denote the sigma-algebra generated by these variables by Fτ , and

their joint distribution by P. Note that we do not assume independence.

Next we define discrete time Markov processes, Jn, with state space

Vn and non-zero transition probabilities along the edges, En. We denote

by µn its initial distribution and by pn(x, y) the elements of its transition

matrix. Note that the pn may be random variables on the space (Ω,F ,P)

(i.e. depend on the variables τn(x). We will assume that the process Jn
admits a unique invariant measure πn. We will often refer to Jn as the

fast chain.

We will construct our process of interest, Xn, as a time change of Jn.

To this end we set

λn(x) ≡ πn(x)/τn(x), (1.1)

and define the clock process

Sn(k) =

k∑
i=0

λ−1
n (Jn(i))en,i , k ∈ N , (1.2)

where (en,i , n ∈ N, i ∈ N) is a family of independent mean one exponen-

tial1 random variables, independent of Jn.

1 We may consider more general situations when en,i have different distributions as
well.



1.2 Markov jump processes in random environments 3

We now define our continuous time process of interest, Xn, as

Xn(t) = Jn(i), if Sn(i) ≤ t < Sn(i+ 1) for some i. (1.3)

One can readily verify that Xn is a continuous time Markov process with

infinitesimal generator λn, whose elements are

λn(x, y) = λn(x)pn(x, y) (1.4)

and invariant measure

πn(x)λ−1
n (x) = τn(x). (1.5)

Note that the numbers λ−1
n (x) play the rôle of the mean holding time

of the process Xn in a site x.

To avoid pathologies, we will always assume that our processes are

such that, almost surely, for all but finitely many n,

λn(x) <∞, ∀x ∈ Vn. (1.6)

Note that all Markov jump processes may be constructed in this way.

For future reference, we will refer to the σ-algebra generated by the

variables Jn and Xn as FJ and FX , respectively. We will write Pn,ω ≡
Pω ≡ Pn for the law of the process Jn, conditional on the σ-algebra Fτ ,

i.e. for fixed realisations of the random environment. Likewise we will

call Pn,ω ≡ Pω ≡ Pn the law of Xn conditional on Fτ .

This construction brings out the crucial rôle played by the clock pro-

cess. If the chain Jn is rather quickly mixing, convergence to equilibrium

can only be slowed through an erratic behaviour of the clock process.

This process, on the other hand, is a sum of positive random variables,

albeit in general dependent ones.

In connection with ageing, we do of course have some particular cases

in mind.

1.2.1 Trap models

The best studied models for aging are the so-called trap models, intro-

duced essentially by Bouchaud and Dean [13, 14]. These models were

introduced as caricatures of more realistic models, but they teach us

something about how one would like to think about ageing systems. The

setting is like the one above, but we make some specific assumptions on

the random environment:

(i) A random environment is given by variables τn(i) ≡ τi, i ∈ Vn which is

a family of positive, independent, and identically distributed random
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variables that are in the domain of attraction of an α-stable distribu-

tion with α < 1, i.e. limt↑∞ tαP[τi > t] = 1. In particular Eτi = +∞.

(ii) For any realization of the random variables τi, the fast chain, Jn, is

a discrete time Markov process with transition probabilities propor-

tional to

pn(i, j) =


τaj∑

(i,k)∈E τ
a
k
, if (i, j) ∈ E ,

0, , else
(1.7)

for some parameter 0 ≤ a ≤ 1.

(iii) The invariant measure of the chain J is uniform and will be chosen

un-normalize as π(i) = 1.

We will in these lectures mainly consider the case a = 0, which is the

original choice of Bouchaud. In that case the dynamics has a simple

description: starting in some site, i, the process waits an exponential

time with mean τi, and then moves on uniformly to one of its neighbors

in the graph G. So the random environment does not affect the paths

of the process, but only the time spent along a path. We think of the

process of interest as a random time change of a fast process. The

general case is treated nicely in [23].

Now the random variables τi, i.e. the trapping times, have a very

heavy-tailed distribution, so that as the process wanders about, it can

find ever deeper traps, i.e. sites where it will wait longer and longer. So

if it is the case that the process, by time T is with large probability in a

trap whose waiting time is of order g(T ), then we can indeed determine

the age of the process by studying its current typical sojourn times. The

nice feature of trap models in that respect is that the state space has

site by site a temporal characteristic, a feature that more complicated

models do not immediately show.

There has been a considerable amount of work done on trap models in

the case when G = GN is the complete graph and when G = Zd, mostly

by Ben Arous and Černý [8, 5, 6, 7].

To quantify ageing properties, one usually refers to the behaviour of

certain time-time-correlation functions. This corresponds to the idea

that an aging experiment corresponds to making an observation of the

system during a time interval [tw, tw + t and to record the outcome of

the measurement as a function R(tw, t).

When studying trap models, the most commonly used correlation

functions are

R[tw, t] ≡ P[X(tw + t) = X(tw)], (1.8)
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respectively its quenched version

Rω[tw, t] ≡ Pω[X(tw + t) = X(tw)]. (1.9)

Another correlation function is

Π[tw, t] ≡ P[X(tw + s) = X(tw),∀0 ≤ s ≤ t], (1.10)

respectively

Πω[tw, t] ≡ Pω[X(tw + t) = X(tw),∀0 ≤ s ≤ t]. (1.11)

One could of course, instead of just asking that X(s) = X(tw) ask for a

milder version, like dist (X(s), X(tw)), for some distance, or one might

ask for the distribution of such a distance. However, as again we will

see later, it is in the spirit of the trap model to use the strict definition

above: for large times, very deep traps are quite isolated, and so the

right thing to realize the event is for the process to be in the same deep

trap (most of) all the time.

One now speaks about ageing systems, if these functions, as t and tw
become large, do not become independent of tw. In fact, in these notes

we will not stress the role of correlation functions too much.

1.2.2 Glauber dynamics

Trap models may reproduce ageing behavior, but they are in some sense

ad hoc models, that are not motivated by microscopic physical models.

In particular, they have two features that seem artificial built in: the

independence of the traps and the heavy tails of the distribution of the

traps.

Models that are a step closer to reality are Glauber dynamics of (ran-

dom) spin systems. Here we consider as state space the hypercube

Sn ≡ {−1, 1}n (we could also be more general), and defined on this

an energy function (Hamiltonian) Hn(σ) which may depend on a ran-

dom parameter, i.e. may be considered as a random process indexed by

Sn. The examples we will be concerned with here are so-called mean-

field spin glasses, where Hn is a centered Gaussian process with some

covariance

cov(Hn(σ), Hn(σ′)) = nf( dist n(σ, σ′)),

for some function f such that f(0) = 1 and dist n a normalized distance.

The most prominent examples are the p-spin interaction Sherrington-

Kirkpatrick models, where
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cov(Hn(σ), Hn(σ′)) = nRn(σ, σ′)p, (1.12)

with Rn(σ, σ′) ≡ n−1
∑n
i=1 σiσ

′
i. Given such a Hamiltonian, one con-

structs a Gibbs measure

µβ,n(σ) ≡ 2−n exp(−Hn(σ))

Zβ,n
, (1.13)

where Zβ,n is such that µβ,n is a probability.

A Glauber dynamics is then a (discrete or continuous time) Markov

chain that is reversible with respect to this measure. In most cases, one

assumes also that only transitions are allowed in which a single spin is

flipped at a time. Popular rates are:

Metropolis rates:

p(σ, σ′) = exp (−β[Hn(σ′)−Hn(σ)]+) , if |σ − σ′| = 2 (1.14)

and zero else; these rates are rather difficult to handle because in our

setting, the fast chain is not a simple object. First results are announced

in the forthcoming paper [25].

Nicer to to handle are

random time change rates:

p(σ, σ′) = exp (βHn(σ)) , if |σ − σ′| = 2 (1.15)

This is easily cast in the above form with the fast chain given by simple

random walk on the hypercube and λn(σ) ≡ exp (βHn(σ)). Results on

this type of dynamics were obtained in [3, 4, 7, 2, 15].

We see that in these dynamics, neither independence nor heavy tails

appear. Nonetheless, one expects that under suitable conditions, trap

model dynamics emerges as appropriate description of the long time be-

havior of these models (when N ↑ ∞). To understand how this happens

will be the main theme of these lectures.

Ackowledgement. These notes were written for the most part while

I was a Lady Davies Visiting Professor at the Technion in Haifa. I am

grateful to the Lady Davies foundation for their financial support and to

Dima Ioffe and the William Davidson Faculty of Industrial Engeneering

and Management for their kind hospitality.
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Extreme value theory and Poisson point
processes

Extreme value theory is an enormously rich subject with an inexhau-

sible litterature. Two very good reference, from which much of this

chapter is taken, are the textbooks [31] and [32].

2.1 Independent random variables

Our first building block will be the theory of extremes of random vari-

ables. The setting here is the following. Let Xi, i ∈ N, be a family of

random variables defined on some probability space (Ω,F ,P). Let us say

that theXi have all the same distribution, say, F , i.e. P(Xi ≤ x) = F (x).

Much of the material of this section is taken from [31] and [32].

2.1.1 Extremal distributions

The first question we can ask is whether something can be said about

the distribution of

Mn ≡ max
i≤n

Xi. (2.1)

The first context in which one can say something is when the Xi are

independent random variables. In that case, obviously,

P(Mn ≤ u) = P (Xi ≤ u,∀i ≤ n) = F (u)n. (2.2)

As probability is about limit theorems, to get an interesting result we

must choose u = un as a function of n and try to do this in such a way

that

F (un)n → G ∈ (0, 1). (2.3)

7



8 2 Extreme value theory and Poisson point processes

Even more interesting, we may try to find a family, un(x), x ∈ R, such

that

F (un(x))n → G(x), (2.4)

where G(x) is a probability distribution function! Here and throughout

un(x) will be assumed to be a strictly monotone continuous function.

Such a result could then be interpreted by saying that u−1
n (Mn) con-

verges in law to a random variable with distribution function G.

One of the remarkable theorems in probability theory states that if

un(x) is chosen as an affine function, e.g. un(x) = anx+ bn, we have a

full classification of the possible limit laws.

Theorem 2.1.1 Let Xi, i ∈ N be a sequence of i.i.d. random variables.

If there exist sequences an > 0, bn ∈ R, and a non-degenerate probability

distribution function, G, such that

P [Mn ≤ anx+ bn]
w→ G(x) (2.5)

then G(x) is of the same type as one of the three extremal-type distribu-

tions, namely:

(I) The Gumbel distribution,

G(x) = e−e
−x

(2.6)

(II) The Fréchet distribution with parameter α > 0,

G(x) =

{
0, if x ≤ 0

e−x
−α
, if x > 0

(2.7)

(III) The Weibull distribution with parameter α > 0,

G(x) =

{
e−(−x)α , if x < 0

1, if x ≥ 0
(2.8)

Here we say that two functions, G,H, are of the same type, if there

are constants, a, b, such that G(x) = H(ax+ b).

Proof. The proof of this theorem relies on the fact that the distributions

we are looking for arise as limits of the form

Fn(anx+ bn)→ G(x) (2.9)

This implies a certain invariance property of G, called max-stability .
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Definition 2.1.1 A non-degenerate probability distribution function,

G, is called max-stable, if for all n ∈ N, there exists an > 0, bn ∈ R, such

that, for all x ∈ R,

Gn(a−1
n x+ bn) = G(x) (2.10)

The justification of this name is contained in the following proposition.

Proposition 2.1.2 (i) A probability distribution, G, is max-stable,

if and only if there exists probability distributions Fn and con-

stants an > 0, bn ∈ R, such that, for all k ∈ N,

Fn(a−1
nkx+ bnk)

w→ G1/k(x) (2.11)

(ii) G is max-stable, if and only if there exists a probability distribu-

tion function, F , and constants an > 0, bn ∈ R, such that

Fn(a−1
n x+ bn)

w→ G(x) (2.12)

Proof. The proof of this proposition is slightly technical and will be

omitted. It can be found in [31].

We do cite, however, an important result that is instrumental for the

proof:

The next theorem is known as Khintchine’s theorem:

Theorem 2.1.3 Let Fn, n ∈ N, be distribution functions, and let G

be a non-degenerate distribution function. Let an > 0, and bn ∈ R be

sequences such that

Fn(anx+ bn)
w→ G(x) (2.13)

Then it holds that there are constants αn > 0, and βn ∈ R, and a

non-degenerate distribution function G∗, such that

Fn(αnx+ βn)
w→ G∗(x) (2.14)

if and only if

a−1
n αn → a, (βn − bn)/an → b (2.15)

and

G∗(x) = G(ax+ b) (2.16)

There is a slight extension to this result.

Corollary 2.1.4 If G is max-stable, then there exist functions a(s) >

0, b(s) ∈ R, s ∈ R+, such that

Gs(a(s)x+ b(s)) = G(x) (2.17)
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Proof. This follows essentially by interpolation. We have that

G[ns](a[ns]x+ b[ns]) = G(x) (2.18)

But

Gn(a[ns]x+ b[ns] = G[ns]/s(a[ns]x+ b[ns])G
n−[ns]/s(a[ns]x+ b[ns])

= G1/s(x)Gn−[ns]/s(a[ns]x+ b[ns])

As n ↑ ∞, the last factor tends to one (as the exponent remains bounded),

and so

Gn(a[ns]x+ b[ns])
w→ G1/s(x) (2.19)

and

Gn(anx+ bn)
w→ G(x) (2.20)

Thus by Khintchine’s theorem,

a[ns]/an → a(s), (bn − b[ns])/an → b(s) (2.21)

and

G1/s(x) = G(a(s)x+ b(s)) (2.22)

Theorem 2.1.1 is thus an immediate consequence of the following.

Theorem 2.1.5 Any max-stable distribution is of the same type as one

of the three distributions given in Theorem 2.1.1.

Proof. Let us check that the three types are indeed max-stable. For

the Gumbel distribution this is already obvious as it appears as extremal

distribution in the Gaussian case. In the case of the Fréchet distribution,

note that

Gn(x) =

{
0, if x ≤ 0

e−nx
−α

= e−(n−1/αx)−α , if x > 0

= G(n−1/αx) (2.23)

which proves max-stability. The Weibull case follows in exactly the same

way.

To prove that the three types are the only possible cases, we use Corol-

lary 2.1.4. Taking the logarithm, it implies that, if G is max-stable, then

there must be a(s), b(s), such that

−s ln (G(a(s)x+ b(s))) = − lnG(x) (2.24)
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One more logarithm leads us to

− ln [−s ln (G(a(s)x+ b(s)))]

=− ln [− ln (G(a(s)x+ b(s)))]− ln s
!
=− ln [− lnG(x)] ≡ ψ(x) (2.25)

or equivalently

ψ(a(s)x+ b(s))− ln s = ψ(x) (2.26)

Now ψ is an increasing function such that infx ψ(x) = −∞, supx ψ(x) =

+∞. We can define the inverse ψ−1(y) ≡ U(y). Using (iv) Lemma ??,

we get that
U(y + ln s)− b(s)

a(s)
= U(y) (2.27)

and subtracting the same equation for y = 0,
U(y + ln s)− U(ln s)

a(s)
= U(y)− U(0) (2.28)

Setting ln s = z, this gives

U(y + z)− U(z) = [U(y)− U(0)] a(ez) (2.29)

To continue, we distinguish the case a(s) ≡ 1 and a(s) 6= 1 for some s.

Case 1. If a(s) ≡ 1, then

U(y + z)− U(z) = U(y)− U(0) (2.30)

whose only solutions are

U(y) = ρy + b (2.31)

with ρ > 0, b ∈ R. To see this, let x1 < x2 be any two points and let x̄

be the middle point of [x1, x2]. Then (2.30) implies that

U(x2)− U(x̄) = U(x2 − x̄)− U(0) = U(x̄)− U(x1), (2.32)

and thus U(x̄) = (U(x2)− U(x1)) /2. Iterating this proceedure implies

readily that on all points of the form x
(n)
k x1 + k2−n(X2 − x1) we have

that U(xk) = U(x1) + k2−n(U(x2) − U(x1)); that is, on a dense set of

points (2.31) holds. But since U is also monotonous, it is completely

determined by its values on a dense set, so U is a linear function.

But then ψ(x) = ρ−1x− b, and

G(x) = exp
(
− exp

(
−ρ−1x− b

))
(2.33)

which is of the same type as the Gumbel distribution.

Case 2. Set Ũ(y) ≡ U(y) − U(0), Then subtract from (2.29) the same

equation with y and z exchanged. This gives
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−Ũ(z) + Ũ(y) = a(ez)Ũ(y)− a(ey)Ũ(z) (2.34)

or

Ũ(z) (1− a(ey)) = Ũ(y) (1− a(ez)) (2.35)

Now chose z such that a(ez) 6= 1. Then

Ũ(y) = Ũ(z)
1− a(ey)

1− a(ez)
≡ c(z)(1− a(ey)) (2.36)

Now we insert this result again into (2.29). We get

Ũ(y + z) = c(z)
(
1− a(ey+z)

)
(2.37)

= Ũ(z) + Ũ(y)a(ez) (2.38)

= c(z) (1− a(ez)) + c(z) (1− a(ey)) a(ez) (2.39)

which yields an equation for a, namely,

a(ey+z) = a(ey)a(ez) (2.40)

The only functions satisfying this equation are the powers, a(x) = xρ.

Therefore,

U(y) = U(0) + c(1− eρy) (2.41)

Setting U(0) = ν, going back to G this gives

G(x) = exp

(
−
(

1− x− ν
c

)−1/ρ
)

(2.42)

for those x where the right-hand side is < 1.

To conclude the proof, it suffices to discuss the two cases −1/ρ ≡ α > 0

and −1/ρ ≡ −α < 0, which yield the Fréchet, resp. Weibull types.

Importantly, we can also identify which probability distributions give

rise to the three types.

In the following theorem we set xF ≡ sup{x : F (x) < 1}.

Theorem 2.1.6 The following conditions are necessary and sufficient

for a distribution function, F , to belong to the domain of attraction of

the three extremal types:

(I) Fréchet: xF = +∞,

lim
t↑∞

1− F (tx)

1− F (t)
= x−α, ∀x>0, α > 0 (2.43)
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(II) Weibull: xF < +∞,

lim
h↓0

1− F (xF − xh)

1− F (xF − h)
= xα, ∀x>0, α > 0 (2.44)

(III) Gumbel: ∃g(t) > 0,

lim
t↑xF

1− F (t+ xg(t))

1− F (t)
= e−x, ∀x (2.45)

Proof. We will only prove the sufficiency of the criteria. The following

lemma contains an elementary, but important statement:

Lemma 2.1.7 The statements

n(1− F (anx+ bn))→ g(x) (2.46)

and

Fn(anx+ bn)→ e−g(x) (2.47)

are equivalent.

Proof. Assume first that (2.47) holds. Then

n lnF (anx+ bn)→ −g(x). (2.48)

But

n ln(F (anx+ bn) = n

∞∑
k=1

(−1)k

k
(1− F (anx+ bn))

k
. (2.49)

It is easy to see that the only way the right hand side can coverge is

when the k = 1-term in the sum,

−n(1− F (anx+ bn)), (2.50)

tends to −g(x), which then implies that all other terms tend to zero.

Thus (2.46) must hold.

Conversely, if (2.46) holds, (2.47) follows since

lim
n↑∞

Fn(anx+bn) = lim
n↑∞

(1− (1− F (anx+ bn)))
n

= e− limn↑∞ n(1−F (anx+bn))

(2.51)

Thus we only have to check when (2.46) holds with which g(x).

Let us assume that there is a sequence, γn, such that

n(1− F (γn))→ 1. (2.52)

Since necessarily F (γn)→ 1, γn → xF , and we may choose γn < xF , for

all n. We now turn to the three cases.
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Fréchet: We know that (for x > 0),
1− F (γnx)

1− F (γn)
→ x−α (2.53)

while n(1− F (γn))→ 1. Thus,

n(1− F (γnx))→ x−α (2.54)

and so, for x > 0,

Fn(γnx)→ e−x
−α
. (2.55)

Since limx↓0 e
−x−α = 0, it must be true that, for x ≤ 0,

Fn(γnx)→ 0 (2.56)

which concludes the argument.

Weibull: Let now hn = xF − γn. By the same argument as above, we get,

for x > 0

n(1− F (xF − hnx))→ xα (2.57)

and so

Fn(xF − x(xF − γn))→ e−x
α

(2.58)

or equivalently, for x < 0,

Fn((xF − γn)x+ xF )→ e−(−x)α (2.59)

Since, for x ↑ 0, the right-hand side tends to 1, it follows that,

for x ≥ 0,

Fn(x(xF − γn)− xF )→ 1 (2.60)

Gumbel: In exactly the same way we conclude that

n(1− F (γn + xg(γn)))→ e−x (2.61)

from which the conclusion is now obvious, with an = 1/g(γn),

bn = γn.

We are left with proving the existence of γn with the desired property. If

F had no jumps, we could choose γn simply such that F (γn) = 1− 1/n

and we would be done. The problem becomes more subtle since we want

to allow for more general distribution functions. The best approximation

seems to be

γn ≡ F−1(1− 1/n) = inf{x : F (x) ≥ 1− 1/n)} (2.62)

Then we get immediately that

lim supn(1− F (γn)) ≤ 1. (2.63)
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But for x < γn, F (x) ≤ 1 − 1/n, and so n(1 − F (γ−n )) ≥ 1. Thus we

may just show that

lim inf
n

1− F (γn)

1− F (γ−n )
≥ 1. (2.64)

This, however, follows in all cases from the hypotheses on the functions

F , e.g.

1− F (xγn)

1− F (γn)
→ x−α (2.65)

which tends to 1 as x ↑ 1. This concludes the proof of the sufficiency in

the theorem.

We mention the following fact that characterises the class of distribu-

tion for which there is any possibility to get a limiting distribution for

a rescaled maximum.

Theorem 2.1.8 Let F be a distribution function. Then there exists a

sequence, γn, such that

n(1− F (γn))→ τ, 0 < τ <∞, (2.66)

if and only if

lim
x↑xF

1− F (x)

1− F (x−)
= 1 (2.67)

Remark 2.1.1 To see what is at issue, note that
1− F (x)

1− F (x−)
= 1 +

p(x)

1− F (x−)
, (2.68)

where p(x) is the probability of the “atom” at x, i.e. the size of the

jump of F at x. Thus, (2.67) says that the size of jumps of F should

diminish faster, as x approaches the upper boundary of the support of

F , than the total mass beyond x.

Proof. Assume that (2.66) holds, but

p(x)

1− F (x−)
6→ 0. (2.69)

Then there exists ε > 0 and a sequence, xj ↑ xF , such that

p(xj) ≥ 2ε(1− F (x−j )). (2.70)

Now chose nj such that

1− τ

nj
≤
F (x−j ) + F (xj)

2
≤ 1− τ

nj + 1
. (2.71)
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The gist of the argument (given in detail below) is as follows: Since the

upper and lower limit in (2.71) differ by only O(1/n2
j ), the term in the

middle must equal, up to that error, F (γnj ); but F (xj) and F (x−j ) differ

(by hypothesis) by ε/nj , and since F takes no value between these two,

it is impossible that
F (x−j )+F (xj)

2 = F (γnj ) to the precision required.

Thus (2.67) must hold.

Let us formalize this argument. Now it must be true that either

(i) γnj < xj i.o., or

(ii) γnj ≥ xj i.o.

In case (i), it holds that for these j,

nj(1− F (γnj )) > nj(1− F (x−j )). (2.72)

Now replace in the right-hand side

F (x−j ) =
F (x−j ) + F (xj)− p(xj)

2
(2.73)

and write

1 = τ/nj + 1− τ/nj (2.74)

to get

nj(1− F (x−j )) = τ + nj

(
1− τ

nj
−
F (x−j ) + F (xj)− p(xj)

2

)

≥ τ +
njp(xj)

2
− nj

(
τ

nj
− τ

nj + 1

)
≥ τ + εnj(1− F (x−j ))− τ

nj + 1
.

Thus

nj(1− F (x−j )) ≥ τ 1− 1/(nj + 1)

1− ε
. (2.75)

For large enough j, the right-hand side will be strictly larger than τ , so

that

lim sup
j

nj(1− F (x−j )) > τ, (2.76)

and in view of (2.72), a fortiori

lim sup
j

nj(1− F (γ−j )) > τ, (2.77)

in contradiction with the assumption.
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In case (ii), we repeat the same argument mutando mutandis, to con-

clude that

lim inf
j

nj(1− F (γ−j )) < τ, (2.78)

To prove the converse assertion, choose

γn ≡ F−1(1− τ/n). (2.79)

Using (2.67), one deduces (2.66) exactly as in the special case τ = 1 in

the proof of Theorem 2.1.6.

2.1.2 Distribution of exceedances

The scale function un(x) indicates the order of the largest of the first n

random variables Xi. The next natural question is how many variables

are bigger than such an extreme level un. We define the number, Sn(u),

of exceedances of a level u,

Sn(u) ≡ #{i ≤ n : Xi > u}. (2.80)

Unsurprisingly, the Poisson distribution makes its first entrance:

Theorem 2.1.9 Let Xi be iid random variables with common distribu-

tion F . If un is such that

n(1− F (un))→ τ, 0 < τ <∞, (2.81)

then

P [Sn(un) = k]→ τk

k!
e−τ (2.82)

Proof. The proof of this lemma is quite simple, but the result is im-

portant enough for us to justify giving it. We just need to consider all

possible ways to realise the event {Sn(un) = k}. Namely

P [Sn(un) = k] =
∑

{i1,...,ik}⊂{1,...,n}

k∏
`=1

P [Xi` > un]
∏

j 6∈{1i,...,ik}

P [Xj ≤ un]

=

(
n

k

)
(1− F (un))kF (un)n−k

=
1

k!

n!

nk(n− k)!
[n(1− F (un))]

k
[Fn(un)]

1−k/n
.

But, for any k fixed, n(1 − F (un)) → τ , Fn(un) → e−τ , k/n → 0, and
n!

nk(n−k)!
→ 1. Thus (2.82) holds.
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Using very much the same sort of reasoning, one can generalise the

question answered above to that of the numbers of exceedances of several

extremal levels.

Theorem 2.1.10 Let u1
n > n2

n · · · > urn such that

n(1− F (u`n))→ τ`,

with

0 < τ1 < τ2 < . . . , < τr <∞.

Then, under the assumptions of the preceding theorem, with Sin ≡ Sn(uin),

P
[
S1
n = k1, S

2
n − S1

n = k2, . . . , S
r
n − Sr−1

n = kr
]
→

τk11

k1!

(τ2 − τ1)k2

k2!
. . .

(τr − τr−1)kr

kr!
e−τr (2.83)

Proof. Again, we just have to count the number of arrangements that

will place the desired number of variables in the respective intervals.

Then

P
[
S1
n = k1, S

2
n − S1

n = k2, . . . , S
r
n − Sr−1

n = kr
]

=

(
n

k1, . . . , kr

)
P
[
X1, . . . , Xk1 > u1

n ≥ Xk1+1, . . . , Xk1+k2 > u2
n, . . .

. . . , ur−1
n ≥ Xk1+···+kr−1+1, . . . , Xk1+···+kr > urn ≥ Xk1+···+kr+1, . . . , Xn

]
=

(
n

k1, . . . , kr

)
(1− F (u1

n))k1
[
F (u1

n)− F (u2
n)
]k2

. . .
[
F (ur−1

n )− F (urn)
]kr

× Fn−k1−···−kr (urn)

Now we write[
F (u`−1

n )− F (u`n)
]

=
1

n

[
n(1− F (u`n))− n(1− F (u`−1

n ))
]

and use that
[
n(1− F (u`n))− n(1− F (u`−1

n ))
]
→ τ` − τ`−1. Proceeding

otherwise as in the proof of Theorem 2.1.9, we arrive at (2.83)

Note that the theorem states that the number of variables that fall

into the different intervals are independent and Poisson distributed with

Parameters τk − τk−1.
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2.1.3 Poisson point processes

We want to reformulate the result of the previous theorem in an even

more appealing way. Suppose that we are in the situation when F is in

the domain of attraction of one of the three extremal distributions, and

hence

nP [Xi > un(x)]→ g(x), (2.84)

with g(x) monotone (decreasing) function. Then the preceding theo-

rem says that the number of exceedances of the level un(x) is Poisson

with parameter g(x), for any x. We may want to look at the collec-

tion of points, (u−1
n (Xi), i ≤ n). The argument from above can easily

be extended to show that for any two disjoint intervals I, J ⊂ R, the

number of points, u−1
n (Xi), that fall into the intervalls I and J , resp.,

converge to mutually independent Poisson random variables with pa-

rameters −
∫
I
dg(x) and −

∫
J
dg(x), respectively. This brings us to the

formulation in terms of Poisson point processes. Let us recall some basic

definitions and facts.

Point processes. Point processes are designed to describe the prob-

abilistic structure of point sets in metric spaces, for our purposes Rd.
For reasons that may not be obvious immediately, a convenient way to

represent a collection of points xi in Rd is by associating to them a point

measure.

Let us first consider a single point x. We consider the usual Borel-

sigma algebra, B ≡ B(Rd), of Rd, that is generated form the open sets in

the open sets in the Euclidean topology of Rd. Given x ∈ Rd, we define

the Dirac measure, δx, such that, for any Borel set A ∈ B,

δx(A) =

{
1, ifx ∈ A
0, ifx 6∈ A.

(2.85)

A point measure is a measure, µ, on Rd, such that there exists a count-

able collection of points , {xi ∈ Rd, i ∈ N}, such that

µ =

∞∑
i=1

δxi (2.86)

and, if K is compact, then µ(K) <∞.

Note that the points xi need not be all distinct. The set Sµ ≡ {x ∈
Rd : µ(x) 6= 0} is called the support of µ. A point measure such that for

all x ∈ Rd, µ(x) ≤ 1 is called simple.

We denote by Mp(Rd) the set of all point measures on Rd. We equip
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this set with th sigma-algebraMp(Rd), the smallest sigma algebra that

contains all subsets of Mp(Rd) of the form {µ ∈ Mp(Rd) : µ(F ) ∈ B},
where F ∈ B(Rd) and B ∈ B([0,∞)). Mp(Rd) is also characterized by

saying that it is the smallest sigma-algebra that makes the evaluation

maps, µ→ µ(F ), measurable for all Borel sets F ∈ B(Rd).

Definition 2.1.2 A point process, N , is a random variable taking values

in Mp(Rd), i.e. a measurable map, N : (Ω,F) → (Mp(Rd),Mp(Rd)),
from a probability space to the space of point measures.

An important characteristic of a point process is its intensity measure,

λ, defined as

λ(F ) ≡ EN(F ) (2.87)

for F ∈ B.

If Q is a probability measure on (Mp,Mp), the Laplace transform of

Q is a map, ψ from non-negative Borel functions on Rd to R+, defined

as

ψ(f) ≡
∫
Mp

exp

(
−
∫
Rd
f(x)µ(dx)

)
Q(dµ). (2.88)

If N is a point process, the Laplace functional of N is

ψN (f) ≡ Ee−N(f) =

∫
e−N(ω,f)P(dω) (2.89)

=

∫
Mp

exp

(
−
∫
Rd
f(x)µ(dx)

)
PN (dµ),

where we denote by PN the law of N .

Proposition 2.1.11 The Laplace functional, ψN , of a point process,

N , determines N uniquely.

Poisson point process. The most important class of point processes

for our purposes will be Poisson point processes. One may characterize

it as the “most random” point process with given intensity measure.

Definition 2.1.3 Let λ be a σ-finite, positive measure on Rd. Then a

point process, N , is called a Poisson point process with intensity measure

λ (PPP (λ)), if

(i) For any F ∈ B(Rd), and k ∈ N,

P [N(F ) = k] =

{
e−λ(F ) (λ(F ))k

k! , ifλ(F ) <∞
0, ifλ(F ) =∞,

(2.90)
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(ii) If F,G ∈ B are disjoint sets, then N(F ) and N(G) are independent

random variables.

In the next theorem we will assert the existence of a Poisson point

process with any desired intensity measure. We will give the proof,

because it contains an explicit construction of Poisson point processes

in terms of independent random variables which is extremely useful.

Proposition 2.1.12(i) PPP (λ) exists, and its law is uniquely deter-

mined by the requirements of the definition.

(ii) The Laplace functional of PPP (λ) is given, for f ≥ 0, by

ΨN (f) = exp

(
−
∫
Rd

(1− e−f(x))λ(dx)

)
(2.91)

Proof. Since we know that the Laplace functional determines a point

process, in order to prove that the conditions of the definition uniquely

determine the PPP (λ), we show that they determine the form (2.91)

of the Laplace functional. Thus suppose that N is a PPP (λ). Let

f = c1IF . Then

ΨN (f) = E exp (−N(f)) = E exp (−cN(F )) (2.92)

=

∞∑
k=0

e−cke−λ(F ) (λ(F ))k

k!
= e(e−c−1)λ(F )

= exp

(
−
∫

(1− e−f(x))λ(dx)

)
,

which is the desired form. Next, if Fi are disjoint, and f =
∑k
i=1 ci1IFi ,

it is straightforward to

ΨN (f) = E exp

(
−

k∑
i=1

ciN(Fi)

)
=

k∏
i=1

E exp (−ciN(Fi)) (2.93)

due to the independence assumption (ii); a simple calculations shows

that this yields again the desired form. Finally, for general f , we can

choose a sequence, fn, of the form considered, such that fn ↑ f . By

monotone convergence then N(fn) ↑ N(f). On the other hand, since

e−N(g) ≤ 1, we get from dominated convergence that

ΨN (fn) = Ee−N(fn) → Ee−N(f) = ΨN (f). (2.94)

But, since 1−e−fn(x) ↑ 1−e−f(x), and monotone convergence gives once

more
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ΨN (fn) = exp

(∫
(1− e−fn(x))λ(dx)

)
↑ exp

(∫
(1− e−f(x))λ(dx)

)
(2.95)

On the other hand, given the form of the Laplace functional, it is trivial

to verify that the conditions of the definition hold, by choosing suitable

functions f .

Finally we turn to the construction of PPP (λ). Let us first consider

the case λ(Rd) <∞. Then construct

(i) A Poisson random variable, τ , of parameter λ(Rd).
(ii) A family, Xi, i ∈ N, of independent, Rd-valued random variables

with common distribution λ/λ(Rd). This family is independent

of τ .

Then set

N∗ ≡
τ∑
i=1

δXi (2.96)

It is not very hard to verify that N∗ is a PPP (λ).

To deal with the case when λ(Rd) is infinite, decompose λ into a

countable sum of finite measures, λk, that are just the restriction of λ

to a finite set Fk, where the Fk form a partition of Rd. Then N∗ is just

the sum of independent PPP (λk) N∗k .

2.1.4 Poisson processes of extremes

We can now formulate our first theorem on Poisson convergence.

Theorem 2.1.13 Let Xi be iid random variables with common distribu-

tion function F , and assume n(1−F (un(x)))→ g(x) for some monotone

decreasing function g : Γ→ R+. Then the point process

Pn ≡
n∑
i=1

δu−1
n (Xi)

(2.97)

converges weakly to the Poisson Point process on Γ with intensity mea-

sure −dg(x).

To understand the notion of convergence used here, we need to discuss

briefly some topological notions.

We will say that a sequence of measures, µn ∈ M+(Rd) converges

vaguely to a measure µ ∈M+(Rd), if, for all f ∈ C+
0 (Rd),
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µn(f)→ µ(f) (2.98)

Note that for this topology, typical open neighborhoods are of the form

Bf1,...,fk,ε(µ) ≡ {ν ∈M+(Rd) : ∀ki=1 |ν(fi)− µ(fi)| < ε}, (2.99)

i.e. to test the closeness of two measures, we test it on their expectations

on finite collections of continuous, positive functions with compact sup-

port. It is a fact that we shall not prove here that the vague topology is

metrizable and turns M+(Rd) into a Polish space. Given this topology,

on can define the corresponding Borel sigma algebra, B(M+(Rd)), which

(fortunately) turns out to coincide with the sigma algebra M+(Rd) in-

troduced before.

Having established the space of σ-finite measures as a complete, sep-

arable metric space, we can think of weak convergence of probability

measures on this space just as if we were working on an Euclidean space.

Vague convergence of point measures is a very strong notion in the

sense that it implies the convergence of the points of the supports. The

following proposition makes this precise.

Proposition 2.1.14 Let µn, n ∈ N, and µ be in Mp(Rd), and µn
v→ µ.

Let K be a compact set with µ(∂K) = 0. Then we have a labeling of the

points of µn, for n ≥ n(K) large enough, such that

µn(· ∩K) =

p∑
i=1

δxni , µ(· ∩K) =

p∑
i=1

δxi ,

such that (xn1 , . . . , x
n
p )→ (x1, . . . , xp).

A particularly useful criterion for convergence of point processes is

provided by Kallenberg’s theorem [29].

Theorem 2.1.15 Assume that ξ is a simple point process on a metric

space E, and T is a Π-system of relatively compact open sets, and that

for I ∈ T ,

P [ξ(∂I) = 0] = 1. (2.100)

If ξn, n ∈ N are point processes on E, and for all I ∈ T ,

lim
n↑∞

P [ξn(I) = 0] = P [ξ(I) = 0] , (2.101)

and

lim
n↑∞

Eξn(I) = Eξ(I) <∞, (2.102)
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then

ξn
w→ ξ (2.103)

Remark 2.1.2 The Π-system, T , can be chosen, in the case E = Rd,
as finite unions of bounded rectangles.

We will give a proof of Kallenberg’s theorem following Resnick’s book

[32] in Chapter 5.

Kallenberg’s theorem gives us the tool to prove Theorem 2.1.13.

Proof. Note first that for any interval (a, b] ⊂ R+,

EPn((a, b]) = nP
[
u−1
n (X1) ∈ (a, b]

]
= n(F (un(b))−F (un(a)))→ g(a)−g(b).

(2.104)

Next we consider the probability that Pn((a, b]) = 0. Clearly, from what

we have said at the beginning of the subsection, Pn((a, b]) converges to

a Poisson random variable with parameter g(a)− g(b),

P [Pn((a, b]) = 0]→ exp(g(b)− g(a)). (2.105)

The corresponding result for finite collections of intervals follows in the

same way, and since the limits correspond to the Poisson point process

with intensity measure −dg, we are done.

We can do better: suppose we want to know something about the

places where large values are attained. Then it makes sense to define

Nn ≡
∞∑
i=1

δ(i/n,u−1
n (Xi))

(2.106)

as a point process on R2 (or more precisely, on Γ× R+).

Theorem 2.1.16 Under the assumptions of Theorem 2.1.13, the point

process Nn converges to the Poisson point process, N , on Γ × R+ with

intensity measure (−dg)(x)× dt.

Proof. The proof is the same as before, just taking into account the

independence of the Xi!

This last result gives the most complete description of the asymptotic

structure of extremes of iid sequences of random variables.
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2.2 Extensions to dependent sequences and triangular arrays

The type of results on extremes we have exposed above is fortunately

not limited to iid sequences. In fact, there is a rather remarkable degree

of universality present that allows to push these observations to fairly

strongly correlated sequences. For our purposes it will also be important

that we will be able to deal with random variables whose distribution

changes as the sample size changes, i.e. we want to deal with triangular

arrays of random variables. There are several settings in which creteria

are known. A rather general one is the following.

2.2.1 The inclusion-exclusion principle.

Going through the proofs in the iid setting, one will find that a key

observation was that

n(1− F (un))→ τ ⇔ P [Mn ≤ un]→ e−τ . (2.107)

This relation was instrumental for the Poisson distribution of the number

of crossings of extreme levels. The key to this relation was the fact that

in the iid case,

P [Mn ≤ un] = Fn(un) =

(
1− n(1− F (un))

n

)n
(2.108)

which converges to e−τ . The first equality fails of course in the depen-

dent case. However, this equation is also far from necessary.

The following simple lemma gives a much weaker, and, as we will see,

useful, criterium for convergence to the exponential function.

Lemma 2.2.17 Assume that a sequence An satisfies, for any s ∈ N,

the bounds

An ≤
2s∑
`=0

(−1)`

`!
a`(n) (2.109)

An ≥
2s+1∑
`=0

(−1)`

`!
a`(n) (2.110)

and, for any ` ∈ N,

lim
n↑∞

a`(n) = a` (2.111)

Then

lim
n↑∞

An = e−a (2.112)
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Proof. Obviously the hypothesis of the lemma imply that, for all s ∈ N,

lim sup
n↑∞

An ≤
2s∑
`=0

(−a)`

`!
(2.113)

lim inf
n↑∞

An ≥
2s+1∑
`=0

(−a)`

`!
(2.114)

But the upper and lower bounds are the partial series of the exponential

function e−a, which are absolutely convergent, and this implies conver-

gence of An to these values.

The reason that one may expect P [Mn ≤ un] to satisfy bounds of this

form lies in the inclusion-exclusion principle:

Theorem 2.2.18 Let Bi, i ∈ N be a sequence of events, and let 1IB
denote the indicator function of B. Then, for all s ∈ N,

1I∩ni=1Bi ≤
2s∑
`=0

(−1)`
∑

{j1,...,j`}⊂{1,...,n}

1I∩`r=1Bcjr
(2.115)

1I∩ni=1Bi ≥
2s+1∑
`=0

(−1)`
∑

{j1,...,j`}⊂{1,...,n}

1I∩`r=1Bcjr
(2.116)

Note that terms with ` > n are treated as zero.

Remark 2.2.1 Note that the sum over subsets {i1, . . . , i`} is over all

ordered subsets, i.e., 1 ≤ i1 < i2 < · · · < i` ≤ n.

Proof. We write first

1I∩ni=1Bi = 1− 1I∪ni=1Bci (2.117)

We will prove the theorem by induction over n. The key observation is

that

1I∪n+1
i=1 Bci

= 1IBcn+1
+ 1I∪ni=1Bci 1IBn+1

= 1IBcn+1
+ 1I∪ni=1Bci − 1I∪ni=1Bci 1IBcn+1

(2.118)

To prove an upper bound of some 2s+ 1, we now insert an upper bound

of that order in the second term, and a lower bound of order 2s in the

third term. It is a simple matter of inspection that this reproduces

exactly the desired bounds for n+ 1.

The inclusion-exclusion principle has an obvious corollary.
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Corollary 2.2.19 Let Xi be any sequence of random variables. Then

P [Mn ≤ u] ≤
2s∑
`=0

(−1)`
∑

{j1,...,j`}⊂{1,...,n}

P
[
∀`r=1Xjr > u

]
(2.119)

P [Mn ≤ u] ≥
2s+1∑
`=0

(−1)`
∑

{j1,...,j`}⊂{1,...,n}

P
[
∀`r=1Xjr > u

]
(2.120)

Proof. The proof is straightforward.

Note that the statement of the corollary is a statement for any fixed n.

Thus we may as well consider families of random variables whose distri-

bution changes with n. Hence, combining Lemma 2.2.17 and Corollary

2.2.19, we obtain a quite general criterion for triangular arrays of random

variables [16].

Theorem 2.2.20 Let Xn
i , n ∈ N, i ∈ {1, . . . , n} be a triangular array

of random variables. Assume that, for any `,

lim
n↑∞

∑
{j1,...,j`}⊂{1,...,n}

P
[
∀`r=1X

n
jr > un

]
=
τ `

`!
(2.121)

Then, with Mn ≡ maxni=1X
n
i ,

lim
n↑∞

P [Mn ≤ un] = e−τ (2.122)

Proof. The proof of the theorem is straightforward.

Remark 2.2.2 In the iid case, (2.121) does of course hold, since here∑
{j1,...,j`}⊂{1,...,n}

P
[
∀`r=1Xr > un

]
=

(
n

`

)
n−` (n(1− F (un)))

`

(2.123)

A special case where Theorem 2.2.20 gives an easily verifiable criterion

is the case of exchangeable random variables.

Corollary 2.2.21 Assume that Xn
i is a triangular array of random

variables such that, for any n, the joint distribution of Xn
1 , . . . , X

n
n is

invariant under permutation of the indices i, . . . , n. If, for any ` ∈ N,

lim
n↑∞

n`P
[
∀`r=1X

n
r > un

]
= τ ` (2.124)

Then,

lim
n↑∞

P [Mn ≤ un] = e−τ (2.125)
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Proof. Again straightforward.

Theorem 2.2.20 and its corollary have an obvious extension to the

distribution the number of exceedances of extremal levels.

Theorem 2.2.22 Let u1
n > u2

n · · · > urn, and let Xn
i , n ∈ N, i ∈

{1, . . . , n} be a triangular array of random variables. Assume that, for

any ` ∈ N, and any 1 ≤ s ≤ r,

lim
n↑∞

∑
{j1,...,j`}⊂{1,...,n}

P
[
∀`m=1X

n
jm > usn

]
=
τ `s
`!

(2.126)

with

0 < τ1 < τ2 . . . , < τr <∞. (2.127)

Then,

lim
n↑∞

P
[
S1
n = k1, S

2
n − S1

n = k2, . . . , S
r
n − Sr−1

n = kr
]

=
τk11

k1!

(τ2 − τ1)k2

k2!
. . .

(τr − τr−1)kr

kr!
e−τr (2.128)

Proof. The general case is notationally very involved and we will not

write the details down. The main idea can be seen in the case r = 1. As

in the iid case, we write first

P (Sn(un) = k) =
∑

{j1,...,jk}

P
(
∀km=1Xjm > un,∀i 6∈{j1,...,jr}Xi ≤ un

)
.

(2.129)

Then use the inclusion-exclusion principle on the indicator function

1I∩i6∈{j1,...,jr}{Xi≤un}. (2.130)

and insert the resulting inequalities into (2.129). It then follows in com-

plete analogy to the proof of 2.2.20, that

P ((Sn(un) = k)→ τk

k!
e−τ . (2.131)

The results on the convergence to Poissonprocesses from the iid case

also carry over under the assumptions above. We only need a slight

strengthening of the hypothesis.

Theorem 2.2.23 Let Xn
i , n ∈ N, i ∈ {1, . . . , n} be a triangular array

of random variables, and assume that there is a non-increasing function,

un(τ), such that, for any interval I ⊂ R+,
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lim
n↑∞

∑
{j1,...,j`}

1Iji/n∈I,∀i=1,...,`P
[
∀`m=1X

n
jm > un(τ)

]
=
|I|`τ `

`!
. (2.132)

Then, ∑
i∈N

δ(i/n,u−1
n (Xi))

→ P, (2.133)

where P is the Poisson point process on R2
+ with intensity measure the

Lebesgue measure.

Remark 2.2.3 The hypothesis of this theorem are almost necessary in

the following sense: if for some ` (2.132) fails to hold while the limit is

finite, then we cannot have convergence to a Poisson process.

Another useful criterion was established by Durrett and Resnick [19].

It applies well if there is some Markovian structure in the data.

Theorem 2.2.24 Let Xn
i be a triangular array of random variables with

support in R+. Let ν be a sigma-finite measure on (R+,B(R+)), such

that, for some x0 ∈ [0,∞), ν([x0,∞)) < ∞. Assume that, for a given

sequence, an, at all non-atoms of ν, for all t < T <∞, in probability,
[ant]∑
i=1

P (Xn
i > x|Fn,i−1) = tν((x,∞)), (2.134)

and
[ant]∑
i=1

[P (Xn
i > x|Fn,i−1)]

2
= 0, (2.135)

then ∑
i∈N

δ(Xni ,i/an) → Pν . (2.136)

Proof. The prove of this theorem is not very hard and in fact similar to

the margingale central limit theorem. The key step as usual is to show

that P (maxani=1X
n
i ≤ x)→ e−ν(x,∞. One starts by writing

1 = E

(
an∏
i=1

1IXni ≤xe
ln P(Xni ≤x|Fn,i−1)

)
, (2.137)

which follows by computing succesively the conditional expectations.

Then it follows from the hypothesis of the theorem that
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exp

(
an∑
i=1

lnP (Xn
i ≤ x|Fn,i−1)

)
(2.138)

→ exp (ν(x,∞)) ,

in probability. Pulling this term out of the expectation in (2.137) yields

the claimed estimate. We leave the rest of the proof to the reeder.

Remark 2.2.4 Note the slightly different formulations of the result:

you can pass from the first to the second by inserting τ = ν((x,∞)) and

then replacing Xn
i by the random variable (un ◦ ν)−1(Xn

i ). Notice that

in the case of triangular arrays, the extremal types theorem does not

apply. Therefore we do not have an a-priori choice for the measures ν.
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Lévy processes

Poisson point processes are very intimately related to Lévy processes.

This will be the content of this section. An excellent presentation of

these Lévy processes was given by Kiyosi Itô in his Aarhus lectures [27].

Another good reference is Bertoin’s book [9].

3.1 Definition and classification

There are several way we can approach the concept of Lévy processes.

In a way we want to see them as continuous time analogs of sums of

independent random variables, and hence as candidates for stochastic

process limits of sums of random variables.

Definition 3.1.1 A stochastic process (Xt, t ∈ R+) with values in Rd
is called a Lévy process, if:

(i) Xt is a càdlàg process;

(ii) For any collection 0 = t0 < t1 < t2 · · · < tk <∞, the family of random

variables

Yi ≡ Xti −Xti−1
, i = 1, . . . , k

is independent;

(iii) For any h > 0, the law of Xt+h −Xt is independent of t.

There are two facts that we will be interested in. First, there is a

full classification of all Lévy processes. This is directly linked to the

theory of infinitely divisible laws, and we will briefly discuss this issue

below. The second is an explicit construction of all discontinuous Lévy

processes via Poisson point processes. This is, in fact our main concern,

as it will link the theory of sums of random variables to the theory of

extremes.

31
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We start with some basic facts about infinitely divisible laws.

Definition 3.1.2 A probability measure on Rd is called infinitely divis-

ible if, for each n, there exists a probability measure, µn, on Rd, such

that, if Vi are independent random variables with law µn, then the law

of
∑n
i=1 Vi is µ.

The connection with Lévy processes is apparent, since clearly the law

of Xt is infinitely divisible, being the law of the sum of iid random

variables Yi ≡ Xit/n−X(i−1)t/n. Note that the Gaussian distribution is

infinitely divisible, and that Brownian motion is the corresponding Lévy

process.

The following famous Lévy-Khintchine theorem gives a complete char-

acterization of infinitely divisible laws. We will state it without proof,

but give the proof in a special case.

Theorem 3.1.1 For each b ∈ Rd, and non-negative definite matrix M ,

and each measure, ν, on Rd\{0}, that satisfies∫
min(|x|2, 1)ν(dx) <∞, (3.1)

the function

φ(θ) ≡ exp(ψ(θ)),

where

ψ(θ) ≡ i(b, θ)− 1

2
(θ,Mθ) +

∫
(ei(θ,x)− 1− i(θ, x)1I|x|≤1)ν(dx), (3.2)

is the characteristic function of an infinitely divisible distribution. More-

over, the characteristic function of any infinitely divisible law can be

written in this form with uniquely determined (b,M, ν).

Note that it is easy to see that any law of the form given above is

infinitely divisible. Namely, for any n ∈ N, consider the function

ψn(θ) ≡ 1

n
ψ(θ).

Then φn corresponds to a Lévy triple (b/n,M/n, ν/n), and if Xi are iid

with characteristic function exp(ψn(θ)), then
∑n
i=1Xi has the charac-

teristic function φ.

In the case of distributions that take values on the positive reals only,

one has the following alternative result.
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Theorem 3.1.2 Let F be a distribution function on R+. Then F is the

distribution function of an infinitely divisible law, iff, for λ ≥ 0,∫ ∞
0

e−λxF (dx) = exp

[
−cλ−

∫ ∞
0

(
1− e−xλ

)
µ(dx)

]
, (3.3)

where c ≥ 0 and µ is a measure on (0,∞) such that∫ ∞
0

(x ∧ 1)µ(dx) <∞. (3.4)

The proofs of the Lévy-Khintchine theorems are purely analytic and

will not be of interest to us here.

The description of infinitely divisible laws in terms of the (Lévy)

triplets (b,M, ν) is called the Lévy-Khintchine representation, ν is called

the Lévy measure, and ψ the characteristic exponent.

We now use the Lévy-Khintchine representation to study Lévy pro-

cesses. Since Xt =
∑t
i=1 Yi where Yi has the same law as X1 (assume

t ∈ N for a moment), we should expect that

E exp (i(θ,Xt)) = exp (tψ(θ)) (3.5)

where ψ is the characteristic exponent of the distribution of X1. In fact,

for any infinitely divisible law, (3.5) provides a characteristic function of

a process with independent and stationary increments.

The Lévy-Khintchine formula implies that any Lévy process is the

sum of three independent process: a deterministic drift, a Brownian

motion, and a process related to the measure ν; the latter will be most

interesting for us. We will see that this is a pure jump process.

3.2 Lévy processes from Poisson counting processes

To start, let note that an important example of Lévy processes can

be constructed from Poisson counting processes. Let Nt be a Poisson

counting process, and let Yi, i ∈ N be iid real random variables with

distribution function F . Then define

Xt ≡
Nt∑
i=1

Yi.

Clearly X has càdlàg paths and independent increments (both the in-

crements of Nt and the accumulated Y ′s are independent). Moreover,

it is easy to compute the characteristic function of Xt+s −Xt:
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Eei(θ,Xt+s−Xt) =

∞∑
n=0

sne−s

n!

(∫
ei(θ,x)F (dx)

)n
(3.6)

= exp

(
s

∫ (
ei(θ,x) − 1

)
F (dx)

)
= exp

(
si

(
θ,

∫
|x|≤1

xF (dx)

)

+s

∫ (
ei(θ,x) − 1− i(θ, x)1I|x|≤1

)
F (dx)

)
Thus X is a Lévy process, called a compound Poisson process with Lévy

triple (
∫
‖x‖≤1

xF (dx), 0, F ), where the Lévy measure is finite.

Compound Poisson processes are of course pure jump processes, i.e.

the only points of change are discontinuities. We will, as an application,

show that a non-trivial Lévy measure always makes a Lévy process dis-

continuous, i.e. produces jumps. This is the content of Lévy’s theorem:

Theorem 3.2.3 If X is a Lévy process with continuous paths, then it’s

Lévy triple is of the form (b,M, 0), i.e.

Xt = MBt + bt,

where Bt is Brownian motion.

Proof. Let Xt be a Lévy process with triple (b,M, ν). Fix ε ∈ (0, 1) and

construct an independent Lévy process with characteristic exponent

ψε(θ) ≡ i(b, θ)−
1

2
(θ,Mθ) +

∫
|x|≤ε

(ei(θ,x) − 1− i(θ, x)1I|x|≤1)ν(dx).

Finally set ψε(θ) ≡ ψ(θ)− ψε(θ), i.e.

ψε(θ) =

∫
|x|>ε

(ei(θ,x) − 1− i(θ, x)1I|x|≤1)ν(dx).

Due to the integrability assumption of Lévy measures,
∫
|x|>ε ν(dx) <∞,

and therefore, the process Y ε with characteristic exponent ψε is a com-

pound Poisson process, and as such has only finitely many jumps on any

compact interval. If Xε is the process with exponent ψε, independent of

Y ε, then Xε + Y ε have the same law as X. Now Xε has only countably

many jumps, that occur at times independent of the process Y ε. But

this means that, with probability one, all the jumps of Y ε occur at times
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when there is no jump of Xε, and whence X jumps whenever Y ε jumps.

But this means that X cannot be continuous, unless the process Y ε

never jumps, which is only the case if ν = 0. This proves the theorem.

3.3 Lévy processes and Poisson processes

A slightly different look at the construction of compound Poisson pro-

cesses will provide us with the means to construct general Lévy processes

with pure jump part. For notational simplicity we consider only the case

of Lévy processes with values in R. To this end, let ν be any measure

on R that satisfies the integrability condition (3.1). For ε > 0, set

νε(dx) ≡ ν(dx)1I|x|>ε. Then νε is a finite measure. Define the measures

on λε(dx, dt) ≡ νε(dx)dt be a measure on R2. Then we can associate to

λε a Poisson process, Pε, on R2 with intensity measure λε. Clearly, for

any ε > 0, and any t < ∞, νε((0, t] × R) < ∞. Thus we can define the

functions

Xε(t) ≡
∫ t

0

∫
xPε(ds, dx). (3.7)

Note that this is nothing but a random finite sum, and in fact, up to a

time change, a compound Poisson process (with Y distributed according

to the normalization of the measure νε). Now we may ask whether the

limit ε ↓ 0 of these processes exists as a Lévy process. To do this, we

would like to argue that∫ t

0

∫
xP(ds, dx) =

∫ t

0

∫
xPε(ds, dx) +

∫ t

0

∫
|x|<ε

xP(ds, dx)

and that the second integral tends to zero as ε ↓ 0. A small problem

with this is that we cannot be sure under our conditions on ν that the

second term is well defined, since we do not assume that

E

∣∣∣∣∣
∫ t

0

∫
|x|<ε

xP(ds, dx)

∣∣∣∣∣ ≤
∫ t

0

∫
|x|<ε

|x|λ(ds, dx) = t

∫
|x|<ε

|x|ν(dx)

is finite. To remedy this problem, we modify the definition of our target

process and set

X(t) ≡ ct+

∫ t

0

∫
x
(
P(ds, dx)− 1I|x|≤1ν(dx)ds

)
. (3.8)

Note that this is the same as the original process, if
∫
|x|≤1

xν(dx) = c is

defined; this can indeed be decomposed as (for 0 < ε < 1)
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X(t) = ct+

∫ t

0

∫
|x|>ε

x
(
P(ds, dx)− 1I|x|≤1ν(dx)ds

)
(3.9)

+

∫ t

0

∫
|x|≤ε

x (P(ds, dx)− ν(dx)ds) .

The first line is well defined. The second line satisfies

E
∫ t

0

∫
|x|≤ε

x (P(ds, dx)− ν(dx)ds) = 0, (3.10)

and

E

(∫ t

0

∫
|x|≤ε

x (P(ds, dx)− ν(dx)ds)

)2

(3.11)

=

∫ t

0

∫
|x|≤ε

x2λ(ds, dx) = t

∫
|x|≤ε

x2ν(dx)

The last expression1 is finite, and hence the second line in (3.9) is a

square integrable martingale. Moreover, the right-hand side of (3.10)

tends to zero2 as ε ↓ 0, and hence the second line in (3.9) tends to zero

in probability as ε ↓ 0.

Since ε is arbitray, we see that X(t) is a finite random variable (with

possibly infinite variance), and that X(t) is the limit of the càdlàg pro-

cesses given by the first line of (3.9).

To conclude that X(t) is a Lévy process we still need to show that it

has a càdlàg version. But this follows from the fact that the martingale

part is stochastically continuous using Doob’s regularity theorem. The

decomposition above with ε = 1 is also known as Lévy-Itô decomposition.

Subordinators. Note that the process constructed above will in gen-

eral not be an increasing process, also when ν is supported on the positive

real numbers, except if in this case c is chosen as c ≥
∫
x≤1

xν(dx), and

of course subject to the condition that the latter integral is finite, which

is the condition on the Lévy measure for subordinators from Theorem

3.1.2. The constuction of subordinators is actually much simpler due to

nice monotonicity properties.

1 It is a good exercise to verify this fomula using the explicit construction of the
Poisson process given in the last section.

2 This fact follows from Lebesgue’s dominated convergence theorem.
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The classical limit theorems for sums

In this chapter we will discuss the classical limit theorems for sums of

independent random variables with a particular emphasis on the case

of heavy-tailed random variables. We will begin for simplicity with the

standard case of iid random variables.

4.1 Independent random variables

Every students in probability theory learns in the first course the fol-

lowing two facts about sums of iid rv’s:

Theorem 4.1.1 (LLN) Let Xi be iid random variables such that EX1 =

µ exists, then

lim
n↑∞

n−1
n∑
i=1

Xi = µ, a.s. . (4.1)

Moreover:

Theorem 4.1.2 (CLT) Let Xi be iid random variables such that EX1 =

µ and E(X1 − µ)2 = σ2 exist, then

lim
n↑∞

1√
σ2n

n∑
i=1

(Xi − µ) = Z, (4.2)

where convergence is in distribution and Z is a standard normal Gauas-

sian random variable.

A little later one is told that corresponding functional limit laws also

hold:

Theorem 4.1.3 (LLN) Let Xi be iid random variables such that EX1 =

µ exists, then

37
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lim
n↑∞

n−1

[nt]∑
i=1

Xi = µt, a.s. , (4.3)

uniformly on compact intervals.

and

Theorem 4.1.4 (IP) Let Xi be iid random variables such that EX1 =

µ and E(X1 − µ)2 = σ2 exist, then

lim
n↑∞

1√
σ2n

[nt]∑
i=1

(Xi − µ) = Bt, (4.4)

where convergence is in distribution on Wiener space equipped with the

topology of uniform convergence on compact intervals and Bt is Brown-

ian motion.

What happens when the conditions of these two theorems are seriously

violated? Naturally, this will bring extremes and Lévy processes into the

game.

The following are classical results, see [21, 26]:

Theorem 4.1.5 Let Xi be iid random variables and assume that

(i) EX1 = µ exists finitely, and

(ii) there exists α ∈ (1, 2) such that

nP
[
X1 > n1/αx

]
→ c+x

−α (4.5)

nP
[
X1 < −n1/αx

]
→ c−x

−α (4.6)

with c+ + c− > 0,

then

n−1/α

[tn]∑
i=1

(Xi − EXi1I|Xi|≤n1/α)→ Vα,c+,c−(t) (4.7)

where Vα,c+,c− is a stable Lévy process with Lévy triple (0, 0, να,c+,c−),

where

να,c+,c−(dx) = c+αx
−α−11Ix>0dx+ c−α(−x)−α−11Ix<0dx. (4.8)

Convergence is in law with respect to the Skorokhod (J1)-topology 1

1 I mention the topologies of convergence, but I postpone the discussion of all topo-
logical issues to Chapter 6.
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Remark 4.1.1 Note that a drift appears unless c+ = c−, even though

we centered! This is of course to compensate the unbalance of the large

jumps.

Remark 4.1.2 The particular choice of the assumptions (4.5) is al-

most dictated by Theorem 2.1.6. One can in fact show, that, whenever

nP (X > unx) → x−a, with α ∈ (0, 2], then un = n1/αL(n) where L is

a slowly varying function , that is, for any t > 0, L(tn)/L(n) → 1, as

n ↑ ∞. Here I consider for simplicity only the case when L(n) ≡ 1, but

the generalisations are quite straightforward and nothing fundamentally

more interesting happens.

Proof. The proof of this theorem is very instructive and exhibits a

strategy that will be used recurrently. Then we decompose, for ε > 0

fixed,

[nt]∑
i=1

Xi − EXi1I|Xi|≤n1/α =

[nt]∑
i=1

(
Xi1I|Xi|≤n1/αε − EXi1I|Xi|≤n1/αε

)
(4.9)

+

[nt]∑
i=1

(
Xi1I1≥n−1/αXi>ε − EXi1IXi>n1/αε

)
+

[nt]∑
i=1

(
Xi1I−1≤n−1/αXi<−ε − EXi1IXi<−n1/αε

)
≡ Z≤nt + (Z+

nt − EZ+,t
nt ) + (Z−nt − EZ−,tnt ).

Now, clearly, by the choice of the truncation, the terms Z±nt will be

of order n1/α and they increase as ε tends to zero. Thus we have to

control the size of the term Z≤nt. To do so, we will use a second moment

estimates. For this it was quite crucial to recenter the truncated random

variables in the three terms.

E
(
Z≤nt

)2

=

nt∑
i=1

E
(
Xi1I|Xi|≤n1/αε − EXi1I|Xi|≤n1/αε

)2
(4.10)

≤ ntEX2
1 1I|X1|≤n1/αε

Using integration by parts, we see that
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EX2
1 1I|X1|≤n1/αε (4.11)

= −n2/αε2
(
P
(
X1 > n1/αε

)
+ P

(
X1 < −n1/αε

))
+ 2

∫ n1/αε

0

xP[X1 > x]dx+ 2

∫ n1/αε

0

xP[X1 < −x]dx.

Changing variables and using the asymptotics of the law of X1, we see

that

ε2n2/αP
(
X1 > n1/αε

)
∼ c+n2/α−1ε2−α, (4.12)

and∫ n1/αε

0

xP[X1 > x]dx = n2/α

∫ ε

0

yP[X1 > n1/αy]dy (4.13)

∼ n2/α−1

∫ ε

0

y1−αdy = n2/α−1 c+
2− α

ε2−α.

Of course we still have to justify the passage to the limit under the

integral. This will be postponed to Lemma 4.1.6.

The remaining terms are dealt with analogously, and we see that

lim sup
n↑∞

E
(
n−1/αZ≤nt

)2

≤ α(c+ + c−)

2− α
ε2−α (4.14)

which tends to zero, as ε ↓ 0. Thus we get readily that Z≤nt tends to zero

as n ↑ ∞ and ε ↓ 0.

Next we deal with Z+
nt. For fixed ε, by the convergence Poisson con-

vergence theorem,

n−1/αZ+
nt =

∫
y>ε

∫ t

0

yPn(dy, ds), (4.15)

where we define the point process

Pn ≡
∞∑
i=1

δn−1/αXi,i/n. (4.16)

Now Pn converges to the Poisson point process with intensity measure

c+αy
−α−1dyds, and for any ε > 0 and T < ∞, on (ε,∞) × (0, T ] the

latter has finite intensity. The same applies to the term Z−nt. Thus, if

we set

ν(dx) ≡ c+αx−α−1dx1Ix>0 + c−α(−x)−α−1dx1Ix<0, (4.17)

we get that
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n−1/α(Z+
nt + Z−nt)→

∫
|x|>ε

∫ t

0

xP(dx, ds) (4.18)

where P is the Poisson point process with intensity measure ν(dx)ds.

Moreover,

n−1/α

[nt]∑
i=1

E
(
Xi1I1≥n−1/αXi>ε

)
(4.19)

= n1−1/αtEX11I1≥n−1/αXi>ε

= t

∫ 1

ε

nP[X1 > yn1/α]dy + εnP[X1 > εn1/α]− nP[X1 > n1/α]

→ c+

∫ 1

ε

y−αdy + c+ε
1−α − c+

= tc+α

∫ 1

ε

xx−α−1dx = t

∫ 1

ε

xν(dx)

Combining this, we get that

n−1/α(Z+
nt − EZ+

nt)→
∫ ∞
ε

∫ t

0

x (P(dx, ds)− 1Ix≤1ν(dx)dt) , (4.20)

where we used integration by parts backwards to arrive at the last line.

Applying the same reasoning to Z−nt, we find that altogether,

n−1/α(Z+
nt − EZ+

nt + Z−nt − EZ−nt) (4.21)

→
∫
|x|>ε

∫ t

0

x
(
P(dx, ds)− 1I|x|≤1ν(dx)dt

)
.

But we have seen in Chapter 3 that, as ε ↓ 0∫
|x|>ε

∫ t

0

x
(
P(dx, ds)− 1I|x|≤1ν(dx)dt

)
→ Vν(t), (4.22)

where Vν is the Lévy process with Lévy triple (0, 0, ν), provided
∫ ε

0
x2ν(dx) ↓

0, as ε ↓ 0, which here is the case as one can see from (4.13). This proves

the theorem (modulo tightness, do be done later). Notice how crucial

the precise choice of the decomposition (4.9) was. In particular, the

seperate centering of all terms is necessary to obtain expressions that

converge as ε ↓ 0.

Let us now show how the passage to the limit in (4.13) can be justified.
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Lemma 4.1.6 Let 0 ≤ g ≤ 1 be a function such that mg(m1/αx) →
x−α, uniformly on compact intervals.

Then, if α < s+ 1,∫ 1

0

nxsg(n1/αx)dx→
∫ 1

0

xs−αdx. (4.23)

Proof. Let us first note that∫ 1

0

nxsg(n1/αx)dx = n−(s+1)/α+1

∫ n1/α

0

ysg(y)dy. (4.24)

Let us fix a number ρn such that ρn ↑ ∞ and ρs+1
n n−(s+1)/α+1 ↓ 0. Then

set rk ≡ ρn2k and write, with kn such that rkn = n1/α,

n−(s+1)/α+1

∫ n1/α

0

ysg(y)dy = n−(s+1)/α+1

∫ r0

0

ysg(y)dy (4.25)

+

kn∑
k=0

n−(s+1)/α+1

∫ rk+1

rk

ysg(y)dy.

The first term on the right-hand side is bounded as

n−(s+1)/α+1

∫ r0

0

ysg(y)dy (4.26)

≤ n−(s+1)/α+1

∫ r0

0

ysdyn−(s+1)/α+1rs+1
0 /(s+ 1)

= ρs+1
n n−(s+1)/α+1/(s+ 1),

which tends to zero by hypothesis. Now∫ rk+1

rk

ysg(y)dy = rs+1
k

∫ 2

1

xsg(xrk)dy = rs+1−α
k

∫ 2

1

xsrαk g(rkx)dx.

(4.27)

Now rαk g(rkx) → x−α, uniformly in x ∈ [1, 2] and in k ≥ 1, i.e. for any

ε > 0, there exists n0 <∞, s.t. for all n ≥ n0, and for all x ∈ [0, 1], k ≥ 1,

|rαk g(rkx− x−α| ≤ ε. Hence, for such n,

n−(s+1)/α+1

∣∣∣∣∣
kn∑
k=0

∫ rk+1

rk

ysg(y)dy −
∫ n1/α

r0

ys−αdy

∣∣∣∣∣ (4.28)

≤ ε
kn∑
k=0

n−(s+1)/α+1rs+1−α
k ≤ εn−(s+1)/α+1Crs+1−α

kn
≤ Cε,

for some constant C depeding on s + 1 − α. This, together with the

vanishing of the first term in (4.25) yields the claim of the lemma.
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This lemma will be used in the sequel whenever it is applicable without

further mention.

In the case when X1 has no mean, the analog of the functional LLN

is the following theorem. This is the case that we will be mostly be

concerned with in our applications.

Theorem 4.1.7 Let Xi be iid random variables with support in R+ and

assume that there exists α ∈ (0, 1) such that

nP
[
X1 > n1/αx

]
→ cx−α (4.29)

with c > 0. Then

Sn(t) ≡ n−1/α

[tn]∑
i=1

Xi → Vα,c(t) (4.30)

where Vα,c is a stable Lévy subordinator with Lévy triple (0, 0, να,c),

where

να,c(dx) = cαx−α−11Ix>0dx (4.31)

Convergence is in law with respect to the Skorokhod (J1)-topology.

Remark 4.1.3 If Xi has no mean and takes both positive and negative

values, then one may simply decompose it into its positive and negative

part and consider the sums of each part separately.

Proof. The proof is fully equal in spirit to the proof of the previous

theorem, but considerably simpler. We thus leave it as an exercise.

We have left open the three special cases α = 2, 1, 0. They require

some extra care. Let us first look at the case α = 2.

Theorem 4.1.8 Assume that the hypothesis of Theorem 4.1.5 are sat-

isfied but α = 2. Then

1√
c++c−

2 n lnn

[nt]∑
i=1

(Xi − µ)→ Bt, (4.32)

where Bt is standard Brownian motion.

Proof. The key point is to understand that the extra logarithm in the

normalisation of the variance comes from the fact that

EX2
1 1I|X1|≤εn1/2 ∼ lnn, (4.33)
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with the leading term independent of ε. To see this, note that the

computation in (4.12) does not work in the case α = 2, since the right-

hand side is infinite. Thus we have to be more careful. For 0� bn �
√
n

to be chosen later, set∫ √nε
0

xP (X1 > x) dx =

∫ bn

0

xP (X1 > x) dx (4.34)

+

∫ √nε
bn

xP (X1 > x) dx.

The first term is trivially bounded by 1
2b

2
n. For the second, we get∫ √nε

bn

xP (X1 > x) dx = b2n

∫ √nε/bn
1

xP (X1 > xbn) dx

→
∫ √nε/bn

1

c+x
−1dx (4.35)

=
1

2
lnn+ ln ε+ ln bn.

If we chose bn = (lnn)1/4, this term dominates the term of order b2n.

Thus, we have to consider (n lnn)−1/2Znt if we want to expect a limit.

But this over-normalises the extreme part, that therefore tends to zero.

Also, one can without difficulty compute all moments of the central part,

and sees that these converge to the moments of a normal distribution.

(This is because all higher truncated moments of X1 beyond the second

one do not get the “extra lnn”). Thus here we get convergence to

Brownian motion. See e.g. [34].

The case α = 1 is even easier:

Theorem 4.1.9 Assume that the hypothesis of Theorem 4.1.7 are sat-

isfied but α = 1. Then

1

cn lnn

[nt]∑
i=1

Xi → t (4.36)

Remark 4.1.4 Again we treated only the spacial case when the slowly

varying function is equal to one. In the general case, the lnn in the

normalisations is replaced by another slowly varying function that may

diverge or converge, depending on the case in question.

Proof. The proof is quite similar to the previous one. Using the same

refined analysis as for the truncated second moment in the case α = 2,

we see that
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EX11IX≤εn = εnP (X1 > εn) +

∫ εn

0

P (X1 > x) dx. (4.37)

The first term is of order one, while the second∫ εbn

0

P (X1 > x) dx+

∫ εn

bn

P (X1 > x) dx, (4.38)

where again the first term is bounded by bn, while the second behaves

like ∫ εn

bn

P (X1 > x) dx→ c lnn+ ln ε− ln bn. (4.39)

With bn =
√

lnn, we see that to leading order EX11IX≤εn ∼ c lnn. But

the higher moments of the truncated variables behave like EXk
1 1IX≤εn ∼

(εn)k−1, and thus one can easily see that in the normalized sums, all

higher moments vanish. Moreover, This this normalisation, the terms

corresponding to Z>n tend to zero. This yields the claimed result.

4.2 Triangular arrays and non-heavy tailed variables

Inspecting the proof above reveals that there is lots of space towards

generalisations. The first that comes to mind is an extension to trian-

gular arrays. We will formulate this for the α < 1 case, but it is obvious

that the same can be done for the finite mean case. The following the-

orem does not use the most economical notation, but is convenient for

our applications.

Theorem 4.2.10 Let Xn
i , n ∈ N, i ∈ N be a family of random variables

such that, for each n ∈ N fixed, the family Xn
i , i ∈ N is iid with support

in R+. Assume that there exists α ∈ (0, 1) and sequences, cn, an, such

that

anP [Xn
1 > cnx]→ x−α. (4.40)

If, moreover,

lim
e↓0

lim sup
n↑∞

c−1
n anE1IXn1 ≤cnεX

n
1 = 0, (4.41)

then

Sn(t) ≡ c−1
n

[tan]∑
i=1

Xn
i → Vα(t) (4.42)

where Vα is a stable Lévy subordinator with Lévy triple (0, 0, να), where
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να(dx) = αx−α−11Ix>0dx (4.43)

Convergence is in law with respect to the Skorokhod (J1)-topology.

Proof. We again decompose Zn ≡
∑[ant]
i=1 Xn

i into the central and

extreme parts,

Zn ≡
[ant]∑
i=1

Xn
i 1IXni ≤εcn +

[ant]∑
i=1

Xn
i 1IXni >εcn ≡ Z

≤
n + Z+

n . (4.44)

It is clear that

c−1
n Z+

nt →
∫ ∞
ε

∫ ∞
0

xP(dx, ds) (4.45)

where P is the Poisson point process with intensity cαx−α−1dxds, and

therefore

lim
ε↓0

lim
n↑∞

c−1
n Z+

n = Vα. (4.46)

The control of the Z≤n term is now given by assumption due to (4.41).

Remark 4.2.1 One might hope that condition (4.41) is “automatic”

from condition (4.40) and the fact that α < 1. Indeed, one would like

to argue that

c−1
n EZ≤n = antc

−1
n EXn

i 1IXni ≤εcn (4.47)

= tεanP (Xn
1 > εcn) + t

∫ ε

0

anP (Xn
1 > ycn) dy

→ tcε1−α + tc

∫ ε

0

y−αdy = ct
2− α
1− α

ε1−α

which indeed tends to zero, as desired. However, unlike in the iid case,

we cannot immediately deduce the convergence of the integral from the

convergence of the integrand. Of course, any condition that would allow

to use Lebesgue’s dominated convergence theorem would be fine. For

instance, a sufficient condition for obtaining (4.41) is that

xαanP (Xn
1 > xcn)→ 1, (4.48)

uniformly in x ∈ (0, 1].

Of course we also have the analogous result for the case when α ∈
(1, 2).
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Theorem 4.2.11 Let Xn
i , n ∈ N, i ∈ N be a family of random variables

such that, for each n ∈ N fixed, the family Xn
i , i ∈ N is iid with finite

mean. Assume that there exists α ∈ (1, 2) and sequences, cn, an, such

that

anP [Xn
1 > cnx] → c+x

−α (4.49)

anP [Xn
1 < −cnx]→ c−x

−α. (4.50)

Assume furthermore that

lim
ε↓0

lim sup
n↑∞

anc
−2
n E1I|Xn1 −EXn1 |≤εcn (Xn

1 − EXn
1 )

2
= 0. (4.51)

Then

Sn(t) ≡ c−1
n

[tan]∑
i=1

(
Xn
i − EXn

i 1I|Xni |≤cn
)
→ Vα(t) (4.52)

where Vα is a stable Lévy process with Lévy triple (0, 0, να), where

να(dx) = c+αx
−α−11Ix>0dx+ c−α(−x)−α−11Ix<0dx. (4.53)

Convergence is in law with respect to the Skorokhod (J1)-topology.

Remark 4.2.2 Note that we have only partially centered Sn. Whether

the remaining centering terms converge to what one would expect, namely

−
∫
|x|>1

xνα(dx) depends on additional uniformity conditions in the con-

vergence of the law of Xn
i .

Proof. The proof follows step by step that of Theorem 4.1.5, using the

assumption (4.51) to control the terms Z≤n .

Remark 4.2.3 The same remark as in the preceding theorem applies

here. An appropriate assumption on the uniformity of the convergence

in (4.49) and (4.50) implies condition (4.51), which is thus “natural”.

Also the borderline cases α = 1, 2 carry over without change to trian-

gular arrays, provided again we assume convergences are such that we

can pass them into integrals.

Theorem 4.2.12 Let Xn
i , n ∈ N, i ∈ N be a family of random variables

such that, for each n ∈ N fixed, the family Xn
i , i ∈ N is iid with finite

mean. Assume that there exists sequences, cn, an, such that

anP [Xn
1 > cnx]→ c+x

−2 (4.54)

anP [Xn
1 < −cnx]→ c−x

−2 (4.55)
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Then

1

cn
√

(c+ + c−) ln cn

[tan]∑
i=1

(Xn
i − EXn

i )→ Bt (4.56)

where Bt is Brownian motion. If Xn
i ≥ and there exist sequences an, cn,

such that

anP [Xn
1 > cnx]→ x−1 (4.57)

Then

1

cn ln cn

[tan]∑
i=1

Xn
i → t. (4.58)

Proof. The proof is again the same as in the iid case.

4.3 Applications

The results for the convergence of sums of triangular arrays already have

a number of interesting applications. We give a few illustrations.

4.3.1 Application 1: the REM-like trap model

The REM-like trap model is the simplest model for a spin-glass dynamic

that was proposed by Bouchaud and Dean [14]. We will construct it as

follows.

The state space of the model is the complete graph on Vn ≡ {1, . . . , n}.
To this we associate a random environment given by family of iid random

variables, τ(i),∈ N, whose distribution is in the domain of attraction of

an α-stable distribution with α ∈ (0, 1), i.e.

mP
(
τ(1) > m1/αx

)
→ x−α. (4.59)

τ(i)i will be the mean trapping time of the trap i. The fast chain, Jn(k),

here is simply a sequance of iid random variables, uniformly distributed

on Vn, i.e.

P[Jn(k) = i] = 1/n, (4.60)

for each i ∈ Vn and each k ∈ N. Let furthermore ei be a family of iid

exponential random variables with mean one. The families of the τ, Y ,

and e are mutually independent.

Now define the clock processes
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Sn(k) ≡
k−1∑
i=0

eiτ(Jn(i)). (4.61)

Then Bouchaud’s process is

Xn(t) ≡ Jn(S−1
n (t)). (4.62)

We will see that the crucial object to study is the clock process. Let

us condition on the sigma-algebra generated by the environment, F ≡
σ(τ(i), i ∈ N. Henceforth we call the conditional law of everything

else Pω. The point is that under Pω, the random variables Zni (ω) ≡
τ(Jn(i))[ω] are independent and identically distributed (for fixed n), and

hence also the random variables eiZ
n
i (ω) are independent. It is easy to

compute their law: clearly

Pω(Zni > x) =
1

n

n∑
i=1

1Iτ(i)>x, (4.63)

and whence

Pω(eiZ
n
i > x) =

1

n

n∑
i=1

e−x/τ(i). (4.64)

It is clear that

1

n

n∑
i=1

e−x/τ(i) → Ee−x/τ(1) =

∫ ∞
0

e−x/t
x

t2
Pω(τ(1) > t)dt, P− a.s. .

(4.65)

In particular it is true that

lim
n↑∞

1

n

n∑
i=1

e−xm/τ(i) = Ee−xm/τ(1), P− a.s. , (4.66)

and that

mEe−xm
1/α/τ(1) = m

∫ ∞
0

e−xm
1/α/txm

1/α

t2
P(τ(1) > t)dt (4.67)

=

∫ ∞
0

e−x/t
x

t2
mP(τ(1) > tm1/α)dt

→
∫ ∞

0

e−x/t
x

t2
t−αdt = Γ(1 + α)x−α.

as m ↑ ∞. Hence we can readily conclude from Theorem 4.2.10 that for

almost all environments,

lim
m↑∞

lim
n↑∞

m−1/αSn(mt)→ Vα,Γ(1+α)(t). (4.68)
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However, more is true. Note that in our system we have a parameter n

relating to the “size” of the system. Thus we can think of timescales, m,

that depend on the system size n. For example, we may wish to consider

timescales m(n) = nβ . Then we should ask under what circumstances

it still holds true that

nβPω(eiZ
n
i > xnβ/α)→ cx−α? (4.69)

The non-trivial step is to check whether we can replace 1
n

∑n
i=1 e

−xnβ/α/τ(i)

by Ee−xnβ/α/τ(1).

More precisely, we must check whether

1

n

n∑
i=1

nβe−xn
β/α/τ(i) ∼ Enβe−xn

β/α/τ(i) → Γ(1 + α)x−α, (4.70)

which is again about the validity of the strong law large numbers for

triangular arrays. In our case it is fairly easy to show, using exponential

Chebeychev inequalities, that the this is the case provided β < 1. For

β = 1, it is quite clear that such a result will not hold and one must

expect rather different behaviour (see [23]).

Lemma 4.3.13 For all 0 < β < 1,

1

n

n∑
i=1

nβe−xn
β/α/τ(i) − Enβe−xn

β/α/τ(i) → 0, P− a.s. . (4.71)

Proof. We will prove the result using an exponential Chebychev inequal-

ity. To do this we use the following bound on the Laplace transform of

the variables nβe−xn
β/α/τ(1):

Eeλn
βe−xn

β/α/τ(i)

= 1 +

∫ ∞
0

P
(
τ(1) > ynβ/α

)
eλn

βe−x/ynβλe−x/y
x

y2
dy

(4.72)

and so, with λ = γn−β ,
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E exp
(
λ
(
nβe−xn

β/α/τ(i) − Enβe−xn
β/α/τ(i)

))
(4.73)

=

(
1 +

∫ ∞
0

P
(
τ(1) > nβ/αy

)
e−γe

−x/y
γe−x/y

x

y2
dy

)
× exp

(
−γ
∫ ∞

0

P
(
τ(1) > nβ/αy

)
e−x/y

x

y2
dy

)
∼ 1 +

∫ ∞
0

P
(
τ(1) > nβ/αy

)(
(e−γe

−x/y
− 1
)
γe−x/y

x

y2
dy

∼ 1 + n−β
∫ ∞

0

(
e−γe

−x/y
− 1
)
γe−x/y

x

y2+α
dy

≤ exp

(
n−β

∫ ∞
0

(
e−γe

−x/y
− 1
)
γe−x/y

x

y2+α
dy

)
The important fact is that the exponent is proportional to γ2 for small

γ. Thus Chebychev yields that

P

(
1

n

n∑
i=1

nβe−xn
β/α/τ(i) − Enβe−xn

β/α/τ(i) > r

)
(4.74)

≤ exp

(
−rγn1−β + n1−β

∫ ∞
0

(
e−γe

−x/y
− 1
)
γe−x/y

x

y2+α
dy

)
Clearly, for any r > 0, we can find γ > 0 such that the right-hand side is

of order exp
(
−n1−βO(1)

)
, which is summable. A corresponding bound

for lower deviations yields the same result, and this gives the strong law

of large numbers, as desired.

Finally, we will verify condition (4.41). First, the estimate (4.74) is

good enough to show that we can replace the empirical probability in

the formula for the moment by its mean. Then it remains to show that∫ ε

0

Enβe−xn
β/α/τ(1)dx→ Γ(1 + α)

∫ ε

0

x−αdx. (4.75)

But this can be done in the same way as in the proof of Lemma 4.1.6.

Remark 4.3.1 In fact, we need a slightly stronger result, namely al-

most sure convergence uniform in x. This can be done using simple

chaining due to the good continuity properties of our random variables

in x. We will skip the details here.

We can now reap the consequence of these observations.
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Proposition 4.3.14 In the REM-like trap model, for any 0 < β < 1,

the clock process Sn(k) satisfies, for almost all realisations of the random

environment,

n−β/αSn
(
tnβ
)
→ Vα,Γ(1+α)(t). (4.76)

Convergence is in distribution with respect to the Skorokhod J1-topology.

4.3.2 Application 2: Sums of exponentials of random variables

The following application is a generalisation of the equilibrium of the

REM that was studied by Ben Arous, Bogachev, and Molchanov [1]

some years ago. It concerns the special case of triangular arrays when

Xn
i takes the form

Xn
i = exp

(
α−1bnZi

)
, (4.77)

where Zi are iid random variables. We will formulate their theorem as

follows1.

Theorem 4.3.15 Let Zi be iid random variables in the domain of at-

traction of the Gumbel distribution. Then there exists sequences bn and

cn, defined by the requirement

nP
(
Z > b−1

n (ln cn + z)
)
→ e−z. (4.78)

Assume that moreover∫ 0

−∞
esznP

(
Z > b−1

n (ln cn + αz)
)
dz →

∫ 0

−∞
e(s−α)xdx, (4.79)

for s > α. Then the following hold, with Xn
i given by (4.77):

(i) For α ∈ (1, 2),

c−1/α
n

[tn]∑
i=1

(
Xn
i − EXn

i 1I
Xni ≤c

1/α
n

)
→ Vα, (4.80)

where Vα is the α-stable Lévy process with Lévy triple (0, 0, να), where

να(dx) = αx−1−αdx1Ix>0. (4.81)

(ii) For α ∈ (0, 1),

c−1/α
n

[tn]∑
i=1

Xn
i → Vα, (4.82)

1 In my view, the exposition in [1] obscures this simple theorem by stating conditions
in terms of Laplace transforms etc. .
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where Vα is the α-stable Lévy subordinator with Lévy triple (0, 0, να),

where

να(dx) = αx−1−αdx1Ix>0. (4.83)

(iii) If α = 2, then

1√
1
2cn ln cn

n∑
i=1

(
Xn
i − EXn

i 1I
Xni ≤c

1/2
n

)
→ Bt, (4.84)

where Bt is Brownian motion.

(iv) If α = 1, then

1

cn ln cn

n∑
i=1

ebnZi → t. (4.85)

Proof. The proof is of course nothing more than the verification of the

conditions (4.40) respectively (4.49). Now

nP
(
exp

(
α−1bnZ1

)
> cnx

)
= nP

(
α−1Z1 > b−1

n (ln cn + lnx)
)
.

(4.86)

Set first α = 1 and lnx = z. Then by definition of Z1 being in the

domain of attraction of the Gumbel distribution, there exits sequences

bn, cn, such that

nP
(
Z1 > b−1

n (ln cn + z)
)
→ e−z. (4.87)

But then

nP
(

1/αZ1 > b−1
n

(
ln c1/αn + z

))
= nP

(
Z1 > b−1

n (ln cn + αz)
)

→ e−αz = x−α. (4.88)

Finally, one uses condition (4.79) to verify that in all computations,

limits can be passed through integrals, which allows to control the terms

corresponding to the Z≤n parts of the sums.

The particular case when the random variables are Gaussian corre-

sponds to the computation of the partition function of the random en-

ergy model (REM). This case has been worked out in detail in [17].

As an illustrative example and in view of later appearances of expo-

nentials of Gaussian random variables, the following lemma shows that

the condition (4.79) always holds in the Gaussian case.

Lemma 4.3.16 Let Z be a normal random variable and assume that bn
and cn are such that, for all z ∈ R,

nP
(
Z > b−1

n (ln cn + αz)
)
→ e−αz, (4.89)
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with α ∈ (0, 2]. Then condition (4.79) holds.

Proof. We will in fact proceed as in the remark following Theorem

4.1.7. We use the classical upper bound for Gaussian tail distributions,

valid for all u > 0.

P (Z > u) ≤ 1√
2π

e−u
2/2

u
. (4.90)

For our case this gives

nP
(
Z > b−1

n (ln cn + αz)
)
≤ n

exp
(
− (ln cn)2

2b2n
− αzb−2

n ln cn − (αz)2

2b2n

)
√

2πb−1
n (ln cn + αz)

.

(4.91)

For αz > −(1− ε) ln cn, this quantity is bounded from above by

n
exp

(
− (ln cn)2

2b2n
− αzb−2

n ln cn

)
√

2πεb−1
n ln cn

= n
exp

(
− (ln cn)2

2b2n

)
√

2πεb−1
n ln cn

e−αzb
−2
n ln cn .

(4.92)

Since by assumption b−2
n ln cn → 1, and

n
exp

(
− (ln cn)2

2b2n

)
√

2πb−1
n ln cn

→ 1, (4.93)

for any ε > 0, we can find n0 < ∞, independent of z, such that for all

n ≥ n0,

nP
(
Z > b−1

n (ln cn + αz)
)
≤ ε−1(1 + ε)e−z(α−ε sign (ε)) ≡ g(z). (4.94)

But ∫ 0

−∞
eszg(z)dz = ε−1(1 + ε)

∫ 0

−∞
e(s−α−ε)zdz, (4.95)

which is finite whenever s− α− ε < 0. But this can always be achieved

by choosing, e.g. ε = (s− α)/2. Therefore, the sequence of functions

nP
(
Z > b−1

n (ln cn + αz)
)

1Iz>− ln cn(1−ε) (4.96)

are bounded from above by an integrable function g(z) and converge to

e−αz for almost all z. Finally,∫ −α−1 ln cn(1−ε)

−∞
dzesznP

(
Z > b−1

n (ln cn + αz)
)

≤ n
∫ −α−1 ln cn(1−ε)

−∞
eszdz = s−1nc−sα

−1(1−ε)
n . (4.97)

One easily checks that the assumptions imply for the constants that,
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nc−1/2
n b−1

n → 1, (4.98)

and so

nc−sα
−1(1−ε)

n ∼ n1−2sα−1(1−ε), (4.99)

which tends to zero since s > α if ε is small enough.

Remark 4.3.2 Recently, Janssen [28] has shown that in the gerneral

case of random variables in the domain of attraction of the Gumbel

distribution there are always subsequences such that condition (4.28)

holds along those.

4.3.3 Application 3: A Gaussian trap model

The simplest dynamics to impose on the REM is to imitate the REM-

like trap model and to take as the fast chain iid uniform jumps on

the hypercube. While this is a rather stupid model, some otherwise

instructive computations are involved that makes it worthwhile to go

through it. So here our state space is Vn = {−1, 1}n. The mean holding

times at each site, σ ∈ Vn, are

τn(σ) ≡ eβ
√
nHσ ,

where Hσ are iid standard normal random variables. Then the clock

process is

Sn(k) ≡
k−1∑
i=0

eiτn(Jn(i)),

and Zni ≡ eiτn(Jn(i)) are iid random variables under the quenched law.

We now look for time scales, an, such that for suitable normalisation

constants, cn,

1

cn

[tan]−1∑
i=0

Xn
i → Vα(t). (4.100)

By Theorem 4.2.10, this amounts to check whether

anPω
[
eie

β
√
nHσ > cns

]
→ s−α. (4.101)

By a simple computation,

anPω
[
eie

β
√
nHσ > cns

]
=
an
2n

∑
σ∈Vn

exp
(
−scne−β

√
nHσ

)
. (4.102)
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Again we expect that this converges to its mean under suitable condi-

tions. We first compute this mean, which is given by

an

∫
dx√
2π
e−

x2

2 −scne
−β
√
nx

(4.103)

It is obviously suitable to change variables via

x =
ln cn
β
√
n

+
z

β
√
n
. (4.104)

Then (4.103) can be written as

an
1

β
√

2πn
e
− (ln cn)2

2β2n

∫
e
− ln cn
β2n

z−se−z− z2

2β2n dz

∼ an
1

β
√

2πn
e
− (ln cn)2

2β2n

∫
e
− ln cn
β2n

z−se−z
dz

= an
1

β
√

2πn
e
− (ln cn)2

2β2n

∫ ∞
0

r
ln cn
β2n
−1
e−srdr

= an
1

β
√

2πn
e
− (ln cn)2

2β2n s
− ln cn
β2n Γ(1 + ln cn/(β

2n)). (4.105)

Note that in the passage to the second line we assume that s is a constant

independent of n. Thus if we set cn ≡ eγn we must choose

an = β
√

2πne
γ2

2β2
n
/Γ(1 + α) (4.106)

with α = γ
β2 to get (4.101). Thinking of cn as the time scale, we see that

to get a subordinator, the condition α < 1 reads β2 > γ, i.e. this is a

condition that the temperature be low enough (depending on the time

scale).

A second condition will emerge from the requirement that (4.102)

converges to its average. This goes analogously to the REM-like trap

model and requires

an � 2n (4.107)

that is γ2

β2 < 2 ln 2.
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Dependent random variables

We will now restrict us to the case of sums of non-negative random

variables in the domain of attaction of an α-stable law with α ∈ (0, 1).

We will try to do away with the independence assumption. Having in

mind the proofs we gave so far, it is amply clear that all what is needed

is the convergence of the extremal process to the Poisson process.

5.1 Convergence of sums of dependent random variables,

α < 1

Theorem 5.1.1 Let Xn
i be a triangular array of random variables tak-

ing values in R+. Assume that for some sequences, an, cn, and any t > 0

fixed,
[ant]∑
i=1

P (Xn
i > cnx)→ tx−α, (5.1)

with α ∈ (0, 1). Assume further that∑
i∈N

δ(i/an,c−1
n Xni ) → Pα, (5.2)

where Pα is the Poisson process on R+ × R+ with intensity measures

αx−α−1dxds. If, moreover,

lim
e↓0

lim sup
n↑∞

c−1
n

[tan]∑
i=1

E1IXni ≤cnεX
n
i = 0, (5.3)

then

c−1
n

[ant]∑
i=1

Xn
i → Vα(t). (5.4)

57
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Proof. Inspecting the proof of Theorem (4.2.10) that the convergence

of the extreme part the sum, Z+
nt, is assured by hypothesis (5.2), while

the irrelevance of the central part, Z≤nt, follows from just (5.4). Here

there is no difference to the independent case, since we only used a first

moment estimate that does not feel any dependence effects.

Thus, we are in excellent shape: any mixing conditions that ensure

Poisson convergence of the extremes will give convergence of the sum

to a Lévy subordinator. For instance, we can work with the criteria of

Section 2.2.

This gives the following two usefull corollaries.

Corollary 5.1.2 Let Xn
i , n ∈ N, i ∈ {1, . . . , n} be a triangular array of

non-negative random variables, and assume that there exists sequences

an, cN and a σ-finite measure, ν, satisfying the assumptions of a Lévy

measure, such that, for any t ∈ R+,

lim
n↑∞

∑
{j1,...,j`}⊂{1,...,[ant]}

P
[
∀`r=1X

n
jr > cns

]
= t`s−α`. (5.5)

If in addition (5.3) holds, then

c−1
n

[tan]∑
i=1

Xn
i → Vα, (5.6)

where Vν is the Lévy subordinator with Lévy measure ν(dx) = αx−α−11Ix>0dx

and zero drift.

Using the criteria of Durrett and Resnick [19], we obtain the alterna-

tive version:

Corollary 5.1.3 In the same setting as in Corollary 5.1.2, the assump-

tions (5.5) can be replaced by:

lim
n↑∞

[ant]∑
i=1

P (Xn
i > xcn|Fn,i−1) = tx−α, (5.7)

and

lim
n↑∞

[ant]∑
i=1

[P (Xn
i > cnx|Fn,i−1)]

2
= 0, (5.8)

with convergence in probability and Fn,i = σ(Xj , j ≤ i).

Remark 5.1.1 Since in the triangular array case we are not necessarily

falling into the case of a stable process, there may be situations where
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other measures then x−αdx appear. Obviously the theorem and its

corollaries remain then true provided we add an addition that ensures

the vanishing of the contributions S≤n . See [19].

A similar general theorem can be stated for the case α ∈ (1, 2), with

additional mixing conditions that ensure the appropriate bound on the

variance of the central part of the sum (see e.g. [19]).

5.2 Applications to ageing

The general theorem above is a key tool to study ageing in more compli-

cated dyanamics. This has been investigated in some detail in a series

of recent papers by V. Gayrard [23, 24]. Here we consider some simple

situations as an illustration.

5.2.1 The REM-like trap model, averaged

In the previous section we looked at the REM like trap model under the

quenched law. If we were interested in results under the joint measure,

P, what changes is that the random variables τ(Jn(i)) are no longer

independent, since with some probability Jn(i) = Jn(j), for i 6= j. On

the other hand, the marginal distribution of τ(Jn(i)) is just the law of

τ(1), and so

mP
[
eiτ(Jn(i)) > sm1/α

]
→ Γ(1 + α)s−α. (5.9)

Thus we see that Hypothesis (5.1) is satisfied with m = nβ as in (4.69).

To check that Assumption (5.2) is satisfied, we may either Theorem

2.2.23 or Theorem 2.2.24. For the former, we need to compute

P
[
eiτ(Jn(i)) > snβ/α,∀i≤`

]
(5.10)

This probability depends only on the number of distinct values taken by

the Jn(i), i ≤ `. Hence

P
[
eiτ(Jn(i)) > snβ/α,∀i≤`

]
=

`−1∑
k=0

P
[
eiτi > snβ/α,∀i≤`−k

]
(5.11)

×P [#{Jn(i), 0 ≤ i < `} = `− k]

But for k ≥ 1,

P [#{Jn(i), 0 ≤ i < `} = `− k] = O(n−k) (5.12)

(note that no uniformity in ` is required!), so that



60 5 Dependent random variables

nβ`
`−1∑
k=0

P
[
eiτi > snβ/α,∀i≤`−k

]
P [#{Jn(i), 0 ≤ i < `} = `− k](5.13)

∼ Γ(1 + α)`s−α`

(
1 +

`−1∑
k=1

ckn
k(β−1)

)
→ Γ(1 + α)`s−α`.

This is very nice and we see that the same conditions as in the

quenched regime apply.

The very same argument can of course also be used in the case of the

Gaussian trap model.

5.2.2 The full REM, averaged

We are now also ready to treat the REM with the fast process chosen as

the simple random walk on the hypercube, at least under the joint law

P.

The key point is that again we prove that the criterion from Theorem

2.2.23 is satisfied. Since the fast process is now simple random walk

rather than an iid sequence, we cannot use exchangability. We get (I set

all the s equal to one to get things that are easier to write down, but all

works in the general case)

∑
k1<k2<···<k`

P (τn(Jn(ki)) ≥ cn, ∀i ≤ `) (5.14)

=
∑

k1<k2<···<k`

∑̀
r=1

a−rn P (#{Jn(ki), i = 1, . . . , `} = r) .

So clearly all boils down to establish some random walk properties on

the hypercube. This involves a bit of combinatorics, but to see why

things go well, consider the case ` = 2. We have to consider only one

quantity, namely
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∑
k1<k2

P (#{Jn(ki), i = 1, 2} = 1) =
∑
k1<k2

P (Jn(k2)) = Jn(k1))

=
∑
k1<k2

P (Jn(k2 − k1) = Jn(0))

≤ an

an∑
k=1

P (Jn(k) = Jn(0))

= an
P
(
TJn(0) ≤ an

)
1− P

(
TJn(0) ≤ an

) , (5.15)

where Tσ ≡ inf{k > 0 : Jn(k) = σ}. The probability that the simple

random walk on the hypercobe returns to its starting point in time less

than an, for an � 2n, is of order 1/n (in fact the most likely way to

realise this is to return in the second step, which has probability 1/n).

Thus we see that the contribution with r = 1 is by a factor 1/n smaller

than the dominant contribution corresponding to r = 2. Thus∑
k1<k2

P (τn(Jn(ki)) ≥ cn, i = 1, 2) (5.16)

=
∑
k1<k2

(
a−2
n + P (Jn(k1) = Jn(k2))

(
a−1
n − a−2

n

))
=

1

2
+O(n−1).

To deal with the general case is quite similar. We will leave the proof

to the reader. As a result, we see that the REM under P behaves exactly

like the Gaussian trap model we dealt with before.
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Blocking and applications

Up to now we have been dealing exclusively with situations when the

processes we considered converged, on the extreme scales, to Poisson

point processes. If correlations are too strong, this will necessarily have

to fail. The best known situation of this kind occurs in the theory of

continuous time stochastic processes, where paths may e.g. be contin-

uous. In such a situation one may still expect a Poissonian picture at

large distances, but a more complex local structure of clusters replacing

the single points of the Poisson process.

To establish the global Poissonian nature of the sum, a good way to

proceed is to use suitable blocking. Introduce a new scale θn and blocked

random variables with

Zn,i ≡
iθn∑

j=θn(i−1)+1

Xn
j , (6.1)

in the hope that the new variables verify the hypothesis of our theorems

on Poisson convergence.

In this chapter we show how this idea can be applied in the context

of Markov jump processes as defined in Chapter 1. This approach was

developed in [15] in order to obtain almost sure results in the p-spin SK

model. Here we give a more pedagogical application in the context of

the REM, where blocking is not really necessary [24].

6.1 Convergence of blocked clock processes

We will use the notation of Subsection 1.1. That is, we will consider

Xn
i = λ−1

n (Jn(i))en.i. We will be interested in studying the clock process

(1.2) under the law of the fast chain, Jn, for fixed random environments.

If Jn is rapidly mixing, we can hope to choose θn � an such that the

62
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random variables Jn(θni), i ∈ N are close to independent and distributed

according to the invariant distribution πn. But then, under the law Pµn ,

also the random variables Zn,i, are close to independent and uniformly

distributed (although with a complicated distribution that is a random

variable depending on the random environment). In this context, it will

be most convenient to use the conditions, of Durrett and Resnick [19],

i.e. Corollary 5.1.3.

Let us now look at this in more detail.

For y ∈ Vn and u > 0, let

Qun(y) ≡ Py

(
θn−1∑
j=0

λ−1
n (Jn(j))en,j > cnu

)
(6.2)

be the tail distribution of the aggregated jumps when Xn starts in y.

Note that Qun(y), y ∈ Vn, is a random function on the probability space

(Ω,F ,P), and so is the function Fun (y), y ∈ Vn defined through

Fun (y) ≡
∑
x∈Vn

pn(y, x)Qun(x) . (6.3)

Writing kn(t) ≡ bbantc/θnc, we further define

νJ,tn (u,∞) ≡
kn(t)−1∑
i=0

Fun
(
Jn(θn(i))

)
, (6.4)

(σJ,tn )2(u,∞) ≡
kn(t)−1∑
i=0

[
Fun
(
Jn(θn(i))

)]2
. (6.5)

Finally, we set

S̄n(k) ≡
k∑
i=1

 θni∑
j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j

+ c−1
n λ−1

n (Jn(0))en,0.

(6.6)

and

Sbn(t) ≡ S̄n(kn(t)). (6.7)

We now formulate four conditions for the sequence Sbn to converge

to a subordinator. Note that these conditions refer to given sequences

of numbers an, cn, and θn as well as a given realisation of the random

environment.

Condition (A1). There exists a σ-finite measure ν on (0,∞) satisfying

the hypothesis stated in Theorem 2.2.24, and such that, for all t > 0

and all u > 0,
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Pµn

(∣∣νJ,tn (u,∞)− tν(u,∞)
∣∣ < ε

)
= 1− o(1) , ∀ε > 0 . (6.8)

Condition (A2). For all u > 0 and all t > 0,

Pµn

(
(σJ,tn )2(u,∞) < ε

)
= 1− o(1) , ∀ε > 0 . (6.9)

Condition (A3). For all t > 0,

lim
ε↓0

lim sup
n↑∞

Eµn
bantc∑
i=1

1I{λ−1
n (Jn(i))ei≤cnε}c

−1
n λ−1

n (Jn(i))ei = 0. (6.10)

Condition (A0’). For all v > 0,∑
x∈Vn

µn(x)e−vcnλn(x) = o(1) . (6.11)

Theorem 6.1.1 For all sequences of initial distributions µn and all se-

quences an, cn, and 1 ≤ θn � an for which Conditions (A0’), (A1),

(A2), and (A3) are verified, either P-almost surely or in P-probability,

the following holds w.r.t. the same convergence mode:

Sbn(·)⇒ Sν(·), (6.12)

where Sν is the Lévy subordinator with Lévy measure ν and zero drift.

Convergence holds weakly on the space D([0,∞)) equipped with the Sko-

rokhod J1-topology.

Remark 6.1.1 Note that Condition (A0’) is there to ensure that last

term in (6.6) converges to zero in the limit n ↑ ∞.

Remark 6.1.2 The result of this theorem is stated for the blocked pro-

cess Sbn(t). It implies immediately that under the same hypothesis, the

original process Sn(t) (defined in (??)) converges to Sν in the weaker

M1-topology (see [33] for a detailed discussion of Skorokhod topologies).

However, the statement of the theorem is strictly stronger than just con-

vergence in M1, and it is this form that is useful in applications.

Remark 6.1.3 To extract detailed information on the process Xn, e.g.

the behaviour of correlation functions, from the convergence of the blocked

clock process, one needs further information on the typical behaviour of

the process during the θn steps of a single block. This is a model depen-

dent issue and we will examplify how this can be done in the context of

the p-psin SK model.
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Proof. Throughout we fix a realisation ω ∈ Ω of the random environ-

ment but do not make this explicit in the notation. We set

Ŝbn(t) ≡ Sbn(t)− c−1
n λ−1

n (Jn(0))en,0. (6.13)

Condition (A0’) ensures that Sbn−Ŝbn converges to zero, uniformly. Thus

we must show that under Conditions (A1) and (A2),

Ŝbn(·)⇒ Sν(·) . (6.14)

This will be a simple corollary of Theorem 2.2.24. Recall that

kn(t) ≡ bbantc/θnc, (6.15)

and, for i ≥ 1, define

Zn,i ≡
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j . (6.16)

By (6.7) and (6.13), Ŝbn(t) =
∑kn(t)
i=1 Zn,i. We now want to apply The-

orem 2.2.24 to the latter partial sum process. For this let {Fn,i, n ≥
1, i ≥ 0} be the array of sub-sigma fields of FX defined by (with obvious

notations) Fn,i = σ (∪j≤θni {Jn(j), en,j}), for i ≥ 0. Clearly, for each n

and i ≥ 1, Zn,i is Fn,i measurable and Fn,i−1 ⊂ Fn,i. Next observe that

Pµn
(
Zn,i > z

∣∣Fn,i−1

)
=
∑
x∈Vn

Pµn
(
Jn
(
θn(i−1)+1

)
= x, Zn,i > z

∣∣Fn,i−1

)
,

(6.17)

where

Pµn
(
Jn
(
θn(i− 1) + 1

)
= x, Zn,i > z

∣∣Fn,i−1

)
(6.18)

= Pµn
(
Jn
(
θn(i− 1) + 1

)
= x, Zn,i > z

∣∣ Jn(θn(i− 1)
))
.

Using Bayes’ Theorem and the Markov property, the last line can be

written as

pn
(
Jn(θn(i− 1)), x

)
Pµn

(
θn∑
j=1

c−1
n λ−1

n (Jn(j − 1))en,j−1 > z
∣∣∣ Jn(0) = x

)
.

(6.19)

Thus, in view of (6.2), (6.3), (6.4), and (6.5), it follows from (6.17),

(6.18), and (6.19) that

kn(t)∑
i=1

Pµn (Zn,i > z | Fn,i−1) =

kn(t)∑
i=1

∑
x∈Vn

pn
(
Jn(θn(i− 1)), x

)
Qun(x)
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=

kn(t)∑
i=1

Fun
(
Jn(θn(i− 1))

)
= νJ,tn (u,∞) . (6.20)

Similarly we get

kn(t)∑
i=1

[Pµn (Zn,i > ε | Fn,i−1)]
2

=

kn(t)∑
i=1

[
Fun
(
Jn(θn(i− 1))

)]2
= (σJ,tn )2(u,∞) .

(6.21)

From (6.20) and (6.21) it follows that Conditions (A2) and (A1) of The-

orem 6.1.1 are exactly the conditions from Theorem 2.2.24. Similarly

Condition (A3) is Condition 5.3. Therefore the conditions of Theorem

2.2.24 are verified, and so Ŝbn ⇒ Sν in D([0,∞)) where Sν is a subordi-

nator with Lévy measure ν and zero drift.

We now come to the key step in our argument. This consists in reduc-

ing Conditions (A1) and (A2) of Theorem 6.1.1 to (i) a mixing condition

for the chain Jn, and (ii) a law of large numbers for the random variables

Qn.

Again we formulate three conditions for given sequences an, cn and a

given realisation of the random environment.

Condition (A1-1). Let Jn is a periodic Markov chain with period

q. There exists an integer sequence `n ∈ N, and a positive decreasing

sequence ρn, satisfying ρn ↓ 0 as n ↑ ∞, such that, for all pairs x, y ∈ Vn,

and all i ≥ 0,

q−1∑
k=0

Pπn (Jn(i+ `n + k) = y, Jn(0) = x) ≤ (1 + ρn)πn(x)πn(y) .

(6.22)

Condition (A2-1) There exists a measure ν as in Condition (A1) such

that

νtn(u,∞) ≡ kn(t)
∑
x∈Vn

πn(x)Qun(x)→ tν(u,∞) , (6.23)

and

(σtn)2(u,∞) ≡ kn(t)
∑
x∈Vn

∑
x′∈Vn

πn(x)p(2)
n (x, x′)Qun(x)Qun(x′)→ 0 .

(6.24)

Condition (A3-1) For all t > 0,

lim
ε↓0

lim sup
n↑∞

kn(t)Eπn1I{λ−1
n (Jn(0))e0≤cnε}c

−1
n λ−1

n (Jn(0))e0 = 0. (6.25)
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Remark 6.1.4 The limiting measure ν may be deterministic or ran-

dom.

Theorem 6.1.2 Assume that for µn = πn and for constants an, cn, θn,

Conditions (A1-1), (A2-1), (A3-1) and (A0’) hold P-a.s., resp. in P-

probability. Then the sequence of random stochastic process Sbn converges

to the process Sν , weakly on the Skorokhod space D[0,∞) equipped with

the J1-topology, P-almost surely, resp. in P-probability.

Proof. The proof of Theorem 6.1.2 comes in two steps. In the first we

use the ergodic properties of the chain Jn to pass from sums along a

chain Jn to averages with respect to the invariant measure of Jn.

We assume from now on that the initial distribution µn is the invariant

measure πn of the jump chain Jn.

Proposition 6.1.3 Let µn = πn. Assume that Condition (A1-1) is

satisfied. Then, choosing θn ≥ `n, the following holds: for all t > 0 and

all u > 0 we have that, for all ε > 0,

Pπn
(∣∣νJ,tn (u,∞)− νtn(u,∞)

∣∣ ≥ ε) ≤ ε−2
[
ρn
(
νtn(u,∞)

)2
+ (σtn)2(u,∞)

]
,

(6.26)

and

Pπn
(
(σJ,tn )2(u,∞) ≥ ε

)
≤ ε−1(σtn)2(u,∞) . (6.27)

Proof. To simplify notation, we only give the proof for the case when

the chain Jn is aperiodic, i.e. q = 1. Details of how to deal with the

general periodic case can be found in the proof of Proposition 4.1. of

[23].

Let us first establish that

Eπn
[
νJ,tn (y)

]
= νtn(u,∞) , (6.28)

Eπn
[
(σJ,tn )2(u,∞)

]
= (σtn)2(u,∞) . (6.29)

To this end set

πJ,tn (x) = k−1
n (t)

kn(t)∑
j=1

1I{Jn(θn(j−1))=x} , x ∈ Vn . (6.30)

Then, Eqs. (6.4) and (6.5) may be rewritten as
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νJ,tn (u,∞) = kn(t)
∑
y∈Vn

πJ,tn (y)Fun (y) , (6.31)

(σJ,tn )2(u,∞) = kn(t)
∑
y∈Vn

πJ,tn (y) (Fun (y))
2
. (6.32)

Since by assumption the initial distribution is the invariant measure πn
of Jn, the chain variables (Jn(j), j ≥ 1) satisfy Pπn(Jn(j) = x) = πn(x)

for all x ∈ Vn, and all j ≥ 1. Hence

Eπn
[
πJ,tn (y)

]
= πn(y) , (6.33)

Eπn
[
νJ,tn (u,∞)

]
= kn(t)

∑
x∈Vn

πn(x)Fun (x) , (6.34)

Eπn
[
(σJ,tn )2(u,∞)

]
= kn(t)

∑
x∈Vn

πn(x) (Fun (x))
2
, (6.35)

Eqs. (6.28) and (6.29) now follow readily from these identities. Indeed,

inserting (6.3) into (6.34) and using that πn is the invariant measure of

Jn, we get,

Eπn
[
νJ,tn (u,∞)

]
= kn(t)

∑
y∈Vn

∑
x∈Vn

πn(x)pn(x, y)Qun(y) , (6.36)

= kn(t)
∑
y∈Vn

πn(y)Qun(y) , (6.37)

which proves (6.28). Similarly, inserting (6.3) into (6.35) yields

Eπn
[
(σJ,tn )2(u,∞)

]
= kn(t)

∑
x∈Vn

πn(x)

∑
y∈Vn

pn(x, y)Qun(y)

2

,(6.38)

which gives (6.29) once observed that, by reversibility,∑
x∈Vn

πn(x)pn(x, y)pn(x, y′) = πn(y)
∑
x∈Vn

pn(y, x)pn(x, y′) = πn(y)p(2)
n (y, y′).

(6.39)

We are now ready to prove the proposition. In view of (6.29), (6.27) is

nothing but a first order Chebychev inequality. To establish (6.26) set

∆ij(x, y) = Pπn (Jn(θn(i− 1)) = x, Jn(θn(j − 1)) = y)− πn(x)πn(y) .

(6.40)

A second order Chebychev inequality together with the expressions (6.34)

for Eπn
[
νJ,tn (u,∞)

]
yields
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Pπn
(∣∣νJ,tn (u,∞)− Eπn

[
νJ,tn (u,∞)

]∣∣ ≥ ε) (6.41)

≤ ε−2Eπn

[
kn(t)

∑
y∈Vn

(
πJ,tn (y)− πn(y)

)
Fun (y)

]2

= ε−2
∑
x∈Vn

∑
y∈Vn

Fun (x)Fun (y)

kn(t)∑
i=1

kn(t)∑
j=1

∆ij(x, y) .

Now
∑kn(t)
i=1

∑kn(t)
j=1 ∆ij(x, y) = (I) + (II) where

(I) ≡
kn(t)∑
i=1

kn(t)∑
j=1

∆ij(x, y)1I{j 6=i} ≤ ρnk2
n(t)πn(x)πn(y) , (6.42)

as follows from Assumption (A1-1), choosing θn ≥ `n, and

(II) ≤
∑

1≤i≤kn(t)

∆ii(x, x)1I{x=y} (6.43)

= kn(t)
[
Pπn (Jn(θn(i− 1)) = x)− π2

n(x)
]

1I{x=y}

= kn(t)πn(x)(1− πn(x))1I{x=y} ≤ kn(t)πn(x)1Ix=y.

Inserting (6.43) and (6.42) in (6.41) we obtain, using again (6.29) and

(6.33), that

Pπn
(∣∣νJ,tn (u,∞)− Eπn

[
νJ,tn (u,∞)

]∣∣ ≥ ε)
≤ ε−2

[
ρn
(
νtn(u,∞)

)2
+ (σtn)2(u,∞)

]
. (6.44)

Proposition 6.1.3 is proven.

The proof of Theorem 6.1.2 is now immediate: combine the conclu-

sions of Proposition 6.1.3 with Condition (A2-1) to get both conditions

(A1) and (A2). Finally, Condition (A3) is Condition (A3-1), since we

are starting from the invariant measure.

6.2 Application to quenched ageing in the REM

We will now show how Theorem 6.1.2 can be applied in the REM to

obtain quenched results. i.e. results for fixed environments. There are

other ways to get these results, see [24], and so this section is mainly of

pedagogical interest.

We recall that we live on the hypercube Vn = Σn = {−1, 1}n. The

random environment is given by iid normal variables Hn(x) and the

mean holding times, τ(x), are given by
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τ(x) ≡ exp(βHn(x)), (6.45)

with β ∈ R the inverse temperature. The Markov chain Jn will again

be the simple random walk on Σn, i.e.

pn(x, x′) =

{
1
n , if ‖x− x′‖22 = 2,

0, else,
(6.46)

Theorem 6.2.4 For all γ satisfying

0 < γ < β2 ∧ 2 ln 2, (6.47)

the law of the stochastic process

Sbn(t) ≡ e−γnSn
(
θn

[
t β

√
2π

Γ(1+γ2/β)n
1/2enγ

2/2β2

θ−1
n

])
, t ≥ 0,

(6.48)

with θn = 3 ln 2
2 n2, defined on the space of càdlàg functions equipped with

the Skorokhod J1-topology, converges to the law of γ/β2-stable subordi-

nator Vγ/β2(t), t ≥ 0. Convergence holds P-almost surely.

Proof. To prove the theorem, we just need to see how the Conditions

(A1-1), (A2-1), and (A3-1) can be verified.

This requires four steps, two if which are quite immediate:

Conditions (A1-1) for simple random walk has been established e.g.

in [2] and [24]. The following lemma is taken from Proposition 3.12 of

[24].

Lemma 6.2.5 Let Pπn be the law of the simple random walk on the

hypercube Σn started in the uniform distribution. Let θn = 3 ln 2
2 n2.

Then, for any x, y ∈ Σn and any i ≥ 0,∣∣∣∣∣
1∑
k=0

Pπn (Jn(θn + i+ k) = y, Jn(0) = x)− 2−2n+1

∣∣∣∣∣ ≤ 2−3n+1.

(6.49)

Clearly this implies that Condition (A1-1) holds.

Next, the second part of Condition (A2-1) will follow rather easily,

once we have proven the first.

Thus, we need to show that

νtn(u,∞)→ νt(u,∞) = Γ(1 + α)tu−γ/β
2

, (6.50)

almost surely, as n ↑ ∞.
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Laplace transforms. Instead of proving the convergence of the dis-

tribution functions νtn directly, we will pass to their Laplace transforms,

prove their convergence and then use Feller’s continuity lemma to deduce

convergence of the original objects.

For v > 0, consider the Laplace transforms

ν̂tn(v) =

∫ ∞
0

due−uvνtn(u,∞) (6.51)

ν̂t(v) =

∫ ∞
0

due−uvνt(u,∞).

With Zn ≡
∑θn−1
j=0 c−1

n λ−1
n (Jn(j))ej , we have, by definition of νtn(u,∞),

νtn(u,∞) = kn(t)
∑
x∈Vn

πn(x)Qun(x) = kn(t)Pπn (Zn > u) .

Hence

ν̂tn(v) =

∫ ∞
0

due−uvνtn(u,∞) (6.52)

= kn(t)

∫ ∞
0

due−uvPπn (Zn > u)

= kn(t)
1− Eπn

(
e−vZn

)
v

,

where the last equality follows by integration by parts.

Convergence of Eν̂tn(v).

Lemma 6.2.6 Let cn = eγn, an = n1/2enγ
2/2β2

. For any β, γ > 0 such

that γ/β2 ∈ (0, 1), for any v > 0,

lim
n↑∞

kn(t)E
[
1− Eπn

(
e−vZn

)]
= d1tv

γ/β2

. (6.53)

for a constant d1 = Γ(1− α)Γ(1 + α).

Proof. We will set Ui ≡ Hn(Jn(i)). The Laplace transforms we are

after can be written, after integrating out the exponential variables ei,

as

EEπne−vZn = EπnEG(U, v, θn), (6.54)

where

G(U, v, k) ≡
k−1∏
i=0

1

1 + vc−1
n eβ

√
nUi

, (6.55)
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Let us denote by nr(J) the number of points that the chain J visits r

times up to time θn. Clearly,
∑θn
r=1 rnr = θn. Clearly, the expectation

of G(U.v, θn) depends only on J only though these numbers. In fact,

EπnEG(U, v, θn) =
∑
{nr}

Pπn (nr(J) = nr,∀r) (6.56)

×
θn∏
r=1

[
Ee−rg(vc

−1
n eβ

√
nU)
]nr

.

Next we compute, using partial integration 1,

Eerg(vc
−1
n eβ

√
nU) = 1−

∫ ∞
0

r

(
1

1 + x

)r+1

P
(
vc−1
n eβ

√
nU > x

)
dx

∼ 1− a−1
n vαr

∫ ∞
0

(
1

1 + x

)r+1

x−αdx

= 1− a−1
n vαrdr, (6.57)

where

dr = Γ(1− α)
Γ(r + α)

Γ(r + 1)
, (6.58)

is a decreasing sequence. Hence we get readily that

kn(t) (1− EπEG(U.v, θn)) (6.59)

= kn(t)
∑
{nr}

Pπn (nr(J) = nr,∀r)

(
1−

θn∏
r=1

(
1− a−1

n vαrdr
)nr)

= vαt
∑
{nr}

Pπn (nr(J) = nr,∀r) θ−1
n

θn∑
r=1

rnrdr +O(a−1
n )

= vαtd1

+vα
∑
{nr}

Pπn (nr(J) = nr,∀r) θ−1
n

θn∑
r=1

rnr(dr − d1) +O(a−1
n )

To conclude, we only need to show that the probability under Pπn that

say, n1 ≤ θn(1− n−1/2), tends to zero.

Lemma 6.2.7 For the SRW, J , on Σn, we have that En1(J) ≥ θn(1−
2/n). Consequently, P

(
n1(J) < 1− n−1/2

)
≤ n−1/2.

1 The passage to the limit in the equation can easily be justified using Lebesgue’s
dominated convergence and the very explicit control over the asymptotics of the
Gaussian probability appearing.
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Proof. Clearly,

En1(J) ≥
θn∑
k=1

1IJn(`)6=Jn(k),∀k<`≤θn (6.60)

≥ θn −
θn∑
k=1

PJn(k)

(
τJn(k) < θn

)
= θn (1− P1 (τ1 < θn)) . (6.61)

The last probability can be computed in the one-dimensional chain

mn(k) = 1
n

∑n
i=1 Jn,i(k), the classical Ehrenfest chain on the state space

{−1,−1 + 2/n, . . . , 1− 2/n, 1}. Then

P1 (τ1 < θn) = P1 (τ1 < θn) (6.62)

≤ P1 (τ1 = 2) + P1−4/n (τ1 < θn) .

The first probability is equal to 1/n. The second can be decomposed as

P1−4/n (τ1 < θn) ≤ P1−4/n (τ1 < τ0) + P1−4/n (τ1 < θn, θ0 < τ1)(6.63)

≤ P1−4/n (τ1 < τ0) + P0 (τ1 < θn) .

The first probability can be computed exactly and yields

P1−4/n (τ1 < τ0) ≤ cn2,

whereas the second can be estimated a

P0 (τ1 < θn) ≤ θn/E0τ1 ≤ θn2−n.

This yields the claimed estimate on the expectation of n1(J). Chebey-

chev does the rest.

Concentration of νtn. To conclude the proof, we need to control the

fluctuations of νtn.

Lemma 6.2.8 Under the same hypothesis as in Lemma 6.2.6,

E
(
ν̂tn(v)− Eν̂tn(v)

)2 ≤ Ct2θnan2−nvα. (6.64)

Proof. We have to compute

E
(
Eπne−vZn − EEπne−vZn

)2
(6.65)

= EE′EπnE′πn
(
e−vZn(J)e−vZn(J′) − e−vZn(J)e−vZ

′
n(J′)

)
. (6.66)
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where we made the reference to the two walks explicit and where Z ′n
depends on an independent copy, H ′n, of the random variables Hn. Now

it is clear that the expectations of the two terms differ only if the two

random walks J and J ′ intersect. On the other hand, using the compu-

tations from the preceding proof, it is obvious that we have the uniform

bound∣∣∣EE′e−vZn(J)e−vZn(J′) − 1
∣∣∣ ≤ d12θna

−1
n vα(1 + (o1)). (6.67)

Hence we obtain that

kn(t)2E
(
Eπne−vZn − EEπne−vZn

)2
(6.68)

≤ t2d12θ−1
n anv

α(1 + (o1))Pπn ⊗ P ′πn
(
{Jn(i)}θni=0 ∩ {Jn(i)}θni=0 6= ∅

)
.

But

Pπn ⊗ P ′πn
(
{Jn(i)}θni=0 ∩ {J

′
n(i)}θni=0 6= ∅

)
(6.69)

≤
θn∑
i,j=0

Pπn ⊗ P ′πn (Jn(i) = J ′n(j)) = θ2
n2−n.

Here we used that both chains are in equilibrium. Inserting this estimate

into (6.68) yields the claim of the lemma.

Conclusion of the proof. Lemmata 6.2.6 and 6.2.8, together with

Chebychev’s inequality and the Borel-Cantelli lemma, establish that,

for each v > 0,

lim
n→∞

ν̂tn(v) = ν̂t(v) = d1tv
γ/β2−1 , P− a.s. (6.70)

Together with the monotonicity of ν̂tn(v) and the continuity of the lim-

iting function ν̂t(v), this implies that there exists a subset Ωτ1 ⊂ Ωτ of

the sample space Ωτ of the τ ’s with the property that P(Ωτ1) = 1, and

such that, on Ωτ1 ,

lim
n→∞

ν̂tn(v) = ν̂t(v) , ∀ v > 0 . (6.71)

Finally, applying Feller’s Extended Continuity Theorem for Laplace

transforms of (not necessarily bounded) positive measures (see [22], The-

orem 2a, Section XIII.1, p. 433) we conclude that, on Ωτ1 ,

lim
n→∞

νtn(u,∞) = νt(u,∞) = Γ(1 + α)tu−γ/β
2

, ∀u > 0 . (6.72)

Thus we have established Conditions (A1-1) and (A2-1) under the

stated conditions on the parameters γ, β.
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It remains to show that Condition (A3-1) holds. We first show that

anc
−1
n EEπnλ−1

n (σ)e11Iλ−1
n (σ)e1≤εcn is bounded by ε1−α in average, and

then prove a concentration estimate .

Lemma 6.2.9 Under the Assumptions of the theorem, there is a con-

stant K <∞, such that

lim sup
n↑∞

anc
−1
n EEπnλ−1

n (σ)e11Iλ−1
n (σ)e1≤εcn ≤ Kε

1−α. (6.73)

Proof. The proof is through explicit estimates. We must control the

integral ∫ ∞
0

e−xdx

∫ ∞
−∞

e−
z2

2 1Ixeβ
√
nz≤ecne

β
√
nzdz

=

∫ ∞
0

e−xdx

[∫ ln cn+ln(ε/x)

β
√
n

−∞
e−

z2

2 +β
√
nzdz

]

=

∫ ∞
0

e−xdx

[
eβ

2n/2

∫ ln cn+ln(ε/x)

β
√
n

−β
√
n

−∞
e−

z2

2 dz

]
(6.74)

Now for our choice cn = exp(γn), the upper integration limit in the

z-integral is

ln cn + ln(ε/x)

β
√
n

− β
√
n =
√
n

(
γ

β
− β

)
+

ln ε− lnx

β
√
n

. (6.75)

Thus, for any γ < β2, this tends to −∞ uniformly for, say, all x ≤ n2.

We therefore decompose the x-integral in the domain x ≤ n2 and its

complement, and use first that∫ ∞
n2

e−xdxe−
z2

2 1Ixeβ
√
nz≤ecne

β
√
nzdz ≤ εcne−n

2

, (6.76)

which tend to zero, as n ↑ ∞. For the remainder we use the well-known

bound, for u > 0, ∫ ∞
u

e−z
2/2 ≤ 1

u
e−u

2/2. (6.77)

This yields
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eβ
2n/2

∫ ln cn+ln(ε/x)

β
√
n

−β
√
n

−∞
e−

z2

2 dz (6.78)

≤ eβ
2n/2

exp

(
− 1

2

(√
n
(
γ
β − β

)
+ ln ε−ln x

β
√
n

)2
)

(β−1γ − β)
√
n+ ln ε−ln x

β
√
n

=
exp

(
−n γ2

2β2 + nγ
)

√
n(γ/β − β) + o(1)

exp
(
−(γ/β2 − 1) ln(ε/x) +O(n−1/2

)
.

Hence

lim sup
n↑∞

anc
−1
n

∫ ∞
0

e−xdx

∫ ∞
−∞

e−
z2

2 1Ixeβ
√
nz≤ecne

β
√
nzdz (6.79)

≤ 1

γ/β − β
ε1−α

∫ ∞
0

xα−1e−xdx,

which implies the assertion of the lemma since the last integral is finite.

Lemma 6.2.10 Under the Assumptions of the theorem, there is a con-

stant K <∞, such that

a2
nc
−2
n E

(
Eπnλ−1

n (σ)e11Iλ−1
n (σ)e1≤εcn − EEπnλ−1

n (σ)e11Iλ−1
n (σ)e1≤εcn

)
≤ Kε1−αan2−n. (6.80)

Proof. The proof of this lemma is very similar to that of Lemma 6.2.8

and will be left to the reader.

Now Theorem 6.2.4 follows from Theorem 6.1.2.

6.2.1 Consequences for correlation functions

Finally, one must ask whether the convergence of the clock process in the

form obtained here is useful for deriving ageing information in the sense

that we can control the behaviour of certain correlation functions. One

may be worried that a jump in limit of the coarse-grained clock process

refers to a period of time during which the process still may make n2

steps, and our limit result tells us nothing about how the process moves

during that time. We will, however, show that essentially all this time

is spent in a single site.

This allows to prove
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Theorem 6.2.11 Let An(t, s) be the event defined by

An(t, s) = {σn (teγn) = σn ((t+ s)eγn) . (6.81)

Then, under the hypothesis of Theorem 6.2.4, for all t > 0 and s > 0,

lim
N→∞

Pπn (An(t, s)] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1− u)−α du,P − a.s..

(6.82)

Proof. The proof of this theorem relies on the following simple estimate.

Let us denote by Rn the range of the coarse grained and rescaled clock

process Sbn. The argument of [2] in the proof of Theorem 1.2 that the

event An(s, t) ∩ {Rn ∩ (s, t) 6= ∅} has vanishing probability carries over

unaltered.

What we have to show is that if the process spends the whole time

from s to t within one block, then almost all of this time is spent, without

interruption, in a single site.

The following lemma is quite obvious.

Lemma 6.2.12 Let Mn ⊂ Σn be arbitrary. Then

P (∃σ 6=σ′∈Mn
: Hσ ≥ an ∧Hσ ≥ an/2)

≤ |Mn|2e−na
2/2e−na

2/8 (6.83)

This lemma implies that even if in a set of size say n2, there is a point

where Hσ ≥ na, then there will not be a second point of comparable

size in that set, with overwhelming probability.

This means the following: within a block of θn steps of the chain Jn,

that gives a contribution to a jump, there is only one site that contributes

to the time. It remains to show that these contributions come in one

“block”, i.e. the process will not return to this site once it left it within

θn steps. But this is an elementary property of the random walk on the

hypercube.

Let us make this precise. As remarked above,

Pπn (An(s, t)) = Pπn (An(s, t) ∩ {Rn ∩ (s, t) = ∅}) (6.84)

+ Pπn (An(s, t) ∩ {Rn ∩ (s, t) 6= ∅}) ,

where the second term tends to zero. Next we observe that

Pπn (An(s, t) ∩ {Rn ∩ (s, t) = ∅}) (6.85)

= Pπn (Rn ∩ (s, t) = ∅)− Pπn ((An(s, t))
c ∩ {Rn ∩ (s, t) = ∅})
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Here the first term is what we want. To show that the second term tends

to zero, we proceed as follows.

For any N <∞, we clearly have

Pπn ((An(s, t))c ∩ {Rn ∩ (s, t) = ∅}) (6.86)

=

kn(N)−1∑
k=0

Pπn
(
((An(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
+

∞∑
k=kn(N)

Pπn
(
((An(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
.

The second term is bounded by

∞∑
k=kn(N)

Pπn
(
((An(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
≤ Pπn

(
Sbn(N) ≤ s

)
→ P (Vα(N) ≤ s) , (6.87)

where convergence is almost sure with respect to the environment. The

last probability can be made as small as desired by choosing N suffi-

ciently large. It remains to deal with the first sum on the right-hand

side of (6.86).

Define the event

G(k) ≡ (6.88)⋃
kθn≤i<j<(k+1)θn

Jn(i)6=Jn(j)

{
λ−1
n (Jn(i))ei ≥ cn(t− s)θ−1

n

}
∩
{
λ−1
n (Jn(j))ej ≥

√
cn
}
.

Using Eq. (4.106), we see that

EPπn (G(k)) ≤ θ2
nE exp

(
−cn(t− s)θ−1

n eβ
√
nHσ

)
E exp

(
−
√
cnθ
−1
n eβ

√
nHσ

)
∼ (t− s)−α

β22πn
θ2
nΓ(1 + α)Γ(1 + α/2)e−n5γ/4 ≤ θ2

na
−1
n e−nγ/4.(6.89)

Thus even

EPπn

kn(t)⋃
k=1

G(k)

 ≤ tθne−nγ/4, (6.90)

which tends to zero exponentially fast. This implies that Pπn
(⋃kn(t)

k=1 G(k)
)

tends to zero P-almost surely.

On the other hand, on the event

G(k)c ∩ (An(s, t))
c ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)}
, the following must
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be true: First, there still must exist some i such that λ−1
n (Jn(i))ei ≥

cn(t − s), and second, the random walk must return to this site after

visiting it.

Since obviously, all the probabilities of all events are independent of

k, we consider in the sequel k = 0 only, to simplify notations. In fact we

decompose disjointly

G(0)c (An(s, t))
c ∩
{

(s, t) ⊂
(
S̄n(0), S̄n(1)

)}
= (6.91)

∪θn−1
j=0 ∪

θn−i
`=2

{
θn−1∑
i=0

eiλ
−1
n (Jn(i)) > cn(t− s)

}
∩
{
λ−1
n (Jn(j)) > cn(t− s)/θn

}
∩ {#{i : Jn(i) = Jn(j)} = `}} ∩ G(0)c

Now

P⊗ P

({
θn−1∑
i=0

eiλ
−1
n (Jn(i)) > cn(t− s)

}
(6.92)

∩
{
λ−1
n (Jn(j)) > cn(t− s)/θn

}
∩{#{i : Jn(i) = Jn(j)} = `}} ∩ G(0)c

)

≤ P

(∑̀
r=2

erλ
−1
n (Jn(j)) > cn(t− s)− θnn2√cn

)
×Pπn (#{i : Jn(i) = Jn(j)} = `}) +O(exp(−n2)),

where the last term accounts for the probability one one of the expo-

nential variables encountered could be larger that n2. Now the random

walk probability is, as we already know, bounded by

Pπn (#{i : Jn(i) = Jn(j)} = `}) ≤ Cn−`+1. (6.93)

Moreover, the simplest estimate shows that

P

(∑̀
r=2

erλ
−1
n (Jn(j)) > cn(t− s)− θnn2√cn

)
(6.94)

≤ `P
(
e1λ
−1
n (Jn(j)) >

cn(t− s)− θnn2√cn
`

)
≤ a−1

n (t− s)−α`1+α.

Combining this, we see that
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E

kn(N)∑
k=0

Pπn
(
(An(s, t))

c ∩
{

(s, t) ⊂
(
S̄n(k), S̄n(k + 1)

)}) ≤ CNn−1

(6.95)

But this estimate implies that the term (6.135) converges to zero P-

almost surely, for any choice of N . Hence the result is obvious from the

J1 convergence of S̄n.

6.3 Almost sure convergence in the p-spin model

The method explained above for the REM was originally introduced in

[15] to treat the p-spin SK model under the quenched law. In that case,

no other method was available. All the basic ideas of the proof for the

REM above carry over, but the control of the convergence of ν̂n is much

harder and requires the use of Gaussian interpolation techniques.

In this model, the underlying graphs Vn are the hypercubes Σn =

{−1, 1}n. The random environment is given by a Gaussian process, H,

indexed by Σn with zero mean and covariance

EHn(x)Hn(x′) = nRn(x, x′)p, (6.96)

where Rn(x, x′) ≡ 1
n

∑n
i=1 xix

′
i. The mean holding times, τ(x), are

given again by (6.45), and the fast chain, Jn, is simple random walk.

The result we obtain in this case is similar to that in the REM, but

there is an extra limitation on the parameters.

Theorem 6.3.13 For any p ≥ 3, there exists a constant Kp > 0 that

depends on β and γ, and a function ζ(p) such that for all γ satisfying

0 < γ < min
(
β2, ζ(p)β

)
, (6.97)

the law of the stochastic process

Sbn(t) ≡ e−γNSn
(
θnbtKβn

1/2enγ
2/2β2

θ−1
n c
)
, t ≥ 0, (6.98)

with θn = 3 ln 2
2 n2, and Kβ = β

√
2π/Γ(1 + γ/β2), defined on the space

of càdlàg functions equipped with the Skorokhod J1-topology, converges

to the law of the stable subordinator Vγ/β2(t), t ≥ 0, of Lévy measure

Kp(γ/β
2)x−γ/β

2−1dx. Convergence holds P-a.s. if p > 4, and in P-

probability, if p = 3, 4.

The function ζ(p) is increasing and it satisfies

ζ(3) ' 1.0291 and lim
p→∞

ζ(p) =
√

2 log 2. (6.99)



6.3 Almost sure convergence in the p-spin model 81

In [2] an analogous result is proven, with the same constants ζ(p)

and Kp, but convergence there is law with respect to the random envi-

ronment (and almost sure with respect to the trajectories Jn). Being

able to obtain convergence under the law of the trajectories for fixed

environments, as we do here, is a considerable conceptual improvement.

As in the REM, we can again draw conclusions for correlation func-

tions. However, we must make a different choice, since traps are no more

isolated points.

In this way we prove the almost-sure (or in probability) version of

Theorem 1.2 of [2].

Theorem 6.3.14 Let Aεn(t, s) be the event defined by

Aεn(t, s) = {Rn
(
Xn

(
teγn

)
, Xn

(
(t+ s)eγn

))
≥ 1− ε

}
. (6.100)

Then, under the hypothesis of Theorem 6.3.13, for all ε ∈ (0, 1), t > 0

and s > 0,

lim
N→∞

Pπn (Aεn(t, s)] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1− u)−α du. (6.101)

Convergence holds P-a.s. if p > 4, and in P-probability, if p = 3, 4.

6.3.1 Verification of Conditions A1-1 and A2-1

As Jn is exactly the same as in the REM, Condition (A1-1) is already

verified. Also, Condition (A3) is exactly the same as in the REM, since

correlations do not effect it.

Again, the second part of Condition (A2-1) will follow from the first

just as in the REM.

Thus, all what is left to do is to show that

νtn(u,∞)→ νt(u,∞) = Kpu
−γ/β2

, (6.102)

almost surely, resp. in probability, as n ↑ ∞.

Convergence of Eν̂tn(v) We will prove convergence of νt via the con-

vergence of its Laplace transform as in the REM.

The following Lemma is an easy consequence of the results of [2]:

Lemma 6.3.15 Let cn = eγn, an = Kβn
1/2enγ

2/2β2

. For any p ≥
3, and β, γ > 0 such that γ/β2 ∈ (0, 1), there exists a finite positive

constant, Kp, such that, for any v > 0,

lim
n↑∞

kn(t)E
[
1− Eπn

(
e−vZn

)]
= Kptv

γ/β2

. (6.103)
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Proof. In [2], the Laplace transforms Ee−vZn were computed even for

θn = ant. We just recall the key ideas and the main steps.

The point in [2] is to first fix a realisation of the chain Jn, and to define,

for a given realisation, the one-dimensional normal Gaussian process

U0(i) ≡ n−1/2Hn(Jn(i)), (6.104)

with covariance

Λ0
ij = n−1EHn(Jn(i))Hn(Jn(j)) = n−1Rn(Jn(i), Jn(j))p. (6.105)

Moreover, they define a comparison process, U1, as follows. Let ν be an

integer of order Nρ, with ρ ∈ (1/2, 1). Then U1 has covariance matrix

Λ1
ij =

{
1− 2pN−1|i− j|, if [i/ν] = [j/ν]

0, else.
(6.106)

Finally they define the interpolating family of processes, for h ∈ [0, 1],

Uh(i) ≡
√
hU1(i) +

√
1− hU0(i). (6.107)

For any normal Gaussian process, U , indexed by N, define the function

Eπn
(
F (U, v, k) | FJ

)
≡ G(U, v, k) = exp

(
−
k−1∑
i=0

g
(
vc−1
n eβ

√
nUi
))

,

(6.108)

with g(x) = ln(1 + x).

Then the Laplace transforms we are after can be written as

EEπne−vZn = EEπn
(
Eπn

(
e−vZn | FJ

))
(6.109)

= EπnEG(U0, v, θn).

Here we used that the conditional expectation, given FJ , is just the

expectation with respect to the variables en,i which can be computed

explicitly and gives rise to the function G.

The idea is now that U1 is a good enough approximation to U0, for

most realisation of the chain J , that we can replace U0 by U1 in the last

line above.

More precisely, we have the following estimate.

Lemma 6.3.16 With the notation above we have that, for all p ≥ 3

kn(t)Eπn
∣∣EG(U0, v, θn)− EG(U1, v, θn)

∣∣ ≤ tCN1/2/ν. (6.110)



6.3 Almost sure convergence in the p-spin model 83

Remark 6.3.1 [2] (see (Proposition 3.1)) prove that Eπn -almost surely,

EG(U0, v, [ant])− EG(U1, v, [ant])→ 0. (6.111)

This result would not be expected for our expression, but we do not

need this. The proof of Proposition 3.1., however, directly implies our

Lemma 6.3.16.

The computation of the expression involving the comparison process

U1 is fairly easy. First, note that by independence,

EG(U1, v, θn) =
[
EG(U1, v, ν)

]θn/ν
(6.112)

=
[
1−

(
1− EG(U1, v, ν)

)]θn/ν
But in [2], Proposition 2.1., it is shown that

anν
−1
(
1− EG(U1, v, ν)

)
→ Kpv

γ/β2

. (6.113)

This implies immediately that

kn(t)
[
1−

(
1− EF (U1, v, ν)

)]θn/ν → Kpv
γ/β2

t, (6.114)

as desired. Combining this with Lemma 6.3.16, the assertion of Lemma

6.3.15 follows.

Concentration of νtn. To conclude the proof, we need to control the

fluctuations of νtn.

Lemma 6.3.17 Under the same hypothesis as in Lemma 6.3.15, there

exists an increasing function, ζ(p), such that for all p ≥ 3, ζ(p) > 1,

and ζ(p) ↑
√

2 ln 2, such that, if γ/β2 < min(1, ζ(p)/β),

E
(
ν̂tn(v)− Eν̂n(v)

)2 ≤ Cn1−p/2. (6.115)

Proof. The proof is again very similar to the proof of Proposition 3.1

in [2]. We have to compute

E
(
Eπne−vZn

)2
= EEπnE ′πn

(
e−v(Zn+Z′n) | FJ ×FJ

′
)

(6.116)

To express this as in the previous proof, we introduce the Gaussian

process V 0 by

V 0(i) ≡

{
n−1/2Hn(Jn(i)), if 0 ≤ i ≤ θn − 1

n−1/2Hn(J ′n(i)), if θn ≤ i ≤ 2θn − 1.
(6.117)

Then, with the notation of (6.108)

EπnE ′πn
(
e−v(Zn+Z′n) | FJ ×FJ

′
)

= G(V 0, v, 2θn) (6.118)
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Next we define the comparison process V 1 with covariance matrix

Λ̄2
ij ≡

{
Λ̄0
ij , if i ∧ j < θnor i ∨ j ≥ θn,

0, else.
(6.119)

The point is that

EπnE
′
πnEG(V 1, v, 2θn) =

(
EπnEG(V 0, v, θn)

)2
=
(
EEπne−vZn

)2
.

(6.120)

On the other hand, using the standard Gaussian interpolation formula,

we obtain the representation

EG(V 0, v, 2θ)− EG(V 0, v, θ) (6.121)

=
1

2

∫ 1

0

∑
0≤i<θn
θn≤j<2θn

Λ̄1
ijE

∂2G(V h, v, 2θn)

∂vi∂vj
dh+ (i↔ j) .

The second derivatives of G were computed and bounded in [2], (see Eq.

(3.7. and Lemma 3.2.

We recall these bounds:

Lemma 6.3.18 With the notation above and the assumptions of Lemma

6.3.15,∣∣∣∣∂2G(V h, v, 2θn)

∂vi∂vj

∣∣∣∣ ≤ v2c−2
n β2Neβ

√
n(V h(i)+V h(j)) (6.122)

× exp
(
−2g

(
c−1
n veβ

√
nV h(i)

)
− 2g

(
c−1
n veβ

√
nV h(i)

))
≡ Ξn(Λ̄hij).

Moreover, for λ > 0 small enough,

Ξn(c) ≤ Ξ̄n(c)(6.123)

=

C
(
(1− c)−1/2 ∧

√
n
)
e
− γ2n

β2(1+c) , if 1 > c > γ/β2 + λ− 1,

CNe−n(β2(1+c)−2γ), if c ≤ (γ/β2) + λ− 1,

where C(γ, β, u, v, λ) is a suitably chosen constant independent of n and

c. Then

Remark 6.3.2 Notice that, since γ/β2 < 1 under our hypothesis, we

can always choose λ such that the top line in (6.123) covers the case

c ≥ 0.

Note that, for c ≥ 0, (see Eq. (3.25) in [2]; note that there is trivial

misprint in the last inequality there)
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∫ 1

0

Ξn((1− h)c)dh ≤ 2C exp

(
− γ2n

β2(1 + c)

)
. (6.124)

The terms with negative correlation are in principle smaller than those

with positive one, but some thought will reveal that one cannot really

gain substantially over the bound∫ 1

0

Ξn((1− h)c)dh ≤ C exp

(
−γ

2n

β2

)
, (6.125)

that is used in [2] (See Eq. 3.24)).

Next we must compute the probability that Λ̄1
ij takes on a specific

value. But since Λ̄ij is a function of Rn(Jn(i), J ′n(j)), this turns out to

be very easy, namely, since both chains start in the invariant distribution:

EπnE ′πn1InRn(Jn(i),J′n(j)=m

= t2
∑

x,y∈Sn
Pπn(Jn(i) = x)P ′πn(J ′n(i) = y)1InRn(x,y)=m (6.126)

= 2−n
∑
x∈Sn

1InRn(x,1)=m = 2−n
(

n

(n−m)/2

)
. (6.127)

Putting all things together, we arrive at the bound

kn(t)2
∣∣EG(V 0, v, 2θ)− EG(V 0, v, θ)

∣∣
≤

n∑
m=0

2−n
(

n

(n−m)/2

)(m
n

)p
nenγ

2/β2

2C exp

(
− nγ2

β2(+(m/n)p)

)

+

n∑
m=0

2−n
(

n

(n−m)/2

)(m
n

)p
nenγ

2/β2

2C exp

(
−nγ

2

β2

)
, (6.128)

where we did use that kn(t)θn = t
√
nenγ

2/β2

. Clearly the second term

is smaller than the first, so we only need to worry about the latter. But

this term is exactly the term (3.28) in [2], where it is shown that this is

smaller than

C ′t2n1−p/2, (6.129)

provided γ < ζ(p). This provides the assertion of our Lemma 6.3.17 and

concludes its proof.

Remark 6.3.3 The estimate on the second moment we get here allows

to get almost sure convergence only if p > 4. It is not quite clear whether

this is natural. We were tempted to estimate higher moments to get
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improved estimates on the convergence speed. However, any straight-

forward application of the comparison methods used here do get the

same order for all higher moments. We have not been able to think of a

tractable way to improve this result.

Conclusion of the proof. The proof is concluded in the same way

as in the case of the REM, with Lemmata 6.3.15 and 6.3.17 replacing

Lemmata 6.2.6 and ??.

In the cases p = 3, 4, where our estimates give only convergence in

probability, we obtain convergence of νtn(u,∞) in probability, e.g. by

using sub-sequences.

Thus we have established Conditions (A1-1) and (A2-1) under the

stated conditions on the parameters γ, β, p, and Theorem 6.3.13 follows

from Theorem 6.1.2.

6.3.2 Consequences for correlation functions

We will now turn to the proof of Theorem 6.3.14.

The proof of this theorem relies on the following simple estimate. Let

us denote by Rn the range of the coarse grained and rescaled clock

process Sbn. The argument of [2] in the proof of Theorem 1.2 that the

event Aεn(s, t) ∩ {Rn ∩ (s, t) 6= ∅} has vanishing probability carries over

unaltered. However, while in their case, Aεn(s, t) ⊂ {Rn ∩ (s, t) = ∅},
was obvious due to the fact that the coarse graining was done on a scale

o(n), this is not immediately clear in our case, where the number of

steps within a block is of order n2. What we have to show is that if the

process spends the whole time from s to t within one bloc, then almost

all of this time is spent, without interruption, within small ball of radius

εn.

To do this, we need some simple facts about correlated Gaussian pro-

cesses.

Lemma 6.3.19 Let X,Y be standard Gaussian variables with covari-

ance cov(X,Y ) = 1− c, 0 < c < 1/4. Then for a� 1,

P (X > a, Y > a(1− c/4)) ≤ 1

a22πc
e−a

2/2
(
e−ca

2/32 + e−3ca2/8
)
.

(6.130)

Proof. Note that the variables X,Y have the joint density
1

2π(2c− c2)
e
− x22 −

(y−(1−c)x)2

4c−2c2 . (6.131)
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Next,

P (X > a, Y > a(1− c/2)) ≤ P (X > a, |Y − (1− c)X| > ac/4))+P
(
X > a 1−c/2

1−c

)
.

(6.132)

The result is now a trivial application of the standard tail estimates for

Gaussian integrals.

This lemma has the following corollary:

Corollary 6.3.20 Let Hn(σ) be the Gaussian process defined in (6.96).

Let Mn ⊂ Σn be arbitrary. Then

P (∃σ,σ′∈Mn
: Rn(σ, σ′) < 1− ε andHn(σ) ≥ an ∧Hn(σ) ≥ an(1− pε/4)))

≤ |Mn|2e−na
2/2e−na

2pε/40 (6.133)

This lemma implies that even if in a set of size say n2, there is a

point where Hn(σ) > na, then with overwhelming probability, all point

of this size will be within a small ball of radius o(n). (This is even

crude: we may even chose ε depending on n). All points for which

Hn(σ) ≤ na(1−c/4) will not give a perceptible contribution to the total

time.

This means the following: within a block of θn steps of the chain Jn,

that gives a contribution to a jump, there is only a very small ball which

contributes to the time. It remains to show that these contributions

come in one “block”, i.e. the process will not return to this region once

it left it within θn steps. But this is an elementary property of the

random walk on the hypercube..

Let us make this precise. As remarked above,

Pπn (Aεn(s, t)) = Pπn (Aεn(s, t) ∩ {Rn ∩ (s, t) = ∅}) (6.134)

+ Pπn (Aεn(s, t) ∩ {Rn ∩ (s, t) 6= ∅}) ,

where the second term tends to zero. Next we observe that

Pπn (Aεn(s, t) ∩ {Rn ∩ (s, t) = ∅}) (6.135)

= Pπn (Rn ∩ (s, t) = ∅)− Pπn ((Aεn(s, t))
c ∩ {Rn ∩ (s, t) = ∅})

Here the first term is what we want. To show that the second term tends

to zero, we proceed as follows.

For any N <∞, we clearly have
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Pπn ((Aεn(s, t))c ∩ {Rn ∩ (s, t) = ∅}) (6.136)

=

kn(N)−1∑
k=0

Pπn
(
((Aεn(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
+

∞∑
k=kn(N)

Pπn
(
((Aεn(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
.

The second term is bounded by

∞∑
k=kn(N)

Pπn
(
((Aεn(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
≤ Pπn

(
Sbn(N) ≤ s

)
→ P (Vα(N) > s) , (6.137)

where convergence is almost sure with respect to the environment. The

last probability can be made as small as desired by choosing N suffi-

ciently large. It remains to deal with the first sum on the right-hand

side of (6.86).

Define the event

Gρ(k) ≡
⋃

kθn≤i<j<(k+1)θn
Rn(Jn(i),Jn(j))≤1−ρ

{
λ−1
n (Jn(i))en,i ≥ cn(t− s)θ−1

n

}
(6.138)

∩
{
λ−1
n (Jn(i))en,i ≥ cnn−1θ−1

n

}
.

Note that Corollary 6.3.20 implies that the probability of this event with

respect to the law P is bounded nicely uniformly in the variables J .

On the other hand, on the event Gρ(k)c∩(Aεn(s, t))
c∩
{

(s, t) ⊂
(
S̄n(k), S̄n(k + 1)

)}
,

the following must be true: First, there still must exist some i such that

λ−1
n (Jn(i))en,i ≥ cn(t− s)θ−1

n , and second, the random walk must make

a loop, i.e. it the event

Wρ,ε(k) (6.139)

≡
⋃

kθn≤i<j<`<(k+1)θn

{Rn(Jn(i), Jn(j)) > 1− ε ∧Rn(Jn(i), Jn(`)) ≤ 1− ρ} .

The probability of this event is generously bounded by

Pπn (Wρ,ε(k)) ≤ n4e−n(I(1−ρ)−I(1−ε)), (6.140)

where I is Cramèr’s rate function.

By these considerations, we have the bound
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E

kn(N)∑
k=0

Pπn
(
(Aεn(s, t))

c ∩
{

(s, t) ⊂
(
S̄n(k), S̄n(k + 1)

)}) (6.141)

≤
kn(N)∑
k=0

E
(
Pπn (Gρ(k))

+Pπn
({
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

}
∩Wρ,ε(k)

))
Now

EPπn (Gρ(k)) ≤ a−1
n e−δn, (6.142)

for some δ > 0 depending on the choice of ρ. The simplest way to see

this is to use that the probability that one of the en,i is larger than n2 is

smaller than exp(−n2), and then use the bound from Corollary 6.3.20.

Finally, the two events in
{
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

}
∩

Wρ,ε(k) are independent, and hence

EPπn
({
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

}
∩Wρ,ε(k)

)
= P

(
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

)
Pπn (Wρ,ε(k))

≤ θ2
nP
(
eβHn(x) > cnn

−4
)
e−n(I(1−ρ)−I(1−ε)) + θne

−n2

≤ θ4
na
−1
n n−γβ

−2−1/2e−n(I(1−ρ)−I(1−ε)) + θne
−n2

(6.143)

Combining this, we see that

E

kn(N)∑
k=0

Pπn
(
(Aεn(s, t))

c ∩
{

(s, t) ⊂
(
S̄n(k), S̄n(k + 1)

)}) ≤ CNe−δn,
(6.144)

for some positive δ, whatever the choice of ε. But this estimate implies

that the term (6.135) converges to zero P- almost surely, for any choice

of N . Hence the result is obvious from the J1 convergence of S̄n.
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Convergence and topological issues

In the preceeding chapters I have deliberately slipped over topological

issues related to process convergence in order to focus the discussion on

the basic mechanisms. In this section I will collect the most important

issues related convergence and the topologies that should be used.

7.1 Convergence on the space of point measures

In this section we complement the discussion from Section 2.

7.1.1 The vague topology

In Chapter 3 we have already introduced the notion of vague convergence

on the space of point measures. Here we will elaborate this notion a little

more.

The following properties of vague convergence are useful.

Proposition 7.1.1 Let µn, n ∈ N be in M+(Rd). Then the following

statements are equivalent:

(i) µn converges vaguely to µ, µn
v→ µ.

(ii) µn(B)→ µ(B) for all relatively compact sets, B, such that µ(∂B) = 0.

(iii) lim supn↑∞ µn(K) ≤ µ(K) and lim supn↑∞ µn(G) ≥ µ(G), for all

compact K, and all open, relatively compact G.

In the case of point measures, we would of course like to see that the

point where the sequence of vaguely convergent measures are located

converge. The following proposition tells us that this is true.

Proposition 7.1.2 Let µn, n ∈ N, and µ be in Mp(Rd), and µn
v→ µ.

90
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Let K be a compact set with µ(∂K) = 0. Then we have a labeling of the

points of µn, for n ≥ n(K) large enough, such that

µn(· ∩K) =

p∑
i=1

δxni , µ(· ∩K) =

p∑
i=1

δxi ,

such that (xn1 , . . . , x
n
p )→ (x1, . . . , xp).

Another useful and unsurprising fact is that

Proposition 7.1.3 The set Mp(Rd) is vaguely closed in M+(Rd).

Thus, in particular, the limit of a sequence of point measures, will, if

it exists as a σ-finite measure, be again a point measure.

Proposition 7.1.4 The topology of vague convergence can be metrized

and turns M+ into a complete, separable metric space.

Although we will not use the corresponding metric directly, it may be

nice to see how this can be constructed. We therefore give a proof of

the proposition that constructs such a metric.

Proof. The idea is to first find a countable collection of functions, hi ∈
C+

0 (Rd), such that µn
v→ µ if and only if, for all i ∈ N, µn(hi)→ µ(hi).

The construction below is form [29]. Take a family Gi, i ∈ N, that form

a base of relatively compact sets, and assume it to be closed under finite

unions and finite intersections. One can find (by Uryson’s theorem),

families of functions fi,n, gi,n ∈ C+
0 , such that

fi,n ↑ 1IGi , gi,n ↓ 1IGi

Take the countable set of functions gi,n, fi,n as the collection hi. Now

µ ∈M+ is determined by its values on the hj . For, first of all, µ(Gi) is

determined by these values, since

µ(fi,n) ↑ µ(Gi) andµ(gi,n) ↓ µ(Gi)

But the family Gi is a Π-system that generates the sigma-algebra B(Rd),
and so the values µ(Gi) determine µ.

Now, µn
v→ µ, iff and only if, for all hi, µn(hi)→ ci = µ(hi).

From here the idea is simple: Define

d(µ, ν) ≡
∞∑
i=1

2−i
(

1− e−|µ(hi)−ν(hi)|
)

(7.1)

Indeed, if D(µn, µ) ↓ 0, then for each `, |µn(h`) − µ(h`)| ↓ 0, and con-

versely.
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It is not very difficult to verify that this metric is complete and sepa-

rable.

7.1.2 Weak convergence

Having established the space of σ-finite measures as a complete, separa-

ble metric space, we can think of weak convergence of probability mea-

sures on this space just as if we were working on an Euclidean space.

One very useful fact about weak convergence is Skorohod’s theorem,

that relates weak convergence to almost sure convergence.

Theorem 7.1.5 Let Xn, n = 0, 1, . . . be a sequence of random variables

on a complete separable metric space. Then Xn converges weakly to

a random variable X0, iff and only if there exists a family of random

variables X∗n, defined on the probability space ([0, 1],B([0, 1]),m), where

m is the Lebesgue measure, such that

(i) For each n, Xn
D
= X∗n, and

(ii) X∗n → X∗0 , almost surely.

(for a proof, see [12]). While weak convergence usually means that the

actual realisation of the sequence of random variables do not converge

at all and oscillate widely, Skorohod’s theorem says that it is possible

to find an “equally likely” sequence of random variables, X∗n, that do

themselves converge, with probability one. Such a construction is easy

in the case when the random variables take values in R. In that case, we

associate with the random variable Xn (whose distribution function is

Fn, that form simplicity we may assume strictly increasing), the random

variable X∗n(t) ≡ F−1
n (t). It is easy to see that

m(X∗n ≤ x) =

∫ 1

0

1IF−1
n (t)≤xdt = Fn(x) = P(Xn ≤ x)

On the other hand, if P[Xn ≤ x]→ P[X0 ≤ x], for all points of continuity

of F0, that means that for Lebesgue almost all t, F−1
n (t)→ F−1

0 (t), i.e.

X∗n → X∗0 , m-almost surely.

Skorohod’s theorem is very useful to extract important consequences

from weak convergence. In particular,it allows to prove the convergence

of certain functionals of sequences of weakly convergent random vari-

ables, which otherwise would not be obvious.

A particularly useful criterion for convergence of point processes is
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provided by Kallenberg’s theorem, Theorem 2.1.15, which we will prove

now.

Proof. The key observation needed to prove the theorem is that simple

point processes are uniquely determined by their avoidance function.

This seems rather intuitive, in particular in the case E = R: if we

know the probability that in an interval there is no point, we know the

distribution of the gape between points, and thus the distribution of the

points.

Let us note that we can write a point measure, µ, as

µ =
∑
y∈S

cyδy,

where S is the support of the point measure and cy are integers. We can

associate to µ the simple point measure

T ∗µ = µ∗ =
∑
y∈S

δy,

Then it is true that the map T ∗ is measurable, and that, if ξ1 and ξ2
are point measures such that, for all I ∈ T ,

P [ξ1(I) = 0] = P [ξ2(I) = 0] , (7.2)

then

ξ∗1
D
= ξ∗2 .

To see this, let

C ≡ {{µ ∈Mp(E) : µ(I) = 0}, I ∈ T } .

The set C is easily seen to be a Π-system. Thus, since by assumption

the laws, Pi, of the point processes ξi coincide on this Π-system, they

coincide on the sigma-algebra generated by it. We must now check

that T ∗ is measurable as a map from (Mp, σ(C)) to (Mp,Mp), which

will hold, if for each I, the map T ∗1 : µ → µ∗(I) is measurable form

(Mp, σ(C))→ {0, 1, 2, . . . }. Now introduce a family of finite coverings of

(the relatively compact set) I, An,j , with An,j ’s whose diameter is less

than 1/n. We will chose the family such that for each j, An+1,j ⊂ An,i,
for some i. Then

T ∗1 µ = µ∗(I) = lim
n↑∞

kn∑
j=1

µ(An,j) ∧ 1,
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since eventually, no An,j will contain more than one point of µ. Now set

T ∗2 µ = (µ(An,j) ∧ 1). Clearly,

(T ∗2 )−1{0} = {µ : µ(An,j) = 0} ⊂ σ(C),

and so T ∗2 is measurable as desired, and so is T ∗1 , being a monotone limit

of finite sums of measurable maps. But now

P [ξ∗1 ∈ B] = P [T ∗ξ1 ∈ B] = P
[
ξ1 ∈ (T ∗)−1(B)

]
= P1

[
(T ∗)−1(B)

]
.

But since (T ∗)−1(B) ∈ σ(C), by hypothesis, P1

[
(T ∗)−1(B)

]
= P2

[
(T ∗)−1(B)

]
,

which is also equal to P [ξ∗1 ∈ B], which proves (7.2).

Now, as we have already mentioned, (2.102) implies uniform tightness

of the sequence ξn. Thus, for any subsequence n′, there exist a sub-

sub-sequence, n′′, such that ξn′′ converges weakly to a limit, η. By

compactness of Mp, this is a point process. Let us assume for a moment

that (a) η is simple, and (b), for any relatively compact A,

P [ξ(∂A) = 0] ⇒ P [η(∂A) = 0] . (7.3)

Then, the map µ → µ(I) is a.s. continuous with respect to η, and

therefore, if ξn′
w→ η, then

P [ξn′(I) = 0]→ P [η(I) = 0] .

But we assumed that

P [ξn(I) = 0]→ P [ξ(I) = 0] ,

so that, by the foregoing observation, and the fact that both η and ξ are

simple, ξ = η.

It remains to check simplicity of η and (7.3).

To verify the latter, we will show that for any compact set, K,

P [η(K) = 0] ≥ P [ξ(K) = 0] . (7.4)

We use that for any such K, there exist sequences of functions, fj ∈
C+

0 (Rd), and compact sets, Kj , such that

1IK ≤ fj ≤ 1Kj ,

and 1IKj ↓ 1IK . Thus,

P [η(K) = 0] ≥ P [η(fj) = 0] = P [η(fj) ≤ 0]

But ξn′(fj) converges to η(fj), and so

P [η(fj) ≤ 0] ≥ lim sup
n′

P [ξn′(fj) ≤ 0] ≥ P [ξn′(Kj) ≤ 0] .
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Finally, we can approximate Kj by elements Ij ∈ T , such that Kj ⊂
Ij ↓ K, so that

P [ξn′(Kj) ≤ 0] ≥ lim sup
n′

P [ξn′(Ij) ≤ 0] = P [ξ(Kj) ≤ 0] ,

so that (7.4) follows.

Finally, to show simplicity, we take I ∈ T and show that the η has

multiple points in I with zero probability. Now

P [η(I) > η∗(I)] = P [η(I)− η∗(I) < 1/2] ≤ 2 (Eη(I)− Eη∗(I)))

The latter, however, is zero, due to the assumption of convergence of

the intensity measures.

Remark 7.1.1 The main requirement in the theorem is the conver-

gence of the so-called avoidance function, P [ξn(I) = 0], (2.102). The

convergence of the mean (the intensity measure) provides tightness, and

ensures that all limit points are simple. It is only a sufficient, but not a

necessary condition. It may be replaced by the tightness criterion that

for all I ∈ T , and any ε > 0, one can find R ∈ N, such that, for all n

large enough,

P [ξn(I) > R] ≤ ε, (7.5)

if one can show that all limit points are simple (see [18]). Note that, by

Chebeychev’s inequality, (2.102) implies, of course, (7.5), but but vice

versa. There are examples when (2.101) and (7.5) hold, but (2.102) fails.

7.2 Skorokhod topologies on the space of càdlàg functions

The second topological space we are concerned with is the space of càdlàg

function, which is where our stochastic processes will live.

7.2.1 The càdlàg space DE [0,∞)

It will be important that we can treat the space of càdlàg functions

with values in a metric space as a Polish space much like the space of

continuous functions. The material from this section is taken from [20]

where omitted proofs and further details can be found.
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7.2.2 A Skorokhod metric

We will now construct a metric on càdlàg space which will turn this

space into a complete metric space. This was first don by Skorokhod.

In fact, there are various different metrics one may put on this space

which will give rise to different convergence properties. This is mostly

related to the question whether each jump in the limiting function is

associated to one, several, or no jumps in approximating functions. A

detailed discussion of these issues can be found in [33]. We will come

back to this point later and begin with the strong and most popular

topology, called J1-topology.

Definition 7.2.1 Let Λ denote the set of all strictly increasing maps

λ : R+ → R+, such that λ is Lipshitz continuous and

γ(λ) ≡ sup
0≤t<s

∣∣∣∣ln λ(s)− λ(t)

s− t

∣∣∣∣ <∞. (7.6)

For x, y ∈ DE [0,∞), u ∈ R+, and λ ∈ Λ, set

d(x, y, λ, u) ≡ sup
t≥0

ρ (x(t ∧ u), y(λ(t) ∧ u)) . (7.7)

Finally, the Skorohod metric on DE [0,∞) is given as

d(x, y) ≡ inf
λ∈Λ

(
γ(λ) ∨

∫ ∞
0

e−ud(x, y, u, λ)du

)
. (7.8)

To get the idea behind this definition, note that with λ the identity,

this is just the metric on the space of continuous functions. The rôle of

the λ is to make the distance of two functions that look much the same,

except that they jump at two points very close to each other by sizable

amount, small. E.g., we clearly want the functions

xn(t) = 1I[1/n,∞](t)

to converge to the function

x∞(t) = 1[0,∞](t).

This is wrong under the sup-norm, since supt ‖xn(t)− x∞(t)‖ = 1, but

it will be true under the metric d (Exercise!).

Lemma 7.2.6 d as defined a above is a metric on DE [0,∞).

Proof. We first show that d(x, y) = 0 implies y = x. Note that for

d(x, y) = 0, it must be true that there exists a sequence λn such that
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γ(λ0) ↓ 0 and limn↑∞ d(x, y, λn, u) = 0; one easily checks that then

lim
n↑∞

sup
0≤t≤T

|λn(t)− t| = 0,

and hence x(t) = y(t) at all continuity points of x. But since x and y

are càdlàg , this implies x = y.

Symmetry follow from the fact that d(x, y, λ, u) = d(y, x, λ−1, u) and

that γ(λ) = γ(λ−1).

Finally we need to prove the triangle inequality. A simple calculation

shows that

d(x, z, λ2 ◦ λ1, u) ≤ d(x, y, λ1, u) + d(y, z, λ2, u).

Finally γ(λ1 ◦λ2) ≤ γ(λ1)+γ(λ2), and putting this together one derives

d(x, z) ≤ d(x, y) + d(y, z).

Exercise: Fill in the details of the proof of the triangle inequality.

The next theorem completes our task.

Theorem 7.2.7 If E is separable, then DE [0,∞) is separable, and if E

is complete, then DE [0,∞) is complete.

Proof. The proof of the first statement is similar to the proof of the

separability of C(J) (Theorem ??) and is left to the reader. To prove

completeness, we only need to show that every Cauchy sequence con-

verges. Thus let xn ∈ DE [0,∞) be Cauchy. Then, for any constant

C > 1, and any k ∈ N, there exist values nk, such that for all n,m ≥ nk,

d(xn, xm) ≤ C−k. Then we can select sequences uk, and λk, such that

γ(λk) ∨ d(xnk , xnk+1
, λk, uk) ≤ 2−k.

Then, in particular,

µk ≡ lim
m↑∞

λk+m ◦ λk+m−1 ◦ · · · ◦ λk+1 ◦ λk

exists and satisfies

γ(µk) ≤
∑
m=k∞

γ(λm) ≤ 2−k+1.

Now
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sup
t≥0

ρ
(
xnk(µ−1

k (t) ∧ uk), xnk+1
(µ−1
k+1(t) ∧ uk)

)
= sup

t≥0
ρ
(
xnk(µ−1

k (t) ∧ uk), xnk+1
(λk(µ−1

k+1(t)) ∧ uk)
)

= sup
t≥0

ρ
(
xnk(t ∧ uk), xnk+1

(λ−1
k (t) ∧ uk)

)
≤ 2−k.

Therefore, by the completeness of E, the sequence of functions zk ≡
xnk(µ−1

k (t)) converges uniformly on compact intervals to a function z.

Each zk being càdlàg implies that z is also càdlàg . Since γ(µk)→ 0, it

follows that

lim
k↑∞

sup
0≤t≤T

ρ(xnk(µ−1
k (t)), z(t)) = 0,

for all T , and hence d(xnk , z) → 0. Since a Cauchy sequence that con-

tains a convergent subsequence converges, the proof is complete.

To use Prohorov’s theorem for proving convergence of probability mea-

sures on the space DE [0,∞), we need first a characterisation of compact

sets.

The first lemma states that the clusure of the space of step functions

that are uniformly bounded and where the distance between steps is

uniformly bounded from below is compact:

Lemma 7.2.8 Let Γ ⊂ E be compact and δ > 0 be fixed. Let A(Γ, δ)

denote the set of step functions, x, in DE [0,∞) such that

(i) x(t) ∈ Γ, for all τ ∈ [0,∞), and

(ii) sk(x)− sk−1(x) > d, for all k ∈ N,

where

sk(x) ≡ inf{t > sk−1(x) : x(t) 6= x(t−)}.

Then the closure of A(Γ, δ) is compact.

We leave the prove as an exercise.

The analog of the modulus of continuity in the Arzelà-Ascoli theorem

on càdlàg space is the following: For x ∈ DE [0,∞), δ > 0, and T <∞,

set

w(x, δ, T ) ≡ inf
ti

max
i

sup
s,t∈[ti−1,ti)

ρ(x(s), x(t)), (7.9)
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where the first infimum is over all collections 0 = t0 < t1 < · · · < tn−1 <

T < tn, with ti − ti−1 > δ, for all i.

The following theorem is the analog of the Arzelà-Ascoli theorem:

Theorem 7.2.9 Let E be a complete metric space. Then the closure of

a set A ⊂ DE([0,∞) is compact, if and only if,

(i) For every rational t ≥ 0, there exists a compact set Γt ⊂ E, such that

for all x ∈ A; x(t) ∈ Γt.

(ii) For each T <∞,

lim
δ↓0

sup
x∈A

w(x, δ, T ) = 0. (7.10)

A proof of this result can be found, e.g. in [20]. s

Based on this theorem, we now get the crucial tightness criterion:

Theorem 7.2.10 Let E be complete and separable, and let Xα be a

family of processes with càdlàg paths. Then the family of probability

laws, µα, of Xα, is conditionally compact if and only if the following

holds:

(i) For every η > 0 and rational t ≥ 0, there exists a compact set, Γη,t ⊂
E, such that

inf
α
µα (x(t) ∈ Γη,t) ≥ 1− η, (7.11)

and

(ii) For every η > 0 and T <∞, there exists δ > 0, such that

sup
α
µα (w(x, δ, T ) ≥ η) ≤ η. (7.12)

7.2.3 Incomplete metrics and tightness criteria

For practical work it is often convenient to work with simpler metrics on

càdlàg space that yield tightness criteria that are easier to verify. They

fail to be complete, but this is not a practial handicap. We consider first

the J1 topology.

J1 topology . Skorohod did not introduce the metric we defined in

Definition 7.2.1; this was only done later by Billingsley [10]. Skorokhod

used a simpler metric: for f, g ∈ D

dJ1(f, g) = inf
λ∈Λ
{‖f ◦ λ− g‖∞ ∨ ‖λ− e‖∞}, (7.13)
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where Λ is the set of strictly increasing functions mapping [0, T ] onto

itself such that both λ and its inverse are continuous, and e is the identity

map on [0, T ]. It was shown by Kolmogorov [30] that the topology

defined by this metric turns D into a complete space.

There is also a slightly more convenient continuity-module that we

will use for this topology. We set

wf (δ, T ) = sup
t1≤t≤t2≤T,t2−t1≤δ

{
min

(
|f(t)− f(t1)|, |f(t2)− f(t)|

)}
,

vf (t, δ, T ) = sup
:t1,t2∈[0,T ]∩(t−δ,t+δ)

{|f(t1)− f(t2)|} . (7.14)

The following result is a restatement of Theorem 12.12.3 of [33] and

Theorem 15.3 of [11].

Theorem 7.2.11 The sequence of probability measures {Pn} is tight in

the J1-topology if

(i) For each positive ε there exist c such that

Pn[f : ‖f‖∞ > c] ≤ ε, n ≥ 1. (7.15)

(ii) For each ε > 0 and η > 0, there exist a δ, 0 < δ < T , and an

integer n0 such that

Pn[f : wf (δ) ≥ η] ≤ ε, n ≥ n0, (7.16)

and(iii)

Pn[f : vf (0, δ) ≥ η] ≤ ε and Pn[f : vf (T, δ) ≥ η] ≤ ε, n ≥ n0.

(7.17)

M1-topology. In many natural cases, the J1 topology is simply to fine

to yield convergence. For instance, whenever we have a sequence of

continuous functions that develops jumps in the limit, we cannot have

convergence in the J1 topology.

This excludes situations when (a) a number of small jumps converge

to the same location and form a big one, or when a family of continuous

curves develops a jump. In such cases one may still want to say that in

a suitable sense, convergence takes place.

To this end Skorokhod introduced another (incomplete) metric, the

M1-metric. To define this, let, for f ∈ D, Γf be its completed graph,

Γf = {(z, t) ∈ R×[0, T ] : z = αf(t−)+(1−α)f(t), α ∈ [0, 1]}. (7.18)

A parametric representation of the completed graph Γf (or of f) is a
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Fig. 7.1. Red curve is close to black curve in J1

Fig. 7.2. Red curves are not close to black curves in J1, but are in M1

continuous bijective mapping φ(s) = (φ1(s), φ2(s)), [0, 1] 7→ Γf whose

first coordinate φ1 is increasing. If Π(f) is set of all parametric repre-

sentation of f , then the M1-metric is defined by

dM1(f, g) = inf{‖φ1 − ψ1‖∞ ∨ ‖φ2 − ψ2‖∞ : φ ∈ Π(f), ψ ∈ Π(g)}.
(7.19)

Again the topology associated with this metric is complete, although the

metric is not.

To prove tightness in this space, one has a theorem completely anal-

ogous to Theorem 7.2.10. The only difference is that the modulus of

continuity, w(x, δ, T ), used there is replaced by

w′(x, δ, T ) = sup
t1≤t≤t2≤T,t2−t1≤δ

{
inf

α∈[0,1]
|x(t)− (αx(t1) + (1− α)x(t2))|

}
.

(7.20)

One notices that this criterion no longer forbids accumulations of jumps

large jumps at a single point.
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Remark 7.2.1 There is also a simple metric for the J1 topology that

is not complete. It is given by

dJ1(f, g) = inf
λ∈Λ
{‖f ◦ λ− g‖∞ ∨ ‖λ− e‖∞}, (7.21)

where Λ is the set of strictly increasing functions mapping [0, T ] onto

itself such that both λ and its inverse are continuous, and e is the identity

map on [0, T ].

7.3 Implications for the convergence of sums

Let us see how we con use our tightness criteria in the proofs of the

convergence of sums of random variables.

Let us consider the example of Theorem 4.2.10.

Let us check that the criteria of Theorem 7.2.11 are verified in our

case. (i) was already checked when we considered the convergence of

the one-dimensional marginals, since our process is monotone increasing

(otherwise, we would need to use maximum inequalities). Condition (iii)

amounts to checking that there is no jump at 0 and at T . In fact, using

that all our processes are increasing,

P [vSn(0, δ) > η] = P [Sn(δ) > η] (7.22)

≤ P
[
Z≤nδ > Knη/2

]
+ P

[
Z>nδKnη/2

]
≤ 2EZ≤nδ/(Knη) + δnP [Xi > Knη/2]

≤ 2cδη−1 2− α
1− α

ε1−α + δc(η/2)−α.

Clearly, for any η > 0 and ε > 0, the right-hand side of (7.22) can be

made smaller than ε by an appropriate choice of δ.

The task to check (ii) is not much harder. We may check this condition

again for S≤n and S>n separately. For the former, we need a second

moment estimate (with calculations we can borough from Chapter 4),

E
(
S≤n (δ)

)2 ≤ const.
(
δε2−α + δ2c2−2α

)
, (7.23)

and then a standard partitioning argument tells us that

P
[
w
S
≤
n

(d) > η/2
]
≤ P

[
∃k≤T/δ : S≤n ((k + 1)δ)− S≤n (kδ) ≥ η/2

]
≤ const.Tη−2

(
ε2−α + δε2−2α

)
. (7.24)

which can be made small for any η and ε be making δ small enough.

For S>n 0, choose ε < η/2. Then the event {wS>n (δ) > η/2} can only

occur if two atoms of the point process that are bigger than ε have
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distance smaller than 2δ. The probability of this to happen is controlled

by

Tδn2P [Xi > Knε]
2 ≤ Tc2δε−2α. (7.25)

Now take δ such that δε−2α is smaller that c2ρ/T , and then ε so small

that the bound in (7.24) is also smaller than ρ. Then our tightness

criterion is satisfied.

The same general strategie works in other cases, too.

7.4 Implications for correlation functions

The main advantage of having convergence in the J1-topology is that

it ensures convergence of the jumps: If the limiting subordinator has a

jump of given size, then the approximants had jumps converging to the

same size, and it cannot be the case that there were many small jumps

of the approximants that merged together to produce that of the limit.

But the jumps of the clock process Sn are closely linked to the corre-

lation function. Indeed, if This implies in particular that X(s) remains

constant on the interval [tw, tw+t], if and only if the clock process jumps

over this interval, i.e. if (tw, tw+t) is not in the range of SN . Combining

these observations, we get the following fact:

Lemma 7.4.12 The correlation function ΠN satisfies

lim
tw↑∞

lim
N↑∞

ΠN (tw, θtw) = P [(1, 1 + θ)int range(Vα) = ∅] (7.26)

=
sinαπ

π

∫ 1/(1+θ)

0

uα−1(1− u)−αdu.
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