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Preface

These lecture notes are compiled for the course “Extremes of stochastic

sequences and processes”. that I have been teaching repeatedly at the

Technical University Berlin for advanced undergraduate students. This

is a one semester course with two hours of lectures per week. I used

to follow largely the classical monograph on the subject by Leadbetter,

Lindgren, and Róotzen [7], but on the one hand, not all material of

that book can be covered, and on the other hand, as time went by I

tended to include some extra stuff, I felt that it would be helpfull to

have typed notes, both for me, and for the students. As I have been

working on some problems and applications of extreme value statistics

myself recently, my own experience also will add some personal flavour

to the exposition.

The current version is updated for a cours in the Master Programme

at Bonn University. THIS is NOT the FINAL VERSION.

Be aware that this is not meant to replace a textbook, and that at

times this will be rather sketchy at best.
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Extreme value distributions of iid sequences

Sedimentary evidence reveals that the maximal flood levels are getting
higher and higher with time.....

An un-named physicist.

Records and extremes are not only fascinating us in all areas of live,

they are also of tremendous importance. We are constantly interested

in knowing how big, how, small, how rainy, how hot, etc. things may

possibly be. This it not just vain curiosity, it is and has been vital for

our survival. In many cases, these questions, relate to very variable,

and highly unpredictable phenomena. A classical example are levels

of high waters, be it flood levels of rivers, or high tides of the oceans.

Probably everyone has looked at the markings of high waters of a river

when crossing some bridge. There are levels marked with dates, often

very astonishing for the beholder, who sees these many meters above

from where the water is currently standing: looking at the river at that

moment one would never suspect this to be likely, or even possible, yet

the marks indicate that in the past the river has risen to such levels,

flooding its surroundings. It is clear that for settlers along the river,

these historical facts are vital in getting an idea of what they might

expect in the future, in order to prepare for all eventualities.

Of course, historical data tell us about (a relatively remote) past; what

we would want to know is something about the future: given the past

observations of water levels, what can we say about what to expect in

the future?

A look at the data will reveal no obvious “rules”; annual flood levels

appear quite “random”, and do not usually seem to suggest a strict pat-

tern. We will have little choice but to model them as a stochastic process,

1



2 1 Extreme value distributions of iid sequences

and hence, our predictions on the future will be in nature statistical: we

will make assertions on the probability of certain events. But note that

the events we will be concerned with are rather particular: they will be

rare events, and relate to the worst things that may happen, in other

words, to extremes. As a statistician, we will be asked to answer ques-

tions like this: What is the probability that for the next 500 years the

level of this river will not exceed a certain mark? To answer such ques-

tions, an entire branch of statistics, called extreme value statistics, was

developed, and this is the subject of this course.

1.1 Basic issues

As usual in statistics, one starts with a set of observations, or “data”,

that correspond to partial observations of some sequence of events. Let

us assume that these events are related to the values of some random

variables, Xi, i ∈ Z, taking values in the real numbers. Problem number

one would be to devise from the data (which could be the observation

of N of these random variables) a statistical model of this process, i.e., a

probability distribution of the infinite random sequence {Xi}i∈Z. Usu-

ally, this will be done partly empirically, partly by prejudice; in partic-

ular, the dependence structure of the variables will often be assumed

a priori, rather than derived strictly from the data. At the moment,

this basic statistical problem will not be our concern (but we will come

back to this later). Rather, we will assume this problem to be solved,

and now ask for consequences on the properties of extremes of this se-

quence. Assuming that {Xi}i∈Z is a stochastic process (with discrete

time) whose joint law we denote be P, our first question will be about

the distribution of its maximum: Given n ∈ N, define the maximum up

to time n,

Mn ≡ n
max
i=1

Xi. (1.1)

We then ask for the distribution of this new random variable, i.e. we

ask what is P(Mn ≤ x)? As often, we will be interested in this question

particularly when n is large, i.e. we are interested in the asymptotics as

n ↑ ∞.

The problem should remind us of a problem from any first course

in probability: what is the distribution of Sn ≡ ∑n
i=1Xi? In both

problems, the question has to be changed slightly to receive an answer.

Namely, certainly Sn and possibly Mn may tend to infinity, and their

distribution may have no reasonable limit. In the case of Sn, we learned
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that the correct procedure is (most often), to subtract the mean and to

divide by
√
n, i.e. to consider the random variable

Zn ≡ Sn − ESn√
n

(1.2)

The most celebrated result of probability theory, the central limit theo-

rem, says then that (if, say, Xi are iid and have finite second moments)

Zn converges to a Gaussian random variable with mean zero and variance

that of X1. This result has two messages: there is a natural rescaling

(here dividing by the square root of n), and then there is a universal

limiting distribution, the Gaussian distribution, that emerges (largely)

independently of what the law of the variable Xi is. Recall that this is of

fundamental importance for statistics, as it suggests a class of distribu-

tions, depending on only two parameters (mean and variance) that will

be a natural candidate to fit any random variables that are expected to

be sums of many independent random variables!

The natural first question about Mn are thus: first, can we rescale

Mn in some way such that the rescaled variable converges to a random

variable, and second, is there a universal class of distributions that arises

as the distribution of the limits? If that is the case, it will again be a

great value for statistics! To answer these questions will be our first

target.

A second major issue will be to go beyond just the maximum value.

Coming back to the marks of flood levels under the bridge, we do not just

see one, but a whole bunch of marks. can we say something about their

joint distribution? In other words, what is the law of the maximum, the

second largest, third largest, etc.? Is there, possibly again a universal law

of how this process of extremal marks looks like? This will be the second

target, and we will see that there is again an answer to the affirmative.

1.2 Extremal distributions

We will consider a family of real valued, independent identically dis-

tributed random variables Xi, i ∈ N, with common distribution function

F (x) ≡ P [Xi ≤ x] (1.3)

Recall that by convention, F (x) is a non-decreasing, right-continuous

function F : R → [0, 1]. Note that the distribution function of Mn,

P [Mn ≤ x] = P [∀ni=1Xi ≤ x] =

n∏

i=1

P [Xi ≤ x] = (F (x))n (1.4)
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Fig. 1.1. Two sample plots of Mn against n for the Gaussian distribution.

As n tends to infinity, this will converge to a trivial limit

lim
n↑∞

(F (x))n =

{
0, if F (x) < 1

1, if F (x) = 1
(1.5)

which simply says that any value that the variables Xi can exceed with

positive probability will eventually exceeded after sufficiently many in-

dependent trials.

To illustrate a little how extremes behave, Figures 1.2 and 1.2 show

the plots of samples of Mn as functions of n for the Gaussian and the

exponential distribution, respectively.

As we have already indicated above, to get something more interesting,

we must rescale. It is natural to try something similar to what is done in

the central limit theorem: first subtract an n-dependent constant, then

rescale by an n-dependent factor. Thus the first question is whether

one can find two sequences, bn, and an, and a non-trivial distribution

function, G(x), such that

lim
n↑∞

P [an(Mn − bn)] = G(x), (1.6)
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Fig. 1.2. Three plots of Mn against n for the exponential distribution over
different ranges.

Example. The Gaussian distribution. In probability theory, it is

always natural to start playing with the example of a Gaussian distribu-

tion. So we now assume that ourXi are Gaussian, i.e. that F (x) = Φ(x),

where

φ(x) ≡ 1√
2π

∫ x

−∞
e−y2/2dy (1.7)

We want to compute
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P [an(Mn − bn) ≤ x] = P
[
Mn ≤ a−1

n x+ bn
]
=
(
Φ
(
a−1
n x+ bn

))n
(1.8)

Setting xn ≡ a−1
n x+ bn, this can be written as

(1− (1 − Φ(xn))
n

(1.9)

For this to converge, we must choose xn such that

(1− Φ(xn)) = n−1g(x) + o(1/n) (1.10)

in which case

lim
n↑∞

(1− (1− Φ(xn))
n
= e−g(x) (1.11)

Thus our task is to find xn such that
1√
2π

∫ ∞

xn

e−y2/2dy = n−1g(x) (1.12)

At this point it will be very convenient to use an approximation for the

function 1− Φ(u) when u is large, namely

1

u
√
2π
e−u2/2

(
1− 2u−2

)
≤ 1− Φ(u) ≤ 1

u
√
2π
e−u2/2 (1.13)

Using this, our problem simplifies to solving
1

xn
√
2π
e−x2

n/2 = n−1g(x), (1.14)

that is

n−1g(x) =
e−

1
2 (a

−1
n x+bn)

2

√
2π(a−1

n x+ bn)
=
e−b2n/2−a−2

n x2/2−a−1
n bnx

√
2π(a−1

n x+ bn)
(1.15)

Setting x = 0, we find

e−b2n/2

√
2πbn

= n−1g(0) (1.16)

Let us make the ansatz bn =
√
2 lnn+ cn. Then we get for cn

e−
√
2 lnncn−c2n/2 =

√
2π(

√
2 lnn+ cn) (1.17)

It is convenient to choose g(0) = 1. Then, the leading terms for cn are

given by

cn = − ln lnn+ ln(4π)

2
√
2 lnn

(1.18)

The higher order corrections to cn can be ignored, as they do not af-

fect the validity of (1.10). Finally, inspecting (1.13), we see that we
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can choose an =
√
2 lnn. Putting all things together we arrive at the

following assertion.

Lemma 1.2.1 Let Xi, i ∈ N be iid normal random variables. Let

bn ≡
√
2 lnn− ln lnn+ ln(4π)

2
√
2 lnn

(1.19)

and

an =
√
2 lnn (1.20)

Then, for any x ∈ R,

lim
n↑∞

P [an(Mn − bn) ≤ x] = e−e−x

(1.21)

Remark 1.2.1 It will be sometimes convenient to express (1.21) in a

slightly different, equivalent form. With the same constants, an, bn,

define the function

un(x) ≡ bn + x/an (1.22)

Then

lim
n↑∞

P [Mn ≤ un(x)] = e−e−x

(1.23)

This is our first result on the convergence of extremes, and the func-

tion e−e−x

, that is called the Gumbel distribution is the first extremal

distribution that we encounter.

Let us take some basic messages home from these calculations:

• Extremes grow with n, but rather slowly; for Gaussians they grow like

the square root of the logarithm only!

• The distribution of the extremes concentrates in absolute terms around

the typical value, at a scale 1/
√
lnn; note that this feature holds for

Gaussians and is not universal. In any case, to say that for Gaussians,

Mn ∼
√
2 lnn is a quite precise statement when n (or rather lnn) is

large!

The next question to ask is how “typical” the result for the Gaussian

distribution is. From the computation we see readily that we made no

use of the Gaussian hypothesis to get the general form exp(−g(x)) for

any possible limit distribution. The fact that g(x) = exp(−x), however,
depended on the particular form of Φ. We will see next that, remarkably,

only two other types of functions can occur.
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Fig. 1.3. The distribution function of the Gumbel distribution its derivative.
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Some technical preparation. Our goal will be to be as general as pos-

sible with regard to the allowed distributions F . Of course we must an-

ticipate that in some cases, no limiting distributions can be constructed

(e.g. think of the case of a distribution with support on the two points

0 and 1!). Nonetheless, we are not willing to limit ourselves to random
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variables with continuous distribution functions, and this will introduce

a little bit of complication, that, however, can be seen as a useful exer-

cise.

Before we continue, let us explain where we are heading. In the Gaus-

sian case we have seen already that we could make certain choices at

various places. In general, we can certainly multiply the constants an
by a finite number and add a finite number to the choice of bn. This will

clearly result in a different form of the extremal distribution, which, how-

ever, we think as morally equivalent. Thus, when classifying extremal

distributions, we will think of two distributions, G,F , as equivalent if

F (ax+ b) = G(x) (1.24)

The distributions we are looking for arise as limits of the form

Fn(anx+ bn) → G(x)

We will want to use that such limits have particular properties, namely

that for some choices of αn, βn,

Gn(αnx+ βn) = G(x) (1.25)

This property will be called max-stability. Our program will then be

reduced to classify all max-stable distributions modulo the equivalence

(1.24) and to determine their domains of attraction. Note the similarity

of the characterisation of the Gaussian distribution as a stable distribu-

tion under addition of random variables.

Let us first comment on the notion of convergence of probability dis-

tribution functions. The common notion we will use is that of weak

convergence:

Definition 1.2.1 A sequence, Fn, of probability distribution functions

is said converge weakly to a probability distribution function F ,

Fn
w→ F

iff and only if

Fn(x) → F (x)

for all points x where F is continuous.

The next thing we want to do is to define the notion of the (left-

continuous) inverse of a non-deceasing, right-continuous function (that

may have jumps and flat pieces).
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Definition 1.2.2 Let ψ : R → R be a monotone increasing, right-

continuous function. Then the inverse function ψ−1 is defined as

ψ−1(y) ≡ inf{x : ψ(x) ≥ y} (1.26)

We will need the following properties of ψ−1.

Lemma 1.2.2 Let ψ be as in the definition, and a > c and b real con-

stants. Let H(x) ≡ ψ(ax+ b)− c. Then

(i) ψ−1 is left-continuous.

(ii) ψ(ψ−1(x)) ≥ x.

(iii) If ψ−1 is continuous at ψ(x) ∈ R, then ψ−1(ψ(x)) = x.

(iv) H−1(y) = a−1
(
ψ−1(y + c)− b

)

(v) If G is a non-degenerate distribution function, then there exist y1 < y2,

such that G−1(y1) < G−1(y2).

Proof (i) First note that ψ−1 is increasing. Let yn ↑ y. Assume that

limn ψ
−1(yn) < ψ−1(y). This means that for all yn, inf{x : ψ(x) ≥

yn} < inf{x : ψ(x) ≥ y}. This means that there is a number, x0 <

ψ−1(y), such that, for all n, ψ(x0) ≤ yn but ψ(x0)) > y. But this means

that limn yn ≥ y, which is in contradiction to the hypothesis. Thus ψ−1

is left continuous.

(ii) is immediate from the definition.

(iii) ψ−1(ψ(x)) = inf{x′ : ψ(x′) ≥ ψ(x)}, thus obviously ψ−1(ψ(x)) ≤
x. On the other hand, for any ǫ > 0, ψ−1(ψ(x) + ǫ) = inf{x′ : ψ(x′) ≥
ψ(x) + ǫ}. But ψ(x′) can only be strictly greater than ψ(x) if x′ > x,

so for any y′ > ψ(x), ψ−1(y′) ≥ x. Thus, if ψ−1 is continuous at ψ(x),

this implies that ψ−1(ψ(x)) = x.

(iv) The verification of the formula for the inverse of H is elementary

and left as an exercise.

(v) If G is not degenerate, then there exist x1 < x2 such that 0 <

G(x1) ≡ y1 < G(x2) ≡ y2 ≤ 1. But then G−1(y1) ≤ x1, and G
−1(y2) =

inf{x : G(x) ≥ G(x2)}. If the latter equals x1, then for all x ≥ x1,

G(x) ≥ G(x2), and since G is right-continuous, G(x1) = G(x2), which

is a contradiction.

For our purposes, the following corollary will be important.

Corollary 1.2.3 If G is a non-degenerate distribution function, and

there are constants a > 0, α > 0, and b, β ∈ R, such that, for all x ∈ R,

G(ax + b) = G(αx + β) (1.27)



1.2 Extremal distributions 11

then a = α and b = β.

Proof Let us call set H(x) ≡ G(ax + b). Then, by (i) of the preceding

lemma,

H−1(y) = a−1(G−1(y)− b)

but by (1.27) also

H−1(y) = α−1(G−1(y)− β)

On the other hand, by (v) of the same lemma, there are at least two

values of y such that G−1(y) are different, i.e. there are x1 < x2 such

that

a−1(xi − b) = α−1(xi − β)

which obviously implies the assertion of the corollary.

Remark 1.2.2 Note that the assumption that G is non-degenerate is

necessary. If, e.g., G(x) has a single jump from 0 to 1 at a point a, then

it holds that G(5x− 4a) = G(x)!

The next theorem is known as Khintchine’s theorem:

Theorem 1.2.4 Let Fn, n ∈ N, be distribution functions, and let G

be a non-degenerate distribution function. Let an > 0, and bn ∈ R be

sequences such that

Fn(anx+ bn)
w→ G(x) (1.28)

Then it holds that there are constants αn > 0, and βn ∈ R, and a

non-degenerate distribution function G∗, such that

Fn(αnx+ βn)
w→ G∗(x) (1.29)

if and only if

a−1
n αn → a, (βn − bn)/an → b (1.30)

and

G∗(x) = G(ax+ b) (1.31)

Remark 1.2.3 This theorem makes the comment made above precise,

saying that different choices of the scaling sequences an, bn can lead only

to distributions that are related by a transformation (1.31).
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Proof By changing Fn, we can assume for simplicity that an = 1, bn = 0.

Let us first show that if αn → a, βn → b, then Fn(αnx+ βn) → G∗(x).

Let ax+ b be a point of continuity of G.

Fn(αnx+ βn) = Fn(αnx+ βn)− Fn(ax+ b) + Fn(ax+ b) (1.32)

By assumption, the last term converges to G(ax + b). Without loss of

generality we may assume that αnx + βn is monotone increasing. We

want to show that

Fn(αnx+ βn)− Fn(ax+ b) ↑ 0 (1.33)

Otherwise, there would be a constant, δ > 0, such that along a sub-

sequence nk, limk Fnk
(αnk

x + βnk
) − Fnk

(ax + b) < −δ. But since

αnk
x+ βnk

↑ ax+ b, this implies that for any y < ax+ b, limk Fnk
(y)−

Fnk
(ax + b) < −δ. Now, if G is continuous at y, this implies that

G(y)−G(ax+ b) < −δ. But this implies that either F is discontinuous

at ax + b, or there exists a neighborhood of ax + b such that G(x) has

no point of continuity within this neighborhood. But this is impossible

since a probability distribution function can only have countably many

points of discontinuity. Thus (1.33) must hold, and hence

Fn(αnx+ βn)
w→ G(ax + b) (1.34)

which proves (1.29) and (1.31).

Next we want to prove the converse, i.e. we want to show that (1.29)

implies (1.30). Note first that (1.29) implies that the sequence αnx+βn
is bounded, since otherwise there would be subsequences converging to

plus or minus infinity, along those Fn(αnx + βn) would converge to 0

or 1, contradicting the assumption. This implies that the sequence has

converging subsequences αnk
, βnk

, along which

lim
k
Fnk

(αnk
x+ βnk

) → G∗(x) (1.35)

Then the preceding results shows that ank
→ a′, bnk

→ b′, and G′
∗(x) =

G(a′x + b′). Now, if the sequence does not converge, there must be

another convergent subsequence an′
k
→ a′′, bn′

k
→ b′′. But then

G∗(x) = lim
k
Fn′

k
(αn′

k
x+ βn′

k
) → G(a′′x+ b′) (1.36)

Thus G(a′x + b′) = G(a′′x + b′′). and so, since G is non-degenerate,

Corollary 1.2.3 implies that a′ = a′′ and b′ = b′′, contradicting the

assumption that the sequences do not converge. This proves the theorem
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max-stable distributions. We are now prepared to continue our search

for extremal distributions. Let us formally define the notion of max-

stable distributions.

Definition 1.2.3 A non-degenerate probability distribution function,

G, is called max-stable, if for all n ∈ N, there exists an > 0, bn ∈ R, such

that, for all x ∈ R,

Gn(a−1
n x+ bn) = G(x) (1.37)

The next proposition gives some important equivalent formulations of

max-stability and justifies the term.

Proposition 1.2.5(i) A probability distribution, G, is max-stable, if

and only if there exists probability distributions Fn and constants an >

0, bn ∈ R, such that, for all k ∈ N,

Fn(a
−1
nkx+ bnk)

w→ G1/k(x) (1.38)

(ii) G is max-stable, if and only if there exists a probability distribution

function, F , and constants an > 0, bn ∈ R, such that

Fn(a−1
n x+ bn)

w→ G(x) (1.39)

Proof We first prove (i). If (1.38) holds, then by Khintchine’s theorem,

there exist constants, αk, βk, such that

G1/k(x) = G(αkx+ βk)

for all k ∈ N, and thus G is max-stable. Conversely, if G is max-stable,

set Fn = Gn, and let an, bn the constants that provide for (1.37). Then

Fn(a
−1
nkx+ bnk) =

[
Gnk(a−1

nkx+ bnk)
]1/k

= G1/k

which proves the existence of the sequence Fn and the respective con-

stants.

Now let us prove (ii). Assume first that G is max-stable. Then choose

F = G. Then the fact that limn F
n(a−1

n x + bn) = G(x) follows if the

constants from the definition of max-stability are used trivially.

Next assume that (1.39) holds. Then, for any k ∈ N ,

Fnk(a−1
nkx+ bnk)

w→ G(x)

and so

Fn(a−1
nkx+ bnk)

w→ G1/k(x)

so G is max-stable by (i)!
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There is a slight extension to this result.

Corollary 1.2.6 If G is max-stable, then there exist functions a(s) >

0, b(s) ∈ R, s ∈ R+, such that

Gs(a(s)x + b(s)) = G(x) (1.40)

Proof This follows essentially by interpolation. We have that

G[ns](a[ns]x+ b[ns]) = G(x)

But

Gn(a[ns]x+ b[ns] = G[ns]/s(a[ns]x+ b[ns])G
n−[ns]/s(a[ns]x+ b[ns])

= G1/s(x)Gn−[ns]/s(a[ns]x+ b[ns])

As n ↑ ∞, the last factor tends to one (as the exponent remains bounded),

and so

Gn(a[ns]x+ b[ns])
w→ G1/s(x)

and

Gn(anx+ bn)
w→ G(x)

Thus by Khintchine’s theorem,

a[ns]/an → a(s), (bn − b[ns])/an → b(s)

and

G1/s(x) = G(a(s)x + b(s))

The extremal types theorem.

Definition 1.2.4 Two distribution functions, G,H , are called “of the

same type”, if and only if there exists a > 0, b ∈ R such that

G(x) = H(ax+ b) (1.41)

We have seen that the only distributions that can occur as extremal

distributions are max-stable distributions. We will now classify these

distributions.

Theorem 1.2.7 Any max-stable distribution is of the same type as one

of the following three distributions:
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Fig. 1.5. The distribution function and density of the Fréchet with α = 1.

(I) The Gumbel distribution,

G(x) = e−e−x

(1.42)

(II) The Fréchet distribution with parameter α > 0,

G(x) =

{
0, if x ≤ 0

e−x−α

, if x > 0
(1.43)

(III) The Weibull distribution with parameter α > 0,

G(x) =

{
e−(−x)α , if x < 0

1, if x ≥ 0
(1.44)

Proof Let us check that the three types are indeed max-stable. For the

Gumbel distribution this is already obvious as it appears as extremal

distribution in the Gaussian case. In the case of the Fréchet distribution,

note that

Gn(x) =

{
0, if x ≤ 0

e−nx−α

= e−(n−1/αx)−α

, if x > 0
= G(n−1/αx)
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Fig. 1.6. The distribution function and density of the Weibull distribution
with α = 2 and α = 0.5.

which proves max-stability. The Weibull case follows in exactly the same

way.

To prove that the three types are the only possible cases, we use

Corollary 1.2.6. Taking the logarithm, it implies that, if G is max-stable,

then there must be a(s), b(s), such that

−s ln (G(a(s)x + b(s))) = − lnG(x)

One more logarithm leads us to

− ln [−s ln (G(a(s)x + b(s)))]

=− ln [− ln (G(a(s)x + b(s)))]− ln s
!
= − ln [− lnG(x)] ≡ ψ(x) (1.45)

or equivalently

ψ(a(s)x+ b(s))− ln s = ψ(x)

Now ψ is an increasing function such that infx ψ(x) = −∞, supx ψ(x) =

+∞. We can define the inverse ψ−1(y) ≡ U(y). Using (iv) Lemma 1.2.2,
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we get that

U(y + ln s)− b(s)

a(s)
= U(y)

and subtracting the same equation for y = 0,

U(y + ln s)− U(ln s)

a(s)
= U(y)− U(0)

Setting ln s = z, this gives

U(y + z)− U(z) = [U(y)− U(0)] a(ez) (1.46)

To continue, we distinguish the case a(s) ≡ 1 and a(s) 6= 1 for some s.

Case 1. If a(s) ≡ 1, then

U(y + z)− U(z) = U(y)− U(0) (1.47)

whose only solutions are

U(y) = ρy + b (1.48)

with ρ > 0, b ∈ R. To see this, let x1 < x2 be any two points and let x̄

be the middle point of [x1, x2]. Then (1.47) implies that

U(x2)− U(x̄) = U(x2 − x̄)− U(0) = U(x̄)− U(x1), (1.49)

and thus U(x̄) = (U(x2)− U(x1)) /2. Iterating this proceedure implies

readily that on all points of the form x
(n)
k x1 + k2−n(X2 − x1) we have

that U(xk) = U(x1) + k2−n(U(x2) − U(x1)); that is, on a dense set of

points (1.48) holds. But since U is also monotonous, it is completely

determined by its values on a dense set, so U is a linear function.

But then ψ(x) = ρ−1x− b, and

G(x) = exp
(
− exp

(
−ρ−1x− b

))

which is of the same type as the Gumbel distribution.

Case 2. Set Ũ(y) ≡ U(y) − U(0), Then subtract from (1.46) the same

equation with y and z exchanged. This gives

−Ũ(z) + Ũ(y) = a(ez)Ũ(y)− a(ey)Ũ(z)

or

Ũ(z) (1− a(ey)) = Ũ(y) (1− a(ez))

Now chose z such that a(ez) 6= 1. Then

Ũ(y) = Ũ(z)
1− a(ey)

1− a(ez)
≡ c(z)(1− a(ey))
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Now we insert this result again into (1.46). We get

Ũ(y + z) = c(z)
(
1− a(ey+z)

)
(1.50)

= Ũ(z) + Ũ(y)a(ez) (1.51)

= c(z) (1− a(ez)) + c(z) (1− a(ey)) a(ez) (1.52)

which yields an equation for a, namely,

a(ey+z) = a(ey)a(ez)

The only functions satisfying this equation are the powers, a(x) = xρ.

Therefore,

U(y) = U(0) + c(1 − eρy)

Setting U(0) = ν, going back to G this gives

G(x) = exp

(
−
(
1− x− ν

c

)−1/ρ
)

(1.53)

for those x where the right-hand side is < 1.

To conclude the proof, it suffices to discuss the two cases−1/ρ ≡ α > 0

and −1/ρ ≡ −α < 0, which yield the Fréchet, resp. Weibull types.

Let us state as an immediate corollary the so-called extremal types

theorem.

Theorem 1.2.8 Let Xi, i ∈ N be a sequence of i.i.d. random variables.

If there exist sequences an > 0, bn ∈ R, and a non-degenerate probability

distribution function, G, such that

P [an(Mn − bn) ≤ x]
w→ G(x) (1.54)

then G(x) is of the same type as one of the three extremal-type distribu-

tions.

Note that it is not true, of course, that for arbitrary distributions of

the variables Xi it is possible to obtain a nontrivial limit as in (1.54).

Domains of attraction of the extremal type distributions. Of

course it will be nice to have simple, verifiable criteria to decide for a

given distribution F to which distribution the maximum of iid variables

with this distribution corresponds. We will say that, ifXi are distributed

according to F , if (1.54) holds with an extremal distribution, G, that F

belongs to the domain of attraction of G.

The following theorem gives necessary and sufficient conditions. We

set xF ≡ sup{x : F (x) < 1}.
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Theorem 1.2.9 The following conditions are necessary and sufficient

for a distribution function, F , to belong to the domain of attraction of

the three extremal types:

Fréchet: xF = +∞,

lim
t↑∞

1− F (tx)

1− F (t)
= x−α, ∀x>0, α > 0 (1.55)

Weibull: xF =< +∞,

lim
h↓∞

1− F (xF − xh)

1− F (xF − h)
= xα, ∀x>0, α > 0 (1.56)

Gumbel: ∃g(t) > 0,

lim
t↑xF

1− F (t+ xg(t))

1− F (t)
= e−x, ∀x (1.57)

Proof We will only prove the sufficiency of the criteria. As we have seen

in the computations for the Gaussian distribution, the statements

n(1− F (a−1
n x+ bn)) → g(x) (1.58)

and

Fn(a−1
n x+ bn) → e−g(x) (1.59)

are equivalent. Thus we only have to check when (1.58) holds with which

g(x).

Let us assume that there is a sequence, γn, such that

n(1− F (γn)) → 1.

Since necessarily F (γn) → 1, γn → xF , and we may choose γn < xF , for

all n. We now turn to the three cases.

Fréchet: We know that (for x > 0),

1− F (γnx)

1− F (γn)
→ x−α

while n(1− F (γn)) → 1. Thus,

n(1− F (γnx)) → x−α

and so, for x > 0,

Fn(γnx) → e−x−α

.

Since limx↓0 e−x−α

= 0, it must be true that, for x ≤ 0,

Fn(γnx) → 0
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which concludes the argument.

Weibull: Let now hn = xF − γn. By the same argument as above, we get,

for x > 0

n(1 − F (xF − hnx)) → xα

and so

Fn(xF − x(xF − γn)) → e−xα

or equivalently, for x < 0,

Fn((xF − γn)x+ xF ) → e−(−x)α

Since, for x ↑ 0, the right-hand side tends to 1, it follows that,

for x ≥ 0,

Fn(x(xF − γn)− xF ) → 1

Gumbel: In exactly the same way we conclude that

n(1− F (γn + xg(γn))) → e−x

from which the conclusion is now obvious, with an = 1/g(γn),

bn = γn.

We are left with proving the existence of γn with the desired property. If

F had no jumps, we could choose γn simply such that F (γn) = 1− 1/n

and we would be done. The problem becomes more subtle since we want

to allow for more general distribution functions. The best approximation

seems to be

γn ≡ F−1(1 − 1/n) = inf{x : F (x) ≥ 1− 1/n)}
Then we get immediately that

lim supn(1 − F (γn)) ≤ 1.

But for x < γn, F (x) ≤ 1 − 1/n, and so n(1 − F (γ−n )) ≥ 1. Thus we

may just show that

lim inf
n

1− F (γn)

1− F (γ−n )
≥ 1.

This, however, follows in all cases from the hypotheses on the functions

F , e.g.

1− F (xγn)

1− F (γn)
→ x−α

which tends to 1 as x ↑ 1. This concludes the proof of the sufficiency in

the theorem.
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Remark 1.2.4 The proof of the necessity of the conditions of the the-

orem can be found in the book by Resnik [10].

Examples. Let us see how the theorem works in some examples. nor-

mal distribution. In the normal case, the criterion for the Gumbel dis-

tribution is

1− F (t+ xg(t))

1− F (t)
∼ e−(t+xg(t))2/2t

e−t2/2(t+ xg(t))
=
e−x2g2(t)/2−xtg(t)

1 + xg(t)/t

which converges with the choice g(t) = 1/t, to exp(−x). Also, the choice
of γn, γn = F−1(1 − 1/n) gives exp(−γ2n/2)/(

√
2πγn) = n−1, which is

the same criterion as found before.

Exponential distribution. We should again expect the Gumbel distribu-

tion. In fact, since F (x) = 1− e−x,

e−(t+xg(t))

e−t
= e−x

if g(t) = 1. γn will here be simply γn = lnn, so that an = 1, bn = lnn,

and

P [Mn − lnn ≤ x]
w→ e−e−x

Pareto distribution. Here

F (x) =

{
1−Kx−α, if x ≥ K1/α

0, else

Here
1− F (tx)

1− F (t)
=
x−αt−α

t−α
= x−α

for positive x, so it falls in the domain of attraction of the Fréchet

distribution. Moreover, we get

γn = (nK)1/α

so that here

P

[
(nK)−1/αMn ≤ x

]
w→ e−x−α

Thus, here, Mn ∼ (nK)1/α, i.e. the maxima grow much faster than in

the Gaussian or exponential situation!

Uniform distribution. We consider F (x) = 1− x on [0, 1]. Here xF = 1,

and
1− F (1− xh)

1− F (1− h)
= x
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Fig. 1.7. Records of the Pareto distribution with K = 1, α = 0.5. Second
picture shows Mn/an.

so we are in the case of the Weibull distribution with α = 1. We find

γn = 1− 1/n, an = 1/n, bn = 1, and so

P [(n(Mn − 1) ≤ x]
w→ ex, x ≤ 0

Bernoulli distribution. Consider

F (x) =





0, if x < 0

1/2, if 0 ≤ x < 1

1, if x ≥ 1

Clearly xF = 1, but

1− F (1− hx)

1− F (1− h)
= 1

so it is impossible that this converges to xα, with α 6= 0. Thus, as
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Fig. 1.8. Records of the uniform distribution. Second picture shows n(Mn−1).

expected, the Bernoulli distribution does not permit any convergence of

its maximum to a non-trivial distribution.

In the proof of the previous theorem we have seen that the existence of

sequences γn such that n(1−F (γn)) → 1 was crucial for the convergence

to an extremal distribution. We will now extend this discussion and ask

for criteria when there will be sequences for which n(1 − F (γn)) tends

to an arbitrary limit. Naturally, this must be related to the behaviour

of F near the point xF .

Theorem 1.2.10 Let F be a distribution function. Then there exists a

sequence, γn, such that

n(1− F (γn)) → τ, 0 < τ <∞, (1.60)

if and only if
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lim
x↑xF

1− F (x)

1− F (x−)
= 1 (1.61)

Remark 1.2.5 To see what is at issue, note that

1− F (x)

1− F (x−)
= 1 +

p(x)

1− F (x−)
,

where p(x) is the probability of the “atom” at x, i.e. the size of the

jump of F at x. Thus, (1.61) says that the size of jumps of F should

diminish faster, as x approaches the upper boundary of the support of

F , than the total mass beyond x.

Proof Assume that (1.60) holds, but

p(x)

1− F (x−)
6→ 0.

Then there exists ǫ > 0 and a sequence, xj ↑ xF , such that

p(xj) ≥ 2ǫ(1− F (x−j )).

Now chose nj such that

1− τ

nj
≤
F (x−j ) + F (xj)

2
≤ 1− τ

nj + 1
. (1.62)

The gist of the argument (given in detail below) is as follows: Since the

upper and lower limit in (1.62) differ by only O(1/n2
j), the term in the

middle must equal, up to that error, F (γnj ); but F (xj) and F (x
−
j ) differ

(by hypothesis) by ǫ/nj, and since F takes no value between these two,

it is impossible that
F (x−

j )+F (xj)

2 = F (γnj ) to the precision required.

Thus (1.61) must hold.

Let us formalize this argument. Now it must be true that either

(i) γnj < xj i.o., or

(ii) γnj ≥ xj i.o.

In case (i), it holds that for these j,

nj(1 − F (γnj )) > nj(1− F (x−j )). (1.63)

Now replace in the right-hand side

F (x−j ) =
F (x−j ) + F (xj)− p(xj)

2
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and write

1 = τ/nj + 1− τ/nj

to get

nj(1− F (x−j )) = τ + nj

(
1− τ

nj
−
F (x−j ) + F (xj)− p(xj)

2

)

≥ τ +
njp(xj)

2
− nj

(
τ

nj
− τ

nj + 1

)

≥ τ + ǫnj(1− F (x−j ))−
τ

nj + 1
.

Thus

nj(1− F (x−j )) ≥ τ
1− 1/(nj + 1)

1− ǫ
.

For large enough j, the right-hand side will be strictly larger than τ , so

that

lim sup
j

nj(1 − F (x−j )) > τ,

and in view of (1.63), a fortiori

lim sup
j

nj(1 − F (γ−j )) > τ,

in contradiction with the assumption.

In case (ii), we repeat the same argument mutando mutandis, to con-

clude that

lim inf
j

nj(1 − F (γ−j )) < τ,

To prove the converse assertion, choose

γn ≡ F−1(1 − τ/n).

Using (1.61), one deduces (1.60) exactly as in the special case τ = 1 in

the proof of Theorem 1.2.9.

Example. Let us show that in the case of the Poisson distribution con-

dition (1.61) is not satisfied. The Poisson distribution with parameter λ

has only jumps at the positive integers, k, of values p(k) = e−λλk

k! . Thus

p(n)

1− F (n−)
=

λn/n!∑∞
k=n λ

k/k!
=

1

1 +
∑∞

k=n+1 λ
n−k n!

k!

,
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But
∞∑

k=n+1

λn−k n!

k!
=

∞∑

k=+1

λk
n!

(n+ k)!
≤

∞∑

k=+1

λkn−k =
λ/n

1− λ/n
↓ 0,

so that p(n)
1−F (n−) → 1. Thus, for the Poisson distribution, we cannot

construct a non-trivial extremal distribution.

1.3 Level-crossings and the distribution of the k-th maxima.

In the previous section we have answered the question of the distribution

of the maximum of n iid random variables. It is natural to ask for more,

i.e. for the joint distribution of the maximum, the second largest, third

largest, etc.

From what we have seem, the levels un for which P [Xn > un] ∼ τ/n

will play a crucial rôle. A natural variable to study is Mk
n, the value of

the k-th largest of the first n variables Xi.

It will be useful to introduce here the notion of order statistics.

Definition 1.3.1 Let X1, . . . , Xn be real numbers. Then we denote

by M1
n, . . . ,Mn

n its order statistics, i.e. for some permutation, π, of n

numbers, Mk
n = Xπ(k), and

Mn
n ≤ Mn−1

n ≤ · · · ≤ M2
n ≤ M1

n ≡Mn (1.64)

We will also introduce the notation

Sn(u) ≡ #{i ≤ n : Xi > u} (1.65)

for the number of exceedences of the level u. Obviously we have the

relation

P
[
Mk

n ≤ u
]
= P [Sn(u) < k] (1.66)

The following result states that the number of exceedances of an ex-

tremal level un is Poisson distributed.

Theorem 1.3.1 Let Xi be iid random variables with common distribu-

tion F . If un is such that

n(1− F (un)) → τ, 0 < τ <∞,

then

P
[
Mk

n ≤ un
]
= P [Sn(un) < k] → e−τ

k−1∑

s=0

τs

s!
(1.67)
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Proof The proof of this lemma is quite simple. We just need to consider

all possible ways to realise the event {Sn(un) = s}. Namely

P [Sn(un) = s] =
∑

{i1,...,is}⊂{1,...,n}

s∏

ℓ=1

P [Xiℓ > un]
∏

j 6∈{1i,...,is}
P [Xj ≤ un]

=

(
n

s

)
(1− F (un))

sF (un)
n−s

=
1

s!

n!

ns(n− s)!
[n(1− F (un))]

s
[Fn(un)]

1−s/n
.

But, for any s fixed, n(1 − F (un)) → τ , Fn(un) → e−τ , s/n → 0, and
n!

ns(n−s)! → 1. Thus

P [Sn(un) = s] → τs

s!
e−τ .

Summing over all s < k gives the assertion of the theorem.

Using very much the same sort of reasoning, one can generalise the

question answered above to that of the numbers of exceedances of several

extremal levels.

Theorem 1.3.2 Let u1n > n2
n · · · > urn such that

n(1− F (uℓn)) → τℓ,

with

0 < τ1 < τ2 < . . . , < τr <∞.

Then, under the assumptions of the preceding theorem, with Si
n ≡ Sn(u

i
n),

P
[
S1
n = k1, S

2
n − S1

n = k2, . . . , S
r
n − Sr−1

n = kr
]
→

τk1
1

k1!

(τ2 − τ1)
k2

k2!
. . .

(τr − τr−1)
kr

kr!
e−τr (1.68)

Proof Again, we just have to count the number of arrangements that

will place the desired number of variables in the respective intervals.
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Then

P
[
S1
n = k1, S

2
n − S1

n = k2, . . . , S
r
n − Sr−1

n = kr
]

=

(
n

k1, . . . , kr

)
P
[
X1, . . . , Xk1 > u1n ≥ Xk1+1, . . . , Xk1+k2 > u2n, . . .

. . . , ur−1
n ≥ Xk1+···+kr−1+1, . . . , Xk1+···+kr > urn ≥ Xk1+···+kr+1, . . . , Xn

]

=

(
n

k1, . . . , kr

)
(1 − F (u1n))

k1
[
F (u1n)− F (u2n)

]k2
. . .
[
F (ur−1

n )− F (urn)
]kr

× Fn−k1−···−kr (urn)

Now we write

[
F (uℓ−1

n )− F (uℓn)
]
=

1

n

[
n(1− F (uℓn))− n(1− F (uℓ−1

n ))
]

and use that
[
n(1− F (uℓn))− n(1 − F (uℓ−1

n ))
]
→ τℓ − τℓ−1. Proceeding

otherwise as in the proof of Theorem 1.3.1, we arrive at (1.68)
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Extremes of stationary sequences.

2.1 Mixing conditions and the extremal type theorem.

One of the classic settings that generalise the case of iid sequences of

random variables are stationary sequences.

We recall the definition:

Definition 2.1.1 An infinite sequence of random variables Xi, i ∈ Z is

called stationary, if, for any finite collection of indices, i1, . . . , im, and

and positive integer k, the collections of random variables

{Xi1 , . . . , Xim}

and

{Xi1+k, . . . , Xim+k}

have the same distribution.

It is clear that there cannot be any general results on the sole condi-

tion of stationarity. E.g., the constant sequence Xi = X , for all i ∈ Z

is stationary, and here clearly the distribution of the maximum is the

distribution of X . Generally, one will want to ask what the effect of cor-

relation on the extremes is, and the first natural question is, of course,

whether for sufficiently weak dependence, the effect may simply be nil.

This is, in fact, the question most works on extremes address, and we

will devote some energy to this. From a practical point of view, this

question is also very important. Namely, it is in practice quite difficult

to determine for a given random process its precise dependence struc-

ture, simply because there are so many parameters that would need to

be estimated. Under simplifying assumptions, e.g. assume a Gaussian

multivariate distribution, one may limit the number of parameters, but

still it is a rather difficult task. Thus it will be very helpful not to have

29
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to do this, and rather get some control on the dependences that will

ensure that, as far as extremes are concerned, we need not worry about

the details.

In the case of stationary sequences, one introduces traditionally some

mixing conditions, called Condition D and the weaker Condition D(un).

Definition 2.1.2 A stationary sequence, Xi, of random variables sat-

isfies Condition D, if there exists a sequence, g(ℓ) ↓ 0, such that, for all

p, q ∈ N, i1 < i2 < · · · < ip, and j1 < j2 < · · · < jq, such that j1−iq > ℓ,

for all u ∈ R,
∣∣∣P
[
Xi1 ≤ u, . . . , Xip ≤ u,Xj1 ≤ u, . . .Xjq ≤ u

]
(2.1)

− P
[
Xi1 ≤ u, . . . , Xip ≤ u

]
P
[
Xj1 ≤ u, . . .Xjq ≤ u

]∣∣∣ ≤ g(ℓ)

A weaker and often useful condition is adapted to a given extreme

level.

Definition 2.1.3 A stationary sequence, Xi, of random variables sat-

isfies Condition D(un), for a sequence un, n ∈ N, if there exists a se-

quences, αn,ℓ, satisfying for some ℓn = o(n) αn,ℓn ↓ 0, such that, for all

p, q ∈ N, i1 < i2 < · · · < ip, and j1 < j2 < · · · < jq, such that j1−iq > ℓ,

for all u ∈ R,
∣∣∣P
[
Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . .Xjq ≤ un

]
(2.2)

− P
[
Xi1 ≤ un, . . . , Xip ≤ un

]
P
[
Xj1 ≤ un, . . .Xjq ≤ un

]∣∣∣ ≤ αn,ℓ

Note that in both mixing conditions, the decay rate of the correlation

does only depend on the distance, ℓ, between the two blocks of variables,

and not on the number of variables involved. This will be important,

since the general strategy of our proofs will be to remove a “small”

fraction of the variable from consideration such that the remaining ones

form sufficiently separated blocks, that, due to the mixing conditions,

behave as if they were independent. The following proposition provides

the basis for this strategy.

Proposition 2.1.1 Assume that a sequence of random variables Xi sat-

isfies D(un). Let E1, . . . , Er a finite collection of disjoint subsets of

{1, . . . , n}. Set

M(E) ≡ max
i∈E

Xi

If, for all 1 ≤ i, j ≤ r, dist(Ei,Ej) ≥ k, then
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∣∣∣P [∩r
i=1M(Ei) ≤ un]−

r∏

i=1

P [M(Ei) ≤ un]
∣∣∣ ≤ (r − 1)αn,k (2.3)

Proof The proof is simply by induction over r. By assumption, (2.3)

holds for r = 2. We will show that, if it holds for r− 1, then it holds for

r. Namely,

P [∩r
i=1M(Ei) ≤ un] = P

[
∩r−1
i=1M(Ei) ≤ un ∩M(Er) ≤ un

]

But by assumption,
∣∣P
[
∩r−1
i=1M(Ei) ≤ un ∩M(Er) ≤ un

]
− P

[
∩r−1
i=1M(Ei) ≤ un

]
P [M(Er) ≤ un]

∣∣ ≤ αn,k

and by induction hypothesis
∣∣∣∣∣P|P

[
∩r−1
i=1M(Ei) ≤ un

]
−

r−1∏

i=1

P [M(Ei) ≤ un]

∣∣∣∣∣ ≤ (r − 2)αn,k

Putting both estimates together using the triangle inequality yields (2.3).

A first consequence of this observation is the so-called extremal type

theorem that asserts that the our extremal types keep their importance

for weakly dependent stationary sequences.

Theorem 2.1.2 Let Xi be a stationary sequence of random variables

and assume that there are sequences an > 0, bn ∈ R be such that

P [an(Mn − bn) ≤ x]
w→ G(x),

where G(x) is a non-degenerate distribution function. Then, if Xi sat-

isfies condition D(anx + bn) for all x ∈ R, then G is of the same type

as one of the three extremal distributions.

Proof The strategy of the proof is to show that G must be max-stable.

To do this, we show that, for all k ∈ N,

P [ank(Mn − bnk)) ≤ x]
w→ G1/k(x). (2.4)

Now (2.4) means that we have to show that

P [Mkn ≤ x/ank + bnk]− (P [Mn ≤ x/ank + bnk])
k → 0

This calls for Proposition 2.1.1. Naively, we would group the segment

(1, . . . , kn) into k blocks of size n. The problem is that there would be
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no distance between them. The solution is to remove from each of the

blocks the last piece of size m, so that we have k blocks

Iℓ ≡ {nℓ+ 1, . . . , nℓ+ (n−m)}

Let us denote the remaining pieces by

I ′ℓ ≡ {nℓ+m+ 1, . . . , nℓ+ (n− 1}

Then (we abbreviate x/ank + bnk ≡ unk),

P [Mkn ≤ unk] = P

[
{∩k−1

i=0M(Ii) ≤ unk}
⋂

{∩k−1
i=0M(I ′i) ≤ unk}

]
(2.5)

= P
[
∩k−1
i=0M(Ii) ≤ unk

]

+ P

[
{∩k−1

i=0M(Ii) ≤ unk}
⋂

{∩k−1
i=0M(I ′i) ≤ unk}

]
− P

[
∩k−1
i=0M(Ii) ≤ unk

]

The last term can be written as
∣∣∣P
[
{∩k−1

i=0M(Ii) ≤ unk}
⋂

{∩k−1
i=0M(I ′i) ≤ unk}

]
− P

[
∩k−1
i=0M(Ii) ≤ unk

]∣∣∣

= P

[
{∩k−1

i=0M(Ii) ≤ unk}
⋂

{∪k−1
i=0M(I ′i) > unk}

]

≤ kP [M(I1) ≤ unk < M(I ′1)] (2.6)

This term should be small, because is requires the maximum of the small

interval I ′1 of exceed the level unk, while on the much larger interval

I1 this level is not exceeded. This would be obvious if we knew that

(1−F (unk)) ∼ 1/n, but of course we have not made such an assumption.

The problem is, however, easily solved by using again condition D(un).

In fact, it suffices to show that the interval Ii contains a number r of

well separated subintervals of the same size as I1, where r can be taken

as large as desired, as n goes to infinity. In fact, for any any integer

r < (n − 2m)/2, we can find r intervals E1, . . . , Er in I1, such that

|Ei| = m, and dist(Ei,Ej) ≥ m, and dist(Ei, I
′
1) ≥ m. Then, using

Proposition 2.1.1,

P [M(I1) ≤ unk < M(I ′1)] ≤ P

[
{∩r

j=1M(Ej) ≤ unk}
⋂

{M(I ′1) > unk}
]

=≤ P
[
∩r
j=1M(Ej) ≤ unk

]
− P

[
{∩r

j=1M(Ej) ≤ unk}
⋂

{M(I ′1) ≤ unk}
]

≤ P [M(E1) ≤ unk]
r − P [M(E1) ≤ unk]

r+1 + rαnk,m

≤ 1/r + rαnk,m (2.7)

In the last line we used the elementary fact that, for any 0 ≤ p ≤ 1,

0 ≤ pr(1− p) ≤ 1/r
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To deal with the first term in (2.5), we use again Proposition 2.1.1
∣∣∣P
[
∩k−1
i=0M(Ii) ≤ unk

]
− P [M(I1) ≤ unk]

k
∣∣∣ ≤ kαkn,m

Since by the same argument as in (2.6),

|P [M(Ii ∪ I ′1) ≤ unk]− P [M(I ′1) ≤ unk]| ≤ 1/r + rαnk,m,

we arrive easily at
∣∣∣P [Mkn ≤ unk]− P [Mn ≤ unk]

k
∣∣∣ ≤ 2k ((r + 1)αkn,m + 1/r))

It suffices to choose r ≪ m≪ n such that r ↑ ∞, and rαkn,m ↓ 0, which

is possible by assumption.

2.2 Equivalence to iid sequences. Condition D′

The extremal types theorem is a strong statement about universality

of extremal distributions whenever some nontrivial rescaling exists that

leads to convergence of the distribution of the maximum. But when

is this the case, and more particularly, when do we have the same be-

haviour as in the iid case, i.e. when does n(1 − F (un)) → τ imply

P [M − n ≤ un] → e−τ? It will turn out that D(un) is not a sufficient

condition.

An sufficient additional condition will turn out to be the following.

Definition 2.2.1 A stationary sequence of random variables Xi is said

to satisfy, for a sequence, un ∈ R, condition D′(un), if

lim
k↑∞

lim sup
n↑∞

n

[n/k]∑

j=1

P [X1 > un, Xj > un] = 0 (2.8)

Proposition 2.2.1 Let Xi be a stationary sequence of random vari-

ables, and assume that un is a sequence such that Xi satisfy D(un) and

D′(un). Then, for 0 ≤ τ <∞,

lim
n↑∞

P [Mn ≤ un] = e−τ (2.9)

if and only if

lim
n↑∞

nP [X1 > un] = τ. (2.10)

Proof Let n′ ≡ [n/k]. We show first that (2.10) implies (2.9). We have

seen in the proof of the preceding theorem that, under condition D(un),

P [Mn ≤ un] ∼ (P [Mn′ ≤ un])
k
. (2.11)
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Thus, (2.9) will follow if we can show that

P [Mn′ ≤ un] ∼ (1 − τ/k).

Now clearly

P [Mn′ ≤ un] = 1− P [Mn′ > un]

and

P [Mn′ > un] ≤
n′∑

i=1

P [Xi > un] =
n′

n
nP [X1 > un] → τ/k

On the other hand, we also have the converse bound1

P [Mn′ > un] ≥
n′∑

i=1

P [Xi > un]−
n′∑

i<j

P [Xi > un, Xj > un] .

All we need is to show that the extra term vanishes faster than the first

one. But this is ensured by D′(un):

n′∑

i<j

P [Xi > un, Xj > un] ≤ n′
n′∑

j=2

P [X1 > un, Xj > un] ≤
1

k
o(1),

where o(1) tends to zero as k ↑ ∞. Thus (2.9) follows.

To prove the converse direction, note that (2.9) together with (2.11)

implies that

1− P [Mn′ ≤ un] ∼ 1− e−τ/k

But we have just seen that under D′(un),

1− P [Mn′ ≤ un] ∼ n′(1 − F (un))

and so

n′(1− F (un) ∼ k−1n(1− F (un) ∼ 1− e−τ/k,

so that, letting k ↑ ∞, n(1− F (un) → τ follows.

2.3 Two approximation results

In this section we collect some results that are rather technical but that

will be convenient later.

1 By the inclusion-exclusion principle, see Section 3.1.
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Lemma 2.3.1 Let Xi be a stationary sequence of random variables with

marginal distribution function F , and let un, vn sequences of real num-

bers. Assume that

lim
n↑∞

n (F (un)− F (vn)) = 0 (2.12)

Then the following hold:

(i) If In are interval of length νn = O(n), then

P [M(In) ≤ un]− P [M(In) ≤ vn] → 0 (2.13)

(ii) Conditions D(un) and D(vn) are equivalent.

Proof Let us define

Fk1,...,km(u) ≡ P [∩m
i=1Xki ≤ u] . (2.14)

Assume, without loss of generality, that vn ≤ un. Then

|Fk1,...,km(un)− Fk1,...,km(vn)| ≤ P [∪m
i=1vn < Xki < un] ≤ m |F (un)− F (vn)| .

Thus, if for some K <∞, m ≤ Kn,

|Fk1,...,km(un)− Fk1,...,km(vn)| → 0.

Choosing m = νn, this implies immediately (i). To prove (ii), assume

D(un).

Set

i = i1, . . . , ip, j = j1, . . . , jq

with i1 < i2 < . . . ip < j1 < · · · < jq with ji − ip > ℓ. Then

|Fij(un)− Fi(un)Fj(un)| ≤ αn,ℓ

But

|Fij(vn)− Fi(vn)Fj(vn)|
≤ |Fij(vn)− Fij(un)|+ Fi(un) |Fj(vn)− Fj(un)|+ Fj(vn) |Fi(un)− Fi(vn)|
+ |Fij(un)− Fi(un)Fj(un)| .

But all terms tend to zero as n and ℓ tend to infinity, so D(vn) holds

Lemma 2.3.2 Let un be a sequence such that n(1 − F (un)) → τ . Let

vn ≡ u[n/θ], for some θ > 0. Then the following hold:

(i) n(1− F (vn)) → θτ ,
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(ii) if θ ≤ 1, then D(un) ⇒ D(vn),

(iii) if θ ≤ 1, then D′(un) ⇒ D′(vn), and,

(iv) if for wn, n(1− F (wn)) → τ ′ ≤ τ , then D(un) ⇒ D(wn).

Proof The proof is fairly straightforward. (i):

n(1− F (vn)) = n(1− F (u[n/θ])) =
n

[n/θ]
[n/θ](1− F (u[n/θ])) → θτ

(ii): with i, j as in the preceding proof,

|Fij(vn)− Fi(vn)Fj(vn)| = |Fij([n/θ])− Fi([nθ])Fj([n/θ])| ≤ α[n/θ],ℓ

which implies D(vn).

(iii): If θ ≤ 1,

n

[n/k]∑

i=1

P [X1 > vn, Xi > vn]

≤ n

[n/θ]
[n/θ]

[[n/θ]/k]∑

i=1

P
[
X1 > u[n/θ], Xi > u[n/θ]

]
↓ 0.

(iv): Let τ ′ = θτ . By (iii), D(vn) holds, and n(1 − F (vn)) → θτ = τ ′.
This by (ii) of Lemma 2.3.1 implies D(wn).

The following assertion is now immediate.

Theorem 2.3.3 Let un, vn be such that n(1 − F (un)) → τ and n(1 −
F (vn)) → θτ . Assume D(vn) and D′(vn). Then, for intervals In with

|In| = [θn],

lim
n↑∞

P [M(In) ≤ un] = e−θτ . (2.15)

We leave the proof as an exercise.

2.4 The extremal index

We have seen that under conditions D(un), D
′(un), extremes of station-

ary dependent sequences behave just as if the sequences were indepen-

dent. Of course it will be interesting to see what can be said if these

conditions do not hold. The following important theorem tells us what

D(un) alone can imply.
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Theorem 2.4.1 Assume that, for all τ > 0, there is un(τ), such that

n(1−F (un(τ)) → τ , and that D(un(τ)) holds for all τ > 0. Then there

exists 0 ≤ θ ≤ θ′ ≤ 1, such that

lim sup
n↑∞

P [Mn ≤ un(τ)] = e−θτ (2.16)

lim inf
n↑∞

P [Mn ≤ un(τ)] = e−θ′τ (2.17)

Moreover, if, for some τ , P [Mn ≤ un(τ)] converges, then θ
′ = θ.

Proof We had seen that under D(un),

P [Mn ≤ un]−
(
P
[
M[n/k] ≤ un

])k → 0,

and so, if

lim sup
n↑∞

P [Mn ≤ un(τ)] = ψ(τ),

then

lim sup
n↑∞

P
[
M[n/k] ≤ un(τ)

]
= ψ1/k(τ).

It also holds that

lim sup
n↑∞

P
[
M[n/k] ≤ u[n/k](τ/k)

]
= ψ(τ/k).

Thus, if we can show that

lim sup
n↑∞

P
[
M[n/k] ≤ u[n/k](τ/k)

]
= lim sup

n↑∞
P
[
M[n/k] ≤ un(τ)

]
,

(2.18)

then ψk(τ/k) = ψ(τ) for all τ and all k, which has as its only solu-

tions ψ(τ) = e−θτ . To show (2.18), assume without loss of generality

u[n/k](τ/k) ≥ un(τ). Then
∣∣P
[
M[n/k] ≤ u[n/k](τ/k)

]
− P

[
M[n/k] ≤ un(τ)

]∣∣
≤ [n/k]

∣∣F (u[n/k](τ/k))− F (u(τ))
∣∣

=
[n/k]

n

∣∣∣∣
n

[n/k]
[n/k](1− F (u[n/k](τ/k))) − n(1− F (u(τ)))

∣∣∣∣

=
[n/k]

n
|k(τ/k)− τ + o(1)| ↓ 0

Thus we have proven the assertion for the limsup. The assertion for the

liminf is completely analogous, with possibly a different value, θ′.
Clearly, if for some τ , the limsup and the liminf agree, then θ = θ′.
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Definition 2.4.1 If a sequence of random variables, Xi, has the prop-

erty that there exist un(τ) such that n(1−F (un(τ))) → τ and P [Mn ≤ un(τ)] →
e−θτ , 0 ≤ θ ≤ 1, one says that the sequence Xi has extremal index θ.

The extremal index can be seen as a measure of the effect of dependence

on the maximum.

One can give a slightly different version of the preceding theorem in

which the idea that we are comparing a stationary sequence with an iid

sequence becomes even more evident. If Xi is a stationary random se-

quence with marginal distribution function F , denote by X̂i a sequence

of iid random variables that have F as their common distribution func-

tion. Let Mn and M̂n denote the respective maxima.

Theorem 2.4.2 Let Xi be a stationary sequence that has extremal index

θ ≤ 1. Let vn be a real sequence and 0 ≤ ρ ≤ 1. Then,

(i) for θ > 0, if

P

[
M̂n ≤ vn

]
→ ρ, then P [Mn ≤ vn] → ρθ (2.19)

(ii) for θ = 0,

(a) if lim inf
n↑∞

P

[
M̂n ≤ vn

]
> 0, then P [Mn ≤ vn] → 1,

(b) if lim sup
n↑∞

P [Mn ≤ vn] < 1, then P

[
M̂n ≤ vn

]
→ 0.

Proof (i): Choose τ > 0 such that e−τ < ρ. Then

P

[
M̂n ≤ un(τ)

]
→ e−τ and P

[
M̂n ≤ vn

]
→ ρ > e−τ .

Therefore, for n large enough, vn ≥ un(τ), and so

lim inf
n↑∞

P [Mn ≤ vn] ≥ lim
n↑∞

P [Mn ≤ un(τ)] → e−θτ .

As this holds whenever e−τ > ρ, it follows that

lim inf
n↑∞

P [Mn ≤ vn] ≥ ρθ.

In much the same way we show also that

lim sup
n↑∞

P [Mn ≤ vn] ≤ ρθ,

which concludes the argument for (i).
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(ii): Since θ = 0, P [Mn ≤ un(τ)] → 1 for all τ > 0. If lim infn↑∞ P

[
M̂n ≤ vn

]
=

ρ > 0, and e−τ < ρ, then vn > un(τ) for all large n, and thus

lim inf
n↑∞

P [Mn ≤ vn] ≥ lim inf
n↑∞

P [Mn ≤ un(τ)] = 1,

which implies (a). If, on the other hand, lim supn↑∞ P [Mn ≤ vn] < 1,

while for all τ < ∞, P [Mn ≤ un(τ)] → 1, then, for all τ > 0, and for

almost all n, vn < un(τ), so that

lim sup
n↑∞

P

[
M̂n ≤ vn

]
≤ lim

n↑∞
P

[
M̂n ≤ un(τ)

]
= e−τ ,

from which (b) follows by letting τ ↑ ∞.

Let us make some observations that follow easily from the preceding

theorems. First, if a stationary sequence has extremal index θ > 0, then

M̂n has a non-degenerate limiting distribution if and only if Mn does,

and these are of the same type. It is possibly to use the same scaling

constants in both cases.

On the contrary, if a sequence of random variables has extremal in-

dex θ = 0, then it is impossible that Mn and M̂n have non-degenerate

limiting distributions with the same scaling constants.

An autoregressive sequence. A nice example of an sequence with

extremal index less than one is given by the stationary first-order au-

toregressive sequence, ξn, defined by

ξn = r−1ξn−1 + r−1ǫn, (2.20)

where r ≥ 2 is an integer, and the ǫn are iid random variables that are

uniformly distributed on the set {0, 1, 2, . . . , r− 1}. ǫn is independent of

ξn−1.

Note that if we assume that ξ0 is uniformly distributed on [0, 1], then

the same holds true for all ξn, n ≥ 0. Thus, with un(τ) = 1 − τ/n,

nP[ξn > un(τ)] = τ .

The following result was proven by Chernick [3].

Theorem 2.4.3 For the sequence ξn defined above, for any x ∈ R+,

P [Mn ≤ 1− x/n] → exp

(
−r − 1

r
x

)
(2.21)

The proof of this theorem relies on the following key technical lemma.

Lemma 2.4.4 In the setting above, if m is such that 1 > rmx/n, then
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Fig. 2.1. The ARP process with r = 2, r = 7; for comparison an iid uniform
sequence. Note the pronounced double peaks in the case r = 2.

P [Mm ≤ 1− x/n] = 1− (m+ 1)r −m

rn
x (2.22)

Proof The basic idea of the proof is of course to use the recursive

definition of the variables ξn to derive a recursion for the distribution of
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their maxima. Apparently,

P [Mm ≤ 1− x/n] = P [Mm−1 ≤ 1− x/n, ξm ≤ 1− x/n] (2.23)

= P
[
Mm−1 ≤ 1− x/n, r−1ξm−1 + r−1ǫm ≤ 1− x/n

]

= P [Mm−1x ≤ 1− x/n, ξm−1 ≤ r − ǫm − xr/n]

=

r−1∑

ǫ=0

r−1P [Mm−1 ≤ 1− x/n, ξm−1 ≤ r − ǫ− xr/n]

Now let rx/n < 1. Then, for all ǫ ≤ r− 2, it is true that r− ǫ− rx/n ≥
2− rx/n > 1, and so, since ξm−1 ≤Mm−1 ≤ 1−x/n, for all these ǫ, the

condition ξm−1 ≤ r − ǫ− xr/n is trivially satisfied. Thus, for these x,

P [Mm ≤ 1− x/n] =
r − 1

r
P [Mm−1 ≤ 1− x/n] (2.24)

+ r−1P
[
Mm−1 ≤ 1− x/n, r−1ξm−1 ≤ 1− xr/n

]

We see that even with this restriction we do not get closed formula

involving only the Mm. But, in the same way as before, we see that, for

i ≥ 1, if ri+1x/n < 1, then

P
[
Mm ≤ 1− x/n, ξm < 1− rix/n

]
=
r − 1

r
P [Mm−1 ≤ 1− x/n]

+ r−1P
[
Mm−1 ≤ 1− x/n, r−1ξm−1 ≤ 1− xri+1/n

]
(2.25)

That, is, if we set

P
[
Mm ≤ 1− x/n, ξm < 1− rix/n

]
≡ Am,i,

we have the recursive set of equations

Am,i =
r − 1

r
Am−1,0 +

1

r
Am−1,i+1. (2.26)

If we iterate this relation k times, we clearly get an expression for Am,0

of the form

Am,0 =

k∑

ℓ=0

Ck,ℓAm−k,ℓ (2.27)

with constants Ck,ℓ that we will now determine. To do this, use (2.26)
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to re-express the right-hand side as

k∑

ℓ=0

Ck,ℓ

[
r − 1

r
Am−k−1,0 +

1

r
Am−k−1,ℓ+1

]
(2.28)

=
r − 1

r

k∑

ℓ=0

Ck,ℓAm−k−1,0 +
1

r

k+1∑

ℓ=1

Ck,ℓ−1Am−k−1,ℓ (2.29)

=

k+1∑

ℓ=0

Ck+1,ℓAm−k−1,ℓ, (2.30)

where

Ck+1,0 =
r − 1

r

k∑

ℓ=0

Ck,ℓ (2.31)

Ck+1,ℓ = r−1Ck,ℓ−1, for ℓ ≥ 1 (2.32)

Solving this recursion turns out very easy. Namely, if we set x = 0, then

of course all Ak,ℓ = 1, and therefore, for all k,
∑k

ℓ=0 Ck,ℓ = 1, so that

Ck,0 =
r − 1

r
, for all k ≥ 1.

Also, obviously C0,0 = 1. Iterating the second equation, we see that

Ck,ℓ = r−ℓCk−ℓ,0 =

{
r−ℓ−1(r − 1), if k > ℓ

r−ℓ, if k = ℓ

We can now insert this into Eq.(2.27), to get

P [Mm ≤ 1− x/n] =

m∑

ℓ=0

Cm,ℓP
[
M0 ≤ 1− x/n, ξ0 < 1− rℓx/n

]

=
m∑

ℓ=0

Cm,ℓP
[
ξ0 < 1− rℓx/n

]

=

m∑

ℓ=0

Cm,ℓ[1− rℓx/n]

=

m−1∑

ℓ=0

(r − 1)r−ℓ−1[1− rℓx/n] + r−m[1− rmx/n]

= (r − 1)
1− r−m

r − 1
−m

r − 1

r

x

n
+ r−m − x

n

= 1− r(m + 1)−m

rn
x (2.33)
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which proves the lemma.

We can now readily prove the theorem.

Proof We would like to use that, for m satisfying the hypothesis of the

lemma,

P [Mn ≤ 1− x/n] ∼ P [Mm ≤ 1− x/n]
n/m

. (2.34)

The latter, by the assertion of the lemma, converges to exp
(
− r−1

r x
)
.

To prove (2.34), we show that D(1 − x/n) holds. In fact, what we will

see is that the correlations of the variables ξi decay exponentially fast.

By construction, if j > i, the variable ξj consists of a large piece that is

independent of ξi, plus r
−j−iξi.

With the notation introduced earlier, consider

Fij(un)− Fi(un)Fj(un) = (2.35)

Fi(un)
(
P
[
ξj1 ≤ un, . . . , ξjq ≤ un

∣∣ξi1 ≤ un, . . . , ξip ≤ un
]

− P
[
ξj1 ≤ un, . . . , ξjq ≤ un

])

Now

ξjk = r−1ξjk−1 + r−1ǫjk = · · · = r−ℓξjk−ℓ +W
(ℓ)
jk

where W
(ℓ)
jk

is independent of all ξi with i ≤ jk − ℓ. Thus

P
[
ξj1 ≤ un, . . . , ξjq ≤ un

∣∣ξi1 ≤ un, . . . , ξip ≤ un
]

= P

[
W

(j1−ip)
j1

+ r−(j1−ip)ξip ≤ un, . . . ,

W
(jq−ip)
jq

+ r−(jq−ip)ξip ≤ un
∣∣ξi1 ≤ un, . . . , ξip ≤ un

]

≤ P

[
W

(j1−ip)
j1

≤ un, . . . ,W
(jq−ip)
jq

≤ un

]

and

P
[
ξj1 ≤ un, . . . , ξjq ≤ un

∣∣ξi1 ≤ un, . . . , ξip ≤ un
]

≥ P

[
W

(j1−ip)
j1

+ r−(j1−ip) ≤ un, . . . ,W
(jq−ip)
jq

+ r−(jq−ip) ≤ un

]

But similarly,

P
[
ξj1 ≤ un, . . . , ξjq ≤ un

]

≤ P

[
W

(j1−ip)
j1

≤ un, . . . ,W
(jq−ip)
jq

≤ un

]
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and

P
[
ξj1 ≤ un, . . . , ξjq ≤ un

]

≥ P

[
W

(j1−ip)
j1

+ r−(j1−ip) ≤ un, . . . ,W
(jq−ip)
jq

+ r−(jq−ip) ≤ un

]
.

Therefore,
∣∣∣P
[
ξj1 ≤ un, . . . , ξjq ≤ un

∣∣ξi1 ≤ un, . . . , ξip ≤ un
]

− P
[
ξj1 ≤ un, . . . , ξjq ≤ un

]∣∣∣

≤
∣∣∣P
[
W

(j1−ip)
j1

≤ un, . . . ,W
(jq−ip)
jq

≤ un

]

− P

[
W

(j1−ip)
j1

+ r−(j1−ip) ≤ un, . . . ,W
(jq−ip)
jq

+ r−(jq−ip) ≤ un

]∣∣∣

≤
q∑

k=1

P

[
un − r−(jk−ip) ≤W

(jk−ip)
jk

≤ un

]

But

P

[
un − r−(jk−ip) ≤W

(jk−ip)
jk

≤ un

]

≤ P

[
un − r−(jk−ip) ≤ ξjk ≤ un + r−(jk−ip)

]
≤ 2r−(jk−ip)

which implies that
∣∣∣P
[
ξj1 ≤ un, . . . , ξjq ≤ un

∣∣ξi1 ≤ un, . . . , ξip ≤ un
]

− P
[
ξj1 ≤ un, . . . , ξjq ≤ un

]∣∣∣ ≤
q∑

k=1

r−(jk−ip) ≤ r−ℓ

r − 1

which implies D(1− x/n).

Remark 2.4.1 We remark that is it easy to see directly that condition

D′(1− x/n) does not hold. In fact,

n

[n/k]∑

i=2

P [ξ1 > un, ξj > un] ≥ n

[n/k]∑

i=2

P [ξ1 > un, ∀2≤j≤iǫj = r − 1]

=

[n/k]∑

i=2

r−i+1 > 0 (2.36)

We see that the appearance of a non-trivial extremal index is related

to strong correlations between the random variables with neighboring

indices, a fact that condition D′ is precisely excluding.
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Non-stationary sequences

3.1 The inclusion-exclusion principle

One of the key relations in the analysis of iid sequences was the obser-

vation that

n(1− F (un)) → τ ⇔ P [Mn ≤ un] → e−τ . (3.1)

This relation was also instrumental for the Poisson distribution of the

number of crossings of extreme levels. The key to this relation was the

fact that in the iid case,

P [Mn ≤ un] = Fn(un) =

(
1− n(1− F (un))

n

)n

which of course converges to e−τ . The first equality fails of course in the

dependent case. However, this is equation is also far from necessary.

The following simple lemma gives a much weaker, and, as we will see,

useful, criterium for convergence to the exponential function.

Lemma 3.1.1 Assume that a sequence An satisfies, for any s ∈ N, the

bounds

An ≤
2s∑

ℓ=0

(−1)ℓ

ℓ!
aℓ(n) (3.2)

An ≥
2s+1∑

ℓ=0

(−1)ℓ

ℓ!
aℓ(n) (3.3)

and, for any ℓ ∈ N,

lim
n↑∞

aℓ(n) = aℓ (3.4)

Then

45
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lim
n↑∞

An = e−a (3.5)

Proof Obviously the hypothesis of the lemma imply that, for all s ∈ N,

lim sup
n↑∞

An ≤
2s∑

ℓ=0

(−τ)ℓ
ℓ!

(3.6)

lim inf
n↑∞

An ≥
2s+1∑

ℓ=0

(−τ)ℓ
ℓ!

(3.7)

But the upper and lower bounds are the partial series of the exponential

function e−τ , which are absolutely convergent, and this implies conver-

gence of An to this values.

The reason that one may expect P [Mn ≤ un] to satisfy bounds of this

form lies in the inclusion-exclusion principle

Theorem 3.1.2 Let Bi, i ∈ N be a sequence of events, and let 1IB denote

the indicator function of B. Then, for all s ∈ N,

1I∩n
i=1Bi ≤

2s∑

ℓ=0

(−1)ℓ
∑

{j1,...,jℓ}⊂{1,...,n}
1I∩ℓ

r=1Bc
jr

(3.8)

1I∩n
i=1Bi ≥

2s+1∑

ℓ=0

(−1)ℓ
∑

{j1,...,jℓ}⊂{1,...,n}
1I∩ℓ

r=1Bc
jr

(3.9)

Note that terms with ℓ > n are treated as zero.

Remark 3.1.1 Note that the sum over subsets {i1, . . . , iℓ} is over all

ordered subsets, i.e., 1 ≤ i1 < i2 < · · · < iℓ ≤ n.

Proof We write first

1I∩n
i=1Bi = 1− 1I∪n

i=1Bc
i

We will prove the theorem by induction over n. The key observation is

that

1I∪n+1
i=1 Bc

i
= 1IBc

n+1
+ 1I∪n

i=1Bc
i
1IBn+1

= 1IBc
n+1

+ 1I∪n
i=1Bc

i
− 1I∪n

i=1Bc
i
1IBc

n+1
(3.10)

To prove an upper bound of some 2s+1, we now insert an upper bound

of that order in the second term, and a lower bound of order 2s in the
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third term. It is a simple matter of inspection that this reproduces

exactly the desired bounds for n+ 1.

The inclusion-exclusion principle has an obvious corollary.

Corollary 3.1.3 Let Xi be any sequence of random variables. Then

P [Mn ≤ u] ≤
2s∑

ℓ=0

(−1)ℓ
∑

{j1,...,jℓ}⊂{1,...,n}
P
[
∀ℓr=1Xjr > u

]
(3.11)

P [Mn ≤ u] ≥
2s+1∑

ℓ=0

(−1)ℓ
∑

{j1,...,jℓ}⊂{1,...,n}
P
[
∀ℓr=1Xjr > u

]
(3.12)

Proof The proof is straightforward.

Combining Lemma 3.1.1 and Corollary 3.1.3, we obtain a quite general

criteria for triangular arrays of random variables [2].

Theorem 3.1.4 Let Xn
i , n ∈ N, i ∈ {1, . . . , n} be a triangular array of

random variables. Assume that, for any ℓ,

lim
n↑∞

∑

{j1,...,jℓ}⊂{1,...,n}
P
[
∀ℓr=1X

n
jr > un

]
=
τ ℓ

ℓ!
(3.13)

Then,

lim
n↑∞

P [Mn ≤ un] = e−τ (3.14)

Proof The proof of the theorem is again straightforward from the pre-

ceding results.

Remark 3.1.2 In the iid case, (3.13) does of course hold, since here

∑

{j1,...,jℓ}⊂{1,...,n}
P
[
∀ℓr=1Xr > un

]
=

(
n

ℓ

)
n−ℓ (n(1− F (un)))

ℓ

A special case where Theorem 3.1.4 gives an easily verifiable criterion

is the case of exchangeable random variables.

Corollary 3.1.5 Assume that Xn
i is a triangular array of random vari-

ables such that, for any n, the joint distribution of Xn
1 , . . . , X

n
n is invari-

ant under permutation of the indices i, . . . , n. If, for any ℓ ∈ N,

lim
n↑∞

nℓP
[
∀ℓr=1X

n
r > un

]
= τ ℓ (3.15)

Then,
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lim
n↑∞

P [Mn ≤ un] = e−τ (3.16)

Proof Again straightforward.

Theorem 3.1.4 and its corollary have an obvious extension to the dis-

tribution the number of exceedances of extremal levels.

Theorem 3.1.6 Let u1n > n2
n · · · > urn, and let Xn

i , n ∈ N, i ∈
{1, . . . , n} be a triangular array of random variables. Assume that, for

any ℓ ∈ N, and any 1 ≤ s ≤ r,

lim
n↑∞

∑

{j1,...,jℓ}⊂{1,...,n}
P
[
∀ℓr=1X

n
jr > usn

]
=
τ ℓs
ℓ!

(3.17)

with

0 < τ1 < τ2 . . . , < τr <∞.

Then,

lim
n↑∞

P
[
S1
n = k1, S

2
n − S1

n = k2, . . . , S
r
n − Sr−1

n = kr
]

=
τk1
1

k1!

(τ2 − τ1)
k2

k2!
. . .

(τr − τr−1)
kr

kr!
e−τr (3.18)

Proof

In the following section we will give an application for the criteria

developed in this chapter.

3.2 An application to number partitioning

The number partitioning problem is a classical optimization problem:

Given N numbers X1, X2, . . . , XN , find a way of distributing them into

two groups, such that their sums in each group are as similar as pos-

sible. One can easily imagine that this problem occurs all the time in

real life, albeit with additional complication: Imagine you want to stuff

two moving boxes with books of different weights. You clearly have an

interest in having both boxes have more or less the same weight, just so

that none of them is too heavy. In computing, you want to distribute a

certain number of jobs on, say, two processors, in such a way that all of

your processes are executed in the fastest way, etc..

As pointed out by Mertens [8, 9], some aspects of the problem give
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rise to an interesting problem in extreme value theory, and in particular

provide an application for our Theorem 3.1.4.

Let us identify any partition of the set {1, . . . , N} into two disjoint

subsets, Λ1,Λ2, with a map, σ : {1, . . . , N} → {−1,+1} via Λ1 ≡ {i :
σi = +1} and Λ2 =≡ {i : σi = −1}. Then, the quantity to be minimised

is ∣∣∣∣∣
∑

i∈Λ1

Xi −
∑

i∈Λ2

Xi

∣∣∣∣∣ =
∣∣∣∣∣

N∑

i=1

niσi

∣∣∣∣∣ ≡ X(N)
σ . (3.19)

Note that our problem has an obvious symmetry: X
(N)
σ = −X(N)

−σ . It

will be reasonable to factor out this symmetry and consider σ to be an

element of the set ΣN ≡ {σ ∈ {−1, 1}N : σ1 = +1}.
We will consider, for simplicity, only the case where the ni are replaced

by independent, centered Gaussian random variables, Xi. More general

cases can be treated with more analytic effort.

Thus define YN (σ)

YN (σ) ≡ N−1/2
N∑

i=1

σiXi (3.20)

and let

X(N)
σ = −|YN(σ)| (3.21)

The first result will concern the distribution of the largestest values of

HN(σ).

Theorem 3.2.7 Assume that the random variables Xi are indendent,

standard normal Gaussian random variables, i.e. EXi = 0, EX2
i = 1.

Then,

P

[
max
s∈ΣN

X(N)
σ ≤ CNx

]
→ e−x (3.22)

We will now prove Theorem 3.2.7. In view of Theorem 3.1.4 we wil

be done if we can prove the following:

Proposition 3.2.8 Let KN = 2N(2π)−1/2. We write
∑

σ1,...,σl∈ΣN
(·)

for the sum over all possible ordered sequences of different elements of

ΣN . Then, for any l ∈ N and any constants cj > 0, j = 1, . . . , ℓ, we

have:
∑

σ1,...,σℓ∈ΣN

P
[
KN |YN (σj)| < cj , ∀ℓj=1

]
→

∏

j=1,...,ℓ

cj (3.23)
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Heuristics. Let us first outline the main steps of the proof. The ran-

dom variables YN (σ) are Gaussian random variables with mean zero

covariance matrix BN (σ1, . . . , σl), whose elements are

bm,n = cov (YN (σm), YN (σn)) =
1

N

N∑

i=1

σm
i σ

n
i (3.24)

In particular, bm,m = 1. Moreover, for the vast majority of choices,

σ1, . . . , σℓ, bi,j = o(1), for all i 6= j; in fact, this fails only for an expo-

nentially small fraction of configurations. Thus in the typicall choices,

they should behace like independent random variables. The probability

defined in (3.23) is then the probability that these these Gaussians be-

long to the exponentially small intervals [−cj2−N
√
2π, cj2

−N
√
2π], and

is thus of the order
∏

j=1,...,ℓ

cj2
−N (3.25)

This estimate would yield the assertion of the proposition, if all remain-

ing terms could be ignored.

Let us turn to the remaining tiny part of Σ⊗l
N where σl, . . . , σl are such

that bi,j 6→ 0 for some i 6= j as N → ∞. A priori, we would be inclined

to believe that there should be no problem, since the number of terms

in the sum is by an exponential factor smaller than the total number of

terms. In fact, we only need to worry if the corresponding probability

is also going to be exponentially larger than for the bulk of terms. As it

turns out, the latter situation can only arise when the covariance matrix

is degenerate.

Namely, if the covariance matrix, BN (σ1, . . . , σl), is non-degenerate,

the probability P[·] is of the order
(
detBN(σ1, . . . , σl)

)−1/2 ∏

j=1,...,ℓ

2(2π)−1/2cjK
−1
N (3.26)

But, from the definition of bi,j , (detBN (σ1, . . . , σℓ))−1/2 may grow at

most polynomially. Thus, the probability P[·] is K−ℓ
N up to a polynomial

factor, while the number of sets σ1, . . . , σℓ in this part is exponentially

smaller than Kℓ
N . Hence, the contribution of all such σ1, . . . , σℓ in (3.23)

is exponentially small.

The case when σ1, . . . , σℓ give rise to a degenerate B(σ1, . . . , σℓ) is

more delicate. Degeneracy of the covariance implies that there are linear

relations between the random variables {Y (σi)}i=1,...,ℓ, and hence the

probabilities P[·] can be exponentially bigger than K−ℓ
N . A detailed
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analysis shows, however, that the total contribution from such terms is

still negligible.

Proof of Proposition 3.2.8. Let us denote by C(~σ) the ℓ × N matrix

with elements σr
i . Note that B(~σ) = N−1Ct(~σ)C(~σ).

We will split the sum of (3.23) into two terms
∑

σ1,...,σl∈ΣN

P[·] =
∑

σ1,...,σℓ∈ΣN
rankC(~σ)=ℓ

P[·] +
∑

σ1,...,σl∈ΣN
rankC(~σ)<ℓ

P[·] (3.27)

and show that the first term converges to the right-hand side of (3.23)

while the second term converges to zero.

Lemma 3.2.9 Assume that the matrix C(~σ) contains all 2ℓ possible

different rows. Assume that a configuration σ̃ is such that it is a linear

combination of the columns of the matrix C(~σ). Then, there exists 1 ≤
j ≤ ℓ such that either σ̃ = σ(j), or σ̃ = −σ(j).

Proof We are looking for solutions of the set of linear equations

σ̃i =

ℓ∑

r=1

zrσ
ℓ
i (3.28)

We may assumme without loss of generality that σ1
i ≡ +1. By that

assumption that all possible assignments of signs to the rows of C(~σ)

occur, there exists i such that σr
i = −σr

1 , for all r ≥ 2. Hence we have,

in particular,

σ̃1 = z1 +

ℓ∑

r=2

zrσ
ℓ
1

σ̃i = z1 −
ℓ∑

r=2

zrσ
ℓ
1. (3.29)

Adding these two equations, we find that z1 ∈ {−1, 0, 1}. If zi = 0, then

we are done in the case ℓ = 2, and can continue inductively otherwise.

If z1 6= 0, then σ̃i = σ̃1 = z1, and we obtain that

ℓ∑

r=2

zrσ
ℓ
1 = 0.

In fact,
∑ℓ

r=2 zrσ
ℓ
j = 0 for all j such that σ̃j = z1. Now assume that
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there is k such that σ̃k = −z1. Then there must exist k′ such that

σr
k′ = −σr

k, for all r ≥ 2. Hence we get

ℓ∑

r=2

zrσ
ℓ
k = −2z1

and

−
ℓ∑

r=2

zrσ
ℓ
k = σ̃k′ − z1.

But this leads to 2z1 = σ̃k′ − z1, which is impossible. Thus we are left

with the case when for all j, σ̃j = z1, and so

ℓ∑

r=2

zrσ
ℓ
j = 0.

for all j. Now consider i such σ2
i = σ2

j and σr
i = σr

j for r ≥ 3. Then by

the same reasoning as before we find z2 = 0, and so
∑ℓ

r=3 zrσ
ℓ
j = 0, for

all j.

In conclusion, if z1 6= 0, then z1 = σ̃i, for all i, and zr = 0, for all r ≥ 2.

If z1 = 0, then we continue the argument until we find a k such that

zk = σ̃i, for all i, and all other zr are again zero. This proves the lemma.

Lemma 3.2.9 implies the following: Assume that there are r < ℓ lin-

early independent vectors, σi1 , . . . , σir , among the ℓ vectors σ1, . . . , σℓ.

The number of such vectors is at most (2r − 1)N . In fact, if the ma-

trix C(σi1 , . . . , σir ) contains all 2r different rows, then by Lemma 3.2.9

the remaining configurations, σj with j ∈ {1, . . . , l}\{i1, . . . , ir}, would
be equal to one of σi1 , . . . , σir , as elements of ΣN , which is impossible,

since we sum over different elements of ΣN . Thus there can be at most

O((2r − 1)N ) ways to construct these r columns. Furthermore, there is

only anN -independent number of possibilities to complete the set of vec-

tors by ℓ− r linear configurations of these columns to get C(σ1, . . . , σl).

The next lemma gives an a priori estimate on the probability corre-

sponding to each of these terms.

Lemma 3.2.10 There exists a constant, C > 0, independent of N , such

that, for any distinct σ1, . . . , σℓ ∈ ΣN , any r = rank C(σ1, . . . σℓ) ≤ ℓ,

and all N > 1,

P

[
∀ℓj=1 |Y (σj)| < cj

KN

]
≤ CK−r

N N r/2 (3.30)
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Proof Let us remove from the matrix C(σ1, . . . , σℓ) linearly dependent

columns and leave only r linearly independent columns. They corre-

spond to a certain subset of r configurations, σj , j ∈ Ar ≡ {j1, . . . , jr} ⊂
{1, . . . , ℓ}. We denote by C̄r(~σ) the N × r matrix composed by them,

and by Br(~σ) the corresponding covariance matrix. Then the probabil-

ity in the right-hand side of (3.30) is not greater than the probability of

the same events for j ∈ Ar only.

P

[
∀ℓj=1

|Y (σj)|√
varX

<
cj
KN

]
≤ P

[
∀j∈Ar

|Y (σj)|√
varX

<
cj
KN

]
(3.31)

≤ 1

(2π)r/2
√
det(Br(~σ))

cj1/KN∫

−cj1/KN

. . .

. . .

cjr/KN∫

−cjr/KN

∏

j∈Ar

dxj exp


−

r∑

s,s′=1

xjs [B
r(~σ)]

−1
s,s′ xjs′




≤ 1

(2π)r/2
√
det(Br(~σ))

(KN )−r2r
r∏

s=1

cjs

Finally, note that the elements of the matrix Br(~σ) are of the form

N−1 times an integer. Thus detBr(~σ) is N−r times the determinant of

a matrix with only integer entries. But the determinant of an integer

matrix is an integer, and since we have ensured that the rank of Br(~σ) is

r, this integer is different from zero. Thus det(Br(~σ)) ≥ N−r. Inserting

this bound, we get the conclusion of the lemma.

Lemma 3.2.10 implies that each term in the second sum in (3.27) is

smaller than CK−r
N N r/2 ∼ 2−Nr. It follows that the sum over these

terms is of order O
(
[(2r − 1)2−r]N

)
→ 0 as N → ∞.

We now turn to the first sum in (3.27), where the covariance matrix is

non-degenerate. Let us fix α ∈ (0, 1/2) and introduce a subset, Rα
l,N ⊂

Σ⊗l
N , through

Rα
N,ℓ =

{
σ1, . . . , σℓ ∈ ΣN : ∀1≤m<r≤ℓ,

∣∣∣
N∑

i=1

σm
i σ

r
i

∣∣∣ < Nα+1/2
}

(3.32)

It is easy to estimate

|Σl
N\Rα

l,N | ≤ ℓ22Nl exp(−N2α) (3.33)

By definition, for any (σ1, . . . , σℓ) ∈ Rα
N,ℓ, the elements, bk,m, of the

covariance matrix, (see (3.24)) satisfy, for all k 6= m,
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|bk,m| =
∣∣∣∣∣N

−1
N∑

i=1

σk
i σ

m
i

∣∣∣∣∣ ≤ Nα−1/2 (3.34)

Therefore, for any σ1, . . . , σl ∈ Rα
l,n, detBN (~σ) = 1 + o(1) and, in par-

ticular, the rank of C(~σ) equals ℓ.

By Lemma 3.2.10 and the estimate (3.33),∑

σ1,...,σℓ 6∈Rα
ℓ,N

rankC(σ1 ,...,σℓ)=ℓ

P[·] ≤ 2Nℓe−N2α

CN3ℓ/2K−ℓ
N → 0 (3.35)

To complete the study of the first term of (3.27), let us show that∑

σ1,...,σℓ∈Rα
ℓ,N

P[·] →
∏

j=1,...,ℓ

cj (3.36)

This is of course again obvious fromm the representation (3.31) where,

in the case r = ℓ, the inequality signs can now be replaced by equalities,

and the fact that the determinant of the covariance matric is now 1+o(1).
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Normal sequences

A particular class of random variables are of course Gaussian random

variables. In this case, explicit computations are far more feasible.

In the stationary case, a normalized Gaussian sequence, Xi, is char-

acterised by

EXi = 0 (4.1)

EX2
i = 1

EXiXj = ri−j

where rk = r|k|. The sequence must of course be such that the infinite

dimensional matrix with entries cij = ri−j is positive definite.

Our main goal here is to show that under the so-called Berman con-

dition,

rn lnn ↓ 0,

the extremes of a stationary normal sequences behave like those of the

corresponding iid normal sequence. A very nice tool for the analysis of

Gaussian processes is the so-called normal comparison lemma.

4.1 Normal comparison

In the context of Gaussian random variables, a recurrent idea is to com-

pare one Gaussian process to another, simpler one. The simplest one to

compare with are, of course, iid variables, but the concept goes much

farther.

Let us consider a family of Gaussian random variables, ξ1, . . . , ξn, nor-

malised to have mean zero and variance one (we refer to such Gaussian

random variables as centered normal random variables), and let Λ1 de-

55
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note their covariance matrix. Let similarly η1, . . . , ηn be centered normal

random variables with covariance matrix Λ0.

Generally speaking, one is interested in comparing functions of these

two processes that typically will be of the form

EF (X1, . . . , Xn)

where F : Rn → R. For us the most common case would be

F (X1, . . . , Xn) = 1IX1≤x1,...,Xn≤xn

An extraordinary efficient tool to compare such processes turns out to

be interpolation. Given ξ and η, we define Xh
1 , . . . , X

h
n , for h ∈ [0, 1],

such Xh is normal and has covariance

Λh = hΛ1 + (1− h)Λ0,

i.e. X1 = ξ and X0 = η. Clearly we can realize

Xh =
√
hξ +

√
1− hη.

This leads to the following general Gaussian comparison lemma.

Lemma 4.1.1 Let η, ξ,Xh be as above. Let F : Rn → R be differen-

tiable and of moderate growth. Set f(h) ≡ EF (Xh
1 , . . . , X

h
n). Then

f(1)−f(0) = 1

2

∫ 1

0

dh
∑

i6=j

(Λ1
ij−Λ0

ij)E

(
∂2F

∂xi∂xj
(Xh

1 , . . . , X
h
n)

)
(4.2)

Proof Trivially,

f(1)− f(0) =

∫ 1

0

dh
d

dh
f(h)

and

d

dh
f(h) =

1

2

n∑

i=1

E

(
∂F

∂xi

(
h−1/2ξi − (1− h)−1/2ηi

))
(4.3)

where of course ∂F
∂xi

is evaluated at Xh. To continue we use a remarkable

formula for Gaussian processes, known as the Gaussian integration by

parts formula.

Lemma 4.1.2 Let Xi, i ∈ {1, . . . , n} be a multivariate Gaussian pro-

cess, and let g : Rn → R be a differentiable function of at most polyno-

mial growth. Then

Eg(X)Xi =
n∑

j=1

E(XiXj)E
∂

∂xj
g(X) (4.4)
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We give the proof of this formula later. Applying it in (4.3) yields

d

dh
f(h) =

1

2

∑

i6=j

E
∂2F

∂xj∂xi
E (ξiξj − ηiηj) (4.5)

=
1

2

∑

i6=j

(
Λ1
ji − Λ0

ji

)
E

∂2F

∂xj∂xi

(
Xh

1 , . . . , X
h
n

)
,

which is the desired formula.

The general comparison lemma can be put to various good uses. The

first is a monotonicity result that is sometimes known as Kahane’s the-

orem [5].

Theorem 4.1.3 Let X and Y be two independent n-dimensional Gaus-

sian vectors. Let D1 and D2 be subsets of {1, . . . , n} × {1, . . . , n}. As-

sume that

Eξiξj ≥ Eηiηj , if (i, j) ∈ D1

Eξiξj ≤ Eηiηj , if (i, j) ∈ D2 (4.6)

Eξiξj = Eηiηj , if (i, j) 6∈ D1 ∪D2

Let F be a function on Rn, such that its second derivatives satisfy

∂2

∂xi∂xj
F (x) ≥ 0, if (i, j) ∈ D1

∂2

∂xi∂xj
F (x) ≤ 0, if (i, j) ∈ D2 (4.7)

Then

Ef(ξ) ≤ Ef(η) (4.8)

Proof The proof of the theorem can be trivially read off the preceding

lemma by inserting the hypotheses into the right-hand side of (4.2).

We will need two extensions of these results for functions that are not

differentiable. The first is known as Slepian’s lemma [11].

Lemma 4.1.4 Let X and Y be two independent n-dimensional Gaus-

sian vectors. Assume that

Eξiξj ≥ Eηiηj , for all i 6= j

Eξiξi = Eηiηi, for all i (4.9)

Then
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E
n

max
i=1

(ξi) ≤ E
n

max
i=1

(ηi) (4.10)

Proof Let

Fβ(x1, . . . , xn) ≡ β−1 ln
n∑

i=1

eβxi.

A simple computation shows that, for i 6= j,

∂2F

∂xi∂xj
= −β eβ(xi+xj)

(
∑n

k=1 e
βxk)

2 < 0,

and so the theorem implies that, for all β > 0,

EFβ(ξ) ≤ EFβ(η),

On the other hand,

lim
β↑∞

Fβ(x1, . . . , xn) =
n

max
i=1

xi.

Thus

lim
β↑∞

EFβ(ξ1, . . . , ξn) ≤ lim
β↑∞

EFβ(η1, . . . , ηn),

and hence (4.10) holds.

As a second application, we want to study P [X1 ≤ u1, . . . , Xn ≤ un].

This corresponds to choosing F (X1, . . . , Xn) = 1IX1≤u1,...,Xn≤un .

Lemma 4.1.5 Let ξ, η be as above. Set ρij ≡ max(Λ0
ij ,Λ

1
ij), and denote

by x+ ≡ max(x, 0). Then

P [ξ1 ≤ u1, . . . , ξn ≤ un]− P [η1 ≤ u1, . . . , ηn ≤ un] (4.11)

≤ 1

2π

∑

1≤i<j≤n

(Λ1
ij − Λ0

ij)+√
1− ρ2ij

exp

(
−

u2i + u2j
2(1 + ρij)

)
.

Proof Although the indicator function is not differentiable, we will pro-

ceed as if it was, setting

d

dx
1Ix≤u = δ(x− u),

where δ denotes the Dirac delta function, i.e.
∫
f(x)δ(x− u)dx ≡ f(u).

This can be justified e.g. by using smooth approximants of the indicator

function and passing to the limit at the end (e.g. replace 1Ix≤u by
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(2πσ2)1/2
∫ x

−∞ exp
(
− (z−u)2

2σ2

)
, do all the computations, and pass to the

limit σ ↓ 0 at the end. With this convention, we have that, for i 6= j,

E

(
∂2F

∂xi∂xj
(Xh

1 , . . . , X
h
n)

)
= E

∏

k 6=i∨j

1IXh
k ≤uk

δ(Xh
i − ui)δ(X

h
j − uj)

(4.12)

≤ Eδ(Xh
i − ui)δ(X

h
j − uj) = φh(ui, uj),

where φh denotes the density of the bivariate normal distribution with

covariance Λh
ij , i.e.

φh(ui, uj) =
1

2π
√
1− (Λh

ij)
2
exp

(
−
u2i + u2j − 2Λh

ijuiuj

2(1− (Λh
ij)

2)

)

Now

u2i + u2j − 2Λh
ijuiuj

2(1− (Λh
ij)

2)
=

(u2i + u2j)(1 − Λh
ij) + Λh

ij(ui − uj)
2

2(1− (Λh
ij)

2)

≥
(u2i + u2j)

2(1 + |Λh
ij |)

≥
(u2i + u2j)

2(1 + ρij)
, (4.13)

where ρij = max(Λ0
ij ,Λ

1
ij). (To prove the first inequality, note that this

is trivial if Λh
ij ≥ 0. If Λh

ij < 0, the result follows after some simple

algebra). Inserting this into (4.12) gives

E

(
∂2F

∂xi∂xj
(Xh

1 , . . . , X
h
n)

)
≤ 1

2π
√
1− ρ2ij

exp

(
−
(u2i + u2j)

2(1 + ρij)

)
, (4.14)

from which (4.11) follows immediately.

Remark 4.1.1 It is often convenient to replace the assertion of Lemma

4.1.5 by

|P [ξ1 ≤ u1, . . . , ξn ≤ un]− P [η1 ≤ u1, . . . , ηn ≤ un]| (4.15)

≤ 1

2π

∑

1≤i<j≤n

|Λ1
ij − Λ0

ij |√
1− ρ2ij

exp

(
−

u2i + u2j
2(1 + ρij)

)
.

A simple, but useful corollary is the specialisation of this lemma to

the case when ηi are independent random variables.
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Corollary 4.1.6 Let ξi be centered normal variables with covariance

matrix Λ, and let ηi be iid centered normal variables. Then

P [ξ1 ≤ u1, . . . , ξn ≤ un]− P [η1 ≤ u1, . . . , ηn ≤ un] (4.16)

≤ 1

2π

∑

1≤i<j≤n

(Λij)+√
1− Λ2

ij

exp

(
−

u2i + u2j
2(1 + |Λij |)

)
.

In particular, if |Λij | < δ ≤ 1,

|P [ξ1 ≤ u, . . . , ξn ≤ u]− [Φ(u)]
n| (4.17)

≤ 1

2π

∑

1≤i<j≤n

|Λij |√
1− δ2

exp

(
− u2i
1 + |Λij |

)
.

Proof The proof of the corollary is straightforward and left to the

reader.

Another simple corollary is a version of Slepian’s lemma:

Corollary 4.1.7 Let ξ, η be as above. Assume that Λ0
ij ≤ Λ1

ij, for all

i 6= j. Then

P

[
n

max
i=1

ξi ≤ u
]
− P

[
n

max
i=1

ηi ≤ u
]
≤ 0 (4.18)

Proof The proof of the corollary is again obvious, since under our as-

sumption, (Λ0
ij − Λ1

ij)+ = 0.

4.2 Applications to extremes

The comparison results of Section 4.1 can readily be used to give cri-

terion under which the extremes of correlated Gaussian sequences are

distributed as in the independent case.

Lemma 4.2.1 Let ξi, i ∈ Z be a stationary normal sequence with co-

variance rn. Assume that supn≥1 rn ≤ δ < 1. Let un be such that

lim
n↑∞

n

n∑

i=1

|ri|e−
u2
n

1+|ri| = 0 (4.19)

Then

n (1− Φ(un)) → τ ⇔ P [Mn ≤ un] → e−τ (4.20)

Proof Using Corollary 4.1.6, we see that (4.19) implies that

|P [Mn ≤ un]− Φ(un)
n| ↓ 0.
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Since

n (1− Φ(un)) → τ ⇔ Φ(un)
n → e−τ ,

the assertion of the lemma follows.

Since the condition n (1− Φ(un)) → τ determines un (if 0 < τ <∞),

on can easily derive a criteria for (4.19) to hold.

Lemma 4.2.2 Assume that rn lnn ↓ 0, and that un is such that n (1− Φ(un)) →
τ , 0 < τ <∞. Then (4.19) holds.

Proof We know that, if n(1− Φ(un)) ∼ τ ,

exp

(
−1

2
u2n

)
∼ Kunn

−1.

and un ∼
√
2 lnn. Thus

n|ri|e−
u2
n

1+|ri| = n|ri|e−u2
ne

u2
n|ri|

1+|ri|

Let α > 0, and i ≥ nα. Then

n|ri|e−u2
n ∼ 2n−1|ri|lnn

and
u2n|ri|
1 + |ri|

≤ 2|ri| lnn

But then

|ri| lnn = |ri| ln i
lnn

ln i
≤ |ri| ln i

lnn

lnnα
= α−1|ri| ln i

which tends to zero, since rn lnn→ 0, if i ↑ ∞. Thus

∑

i≥nα

n|ri|e−
u2
n

1+|ri| ≤ 2α−1 sup
i≥nα

|ri|ln i exp
(
2α−1|ri|ln i

)
↓ 0,

as n ↑ ∞. On the other hand, since there exists δ > 0, such that

1− ri ≥ δ,

∑

i≤nα

n|ri|e−
u2
n

1+|ri| ≤ n1+αn−2/(2−δ)(2 lnn)2

which tends to zero as well, provided we chose α such that 1 + α <

2/(2− δ), i.e. α < δ/(2 + δ). This proves the lemma.

The following theorem sumarizes the results on the stationary Gaus-

sian case.
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Theorem 4.2.3 Let ξi be a stationary centered normal series with co-

variance ri, such that rn lnn→ 0. Then

(i) For 0 ≤ τ ≤ ∞,

n (1− Φ(un)) → τ ⇔ Φ(un)
n → e−τ ,

(ii) with an and bn chosen as in the iid normal case,

P [an(Mn − bn) ≤ x] → e−e−x

Exercise. Give an alternative proof of Theorem 4.2.3 by verifying con-

ditions D(un) and D
′(un).

4.3 Appendix: Gaussian integration by parts

Before turning to applications, let us give a short proof of the Gaussian

integration by parts formula, Lemma 4.1.2.

Proof (of Lemma 4.1.2). We first consider the scalar case, i.e.

Lemma 4.3.1 Let X be a centered Gaussian random variable, and let

g : R → R be a differentiable function of at most polynomial growth.

Then

Eg(X)X = E(X2)Eg′(X) (4.21)

Proof Let σ = EX2. Then

EXg(X) =
1√
2πσ2

∫ ∞

−∞
g(x)xe−

x2

2σ2 dx

=
1√
2πσ2

∫ ∞

−∞
g(x)

d

dx

(
−σ2e−

x2

2σ2

)
dx

= σ2 1√
2πσ2

∫ ∞

−∞

d

dx
g(x)e−

x2

2σ2 dx = EX2Eg′(x) (4.22)

where we used elementary integration by parts and the assumption that

g(x)e−
x2

2σ2 ↓ 0, if x→ ±∞.

To prove the multivariate case, we use a trick from [12]: We let Xi,

i,= 1, . . . , n be a centered Gaussian vector, and let X be a centered

Gaussian random variable. Set X ′
i ≡ Xi −X EXXi

EX2 . Then

EX ′
iX = EXiX − EXiX = 0
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and so X is independent of the vector X ′
i. Now compute

EXF (X1, . . . , Xn) = EXF

(
X ′

1 +X
EXiX

EX2
, . . . , X ′

n +X
EXnX

EX2

)

Using in this expression Lemma 4.3.1 for the random variable X alone,

we obtain

EXF (X1, . . . , Xn) = EX2EF ′
(
X ′

1 +X
EXiX

EX2
, . . . , X ′

n +X
EXnX

EX2

)

= EX2
n∑

i=1

EXiX

EX2
E
∂F

∂xi

(
X ′

1 +X
EXiX

EX2
, . . . , X ′

n +X
EXnX

EX2

)

=

n∑

i=1

E(XiX)E
∂F

∂xi
(X1, . . . , Xn)

which proves Lemma 4.1.2.
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Extremal processes

In this section we develop and complete the description of the collection

of “extremal values” of a stochastic process that was started in Chapter

1 with the consideration of the joint distribution of k-largest values of

a process. Here we will develop this theory in the language of point

processes. We begin with some background on this subject and the

particular class of processes that will turn out to be fundamental, the

Poisson point processes. For more details, see [10, 6, 4].

5.1 Point processes

Point processes are designed to describe the probabilistic structure of

point sets in some metric space, for our purposes Rd. For reasons that

may not be obvious immediately, a convenient way to represent a col-

lection of points xi in Rd is by associating to them a point measure.

Let us first consider a single point x. We consider the usual Borel-

sigma algebra, B ≡ B(Rd), of Rd, that is generated form the open sets in

the open sets in the Euclidean topology of Rd. Given x ∈ Rd, we define

the Dirac measure, δx, such that, for any Borel set A ∈ B,

δx(A) =

{
1, ifx ∈ A

0, ifx 6∈ A.
(5.1)

A point measure is now a measure, µ, on Rd, such that there exists a

countable collection of points , {xi ∈ Rd, i ∈ N}, such that

µ =

∞∑

i=1

δxi (5.2)

and, if K is compact, then µ(K) <∞.

Note that the points xi need not be all distinct. The set Sµ ≡ {x ∈

64
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Rd : µ(x) 6= 0} is called the support of µ. A point measure such that for

all x ∈ Rd, µ(x) ≤ 1 is called simple.

We denote by Mp(R
d) the set of all point measures on Rd. We equip

this set with th sigma-algebra Mp(R
d), the smallest sigma algebra that

contains all subsets of Mp(R
d) of the form {µ ∈ Mm(Rd) : µ(F ) ∈ B},

where F ∈ B(Rd) and B ∈ B([0,∞)). Mp(R
d) is also characterized by

saying that it is the smallest sigma-algebra that makes the evaluation

maps, µ→ µ(F ), measurable for all Borel sets F ∈ B(Rd).

A point process, N , is a random variable taking values in Mp(R
d), i.e.

a measurable map, N : (Ω,F ;P) → Mp(R
d), from a probability space

to the space of point measures.

This looks very fancy, but in reality things are quite down-to-earth:

Proposition 5.1.1 N is a point process, if and only if the map N(·, F ) :
ω → N(ω, F ), is measurable from (Ω,F) → B([0,∞)), for any Borel set

F , i.e. if N(F ) is a real random variable.

Proof Let us first prove necessity, which should be obvious. In fact,

since ω → N(ω, ·) is measurable into (Mp(R
d),Mp(R

p)), and µ→ µ(F )

is measurable from this space into (R+,B(R+)), the composition of these

maps is also measurable.

Next we prove sufficiency. Define the set

G ≡ {A ∈ Mp(R
d) : N−1A ∈ F}

This set is a sigma-algebra andN is measurable from (Ω,F) → (Mp(R
d),G)

by definition. But G contains all sets of the form {µ ∈Mp(R
d) : µ(F ) ∈

B}, since

N−1{µ ∈Mp(R
d) : µ(F ) ∈ B} = {ω ∈ Ω : N(ω, F ) ∈ B} ∈ F ,

since N(·, F ) is measurable. Thus G ⊃ Mp(R
d), and N is measurable a

fortiori as a map from the smaller sigma-algebra.

We will have need to find criteria for convergence of point processes.

For this we recall some notions of measure theory. If B is a Borel-sigma

algebra, of a metric space E, then T ⊂ B is called a Π-system, if T
is closed under finite intersections; G ⊂ B is called a λ-system, or a

sigma-additive class, if

(i) E ∈ G,
(ii) If A,B ∈ G, and A ⊃ B, then A \B ∈ G,
(iii) If An ∈ G and An ⊂ An+1, then limn↑∞An ∈ G.
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The following useful observation is called Dynkin’s theorem.

Theorem 5.1.2 If T is a Π-system and G is a λ-system, then G ⊃ T
implies that G contains the smallest sigma-algebra containing T .

The most useful application of Dynkin’s theorem is the observation

that, if two probability measures are equal on a Π-system that generates

the sigma-algebra, then they are equal on the sigma-algebra. (since the

set on which the two measures coincide forms a λ-system containing T ).

As a consequence we can further restrict the criteria to be verified for

N to be a Point process. In particular, we can restrict the class of F ’s

for which N(·, F ) need to be measurable to bounded rectangles.

Proposition 5.1.3 Suppose that T are relatively compact sets in B sat-

isfying

(i) T is a Π-system,

(ii) The smallest sigma-algebra containing T is B,
(iii) Either, there exists En ∈ T , such that En ↑ E, or there exists a

partition, {En}, of E with ∪nEn = E, with En ⊂ T .

Then N is a point process on (Ω,F) in (E,B), if and only if the map

N(·, I) : ω → N(ω, I) is measurable for any I ∈ T .

Exercise. Check that the set of all finite collections bounded (semi-

open) rectangles forms indeed a Π-system for E = Rd that satisfies the

hyopthesis of the proposition.

Corollary 5.1.4 Let T satisfy the hypothesis of Proposition 5.1.3 and

set

G ≡ {{µ : µ(Ij) = nj , 1 ≤ j ≤ k}, k ∈ N, Ij ∈ T , nj ≥ 0} . (5.3)

Then the smallest sigma-algebra containing G is Mp(R
d) and G is a

Π-system.

Next we show that the law, PN , of a point process is determined by

the law of the collections of random variables N(Fn), Fn ∈ B(Rd).

Proposition 5.1.5 Let N be a point process in (Rd,B(Rd) and suppose

that T is as in Proposition 5.1.3. Define the mass functions

PI1,...,Ik(n1, . . . , nk) ≡ P [N(Ij) = nj , ∀1 ≤ j ≤ k] (5.4)

for Ij ∈ T , nj ≥ 0. Then PN is uniquely determined by the collection

{PI1,...,Ik , k ∈ N, Ij ∈ T }



5.2 Laplace functionals 67

We need some further notions. First, if N1, N2 are point processes, we

say that they are independent, if and only if, for any collection Fj ∈ B,
Gj ∈ B, the vectors

(N1(Fj), 1 ≤ j ≤ k) and (N2(Gj), 1 ≤ j ≤ ℓ)

are independent random vectors.

The intensity measure, λ, of a point process N is defined as

λ(F ) ≡ EN(F ) =

∫

Mp(Rd)

µ(F )PN (dµ) (5.5)

for F ∈ B.
For measurable functions f : Rd → R+, we define

N(ω, f) ≡
∫

Rd

f(x)N(ω, dx)

Then N(·, f) is a random variable. We have that

EN(f) = λ(f) =

∫

Rd

f(x)λ(dx).

5.2 Laplace functionals

If Q is a probability measure on (Mp,Mp), the Laplace transform of Q

is a map, ψ from non-negative Borel functions on Rd to R+, defined as

ψ(f) ≡
∫

Mp

exp

(
−
∫

Rd

f(x)µ(dx)

)
Q(dµ). (5.6)

If N is a point process, the Laplace functional of N is

ψN (f) ≡ Ee−N(f) =

∫
e−N(ω,f)P(dω) (5.7)

=

∫

Mp

exp

(
−
∫

Rd

f(x)µ(dx)

)
PN (dµ)

Proposition 5.2.1 The Laplace functional, ψN , of a point process, N ,

determines N uniquely.

Proof For k ≥ 1, and F1, . . . , Fk ∈ B, c1, . . . , ck ≥ 0, let f =
∑k

i=1 ci1IFi(x).

Then

N(ω, f) =

k∑

i=1

ciN(ω, Fi)
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and

ψN (f) = E exp

(
−

k∑

i=1

ciN(Fi)

)
.

This is the Laplace transform of the vector (N(Fi), 1 ≤ i ≤ k), that

determines uniquely its law. Hence the proposition follows from Propo-

sition 5.1.5

5.3 Poisson point processes.

The most important class of point processes for our purposes will be

Poisson point processes.

Definition 5.3.1 Let λ be a σ-finite, positive measure on Rd. Then a

point process, N , is called a Poisson point process with intensity measure

λ (PPP (λ)), if

(i) For any F ∈ B(Rd), and k ∈ N,

P [N(F ) = k] =

{
e−λ(F ) (λ(F ))k

k! , ifλ(F ) <∞
0, ifλ(F ) = ∞,

(5.8)

(ii) If F,G ∈ B are disjoint sets, then N(F ) and N(G) are independent

random variables.

In the next theorem we will assert the existence of a Poisson point

process with any desired intensity measure. In the proof we will give an

explicit construction of such a process.

Proposition 5.3.1(i) PPP (λ) exists , and its law is uniquely deter-

mined by the requirements of the definition.

(ii) The Laplace functional of PPP (λ) is given, for f ≥ 0, by

ΨN(f) = exp

(
−
∫

Rd

(1 − e−f(x))λ(dx)

)
(5.9)

Proof Since we know that the Laplace functional determines a point

process, in order to prove that the conditions of the definition uniquely

determine the PPP (λ), we show that they determine the form (5.9) of

the Laplace functional. Thus suppose thatN is a PPP (λ). Let f = c1IF .
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Then

ΨN (f) = E exp (−N(f)) = E exp (−cN(F )) (5.10)

=

∞∑

k=0

e−cke−λ(F ) (λ(F ))
k

k!
= e(e

−c−1)λ(F )

= exp

(
−
∫
(1− e−f(x))λ(dx)

)
,

which is the desired form. Next, if Fi are disjoint, and f =
∑k

i=1 ci1IF−i,

it is straightforward to

ΨN(f) = E exp

(
−

k∑

i=1

ciN(Fi)

)
=

k∏

i=1

E exp (−ciN(Fi))

due to the independence assumption (ii); a simple calculations shows

that this yields again the desired form. Finally, for general f , we can

choose a sequence, fn, of the form considered, such that fn ↑ f . By

monotone convergence then N(fn) ↑ N(f). On the other hand, since

e−N(g) ≤ 1, we get from dominated convergence that

ΨN (fn) = Ee−N(fn) → Ee−N(f) = ΨN (f).

But, since 1−e−fn(x) ↑ 1−e−f(x), and monotone convergence gives once

more

ΨN (fn) = exp

(∫
(1− e−fn(x))λ(dx)

)
↑ exp

(∫
(1− e−f(x))λ(dx)

)

On the other hand, given the form of the Laplace functional, it is trivial

to verify that the conditions of the definition hold, by choosing suitable

functions f .

Finally we turn to the construction of PPP (λ). Let us first consider

the case λ(Rd) <∞. Then construct

(i) A Poisson random variable, τ , of parameter λ(Rd).

(ii) A family, Xi, i ∈ N, of independent, Rd-valued random variables

with common distribution λ. This family is independent of τ .

Then set

N∗ ≡
τ∑

i=1

δXi (5.11)

It is not very hard to verify that N∗ is a PPP (λ).

To deal with the case when λ(Rd) is infinite, decompose λ into a

countable sum of finite measures, λk, that are just the restriction of λ
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to a finite set Fk, where the Fk form a partition of Rd. Then N∗ is just

the sum of independent PPP (λk) N
∗
k .

5.4 Convergence of point processes

Before we turn to applications to extremal processes, we still have to

discuss the notion of convergence of point processes. As point processes

are probability distributions on the space of point measures, we will

naturally think about weak convergence. This means that we will say

that a sequence of point processes, Nn, converges weakly to a point

process, N , if for all continuous functions, f , on the space of point

measures,

Ef(Nn) → Ef(N). (5.12)

However, to understand what this means, we must discuss what continu-

ous functions on the space of point measures are, i.e. we must introduce

a topology on the set of point measures. The appropriate topology for

our purposes will be that of vague convergence.

Vague convergence. We consider the space Rd equipped with its nat-

ural Euclidean metric. Clearly Rd is a complete, separable metric space.

We will denote by C0(R
d) the set of continuous real-valued functions

on Rd that have compact support; C+
0 (Rn) denotes the subset of non-

negative functions. We consider M+(R
d) the set of all σ-finite, positive

measures on (Rd,B(Rd)). We denote by M+(R
d) the smallest sigma-

algebra of subsets of M+(R
d) that makes the maps m → m(f) measur-

able for all f ∈ C+
0 (Rd).

We will say that a sequence of measures, µn ∈ M+(R
d) converges

vaguely to a measure µ ∈M+(R
d), if, for all f ∈ C+

0 (Rd),

µn(f) → µ(f) (5.13)

Note that for this topology, typical open neighborhoods are of the form

Bf1,...,fk,ǫ(µ) ≡ {ν ∈M+(R
d) : ∀ki=1 |ν(fi)− µ(fi)| < ǫ},

i.e. to test the closeness of two measures, we test it on their expecta-

tions on finite collections of continuous, positive functions with compact

support. Given this topology, on can of course define the correspond-

ing Borel sigma algebra, B(M+(R
d)), which (fortunately) turns out to

coincide with the sigma algebra M+(R
d) introduced before.

The following properties of vague convergence are useful.
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Proposition 5.4.1 Let µn, n ∈ N be in M+(R
d). Then the following

statements are equivalent:

(i) µn converges vaguely to µ, µn
v→ µ.

(ii) µn(B) → µ(B) for all relatively compact sets, B, such that µ(∂B) = 0.

(iii) lim supn↑∞ µn(K) ≤ µ(K) and lim supn↑∞ µn(G) ≥ µ(G), for all

compact K, and all open, relatively compact G.

In the case of point measures, we would of course like to see that the

point where the sequence of vaguely convergent measures are located

converge. The following proposition tells us that this is true.

Proposition 5.4.2 Let µn, n ∈ N, and µ be in Mp(R
d), and µn

v→ µ.

Let K be a compact set with µ(∂K) = 0. Then we have a labeling of the

points of µn, for n ≥ n(K) large enough, such that

µn(· ∩K) =

p∑

i=1

δxn
i
, µ(· ∩K) =

p∑

i=1

δxi ,

such that (xn1 , . . . , x
n
p ) → (x1, . . . , xp).

Another useful and unsurprising fact is that

Proposition 5.4.3 The set Mp(R
d) is vaguely closed in M+(R

d).

Thus, in particular, the limit of a sequence of point measures, will, if

it exists as a σ-finite measure, be again a point measure.

Proposition 5.4.4 The topology of vague convergence can be metrized

and turns M+ into a complete, separable metric space.

Although we will not use the corresponding metric directly, it may be

nice to see how this can be constructed. We therefore give a proof of

the proposition that constructs such a metric.

Proof The idea is to first find a countable collection of functions, hi ∈
C+

0 (R
d), such that µn

v→ µ if and only if, for all i ∈ N, µn(hi) → µ(hi).

The construction below is form [6]. Take a family Gi, i ∈ N, that form a

base of relatively compact sets, and assume it to be closed under finite

unions and finite intersections. One can find (by Uryson’s theorem),

families of functions fi,n, gi,n ∈ C+
0 , such that

fi,n ↑ 1IGi , gi,n ↓ 1IGi

Take the countable set of functions gi,n, fi,n as the collection hi. Now



72 5 Extremal processes

µ ∈M+ is determined by its values on the hj . For, first of all, µ(Gi) is

determined by these values, since

µ(fi,n) ↑ µ(Gi) andµ(gi,n) ↓ µ(Gi)

But the family Gi is a Π-system that generates the sigma-algebra B(Rd),

and so the values µ(Gi) determine µ.

Now, µn
v→ µ, iff and only if, for all hi, µn(hi) → ci = µ(hi).

From here the idea is simple: Define

d(µ, ν) ≡
∞∑

i=1

2−i
(
1− e−|µ(hi)−ν(hi)|

)
(5.14)

Indeed, if D(µn, µ) ↓ 0, then for each ℓ, |µn(hℓ) − µ(hℓ)| ↓ 0, and con-

versely.

It is not very difficult to verify that this metric is complete and sepa-

rable.

Weak convergence. Having established the space of σ-finite measures

as a complete, separable metric space, we can think of weak convergence

of probability measures on this space just as if we were working on an

Euclidean space.

One very useful fact about weak convergence is Skorohod’s theorem,

that relates weak convergence to almost sure convergence.

Theorem 5.4.5 Let Xn, n = 0, 1, . . . be a sequence of random variables

on a complete separable metric space. Then Xn converges weakly to

a random variable X0, iff and only if there exists a family of random

variables X∗
n, defined on the probability space ([0, 1],B([0, 1]),m), where

m is the Lebesgue measure, such that

(i) For each n, Xn
D
= X∗

n, and

(ii) X∗
n → X∗

0 , almost surely.

(for a proof, see [1]). While weak convergence usually means that the

actual realisation of the sequence of random variables do not converge

at all and oscillate widely, Skorohod’s theorem says that it is possible

to find an “equally likely” sequence of random variables, X∗
n, that do

themselves converge, with probability one. Such a construction is easy

in the case when the random variables take values in R. In that case, we

associate with the random variable Xn (whose distribution function is
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Fn, that form simplicity we may assume strictly increasing), the random

variable X∗
n(t) ≡ F−1

n (t). It is easy to see that

m(X∗
n ≤ x) =

∫ 1

0

1IF−1
n (t)≤xdt = Fn(x) = P(Xn ≤ x)

On the other hand, if P[Xn ≤ x] → P[X0 ≤ x], for all points of continuity

of F0, that means that for Lebesgue almost all t, F−1
n (t) → F−1

0 (t), i.e.

X∗
n → X∗

0 , m-almost surely.

Skorohod’s theorem is very useful to extract important consequences

from weak convergence. In particular,it allows to prove the convergence

of certain functionals of sequences of weakly convergent random vari-

ables, which otherwise would not be obvious.

A particularly useful criterion for convergence of point processes is

provided by Kallenberg’s theorem [6].

Theorem 5.4.6 Assume that ξ is a simple point process on a metric

space E, and T is a Π-system of relatively compact open sets, and that

for I ∈ T ,

P [ξ(∂I) = 0] = 1.

If ξn, n ∈ N are point processes on E, and for all I ∈ T ,

lim
n↑∞

P [ξn(I) = 0] = P [ξ(I) = 0] , (5.15)

and

lim
n↑∞

Eξn(I) = Eξ(I) <∞, (5.16)

then

ξn
w→ ξ (5.17)

Remark 5.4.1 The Π-system, T , can be chosen, in the case E = Rd,

as finite unions of bounded rectangles.

Proof The key observation needed to prove the theorem is that simple

point processes are uniquely determined by their avoidance function.

This seems rather intuitive, in particular in the case E = R: if we

know the probability that in an interval there is no point, we know the

distribution of the gape between points, and thus the distribution of the

points.

Let us note that we can write a point measure, µ, as

µ =
∑

y∈S

cyδy,
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where S is the support of the point measure and cy are integers. We can

associate to µ the simple point measure

T ∗µ = µ∗ =
∑

y∈S

δy,

Then it is true that the map T ∗ is measurable, and that, if ξ1 and ξ2
are point measures such that, for all I ∈ T ,

P [ξ1(I) = 0] = P [ξ2(I) = 0] , (5.18)

then

ξ∗1
D
= ξ∗2 .

To see this, let

C ≡ {{µ ∈Mp(E) : µ(I) = 0}, I ∈ T } .

The set C is easily seen to be a Π-system. Thus, since by assumption

the laws, Pi, of the point processes ξi coincide on this Π-system, they

coincide on the sigma-algebra generated by it. We must now check

that T ∗ is measurable as a map from (Mp, σ(C)) to (Mp,Mp), which

will hold, if for each I, the map T ∗
1 : µ → µ∗(I) is measurable form

(Mp, σ(C)) → {0, 1, 2, . . .}. Now introduce a family of finite coverings of

(the relatively compact set) I, An,j , with An,j ’s whose diameter is less

than 1/n. We will chose the family such that for each j, An+1,j ⊂ An,i,

for some i. Then

T ∗
1 µ = µ∗(I) = lim

n↑∞

kn∑

j=1

µ(An,j) ∧ 1,

since eventually, no An,j will contain more than one point of µ. Now set

T ∗
2 µ = (µ(An,j) ∧ 1). Clearly,

(T ∗
2 )

−1{0} = {µ : µ(An,j) = 0} ⊂ σ(C),

and so T ∗
2 is measurable as desired, and so is T ∗

1 , being a monotone limit

of finite sums of measurable maps. But now

P [ξ∗1 ∈ B] = P [T ∗ξ1 ∈ B] = P
[
ξ1 ∈ (T ∗)−1(B)

]
= P1

[
(T ∗)−1(B)

]
.

But since (T ∗)−1(B) ∈ σ(C), by hypothesis, P1

[
(T ∗)−1(B)

]
= P2

[
(T ∗)−1(B)

]
,

which is also equal to P [ξ∗1 ∈ B], which proves (5.18).

Now, as we have already mentioned, (5.16) implies uniform tightness

of the sequence ξn. Thus, for any subsequence n′, there exist a sub-

sub-sequence, n′′, such that ξn′′ converges weakly to a limit, η. By
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compactness ofMp, this is a point process. Let us assume for a moment

that (a) η is simple, and (b), for any relatively compact A,

P [ξ(∂A) = 0] ⇒ P [η(∂A) = 0] . (5.19)

Then, the map µ → µ(I) is a.s. continuous with respect to η, and

therefore, if ξn′
w→ η, then

P [ξn′(I) = 0] → P [η(I) = 0] .

But we assumed that

P [ξn(I) = 0] → P [ξ(I) = 0] ,

so that, by the foregoing observation, and the fact that both η and ξ are

simple, ξ = η.

It remains to check simplicity of η and (5.19).

To verify the latter, we will show that for any compact set, K,

P [η(K) = 0] ≥ P [ξ(K) = 0] . (5.20)

We use that for any such K, there exist sequences of functions, fj ∈
C+

0 (Rd), and compact sets, Kj, such that

1IK ≤ fj ≤ 1Kj ,

and 1IKj ↓ 1IK . Thus,

P [η(K) = 0] ≥ P [η(fj) = 0] = P [η(fj) ≤ 0]

But ξn′(fj) converges to η(fj), and so

P [η(fj) ≤ 0] ≥ lim sup
n′

P [ξn′(fj) ≤ 0] ≥ P [ξn′(Kj) ≤ 0] .

Finally, we can approximate Kj by elements Ij ∈ T , such that Kj ⊂
Ij ↓ K, so that

P [ξn′(Kj) ≤ 0] ≥ lim sup
n′

P [ξn′(Ij) ≤ 0] = P [ξ(Kj) ≤ 0] ,

so that (5.20) follows.

Finally, to show simplicity, we take I ∈ T and show that the η has

multiple points in I with zero probability. Now

P [η(I) > η∗(I)] = P [η(I)− η∗(I) < 1/2] ≤ 2 (Eη(I) − Eη∗(I)))

The latter, however, is zero, due to the assumption of convergence of

the intensity measures.
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Remark 5.4.2 The main requirement in the theorem is the conver-

gence of the so-called avoidance function, P [ξn(I) = 0], (5.16). The

convergence of the mean (the intensity measure) provides tightness, and

ensures that all limit points are simple. It is only a sufficient, but not a

necessary condition. It may be replaced by the tightness criterion that

for all I ∈ T , and any ǫ > 0, one can find R ∈ N, such that, for all n

large enough,

P [ξn(I) > R] ≤ ǫ, (5.21)

if one can show that all limit points are simple (see [4]). Note that, by

Chebeychev’s inequality, (5.16) implies, of course, (5.21), but but vice

versa. There are examples when (5.15) and (5.21) hold, but (5.16) fails.

5.5 Point processes of extremes

We are now ready to describe the structure of extremes of random se-

quences in terms of point processes. There are several aspect of these

processes that we may want to capture:

(i) the distribution of the values largest values of the process; if un(x) is

the scaling function such that P [Mn ≤ un(x)]
w→ G(x), it would be

natural to look at the point process

Nn ≡
n∑

i=1

δu−1
n (Xi)

. (5.22)

As n tends to infinity, most of the points un(Xi) will disappear to

minus infinity, but we may hope that as a point process, this object

will converge.

(ii) the “spatial” structure of the large values: we may fix an extreme

level, un, and ask for the distribution of the values i for which Xi

exceeds this level. Again, only a finite number of exceedances will be

expected. To represent the exceedances as point process, it will be

convenient to embed 1 ≤ i ≤ n in the unit interval (0, 1], via the map

i → i/n. This leads us to consider the point process of exceedances

on (0, 1],

Nn ≡
n∑

i=1

δi/n1IXi>un . (5.23)

(iii) we may consider the two aspects together and consider the point pro-

cess on R× (0, 1],



5.5 Point processes of extremes 77

Nn ≡
n∑

i=1

δ(u−1
n (Xi),i/n)

(5.24)

a restriction of this point process to (−5,∞) × (0, 1] is detected in

Figure 5.5 for three values of n in the case of iid exponential random

variables.

The point process of exceedances. We begin with the simplest,

object, the process Nn of exceedances of an extremal level un.

Theorem 5.5.1 Let Xi be a stationary sequence of random variables

with marginal distribution function F .

(i) Let τ > 0, and assume that D(un), D
′(un) hold with un ≡ un(τ)

such that n(1 − F (un(τ))) → τ . Let Nn be defined in (5.23). Then

Nn converges weakly to a Poisson point process, N , on (0, 1] with

intensity measure τdx.

(ii) If the assumptions under (i) hold for all τ > 0, then the point process

Ñn ≡
∞∑

i=−∞
δi/n1IXi>un(τ) (5.25)

converges weakly to the Poisson point process Ñ on R with intensity

measure τdx.

Proof We will use Kallenberg’s theorem. First note that trivially,

ENn((c, d]) =

n∑

i=1

P [Xi > un(τ)] 1Ii/n∈(c,d]

= n(d− c)(1− F (un(τ))) → τ(d − c)

so that the intensity measure converges to the desired one.

Next we need to show that

P [Nn(I) = 0] → e−τ |I|

for I any finite union of disjoint intervals. Consider first I a single

interval. Then

P [Nn(I) = 0] = P
[
∀i/n∈IXi ≤ un

]
→ e−τ |I|

by Proposition 2.3.3. For finite unions of disjoint intervals the same

result follows using that the distances of the intervals when mapped
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Fig. 5.1. The process Pn for values n = 1000, 10000, 100000, truncated at −5.
The expected number of points in each picture is 148.41

back to the integers scale like n, so that we can use Proposition 2.1.1 to

show that, if I = ∪kIk, then

P [Nn(I) = 0] ∼
∏

k

P [Nn(Ik) = 0] .
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In case (i) all intervals are smaller than one, so it is enough to have

conditions D(un), D
′(un) with un = un(τ) for the given τ . In case (ii),

we must also consider larger intervals, too, which requires to have the

conditions with any τ > 0.

The point process of extreme values. Let us now turn to an al-

ternative point process, that of the values of the largest maxima. In

the iid case we have already shown enough in Theorem 1.3.2 to get the

following result.

Theorem 5.5.2 Let Xi be a stationary sequence of random variables

with marginal distribution function F , and assume that D(un) and D
′(un)

hold for all un = un(τ) s.t. n(1−F (un(τ))) → τ . Then the point process

Pn ≡
n∑

i=1

δu−1
n (Xi)

(5.26)

converges weakly to the Poisson Point process on R+ with intensity mea-

sure the Lebesgue measure.

Proof We will just as before use Kallenberg’s theorem. Thus, note first

that for any interval (a, b] ⊂ R+,

EPn((a, b]) = nP
[
u−1
n (X1) ∈ (a, b]

]
= n(F (un(a))− F (un(b))) → b− a.

Next we consider the probability that Pn((a, b]) = 0. Clearly,

P [Pn((a, b]) = 0]

=

∞∑

k=0

P [#{i : Xi > un(a) = k} ∧#{i : Xi ≤ un(b)} = n− k] (5.27)

Now we use the decomposition of the interval (1, . . . , n) into disjoint

subintervals Iℓ and I ′ℓ, ℓ =, . . . , r, as in the proof of Theorem 2.1.2 to

estimate the terms appearing in the sum. Then we have that

P [∃ℓ :M(I ′ℓ) ≥ un(b)] ≤ rm(1 − F (un(b))) ≤
mrb

n
↓ 0.

and hence

P [#{i : Xi > un(a) = k} ∧#{i : Xi ≤ un(b)} = n− k]

≤ P [#{i ∈ ∪ℓIℓ : Xi > un(a) = k} ∧#{i ∈ ∪ℓIℓ : Xi ≤ un(b)} = n− k]

+ P [∃ℓ :M(I ′ℓ) ≥ un(b)] ,



80 5 Extremal processes

and

P [#{i : Xi > un(a) = k} ∧#{i : Xi ≤ un(b)} = n− k]

≥ P [#{i ∈ ∪ℓIℓ : Xi > un(a) = k} ∧#{i ∈ ∪ℓIℓ : Xi ≤ un(b)} = n− k]

− P [∃ℓ :M(I ′ℓ) ≥ un(b)] .

Moreover, due to condition D′(un),

P [∃ℓ : #{i ∈ Iℓ : Xi > un(a)} ≥ 2]

≤ r
∑

16=j∈I1

P [X1 > un(a), Xj > un(b)] ≤ n
∑

16=j∈I1

P [X1 > un(b), Xj > un(b)] ↓ 0.

Thus, we can safely restrict our attention to the event that none of

the intervals Iℓ contains more than one exceedance of the level un(a).

Therefore, the only way to realise the event that k of the Xi exceed

un(a), while all others remain below un(b) is to ask that in k of the

intervals Iℓ the maximum exceeds un(a) while in all others it remains

below un(b). Using stationarity, this gives

P [#{i : Xi > un(a) = k} ∧#{i : Xi ≤ un(b)} = n− k]

=

(
r

k

)
(P [M(I1) > un(b)])

k
(P [M(I1) ≤ un(b)])

n−k
+ o(1).

Finally,

P [M(I1) > un(a)] ∼
n

r
(1− F (un(a)) ∼ a/r

and

P [M(I1) ≤ un(b)] ∼ 1− n

r
(1 − F (un(b)) ∼ 1− b/r

and so
(
r

k

)
(P [M(I1) > un(a)])

k
(P [M(I1) ≤ un])

n−k ∼ 1

k!
ake−b.

Inserting and summing over k yields, as desired,

P [Pn((a, b]) = 0] =

∞∑

k=0

1

k!
ake−b(1 + o(1)) = ea−b(1 + o(1)) (5.28)

where o(1) ↓ 0, when n ↑ ∞, r ↑ ∞,m ↑ ∞, r/n ↓ 0, mr
n ↓ 0.
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Independence of maxima in disjoint intervals. Theorem 5.5.1 says

that the number of exceedances of a given extremal level in disjoint

intervals are asymptotically independent. We want to sharpen this in

the sense that the same is true if different levels are considered in each

interval, and that in fact the processes of extremal values over disjoint

intervals are independent. To go in this direction, let us fix r ∈ N, and

consider for k = 1, . . . , r, sequences ukn such that

n(1− F (ukn)) → τk (5.29)

with u1n ≥ . . . urn. We need to introduce a condition Dr(un) that sharp-

ens condition D(un):

Definition 5.5.1 A stationary random sequence satisfies conditionDr(un),

for sequences ukn as above, if and only if

|Fij(v,w) − Fi(v)Fj(w)| ≤ αn,ℓ (5.30)

where i, j are as in the definition of D(un), and v = (v1, . . . , vp), w =

(w1, . . . , wq), where the entries are taken arbitrarily form the levels ukn,

v1, . . . , wq ∈ {u1n, . . . , urn}. αn,ℓ is as in the definition of D(un).

Condition Dr(un) has of course the obvious implication:

Lemma 5.5.3 Under condition Dr(un), for E1, . . . , Es ⊂ {1, . . . , n}
with dist(Ej,Ej′) ≥ ℓ,
∣∣∣∣∣∣
P
[
∀sj=1M(Ej) ≤ un,j

]
−

s∏

j=1

P [M(Ej) ≤ un,j]

∣∣∣∣∣∣
≤ αn,ℓ(s− 1) (5.31)

if all unj ∈ {u1n, . . . , urn}.

We skip the proof.

In the following theorem J1, . . . , Js denote disjoint subintervals of

{1, . . . , n}, such that |Jj | ∼ θkn.

Theorem 5.5.4 Under condition Dr(un), with J1, . . . , Js as above, and

un,j sequences as in Lemma 5.5.3, we have:
(i)

P
[
∀sj=1M(Jj) ≤ un,j

]
−

s∏

j=1

P [M(Jj) ≤ un,j] → 0 (5.32)

as n ↑ ∞.
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(ii) Let m be fixed, and J1, . . . , Js be disjoint subintervals of {1, . . . , nm},
with |Jj | ∼ nθj and

∑
j θj ≤ m. Then, if Dr(un) holds with un =

(un(τ1m), . . . , un(τsm)), where n(1− F (un(τ))) → τ , for each τ > 0,

then (5.32) holds.

The proof of this Theorem should by now be fairly straightforward and

I will skip it.

If we add suitable conditions D′, we get the following nice corollary:

Corollary 5.5.5(i) Under the conditions of (i) of Theorem 5.5.4, as-

sume that conditions D′(un,k) hold for k = 1, . . . , r. Then with
∑r

k=1 θk ≤
1,

P [∀rk=1M(Jk) ≤ un,k] → exp

(
−

r∑

k=1

θkτk

)
(5.33)

where τk is such that

τk ≡ lim
n↑∞

n(1− F (un,k)).

(ii) The same conclusion holds, if the conditions of (ii) of the theorem and

in addition D′(vn) holds with vn = un(θkτk), for k = 1, . . . , r.

Exceedances of multiple levels. We are now ready to consider the

exceedances of several extremal levels at the same time. We choose

sequences ukn as before, and define the point process on R2

Nn ≡
n∑

i=1

r∑

k=1

1IXi>uk
n
δ(ℓk,i/n). (5.34)

We can think of the values ℓ1 < · · · < ℓr naturally as ℓk = e−τk , with

ℓk = limn↑∞ n(1− F (ukn)), but this is not be necessary.

To formulate a convergence result, we first define a candidate limit

point process. Consider a Poisson point process, Pr, with intensity τr
on R, and let xj be the positions of the atoms of this process, i.e. Pr =∑

j δx1,j . Let βj , j ∈ N be iid random variables, independent of Pr, that

take the values 1, . . . , r with probabilities

P[βj = s] =

{
(τr−s+1 − τr−s)/τr, if s = 1, . . . , r − 1

τ1/τr, if s = r
(5.35)

Now define the point process

N =

∞∑

j=1

βj∑

k=1

δ(ℓk,xj). (5.36)
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Note that the restriction of this process to any of the lines x = ℓk
is a Poisson point process with intensity τk. The construction above

constructs r such processes that are successive “thinnings” of each other.

Thus, it appears rather natural that N will be the limit of Nn (under the

suitable mixing conditions); we already know that the marginals of N on

the lines ℓk converge to those of N , and by construction, the consecutive

processes on the lines must be thinnings of each other.

Theorem 5.5.6(i) Assume that Dr(un) and D′(ukn) for all 1 ≤ k ≤ r

hold. Then Nn converges weakly in distribution to N as a point process

on (0, 1]× R.

(ii) If, in addition, for 0 ≤ τ < ∞, un(τ) satisfies n(1 − F (un(τ))) → τ ,

and Dr(un) holds with u = (un(mτ1), . . . , un(mτt)), for all m ≥ 1,

and D′(un(τ)) holds for all τ > 0, then Nn converges to N as a point

process on R+ × R.

Proof The proof again uses Kallenberg’s criteria. To verify that ENN (B) →
EN(B) is very easy. The main task is to show that

P [Nn(B) = 0] → P [N(B) = 0] ,

B a collection of disjoint, half-open rectangles,B = ∪k(ck, dk]×(γk, δk] ≡
∪kFk. By considering differences and intersections, we may write B in

the form B = ∪j(cj , dj ]×Ej ≡ ∪jFj , where Ej is a finite union of semi-

closed intervals. Now the nice thing is that Nn(Fj) = 0, if and only if

the lowest line ℓk that intersects Fj is empty. Let this line be numbered

mj. Then {Nn(Fj) = 0} = {Pmj((cj , dj ]) = 0}. Since this is just the

event that {M([cjn, djn]) ≤ un,mj}: thus, we can use Corollary 5.5.5 to

deduce that

P [Nn(B) = 0] → exp


−

s∑

j=1

(dj − cj)τmj


 , (5.37)

which is readily verified to equal P [N(B) = 0]. This proves the theorem.

Complete Poisson convergence. We now come to the final goal of

this section, the characterisation of the space-value process of extremes

as a two-dimensional point process. We consider again un(τ) such that

n(1− F (un(τ))) → τ . Then we define

Nn ≡
∞∑

i=1

δ(i/n,u−1
n (Xi))

(5.38)
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as a point process on R2 (or more precisely, on (0, 1]× R+.

Theorem 5.5.7 Let un(τ) be as above; assume that, for any τ > 0,

D′(un(τ) holds, and, for any r ∈ N, and any un ≡ (un(τ1), . . . , uN(τr)),

Dr(un) holds. Then the point process Nn converges to the Poisson point

process, N , on R+ × R+ with intensity measure given by the Lebesgue

measure.

Proof Again we use the criteria of Kallenberg’s lemma. It is straight-

forward to see that, if B = (c, d]× (γ, δ], then

EN(B) =([nd]− [nc])P
[
γ < u−1

n (X1) ≤ δ
]

∼n(d− c)P [un(γ) < X1 ≤ un(δ)] (5.39)

=n(d− c)(F (un(c))− F (un(d))) → (d− c)(δ − γ) = EN (B).

(5.40)

To prove the convergence of the avoidance function, the basic idea is

to express the probabilities that appear for a given set B in terms of

processes Nn that were considered in the preceding theorem, and use

the convergence of those. E.g., if B is a single rectangle, it is clear that

B is free of points of Nn, if and only if the number of exceedances of the

levels uN(γ) and un(δ) in (c, d] are the same, which can be expressed

in terms of the process Nn corresponding to the two levels uN (γ) and

un(δ). But this process converges weakly, and thus the corresponding

probabilities converge to those with respect to the process N . But the

latter probability is easy to compute: any number of points in the lower

process are allowed, provided that all the βj concerned take the value 2.

This yields

N(B) =

∞∑

l=0

e−(d−c)δ [(d− c)δ]l

l!

(γ
δ

)l
= e−(d−c)(δ−γ), (5.41)

as desired.



6

Processes with continuous time

6.1 Stationary processes.

Wewill now consider extremal properties of stochastic processes {Xt}t∈R+

whose index set are the positive real numbers. We will mostly be con-

cerned with stationary processes. In this context, stationarity means

that, for all k ∈ N, and all t1, . . . , tk ∈ R+, and all s ∈ R+, the random

vectors (Xt1 , . . . , Xtk) and (Xt1+s, . . . , Xtk+s) have the same distribu-

tion.

We will further restrict our attention to processes whose sample paths,

Xt(ω), are continuous functions for almost all ω, and that the marginal

distribution of X(t), for any given t ∈ R+, is continuous. Most of our

discussion will moreover concern Gaussian processes.

A crucial notion in the extremal theory of such processes are the notion

of up-crossings and down-crossings of a given level.

Let us define, for u ∈ R, the set, Gu, of function that are not equal to

the constant u on any interval, i.e.

Gu ≡ {f ∈ C0(R) : ∀I∈RfI 6= u} (6.1)

Note that the processes we will consider enjoy this property.

Lemma 6.1.1 If Xt is a continuous time random process with the prop-

erty that all its marginals have a continuous distribution. Then, for any

u ∈ R,

P [Xt ∈ Gu] = 0 (6.2)

Proof If Xt = u for all u ∈ I for some interval I then, it must be true

that for some rational number s, Xs = u. Thus,

P [Xt ∈ Gu] ≤ P [∃s ∈ Q : Xs = u] ≤
∑

s∈Q

P [Xs = u] = 0 (6.3)

85
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since each term in the sum is zero by the assumption that the distribution

of Xs is continuous.

We can now define the notion of up-crossings.

Definition 6.1.1 A function f ∈ Gu has a strict up-crossing of u at t0,

if there are η > 0, ǫ > 0, such that for all t ∈ (to − ǫ, t0) f(t) ≤ u, and

for all t ∈ (t0, t0 + η), f(t) ≥ u.

A function n f ∈ Gu has a up-crossing of u at t0, if there are η > 0

such that for all t ∈ (to − ǫ, t0) f(t) ≤ u, and for all η > 0, there exists

t ∈ (t0, t0 + η), such that f(t) > u.

Remark 6.1.1 Down-crossings of a level u are defined in a completely

analogous way.

The following lemma collects some elementary facts on up-crossings.

Lemma 6.1.2 Let f ∈ Gu. Then

(i) If for 0 ≤ t1 < t2 f(t1) < u < f(t2), then f has an up-crossing in

(t1, t2).

(ii) If f has a non-strict up-crossing of u at t0, then for all ǫ > 0, there

are infinitely many up-crossings of u in (t0, t0 + ǫ).

We leave the proof as an exercise.

For a given function f we will denote, for I ⊂ R, by Nu(I) the number

of up-crossings of u in I. In particular we set Nu(t) ≡ Nu((0, t]). For a

stochastic process Xt we define

Jq(u) ≡ q−1P [X0 < u < Xq] (6.4)

Lemma 6.1.3 Consider a continuous stochastic process Xt as discussed

above. Let I ⊂ R be an interval. Let qn ↓ 0 be a decreasing sequence of

positive real numbers. Let Nn denote the number of points jqn, j ∈ N,

such that both (j − 1)qn ∈ I and jqn ∈ I, and X(j−1)qn < u < Xjqn .

Then

(i) Nn ≤ Nu(I).

(ii) Nn ↑ Nu(I) almost surely. This implies that Nu(I) is a random vari-

able.

(iii) ENn ↑ ENu(I), and whence ENu(t) = t limq↓0 Jq(u).

Proof Assertion (i) is trivial. To prove (ii), we may use that

P [∃k,n : Xkqn = u] = 0.
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If Nu(I) ≥ m, then we can select m up-crossings t1, . . . , tt, such that in

intervals (ti − e, ti), Xt ≤ u, and in each interval (ti, ti + η), there is τ

s.t. Xτ > u. By continuity of Xt, there is an interval around each of

these t s.t. Xt > u in the entire interval.

Thus, for sufficiently large values of n, each of these intervals will con-

tain one of the points kqn, and hence there are at leastm pairs kiqn, ℓiqn,

such that Xkiqn < u < Xℓiqn , i.e. Nn ≥ m. Thus lim infn↑∞Nn ≥
Nu(I). Because of (i), the limsup of Nn is less than Nu(I), and (ii)

follows.

To prove (iii), note that by Fatou’s lemma, (ii) implies that lim infn ENn ≥
ENu(I). If ENu(I) = ∞, this proves ENn → ∞, as desired. Otherwise,

we can use dominated convergence due to (i) to show that ENn →
ENu(I).

Now if I = (0, t], then there are νn ∼ t/qn points jqn in I, and so

ENn ∼ (νn − 1)P [X0 < u < Xq] ∼ tJqn(u).

Hence limn↑∞ ENn = tJqn(u) for any sequence qn ↓ 0, which implies the

second assertion of (iii).

An obvious corollary of this lemma provides a criterion for up-crossings

to be strict:

Corollary 6.1.4 If ENu(t) < ∞, resp. if limq↓0 Jq(u) < ∞, then all

up-crossings of u are strict, a.s.

We now turn to the first non-trivial result of this section, an integral

representation of the function Jq(u) that will prove particularly useful

in the case of Gaussian processes. This is generally known as Rice’s

theorem, although the version we give was obtained later by Leadbetter.

Theorem 6.1.5 Assume that X0 and ζq ≡ q−1(Xq −X0) have a joint

density, gq(u, z) that is continuous in u for all z and all q small enough,

and that there exists p(u, z), such that gq(u, z) → p(u, z), uniformly in

u for fixed z, as q ↓ 0. Assume moreover that, for some function h(z)

such that
∫∞
0
dzzh(z) <∞, gq(u, z) ≤ h(z). Then

ENu(1) = lim
q↓0

Jq(u) =

∫ ∞

0

zp(u, z)dz (6.5)

Proof Note that

{X0 < u < Xq} = {X0 < u < X0+qζq} = {X0 < u < X0}∩{ζq > q−1(u−X0)}.

Thus
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Jq(u) = q−1

∫ u

−∞
dx

∫ ∞

q−1(u−x)

dygq(x, y). (6.6)

Now change to variables v, z, via

x = u− qzv, y = z,

to get that

Jq(u) =

∫ ∞

0

zdz

∫ 1

0

dvgu(u − qzv, z) (6.7)

By our assumptions, Lebesgue’s dominate convergence theorem implies

that

lim
q↓0

∫ ∞

0

zdz

∫ 1

0

dvgu(u−qzv, z) =
∫ ∞

0

zdz

∫ 1

0

dvp(u, z) =

∫ ∞

0

zdzp(u, z),

(6.8)

as claimed.

Remark 6.1.2 We can see p(u, z) as the joint density of Xt, X
′
t, if

the process is differentiable. Considering the process together with its

derivative will be an important tool in the analysis. Equation (6.5) then

can be interested as saying that the average number of up-crossings of

u equals the mean derivative of Xt, conditioned on Xt = u.

We conclude the general discussion with two simple observations that

follow from continuity.

Theorem 6.1.6 Suppose that the function ENu(1) is continuous in u

at u0, and that P[Xt = u] = 0 for all u. Then,

(i) with probability one, all points, t, such that Xt = u0 are either (strict)

up-crossings or down-crossings.

(ii) IfM(T ) denotes the maximum of Xt in [0, T ], then P[M(T ) = u0] = 0.

Proof If X(t) = u0, but neither a strict up-crossing nor a strict down-

crossing, there are either infinitely many crossings of the level u0, or

Xt is tangent to the line x = u0. The former is impossible since by

assumption ENu0(t) is finite. We need to show that that the probability

of a tangency to any fixed level u is zero. Let bu denote the number of

tangencies of u in the interval (0, t]. Assume that Nu + Bu ≥ m, and

let ti be the points where these occur. Since Xt has no plateaus, there

must be at least one up-crossing of the level u− 1/n next to each ti for
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n large enough. Thus, lim infn↓0Nu−1/n ≥ Nu + Bu. Thus, by Fatou’s

lemma and continuity of ENu,

ENu + EBu ≤ lim inf
n↓0

ENu−1/n = ENu,

hence EBu = 0, which proofs that tangencies have probability zero. Now

to prove (ii), note that M(T ) = u either because the maximum of Xt in

reached in the interior of (0, T ), and then Xt must be tangent to u, or

X0 = u or XT = u. All three events have zero probability.

6.2 Normal processes.

We now turn to the most amenable class of processes, stationary Gaus-

sian processes. A process {Xt}t∈R+ is called stationary normal (Gaus-

sian) process, if Xt is a stationary random process, and if for any collec-

tion, t1, . . . , tk ∈ Rt, the vector (Xt1 , . . . , Xtk) is a multivariate normal

vector. In particular, EXt = 0 and EX2
t = 1, for all t ∈ R+. We denote

by r(τ) the covariance function

r(τ) = EXtXt+τ (6.9)

Clearly, r(0) = 1, and if r is differentiable (resp. twice differentiable) at

zero, we set λ1 = r′(0) = 0 and λ2 ≡ −r′′(0).
We say that Xt is differentiable in square-mean, if there is X ′

t, such

that

lim
h→∞

E
(
h−1(Xt+h −Xt)−X ′

t

)2
= 0. (6.10)

Lemma 6.2.1 Xt is differentiable in square mean, if and only if

λ2 <∞.

Proof Let λ2 <∞. Define the Gaussian process X ′
t with

EX ′
t = 0, E (X ′

t)
2
= λ2, EX ′

tX
′
t+τ = −r′′(τ).

Then

E
(
h−1(Xt+h −Xt)−X ′

t

)2
= h−2E (2− 2r(h))− r′′(0),

The first term converges to r′′(0) by hypothesis, and so Xt is differen-

tiable in quadratic mean. On the other hand, if Xt is differentiable in

mean, then

h−2(r(h) − 2) = E
(
h−1(Xt+h −Xt)

)
→ E (X ′

t)
2
,

and so r′′(0) = limh→0 h
−2(2 − r(h)) exists and is finite.
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Moreover, one sees that in this case,

E(h−1(Xt+h −Xt)Xt) = h−1(r(h) − r(0)) → r′(0) = 0,

so that X ′(t) and X(t) are independent for each t.

E
(
(h−1(Xt+h −Xt)−X ′

t)((h
−1(Xs+h −Xs)−X ′

s)
)

= h−2 (2r(t− s)− r(t − s− h)− r(t− s+ h)) + EX ′
tX

′
s,

and so the covariance of X ′
t is as given above. In this case the joint

density, p(u, z), of the pair Xt, X
′
t is given explicitly by

p(u, z) =
1

2π
√
λ2

exp

(
−1

2
(u2 + z2/λ2)

)
. (6.11)

Note also that X0, ζq are bivariate Gaussian with covariance matrix
(

1 q−1(r(q) − r(0))

q−1(r(q) − r(0)) 2q−2(r(0)− r(q))

)
.

Thus, in this context, we can apply Theorem 6.1.5 to get an explicit

formula, called Rice’s formula, for the mean number of up-crossings,

ENu(1) =

∫ ∞

0

zp(u, z)dz =
1

2π

√
λ2 exp

(
−u

2

2

)
. (6.12)

6.3 The cosine process and Slepians lemma.

Comparison between processes is also an important tool in the case

of continuous time Gaussian processes. There is a particularly simple

stationary normal process, called the cosine process, where everything

can be computed explicitly. Let η, ζ be two independent normal random

variables, and define

X∗
t ≡ η cosωt+ ζ sinωt. (6.13)

A simple computation shows that this is a normal process with covari-

ance

EX∗
t+τX

∗
t = cosωτ.

Another way to realise this process as

X∗
t = A cos (ωt− φ) , (6.14)

where η = A cosφ and ζ = A cosφ. It is easy to check that the random

variables A and φ are independent, φ is uniformly distributed on [0, 2π),

and A is Raighley-distributed on R+, i.e. its density is given by

xe−x2/2.
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We will now derive the probability distribution of the maximum of this

random process.

Lemma 6.3.1 If M∗(T ) denotes the maximum of the cosine process on

[0, T ], then

P [M∗(T ) ≤ u] = Φ(u)− ωT

2π
e−u2/2, (6.15)

for u > 0 and 0 < ωT < 2π.

Proof We have λ2 = ω2, and so by Rice’s formula, the mean number of

up-crossings in this process satisfies

ENu(T ) =
ωT

2π
e−u2/2.

Now clearly,

P [M∗(T ) > u] = P[X∗
0 > 0] + P[X∗

0 ≤ u ∧Nu(T ) ≥ 1].

Consider ωT < π. Then, if X∗
0 > u, then the next up-crossing of u

cannot occur before time t = π/ω, i.e. not before T . Thus, Nu(T ) ≥ 1

only if X∗
0 ≤ u, and thus

P[X∗
0 ≤ u ∧Nu(T ) ≥ 1] = P[Nu(T ) ≥ 1].

Also, the number of up-crossings of u before T is bounded by one, so

that

P[Nu(T ) ≥ 1] = ENu(T ) =
ωT

2π
e−u2/2.

Hence,

P [M∗(T ) > u] = 1− Φ(u) +
ωT

2π
e−u2/2, (6.16)

which is the same as formula (6.15).

Using the periodicity of the cosine, we see that the restriction to T <

2π/ω gives already all information on the process.

Let us note that from this formula it follows that

P[M∗(h) > u]

hϕ(u)
→
(
λ2
2π

)1/2

, (6.17)

as u ↑ ∞, where ϕ denotes the normal density. This will later be shown

to be a general fact. The point is that the cosine process will turn out

to be a good model for more general processes locally, i.e. it will reflect

well the effect of short range correlations on the behaviour of maxima.
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We conclude this section with a statement of Slepian’s lemma for

continuous time normal processes.

Theorem 6.3.2 Let Xt, Yt be independent standard normal processes

with almost surely continuous sample paths. Let r1, r2 denote their co-

variance function. Assume that, for all s, t, r1(s, t) ≥ r2(s, t), then

P
[
M(T ) ≤ u

]
≥ P [M2(T ) ≤ u] ,

if M1,M2 denote the maxima of the processes X and Y , respectively.

The proof follows from the analogous statement for discrete time pro-

cesses and the fact the sample paths are continuous. Details are left as

an exercise.

6.4 Maxima of mean square differentiable normal processes

We will now consider stationary normal processes whose covariance func-

tion is twice differentiable at zero, i.e. that

r(τ) = 1− λ2τ
2

2
+ o(τ2). (6.18)

We will first derive the behaviour of the maximum of the process Xt on

a time interval [0, T ].

The basic idea is to use a discretization of the process and Gaussian

comparison results. We cut (0, T ) into pieces of length h > 0 and set

n = [T/h]. We callM(T ) the maximum of Xt on (0, T ); we setM(nh) ≡
maxni=1M(((i− 1)h, ih)).

Lemma 6.4.1 Let Xt be as described above. Then

(i) for all h > 0, P[M(h) > u] ≤ 1− Φ(u) + µh, and so

lim sup
u↑∞

P[M(h) > u]/(µh) ≤ 1.

(ii) Given θ < 1, there exists h0, such that for all h < h0,

P[M(h) > u] ≥ 1− Φ(u) + θµh. (6.19)

Proof To prove (i), note that M(h) exceeds one either because X0 ≥ u,

or because there is an up-crossing of u in (0, h). Thus

P[M(h) > u] ≤ P[X0 > u] + P[Nu(h) ≥ 1] ≤ 1− Φ(u) + ENu(h).

(ii) follows from Slepian’s lemma by comparing with the cosine process.
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Next we compare maxima to maxima of discretizations. We fix q > 0,

and let Nu and N q
u be the number of up-crossing of Xt, respectively the

sequence Xnq in an interval I of length h.

Lemma 6.4.2 With q, u such that qu ↓ 0 as u ↑ ∞,

(i) EN q
u = hµ+ o(µ),

(ii) P[M(I) ≤ u] = P[maxkq∈I Xkq ≤ u] + o(µ),

with o(µ) uniform in I with |I| ≤ h0.

Proof (i) follows from

EN q
u ∼ h/qP[X0 < u < Xq] = hJq(u) = hµ(1 + o(1)).

(ii) follows since

P[max
kq∈I

Xkq ≤ u]− P[M(I) ≤ u] ≤ P(XI > u] + P[Xa < u,Nu ≥ 1, N q
u = 0]

≤ P(XI > u] + P[Nu −N q
u ≥ 1]

≤ 1− Φ(u) + E(Nu −N q
u) = o(µ)

We now return to intervals of length T = nh, where T ↑ ∞ and

Tµ→ τ > 0. We fix 0 < ǫ < h, and divide each sub-interval of length h

into two intervals Ii, I
∗
i , of length h− ǫ and ǫ.

Lemma 6.4.3 With the notation above, and q such that qu→ 0,
(i)

lim sup
T↑∞

|P [M (∪iIi) ≤ u]− P [M(nh) ≤ u]| ≤ τǫ/h (6.20)

(ii)

P [Xkq ≤ u, ∀kq ∈ ∪Ii]− |P [M (∪iIi) ≤ u]| → 0 (6.21)

Proof For (i):

0 ≤ |P [M (∪iIi) ≤ u]− P [M(nh) ≤ u]|

≤ n|P [M (I∗i ) > u] ∼ τǫ

h

P [M (I∗i ) > u]

µǫ

Because of Lemma 6.4.1 (i), (i) follows. (ii) follows from Lemma 6.4.2

(ii) and the fact that the right-hand side is bounded by
∑

i=1

n (P [Xqk ≤ u, ∀qk ∈ Ii]− P[M(Ij) ≤ u]) .
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It is now quite straightforward to prove the asymptotic independence

of maxima as in the discrete case.

Lemma 6.4.4 Assume that r(τ) ↓ 0, as τ ↑ ∞, and that as T ↑ ∞ and

u ↑ ∞,
T

q

∑

ǫ≤qk≤T

|r(kq)| exp
(
− u2

1 + |r(qk)|

)
↓ 0, (6.22)

for any ǫ > 0, and some q such that qu→ 0. Then, it Tµ→ τ > 0,
(i)

P [Xkq ≤ u, ∀kq ∈ ∪iIi]−
n∏

i=1

P [Xkq ≤ u, ∀kq ∈ Ii] → 0, (6.23)

(ii)

x lim sup
n

∣∣∣∣∣
n∏

i=1

P [Xkq ≤ u, ∀kq ∈ Ii]− (P[M(h) ≤ u])
n

∣∣∣∣∣ ≤
2τǫ

h

(6.24)

Proof The details of the proof are a bit long and boring. I just give

the idea: (i) is proven as the Gaussian comparison lemma, comparing

the variance of the sequence Xkn with the one where the covariances

between those variables for which kq, k′q are not in the same Ii are set

to zero.

(ii) uses Lemmata 6.4.1 and 6.4.2.

From independence it is only a small step to the exponential distribu-

tion.

Theorem 6.4.5 Let U, T tend to infinity in such a way that Tµ(u) =

(T/2π)λ
1/2
2 exp(−u2/2) → τ ≥ 0. Suppose that r(t) satisfies (6.18) and

either ρ(t) ln t ↓ 0, as t ↓ 0, or the weaker condition (6.22) for some q

s.t. qu ↓ 0. Then

lim
T↑∞

P [M(T ) ≤ u] = e−τ (6.25)

Proof If τ = 0, i.e. Tµ ↓ 0, P [M(T ) > u] ≤ 1 − Φ(u) + Tµ(u) → 0.

If τ > 0, we are under the assumptions of Lemma 6.4.4, and from our

earlier Lemmata 6.1.2 and 6.1.3,

lim sup
T↑∞

|P [M(nh) ≤ u]− P [M(n) ≤ u]n| ≤ 3τ

h
ǫ (6.26)

for any ǫ >. Also, since nh ≤ t < (n+ 1)h,

0 ≤ P [M(T ) ≤ u]− P [M(nh) ≤ u] ≤ P [Nu(h) ≥ 1] ≤ µh
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which tends to zero. Now we choose 0 < h < h0(θ) with h0(θ) as in (ii)

of Lemma 6.1.2. Then

P [M(h) > u)] ≥ θµh(1 + o(1)) =
θτ

n
(1 + o(1))

and thus

P [M(T ) ≤ u] ≤ (1− P [M(h) > u])n + o(1)
(
1− θτ

n
(1 + o(1))

)n

+ o(1/n) = e−θτ+o(1) + o(1)

and so for all θ < 1,

lim sup
T↑∞

P [M(T ) ≤ u] ≤ e−θτ

Using (i) of Lemma 6.1.2, one sees immediately that

lim inf
T↑∞

P [M(T ) ≤ u] ≥ e−τ

from which the claimed result follows.

6.5 Poisson convergence

6.5.1 Point processes of up-crossings

In this section we will show that the up-crossings of levels u such that

Tµ(u) → τ converge to a Poisson point process. We denote this process

by N∗
T , which can be simply defined by setting, for all Borel-subsets, B,

of R+,

N∗
T (B) = Nu(TB) (6.27)

It will not be a big surprise to find that this process converges to a

Poisson point process:

Theorem 6.5.6 Consider a stationary normal process as in the previ-

ous section, and assume that T, u tend to infinity such that Tµ(u) → τ .

Then, the point-processes of u-up-crossings, N∗
T , converge to the Poisson

point process with intensity τ on R+.

The proof of this result follows exactly as in the discrete case from

the independence of maxima over disjoint intervals. In fact, one proves,

using the same ideas as in the proceeding section the following key lemma

(which is stronger than needed here).
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Lemma 6.5.7 Let 0 < c = c1 < d1 ≤ c2 < d2 ≤ · · · ≤ cr < dr = d be

given. Set Ei = (Tci, T di]. Let τ1. . . . , τi be positive numbers, and let

uT,i be such that Tµ(uT,i) → τi. Then, under the assumptions of the

theorem,

P [∩r
i=1M(Ei) ≤ uTi ]−

r∏

i=1

P [M(Ei) ≤ u] → 0 (6.28)

6.5.2 Location of maxima

We will denote by L(T ) the values, t ≤ T , whereXt attains its maximum

in [0, T ] for the first time. L(T ) is a random variable, and P[L(T ) ≤ t] =

P[M(0, t]) ≥ M((t, T ]. Moreover, under mild regularity assumptions,

the distribution of L(T ) is continuous except possibly at 0 and at T .

Lemma 6.5.8 Suppose that Xt has a derivative in probability at t for

0 < t < T , and that the distribution of the derivative is continuous at

zero. Then P[L(T ) = t] = 0.

One may be tempted to think that the distribution of L(T ) is uniform

on [0, T ], for stationary sequences.
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