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Abstract. In these notes I review recent results on metastability and ageing
in stochastic dynamics. The first part reviews a somewhat novel approach
to the computation of key quantities such as mean exit times in metastable
systems and small eigenvalues of the generator of metastable Markov chain
developed over the last years with M. Eckhoff, V. Gayrard and M. Klein.
This approach is based on extensive use of potential theoretic ideas and
allows, at least in the case of reversible dynamics, to get very accurate
results with comparatively little effort. This methods have also been used
in recent joint work with G. Ben Arous and V. Gayrard on the dynamics
of the random energy model. The second part of these lectures is devoted
to a review of this work.
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1. Introduction

In these lectures I will review a somewhat new approach to the old issue of
metastability and the rather more recent issue of “ageing” in the framework
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of stochastic dynamics, or more precisely Markov processes. This approach
addresses, in the context of metastability, the issue of precise asymptotics,
that, although frequently considered in the physical literature for decades,
had been lacking a fully rigorous mathematical treatment. Apart from po-
tential intrinsic interest, this question is strongly motivated by the second
aspect, ageing, where, as will become clear, this will become indispensable
if anything is to be understood at all.

Metastability as well as ageing (at least in the context we will be in-
terested in) can be seen as special aspects of the far wider issue of under-
standing the dynamic behaviour of a complicated system on particular time
scales in terms of a simplified dynamics with a reduced state space. Such a
coarse grained description will always have to be chosen in accordance with
the problem at hand. The phenomena we are trying to capture here concern
the existence of two (or more) time scales at which the systems considered
behave in distinct ways: on the short time scales, the system performs some
local motion that appears to be reasonably recurrent, suggesting that equi-
librium is reached, while at the larger time scale, the systems undergoes
dramatic changes that seem to alter its character entirely. Our purpose
is thus to characterize the long time dynamics in terms of a process that
describes only the sequence of these global changes and ignores all of the
local short time motion. Our task is then to devise in a given setting such a
coarse grained description and to derive the properties of the corresponding
process and from the underlying microscopic dynamics.

The setting sketched above is common in a wide variety of natural phe-
nomena. From the most classical setting of dynamical phase transitions
in solid state physics, conformational states of macromolecules, macro-
climatological states, or more speculatively, macro-economic states, there
is hardly a branch of science where one is not confronted with the same
type of general situation. While in the classical setting of metastability the
number of relevant “macro-states” is finite or even small, systems with a
large, resp. infinite, number of such states tend to “age”, meaning in the
broadest sense that their long time behaviour is to be described in terms
of a more complicated process than just a Markov chain with finite state
space. Ageing is observed any many important materials like glasses, glassy
polymers, bio-molecules and plastic, to name just a few.

The study of metastability in the context of probabilistic models dates
back at least to the work of Eyring, Polanyi, Wigner, and Kramers [28, 29,
62, 45] in the context of chemical reactions. An early textbook reference is
[35]. Kramers was the first to use a model of a particle in a drift field subject
to forcing by Brownian motion, i.e. stochastic differential equations.

Stochastic differential equations form indeed one major context in which
metastability was studied extensively. In the physics literature, the main



METASTABILITY AND AGEING IN STOCHASTIC DYNAMICS 19

tools were based on perturbation theory in the spirit of the quantum me-
chanical WKB method (a selection of references is [42, 43, 50, 51, 59]).
Mathematical rigorous work was based mostly on the large deviation meth-
ods developed by Wentzell and Freidlin [31] who developed a systematic
approach to the problem in the mid 1970’s.

Over the last few year, in collaboration with M. Eckhoff, V. Gayrard,
and M. Klein [8, 9, 10, 11] we have developed a somewhat novel approach to
the metastability problem that is to a large extend based on potential theo-
retic ideas and makes extensive use of capacities and associated variational
formulas. It has the virtue of being widely applicable while yielding rather
precise results that improve on the exponential asymptotics obtained with
large deviation methods. This approach has also allowed us, in collabora-
tion with G. Ben Arous and V. Gayrard, to get some results on systems
that show ageing, in particular in the Random Energy Model [1, 2]. In these
lectures I want to review the key aspects of these developments.

2. A General Setting for Metastability and some Key Issues

The most general setting we will consider can be described as follows. We
consider a Markov process X; on a measure space I' O X; with discrete
or continuous time ¢. In continuous time the process is characterized by
its generator, L, and in discrete time by the transition matrix, P. We will
usually assume that the process is uniquely ergodic with invariant measure
Q. We will denote the law of this process by PP. Moreover, we will denote by
P, the law of the process conditioned to verify X (0) = z. We will denote
by 7p, D C T, the first entrance time of X (¢) in D, i.e.

7p = inf{t > 0, X(t) € D} (2.1)

We would like to say that the process is exhibiting metastability, if I can
be partitioned into subsets S; such that the process starting anywhere in S;
explores any S; on a time-scale T4,, that is much shorter than the typical
times it takes Ty to leave S;. Of course such a statement is imprecise and
makes strictly speaking no sense. In particular the requirement that the
process explores all of S; must be qualified. There are a number of possible
attempts to formalize this notion (see e.g. [37]) and the choice we will
give below is certainly only one among a number of possibilities; however,
it is useful inasmuch it implies a number of key properties of metastable
systems while being sufficiently flexible to be applicable in a broad range
of situations. We stress, however, that we do not necessarily consider this
as the ultimate choice.

To make precise statements, we will also need a small parameter. Thus
instead of a single Markov process, we will from now on always think of a
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family of processes X (where in principle all key objects like I', P, Q are
allowed to depend on e.

Provisional Definition 2.1. A family of Markov processes is called
metastable, if there exists a collection of disjoint sets B; C I' (possibly
depending on €), such that
sup E,7y;B;
z@¢U;B;

inf E,7y...B
z€U;B; L

—0, as €l0 (2.2)

Remark. Note that both numerator and denominator represent time scales
that depend on the choice of the sets B;. In fact, metastability may hold
with respect to different decompositions on different time scales in the same
system. This is often important in applications.

For many purposes it is useful to chose the B; as small as possible. E.g.
it will be very useful to have the property that

sup E, 78, — inf E,7B,
z€B; z€B;

nf Eors, —0, as €l0 (2.3)
z€B;

Note that this requirement should be balanced against the main require-

ment (2.2).

Definition 2.1 defines metastability in terms of physical properties of a
system we would like to consider as metastable. The problem is that it is not
immediately verifiable, since it involves derived quantities, i.e. mean first
hitting times, that are nor immediately computable. Our first problem will
thus be to re-express the mean hitting times in terms of more manageable
quantities.

The second problem will be to derive further properties of metastable
systems. Since the definition implies frequent returns to the small starting
set B; before transit to another set Bj, this suggests an exponential law
for the transit times. This also suggests that we may expect to describe
the process of successive visits to distinct B; asymptotically as a Markov
process.

The most fundamental result we want to achieve, however, is a charac-
terization of the spectrum of the generator, resp. the transition matrix of
a metastable process. Our purpose here is to derive spectral information
from the Definition above (an not the converse, which is much simpler).

3. Markov Processes and Potential Theory

The intimate relation between Markov processes and potential theory is
well-known since the work of of Kakutani [39] and is the subject of numerous
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textbooks (see in particular the fundamental monograph by Doob [24],
and for the discrete case [58]). This connection has found numerous and
widespread applications both in probability theory and in analysis (see
e.g. [25, 57] and references wherein). Our approach to metastability relies
heavily on this connection. In the following pages we give a brief survey of
some key facts (all of which are classical) that we will need later. While it
would be possible to treat the continuous and the discrete case in unified
way, this introduces some notational absurdities (in the discrete case) that
we would rather avoid. Since all formulas in the case of diffusion processes
can be found in [10], we will present here the formulas in the discrete case,
i.e. when T is a discrete set.

Thus let I' be a discrete set, Q be a positive measure on I', P a (irre-
ducible) stochastic matrix on I'. We will denote by L the generator of the
process in the case of continuous time, and set L = 1 — P in the case of
discrete time. We assume that L is symmetric on the space L(T', Q).

Green’s function. Let Q C T'. Consider for A € C and g a real valued
function on €2 the Dirichlet problem

L-)Nf(z) = z), z€
( )fgmg _ g( )mEQEC (3.1)

The associated Dirichlet Green’s function Gg(z,y) is the kernel of the in-
verse of the operator (L — \)%, i.e. for any g € Co(Q),

f®) =) Gj(=,9)9(y) (3.2)

yeN

Note that the Green’s function is symmetric with respect to the measure
Q,i.e.
Ga(2,y) = Q(v)Ga(y, =)Qz) ™ (3.3)

Recall that the spectrum of L (more precisely the Dirichlet spectrum of
the restriction of L to Q, which we will sometimes denote by L%), is the
complement of the set of values A for which G?} defines a bounded operator.

Poisson Kernel. Consider for A € C the boundary value problem

(L-Nf(z) = 0, z€Q

f(z) = o), zeor (3.4)

We denote by Ha the associated solution operator.

Equilibrium Potential and Equilibrium Measure. Let A,D C T.
Then the equilibrium potential (of the capacitor (4, D)), h)) p, is defined
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as the solution of the Dirichlet problem

(L-Mh)p(z) = 0, ze€(AUD)°
hi‘LD(m) =1 z€A (3.5)
Ry p(z) = 0, z€D

Note that (3.5) has a unique solution provided A is not in the spectrum of
7(AUB)E

The equilibrium measure, ef‘4 D, is defined as the unique measure on A4,

such that
hi‘l,D(m) = ZGi‘)c(m: y)e;\él,D(y) (3.6)
yEA

(3.6) may also be written as

Cfi,D(y) =—(L - k)hﬁ,D(y) (3.7)

In fact, (3.7) defines a measure supported on both A and D that we will
henceforth call the equilibrium measure. Note that this measure (in the
case A = 0) is zero on the interior of AU D, i.e. on the part of AU D which
is not connected by a non-zero element of the transition matrix P.

Note that (3.6) implies a representation formula of the Poisson-kernel
Ha, namely

(Hao)(z) = > 6(2)Gau.(z, 2)e] gey,(2) (3.8)

zENC
which is the discrete analog to the usual Poisson-Green’s formula.

Capacity. Given a capacitor, (4, D), and A € R, the A-capacity of the
capacitor is defined as

capi(D) = ) Q(y)el,n(v) (3.9)

yEA

Using (3.7) one derives after some algebra that in discrete time

w2}(D) =35 Q) |ple9) [ 0(0) - 200 -3 (h0(2))’]

=& (hi‘l,D)
(3.10)

where p(z,y) are the transition probabilities (in discrete time) respectively
transition rates (in discrete time). & is called the Dirichlet form (or energy)
for the operator L — A on €.
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A fundamental consequence of (3.10) is the variational representation
of the capacity when ) is real and non-positive, namely

capy (D) = hei’;{lg . 3*(h) (3.11)

where H 4, p denotes the set of function
Hap=1{h:T —[0,1]: h(z) =0,z € D,h(z) =1,z € A} (3.12)
Probabilistic Interpretation: Equilibrium Potential.

If A =0, the equilibrium potential has a natural probabilistic interpre-
tation in terms of hitting probabilities of this process, namely,

ha,p(z) = kY p(z) = Pola < 7p] (3.13)

The equilibrium measure has a nice interpretation in the discrete time case
as well:

ea,n(y) = Pyl7p < 74 (3.14)
if y € A. In particular, if A = {y},
cap, (D)
Pylmp < 74] = eyp(y) = —2——= 3.15
170 <74l = p ) = "4 (3.15)

If X # 0, the equilibrium potential still has a probabilistic interpretation
in terms of the Laplace transform of the hitting time 74 of the process
starting in z and killed in D. Namely, we have for general A, that

hi‘l,D(m) = EIeATA ]lTA<TD (3'16)

for z € (AU D)¢, whenever the right-hand side exists.
Note that (3.16) implies that

d ,_
ahi‘l,_]g(m) = ExTA]]‘TA<TD (3'17)

Differentiating the defining equation of h:}l,D then implies that the function

| P € (AU D)®
wA,D(m)z{E’TA a<m ze;up) (3.18)

solves the inhomogeneous Dirichlet problem (to simplify notation, we set
from now on hup = A, etc.)

Lwap(s) = hap(z), @€ (AUD) (3.19)

wA,D(:c) = 0, c AUuD
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Therefore, the mean hitting time in A of the process killed in D can be
represented in terms of the Green’s function as

]Ea:TA]]-TA<TD = Z G(AUD)C(ma y)hA,D(y) (320)
y€(AuD)e

Note that in the particular case when D = (), we get the familiar Dirichlet
problem

Lwa(z) = 1, ze A
wa(z) = 0, z€A (3.21)
and the representation
Eera= Y Gac(z,) (3.22)
yeA®

The full beauty of all this comes out when combining (3.6) with (3.20),
resp. (3.22). Then, using Fubini’s theorem,

Q(2)E.7aez4(2) = > Q(y)Gac(y,2)esa(2)

yEA®

= 2. Q)h,aly)

yEA®

(3.23)

and

Q(2)E, 7all; crpezaup(2) = Z Q(y)h,,aup(y)hap(y)  (3.24)
y€(AuD)¢e

(3.24) yield directly formulae for mean hitting times in terms of capacities
and equilibrium potentials.
Indeed (3.6) yield a formula for the Green function

(2, y) = hyp(z) QWA p(z)  Qy)h p(y)
DRABYIT N ) T capd(D) | capd(D)

(3.25)

which will play a key réle in the sequel.

Remark. Equations (3.23)-(3.25) rely explicitly on the discrete structure
on the state space, or more precisely that for any z € T', Q(z) > 0. In
the case of continuous state space, such formulas do not hold in the strict
sense, or are not useful, but suitable “integral versions”, involving integrals
over suitably chosen small neighborhoods of e.g. the points z in (3.23) are
still valid, and can be used to more or less the same effect as the exact
relations in the discrete case. This entails, however, some extra technical
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difficulties. In these notes we will therefore restrict our attention to the
discrete case, where the principle ideas can be explained without being
obscured by technicalities.

4. Metastability in Terms of Capacities and Mean Hitting Times

We now use the observations made in Section 2 to derive the desired al-
ternative characterization of metastability in terms of potential theoretic
quantities, namely capacities.

Definition 4.1 Assume that I' is a discrete set. Then a family of Markov
processes X is metastable with respect to the set of points M C T, if

sup Q(z)/cap,(M)
zgM

inf Qa)/cap.(M\2)

< p(e) (4.1)

for some p(€) that tends to zero as € | 0.

We will see that this definition is essentially equivalent to the provi-
sional definition given in Section 2, at least in situations where the latter is
reasonable. Definition 4.1 has far reaching consequences. As a first step we
will show that it implies the mean values of transition times from minima
to other minima can be computed very precisely.

Let z e M,z ¢ J C M. We want to compute E,7;. This computation
will be based on the formula (3.22), which yields that

> o) (42)

yeJe

_ Q@)
=TT G, ()

Thus we have only to control expressions like

> 2Wh, o) (4.3)

vore Q)

The analysis of such sums requires some knowledge of the equilibrium po-
tential. One of the cornerstones of our approach is the observation that the
equilibrium potential, too, can be estimated in terms of capacities, and that
in many cases, these estimates yield very sharp results. The reason under-
lying this fact is that it turns out that in metastable systems, we tend to
have a dichotomy of the type: Either the equilibrium potential hy (y) is
close to zero or to one, or the invariant measure Q(y) is very small.

Renewal Estimates. The estimation of the equilibrium through capacities
is based on a renewal argument, that in the case of discrete state space is
very simple.
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Lemma 4.1 Let A, D C T be disjoint sets, and let z ¢ AU D. Then

cap, (4)

P42l S o (D)

(4.4)

Proof. In the discrete case, this result is extremely easy to prove. Just use
the simple observation that going from z to A the process either does or
does not re-visit z, or does so a first time, one gets

hap(z) =Pglra < D] = Pu[Ta < TDUz| + Pz < Taup|Pz[Ta < 7D]

(4.5)
Hence
Pz[TA < TDUz] o PI[TA < TDUa:] PI[TA < Tz] o Ca‘pa:(A)
hap(z) < = < =
’ 1- ]Pa:[Ta: < TAUD] PE[TAUD < Ta:] PE[TD < Ta:] Ca‘pm(D)
(4.6)
Since even large probabilities do not exceed 1, the lemma is proven. O

Remark. Note that the power of Lemma 4.1 is more than doubled by
judicious use of the elementary fact that ks p(z) =1 — hp a(z).

Remark. The bound (4.5) can easily be improved to hy p(z) <

min (£S22el4)

cap,(DUA)’ 1), but this is seldom very useful.

Ultrametricity. An important fact that allows to obtain general results
under our Definition of metastability is the fact that it implies approximate
ultrametricity of capacities. This has been noted in [9].

Lemma 4.2 Assume that z,y € ', D C TI'. Then, if for 0 < § < %,
cap, (D) < écap,(z), then

1-24 < cap,(D) < 1

1-8 ~ cap,(D) ~ 1-6 (47)

Proof. The proof of this lemma given in [9] is probabilistic and uses split-
ting and renewal ideas. It should be possible to prove this result with purely
potential theoretic arguments, but I have not worked this out. O

Lemma 4.2 has the following immediate corollary, which is the version
of the ultrametric triangle inequality we are looking for:

Corollary 4.1 Let z,y,z € M. Then

cap,(y) > 5 min (ca,(2), cap, (2)) (48)
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In the sequel it will be useful to have the notion of a “valley” or “at-
tractor” of a point in M. We set for z € M,

Az) = {z EL|Plre =7M] = ;él/a]l”z[@ = TM]} (4.9)

Note that valleys may overlap, but from Lemma 4.2 it follows easily that
the intersection has a vanishing invariant mass. The notion of a valley in
the case of a diffusion process coincides with the intuitive notion.

The following simple corollary will be most useful:

Corollary 4.2 Let m e M, y € A(m), and J C M\m. Then either

1  cap,(J) _3
2 < m < 3 (4.10)
" Q) Qy) _capn (/)
Y Y) cap,
a(m) = *Mleap, (M) "Q(m) —
Proof. Lemma 4.2 implies that if cap,,(y) > 3cap,,(J), then (4.10) holds.
Otherwise,
Q(y) Q(y) capn(J)
Q(m) = *Gap, () Q(m) 12

Since y € A(m),
cap, (M) < Z cap,(z) < |M| sup cap,(z) = [M]cap,(m) (4.13)
2EM zEM
which yields (4.11). ]

We want to use this corollary in order to estimate the summands in the
sum (4.2). We will set inf, Q(y) 'cap, (M) = a..

Lemma 4.3 Let z € M and J C M with z ¢ J. Then:
(i) If = m, either

has(y) > 1 - §|M|% (4.14)
" Q) _ g g1 2Pml)
Qo) < 3|Mla; Q(m) (4.15)

(ii) If m € J, then

Qe s(v) < S Maz cap,,(2) (4.16)
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(iii) If m ¢ J U z, then either

cap,, (z)
he <3 ————+= 4.17
,J(y) = capm(J) ( )
and )
cap,,
he >1-3—™—= 4.1
o) > 1= 3 (4.18)
or
Q(y) < 3| M|a;" max (capy, (), capy,(z)) (4.19)
Proof. We make use of the fact that by Lemma 4.1,
cap,(z)
0< heys(y) < Y 4.20
) < (4.20)
and S
1> hgy(y)>1- capy (/) (4.21)

cap, (2)

In case (i), we anticipate that only (4.21) will be useful. To get the first
dichotomy, we use Corollary 4.2 to replace the numerator by cap,,(J). To
get the second assertion, note simply that

cap,(J) _ Q(y)cap,(J) Q(m)
cap. (m) = cap, (2)Q(m) Q) (4.22)

and rewrite this inequality for 8((:;’1)).

In case (ii), we use (4.20) and apply Corollary 4.2 to cap,(z).
In case (iii), we admit both possibilities and apply the corollary to both
the numerators and the denominators. |

Remark. Case (iii) in the preceding lemma is special in as much as it will
not always give sharp estimates, namely whenever cap,,(J) ~ cap,,(y). If
this situation occurs, and the corresponding terms contribute to leading
order, we cannot get sharp estimates with the tools we are exploiting here,
and better estimates on the equilibrium potential will be needed.

Mean Times. Let us now apply this lemma to the computation of the
sum (4.3) (we ignore the fact that the sets A(m) may not be disjoint, as
the overlaps give no significant contribution).

> 5 e, i(y) = E > le ha,1(y)
yeEM® Qfe) meM Q( ) yEA(m)\m Q(m)
(4.23)
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(we ignore the fact that the sets A(m) may not be disjoint, as the overlaps
give no significant contribution).
We now estimate the terms L(m) with the help of Lemma 4.3.

Lemma 4.4 With the notation introduced above and the assumptions of
Lemma 4.3, we have that

() fm=z
L(m)g% (4.24)
and
QAR [, _ ot 1glgot EPnld)
1) 2 S (1-eoma GERLS)

(ii) If m € J, then

L(m )<Ca-1|M|Capm {y € A(m) : Q(y) > a7 | M]cap,, ()}

e (4.26)
for some constant C' independent of e.
(iii) If m ¢ J Uz, then
Q(A(m))
L(m) < Q(m) (4.27)
Moreover,
(iii.1) if cap,, (J) < 3cap,(z), then
QUAM)) (| c2m(D)) (1 o1 et 2Pm(e)
wtm) > St (1-950m ) (1 - o )
(4.28)
and
(iii.2) if cap,, (J) > Fcapn,(z), then
L(m) < YAM) g1 q-162Pm(2) (4.29)

Q(m) Q(m)

Proof. The proof of this lemma is rather straightforward and will be left
as an exercise. Just note that to get (4.27) involves an optimal choice of §
in the application of Lemma 4.3. O

Remark. The statement of Lemma 4.4 looks a little complicated due to
the rather explicit error terms. Ignoring all small factors, its statement boils
down to:

(i) There is always the term
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(i) If m € J, roughly,
cap,(z)
L(m) < Q(m)
(ili) If m ¢ J Uz, it is always true that
Q(A(m))
Q(m)

i.e. roughly of order one. This bound is achieved, if

L(m) <

(ili.1) cap,,(J) < cap,,(z), whereas in the opposite case
(iii.2) cap,,(J) >> cap,(z),

L) < ma (3202, 27a(2)

Of course these arguments use that quantities like % are not too
small, i.e. that the most massive points in a metastable set have a reason-
ably large mass (compared to say, p(e)). If this condition is violated, the
idea to represent metastable sets by single points is clearly mislead. We will
discuss later what has to be done in such cases.

Taking into account that the L(m) appear with the prefactor Q(m)/Q(z)
in the expression (4.23), we see that contributions from case (ii) are always
sub-dominant; in particular, when J = M\z, the term m = z gives always
the main contribution. The terms from case (iii) have a chance to contribute
only if Q(m) > Q(z). If that is the case, and we are in sub-case (iii.1), they
indeed contribute, and potentially dominate the sum, whereas in sub-case
(iii.2) they never contribute, just as in case (ii).

From Lemma 4.3 we can now derive precise formulae for the mean arrival
times in a variety of special cases. In particular,

Theorem 4.1 Let z € M and J C M\z be such a that for allm ¢ JUz
either Q(m) < Q(z) or cap,,(J)mcap,,(z), then

Q(A(=2))
=—>5(1 1 4.
By = o) (14 o(1) (4.30)
Proof. The proof of this result is straightforward from (4.2), (4.23) and
Lemma 4.3. O

Remark. In much the same way one can compute conditional mean times
such as E, [77|77 < 77]. Formulae are given in [8, 9] and we will not go into
these issues any further here.

Finally we want to compute the mean time to reach M starting from a
general point.
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Lemma 4.5 Let z ¢ M. Then
E.mm <o ({y: Q) > Q(2)[} + C) (4.31)

Proof. Using Lemma 4.1, we get that

_0() _ Q(y) cap,(z)
EZTM < cap,(M) ygj\;c Q(2) max <1, ca.py(M))
_ Q(2) Q(y) Py[rz<1y]
= @p0m 2, O (L aE)
Q@) > Q(y)
< :]PZ < z
< o (afll) 3 mex(§Pan<nl) g
Q@) > Q(y)
< sup (20 > Wi o
veMs (ca5, ) (y@(y)s@(z)@” y=@(y)>@(z))
2
<  sup (%) (C+ Hy: Q(y) > Q(2)}))
yeM:« ¥
which proves the lemma. |

Remark. If T is finite (resp. not growing to fast with ¢€), the above estimate
combined with Theorem 4.1 shows that the two definitions of metastability
we have given in terms of mean times rep. capacities are equivalent. On
the other hand, in the case of infinite state space I', we cannot expect the
supremum over K, 7 to be finite, which shows that our first definition was
somewhat naive. We will later see that this definition can rectified in the
context of spectral estimates.

5. Metastability and Spectral Theory

We now turn to the characterisation of metastability through spectral data.
The connection between metastable behaviour and the existence of small
eigenvalues of the generator of the Markov process has been realised for a
very long time. Some key references are [17, 18, 19, 31, 33, 36, 43, 46, 49,
56, 60, 61]

We will show that Definition 4.1 implies that the spectrum of 1 — P
decomposes into a cluster of | M| very small real eigenvalues that are sep-
arated by a gap from the rest of the spectrum.

A Priori Estimates. The first step of our analysis consists in showing
that the matrix (1 — P)™ that has Dirichlet conditions in all the points of
M has a minimal eigenvalue that is not smaller than O(a.).
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Lemma 5.1 Let A\° denote the infimum of the spectrum of L. Then

A0 > # (5.1)
~ supE, T
z€N

Proof. This result is a classical result of Donsker and Varadhan [26] (in
the diffusion setting; see [9] for a simple proof in the discrete case). O

In the case when I' is a finite set, (5.1) together with the estimate of
Lemma 4.5 will yield a sufficiently good estimate. If |I'| = oo, the supremum
on the right may be infinite and the estimate becomes useless. However, it
is easy to modify the proof of Lemma 5.1 to yield an improvement.

Lemma 5.2 Let A\° denote the infimum of the spectrum of (1 — P)™ and
denote by ¢ the corresponding eigenfunction . Let D C I" be any compact
set, Then

N> (12 Y Q)P (5.2)

supE, T
ZEB = Me yeDe

Moreover, for any § > 0, there exists D finite such that

1
N> - (1- .
~ sup EZTME( 5) (5 3)
z€D

Proof. Let w(z) denote the solution of the Dirichlet problem

(1_P)w(m) = 1, :CEP\M 5.4
w(z) = 1, zeM (5-4)
Recall that w(z) = E,7a4,. Using that for any C' > 0, ab < 3(Ca? +b%/C)
with ab = ¢(z)¢(y) and C = w(y)/w(z), one shows readily that

> QE)()(1-P) > ¥ Q@)X (1 - Pyu(z)e(z)

z€M\M z€M\M

= ¥ Q@)

zel'\M

|

v

sup %w(a: E ¢2($)

€D ) zeDNIC\M
(5.5)
Choosing ¢ as the normalized eigenfunction with maximal eigenvalue yields

(5.2).
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We now claim that for any v > 0,

> Q) "é(y)* < Cy < 0 (5.6)

yel

This clearly implies (5.7). The estimate (5.6) follows from a standard
Combes-Thomas estimate for the ground-state eigenfunction, ¢. It is conve-
nient to introduce v(y) = Q(y)'/?4(y), which is the corresponding ground
state eigenfunction of the operator

H.=Q(y)'/*(1 - P)Q(y)~'/? (5.7)
which is a symmetric operator on £2(T). By a standard computation,
t(e)fu] = Y w*(y)Qy) *HQ(y) " *u(y) (5.8)
yerl’

defines a closed sectoral form (in the sense of Kato [38]), which is analytic
in the strip [Sa| < 1/2. An adaptation of the Combes-Thomas estimate
(see e.g. [53]) then implies that v satisfies

> QW) Mu(y))? < Cy < 00 (5.9)
y€eQ
which is equivalent to (5.6). This completes the proof of the lemma. O

If we combine this result with the estimate from Lemma 4.5, we obtain
the following proposition.

Proposition 5.1 Let \° denote the principal eigenvalue of the operator
(1 — P)M. Then there ezists a constant C > 0, independent of €, such that
for all € small enough,

A0 > Ca_? (5.10)

Remark. Proposition 5.1 links the fast time scale to the smallest eigenvalue
of the Dirichlet operator, as should be expected. Note that the relation is
not very precise. We will soon derive a much more precise relation between
times and eigenvalues for the cluster of small eigenvalues.

Characterization of Small Eigenvalues. We will now obtain a repre-
sentation formula for all eigenvalues that are smaller than A°. It is clear
that there will be precisely |M| such eigenvalues. This representation was
first exploited in [9], but already in 1973 Wentzell put forward very similar
ideas (in the case of general Markov processes). As will become clear (hope-
fully more so then on the original paper [9], this is extremely simple in the
context of discrete processes (see [11] for the more difficult continuous case.
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The basic idea is to use the fact that the solution of the Dirichlet prob-
lem

(L-Nf(z) = 0, z¢ M
f() = ¢z, zEM

already solves the eigenvalue equation L¢(z) = A¢(z) everywhere except
possibly on M. The question if whether an appropriate choice of boundary
conditions and the right choice of the value of A will actually lead to a
solution. This is indeed the case.

(5.11)

Lemma 5.3 Assume that A < A° is an eigenvalue of L and ¢(z) is the
corresponding eigenfunction. Then the unique solution of (5.11) with ¢, =

¢(z), ¢ € M, satisfies f(y) = ¢(y), forall y € T.
Proof. Since ¢(z) = f(z) on M, we have that (f—¢)(z) solves the Dirichlet

problem
(L-=XM(f-d)(z) = 0, z¢gM
(F-9)e) = 0, seM (512

But since ) is not in the spectrum of L5, (5.12) has a unique solution, which
is identically zero, so that f(z) = ¢(z) on I, which proves the lemma. O

From the lemma we conclude that we can find all eigenfunctions corre-
sponding to eigenvalues smaller than A\° among the solutions of the Dirichlet
problems (5.11).

Let now f be a solution of (5.11) with A < A9 Clearly, f is an eigen-
function with eigenvalue A, if

(L-Nf(z)=0, zeM (5.13)

Thus we need to compute the left-hand side of (5.13). Now f(y) can be
represented in terms of the equilibrium potentials hi M = h)(y) defined

in (3.3) as f(y) = 3 ézh2(y). Thus
zeM

(L-Nf@)= Y (L - N2 = Y g.ed p,(0) (5.14)

zEM zZEM

where we used (3.7). Let us denote by Ea¢(A) the |[M| X [M]- matrix with
elements

We can then conclude that:

Lemma 5.4 A number A < \? is an eigenvalue of the matrix L = (1 — P)
if and only if
det Epq(A) =0 (5.16)
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Anticipating that we are interested in small A, we want to re-write the
matrix £u¢ in a more convenient form. To do so let us set

hz(y) = ha(y) +92(y) (5.17)

where h;(y) = h2(y) and consequently 2 (y solves the inhomogeneous
Dirichlet problem

(L - N¥3(y) Aho(y), ye€T\M
Pay) = 0, yeM

(5.18)

Lemma 5.5

(EM(N))az = Q)™ (% Y QWP Wlha(y) - b @)lhaly)

y#£y'

—hs(y)] - A Zy) Q(y) (hz(y)he(y) + hm(y)¢?(y)))

(5.19)
Proof. Note that
(L=XNh3(z) = (L—Nhi(z)+ (L - N)p(z)

— Lhy(z) - Ahy(2) + (L — N(a) (5.20)

Now by adding a huge zero,

Lh,(z) =Q(z)™! IEE:FQ(y')hm(y')Lhz(y')
=Q(z)™'3 Z:ErQ(y')P(y', yDh=(y') — ha(W)][ha(y") — ha(y)]

y’y (5.21)

Similarly,
(L= N)$2(z) =

Q(m)_l E (Q(yl)hﬁ(yl)(‘[’ - A)qu)"(yl) - Any’#zhm(yl)hz(yl))

y' el
(5.22)
Since ¥} (y) = 0 whenever y € M, and Lh,(y) vanishes whenever y ¢ M,
using the symmetry of L, we get that the right-hand side of (5.22) is equal
to

23Q@) Y QW) B2Y) + Typaha(@)ha(y))  (5:23)

y'el
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Adding the left-over term —Ah,(z) = —Ahg(z)h,(z) from (5.1) to (5.22),
we arrive at (5.19). O

Remark. Note that we get an alternative probabilistic interpretation of
Lh,(z) as

“Pre <7Tm], if z#z
Poltimye <72 if z=2

Lh,(z) = {

Note that the off-diagonal quantities can in turn be expressed via the re-
newal equations as

(5.24)

PZ[TE < TM] = PZ[TE < TM\:L‘]]PZ[TM\Z < Tz] = h’z,M\z(z)ez,M\z (Z) (525)

We will see in Section 6 that the equilibrium potential h, q\,(2) can be
estimated along with the capacities rather well.

We are now in a position to relate the small eigenvalues of (1 — P) to
the eigenvalues of the classical capacity matrix. Let us denote by || f||2 the
£%2-norm with respect to the measure Q, i.e. ||f|Z2 =3 Q(y) f(y)2

y

Theorem 5.1 If A < \° is an eigenvalue of L, then there ezists an eigen-
value p of the | M| x | M|-matriz K whose matriz elements are given by

3 2 Qe y)[ha(y') — k2 ())[B=(y") — ha(y)]

Fy'
Kup = —2 5.26
Tl (5.26)

such that A = p (1 + O(p(€)).
Proof. The proof will rely on the following general fact.

Lemma 5.6 Let A be a finite dimensional self-adjoint matrix. Let B(X) a
Lipshitz continuous family of bounded operators on the same space that
satisfies the bound ||B(X)|| < § + AC, and ||B(A) — B(X)|| < C||A — X|| for
0<éd«1,and 0 < C < oco. Assume that A has k eigenvalues Aq,..., Ag in
an interval [0, a] with ¢ < §/C. Then

(i) Any solution X! of the equation
det(A—A(11+ B())))=0 (5.27)

satisfies | — A;| < 46X, for somei=1,...,k.

(ii) There exists o > 0 and ag > 0 such that for all § < &y, and a < ao,
Equation 5.27 has exactly & solutions I7,..., L.

(iii) If the eigenvalue J; is simple and isolated with minjz; |A; — Aj| > 28,
then, if X! is a solution of 5.27 with |A] — X;| < 44);, ther exists a
unique solution ¢ of the equation

(A= (1 + BO)))e =0 (5.28)
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Moreover, if ¢; denotes the normalized eigenfunction of A with eigen-
value );, then
lle — cil|2 < 2 (5.29)

A proof of this lemma can be found in the appendix of [11].

First we divide the row z of the matrix £(\) by ||h¢||2 and multiply the
columns by ||h.||2 to obtain a matrix G(A) with identical determinant that
can be written as

G()) = K — Al — AB()) (5.30)

where

Y QW) (9)ha(y) (Lazy + Y2 (y)/ ha(y))

BNz = -~ (5.31)
[[Fezl2][ P2
Note that G() is symmetric. We must estimate the operator norm of B()).
1/2
We will use the corresponding standard estimator S BZ
z,zEM

We first deal with the off-diagonal elements that have no additional A
or other small factor in front of them.

Lemma 5.7 There is a constant C < oo such that

> Q)h(y)h.(y)

yel' 1 .
max < Ca;" max Q(m) “cap,,(M\m) < p(e
shzeM [hgallBal]2 max Q(m)~"cap, (M\m) < p(e)
(5.32)

Proof. Note first by the estimate (4.4) the equilibrium potentials h;(y)
are essentially equal to one on A(z). Thus the denominator in (5.32) is
bounded from below by

> Qh(y Z Qy y) > /Q(A Az)) (5.33)

y€A(z) yEA

To bound the numerators, we will use Lemma 4.3 in the special situation

when J = M\z.
Lemma 5.8 For any z # z € M,

Q) () < Cp(e)vVQ(2)Q(2) (5.34)

yel’

Proof. By (ii) of Lemma 4.4, if y € A(m), then



38 ANTON BOVIER

(i) If m = 2z, either

QW) < JQ(a)a M| nls) (5.35)
Q) < 5@ M TR (6)
(ii) If m ==z,
B0y 110t g 2Pm(2)
Q) < 5Q(a)a 1M “E2S (5.37)
) Qh(u)h:(v) < SQ()ar v 2PmlZ) (5.38)
Wha(u) < 500N IMIT5 1) |

(ii) Let m ¢ {z, z}, and assume w.r.g. that cap,,(z) > cap,,(z). Then, if
cap,,(y) > 3cap,,(z), already

QARG < 5 VA a;1|M|\/ Capag;gé?(z) (5.39)

while otherwise

QW) < 3@@)% < 3a;' | M| (Fapn(@  (5.40)

Summing over y yields e.g. in case (i)

%() )Q(y)hm(y)hy(y) < C{y € A(m) : Q(y) > 320" | M]capy, (z) }|
yEA(m
xag | M]cap,,(z)

(5.41)
and in case (ii) the same expression with z replaced by z. The case (iii) is
concluded in the same way.

This implies the statement of the lemma. |

Remark. Note that the estimates in the proof of Lemma 5.7 also imply
that

Q(A(2)(1 - O(p(€) Y QW)ha(y)® < Q(A(2)(1+ O(p(e))  (5.42)

The remaining contribution to the matrix elements of B()) are of order
A, and thus the crudest estimates will suffice:
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Lemma 5.9 If \° denotes the principal eigenvalue of the operator L with
Dirichlet boundary conditions in M, then

> W) (hw020) | < grsglheluliale (543

yel

Proof. Recall that 9. solves the Dirichlet problem (5.18). But the Dirichlet
operator L™ — X is invertible for A < A\° and is bounded as an operator on

22(T,Q) by 1/(X° — X). Thus

k 2

A2 2

28 < (5 ) ka2 (5.44)
The assertion of the lemma now follows from the Cauchy-Schwartz inequal-
ity. O

As a consequence of the preceding lemmata, we see that the matrix
B(}) is indeed bounded in norm by

IBOII < Cp(e) + ¢ (5.45)

A0 — )
The theorem follows from Lemma 5.6. O

The computation of the eigenvalues of the capacity matrix is now in
principle a finite, though in general not trivial problem. The main difficulty
is of course the computation of the capacities and induction coefficients.
Capacities can be estimated quite efficiently, as we will see in the next
section, the off-diagonal terms however, pose in general a more serious
problem, although in many practical cases exact symmetries may be very
helpful. On the other hand, a particularly nice situation arises when no
symmetries are present.

In fact we will prove the following theorem.

Theorem 5.2 Assume that there erists z € M such that for some § K 1

Ca‘pm('/\/Z\m) Z 5 max CaPZ(./\/lz\Z) (546)
[z ]2 Mz |lh:|l3
Then the largest eigenvalue of L is given by
R COARENI0) (5.47)
[z ]l2
and all other eigenvalues of L satisfy
A< Cé, (5.48)

Moreover, the eigenvector, ¢, corresponding to the largest eigenvalues nor-
malized s.t. ¢, = 1 satisfies ¢, < C4, for z # z.
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Proof. This is a simple perturbation argument. Note that we can write
K=K+K (5.49)

where Kyy = Kzz0zu0zy. Now we estimate the norm of K.
By the Cauchy-Schwartz inequality,

3 2 QW)Y ¥)[ha(y) — ha(W)][h=(y") — ()]
vy (5.50)

< y/cap,(M\z)cap,(M\z)

Thus
Z—Zlcﬁm < KeoKas (5.51)
Whence by assumption,
K| < Kazr/8| M| + 82| M]? (5.52)

Since obviously K has one eigenvalue K., with the obvious eigenvector and
all other eigenvalues are zero, the announced result follows from standard
perturbation theory. O

Theorem 5.2 has the following simple corollary, that allows in many
situations a complete characterization of the small eigenvalues of L.

Corollary 5.1 Assume that we can construct a sequence of metastable sets
Mg D Mg_1D...D My D My = zg, such that for any i, M;\M;_; = z;
is a single point, and that each M, satisfies the assumptions of Theorem
5.2. Then L has k eigenvalues

cap,, (M;_1)

A = 1+0(6 5.53
Q@) W) (5:53)
The corresponding normalized eigenfunction is given by
hy;
o) = 1 (ﬁz +0() (5.54)

6. Computation of Capacities

We have seen so far that in metastable dynamics we can largely reduce
the computation of key quantities to the computation of capacities. The
usefulness of all this thus depends on how well we can compute capacities.
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While clearly the universality of our approach ends here, and model specific
properties have to enter the game, it is rather surprising to what extent
precise computations of capacities are possible in a multitude of specific
systems.

6.1. GENERAL PRINCIPLES

The key to success is the variational representation of capacities through
the Dirichlet principle, i.e. Eq. (3.11). The Dirichlet principle immediately
yields two avenues towards bounds:

e Upper bounds via judiciously chosen test functions
e Lower bounds via monotonicity of the Dirichlet form in the transition
probabilities via simplified processes.

These two principles are well-known and give rise to the so-called
“Rayleigh’s short-cut rules” in the language of electric networks (see e.g.
[25] and references wherein). In the context of metastable systems, the use-
fulness of these principle can be enhanced by an iterative method.

The key idea of iteration is to get first of all control of the minimizer in
the Dirichlet principle, i.e. the equilibrium potential. In metastable systems,
when we are interested in computing e.g. the capacity capg_(By) where B,
B, represent two metastable sets, our first goal will always be to identify
domains where hp, B, (2) is close to zero or close to one. This is done with
the help of the renewal estimate of Lemma 4.1. While with looks cyclic at
first glance (we need to know the capacities in order to estimate the equi-
librium potential, which we want to use in order to estimate capacities....)
it yields a tool to enhance “poor” bounds in order to get good ones. Thus
the first step in the program is to get a first estimate on capacities of the
form cap,(B) for arbitrary z, B.

(i) Choose a roughly ok looking test function for the upper bound.

(ii) Dramatically simplify the state space of the process to obtain a system
that can be solved exactly for the lower bound. In most examples, this
leads to choosing a one-dimensional or quasi-one-dimensional system.

(iii) Insert the resulting bounds in (4.4) to obtain bounds on hp, B,(2).

Using this bound we can now identify the set

D, = {Z : th,By(z) < 5}

e D,={z:hp,B,(2) > 1~ 4} for § < 0 suitably chosen.

If the complement of the set D, U D, contains no further metastable
set, we define

I={z€ (D, UDy) :Q(z) < p sup Q(w)} for p < 1 conve-
we(DzUDy)*¢

niently chosen.
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Let us denote by S = (D, U D, U I)°.

The idea is that the set I will be irrelevant for the value of the capacity,
no matter what value hp, g, (z) takes where, and that the sets D, and D,
give no contribution to the capacity to leading order. The only problem is
thus to find the equilibrium potential, or a reasonably good approximation
to it on the set S. We return to this problem shortly. Of course this idea
can only make sense if the sets D, and D, can be connected through S.
If that is not the case, we will have to analyse the set (D, U D,)¢ more
carefully.

D, U D, contains further metastable sets, say w, then it will be possible
to identify domains D,, on which hp_ B, (z) takes on a constant values ¢,
(to be determined later). Note that this can be done again with the help of
the renewal bounds; The starting point (in the discrete case) is of course
the observation that

h’Bz:By(z) = PZ[TBE < TBy]

- IP’Z[TBE < TBy, Tw < TBE] ‘|‘Pz[TBE < TBy, Tw > TBE] (6 1)
P.[ )
P,[

Tw < TB,uB,|Puw([TB, < TB,]
2| Tw < TBEUBy]Cw

z

The problem, to be solved with the help of (4.4) and the a priori bounds on
capacities is thus to determine the set of points for which P,[7,, < TBmuBy] >
1-4.

Once with is done, we proceed as in the former case, but increasing the
set D, U Dy in their definition of I to D = D, U Dy U D,, U...U Dy,
if k such sets can be identified. It should now be the case that the set
D,UDyUD,, U...UDw,US is connected. The remaining problem consists
then in the determination of the equilibrium potential on the set S and of
the values c,,.

At this stage we can then obtain upper and lower bounds in terms of
variational problems that involve only the sets &; to what extend these
problems then can be solved depends on the problem at hand.

Upper Bound. To obtain the upper bound, we choose a test-function At
with the properties that

ht(z) = 1, ze D,
ht(z) = 0, ze€ D, (6.2)
ht(2) = cw;, 2z € Dy,

where the constants c,, are determined only later. On I, the function A*
can be chosen essentially arbitrarily, while on S, we chose At such that it
optimizes the restriction of the Dirichlet form to & with boundary condi-
tions implied by (6.2) on 8SNAD. Finally, the constants c,,; are determined
by minimizing the result as a function of these constants.
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Lower Bound. For the lower bound, we use that if A* denotes the true
minimizer, then

B(h*) > Bs(h*) (6.3)

where ®g is the restriction of the Dirichlet form to the subset §, i.e.

Bs(h)=5 Y Q@)p(ey)[k() -~ () (6.4)

zVYES
zAYyESUD

Finally we minorise ®g(h*) by taking the infimum over all 2 on §, with
boundary conditions imposed by what we know a priori about the equilib-
rium potential. In particular we know that these boundary conditions are
close to constants on the different components of D. Of course we do not
really know the constants c,,, but taking the infimum over these, we surely
are on the safe side.

Thus, if we can show that the minimizers in the lower bound differ little
from the minimizers with constant boundary conditions, we get upper and
lower bounds that coincide up to small error terms. Of course in general,
it may remain difficult to actually compute these minimizers. However,
the problem is greatly reduced in complexity with respect to the original
problem, and in many instances this problem can be solved quite explicitly

(see [8, 12]).

7. What to do when Points are too Small?

In the previous chapters we have mainly relied on the fact that by remov-
ing individual points from state space we already lifted the spectrum of the
generator beyond the small eigenvalues corresponding to metastable tran-
sitions, or, in other terms, the fact that a set of points is reached in times
much smaller that metastable transition times. This is not the case when
the cardinality of phase space is too large, or even uncountable. Obvious
examples are diffusion processes and spin systems at finite temperature.

Such situations require always some coarse-graining of state space.
Metastable sets are then no longer collections of points, but collections
of disjoint subsets. This coarse graining causes problems. One concerns the
use of the fundamental relation (3.6) that cannot immediately be used to
obtain a formula for the Green’s function a la (3.25), if A cannot be chosen
a single point. The solution must then be to find admissible sets A on those
boundary Gq(z,y) is constant or varies very little. Of course such a proce-
dure requires some a priori knowledge about the Green’s function. A very
similar problem arises in the use of renewal arguments to derive Lemma
4.1.
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So far, we have no general rule for how to proceed in such situations.
In the case of diffusion processes, it has turned out that general elliptic
regularity theory (based on Harnack and Hélder inequalities) allows to ob-
tain all desired results by replacing points with suitable e-dependent balls
around points. The details can be found in [10, 11], and we will not go into
these problems.

A second method proved useful in the context of certain mean field
spin systems and was successfully used in [8, 1] is “lumping” [40]. As this
method is the basis of some of the estimates that are crucial in the analysis
of ageing in the Random Energy Model (REM) that we will discuss later,
we present this in some detail here, even though it is rather extensively
presented in [8, 1].

Lumping. Let us suppose we have an ergodic reversible Markov chain those
invariant measure is constant on the level set of some function m : ' — 3.
Let us further assume that we are interested only in events that can be
expressed in terms of m. Of course the idea will always be that 3 should
be a much smaller space than I'. In such a situation it may appear natural
to define metastable sets in terms of subsets of 3 rather than of I'.

Example 7.1 Curie-Weiss Model. The simplest example of this type is
furnished by the Curie-Weiss model. Here I' = {—1,1}", ¥ = {-1,-1 +

N
2/N,...,1-2/N,1} and m(z) = N~! }_ z;. The invariant measure is given

=1
by
eBNm(z)?
Q(z) = Qpn = — (7.1)
B
and the transition probabilities are e.g. (for z # y)
p(a;, y) = N_le_N[m(y)_m(m)]+]]-||a:—y||2:2 (72)

where [-]4 denote the positive part of -. If § > 1, the measure Qg n concen-
trates (for large N) near the points +m*(5) where m*(8) = tanh(8m*(8)) >
0. Thus it would be natural to assume that a metastable set for our Markov
chain could consist of the two subsets My = {z € ' : m(z) = +m*(5).

It is instructive to review our basic notions in this context. We see
that the definition of metastability given in Section 4 may now not be very
appropriate since it would involve ratios of quantities such as Py[Tar, upr_ <
Tz] and Py[Tar, < 7] which might tent to be close to one simply because
of entropic reasons it is very difficult for a process starting in = to ever
return to that point before an exponentially long time. Looking back at
our tentative definition in Section 2, this now seems to be more promising,
as we still expect the mean times for arrival in M_ UM, to be much shorter
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than than transition times between M_ and M, . The question is whether
and when we can re-express such mean times in terms of capacities?
To understand this issue, recall that by (3.23), we have that (e.g.)

> Q)hen (y)

ygMy Uz
cap, (M)

In fact, this formula is quite annoying since again the denominator is dif-
ficult to evaluate due to the fact that we anticipate some hard to control
local behaviour of the equilibrium potential g ar, (y) near z.

In fact, it would be highly desirable if we could obtain a formula where
only capacities of “fat” sets, e.g. sets that can be described in the form
{z : m(z) € A C [-1,1]} enter. to do so let us go back to the original form
of (3.6). If we multiply equation (3.22) on both side by eps(s),ar, (y), where
M(z) = {y : m(y) = m(z)} and then sum over M(z), we get

Z Q(z)Eear, eps(z), M, (Y) = hapay (y Z Z Qy) (7.4)

yeM(z) a:eM( ) yEMy Uz

]EETMJr = (7-3)

Let us first consider the right-hand side. Since Q(y) depends only on m(y),
we can write

z€M (z) yg M4 Uz y¢My Uz

Now if we knew that hpr(z)ar, (¥) = 9m(z),m_(m(y)) depended only on
m(y), then this would become simply

> Q(M(m)) g, (m) (7.6)
m#m*

On the other hand, if Eo7ar, = fim(z)(M4+) was a function of m(z) only,
the left hand side of (7.4) would reduce to

cap () (M4 ) Ee 7oty (7.7)
and we would have the nice formula
EeTam, = caPara M+ m;* Q(M(m)) IM (= M+(m) (7.8)

In fact, it is easy to see that in our simple model, both properties are in
fact verified. The reason for this is that the transition probabilities verify
the property that for any z,z’ € T' such that m(z) = m(z’) and m' € [0, 1],

>, p@y)= ), »y) (7.9)

ym(y)=m/' ym(y)=m/'
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In fact it is an old result due to Burke and Rosenblatt [13] that condition
(7.9) is necessary and sufficient for the fact that the image process m(t) =
m(z(t)) is a Markov chain on m(I') with transition rates given by

r(m,m') = Z p(z,y) (7.10)

yim(y)=m’

where z is any point such that m(z) = m. We refer to the chain m(t) as
the lumped chain. Note also that in this case we have that

Irt(2), 15 (M) = hrn(2) > () (7.11)

where h is the equilibrium potential for the lumped Markov chain m(t).

Also,
Caps(z)(M+) = CaPpy(g)(m”) (7.12)

where cap is the capacity for the lumped chain, and formula (7.8) can be
derived directly in the context of the lumped chain. Thus, the study of the
metastability problem in the high-dimensional Curie-Weiss model can be
reduced readily to the study of a one-dimensional discrete problem.

The Curie-Weiss model is a particularly simple incident of the lumping
technique. In general, if we are given some map m, the process m(t) =
m(z(t)) will not be a Markov chain. In some cases it is however possible to
construct a map into some higher-dimensional space that verifies property
(7.9). In the context of spin systems when T' = {-1,1}" (and similar
constructions work when {—1,1} is replaced by a general finite set), there
is a natural class of such maps that proof often helpful.

Theorem 7.1 Assume that according to some rule there is a partition of
A={1,...,N} into k subsets Ay,...,Ay. denote by m; the maps

1
m;(z) = T Z z; (7.13)

2EA;

and let m denote the k-dimensional vector (my, ..., mg). Assume that Q(z)
depends only in m(z) and that the Markov chain z(t) has transition rates
that are of the form

p(z,2") = f(m(z), m(z"))L)js_oz<2 (7.14)

Then m(t) = m(z(t)) is a Markov chain on m(T') with transition rates
given by equation (7.10).
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Proof. Consider two possible values of m and m' that may be connected by
a simple transition, i.e. changing the sign of one component of z € M(m).
Note that this has to happen in one of the boxes A;, and changes the value
of one component of m, namely m; by plus or minus 2/|A;|. Suppose then
that m! = m; + 2/|A;|. By (7.14),

Yo p@,a) = f(m(a),m(a) Y Lo=s (7.15)

z':m(z')=m/' JEA;

But ) 1,,-—1 = |A;|(1 — m;(z))/2 depends only on m(z), which proves
e

our Case. O

Remark. Lumping is a useful tool to treat some random mean field models,

such as the random field Curie-Weiss model [8] and the Hopfield model (in

the Hopfield model, the construction can be found in the context of large

deviation theory in [44, 34]).

8. Simple Random Walk on the Hypercube

To illustrate the lumping procedure and to show what it can achieve, we
turn to the ordinary random walk on {—1, 1}N. This will provide a prepara-
tion for the treatment of the Random Energy Model. This model has been
studied in the past, mainly in view of convergence to equilibrium, see e.g.
[41, 23, 55]. Problems that are more closely related to our questions were
studied in [14, 20]. This section summarizes results obtained in [2, 4].

We consider a Markov chain o(t) in discrete time on Sy = {-1,1}¥
with transition probabilities

p(0,0) = 1N, if o —o'|2=2 (8.1)

and zero else. We will be interested in hitting probabilities on a certain
subset (of moderate cardinality) M C Sy.

Proposition 8.1 Set M = | M|, d = 2M. There ezists a constant ¢ > 0,
such that

i) For allm € M and all o0 € T\ M,

Py (g < ma) ~ 1] < § (82)

it) For allm € M and 1 € M with n # 7,

=
—
oo
[9M)
~—

Bo (7 < Tat\gnat) — w21 <
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iii) For all o ¢ M,

L (1- £) <Poltm < 7) < 1245 (8.4)

i) For alloc ¢ M and all G ¢ M Uo),

(9]

Ps (Te < Tm) — M+r1 <5 (8.5)

Proof. The key tool of the proof of this proposition is the construction of
a lumped chain in the sense explained above. In constructing such a chain,
we must take care that the events whose probabilities we are computing
are mapped one-to-one into the reduced state space. To construct such a
mapping, we consider a collection 7 of vectors £1,. ..,/ asa |7| X N matrix
£ those rows are the vectors €#. We will denote by &; € {—1, 1} the column
vectors of this matrix.

Next, let {e1,..., ek, ..., eq} be an arbitrarily chosen labeling of all d =
2/7l elements of Sps. Then £ induces a partition of A into d disjoint (possibly
empty) subsets, Ag(I),

A(I) ={ie A& = ex} (8.6)

This is the partitioning we will use for the construction of the lumped chain
according to the construction given above. We will write

Pi(A) = {AW(D), 1 <k < d) (8.7)
mj, that maps the elements of Sy into d-dimensional vectors,
my(o) = (m}(a),...,m’}(a),...,m‘f(a)) , 0ESN (8.8)

where, for all k € {1,...,d},

mf(0) = 1[ Z o; (8.9)

A few elementary properties of my are listed in the lemma below.

Lemma 8.1 i) The range of my, my 4(I) = m;(Sn), is a discrete subset
of the d-dimensional cube [—1,1]? and may be described as follows.
Let {ug}¢_, be the canonical basis of R% Then,

d

mEmN,d(I)<:>:c:Z
k=1

3 W:Lﬁuk (8.10)

where, for all 1 < k < d, |ng| < |Ag(I)| has the same parity as |Ag(I)].
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i)

d
o€ swlmile) =aH =TT () 2o

), Vz € mN,d(I) (8.11)
k=1

In particular, the restriction of mjy to I is a one-to-one mapping from
I onto my(I).
iii) The elements of I are mapped onto corners of [—1,1]%: for all o € I

mi(o) = (04,...,04,...,0i,), for any choice of indices iy € Ag(I)

(8.12)

iv) Let 0 € Sy be such that 11}{ llc —n|la > VeN for some € > 0. Set
nei\o

z =mj(o) and Z = my(I). Then

. eN
inf ||z —yll2 >

8.13
yel\e 2v/d max [Ax(1)] (819

Proof of Lemma 8.1. Assertions i), ii), and iii) result from elementary
observations. To prove assertion iv) note that for any n € I\ o, setting
y = my(n) and using (8.12), we have:

N d
eN <Y (oi—m)? = X X (00— )
=1 k=12€A,
d
= 220 [Ae(DI(1 ~ yrzx) < 2max|A(D)|(y, y — @)
k=1

(8.14)
where we used in the last line that 1 — yrzr = y(ye — zx). But (y,y—z) <
lyll2lly — z||2 = Vd||y — z]|2, so that

eN
T — > 8.15
SR LEE v (8.15)
which, together with assertion ii) yields (8.13). O
Note in particular that {o(t)} is reversible w.r.t. the measure
pn(o)=2"N, oce Sy (8.16)

We will denote by {X7n(t)},cy and call the I-lumped chain or the
lumped chain induced by I, the chain defined through

X],N(t) = mI(UN(t)); Vte N (8.17)
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To mpyq4(I) we associate an undirected graph, G(mnyq(I)) =
(V(mya(I)), E(mnd(I))), with set of vertices V(mp 4(I)) = mnyq(I) and
set of edges:

E(mp.a(I))

=1 (z,2") € mya(I) | Freqr,..dps Jsef-1,1} 1 T —T = SIA%(I)IU’“}
(8.18)

The properties of {X n(t)} are summarized in the lemma below.
Lemma 8.2 Given any subset I € Sy

i) The process {X n(t)} is Markovian no matter how the initial distri-
bution 7° of {o,(¢)} is chosen.

ii) Set Qy = ,ungl. Then Q, is the unique reversible invariant measure
for the chain {X n(t)}. In explicit form, the density of Q, reads:

1
Qu(z) = 2—N|{a € Sy | mi(o) =z}|, Vz € myq(I) (8.19)
iii) The transition probabilities ry (., .) of {X1 n(t)}

Befllizgen it (2,0) € B(my (D))
ry(z,z') = and z'—z = smuk (8.20)

0, otherwise

Proof. These results follow from the general Theorem 7.1 and explicit
calculations. O

8.1. MAIN INGREDIENTS OF THE PROOF OF PROPOSITION 8.1

Observe that the entropy produced by the lumping procedure gives rise
through (8.19) to a potential, Fy(z) = —4 In Qu(z). It moreover follows
from assertions ii) and iii) of Lemma 8.1 that this potential is convex and
takes on its global minimum at 0 and its global maximum at the corners
of the cube [—1, 1]¢. Thus the key idea in all the computations will be that
the potential will have the tendency to drive the lumped process quickly
to zero, before it does anything else; in other words, with overwhelming
probability all the events we are interested in are realized in such a way
that the process passes through zero.

Note. The diligent reader may have observed that depending on the par-
ticular properties of the vectors £#, the point 0 may or may not be in the
range of mj;. To avoid notational complications, in the sequel 0 will be
understood to stand for one of the points in m;(Sy) closest to zero.

The next two Lemmata quantify this statement.
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Lemma 8.3 Let ¢ € m;(I) and y € m;(Sy)\{z} Then
o c
Ry (7= < 7o) < N (8.21)
Lemma 8.4 There exists a constant ¢ > 0 such that, for all N large
enough,
2
R3 (70 < 7¢) > (1 - %) , forall ze€my(I) (8.22)
A consequence of the previous two Lemmata will be that the process

starting from 0 hits the set of corners of the hypercube [—1,1]¢ with essen-
tially uniform probability, more precisely:

Lemma 8.5 For all J C my(I), z € J,

J
— < RO(re < 7y) < =) 8.23
|J|_ O(T _TJ)_'19|J| ( )
where ,
c
9=(1- ﬁ) (8.24)

The basis for the proofs of the preceding Lemmata is the following a
priori estimate.

Lemma 8.6 There is a constant ¢ > 0 such that, if Q(y) < e7%¥,
Ro[r0 < 7] > c6” (8.25)

while otherwise
Ry[mo < 7y] > cN~* (8.26)

Proof. Our general strategy for getting a priori lower bounds on such
capacity type probabilities is the use of dramatically simplified chains. An
L-steps path w on mpyg4([), beginning at z and ending at y is defined
as sequence of L sites w = (wo,wr,...,wr), with wg = z, wr, = y, and
w; = (wlk)k:l,___,d € V(mnq(I)) for all 1 <1< L, that satisfies:

(wi,wi—1) € E(mn,a(])), forall I=1,...,L (8.27)

(We may also write |w| = L to denote the length of w.) If w is such a path
with wg = y and wr, = 0, it is clear that
0) = inf ®(h
capy(0) h:h(o)g,h(y):o (R)
, (8.28)
> it 1S Qe 2)(h(e) - A))?

h:h(0)=1,h(y)=0 2 2,2’ Ew
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This lower bound corresponds to a simple one-dimensional problem involv-
ing the process restricted to the path w and its solution is of course well
known. In fact, if we enumerate sites of the path w by y = wq,...,wr =0,

(8.28) yields
1

cap,(0) > 7 (8.29)
1

kzzjo Q(wi)r v (Wi ,wiet1)

We optimize this bound by choosing the path w in a more or less optimal
way. Assume w.r.g. that [Aq|y? > |Aslys > ... > |A4ly? and that y, > 0,
for all . Then our path will consist of a sequence of straight pieces along
the coordinate axis, starting with the first and ending with the last one.

‘s

This allows a very explicit representation of the denominator in (8.29)
in the form

E2N”1:[1(|Ak|)_l I ( Akl )_
p=1 —1 |Ax|/2 k1 |Ak|1+2?!k

[yu%/z] ™ )_IL

2 UAulEn) A Trga=2n/TAL]

Ak (8.30)
— Q(y)™ it Gy )
=Q(y) ™ X i
p=1k=1 (|Ak|/2)

( [Aul [Aul 1+yu—2n/|Ay|
n=1 Aul 1+2y55 o

From this formula one can in derive reasonably good bounds for all possible
choices of y. Here our concern is only the situation when y is somewhat far
from 0. In fact, assume that for some § > 0, there exists no k such that
|Agly > SN. Then it is easy to see that Q(y) > e~%N  Otherwise, let by
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convention |A;|y? > §N. Note that this implies in particular % > 4. Then

all terms in the sum (8.30) with y > 1 are bounded by e=%¥
with 4 = 1 is bounded by

while the term

[y1]|A1]/2] ( |A11+|
1 g | ) _
QW) 2 ( m 0 <o (8:31)

n=1 (|A1|1+2y1 _

n

The bound (8.26) is trivial. O
Proof of Lemma 8.3. Note first that
R? (T2 < Tyuo)

R (1, < T9) = =2 8.32
y( 0) RZ (Ta;UO < Ty) ( )
Let us first consider the case when
27VQ(y) "t <N (8.33)
By reversibility its numerator may be rewritten as
[¢] T [¢] -
Ry (= < Tyuo) = %Rz (Ty < Tzuo) < 2 N/Q(y) (8.34)
Then by Lemma 8.6, the denominator of (8.32) obeys the bound
R (Touo < 7y) > cN 71 (8.35)
if Q(y) > e~ (with, say,. § = 0.1). Thus in this case we get that
RO (1, < 7o) < 27NN N (8.36)
which is exponentially small. On the other hand, if Q(y) < e %N then
R (Touo < Ty) > 672 (8.37)

and we are done if (8.33) is satisfied.
Otherwise (8.37) always holds, and we can use that (if y # z),

Ry (= <7m0) = X p(y, ¥ )Ry (7= < 7o)
yl

< CYp(y,y)Qy) 27V
yl

N (8.38)
= » p gl

u=liyu|#1 +

N
+ 0 et y-NQ(y 3 20, /ALl

p=ly,==%1
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Using the explicit representation of Q in (8.19) shows that all terms in the
sums are smaller than ¢N !, which concludes the proof of the lemma. O

Remark. Note that we have striven to obtain only the crudest uniform
upper bound, and this cannot be improved. of course we can get much
sharper bounds as functions of y.

Proof of Lemma 8.4. To prove Lemma 8.4, we use that RS (79 < 7,) =

Q(z) capy(z), while

Y- Q2)rn(z, )[R (2) — b*(2)]

z,z!

1
capo(s) =

> ki Qe)rn(e, = — 2un/|Ael) [ (2) -k (z — 2up/|Ax])P

(8.39)
where h*(2) = R} (10 < 7) if 2 ¢ {z,0}, and A*(z) = 0. Thus
d
—1\2 —1\2
capg(z) > ZQ(:C)TN(:B, z—2uk/|Ak]) 1= cN") =Q(z) 1 —cN )
k=1
(8.40)
This yields the claimed estimate. O
Proof of Lemma 8.5. Again using renewal,
Rg (72 < Ri (7 <
RS (o < ry) = oz < 7900) . R6(7e < Tru0) (8.41)

RY(r7 <7m0) ¥ R§(ry < Tr00)
yeJ

so that we are left to bound a term of the form R{(r, < 7yu0), y € J. To
do so observe that

R§ (1y < T100) = R§ (7y < 10) = R§ (T7\y < 7y < 7o) (8.42)
and that
RS (thy <7y <70) = Y RY(2 < 7700) R (7y < 70) (8.43)
zeJ\y

By assumption, the probabilities RJ (7, < 7o) in the r.h.s. above obey the
bound (8.21) of Lemma 8.3. Thus

RS (g <y <78) < £ ¥ R§(7: < Tsvo)
zeJ
&\ (8.44)

IN

~ RS (17 < 70)
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From (8.42) and (8.44) we deduce that
o c o) o) o

and, summing over y € J,

SRS (ry < 70) ~ 17| RS (7 < 70) <R3(rs < 70) < SR (ry < 70)

yeJ yeJ
(8.46)
Inserting the bounds (8.45) and (8.46) into (8.41), and using that
R <
0 (o” ) (8.47)
> R§(7y < 7o)
yeJ
we arrive at:
Re X <R(ro<r)<R(—b (8.48)
A G ‘
where R (r <
R= 0(:“3 < o) (8.49)
> R§(my < 7o)
yeJ
To estimate the above ratio we use first that, by reversibility,
R® (10 < 7,
r= () I(:O < 7o) (8.50)
2. Qu(y)R; (0 < 7y)
yeJ
and next that, by Lemma 8.4,
— . R
JR <RG(1x < 75) < 5 (8.51)
where ¥ is defined in (8.24) and
B Qn(z)
R= ———— 8.52
> Oy (522
yeJ
Now since J C my(I), and since Q(y) = 27V for all y € m;(I)
— 1
R (8.53)
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and (8.23) is proven. O

8.2. PROOF OF PROPOSITION 8.1

We are now ready to prove Proposition 8.1.

Notation. The following notation will be used throughout: 7 = ma (M),
y=mm(0), ¢ = mm(n) and T = m (7).

Proof of Proposition 8.1, i), and ii). Firstly

P, (1 < Taayn) = RS (72 < 770) (8.54
Defining
Ry = Rj ({Tm < TT\I} N{r < Tz})
(8.55)
R, = Rj ({Tm <Tne} N{T= < 7'0})
Ry (Tz < TT\Z) may be decomposed as
Ry (e < 7\z) = R1+ R» (8.56)
Obviously
c
OSR2SRZ(7—::<TO)S N (857)
while
Ri = Ry (10 <o < T1\a)
= R(r0 < 77)RY (72 < T1\2) (8.58)
= [1 =Ry (rr < 70)] R (7= < T7\2)
which, together with the bound
RS (rr < 7o) < Y Ry (e < 70) (8.59)

z'eT

yields

RS (T2 < T1\a) [1 — M sup R} (70 < ro)] < Ry <R§(7s < T1\s) (8.60)
z'eT

We are thus left to bound the quantities sup Ry (7. < 7o) and
z'eT
R§ (Tm < 7'7—\32), which will be done by means of, respectively, Lemma 8.3

and Lemma 8.5. )

‘RS (Tac < TT\I) "

c
< = .61
<< (5.61)




METASTABILITY AND AGEING IN STOCHASTIC DYNAMICS 57

for some constant ¢ > 0.
Collecting the previous estimates we obtain that, for large enough N,

1 c
RZ (Tx < TT\E) — M S ﬁ (862)
for some constant ¢ > 0. This yields the claim of assertion i). The proof of
assertion ii) is very similar to that of assertion 1i). O

In order to study the probabilities appearing in (iii) and (iv) we must
construct the lumped chain based on the vectors from M and o. Otherwise,
there is little difference. The following notation will be used throughout:
I=MUo,T=mi(I),y=mi(o), and § = my(5). It will moreover be
assumed that w € Ey.

Proof of Proposition 8.2, iii) and iv). With the notation introduced
above

P, (Tm < 7o) =R} (71 < 7) (8.63)
and
Ps (7o < Tm) = R} (1y < T1\y) (8.64)

Let us first consider the capacity-like quantity (8.63). To prove an upper
bound, we will chose as a test function in the formula for the capacity
capr\y(y) the function

m i 2¢7T
h(z) = 1, if zeZ\y (8.65)
0, if z=y

This gives that

R (< 7y) < Q(T\y)™ (Q(y) > ra(y,y — 2 sign (ye)ur/|Ael) Gy

=1

Eol

£ % Q) rwlee -2 sign (se)un/IA) (1- ﬁ)z)

zeT\y k=1

_ M
O M+1

(8.66)

To get the corresponding lower bound we have only to show that in fact

1
M+1

R, (r\y < 7y) = (14 O(1/N)) (8.67)
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for z ¢ 7. But Lemma 8.5,

1
Ro (rryy < 7) = a1 L HO/N) (8.68)
while c
R,(to<7)>1- N (8.69)

Combining these facts in the by now familiar way, we see that (8.67) holds,
and hence assertion (iii) of the proposition is proven. Assertion (iv) is then
proven in just the same way as assertion (i). O

9. Dynamics of the REM

We will now see show that the results from the last section allow us to anal-
yse the dynamics of a much more complicated model, namely the random
energy model.

The REM is a very simple, but instructive model for spin glasses that
was introduced by B. Derrida [Del,De2] in the ’80ies and that has been
studied extensively since then [27, 32, 52, 54]. The configuration space again
the hypercube Sy = {—1,1}". On an abstract probability space (2, F, P)
we define the family of i.i.d. standard normal random variables {X;}res, -
We set E, = [Xy]+ = (Xo V 0). We define a random (Gibbs) probability
measure on Sy, Ug,N, by setting

eBVNEs

pp,n(0) = Zow (9.1)

where Zg n is the normalizing partition function. For our purposes it is

enough to know that if 8 > +/21n 2, then the Gibbs measure is asymptoti-
cally concentrated on the random set of vertices o for which E, is maximal.
Le. if

Ea-(l) > Ea-(Z) > Ea-(3) > .2 EG_(ZN) (9.2)

(note that this ordering depends of course on N) then for any finite k,

im li (1) (%)) =
IlclTIBo Jlrlgolo K8,N ({a yeey O ) 1, as. (9.3)

This fact suggests that for any Markov chain that is reversible with respect
to the Gibbs measure (9.1), the states oM, ..., 0 are good candidates for
metastable states. It will be important to have a precise understanding of
their respective energy values. This information is contained in a classical
result of extreme value theory that states that:
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Proposition 9.1 Define

T 1In(Nln2) + In4r
un(z)=v2N1n2 + - — 9.4
w(o) V2NIn2 2 +2NIn2 ©-4)
and define the point process

oe{-1,1}N

Moreover, let P denote the Poisson point process on R with intensity mea-
sure P. Then,

P3P (9.6)

Let us now define a particular Glauber dynamics for this model. We will
construct a Markov chain o(t) with state space Sy and discrete time £ € N
by prescribing transition probabilities py(o,7) = Plo(t+ 1) = n|o(t) = o]
by

Le-BVEE. i lo = nlla = V2
pn(o,n) = 1- e"ﬂ‘/ﬁE", if o= (9.7)
0, otherwise

Note that the dynamics is also random, i.e. the law of the Markov chain is
a measure valued random variable on Q that takes values in the space of
Markov measures on the path space S%. We will mostly take a pointwise
point of view, i.e. we consider the dynamics for a given fixed realization of
the disorder parameter w € €.

One may now think of the sets

TN(E) = {U S 8N|Ea- > ’U,N(E)} (9.8)

with £ € R as candidates for sets of metastable states, as they are the
“deepest minima”. The difficulty here is, however, that there is no good
separation between the states in T (E) and those outside: in fact the dif-
ference in depth is only of the order N~1/2 between the most shallow min-
imum within Tx(E) and the deepest one without. This will lead us to ask
rather different questions when before, but as we will see, our tools are still
of good use. Note that this is also related to the fact, observed by Fontes,
Isopi, Kohayakawa, and Picco [30], that the phase transition in this model
is not visible in terms of the behaviour of the spectral gap of the genera-
tor (see also [47] for an analysis of the dynamical phase transition in this

model).
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9.1. AGEING

In systems like the REM, physicist have discovered a novel concept charac-
terizing long term dynamics that is called “ageing” (we refer to the reviews
[6, 16] for an overview and further references. [5] contains a short review
from a mathematical perspective). This phenomenon is typically character-
ized in terms of the behaviour of an autocorrelations function, that could
for instance be taken as

Cnl(t,s) = %Zai(t)ai(t—l— 5) (9.9)

=1

Ageing is then said to occur whenever the Cy (¢, s) does not become inde-
pendent of ¢ as both s and ¢ tend to infinity. In fact in many cases of ageing
dynamics it turns out that asymptotically, the correlation function tends
to a limit that is a function of s/¢ only.

The idea that the long-time dynamics of the model can be described
effectively in terms of metastable transitions between the states in T (E)
gave rise to the ad hoc definition of an effective “trap model” that should
effectively represent this dynamics. This model introduced by Bouchaud
and Dean [7] can easily be described as follows: the state space is reduced
to M points, representing the elements of T (F). Each of the states is
assigned a positive random energy FEj which is taken to be exponentially
distributed with rate one, which is justified from the Poisson convergence
result Proposition 9.1. Of course this does not represent the actual energy
of the state, but the properly rescaled one, more precisely \/Nu]_vl (Xs).

The dynamics is now a continuous time Markov chain Y (¢) taking values
in Spyr = {1,..., M}. If the process is in state k, it waits an exponentially
distributed time with mean proportional to e®*® where o = (/8., and
then jumps with equal probability in one of the other states k' € Sps. This
process is then analyzed using essentially techniques from renewal theory.
The essential point is that if one starts the process from the uniform dis-
tribution, it is possible to show that if one only considers the times, T;, at
which the process changes its state, then the counting process, c(t), that
counts the number of these jumps in the time interval (0,¢] is a classical
renewal (counting) process; moreover, as n T 0o, this renewal process con-
verges to a renewal process with a deterministic law for the renewal time
with a heavy-tailed distribution (in the sense that the mean is infinite!)
whose density is proportional to t~171/2 It is the emergence of such non-
Markovian limit processes that is ultimately responsible for all the ageing

E

! This is clearly due to the fact that the average of the waiting time e*® over the

disorder is infinite.
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phenomena observed in the abundant literature on this and related models.
The correlation function to be studied in the trap model is then simply the
probability, IIx (¢, s), that no jump occurs in a time interval [¢,¢ + s]. One
sees easily that this quantity satisfies a renewal equation

On(t,s)=1—- Fn(s+1t)+ /Ot On(t —u,s)dFy(u) (9.10)

where Fpy is is just the mean waiting time distribution, i.e. Fy(t) =

N

> (1 — e_t/'ri) where 7, = 7Tpexp(E;/a) and E; are exponentially dis-
=1

tributed random variables. The key point is that Fiy converges a.s. to the
deterministic function

Fo(t) = /1 dze t/2g=17 (9.11)

and consequently Il converges to the solution Il of the renewal equation

Ooo(t,s) =1— Fe(s+1t)+ /tﬂoo(t —u, 8)dFo(u) (9.12)

The particular behaviour of the solution is due to the fact that the kernel
F,, of the equation is singular in the sense that the mean renewal time is
infinite. It is, however, not hard to analyse the asymptotics of the solution
using Laplace transform methods. It turns out that to leading order (as
t,s 1T 00),

M (t,8) ~ — /m do— T = Hy(s/t) (9.13)

mcosec(am) J, ’ (14 z)z=

i.e. is indeed a function of s/t.

The purpose of the analysis presented in [1, 2, 3] is to justify the predic-
tions of this trap model in a rigorous way. We will briefly review the main
aspects of this analysis.

9.2. JUSTIFYING THE TRAP MODEL

Three assumptions entering in the definition of the trap model that need
to be justified: 1) the uniform distribution of the jump distribution, 2) the
distribution of the random mean exit time, and 3) the exponential distribu-
tion of the transition times. We will show that the first two assumptions can
be derived. The last assumption will in fact not hold true strictly speaking,
which will be the cause of a lot of trouble.
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To prove the uniformity of the distribution of the jumps over Tw(E),
we have to show that

1
Polty = Try(E)] ~ (9.14)

Tn(E)
for any n # n' € Ty (E). The nice thing is that this follows from Proposition
8.1 due to the simple fact that

— e—ﬂ\/ﬁEnP;[

Pn[’rnl = TTN(E)] 7',71 = TTN(E)] (915)

where P° denotes the law of the simple random walk studied in Section 7.
The reason for this is very simple: the probability in our REM process to
jump to any neighboring site, conditioned to jump is the same as in the
ordinary random walk, while e~BYNEq is the probability not to move away
from 7.

So this was easy (but recall that we had to work a little in Section 7!).
Next we turn to the mean values E, 77, (g)\n- Not surprisingly, we will draw
on our formulas for mean hitting times of Section 4. In fact, (4.2) reads here

_ 1
EnTTn(B)\n = Cap_ T (BN a—eTg(:E)\n 16,8 (0) by Ty (B)\n (0)

e () T sl < e

ocgTn(E)
_ 1 BVNn BVNE.p 7 <
eﬁ‘/ﬁE"Pn[TTN(E) <7y (e i G'QTXN:(E) : U[Tr’ TTN(E)\T]]

(9.16)

as in (9.15) we have that
PVNEP, [ ) < Tl = Prry(m) < 7o) (9.17)

while

Palmn < Try@)\nl = Polm < Try(E)\n] (9.18)

This allows to express our mean time entirely in terms of probabilities
computed in the simple random walk:

E’TTTN(E)\'U
1
= eﬂ‘/ﬁE" + eﬂ‘/ﬁE”]P’g T < T
P%[TTN(E) < 7—77] ( G-ETZN:(E) [ n TN(E)\”I]

(9.19)
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and those have all been computed in Proposition 8.1. With |Tx(E)| = M,
this gives

EnTrg(E\n = ﬁ(eﬂ\/ﬁEwr b eﬂ\/ﬁEaﬁ) (14+O(1/N))

ocgTn(E)
VR En 1
= 9 (14 M=2eBYNEn 75 (T (E)F) ) (1+ O(1/N)
(9.20)
where
Zon(Tn(E))= . eFVNE (9.21)

oc¢Tn(E)

Thus we are reduced to computing a single, purely equilibrium quantity,
the restricted partition function Zg x(Tn(E)¢). Note that the two terms in
the bracket correspond rather naturally to the time it takes the process to
leave for the first time 7 and to that time it takes then to travel from 7§
to Tn(E). The restricted partition function Zg y(Tn(E)€) was studied in
the context of analysing the equilibrium measure of the REM, and we have
very good control over it. In fact,

Lemma 9.1 The partition function Zg y(Tn(E)¢) can be written as

e(a—l)E—}—,B\/IVuN(O) a2/
Zs (T (E)°) = (1 Vi pe®!

a—1

a-—1
V2a—-1
where Vy g is a random variable of mean zero and variance one, all of those
moments are finite.

) (9.22)

Using this information, we can express our mean time as follows:

Lemma 9.2 With the preceding notation

eﬂ\/ﬁuN(O)"'au;Jl (En)

En T (B)\n = 1_ L
M

a—1
2—1

( e—auy' (Bn)+(a—1)E
1+

E/2
M{a—1) <1 + Vn,Ee

)) (1 +0(/m)
(9.23)

Notice that the second term in the bracket tends to zero as F | —oo for
any “fixed” 7, but this convergence is not uniform. Note that M ~ e~ Z,
Modulo this non-uniformity, this result does however support the assump-
tion in the trap model that modulo an overall factor (exp(8v/Nun(0))), the
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mean exit time from 7 converges to a random variable of the form exp(oe,)
where e,, is exponentially distributed with mean one.

Next we should investigate the exponential distribution of these times.
Our usual way is to look at Laplace transforms. To do so, we have to get
some control on the spectrum. What corresponds to our previous a priory
estimates is now the bound on the maximal mean time it takes to hit
Tn(E). Form the analysis above we deduce readily

Lemma 9.3 With the notation from above, let

(:j(E) = (1 — ﬁ)_leﬂ\/ﬁuN(O)-}—aE
e (1 + VeE/zai_l)] (1+O(1/N))
IT(E)|(a—1) V20— 1
(9.24)
Then )
O(E) = max E,mr(5) < O(E) (9.25)
O'ESN

Using this a priori estimate, by using renewal equations and Taylor ex-
pansions exclusively for the ensuing Laplace transforms of times that ter-
minate on arrival at T (E), we can then proof the rather detailed estimate
on G%N(E)\U(u) =, " In(B)\o

Theorem 9.1 For any o € T(E), the Laplace transform G‘,}(E)\G(u) can
be written as

a _ s
GT(E)\G’(U) - 1— (1 — e_u)EGTT(E)\a-ba- + Ro-(’U,) (926)
where R
@ =1+ O(0(E)/Esr(E)\o) (9.27)
bo = 1+ O(6(E)/Esrr(5)\s) (9.28)

and Ry (u) is analytic in the half-plane R(u) < 1/ @(E), periodic with period
2m in the imaginary direction, and satisfies

(i) for all |u| < a/O(E),
[By(w) < C(a) (e #/VE8(B))’ (9.29)

and

(ii) for all u with R(u) < (1 — )O(E) and |1 — e~*| > 26 Le=AVNE-

|Ro(w)] < 2 e PYNE
11— e™|(1 - R(v)O(E))

(9.30)
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Moreover,

as + R, (0) =1 (9.31)

This proposition allows in fact to prove very good estimates on the
distribution function of 7r(g)\,. Note first that if

Lw) =) e Polrrm)\e > ] (9.32)
n=0
then
G2 u) — 1
L(u) = M (9.33)

et —1

Corollary 9.1 With the notation of Theorem 9.1, for any ¢ > 0 and for
any positive integer n € N,

ay /B ]
PG’[TT(E)\O' =n|= WC /E T(E)\Jb
(9.34)
40 (en1-9/B(E)-8VNE: =1 1y (§(B)e))
and (forn >0)
PG’[TT(E)\O- > TL] = a,a_e_"/Ed"'T(E)\aba
(9.35)

10 (e_n(l_e)/(?)(E)e-ﬂﬁEa@(E)6_1)

For the proofs of these assertions, see [9].

We see that the deviations from the exponential distribution are sub-
stantial, when FE, is close to E. This means that the assumptions leading
to the trap model are not fulfilled, and that we cannot expect that the trap
model is a true “limit” of our dynamics. On the other hand, when E, is
fixed and E | —oo, the distribution of the exit time converges indeed to
the exponential distribution. Thus, we may still hope that with regard to
the long-term asymptotics, the trap model yields the correct predictions.

9.3. THE RENEWAL EQUATIONS

The first step now is to define a correlation function that has a good chance
to resemble the one used in the trap model. A good choice seems the prob-
ability that the process does not jump from a state in the top to another
state in the top during a time interval of the form [n,n+ m]. To define this
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precisely, we introduce the following random times. For any k& € N, let k_
denote the last time before k at which the process has visited the top, i.e.

k_=sup{l<k|o(l)eTn(E)} (9.36)
Then set
I(n,m,N,E)=PF [Vke[n+1,n+m] o(k) ¢ TN(E)\U(k—)] (9.37)

To be as close as possible to Bouchaud, the natural choice is the uniform
distribution on T (E) that we will denote by 5. However, we will also need
to introduce the respective functions with starting point in an arbitrary
state 0. Thus we set

IIg(m,n,N,E)=P [Vke[n+1,n+m] o(k) ¢ Tn(E)\o(k-) | o(0) = U] (9.38)

and
H(m,n,N,E)E; Y M,(m,n,N,E) (9.39)
Tw(E)l | &
a N(E)

We will also use vector notation and write II(n, m, N, E) for the M dimen-
sional vector with components Il,(n, m, N, E), 0 € Tn(E).

Note that it is easy to derive a renewal equation for the quantities (9.38).
Just observe that event in the probability in (9.38) occurs either

(i) o(k) ¢ T(E)\o, for all k € [0,n + m], or
(ii) there s 0 < [ < m, st. I = inf{k < n | o(k) € T(E)\c}, and
Vk:E[fH—l,rH—rn.] O'(k) ¢ TN(E)\U(k—)

Since this decomposition is disjoint, it implies system of renewal equa-

tions:

HV(mi n, E) = PO’[TT(E)\U >m+ n]

+ > > ]PO'[TT(E)\G' =k Xy=0,X ¢ T(E)\Xl_,V’n, <I<m+ 'n,]
k=1 a"ET(E)\a'

= Po[rr(B)\0 > m + 7]

+2 X Pt = mrE)\e = kllly(m,n — k, E)
k=10'€T(E)\e
(9.40)

Now it would be nice to be able to transform this into a single equation for
IT by summing over . This would work if we had the relation

m5(7) )PU[TT(E)\, — k] (9.41)

Folror = mrane =K = 10000
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sadly this is not true, and we cannot even proof a reasonable approximate
version of this. All we can show, that this relation holds averaged over k.
This leaves us for the time being with no alternative but to analyse the full
system of equations (9.40).

The method of choice for doing this are Laplace transforms.

We set

I (m,u, E) = Ze”uﬂa m,n, E) (9.42)

n=0
for u € C whenever this sum converges. Let us define

[e o]

Fr(m,u) =) e™Polrr(m)\e > M+ 7] (9.43)

n=0

Then it follows from (9.40) that for any o € T(E),

M (m,u,E)= Fy(mu)+ Y.  Gooppp.(Wi(mu,E) (9.44)
a'€T(E)\o

Let us denote by K}(u) the |[T(E)| x |T(E)| matrix with elements?

Ga-l T ('U:) if g # o'
(B)\e
(Kg(4)oo = { 0 $ oo (9.45)
Then clearly the solution of equation (9.44) can be written as

I*(m,u, E)= <[]l — K5(w)] "t Kg(u) + ]l) F*(m,u) (9.46)

where IT* and F* denote the vectors with components II}, and F}.

The matrix

Mi;(u) = [1 - Kg(w)] ™" Kp(w) (9-47)

is known as the Laplace transform of the resolvent of the system of renewal
equations.

Our task is to compute the inverse Laplace transform of the right hand
side of (9.46). This requires estimates in the complex u-plane. Basically,
there are two difficulties:

i) Inversion of the matrix 1 — Kg(u). This is in general quite difficult,
and we will not be able to do this for all values of u. However, we are
greatly helped by the fact that at w = 0, the matrix K%(0) has a very
simple form in that it has almost constant columns. Thus the vector

*We will often write K ,:(u) instead of (K% (u)),,,» whenever no confusion is possible
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1 is an eigenvector with eigenvalue zero, and all other eigenvalues are
close to zero. This property can be carried over perturbatively to small
values of |u|. This will allow us to compute on a small neighborhood of
the origin the inverse to leading orders in 1/, which will be responsible
for the leading long time behaviour of the inverse Laplace transform.
For the use of the Laplace inversion formula, we need reasonable control
of the Laplace transform also away from the origin. We expect that
these not to give important contributions, but this requires both a
judicious choice of the integration contour in the complex plane, and
some bounds on the integrands on these contours. Let us recall that

[I(n,m, E) = = /1 mdue " [(1, Mg(uw)E*(m,u)) + (1, F*(m, u))]

27
(9.48)
We will deform the integration path to the contour C given as follows:
consisting of the three parts

—im

A= {u cC:Re=1/2, |9z € [1/\/2_5,71'@]} (9.49)

B={ueC: Rze[1/{1/2], Rz = k|Sz|*} (9.50)
and
D =D, UD, (9.51)
where
Dy = {ueC: |z|=1/t, Rz < ¢[S2)*}
D, = {ueC: Roe VIR +1/2 - 1/(26),1/1, (9.52)

Rz = k|Sz|?}

Here ¢ and k are positive parameters that are assumed to be chosen
such that C lies in the domain of validity of certain estimates. In what
follows, ¢ must be thought of as very large compared with one. At this
stage no constraint is imposed on the parameter ; it will be chosen as
t = t", for suitable 0 < 7 < 1, later. For future reference let us define
the points:

zp =Tp+184, zp=rB+1SB, zp =Tp+1Sp
ra=1/2, rg = 1/t, rp = +/1/(4k2) + 1/82 — 1/(2k)
sa=1/\2k, sp=1/Vki, sp=((/1+ (2x/t)2 —1)/26%)'/?
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?/
P L T r

Thecontour C inthevariables r and s

The main contribution of the integral will come from the integral along

D.

Our main result is then the following

Theorem 9.2 Let 8 > +/21n 2. Then there is a sequence
en ~ exp(6v/Nuy (E)) such that for any € > 0

II([ews], [ent], N, E)
Mo (s, t)

lim lim lim PH

- 1‘ > e] =0 (9.53)
t,sToo El—oco Ntoo

where [l (s,t) is the limiting correlation function of the trap model.

In the sequel I will indicate the main steps of the necessary estimates,
while for details I have to refer to [3].

9.4. UNIFORM ESTIMATES ON M

The first thing we want to do is to show that the resolvent is small as soon
as we go away from zero along our path C. It is almost a miracle that we
are able to do this, because for this we need to show that the norm of
K%(u) is smaller than 1. But at v = 0, K7 has an eigenvalue 1, so we are
in a delicate situation where we really need to get quite precise estimates.
In particular, we need to use a norm that gives the right values 1 at zero.
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Fortunately, operator norm in Lo, (CM), which is given as

K| = Ky o 9.54
1K= max > (Kool (9.54)
o'€T(E)

has the right property and is well suited for our matrices. First, its value is
one at u = 0. Second, we can show that it decays along the imaginary axis
up to the value +ir at rate vO~1. More precisely, we have

Lemma 9.4 Let v € [—m, 7. Then (for N large enough),
1
V/2(1 - cos )02 (1~ 0(071)) +1 - g5 (1+ O(d/N))
(9.55)

The proof of the Lemma is somewhat tedious, but essentially makes use
of the simple idea to use renewal to represent

1K E ()] <

_ Gg’,T(E)('U')
1-— G;T(E)(u)

Here the numerator is always small, if u is purely imaginary. On the other
hand, the Laplace transform in the denominator is dominated by the pro-
cess realising the event to go from o to ¢ in a single step. This part is
easily computed and gives, if u = iv, 1 — e®p(0o, o). This yields roughly the
behaviour

K% () (9.56)

oTr(EN < TT(E)]

11— e
which explains the estimate given in the lemma.

The estimate (9.55) can now be extended a little bit off the imaginary
axis in the positive real direction. This uses simply Taylor expansions about
u = 1v; of course, the trick is to use again the representation (9.56) and to
exploit the fact that the functions appearing in the numerator and denom-
inator are analytic in the the half-space ®u < 1/0, well beyond the first
pole of K, itself.

To state these estimates, we need some notation: First, let

P
1K g ()l ~ (9.57)

z=0(E)u (9.58)
The real and imaginary parts of z will always be called r and s:
z=r+1s (9.59)
Thus N
T O(E)w
~ 9.60
O(E)v (9.60)
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Definition 9.1 0 < C1,C> < 00, and 0 < v < 1 be numerical constants.
With the above notation we define the sets:

D,(Cy) = {ue C:r24s?> Cl/\/M}

Dy(Ca,y) = {uEC:O§r<min<Cm}%,l—7>, vE[—7r,7r]}
D; = {uecC:-1<r<0, |s|<1}

Dy, = {veC:|r|<1, |s] <1}
(9.61)

Lemma 9.5 There exist constants 0 < C,C’ < oo such that, for all 0 <
v < 1 and all w € Dy(C’,7),

|KE(u)]] <
1+ C'y_lr

V148721 — cosv)(1 - 0(671) - (1 + O(d/N)) - C'y~ir
(9.62)
Consequently, for all 0 < 4 < 1 there exists a constant 0 < L < o©
(depending on C,C’ and ) such that, for all w € D;(4) N Dy(L,7),

Kg(uw)|| <1 (9.63)
and
[ Mg(u)]| <
1+Cy~ir
\/1 + @22(1 —cosv)(1-0(07 1) -1 - 325(1+ O(d/N))— (C+ C')y~'r
(9.64)

The last estimate of this kind we will need concerns the case when |u| is
very small and w < 0. Its derivation is very similar to that of the preceding
ones.

Lemma 9.6 For M large enough,
(i) for all w € D3,

1
IEE()] < (9.65)
Vitri+s?2— 3
(i) for all w € D1(4) N D3, ||[Kx(u)|| < 1 and
. 1
[Mp(u)] < (9.66)

Vitri4s2—1- 3
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The estimates in this subsection suffice to show that the the contribu-
tions from the integration excepting the little circle around the origin do
not give a significant contribution. To extract the leading behaviour, we
need of course far more precise control on our kernels in this domain.

9.5. PERTURBATIVE ESTIMATES FOR SMALL =

So far we have been able to avoid the problem of inverting the matrix
1 — K*(u). Fortunately, for small u, this matrix is very close to a matrix
with constant columns whose inverse we can of course compute easily. The
idea is thus to use perturbation theory.

The basis is the expansion

* o o u? d? o ~
Ka',o"(u) = #,T(u) (Ga",T(O) + U%Ga”,T(O) + Tdd?Ga",T(u)>

uZ 2 o -~
= 71_031@(@ (P[Tif/ < 7p] 4+ uErd e cray + T#Gw,T(U))
(9.67)
We define

M) = = (HPIR, < 78] (L + uBlrf Irfy, = 1))

Vo,0' € T(E)
(9.68)
as the leading part. We then prove a norm estimate, valid for
{ueC|r<s?/4} C Dy(L,v)N Dy (9.69)

that states that
C"y_l(s2 + 1"2) +(14+vs2+7r2)0(1/(M - 1))
14+ (s?24+r?)/2-5/M

K*(u) - £*O(w)| <
(9.70)

Now K*(©)(«) has a unique non-zero eigenvalues

Aw) =Y K20 () (9.71)

oeT
The corresponding left eigenvector is proportional to (1,1,...,1). Based on
this, we define
MO () = [1 - £*Ou)] 7 O (u) (9.72)

and decompose the Laplace transform of the resolvent (defined in (9.47))
into

M*(u) = M*O () 4 M*O) (x) (9.73)

It is a simple matter to see that
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Lemma 9.7 Set

[ - £*O(w)]

plu) = max(|1- A, 1) 574
Then, .
M*M () = R(w)K*M (w) R(w) T (9.75)
and, if ||R(u)K*(w)]| < 1,

It will turn out that this estimate is good enough to show that M*(*)(u)
can be neglected. The main remaining issue is now to compute the eigen-
value A(u). Explicitly, we have

0
o |7 4 Z [ #gj()) (1 +uBlrf, Irf, = T%])] (9.77)

This is still quite a complicated expression, and we need to do some more
simplification. The key is the following lemma.

Lemma 9.8 Recall that u = z/O(E) and set
7= (1- &) e PVNE§(E) (9.78)
If u belongs to the set
Ds={ueC|r<s®/4,|z| <6}, 0<é<1 (9.79)
then, for N large enough,

G7\o,7(0)
\a'aT o o _ o
‘1 1-GI(u) <1 + uBlrryg [T\, = TT]) -

< C(6)|2]  (9.80)

_ZO'

for some constant 0 < C'(§) < oo that only depends on é.

The point of this lemma is that it shows that the summands in (9.77)
can be replaced by z/(z— 2, ), since this is dominating the error of order |z|.
The nice thing is that the sum over these leading terms can be expressed as
integrals with respect to our Poisson point process. Also, we see that these
are now Laplace transforms of exponentially distributed random variables.
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Thus, we are approaching something the looks like the trap model. Note,
however, that the proof of Lemma 9.8 is quite involved.

9.6. POISSON CONVERGENCE AND SELF AVERAGING

The next step is now to represent the sum over the z/(z —2,) as an integral
with respect to the point process ) 4 ui (Bo)" Then we want to use to

facts: first, that this point process converges to a Poisson point process,
and second that the integral over that Poisson point process converges, as
we take the cut of F to minus infinity, to a deterministic integral. Both
facts are of course well known.

Let us write

zp = (1— 1/M)e PVNE-§(E) = (9.81)

ealun’ (B)B)rg

It will also be convenient to define

K’,E = Z Jexp{a( E+uN (EJ))} Z 51/(ZUTN,E) (982)
oe{-1,1}¥ oe{-1,1}¥

It is easy to see that this process converges weakly to the Poisson point
process N on [1, 00) with intensity measure a lePz~1-1/2dz On the other
hand, one can show without difficulty that

ElJl,m ll%n TwE=1—1/a =T, in Probability. (9.83)

The following Lemma yields all we need to analyse sums like (9.77).
Lemma 9.9 Let g be a bounded continuous function on R*, such that

‘fo 1+1/a a:)‘ < 400, and let X be a family of positive random variables

that converge in distribution to the positive random variable X. Then for
any b > 0,
) Joo N§; g(dz)g(zXN) converges, as N 1 oo, to the random variable
J° N (dz)g(zX).
(ii) If Xg is a family of random variables such that, as E | —oo, Xg —
a € R* almost surely, then

* dz
+E * -1
Ehm e / Ng(dz)g(zXE) = o /1 7m1+1/ag(ma,), a.s.

(9.84)

(iii) If g is a complex valued function on C, and if for some domain B C C,
for all z € RY, z € B, g(z2z) is bounded, and for all z € B,

*®  dz
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holds, then

lim P [lim sup eE/ Ng(dz)g(zzXEg)—
1

El—o0 Ntoo ,eB (9 86)

*®  dz
1/a, —1
(07t [~ Sia(e)
Applying this lemma to the sum in (9.77) yields the
Corollary 9.2 Uniformly in R(z) < max(|S(2)|,1/2),

lim lm (1—X
am Jim (1= Aw))

>e]:0

dz T2T oo

_ -1 *
@ /1 gitl/agzr, — 1 +O(l2)

= (—2To0 )/ *mcosec(n/a) + O(|2|), in Probability.
(9.87)

9.7. LAPLACE INVERSION

Let us now show how roughly how to go back to real space. The term that
will give the main contribution is of the form
*(0) * >\(’U,) * —
(n,M (u) F*(m, 'u,)) = oy (L E ) = havs(u,m) - (9:88)
- AMu
It turns out the the limit of this expression has the following nice represen-
tation:

Proposition 9.2 For u on C, we have that

Jimlim by s(u,m) = Hi(s,2)(1+O(|2f =2, 2]'/%)) + O(s~ /e
(9.89)

where H(s,u) = [5° dte® ;7; ﬁ is the Laplace transform of the
function Hy defined in (9.13).

Proof. As we already know A(u), the main work goes into the analysis of
(1L, F*(m,u)). This goes largely parallel to the analysis of M*(u). It turns
out that the leading contribution can be written in the form

* 1 —me_‘/ﬁE" é(E)
(]]-7E (m7 ’U,)) ~ |T(E)| Z € Za-——Z (990)
ceT(E)

and
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Lemma 9.10 Set s = m/@ Then, uniformly on £z < max(Sz,1/2), and
R(u) < |Sul,

lim lim
El-oo Ntoo |T(E)|

Z e_me—ﬂ«/ﬁEa 1
2y — 2
oc€T(E) v

o0 s/t 9.91
_ (_ZToo)l/a (Z—lﬂ,cosec(ﬂ./a) _/0 dtezt/O %) ( )

+0(e™*/™) in Probability.

Thus
. . >\('U;) 1 _ _JNE, @(E)
lim lim Z e~ ™me
Blzoo Nfeo 1 = A(U) |T(E)| o€eT(E) Zg — Z
fooo dteut fos/t l/dim (992)
e zl/e(1+z) 1-1/a 1/a
“ mwcosec(m /o) <1 +O(|2| , 2] ))

+0 (z_l/ae_’/T‘”)

The leading term is readily identified as the Laplace transform of

fs/t dx
0 zl/"‘(l—}—a:)

mecosec(m/ o)

Ho(s/t)=1- (9.93)
which we recognise as precisely the function that appeared as the leading
asymptotic contribution in the trap model.

It remains the rather painstaking task to show that indeed all other
contributions can be neglected. The interested reader will find them in [3].
In any case the logic of these terms is simple: First off all, only the behaviour
of a term near u = 0 matters, since the a priori estimates show that the
contributions to the inverse Laplace transform from the path off zero are
small. Then, whenever a term has a higher power in u than the leading
term, its inverse Laplace transform decays faster in time. Since this is the

case for all error terms we have produced, we can indeed conclude that our
Main Theorem holds.
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