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1 Preparation: The Curie-Weiss model

The main topic of this lecture series are diordered mean field spin systems.
This first section will, however, be devoted to ordered spin systems, and more
precisely essentially to the Curie-Weiss model. This will be indispensable
to appreciate later the much more complicated Sherrington-Kirkpatrick spin
glass.

1.1 Spin systems.

In his Ph.D. thesis in 1924, Ernst Ising [18, 19] attempted to solve a model,
proposed by his advisor Lenz, intended to describe the statistical mechanics of
an interacting system of magnetic moments. The setup of the model proceeds
again from a lattice, Zd, and a finite subset, Λ ⊂ Zd. The lattice is supposed
to represent the positions of the atoms in a regular crystal. Each atom is
endowed with a magnetic moment that is quantized and can take only the
two values +1 and −1, called the spin of the atom. This spin variable at site
x ∈ Λ is denoted by σx. The spins are supposed to interact via an interaction
potential φ(x, y); in addition, a magnetic field h is present. The energy of a
spin configuration is then

HΛ(σ) ≡ −
∑

x 6=y∈Λ

φ(x, y)σxσy − h
∑
x∈Λ

σx (1)

The spin system with Hamiltonian (1) with the particular choice

φ(x, y) =

{
J, if |x− y| = 1
0, otherwise

(2)

is known as the Ising spin system or Ising model. This model has played a
crucial rôle in the history of statistical mechanics.
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The essential game in statistical mechanics is to define, once a Hamiltonian
is given, a probability measure, called the Gibbs measure , on the space of spin-
configuration. This entails some interesting subtleties related to the fact that
we would really do this in infinite volume, but I will not enter into these here.
For finite volumes, Λ, we can easily define this probability as

µβ,h,Λ(σ) ≡ exp (−βHΛ(σ))
Zβ,h,Λ

, (3)

where Zβ,h.Λ is a normalizing factor called the partition function,

Zβ,h,Λ ≡
∑
σ∈SΛ

exp (−βHΛ(σ)) . (4)

An interesting fact of statistical mechanics is that the behavior of the partition
function as a function of the parameters β and h contains an enormous amount
of information.

We will call
Fβ,h,Λ ≡ −

1
β

lnZβ,h,Λ (5)

the free energy of the spin system.
The importance of the Ising model for modern statistical physics can

hardly be overestimated. With certain extensions, some of which we will dis-
cuss here, it has become a paradigmatic model for systems of large numbers
of interacting individual components, and the applications gained from the
insight into this model stretch far beyond the original intentions of Lenz and
Ising.

1.2 Subadditivity and the existence of the free energy

The main concern of statistical mechanics is to describe systems in the limit
when its size tends to infinity. Hence one of the first questions one asks, is
whether quantities defined for finite Λ have limits as Λ ↑ Zd. The free energy
(5) is defined in such a way that one can expect this limit to exists. Since
these questions will recur, it will be useful to see how such a result can be
proven.

It will be useful to note that we can express the Hamiltonian in the equiv-
alent form

ĤΛ(σ) =
∑
x,y∈Λ

φ(x, y) (σx − σy)2 − h
∑
x∈Λ

σx (6)

which differs from HΛ only by a constant. Now let Λ = Λ1 ∪Λ2, where Λi are
disjoint volumes. Clearly we have that

Zβ,Λ =
∑

σx,x∈Λ1

∑
τy,y∈Λ2

exp (−β [HΛ1(σ) +HΛ2(τ)])

× exp

−β ∑
x∈Λ1

∑
y∈Λ2

φ(x, y)(σx − τy)2

 (7)
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If φ(x, y) ≥ 0, this implies that

Zβ,Λ ≤ Zβ,Λ1Zβ,Λ2 (8)

and therefore
−Fβ,Λ ≤ (−Fβ,Λ1) + (−Fβ,Λ2) (9)

The property (8) is called subadditivity of the sequence (−Fβ,Λ). The impor-
tance of subadditivity is that it implies convergence, through an elementary
analytic fact:

Lemma 1. Let an be a real-valued sequence that satisfies, for any n,m ∈ N,

an+m ≤ an + am (10)

Then, limn↑∞ n−1an exists. If, moreover, n−1an is uniformly bounded from
below, then the limit is finite.

By successive iteration, the lemma has an immediate extension to arrays:

Lemma 2. Let an1,n2,...,nd , ni ∈ N be a real-valued array that satisfies, for
any ni,mi ∈ N,

an1+m1,...,nd+md ≤ an1,...,nd + am1,...md (11)

Then, limn↑∞(n1n2 . . . , nd)−1an1,...,nd exists.
If an(n1n2 . . . , nd)−1an1,...,nd ≥ b > −∞, then the limit is finite.

Lemma 2 can be used straightforwardly to prove convergence of the free
energy over rectangular boxes:

Proposition 1. If the Gibbs free energy Fβ,Λ of a model satisfies the subaddi-
tivity property (9), and if supσHΛ(σ)/|Λ| ≥ C > −∞, then, for any sequence
Λn of rectangles

lim
n↑∞
|Λn|−1Fβ,Λn = fβ (12)

exists and is finite.

Obviously this proposition gives the existence of the free energy for Ising’s
model, but the range of applications of Proposition 1 is far wider, and vir-
tually covers all lattice spin systems with bounded and absolutely summable
interactions. To see this, one needs to realize that strict subadditivity is not
really needed, as error terms arising, e.g., from boundary conditions can easily
be controlled. Further details can be found in Simon’s book [28].
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1.3 The Curie–Weiss model

Although the Ising model can be solved exactly in dimensions one (easy) and
two (hard), exact solutions in statistical mechanics are rare. To get a quick
insight into specific systems, one often introduces exactly solvable mean field
models . It will be very instructive to study the simplest of these models, the
Curie–Weiss model in some detail. All we need to do to go from the Ising model
to the Curie-Weiss model is to replace the nearest neighbor pair interaction of
the Ising model by another extreme choice, namely the assumption that each
spin variable interacts with each other spin variable at any site of the lattice
with exactly the same strength. Since then the actual structure of the lattice
becomes irrelevant, and we simply take Λ = {1, . . . , N}. The strength of the
interaction should be chosen of order 1/N , to avoid the possibility that the
Hamiltonian takes on values larger than O(N). Thus, the Hamiltonian of the
Curie–Weiss model is

HN (σ) = − 1
N

∑
1≤i,j≤N

σiσj − h
N∑
i=1

σi (13)

At this moment it is time to discuss the notion of macroscopic variables in
some more detail. So far we have seen the magnetization, m, as a thermo-
dynamic variable. It will be reasonable to define another magnetization as a
function on the configuration space: we will call

mN (σ) ≡ N−1
N∑
i=1

σi (14)

the empirical magnetization. Here we divided by N to have a specific mag-
netization. A function of this type is called a macroscopic function, because
it depends on all spin variables, and depends on each one of them very little
(we will make these notions more rigorous in the next section).

Note that the particular structure of the Curie–Weiss model entails that
the Hamiltonian can be written as a function of this single macroscopic func-
tion:

HN (σ) = −N
2

[mN (σ)]2 − hNmN (σ) ≡ NΨh(mN (σ)) (15)

This can be considered as a defining feature of mean field models.
Let us now try to compute the free energy of this model. Because of the

the interaction term, this problem looks complicated at first. To overcome this
difficulty, we do what would appear unusual from our past experience: we go
from the ensemble of fixed magnetic field to that of fixed magnetization. That
is, we write

Zβ,h,N =
∑

m∈MN

eNβ(m
2

2 +mh)zm,N (16)

where MN is the set of possible values of the magnetization, i.e.,
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MN ≡ {m ∈ R : ∃σ ∈ {−1, 1}N : mN (σ) = m} (17)
= {−1,−1 + 2/N, . . . , 1− 2/N, 1}

and
zm,N ≡

∑
σ∈{−1,1}N

1ImN (σ)=m (18)

is a ‘micro-canonical partition function’. Fortunately, the computation of this
micro-canonical partition function is easy. In fact, all possible values of m are
of the form m = 1− 2k/N , where k runs from 0 to N and counts the number
of spins that have the value −1. Thus, the computation of zm,N amounts to
the most elementary combinatorial problem, the counting of the number of
subsets of size k in the set of the first N integers. Thus,

zm,N =
(

N

N(1−m)/2

)
≡ N !

[N(1−m)/2]![N(1 +m)/2]!
(19)

It is always useful to know the asymptotics of the logarithm of the binomial
coefficients which gives, to leading order, for m ∈MN ,

N−1 ln zm,N ∼ ln 2− I(m) (20)

where
I(m) =

1 +m

2
ln(1 +m) +

1−m
2

ln(1−m) (21)

is called Cramèr’s entropy function and worth memorizing. Note that by its
nature it is a relative entropy.

Some elementary properties of I are useful to know: First, I is symmetric,
convex, and takes its unique minimum, 0, at 0. Moreover I(1) = I(−1) = ln 2.
Its derivative, I ′(m) = arcth(m), exists in (−1, 1). While I is not uniformly
Lipschitz continuous on [−1, 1], it has the following property:

Lemma 3. There exists C < ∞ such that for any interval ∆ ⊂ [−1, 1] with
|∆| < 0.1, maxx,y∈∆ |I(x)− I(y)| ≤ C|∆|| ln |∆||.

We would like to say that limN↑∞
1
N ln zm,N = ln 2 + I(m). But there is

a small problem, due to the fact that the relation (20) does only hold on
the N -dependent set MN . Otherwise, ln zm,N = −∞. A precise asymptotic
statement could be the following:

Lemma 4. For any m ∈ [−1, 1],

lim
ε↓0

lim
N↑∞

1
N

ln
∑

m∈MM :|m−m̃|<ε

zm,N = ln 2 + I(m̃) (22)

Proof. The proof is elementary from properties of zm,N and I(m) mentioned
above and is left to the reader.
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In probability theory, the following formulation of Lemma 4 is known as
Cramèr’s theorem. It is the simplest so-called large deviation principle [12]:

Lemma 5. Let A ∈ B(R) be a Borel-subset of the real line. Define a probability
measure pN by pN (A) ≡ 2−N

∑
m∈MN∩A zm,N , and let I(m) be defined in (21)

Then

− inf
m∈A

I(m) ≤ lim inf
N↑∞

1
N

ln pN (A) (23)

≤ lim sup
N↑∞

1
N

ln pN (A) ≤ − inf
m∈Ā

I(m)

Moreover, I is convex, lower-semi-continuous, Lipschitz continuous on (−1, 1),
bounded on [−1, 1], and equal to +∞ on [−1, 1]c.

Remark 1. The classical interpretation of the preceding theorem is the fol-
lowing. The spin variables σi = ±1 are independent, identically distributed
binary random variables taking the values ±1 with equal probability. mN (σ)
is the normalized sum of the first N of these random variables. pN denotes
the probability distribution of the random variable mN , which is inherited
from the probability distribution of the family of random variables σi. It is
well known, by the law of large numbers, that pN will concentrate on the
value m = 0, as N tends to ∞. A large deviation principle states in a precise
manner how small the probability will be that mN take on different values. In
fact, the probability that mN will be in a set A, that does not contain 0, will
be of the order exp(−Nc(A)), and the value of c(A) is precisely the smallest
value that the function I(m) takes on the set A.

The computation of the canonical partition function is now easy:

Zβ,h,N =
∑

m∈MN

(
N

N(1−m)/2

)
exp

(
Nβ

(
m2

2
+ hm

))
(24)

and by the preceeding lemma, one finds that:

Lemma 6. For any temperature, β−1, and magnetic field, h,

lim
N↑∞

−1
βN

lnZβ,h,N = inf
m∈[0,1]

(
−m2/2 + hm− β−1(ln 2− I(m)

)
= f(β, h) (25)

Proof. We give the simplest proof, which, however, contains some valuable
lessons. We first prove an upper bound for Zβ,h,N :

Zβ,h,N ≤ N max
m∈MN

exp
(
Nβ
(m2

2
+ hm

))( N

N(1−m)/2

)
(26)

≤ N max
m∈[−1,1]

exp
(
Nβ
(m2

2
+ hm

)
+N(ln 2− I(m)− JN (m))

)
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Hence

N−1 lnZβ,h,N (27)

≤ N−1 lnN + max
m∈[−1,1]

(
β

(
m2

2
+ hm

)
+ ln 2− I(m)− JN (m)

)
≤ ln 2 + sup

m∈[−1,1]

(
β

(
m2

2
+ hm

)
− I(m)

)
+N−1O(lnN)

so that

lim sup
N↑∞

N−1 lnZβ,h,N ≤ β sup
m∈[−1,1]

(
m2

2
+ hm− β−1I(m)

)
+ ln 2

(28)

This already looks good. Now all we need is a matching lower bound. It can
be found simply by using the property that the sum is bigger than its parts:

Zβ,h,N ≥ max
m∈MN

exp
(
Nβ

(
m2

2
+ hm

))(
N

N(1−m)/2

)
(29)

We see that we will be in business, up to the small problem that we need to
pass from the max overMN to the max over [−1, 1], after inserting the bound
for the binomial coefficient in terms of I(m). In fact, we get that

N−1 lnZβ,h,N ≥ ln 2 + β max
m∈MN

(
m2

2
+ hm− β−1I(m)

)
(30)

− O(lnN/N)

for any N . Now, we can easily check that

max
m∈MN

∣∣∣∣ (m2

2
+ hm− β−1I(m)

)
(31)

− sup
m′∈[0,1],|m′−m|≤2/N

(
m2

2
+ hm− β−1I(m)

) ∣∣∣∣ ≤ C lnN/N

so that

lim inf
N↑∞

1
βN

lnZβ,h,N ≥ β−1 ln 2 + sup
m∈[−1,1]

(
m2

2
+ hm− β−1I(m)

)
(32)

and the assertion of the lemma follows immediately.

The function g(β,m) ≡ −m2/2− β−1(ln 2− I(m)) is called the Helmholtz
free energy for zero magnetic field, and

lim
ε↓0

lim
N↑∞

−1
βN

ln
∑

m̃:|m̃−m|<ε

Z̃β,m̃,N = g(β,m) (33)
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where
Z̃β,m̃,N =

∑
σ∈{−1,1}N

eβHN (σ)1ImN (σ)=m (34)

for h = 0. Thermodynamically, the function f(β, h) is then called Gibbs free
energy, and the assertion of the lemma would then be that the Gibbs free
energy is the Legendre transform of the Helmholtz free energy. The latter
is closely related to the rate function of a large deviation principle for the
distribution of the magnetization under the Gibbs distribution. Namely, if we
define the Gibbs distribution on the space of spin configurations

µβ,h,N (σ) ≡ e−βHN (σ)

Zβ,h,N
(35)

and denote by p̃β,h,N (A) ≡ µβ,h,N ({mN (σ) ∈ A}) the law of mN under this
distribution, then we obtain very easily

Lemma 7. Let p̃β,h,N be the law of mN (σ) under the Gibbs distribution. Then
the family of probability measures p̃β,h,N satisfies a large deviation principle,
i.e. for all Borel subsets of R,

− inf
m∈A

(g(β,m)− hm) + f(β, h) ≤ lim inf
N↑∞

1
βN

ln p̃β,h,N (A) (36)

≤ lim sup
N↑∞

1
βN

ln p̃β,h,N (A)

≤ − inf
m∈Ā

(g(β,m)− hm) + f(β, h)

We see that the thermodynamic interpretation of equilibrium emerges very
nicely: the equilibrium value of the magnetization, m(β, h), for a given tem-
perature and magnetic field, is the value of m for which the rate function in
Lemma 7 vanishes, i.e., which satisfies the equation

g(β,m(β, h))− hm(β, h) = f(β, h) (37)

By the definition of f (see (25)), this is the case whenever m(β, h) realizes the
infimum in (25). If g(β,m) is strictly convex, this infimum is unique, and, as
long as g is convex, it is the set on which ∂g(β,m)

∂m = h.
Note that, in our case, g(β,m) is not a convex function of m if β > 1.
In fact, it has two local minima, situated at the values ±m∗β , where m∗β is

defined as the largest solution of the equation

m = tanhβm (38)

Moreover, the function g is symmetric, and so takes the same value at both
minima. As a consequence, the minimizer of the function g(β,m) −mh, the
magnetization as a function of the magnetic field, is not unique at the value
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h = 0 (and only at this value). For h > 0, the minimizer is the positive
solution of m = tanh(β(m+h)), while for negative h it is the negative solution.
Consequently, the magnetization has a jump discontinuity at h = 0, where it
jumps by 2m∗β . One says that the Curie–Weiss model exhibits a first order
phase transition.

1.4 A different view on the CW model.

We will now have a slightly different look at the Curie-Weiss model. This will
be very instructive from the later perspective of the Sherrington-Kirkpatrick
model.

To get started, we may want to compute the distribution of the spin vari-
ables as such. The perspective here is that of the product topology, so we
should consider a fixed finite set of indices which without loss we may take to
be {1, . . . ,K} and ask for the Gibbs probability that the corresponding spin
variables, σ1, . . . , σK take specific values, and then take the thermodynamic
limit.

To do these computations, it will be useful to make the following choices.
The total volume of the system will be denoted K + N , where K is fixed
and N will later tend to infinity. We will write σ̂ ≡ (σ1, . . . , σK), and σ̌ ≡
(σK+1, . . . , σK+N ). We set σ = (σ̂, σ̌). We now re-write the Hamiltonian as

−HK+N (σ) =
1

2(N +K)

∑
i,j≤K

σiσj (39)

+
1

2(N +K)

∑
i,j>K

σiσj

+
1

N +K

K∑
i=1

σi

N+K∑
j=K+1

σj .

This can be written as

−HK+N (σ) =
K2

2(N +K)
(mK(σ̂))2 (40)

+
N2

2(N +K)
(mN (σ̌))2

+
N

N +K

K∑
i=1

σimN (σ̌).

Now the first term in this sum is of order 1/N and can be neglected. Also
N/(N +K) ∼ 1 +O(1/N). But note that N2/(N +K) = N −K(1−K/N) ∼
N −K. Using these approximations, we see that, up to terms that will vanish
in the limit N ↑ ∞,
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µβ,N+K (σ̂) =
Eσ̌eβ(N−K)(mN (σ̌))2/2eβmN (σ̌)

∑K
i=1 σi

Eσ̌eβ(N−K)(mN (σ̌))2/2
∑
σ̂ e

βmN (σ̌)
∑K
i=1 σi

(41)

=
∫

Qβ,N (dm)e−βKm
2/2eβm

∑K
i=1 σi∫

Qβ,N (dm)e−βKm2/2
∏K
i=1 2 cosh(βm)

.

Now we know that Qβ,N converges to either a Dirac measure on m∗ or the
mixture of two Dirac measures on m∗ and −m∗. Thus it follows from (41)
That µβ,N+K converges to a product measure.

But assume that we did not know anything about Qβ . Could we find out
about it?

First, we write (assuming convergence, otherwise take a subsequence)

µβ(σ̂) =
∫

Qβ(dm)e−βKm
2/2eβm

∑K
i=1 σi∫

Qβ(dm)e−βKm2/2
∏K
i=1 2 cosh(βm)

(42)

Thus (41) establishes that the Gibbs measure of our model is completely de-
termined by a single probability distribution, Qβ , on a scalar random variable.
Thus the task of finding the Gibbs measure is reduced to finding this distri-
bution. How could we do this? A natural idea would be to use the Gibbs
variational principle that say that the thermodynamic state must minimize
the free energy. For this we would just need a representation of the free energy
in terms of Qβ .

To get there, we write the analog of (41) for the partition function. This
yields

Zβ,N+K

Zβ,N
=
∫

Qβ,N (dm)e−βKm
2/2

K∏
i=1

2 cosh(βm). (43)

Now it is not hard to see that the free energy can be obtained as

lim
N↑∞

1
Kβ

ln
Zβ,N+K

Zβ,N
= −fβ .

Thus we get the desired representation of the free energy

−fβ =
1
Kβ

ln
∫

Qβ,N (dm) exp
(
−βK

(
m2/2− β−1 ln 2 cosh(βm)

))
. (44)

Thus the Gibbs principle states implies that

−fβ = sup
Q

1
Kβ

ln
∫

Q(dm) exp
(
−βK

(
m2/2− β−1 ln 2 cosh(βm)

))
, (45)

where the supremum is taken over all probability measures on R. It is of course
not hard to see that the supremum is realized by any probability measure that
has support on the minimizer of the function m2/2− β−1 ln cosh(βm).
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We will see later that a curious analog, with the sup replaced by an inf,
of the formula (45) is the key to the solution of the Sherrington-Kirkpatrick
model.

Should we not have known about the Gibbs principle, we could instead
have observed that (44) can only hold for all K, if Qβ is supported on the
minimizer of the function m2/2− β−1 ln cosh(βm).

Remark 2. An other way to reach the same conclusion is to derive the the
consistency relation∫

Qβ(dm)m =
∫

Qβ(dm)e−βKm
2/2 [cosh(βm)]K tanh(βm)∫

Qβ(dm)e−βKm2/2 [cosh(βm)]k
(46)

for arbitrary K. But then it is clear that this can hold for all K only if Qβ

is concentrated on the minimizers of the function mr/2 − β−1 ln cosh(βm),
which happen also to solve the equation m∗ = tanh(βm∗) so that in the end
all is consistent.
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2 Random mean field models

The naive analog of the Curie–Weiss Hamiltonian with random couplings
would be

HN [ω](σ) = − 1
2N

∑
1≤i,j≤N

Jij [ω]σiσj (47)

for, say, Jij some family of i.i.d. random variables. Thus, we must estimate
P[maxσHN (σ) ≥ CN ]. But,

P[max
σ

HN (σ) ≥ CN ] ≤
∑
σ∈SN

P[HN (σ) ≥ CN ] (48)

=
∑
σ∈SN

inf
t≥0

e−tCNEet
1

2N

∑
i,j∈ΛN×ΛN

Jij [ω]σiσj

=
∑
σ∈SN

inf
t≥0

e−tCN
∏

i,j∈ΛN×ΛN

Eet
1

2N Jij [ω]σiσj

where we assumed that the exponential moments of Jij exist. A standard

estimate then shows that, for some constant c, Eet 1
2N Jij [ω]σiσj ≤ ec

t2

2N2 , and
so

P[max
σ

HN (σ) ≥ CN ] ≤ 2N inf
t≥0

e−tCNect
2/2 ≤ 2Ne−

C2N2
2c (49)

which tends to zero with N . Thus, our Hamiltonian is never of order N , but at
best of order

√
N . The proper Hamiltonian for what is called the Sherrington–

Kirkpatrick model (or short SK-model), is thus

HSK
N ≡ − 1√

2N

∑
i,j∈ΛN×ΛN

Jijσiσj (50)

where the random variables Jij = Jji are i.i.d. for i ≤ j with mean zero (or
at most J0N

−1/2) and variance normalized to one for i 6= j and to two for
i = j In its original, and mostly considered, form, the distribution is moreover
taken to be Gaussian.

This model was introduced by Sherrington and Kirkpatrick in 1976 [27]
as an attempt to furnish a simple, solvable mean-field model for the then

newly discovered class of materials called spin-glasses.

2.1 Gaussian process

This point of view consists of regarding the Hamiltonian (50) as a Gaussian
random process indexed by the set SN , i.e. by the N -dimensional hypercube.
Covariance function

cov(HN (σ), HN (σ′)) =
1

2N

∑
1≤i,j,l,k≤N

EJijJklσiσjσ′kσ′l (51)

=
1
N

∑
1≤i,j≤N

σiσ
′
iσjσ

′
j = NRN (σ, σ′)2



Mean field spin glasses 13

where RN (σ, σ′) ≡ N−1
∑N
i=1 σiσ

′
i is usually called the overlap between the

two configurations σ and σ′.
Hamming distance dHAM (σ, σ′) ≡ #(i ≤ N : σi 6= σ′i), namely

RN (σ, σ′) = (1− 2N−1dHAM (σ, σ′)).
More general class:

cov(HN (σ), HN (σ′)) = Nξ(RN (σ, σ′)) (52)

normalized such that ξ(1) = 1. p-spin SK-models, which are obtained by
choosing ξ(x) = |x|p.

Hp−SK
N (σ) =

−1√
Np−1

∑
1≤i1,...,ip≤N

Ji1...ipσi1 . . . σip (53)

As we will see later, the difficulties in studying the statistical mechanics of
these models is closely linked to the understanding of the extremal properties
of the corresponding random processes. While Gaussian processes have been
heavily analyzed in the mathematical literature (see e.g. [22, 1]), the known
results were not enough to recover the heuristic results obtained in the physics
literature. This is one reason why this particular field of mean-field spin-glass
models has considerable intrinsic interest for mathematics.

2.2 The generalized random energy models

Further classes of models: Use different distances!
Lexicographic distance:

dN (σ, τ) ≡ N−1 (min(i : σi 6= τi)− 1) (54)

is analogous to the overlap RN (σ, τ). The corresponding Gaussian processes
are then characterized by covariances given by

cov(HN (σ), HN (τ)) = NA(dN (σ, τ)) (55)

where A can be chosen to be any non-decreasing function on [0, 1], and can
be thought of as a probability distribution function. The choice of the lex-
icographic distance entails some peculiar features. First, this distance is an
ultrametric, i.e. for any three configurations σ, τ, ρ,

dN (σ, τ) = min (dN (σ, ρ), dN (τ, ρ)) (56)
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3 The simples example: the REM

We set
HN (σ) = −

√
NXσ (57)

where Xσ, σ ∈ SN , are 2N i.i.d. standard normal random variables.

3.1 Ground-state energy and free energy

Lemma 8. The family of random variables introduced above satisfies

lim
N↑∞

max
σ∈SN

N−1/2Xσ =
√

2 ln 2 (58)

both almost surely and in mean.

Proof. Since everything is independent,

P
[

max
σ∈SN

Xσ ≤ u
]

=
(

1− 1√
2π

∫ ∞
u

e−x
2/2dx

)2N

(59)

and we just need to know how to estimate the integral appearing here. This
is something we should get used to quickly, as it will occur all over the place.
It will always be done using the fact that, for u > 0,

1
u
e−u

2/2
(
1− 2u−2

)
≤
∫ ∞
u

e−x
2/2dx ≤ 1

u
e−u

2/2 (60)

2N√
2π

∫ ∞
uN (x)

e−z
2/2dx = e−x (61)

then (for x > − lnN/ ln 2)

uN (x) =
√

2N ln 2 +
x√

2N ln 2
− ln(N ln 2) + ln 4π

2
√

2N ln 2
+ o(1/

√
N) (62)

Thus

P
[

max
σ∈SN

Xσ ≤ uN (x)
]

=
(
1− 2−Ne−x

)2N → e−e
−x

(63)

In other terms, the random variable u−1
N (maxσ∈SN Xσ) converges in distribu-

tion to a random variable with double-exponential distribution

Next we turn to the analysis of the partition function.

Zβ,N ≡ 2−N
∑
σ∈SN

eβ
√
NXσ (64)

A first guess would be that a law of large numbers might hold, implying
that Zβ,N ∼ EZβ,N , and hence

lim
N↑∞

Φβ,N = lim
N↑∞

1
N

ln EZβ,N =
β2

2
, a.s. (65)

Holds only for small enough values of β!
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Theorem 1. In the REM,

lim
N↑∞

EΦβ,N =

{
β2

2 , for β ≤ βc
β2
c

2 + (β − βc)βc, for β ≥ βc
(66)

where βc =
√

2 ln 2.

Proof. We use the method of truncated second moments.
We will first derive an upper bound for EΦβ,N . Note first that by Jensen’s

inequality, E lnZ ≤ ln EZ, and thus

EΦβ,N ≤
β2

2
(67)

On the other hand we have that

E
d

dβ
Φβ,N = N−1/2E

EσXσe
β
√
NXσ

Zβ,N
(68)

≤ N−1/2E max
σ∈SN

Xσ ≤ β
√

2 ln 2(1 + C/N)

for some constant C. Combining (67) and (68), we deduce that

EΦβ,N ≤ inf
β0≥0

{
β2

2 , for β ≤ β0

β2
0
2 + (β − β0)

√
2 ln 2(1 + C/N), for β ≥ β0

(69)

It is easy to see that the infimum is realized (ignore the C/N correction)
for β0 =

√
2 ln 2. This shows that the right-hand side of (66) is an upper

bound.
It remains to show the corresponding lower bound. Note that, since

d2

dβ2Φβ,N ≥ 0, the slope of Φβ,N is non-decreasing, so that the theorem will be
proven if we can show that Φβ,N → β2/2 for all β <

√
2 ln 2, i.e. that the law

of large numbers holds up to this value of β. A natural idea to prove this is
to estimate the variance of the partition function One would compute

EZ2
β,N = EσEσ′Eeβ

√
N(Xσ+Xσ′ )

= 2−2N

∑
σ 6=σ′

eNβ
2

+
∑
σ

e2Nβ2

 (70)

= eNβ
2
[
(1− 2−N ) + 2−NeNβ

2
]

where all we used is that for σ 6= σ′ Xσ and Xσ′ are independent. The second
term in the square brackets is exponentially small if and only if β2 < ln 2. For
such values of β we have that
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P
[∣∣∣∣ln Zβ,N

EZβ,N

∣∣∣∣ > εN

]
= P

[
Zβ,N

EZβ,N
< e−εN or

Zβ,N
EZβ,N

> eεN
]

≤ P

[(
Zβ,N

EZβ,N
− 1
)2

>
(
1− e−εN

)2]

≤
EZ2

β,N/(EZβ,N )2 − 1
(1− e−εN )2

≤ 2−N + 2−NeNβ
2

(1− e−εN )2
(71)

which is more than enough to get (65). But of course this does not correspond
to the critical value of β claimed in the proposition!

Instead of the second moment of Z one should compute a truncated version
of it, namely, for c ≥ 0,

Z̃β,N (c) ≡ Eσeβ
√
NXσ1IXσ<c

√
N (72)

An elementary computation using (60) shows that, if c > β, then

EZ̃β,N (c) = e
β2N

2

(
1− e−Nβ

2/2

√
2πN(c− β)

(1 +O(1/N)

)
(73)

so that such a truncation essentially does not influence the mean partition
function. Now compute the mean of the square of the truncated partition
function (neglecting irrelevant O(1/N) errors):

EZ̃2
β,N (c) = (1− 2−N )[EZ̃β,N (c)]2 + 2−NEeβ

√
N2Xσ1IXσ<c

√
N ) (74)

where

E e2β
√
NXσ1IXσ<c

√
N =

e
2β2N , if 2β < c

2−N e2cβN−
c2N

2

(2β−c)
√

2πN
, otherwise,

(75)

Combined with (73) this implies that, for c/2 < β < c,

2−NE e2β
√
NXσ1IXσ<c

√
N(

E Z̃N,β
)2 =

e−N(c−β)2−N(2 ln 2−c2)/2

(2β − c)
√
N

(76)

Therefore, for all c <
√

2 ln 2, and all β < c,

E

[
Z̃β,N (c)− EZ̃β,N (c)

EZ̃β,N (c)

]2

≤ e−Ng(c,β) (77)

with g(c, β) > 0. Thus Chebyshev’s inequality implies that
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P
[
|Z̃β,N (c)− EZ̃β,N (c)| > δEZ̃β,N (c)

]
≤ δ−2e−Ng(c,β) (78)

and so, in particular,

lim
N↑∞

1
N

E ln Z̃β,N (c) = lim
N↑∞

1
N

ln EZ̃β,N (c) (79)

for all β < c <
√

2 ln 2 = βc. But this implies that for all β < βc, we can chose
c such that

lim
N↑∞

1
N

ln EZβ,N ≥ lim
N↑∞

1
N

ln EZ̃β,N (c) =
β2

2
(80)

This proves the theorem.

3.2 Fluctuations and limit theorems

Theorem 1. Let P denotes the Poisson point process on R with intensity
measure e−xdx. Then, in the REM, with α = β/

√
2 ln 2, if β >

√
2 ln 2,

e−N [β
√

2 ln 2−ln 2]+α
2 [ln(N ln 2)+ln 4π]Zβ,N

D→
∫ ∞
−∞

eαzP(dz) (81)

and

N (Φβ,N − EΦβ,N ) D→ ln
∫ ∞
−∞

eαzP(dz)− E ln
∫ ∞
−∞

eαzP(dz). (82)

Proof. Basically, the idea is very simple. We expect that for β large, the
partition function will be dominated by the configurations σ corresponding to
the largest values of Xσ. Thus we split Zβ,N carefully into

ZxN,β ≡ Eσeβ
√
NXσ1I{Xσ≤uN (x)} (83)

and Zβ,N − Zxβ,N . Let us first consider the last summand. We introduce the
random variable

WN (x) = Zβ,N − Zxβ,N = 2−N
∑
σ∈SN

eβ
√
NXσ1I{Xσ>uN (x)} (84)

It is convenient to rewrite this as (we ignore the sub-leading corrections to
uN (x) and only keep the explicit part of (62))

WN (x) = 2−N
∑
σ∈SN

eβ
√
NuN (u−1

N (Xσ))1I{u−1
N (Xσ)>x}

= eN(β
√

2 ln 2−ln 2)−α2 [ln(N ln 2)+ln 4π] (85)

×
∑
σ∈SN

eαu
−1
N (Xσ)1I{u−1

N (Xσ)>x} (86)

≡ 1
C(β,N)

∑
σ∈SN

eαu
−1
N (Xσ)1I{u−1

N (Xσ)>x} (87)
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where
α ≡ β/

√
2 ln 2 (88)

and C(b,N) is defined through the last identity. The key to most of what
follows relies on the famous result on the convergence of the extreme value
process to a Poisson point process (for a proof see, e.g., [21]):

Theorem 2. Let PN be point process on R given by

PN ≡
∑
σ∈SN

δu−1
N (Xσ) (89)

Then PN converges weakly to a Poisson point process on R with intensity
measure e−xdx.

Clearly, the weak convergence of PN to P implies convergence in law of
the right-hand side of (85), provided that eαx is integrable on [x,∞) w.r.t. the
Poisson point process with intensity e−x. This is, in fact, never a problem: the
Poisson point process has almost surely support on a finite set, and therefore
eαx is always a.s. integrable. Note, however, that for β ≥

√
2 ln 2 the mean of

the integral is infinite, indicating the passage to the low-temperature regime.

Lemma 9. Let WN (x), α be defined as above, and let P be the Poisson point
process with intensity measure e−zdz. Then

C(β,N)WN (x) D→
∫ ∞
x

eαzP(dz) (90)

Next we show that the contribution of the truncated part of the partition
function is negligible compared to this contribution. For this it is enough to
compute the mean values

EZxβ,N ∼ eNβ
2/2

uN (x)−β
√
N∫

−∞

dz√
2π
e−

z2
2

∼ eNβ
2/2 e−(uN (x)−β

√
N)2/2

√
2π(β

√
N − uN (x))

∼ 2−Nex(α−1)

α− 1
eN(β

√
2 ln 2−ln 2)−α2 [ln(N ln 2)+ln 4π]

=
ex(α−1)

α− 1
1

C(β,N)
(91)

so that

C(β,N)EZxβ,N ∼
ex(α−1)

α− 1
which tends to zero as x ↓ −∞, and so C(β,N)EZxβ,N converges to zero in
probability. The assertions of Theorem 1 follow.
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3.3 The Gibbs measure

A nice way to do this consists in mapping the hypercube to the interval (0, 1]
via

SN 3 σ → rN (σ) ≡ 1−
N∑
i=1

(1− σi)2−i−1 ∈ (0, 1] (92)

Define the pure point measure µ̃β,N on (0, 1] by

µ̃β,N ≡
∑
σ∈SN

δrN (σ)µβ,N (σ) (93)

Our results will be expressed in terms of the convergence of these measures.
It will be understood in the sequel that the space of measures on (0, 1] is
equipped with the topology of weak convergence, and all convergence results
hold with respect to this topology.

Let us introduce the Poisson point process R on the strip (0, 1]× R with
intensity measure 1

2dy × e
−xdx. If (Yk, Xk) denote the atoms of this process,

define a new point process Mα on (0, 1] × (0, 1] whose atoms are (Yk, wk),
where

wk ≡
eαXk∫

R(dy, dx)eαx
(94)

for α > 1. With this notation we have that:

Theorem 3. If β >
√

2 ln 2, with α = β/
√

2 ln 2, then

µ̃β,N
D→ µ̃β ≡

∫
(0,1]×(0,1]

Mα(dy, dw)δyw (95)

Proof. With uN (x) defined in (62), we define the point processRN on (0, 1]×R
by

RN ≡
∑
σ∈SN

δ(rN (σ),u−1
N (Xσ)) (96)

A standard result of extreme value theory (see [21], Theorem 5.7.2) is easily
adapted to yield that

RN
D→ R, as N ↑ ∞ (97)

Note that

µβ,N (σ) =
eαu

−1
N (Xσ)∑

σ e
αu−1

N (Xσ)
=

eαu
−1
N (Xσ)∫

RN (dy, dx)eαx
(98)

Since
∫
RN (dy, dx)eαx <∞ a.s., we can define the point process

Mα,N ≡
∑
σ∈SN

δ(
rN (σ),

exp(αu−1
N

(Xσ))∫
RN (dy,dx) exp(αx)

) (99)
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on (0, 1]× (0, 1]. Then

µ̃β,N =
∫
Mα,N (dy, dw)δyw (100)

The only non-trivial point in the convergence proof is to show that the con-
tribution to the partition functions in the denominator from atoms with
uN (Xσ) < x vanishes as x ↓ −∞. But this is precisely what we have shown
to be the case in the proof of part of Theorem 1. Standard arguments then
imply that first Mα,N

D→Mα, and consequently, (95).

The measure µ̃β is in fact closely related to a classical object in probability
theory, the α-stable Lévy subordinator. To see this, denote by

Zα(t) ≡
∫ t

0

∫ +∞

−∞
eαxR(dy, dx). (101)

Clearly, the probability distribution function associated to the measure µ̃β
satisfies, for t ∈ [0, 1], ∫ t

0

µβ(dx) =
Zα(t)
Zα(1)

. (102)

Lemma 10. For any 0 < α < 1, the stochastic process Zα(t) is the α-stable
levy process (subordinator) with Lévy measure y−1/α−1dy.

Proof. There are various ways to prove this result. Note first that the process
has independent, identically distributed increments. It is then enough, e.g. to
compute the Laplace transform of the one-dimensional distribution, i.e. one
shows that

Ee−λZα(t) = exp
(∫ ∞

0

(e−λy − 1)y−1/α−1dy

)
. (103)

This can be done by elementary calculus and is left to the reader.

Let us note that is is not difficult to show that the process∑
σ∈SN

eαu
−1
N (Xσ)1IrN (σ)≤t (104)

converges in the Skorokhod J1-topology to the α-stable Lévy subordinator.
Hence the distribution function of the measures µ̃β,N to µ̃β can be interpreted
in the sense of the corresponding convergence of their distribution functions
a stochastic processes on Skorokhod space.
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3.4 The asymptotic model

In the case β > 1, we can readily interpret our asymptotic results in terms
of an new statistical mechanics model for the infinite volume limit. It has the
following ingredients:

• State space: N;
• Random Hamiltonian: x : N→ R, where xi is the i-th atom of the Poisson

process P;
• Temperature: 1/α = βc/β;
• Partition function: Zα =

∑
i∈N e

αxi ;
• Gibbs measure: µ̂σ(i) = Zαeαxi .

Our convergence results so far can be interpreted in terms of this model
as follows:

• The partition function of the REM converges, after division by exp(β
√
NuN (0)),

to Zα;
• If we map the Gibbs measure µ̂α to the unit interval via

µ̂α → µ̌α =
∑
i∈N

δUi µ̂α(i), (105)

where Ui, i ∈ N, is a family of independent random variables that are dis-
tributed uniformly on the interval [0, 1]. Then µ̌σ has the same distribution
as µ̃β .

This is a reasonably satisfactory picture. What is lacking, however, is a
proper reflection of the geometry of the Gibbs measure on the hypercube.
Clearly the convergence of the embedded measures on the unit interval is
insufficient to capture this.

In the next section we will see how this should be incorporated.

3.5 The replica overlap

If we want to discuss the geometry of Gibbs measures, we first must decide
on how to measure distance on the hypercube. The most natural one is the
Hamming distance, or its counterpart, the overlap, RN (σ, σ′). Of course we
might also want to use the ultrametric, distance dN , and we will comment on
this later.

To describe the geometry of µβ,N , we may now ask how much mass one
finds in a neighborhood of a point σ ∈ SN , i.e. we may define

φβ,N (σ, t) ≡ µβ,N (RN (σ, σ′) > t) . (106)

Clearly this defines a probability distribution on [−1, 1] (as we will see, in
reality if will give zero mass to the negative numbers).
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Of course these 2N functions are not very convenient. The first reflex will
be to average over the Gibbs measures, i.e. to define

ψβ,N (t) ≡
∑
σ∈SN

µβ,N (σ)φβ,N (σ, t) = µβ,N [ω]⊗ µβ,N [ω] (RN (σ, σ′) ∈ dz) .

(107)
The following theorem expresses the limit of ψ in the form we would expect,

namely in terms of the asymptotic model.

Theorem 4. For all β >
√

2 ln 2

ψβ,N (t) D→


0, if, t < 0;
1−

∑
i∈N µ̂α(i)2, if 0 ≤ t < 1,

1, if t ≥ 1.
(108)

Proof. The only new thing we have to show is that the function ψ increases
only at 0 and at one; that is to say, we have to show that with probability
tending to one the overlap RN takes on only the values one or zero.

We write for any ∆ ⊂ [−1, 1]

ψβ,N (∆) ≡ µ⊗2
β,N (RN ∈ ∆) ≡ ψβ,N (∆) = Z−2

β,NEσEσ′
∑
t∈∆

RN (σ,σ′)=t

eβ
√
N(Xσ+Xσ′ )

(109)
We use the truncation introduced in Section 3.2. Note first that, for any
interval ∆,∣∣∣∣∣∣∣ψβ,N (∆)− Z−2

β,NEσEσ′
∑
t∈∆

RN (σ,σ′)=t

1IXσ,Xσ′≥uN (x)e
β
√
N(Xσ+Xσ′ )

∣∣∣∣∣∣∣ ≤
2Zxβ,N
Zβ,N

(110)
We have already seen in the proof of Theorem (1) that the right-hand side of
(110) tends to zero in probability, as first N ↑ ∞ and then x ↓ −∞. On the
other hand, for t 6= 1,

P
[
∃σ,σ,:RN (σ,σ′)=t : Xσ > uN (x) ∧Xσ′ > uN (x)

]
(111)

≤ Eσσ′1IRN (σ,σ′)=t 22NP [Xσ > uN (x)]2 =
2e−I(t)Ne−2x

√
2πN

√
1− t2

by the definition of uN (x) (see (61)). This implies again that any interval
∆ ⊂ [−1, 1) ∪ [−1, 0) has zero mass. To conclude the proof it is enough to
compute ψβ,N (1). Clearly

ψβ,N (1) =
2−NZ2β,N

Z2
β,N

(112)
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By Theorem 1, one sees easily that

ψβ,N (1) D→
∫
e2αzP(dz)(∫
eαzP(dz)

)2 (113)

It is now very easy to conclude the proof.

The empirical distance distribution.

Rather than just taking the mean of the functions φβ,N , we can naturally
define their empirical distribution. It is natural to do this biased with their
importance in the Gibbs measures. This lead to the object

Kβ,N ≡
∑
σ∈SN

µβ,N (σ)δφβ,N (σ,·). (114)

Here we think of the δ-measure as a measure on probability distribution func-
tions, respectively probability measures on [−1, 1], and to Kβ,N is a random
probability measure on the same space. This measure carries a substantial
amount of information on the geometry of the Gibbs measure and is in fact
the fundamental object to study.

Note that we can define an analogous object in the asymptotic model. We
just have to decide on how to measure distance, or overlap, between the points
in N. In view of the results above, the natural choice is to say that the overlap
between a point and itself is one, and is zero between different points. Then
set

Kα =
∑
i∈N

µ̂α(i)δ
(̂1−µα(i))1I{·∈[0,1)}+µ̂α(i)1I{·≥1}. (115)

A fairly simple to prove extension of Theorem 4 gives the strongest link be-
tween the REM and the asymptotic model.

Theorem 5. With the standard relation between α and β,

Kβ,N → Kα, (116)

where the convergence is in distribution with respect to weak topology of mea-
sures on the space to distribution functions equipped with the weak topology.

4 Derrida’s Generalized Random Energy models

We will now turn to the investigation of the second class of Gaussian models
we have mentioned above, namely Gaussian processes whose covariance is a
function of the lexicographic distance on the hypercube (see (55)). B. Derrida
introduced these models in the case where A is a step function with finitely
many jumps as a natural generalization of the REM and called it the gener-
alized random energy model (GREM)[11, 13, 14, 15]. The presentation below
is based on results obtained with I. Kurkova [6, 7, 8].
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4.1 The GREM and Poisson cascades

A key in the analysis of the REM was the theory of convergence to Poisson
processes of the extreme value statistics of (i.i.d.) random variables. In the
GREM, analogous results will be needed in the correlated case.

We assume that A is the distribution function of a measure that is sup-
ported on a finite number, n, of points x1, . . . , xn ∈ [0, 1], as shown in Figure
1. In that case we denote the mass of the atoms xi by ai, and we set

lnαi = (xi − xi−1) ln 2, i = 1, . . . , n (117)

where x0 ≡ 0. We normalize in such a way that
∑n
i=1 ai = 1, and

∏n
i=1 αi = 2.

-

-

-

-

6

--

Pn = (1, 1)

A(x)

P1

P2

lnα1α2

ln 2
ln(α1···αn)

ln 2
= 1

a1 + · · ·+ an = 1

a1

a1 + a2

lnα1

ln 2

P0

Fig. 1. The function A(x).

It is very useful that there is an explicit representation of the corresponding
process Xσ. We write σ = σ1σ2 . . . σn where σi ∈ SN lnαi/ ln 2. Usually we will
assume that x1 > 0, xn = 1, and all ai > 0.

Then the Gaussian process Xσ can be constructed from independent stan-
dard Gaussian random variablesXσ1 , Xσ1σ2 , . . . , Xσ1...σ2 ,where σi ∈ {−1, 1}N lnαi/ ln 2

as

Xσ ≡
√
a1Xσ1 +

√
a2Xσ1σ2 + · · ·+

√
anXσ1σ2...σn , if σ = σ1σ2 . . . σn. (118)

4.2 Poisson cascades and extremal processes

Our first concern is to understand the structure of the extremes of such pro-
cesses. The key ideas are easiest understood in the case where n = 2. Let
us consider the set, Sx, of σ1 for which Xσ1 ∼

√
a12N lnα1x. We know that

the cardinality of this set is rather precisely α
N(1−x)
1 if x < 1. Now all the
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α
N(1−x)
1 αN2 = 2Nα−xN1 random variables Xσ1σ2 with σ1 ∈ Sx are indepen-

dent, so that we know that their maximum is roughly
√

2a2N(ln 2− x lnα1).
Hence, the maximum of the Xσ with σ1 ∈ Sx is√

a12N ln a1x+
√

2a2N(ln 2− x lnα1) (119)

Finally, to determine the overall maximum, it suffices to find the value of x
that maximizes this quantity, which turns out to be given by x∗ = a1 ln 2

lnα1
,

provided the constraint a1 ln 2
lnα1

< 1 is satisfied. In that case we also find that√
a12N ln a1x+

√
2a2N(ln 2− x∗ lnα1) =

√
2 ln 2 (120)

i.e. the same value as in the REM. On the other hand, if a1 ln 2
lnα1

> 1, the
maximum is realized by selecting the largest values in the first generation,
corresponding to x = 1, and then for each of them the extremal members
of the corresponding second generation. The value of the maximum is then
(roughly) √

a12N ln a1 +
√

2a2N lnα2 ≤
√

2 ln 2 (121)

where equality holds only in the borderline case a1 ln 2
lnα1

= 1, which requires
more care. The condition a1 ln 2

lnα1
< 1 has a nice interpretation: it simply means

that the function A(x) < x, for all x ∈ (0, 1).
In terms of the point processes, the above considerations suggest the fol-

lowing picture (which actually holds true): If a1 ln 2
lnα1

< 1, the point process∑
σSN

δu−1
N (Xσ) → P (122)

exactly as in the REM, while in the opposite case this process would surely
converge to zero. On the other hand, we can construct (in both cases) another
point processes, ∑

σ=σ1σ2∈{−1,+1}N
δ√a1u

−1
lnα1,N

(Xσ1+
√
a2u
−1
lnα2,N

(Xσ1σ2 ) (123)

where we set
uα,N (x) ≡ uN lnα/ ln 2(x) (124)

This point process will converge to a process obtained from a Poisson cascade:
The process ∑

σ1∈{−1,+1}lnα1N

δu−1
α1,N

(Xσ1 ) (125)

converges to a Poisson point process, and, for any σ1, so do the point processes∑
σ2∈{−1,+1}lnα2N

δu−1
α2,N

(Xσ1σ2 ) (126)
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Then the two-dimensional point process∑
σ=σ1σ2∈{−1,+1}N

δ(u−1
α1,N

(Xσ1 ),u−1
α2,N

(Xσ1σ2 )) (127)

converges to a Poisson cascade in R2: we place the Poisson process (always
with intensity measure e−xdx) on R, and then, for each atom, we place an
independent PPP on the line orthogonal to the first line that passes through
that atom. Adding up the atoms of these processes with the right weight yields
the limit of the process defined in (123). Now this second point process does
not yield the extremal process, as long as the first one exists, i.e. as long as
the process (122) does not converge to zero. Interestingly, when we reach the
borderline, the process (122) converges to the PPP with intensity Ke−xdx
with 0 < K < 1, while the cascade process yields points that differ from those
of this process only in the sub-leading order.

Having understood the particular case of two levels, it is not difficult to
figure out the general situation.

The next result tells us which Poisson point processes we can construct.

Theorem 1. Let 0 < ai < 1, αi > 1, i = 1, 2, . . . , n with
∑n
i=1 ai = 1. Set

ᾱ ≡
∏n
i=1 αi. Then the point process∑

σ=σ1...σn∈{−1,+1}N ln ᾱ/ ln 2

δu−1
ᾱ,N (

√
a1Xσ1+

√
a2Xσ1σ2+···+√anXσ1σ2...σn ) (128)

converges weakly to the Poisson point process P on R with intensity measure
Ke−xdx, K ∈ R, if and only if, for all i = 2, 3, . . . , n,

ai + ai+1 + · · ·+ an ≥ ln(αiαi+1 · · ·αn)/ ln ᾱ (129)

Furthermore, if all inequalities in (129) are strict, then the constant K = 1.
If some of them are equalities, then 0 < K < 1.

Remark 3. An explicit formula for K can be found in [6].

Remark 4. The conditions (129) can be expressed as A(x) ≤ x for all x ∈
(0, 1).

Theorem 2. Let αi ≥ 1, and set ᾱ ≡
∏k
i=1 αi. Let Yσ1 , Yσ1σ2 ,

. . . , Yσ1...σk be identically distributed random variables, such that the vectors
(Yσ1)σ1∈{−1,1}N lnα1/ ln ᾱ , (Yσ1σ2)σ2∈{−1,1}N lnα2/ ln ᾱ , . . . . . . . . . ,
(Yσ1σ2...σk)σk∈{−1,1}N lnαk/ ln ᾱ are independent. Let vN,1(x), . . . , vN,k(x) be func-
tions on R such that the following point processes∑

σ1

δvN,1(Yσ1 ) → P1∑
σ2

δvN,2(Yσ1σ2 ) → P2 ∀σ1

· · ·∑
σk

δvN,k(Yσ1σ2...σk ) → Pk ∀σ1 . . . σk−1 (130)
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converge weakly to Poisson point processes, P1, . . . ,Pk, on R with intensity
measures K1e

−xdx, . . . ,Kke
−xdx, for some constants K1, . . . ,Kk. Then the

point processes on Rk,

P(k)
N ≡

∑
σ1

δvN,1(Yσ1 )

∑
σ2

δvN,2(Yσ1σ2 ) · · ·
∑
σk

δvN,k(Yσ1σ2...σk ) → P(k) (131)

converge weakly to point processes P(k) on Rk, called Poisson cascades with k
levels.

Poisson cascades are best understood in terms of the following iterative
construction. If k = 1, it is just a Poisson point process on R with intensity
measure K1e

−xdx. To construct P(2) on R2, we place the process P(1) for
k = 1 on the axis of the first coordinate and through each of its points draw a
straight line parallel to the axis of the second coordinate. Then we put on each
of these lines independently a Poisson point process with intensity measure
K2e

−xdx. These points on R2 form the process P(2). This procedure is now
simply iterated k times.

Theorems 1 and 2 combined tell us which are the different point processes
that may be constructed in the GREM.

Theorem 3. Let αi ≥ 1, 0 < ai < 1, such that
∏n
i=1 αi = 2,

∑n
i=1 ai = 1. Let

J1, J2, . . . , Jm ∈ N be the indices such that 0 = J0 < J1 < J2 < · · · < Jm = n.
We denote by āl ≡

∑Jl
i=Jl−1+1 ai, ᾱl ≡

∏Jl
i=Jl−1+1 αi, l = 1, 2, . . . ,m, and set

X̄
σ1...σJl−1
σJl−1+1σJl−1+2···σJl ≡

1√
āl

Jl−Jl−1∑
i=1

√
aJl−1+iXσJ1 ...σJl−1+i (132)

To a partition J1, J2, . . . , Jm, we associate the function AJ obtained by
joining the sequence of straight line segments going from (xJi , A(xJi) to
(xJ+1i , A(x[Ji+1), i = 0,m − 1. A partition is admissible, if A(x) ≤ AJ(x),
for all x ∈ [0, 1]. Then, for any admissible partition, the point process

P(m)
N ≡

∑
σ1...σJ1

δu−1
ᾱ1,N

(X̄σ1...σJ1
)

∑
σJ1+1...σJ2

δ
u−1
ᾱ2,N

(X̄
σ1...σJ1
σJ1+1......σJ2

)
· · ·

· · ·
∑

σJm−1+1...σJm

δ
u−1
ᾱm,N

(X̄
σ1...σJm−1
σJm−1+1...σJm

)
(133)

converges weakly to the process P(m) on Rm defined in Theorem 2 with con-
stants K1, . . . ,Km. If AJ(x) < A(x), for all x ∈ (xJi , xJi+1), then

Kl = 1 (134)

Otherwise 0 < Kl < 1.
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ln(ᾱ1ᾱ2)
ln 2

PJ0
ln ᾱ1
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Fig. 2. The concave hull of A(x).

Having constructed all possible point processes, we now find the extremal
process by choosing the one that yields the largest values. It is easy to see that
this is achieved if as many intermediate hierarchies as possible are grouped
together. In terms of the geometrical construction just described, this means
that we must choose the partition J in such a way that the function AJ has
no convex pieces, i.e. that AJ is the concave hull, Ā, of the function A (see
Fig. 2). (The concave hull, Ā, of a function A is the smallest concave function
such that Ā(x) ≥ A(x), for all x in the domain considered.) Algorithmically,
this is achieved by setting J0 ≡ 0, and

Jl ≡ min{J > Jl−1 : AJl−1+1,J > AJ+1,k ∀k ≥ J + 1} (135)

where Aj,k ≡
∑k
i=j ai/(2 ln(

∏k
i=j αi)).

Set γl ≡
√
āl/
√

2 ln ᾱl, l = 1, 2, . . . ,m. Clearly, by (135), γ1 > γ2 > · · · >
γm. Define the function UJ,N by

UJ,N (x) ≡
m∑
l=1

(√
2Nāl ln ᾱl −N−1/2γl(ln(N(ln ᾱl)) + ln 4π)/2

)
+ N−1/2x (136)

and the point process

EN ≡
∑

σ∈{−1,1}N
δU−1

J,N (Xσ) (137)

Theorem 4. (i) The point process EN converges weakly, as N ↑ ∞, to the
point process on R
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E ≡
∫

Rm
P(m)(dx1, . . . , dxm)δ∑m

l=1 γlxl
(138)

where P(m) is the Poisson cascade introduced in Theorem 3 corresponding
to the partition J1, . . . , Jm given by (135).

(ii)E exists, since γ1 > · · · > γm. It is the cluster point process on R containing
an a.s. finite number of points in any interval [b,∞), b ∈ R. The probability
that there exists at least one point of E in the interval [b,∞) is decreasing
exponentially, as b ↑ ∞.

The formal proofs of these theorems can be found in [6].

4.3 Convergence of the partition function

We will now turn to the study of the Gibbs measures. Technically, the main
step in the proof will be to show that the infinite-volume limit of the properly
rescaled partition function can be expressed as a certain functional of Poisson
cascade processes, as suggested by Ruelle [25].

For any sequence of indices, Ji, such that the function AJ is concave, the
partition function can be written as:

Zβ,N = e
∑m
j=1

(
βN
√

2āj ln ᾱj−βγj [ln(N ln ᾱj)+ln 4π]/2
)
× (139)

Eσ1...σJ1
e
βγ1u

−1
ᾱ1,N

(X̄σ1...σJ1
) · · ·EσJm−1+1...σJm

e
βγmu

−1
ᾱm,N

(X̄
σ1...σJm−1
σJm−1+1...σJm

)

Clearly, not all of these representations can be useful, i.e the sums in the sec-
ond line should converge to a finite random variable. For this to happen, from
what we learned in the REM, each of the sums should be at ‘low temperature’,
meaning here that βγ` > 1. Moreover, we should expect that there is a rela-
tion to the maximum process; in fact, this will follow from the condition that
γi > γi+1, for all i that appear. Thus we will have to choose the partition J
that yields the extremal process, and we have to cut the representation (140)
at some temperature-dependent level, Jl(β), and treat the remaining hierar-
chies as high-temperature REM’s, i.e. replace them by their mean value. The
level l(β) is determined by

l(β) ≡ max{l ≥ 1 : βγl > 1} (140)

and l(β) ≡ 0 if βγ1 ≤ 1.
From these considerations it is now very simple to compute the asymptotics

of partition function. The resulting formula for the free energy was first found
in [9]:

Theorem 5. [9] With the notation introduced above,

lim
N→∞

Φβ,N = β

l(β)∑
i=1

√
2āi ln ᾱi +

n∑
i=Jl(β)+1

β2ai/2, a.s. (141)
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The condition that for β ≤ βc, l(β) = 0, defines the critical temperature,
βc = 1/γ1.

The more precise asymptotics of the partition function is as follows.

Theorem 6. Let J1, J2, . . . , Jm ∈ N, be the sequence of indices defined by
(135) and l(β) defined by (140). Then, with the notations introduced above,

e
−β
∑l(β)
j=1

(
N
√

2āj ln ᾱj−γj [ln(N ln ᾱj)+ln 4π]/2
)
−Nβ2∑n

i=Jl(β)+1 ai/2Zβ,N

D→ C(β)
∫

Rl(β)
eβ
∑l(β)
i=1 γixiP(l(β))(dx1 . . . dxl(β)) (142)

This integral is over the process P(l(β)) on Rl(β) from Theorem 2 with constants
Kj from Theorem 3. The constant C(β) satisfies

C(β) = 1, ifβγl(β)+1 < 1, (143)

and 0 < C(β) < 1, otherwise.

Remark 5. An explicit formula for C(β) is given in [6].

The integrals over the Poisson cascades appearing in Theorem 6 are to be
understood as∫

Rm
eβγ1x1+···+βγmxmP(m)(dx1 . . . dxm) (144)

≡ lim
x↓−∞

∫
(x1,...,xm)∈Rm,

∃i,1≤i≤m:γ1x1+···+γixi>(γ1+···+γi)x

eβγ1x1+···+βγmxmP(m)(dx1 . . . dxm)

The existence of these limits requires the conditions on the γi mentioned
before, and thus can be seen as responsible for the selection of the partition
J and the cut-off level l(β). Namely [6]:

Proposition 2. Assume that γ1 > γ2 > . . . > γm > 0, and βγm > 1. Then

(i) For any a ∈ R the process P(m) contains a.s. a finite number of points
(x1, . . . , xm) such that γ1x1 + · · ·+ γmxm > a.

(ii)The limit in (144) exists and is finite a.s.

4.4 The asymptotic model

As in the REM, we are able to reinterpret the convergence of the partition
function in terms of an asymptotic statistical mechanics model.

This time, it has the following ingredients:

• State space: N`, that should be though of as an `-level tree with infinite
branching number;

• A sequence,γ ≡ (γ1 > γ2 > · · · > γ`) of numbers;
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• Random Hamiltonian: H`γ : N` → R, where

H`γ =
∑̀
k=1

γkxik , (145)

and xik is the ik-th atom of the Poisson process P(k);
• Temperature: 1/β;
• Partition function: Zβ =

∑
i∈N` e

βH(i);
• Gibbs measure:

µ̂`β,γ(i) = Z`βeβH
`
γ(i). (146)

Our convergence results so far can be interpreted in terms of this model
as follows:

• The partition function of the GREM converges, after multiplication with
the correct scaling factor, to Zβ ;

A new feature compared to the situation in the REM is that that state space
N` of the asymptotic model carries a natural non-trivial distance, namely the
hierarchical distance, respectively the corresponding hierarchical overlap

d(i, j) =
1
`

(min(k : ik 6= jk)− 1). (147)

This allows to define in the asymptotic model the analog of the local mass
distribution (see (106) as

φβ(i, t) ≡ µ̂β (d(i, j) > t) . (148)

This allows also to write the empirical distance distribution function for the
asymptotic model in in the form

Kβ ≡
∑
i∈N`

µ̂β(i)δφβ(i,·) (149)

Clearly we expect Kβ to be related to the analogous object in the GREM, i.e.
to Kβ,N defined as in (114). The only additional ingredient is a translation
between the overlap on the hypercube and the tree-overlap (148). This is in
fact given by the following Lemma:

Lemma 11. Let

q` ≡
∑̀
n=1

ln ᾱn
ln 2

, (150)

and let f(q) ≡ sup{k : qk ≤ q}/`(β). For any β, for q ≤ qmax ≡ q`(β),

lim
N↑∞

µ⊗2
β,N (RN (σ, σ′) ≤ q) = µ̂⊗2

β (d(i, j) ≤ f(q)) . (151)
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A nontrivial aspect of the lemma above is that the overlap defined in terms
of the non-hierarchical RN is asymptotically given in terms of the distribution
of a hierarchical overlap, d. In fact, it would be quite a bit easier to show that

lim
N↑∞

µ⊗2
β,N (dN (σ, σ′) ≤ q) = µ̂⊗2

β (d(i, j) ≤ f(q)) . (152)

where dN is defined in (54). The fact that the two distances are asymptotically
the same on the support of the Gibbs measures is remarkable and the simplest
instance of the apparent universality of ultrametric structures in spin glasses.
Bolthausen and Kistler [5] (see also Jana [20]) have shown that the same
occurs in a class of models where the covariance depends on several different
hierarchical distances.

The main result on the limiting Gibbs measures can now be formulated as
follows:

Theorem 7. Under the assumptions and with the notation of Lemma (11)

lim
N↑∞
Kβ,N = Kfβ , (153)

where f : [0, qmax]→ [0, 1] is defined in Lemma 11 and

Kfβ =
∑
i∈N`

µ̂β(i)δφβ(i,f(·)). (154)

We see that in the aysmptotic model, we have so far three ingredients: 1)
the Poisson cascade; 2) the weights γi; 3) the mapping f from that readjusts
the tree-distance.

In fact, Kβ as a probability distribution on distributions of distances con-
tains a lot of gauge invariance. In particular, neither the measures µ̂β nor the
underlying space N` play a particular rôle. In fact, there is a canonical way to
shift all the structure into the ultrametric and to chose as a canonical space
the interval [0, 1] and as a canonical measure on it the Lebesgue measure. To
do this, chose a one-to-one map,

θ : N` → [0, 1] (155)

such that for any Borel set, A ⊂ B([0, 1],

|A| = µ̂β(θ−1(A)). (156)

Then define the overlap, γ1, on [0, 1], by

γ1(x, y) = f−1
(
d
(
θ−1(x), θ−1(y)

))
. (157)

Note that this overlap structure is now random, and in fact contains all the
remaining randomness of the system. Then we can write Kfβ as
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Kfβ =
∫ 1

0

dxδ|{y:γ1(x,y)>·}|. (158)

This representation allows, in fact, to put all GREMs on a single footing.
Namely, one can show that the random overlaps γ1 can all be obtained by
a deterministic time change from the genealogical distance of a particular
continuous time branching process, the so-called Neveu CBP. This observation
goes back to an unpublished paper of Neveu [24] and was elaborated on by
Bertoin and LeGall [3] and the present authors [8].

5 Gaussian comparison and applications

We now return to the study of the SK type models. We will emphasize here
the role of classical comparison results for Gaussian processes. A clever use of
them will allow to connect the SK models with the GREMs discussed above.
We begin by recalling the basic comparison theorem.

5.1 A theorem of Slepian-Kahane

Lemma 12. Let X and Y be two independent n-dimensional Gaussian vec-
tors. Let D1 and D2 be subsets of {1, . . . , n} × {1, . . . , n}. Assume that

EXiXj ≤ EYiYj , if (i, j) ∈ D1

EXiXj ≥ EYiYj , if (i, j) ∈ D2 (159)
EXiXj = EYiYj , if (i, j) 6∈ D1 ∪D2

Let f be a function on Rn, such that its second derivatives satisfy

∂2

∂xi∂xj
f(x) ≥ 0, if (i, j) ∈ D1

∂2

∂xi∂xj
f(x) ≤ 0, if (i, j) ∈ D2 (160)

Then
Ef(X) ≤ Ef(Y ) (161)

Proof. The first step of the proof consists of writing

f(X)− f(Y ) =
∫ 1

0

dt
d

dt
f(Xt) (162)

where we define the interpolating process

Xt ≡
√
tX +

√
1− t Y (163)
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Next observe that

d

dt
f(Xt) =

1
2

n∑
i=1

∂

∂xi
f(Xt)

(
t−1/2Xi − (1− t)−1/2Yi

)
(164)

Finally, we use the generalization of the standard Gaussian integration by
parts formula to the multivariate setting, namely:

Lemma 13. Let Xi, i ∈ {1, . . . , n} be a multivariate Gaussian process, and
let g : Rn → R be a differentiable function of at most polynomial growth. Then

Eg(X)Xi =
n∑
j=1

E(XiXj)E
∂

∂xj
g(X) (165)

Applied to the mean of the left-hand side of (164) this yields

Ef(X)− Ef(Y ) =
1
2

∑
i,j

∫
0,1

dt (EXiXj − EYiYj) E
∂2

∂xj∂xi
f(Xt) (166)

from which the assertion of the theorem can be read off.

Note that Equation (166) has the flavor of the fundamental theorem of
calculus on the space of Gaussian processes.

5.2 The thermodynamic limit through comparison

Theorem 8. [17] Assume that Xσ is a normalized Gaussian process on SN
with covariance

EXσXτ = ξ(RN (σ, τ)) (167)

where ξ : [−1, 1]→ [0, 1] is convex and even. Then

lim
N↑∞

−1
βN

E ln Eσeβ
√
NXσ ≡ fβ (168)

exists.

Proof. The proof of this fact is frightfully easy, once you think about us-
ing Theorem 12. Choose any 1 < M < N . Let σ = (σ̂, σ̌) where σ̂ =
(σ1, σ2, . . . , σM ), and σ̌ = (σM+1, . . . , σN ). Define independent Gaussian pro-
cesses X̂ and X̌ on SM and SN−M , respectively, such that

EX̂σ̂X̂τ̂ = ξ(RM (σ̂, τ̂)) (169)

and
EX̌σ̌X̌τ̌ = ξ(RN−M (σ̌, τ̌) (170)

Set
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Yσ ≡
√

M
N X̂σ̂ +

√
N−M
N X̌σ̌ (171)

Clearly,

EYσYτ = M
N ξ(RM (σ̂, τ̂)) + N−M

N ξ(RN−M (σ̌, τ̌)) (172)

≥ ξ
(
M
N RM (σ̂, τ̂) + N−M

N (RN−M (σ̌, τ̌))
)

= ξ(RN (σ, τ))

Define real-valued functions FN (x) ≡ ln Eσeβ
√
Nxσ on R2N . It is straightfor-

ward that
EFN (Y ) = EFM (X) + EFN−M (X) (173)

A simple computation shows that, for σ 6= τ ,

∂2

∂xσ∂xτ
FN (x) = −2−2Nβ2Neβ

√
N(xσ+xτ )

Z2
β,N

≤ 0 (174)

Thus, Theorem 12 tells us that

EFN (X) ≥ EFN (Y ) = EFM (X) + EFN−M (X) (175)

This implies that the sequence −EFN (X) is subadditive, and this in turn
implies (see Section 1.2) that the free energy exists , provided it is bounded,
which is easy to verify (see e.g. the discussion on the correct normalization in
the SK model).

The same ideas can be used for other types of Gaussian processes, e.g. the
GREM-type models discussed above [10].

Convergence of the free energy in mean implies readily almost sure con-
vergence. This follows from a general concentration of measure principle for
functions of Gaussian random variables.

5.3 An extended comparison principle.

As I have mentioned, comparison of the free energy of SK models to simpler
models do not immediately seem to work. The idea is to use comparison on a
much richer class of processes. Basically, rather than comparing one process
to another, we construct an extended process on a product space and use
comparison on this richer space. Let us first explain this in an abstract setting.
We have a process X on a space S equipped with a probability measure Eσ.
We want to compute as usual the average of the logarithm of the partition
function F (X) = ln EσeβXσ . Now consider a second space T equipped with
a probability law Eα. Choose a Gaussian process, Y , independent of X, on
this space, and define a further independent process, Z, on the product space
S×T . Define real valued functions, G,H, on the space of real valued functions
on T and S×T , respectively, via G(y) ≡ ln Eαeβyα and H(z) = ln EσEαeβzσ,α .
Note that H(X+Y ) = F (X)+G(Y ). Assume that the covariances are chosen
such that
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cov(Xσ, Xσ′) + cov(Yα, Yα′) ≥ cov(Zσ,α, Zσ′,α′) (176)

Since we know that the second derivatives of H are negative, we get from
Theorem 12 that

EF (X) + EG(Y ) = EH(X + Y ) ≤ EH(Z) (177)

This is a useful relation if we know how to compute EG(Y ) and EH(Z). This
idea may look a bit crazy at first sight, but we must remember that we have
a lot of freedom in choosing the auxiliary spaces and processes to our con-
venience. Before turning to the issue whether we can find useful computable
processes Y and Z, let us see why we could hope to find in this way sharp
bounds.

5.4 The extended variational principle and thermodynamic
equilibrium

To do so, we will show that, in principle, we can represent the free energy
in the thermodynamic limit in the form EH(Z) − EG(Y ). To this end let
S = SM and T = SN , both equipped with their natural probability measure
Eσ. We will think of N � M , and both tending to infinity eventually. We
write again S × T 3 σ = (σ̂, σ̌). Consider the process Xσ on SN+M with
covariance ξ(RN+M (σ, σ′)). We would like to write this as

Xσ = X̂σ̂ + X̌σ̌ + Zσ (178)

where all three processes are independent. Note that here and in the sequel
equalities between random variables are understood to hold in distribution.
Moreover, we demand that

cov(X̂σ̂, X̂σ̂′) = ξ( M
N+MRM (σ̂, σ̂′)) (179)

and
cov(X̌σ̌, X̌σ̌′) = ξ( N

N+MRN (σ̌, σ̌′)) (180)

Obviously, this implies that

cov(Zσ, Zσ′) = ξ
(

M
N+MRM (σ̂, σ̂′) + N

N+MRN (σ̌, σ̌′)
)

(181)

− ξ
(

M
N+MRM (σ̂, σ̂′)

)
− ξ

(
N

N+MRN (σ̌, σ̌′)
)

(we will not worry about the existence of such a decomposition; if ξ(x) =
xp, we can use the explicit representation in terms of p-spin interactions to
construct them). Now we first note that, by super-additivity [2]

lim
M↑∞

1
βM

lim inf
N↑∞

E log
Zβ,N+M

Zβ,N
= −fβ (182)



Mean field spin glasses 37

Thus we need a suitable representation for Zβ,N+M
Zβ,N

. But

Zβ,N+M

Zβ,N
=

Eσeβ
√
N+M(X̌σ̌+Zσ+X̂σ̂)

Eσ̌e
β
√
N+M

(√
(1−M/(N+M))Xσ̌

) (183)

Now we want to express the random variables in the denominator in the form√
(1−M/(N +M))Xσ̌ = X̌σ̌ + Yσ̌ (184)

where Y is independent of X̌. Comparing covariances, this implies that

cov(Yσ̌, Yσ̌′) = (1−M/(N +M))ξ(RN (σ̌, σ̌′))

− ξ
(

N
N+MRN (σ̌, σ̌′)

)
(185)

As we will be interested in taking the limit N ↑ ∞ before M ↑ ∞, we may
expand in M/(N +M) to see that to leading order in M/(N +M),

cov(Yσ̌, Yσ̌′) ∼ M
N+MRN (σ̌, σ̌′)ξ′

(
N

N+MRN (σ̌, σ̌′)
)

− M
N+M ξ

(
N

N+MRN (σ̌, σ̌′)
)

(186)

Finally, we note that the random variables X̂σ̂ are negligible in the limit
N ↑ ∞, since their variance is smaller than ξ(M/(N + M)) and hence their
maximum is bounded by

√
ξ(M/(N +M))M ln 2, which even after multipli-

cation with
√
N +M gives no contribution in the limit if ξ tends to zero faster

than linearly at zero, which we can safely assume. Thus we see that we can
indeed express the free energy as

fβ = − lim
M↑∞

lim inf
N↑∞

1
βM

E ln
Eσ̂Ẽσ̌eβ

√
N+MZσ̂,σ̌

Ẽσ̌eβ
√
N+MYσ̌

(187)

where the measure Ẽσ̌ can be chosen as a probability measure defined by
Ẽσ̌(·) = Eσ̌eβ

√
N+MX̌σ̌ (·)/Žβ,N,M where Žβ,N,M ≡ Eσ̌eβ

√
N+MX̌σ̌ . Of course

this representation is quite pointless, because it is certainly uncomputable,
since Ẽ is effectively the limiting Gibbs measure that we are looking for. How-
ever, at this point there occurs a certain miracle: the (asymptotic) covariances
of the processes X,Y, Z satisfy

ξ(x) + yξ′(y)− ξ(y) ≥ xξ′(y) (188)

for all x, y ∈ [−1, 1], if ξ is convex and even. This comes as a surprise, since
we did not do anything to impose such a relation! But it has the remarkable
consequence that asymptotically, by virtue of Lemma 12 it implies the bound

E ln Eσ̂eβ
√
MXσ̂ ≤ E ln

Eσ̂Ẽσ̌eβ
√
N+MZσ̂,σ̌

Ẽσ̌eβ
√
N+MYσ̌

(189)
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(if the processes are taken to have the asymptotic form of the covariances).
Moreover, this bound will hold even if we replace the measure Ẽ by some other
probability measure, and even if we replace the overlap RN on the space SN
by some other function, e.g. the ultrametric dN . Seen the other way around,
we can conclude that a lower bound of the form (177) can actually be made as
good as we want, provided we choose the right measure Ẽ. This observation is
due to Aizenman, Sims, and Starr [2]. They call the auxiliary structure made
from a space T , a probability measure Eα on T , a normalized distance q on
T , and the corresponding processes, Y and Z, a random overlap structure

cov(Yα, Yα′) = q(α, α′)ξ′(q(α, α′))− ξ(q(α, α′)) (190)

and the process Zσ,α on SN × [0, 1] with covariance

cov(Zσ,α, Zσ′,α′) ≡ RN (σ, σ′)ξ′(q(α, α′)) (191)

With these choices, and naturally Xσ our original process with covariance
ξ(RN ), the equation (176) is satisfied, and hence the inequality (177) holds,
no matter what choice of q and Eα we make. Restricting these choices to
the random genealogies obtained from Neveu’s process by a time change with
some probability distribution function m, and Eα the Lebesgue measure on
[0, 1], gives the bound we want.

This bound would be quite useless if we could not compute the right-hand
side. Fortunately, one can get rather explicit expressions. We need to compute
two objects:

EαEσeβ
√
NZσ,α (192)

and
Eαeβ

√
NYα (193)

In the former we use that Z has the representation

Zσ,α = N−1/2
N∑
i=1

σizα,i (194)

where the processes zα,i are independent for different i and have covariance

cov(zα,i, zα′,i) = ξ′(q(α, α′)) (195)

Thus at least the σ- average is trivial:

EαEσeβ
√
NZσ,α = Eα

N∏
i=1

eln cosh(βzα,i) (196)

Thus we see that, in any case, we obtain bounds that only involve objects that
we introduced ourselves and that thus can be manipulated to be computable.
In fact, such computations have been done in the context of the Parisi solution
[23]. A useful mathematical reference is [4].

This is the form derived in Aizenman, Sims, and Starr [2].
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5.5 Parisi auxiliary systems

The key idea of the Parisi solution is to chose as an auxiliary system as the
asymptotic model of the GREM.

That is, the space T in this case is chosen as a n-level infinite tree Nn
equipped with the measure µ̂β defined in (146).
T is naturally endowed with its tree overlap, d(i, j) ≡ n−1(min{` : i` 6=

j`} − 1). This distance will play the rôle of the distance q on T . Finally, we
define the processes Yi and Zi,σ with covariances

cov(Yi, Yj) = d(i, j)ξ′(d(i, j))− ξ(d(i, j)) ≡ h(d(i, j)) (197)

and the process Zσ,i on SN × T with covariance

cov(Zσ,j , Zσ′,j) ≡ RN (σ, σ′)ξ′(d(i, j)) (198)

It is easy to see that such processes can be constructed as long as h, ξ′ are
increasing functions. E.g.

Yi =
n∑
`=1

√
h(`/n)− h((`− 1)/n)Y (`)

i1...i`
(199)

where Y (`)
i1...i`

are independent standard normal random variables. In this way,
we have constructed an explicit random overlap structure, which corresponds
indeed to the one generating the Parisi solution.

Note that also the auxiliary structure depends only on the information con-
tained in the empirical distance distribution, Kβ , associated with the asymp-
totic model. In fact we could alternatively use T = [01] equipped with the
Lebesgue measure and the random overlap γ1, as defined in (158). While this
is nice conceptually, for actual computations the form above will be more
useful, however.

5.6 Computing with Poisson cascades

Lemma 14. Assume that P be a Poisson process with intensity measure
e−xdx. and let Zi,j, i ∈ N, j ∈ N and Y be iid standard normal random
variables. Let gj : R → R, j = 1, . . . ,M , be smooth functions, such that, for
all |m| ≤ 2, there exist C <∞, independent of N , such that

EY emgi(Y ) ≡ eLi(m) < C (200)

Let xi be the atoms of the Poisson process P with intensity measure e−xdx.
Then

E ln
∑∞
i=1 e

αxi+
∑M
j=1 gj(Zi,j)∑∞

i=1 e
αxi

=
M∑
j=1

αLj(1/α). (201)
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Proof. Let for simplicity M = 1. The numerator on the left in (201) can be
written as ∫

eαzP̃(dz)

where P̃ is the point process

P̃ ≡
∑
j

δzj+α−1g(Yj)

This follows from a general fact about Poisson point processes: if N ≡
∑
i δxi

is a Poisson point process with intensity measure λ on E, and Yi are iid
random variables with distribution ρ, then

Ñ ≡
∑
i

δxi+Yi

is a Poisson process with intensity measure λ ∗ ρ on the set E + suppρ. This
follows from the representation of N as

N =
Nλ∑
i=1

δXi

where Nλ is Poisson with parameter
∫
E
λ(dx) ≡ |λ| (if this is finite), and Xi

iid random variables with distribution λ/|λ|. Clearly

Ñ =
∑
i

δxi+Yi =
Nλ∑
i=1

δXi+Yi

is again of the form of a PPP, and the distribution of Xi + Yi is λ ∗ ρ/|λ|.
Since the total intensity of the process is the parameter of Nλ, |λ|, it follows
that the intensity measure of this process is the one we claimed.

Thus, in our case, P̃ is a PPP whose intensity measure is the convolution
of the measure e−zdz and the distribution of the random variable α−1g(Y ).
A simple computation shows that this is EY eg(Y )/αe−zdz, i.e. a multiple of
the original intensity measure!

Finally, one makes the elementary but surprising and remarkable obser-
vation that the Poisson point process

∑
j δz+ln EY eg(Y )/α has the same intensity

measure, and therefore,
∑
j e
αzj+g(Yj) has the same law as

∑
j e
αzj [EY eg(Y )/α]α:

multiplying each atom with an iid random variable leads to the same process
as multiplying each atom by a suitable constant! The assertion of the Lemma
follows immediately.

Remark 6. Nobody seems to know who made this discovery. Michael Aizen-
man told me about it and attributed to David Ruelle, but one cannot find it
in his paper. A slightly different proof from the one above can be found in
[26].
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Let us look first at (193). We can then write∑
i

eH
n
γ(i+β

√
MYi =

∑
i

eH
n
γ(i)+β

√
MYin−1+

√
h(xn)−h(xn−1)Y

(n)
i

=
∑

i1...in−1

e
∑n−1
`=1 γ`xi1...σ̌`+β

√
MYin−1

×
∑
in

e
γnxin−1,in+β

√
M
√
h(1)−h(1−1/n)Y

(n)
in−1,in (202)

Using Lemma 14, the last factor can be replaced by

Eine
γnxin−1,in+β

√
M
√
h(1)−h(1−1/n)Y

(n)
in−1,in (203)

→
[∫

dz√
2π
e−

z2
2 ezmnβ

√
M
√
h(1)−h(1−1/n)

]1/mn∑
in

eγnxi (204)

= e
β2M

2 mn(h(1)−h(1−1/n))
∑
in

eγnxi (205)

(we use throughout mn = 1/γn). Note that the last factor is independent of
the random variables xi1,...,i` with ` < n. Thus

E ln
∑
i

eαxi+β
√
MYi = E ln

∑
i1,...,in−1

e
∑n−1
`=1 γ`xi1,...,in−1+β

√
MYi1,...,in−1

+
β2M

2
mn(h(1)− h(1− 1/n)) + E ln

∑
in

eγnxi (206)

The first term now has the same form as the original one with n replaced by
n − 1, and thus the procedure can obviously iterated. As the final result, we
get that a consequence, we get that

M−1E ln
∑
i e
xi+β

√
MYi∑

i e
xi

=
n∑
`=1

β2

2
m`(h(1− `/n)− h(1− (`− 1)/n))

=
β2

2

∫ 1

0

m(x)xξ′′(x)dx (207)

The computation of the expression (192) is now very similar, but gives a
more complicated result since the analogs of the expressions (203) cannot be
computed explicitly. Thus, after the k-th step, we end up with a new function
of the remaining random variables Yi1...in−k . The result can be expressed in
the form
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1
M

E ln EiEσeβ
√
MZσ,i = ζ(0, h,m, β) (208)

(here h is the magnetic field (which we have so far hidden in the notation)
that can be taken as a parameter of the a priori distribution on the σ such
that Eσi(·) ≡ 1

2 cosh(βh)

∑
σi=±1 e

βhσi(·)) where ζ(1, h) = ln cosh(βh), and

ζ(xa−1, h) =
1
ma

ln
∫

dz√
2π
e−z

2/2emaζ(xa,h+z
√
ξ′(xa)−ξ′(x)) (209)

(we put xa = a/n).
In all of the preceeding discussion, the choice of the parameter n and of

the numbers mi = 1/γ1 is still free. From
We can now announce Guerra’s bound in the following form:

Theorem 9. [16] Let ζ(t, h,m, b) be the function defined in terms of the re-
cursion (209). Then

lim
N↑∞

N−1E lnZβ,h,N ≤ inf
m
ζ(0, h,m, β)− β2

2

∫ 1

0

m(x)xξ′′(x)dx (210)

where the infimum is over all probability distribution functions m on the unit
interval.

Remark 7. It is also interesting to see that the recursive form of the function
ζ above can also be represented in a closed form as the solution of a partial
differential equation. Consider the case ξ(x) = x2/2. Then ζ is the solution of
the differential equation

∂

∂t
ζ(t, h) +

1
2

(
∂2

∂h2
ζ(t, h) +m(t)

(
∂

∂h
ζ(t, h)

)2
)

= 0 (211)

with final condition
ζ(1, h) = ln cosh(βh) (212)

If m is a step function, it is easy to see that a solution is obtained by setting,
for x ∈ [xa−1, xa),

ζ(x, h) =
1
ma

ln Ezemaζ(xa,h+z
√
xa−x) (213)

For general convex ξ, analogous expressions can be obtained through changes
of variables [16].

5.7 Talagrand’s theorem

In both approaches, it pays to write down the expression of the difference
between the free energy and the lower bound, since this takes a very suggestive
form.
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To do this, we just have to use formula (166) with

Xt
σ,α ≡

√
t(Xσ + Yα) +

√
1− tZσ,α (214)

and f(Xt) replaced by H(Xt) = ln EσEαeβ
√
NZtσ,α . This gives the equality

H(X + Y )−H(Z) =
1
2

E
∫ 1

0

dtµ̃⊗2
β,t,N (dσ, dα)

(
ξ(RN (σ, σ′))

+ q(α, α′)ξ′(q(α, α′))

− ξ(q(α, α′))−RN (σ, σ′)ξ′(q(α, α′))
)

(215)

where the measure µ̃β,t,N is defined as

µ̃β,t,N (·) ≡ EσEαeβ
√
NXtσ,α(·)

EσEαeβ
√
NXtσ,α

(216)

where we interpret the measure µ̃β,t,N as a joint distribution on SN × [0, 1].
Note that for convex and even ξ, the function ξ(RN (σ, σ′))+q(α, α′)ξ′(q(α, α′))−
ξ(q(α, α′)) vanishes if and only if RN (σ, σ′) = q(α, α′). Thus for the left hand
side of (215) to vanish, the replicated interpolating product measure should
(for almost all t), concentrate on configurations where the overlaps in the σ-
variables coincide with the genealogical distances of the α-variables. Thus we
see that the inequality in Theorem 9 will turn into an equality if it is possible
to choose the parameters of the reservoir system in such a way that the the
overlap distribution on SN aligns with the genealogical distance distribution
in the reservoir once the systems are coupled by the interpolation.

This latter fact was proven very recently, and not long after the discovery
of Guerra’s bound, by M. Talagrand [29].

Theorem 10. [29] Let ζ(t, h,m, b) be the function defined in terms of (211)
and (212). Then

lim
N↑∞

N−1E lnZβ,h,N = inf
m

(
ζ(0, h,m, .β)− β2

2

∫ 1

0

m(x)xξ′′(x)dx
)

(217)

where the infimum is over all probability distribution functions m on the unit
interval.

I will not give the complex proof which the interested reader should study
in the original paper [29], but I will make some comments on the key ideas.
First, Talagrand proves more than the assertion 217. What he actually proves
is the following. For any ε > 0, there exists a positive integer n(ε) < ∞, and
a probability distribution function mn that is a step function with n steps,
such that for all t > ε,
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lim
N↑∞

Eµ̃⊗2
β,t,N (dσ, dα)

(
ξ(RN (σ, σ′)) + q(α, α′)ξ′(q(α, α′))

−ξ(q(α, α′))−RN (σ, σ′)ξ′(q(α, α′))
)

= 0 (218)

if the measure µ̃b,t,N corresponds to the genealogical distance obtained from
this function m. That is to say, if the coupling parameter t is large enough, the
SK model can be aligned to a GREM with any desired number of hierarchies.
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