

The Metropolis adjusted Langevin Algorithm for log-concave probability measures in high dimensions

Andreas Eberle

June 9, 2011

1 INTRODUCTION

$$U(x) = \frac{1}{2} |x|^2 + V(x), \qquad x \in \mathbb{R}^d, \qquad V \in C^4(\mathbb{R}^d),$$
$$\mu(dx) = \frac{1}{Z} e^{-U(x)} \lambda^d(dx) = \frac{(2\pi)^{d/2}}{Z} e^{-V(x)} \gamma^d(dx),$$

 $\gamma_d = N(0, I_d)$ standard normal distribution in \mathbb{R}^d .

AIM :

- Approximate Sampling from μ .
- Rigorous error and complexity estimates, $d \rightarrow \infty$.

RUNNING EXAMPLE: TRANSITION PATH SAMPLING

 $dY_t = dB_t - \nabla H(Y_t) dt, \qquad Y_0 = y_0 \in \mathbb{R}^n,$

 μ = conditional distribution on $C([0,T], \mathbb{R}^n)$ of $(Y_t)_{t \in [0,T]}$ given $Y_T = y_T$. By Girsanov's Theorem:

 $\mu(dy) = Z^{-1} \exp(-V(y)) \gamma(dy),$

 $\gamma =$ distribution of Brownian bridge from y_0 to y_T ,

$$V(y) = \int_0^T \left(\frac{1}{2}\Delta H(y_t) + |\nabla H(y_t)|^2\right) dt.$$

Finite dimensional approximation via Karhunen-Loève expansion:

$$\gamma(dy) \rightarrow \gamma^d(dx), \qquad V(y) \rightarrow V_d(x) \qquad \rightsquigarrow \text{ setup above}$$

MARKOV CHAIN MONTE CARLO APPROACH

- Simulate an ergodic Markov process (X_n) with stationary distribution μ .
- *n* large: $P \circ X_n^{-1} \approx \mu$
- Continuous time: (over-damped) Langevin diffusion

$$dX_t = -\frac{1}{2}X_t \, dt - \frac{1}{2}\nabla V(X_t) \, dt + dB_t$$

• Discrete time: *Metropolis-Hastings Algorithms, Gibbs Samplers*

METROPOLIS-HASTINGS ALGORITHM

(Metropolis et al 1953, Hastings 1970)

 $\mu(x) := Z^{-1} \exp(-U(x))$ density of μ w.r.t. λ^d ,

p(x,y) stochastic kernel on \mathbb{R}^d

proposal density, > 0,

ALGORITHM

- 1. Choose an initial state X_0 .
- 2. For $n := 0, 1, 2, \dots$ do
 - Sample $Y_n \sim p(X_n, y) dy$, $U_n \sim \text{Unif}(0, 1)$ independently.
 - If $U_n < \alpha(X_n, Y_n)$ then accept the proposal and set $X_{n+1} := Y_n$; else reject the proposal and set $X_{n+1} := X_n$.

METROPOLIS-HASTINGS ACCEPTANCE PROBABILITY

$$\alpha(x,y) = \min\left(\frac{\mu(y)p(y,x)}{\mu(x)p(x,y)},1\right) = \exp\left(-G(x,y)^+\right), \quad x,y \in \mathbb{R}^d,$$

$$G(x,y) = \log \frac{\mu(x)p(x,y)}{\mu(y)p(y,x)} = U(y) - U(x) + \log \frac{p(x,y)}{p(y,x)} = V(y) - V(x) + \log \frac{\gamma^d(x)p(x,y)}{\gamma^d(y)p(y,x)} + \log \frac{\gamma^d(x)p(x,y)}$$

- (X_n) is a time-homogeneous Markov chain with transition kernel $q(x, dy) = \alpha(x, y)p(x, y)dy + q(x)\delta_x(dy), \quad q(x) = 1 - q(x, \mathbb{R}^d \setminus \{x\}).$
- Detailed Balance:

$$\mu(dx) q(x, dy) = \mu(dy) q(y, dx).$$

PROPOSAL DISTRIBUTIONS FOR METROPOLIS-HASTINGS

 $x \mapsto Y_h(x)$ proposed move, h > 0 step size, $p_h(x, dy) = P[Y_h(x) \in dy]$ proposal distribution, $\alpha_h(x, y) = \exp(-G_h(x, y)^+)$ acceptance probability.

• Random Walk Proposals (~> Random Walk Metropolis)

$$Y_h(x) = x + \sqrt{h} \cdot Z, \qquad Z \sim \gamma^d,$$

$$p_h(x, dy) = N(x, h \cdot I_d),$$

$$G_h(x, y) = U(y) - U(x).$$

• Ornstein-Uhlenbeck Proposals

$$\begin{split} Y_h(x) &= \left(1 - \frac{h}{2}\right) x + \sqrt{h - \frac{h^2}{4}} \cdot Z, \qquad Z \sim \gamma^d, \\ p_h(x, dy) &= N((1 - h/2)x, (h - h^2/4) \cdot I_d), \quad \text{det. balance w.r.t. } \gamma^d \\ G_h(x, y) &= V(y) - V(x). \end{split}$$

• Euler Proposals (~> Metropolis Adjusted Langevin Algorithm)

$$Y_h(x) = \left(1 - \frac{h}{2}\right)x - \frac{h}{2}\nabla V(x) + \sqrt{h} \cdot Z, \qquad Z \sim \gamma^d.$$

(Euler step for Langevin equation $dX_t = -\frac{1}{2}X_t dt - \frac{1}{2}\nabla V(X_t) dt + dB_t$)

$$p_h(x, dy) = N((1 - \frac{h}{2})x - \frac{h}{2}\nabla V(x), h \cdot I_d),$$

$$G_h(x, y) = V(y) - V(x) - (y - x) \cdot (\nabla V(y) + \nabla V(x))/2$$

$$+h(|\nabla U(y)|^2 - |\nabla U(x)|^2)/4.$$

REMARK. Even for $V \equiv 0$, γ^d is not a stationary distribution for p_h^{Euler} . Stationarity only holds asymptotically as $h \to 0$. This causes substantial problems in high dimensions. • Semi-implicit Euler Proposals (~> Semi-implicit MALA)

$$Y_{h}(x) = \left(1 - \frac{h}{2}\right)x - \frac{h}{2}\nabla V(x) + \sqrt{h - \frac{h^{2}}{4}} \cdot Z, \qquad Z \sim \gamma^{d},$$

$$p_{h}(x, dy) = N((1 - \frac{h}{2})x - \frac{h}{2}\nabla V(x), (h - \frac{h^{2}}{4}) \cdot I_{d}) \qquad (= p_{h}^{OU} \text{ if } V \equiv 0)$$

$$G_{h}(x, y) = V(y) - V(x) - (y - x) \cdot (\nabla V(y) + \nabla V(x))/2$$

$$+ \frac{h}{8 - 2h} \left((y + x) \cdot (\nabla V(y) - \nabla V(x)) + |\nabla V(y)|^{2} - |\nabla V(x)|^{2}\right).$$

REMARK. Semi-implicit discretization of Langevin equation

$$dX_t = -\frac{1}{2}X_t dt - \frac{1}{2}\nabla V(X_t) dt + dB_t$$

$$X_{n+1} - X_n = -\frac{\varepsilon}{2}\frac{X_{n+1} + X_n}{2} - \frac{\varepsilon}{2}\nabla V(X_n) + \sqrt{\varepsilon}Z_{n+1}, \qquad Z_i \text{ i.i.d. } \sim \gamma^d$$

Solve for X_n and substitute $h = \varepsilon/(1 + \varepsilon/4)$:

$$X_{n+1} = \left(1 - \frac{h}{2}\right) X_n - \frac{h}{2} \nabla V(X_n) + \sqrt{h - \frac{h^2}{4}} \cdot Z_{n+1}.$$

KNOWN RESULTS FOR METROPOLIS-HASTINGS IN HIGH DIMENSIONS

- Scaling of acceptance probabilities and mean square jumps as $d \to \infty$
- Diffusion limits as $d \to \infty$
- Ergodicity, Geometric Ergodicity
- Quantitative bounds for mixing times, rigorous complexity estimates

Optimal Scaling and diffusion limits

- Roberts, Gelman, Gilks 1997: Diffusion limit for RWM with product target, $h = O(d^{-1})$
- Roberts, Rosenthal 1998: Diffusion limit for MALA with product target, $h = O(d^{-1/3})$
- Beskos, Roberts, Stuart, Voss 2008: Semi-implicit MALA applied to Transition Path Sampling, Scaling h = O(1)
- Beskos, Roberts, Stuart 2009: Optimal Scaling for non-product targets
- *Mattingly, Pillai, Stuart 2010*: Diffusion limit for RWM with non-product target, $h = O(d^{-1})$
- *Pillai, Stuart, Thiéry 2011*: Diffusion limit for MALA with non-product target, $h = O(d^{-1/3})$

Geometric ergodicity for MALA

- Roberts, Tweedie 1996: Geometric convergence holds if ∇U is globally Lipschitz but fails in general
- Bou Rabee, van den Eijnden 2009: Strong accuracy for truncated MALA
- *Bou Rabee, Hairer, van den Eijnden 2010*: Convergence to equilibrium for MALA at exponential rate up to term exponentially small in time step size

BOUNDS FOR MIXING TIME, COMPLEXITY

Metropolis with ball walk proposals

- Dyer, Frieze, Kannan 1991: $\mu = Unif(K), K \subset \mathbb{R}^d$ convex \Rightarrow Total variation mixing time is polynomial in d and diam(K)
- Applegate, Kannan 1991, ..., Lovasz, Vempala 2006: $U: K \to \mathbb{R}$ concave, $K \subset \mathbb{R}^d$ convex
 - \Rightarrow Total variation mixing time is polynomial in d and diam(K)

Metropolis adjusted Langevin :

- No rigorous complexity estimates so far.
- Classical results for Langevin diffusions. In particular: If μ is strictly log-concave, i.e.,

$$\exists \kappa > 0 : \ \partial^2 U(x) \ge \kappa \cdot I_d \qquad \forall x \in \mathbb{R}^d$$

then

$$d_K(\operatorname{\mathsf{law}}(X_t),\,\mu\,) \leq e^{-\kappa t} \, d_K(\operatorname{\mathsf{law}}(X_0),\,\mu\,).$$

If μ is strictly log-concave, i.e.,

$$\exists \kappa > 0 : \partial^2 U(x) \ge \kappa \cdot I_d \qquad \forall x \in \mathbb{R}^d$$

then

$$d_K(\operatorname{\mathsf{law}}(X_t),\,\mu\,) \leq e^{-\kappa t} \, d_K(\operatorname{\mathsf{law}}(X_0),\,\mu\,).$$

- Bound is independent of dimension, sharp !
- Under additional conditions, a corresponding result holds for the Euler discretization.
- This suggests that comparable bounds might hold for MALA, or even for Ornstein-Uhlenbeck proposals.

2 Main result and strategy of proof

Semi-implicit MALA:

$$Y_h(x) = \left(1 - \frac{h}{2}\right) x - \frac{h}{2} \nabla V(x) + \sqrt{h - \frac{h^2}{4}} \cdot Z, \qquad Z \sim \gamma^d, \ h > 0,$$

Coupling of proposal distributions $p_h(x, dy)$, $x \in \mathbb{R}^d$,

$$W_h(x) = \begin{cases} Y_h(x) & \text{if } U \le \alpha_h(x, Y_h(x)) \\ x & \text{if } U > \alpha(x, Y(x, \tilde{x})) \end{cases}, \ U \sim Unif(0, 1) \text{ independent of } Z, \end{cases}$$

Coupling of MALA transition kernels $q_h(x, dy)$, $x \in \mathbb{R}^d$.

We fix a radius $R \in (0, \infty)$ and a norm $\|\cdot\|_{-}$ on \mathbb{R}^d such that $\|x\|_{-} \leq |x|$ for any $x \in \mathbb{R}^d$, and set

 $d(x, \tilde{x}) := \min(\|x - \tilde{x}\|_{-}, R), \qquad B := \{x \in \mathbb{R}^d : \|x\|_{-} < R/2\}.$

EXAMPLE: Transition Path Sampling

• $|x|_{\mathbb{R}^d}$ is finite dimensional projection of Cameron-Martin norm

$$|x|_{CM} = \left(\int_0^T \left|\frac{dx}{dt}\right|^2 dt\right)^{1/2}$$

• $||x||_{-}$ is finite dimensional approximation of supremum or L^2 norm.

GOAL:

$$E\left[d(W_h(x), W_h(\tilde{x}))\right] \leq \left(1 - \kappa h + Ch^{3/2}\right) d(x, \tilde{x}) \qquad \forall x, \tilde{x} \in B, \ h \in (0, 1)$$

with explicit constants $\kappa, C \in (0, \infty)$ that do depend on the dimension d only through the moments

$$m_k := \int_{\mathbb{R}^d} \|x\|_{-}^k \gamma^d(dx) , \qquad k \in \mathbb{N}.$$

CONSEQUENCE:

• Contractivity of MALA transition kernel q_h for small h w.r.t. Kantorovich-Wasserstein distance

$$d_K(\nu,\eta) = \sup_{X \sim \nu, Y \sim \eta} E[d(X,Y)], \qquad \nu,\eta \in Prob(\mathbb{R}^d).$$

 $d_K(\nu q_h, \mu) \leq (1 - \kappa h + Ch^{3/2}) d_K(\nu, \mu) + R \cdot (\nu(B^c) + \mu(B^c)).$

• Upper bound for mixing time

 $T_{mix}(\varepsilon) = \inf \{ n \ge 0 : d_K(\nu q_h^n, \mu) < \varepsilon \text{ for any } \nu \in Prob(\mathbb{R}^d) \}.$

EXAMPLE: Transition Path Sampling

Dimension-independent bounds hold under appropriate assumptions.

STRATEGY OF PROOF: Let

 $A(x) := \{U \le \alpha_h(x, Y_h(x))\}$ (proposed move from x is accepted)

Then

 $E[d(W_h(x), W_h(\tilde{x}))] \leq E[d(Y_h(x), Y_h(\tilde{x})); A(x) \cap A(\tilde{x})]$ $+ d(x, \tilde{x}) \cdot P[A(x)^C \cap A(\tilde{x})^C]$ $+ R \cdot P[A(x) \bigtriangleup A(\tilde{x})].$

We prove under appropriate assumptions:

1.
$$E[d(Y_h(x), Y_h(\tilde{x}))] \leq (1 - \kappa h) \cdot d(x, \tilde{x}),$$

2. $P[A(x)^C] = E[1 - \alpha_h(x, Y_h(x))] \leq C_1 h^{3/2},$

3. $P[A(x) \triangle A(\tilde{x})] \leq E[|\alpha_h(x, Y_h(x)) - \alpha_h(\tilde{x}, Y_h(\tilde{x}))|] \leq C_2 h^{3/2} ||x - \tilde{x}||_{-},$ with explicit constants $\kappa, C_1, C_2 \in (0, \infty)$.

3 Contractivity of proposal step

PROPOSITION. Suppose there exists a constant $\alpha \in (0, 1)$ such that

$$\|\nabla^2 V(x) \cdot \eta\|_{-} \leq \alpha \|\eta\|_{-} \qquad \forall x \in B, \eta \in \mathbb{R}^d.$$
(1)

Then

$$||Y_h(x) - Y_h(\tilde{x})||_{-} \le \left(1 - \frac{1 - \alpha}{2}h\right) ||x - \tilde{x}||_{-} \quad \forall x, \tilde{x} \in B, h > 0.$$

Proof.

$$\begin{aligned} \|Y_h(x) - Y_h(\tilde{x})\|_{-} &\leq \int_0^1 \|\partial_{x-\tilde{x}}Y_h(tx + (1-t)\tilde{x})\|_{-} dt \\ &= \int_0^1 \|(1-\frac{h}{2})(x-\tilde{x}) - \frac{h}{2}\nabla^2 V(tx + (1-t)\tilde{x}) \cdot (x-\tilde{x})\|_{-} dt \\ &\leq (1-\frac{h}{2})\|x-\tilde{x}\|_{-} + \frac{h}{2}\alpha\|x-\tilde{x}\|_{-} \ \Box \end{aligned}$$

REMARK.

The assumption (1) implies strict convexity of $U(x) = \frac{1}{2}|x|^2 + V(x)$.

EXAMPLE.

For Transition Path Sampling, (A1) holds for small T with α independent of the dimension.

4 Bounds for MALA rejection probabilities

 $\alpha_h(x,y) = \exp(-G_h(x,y)^+)$ Acceptance probability for semi-implicit MALA,

$$G_{h}(x,y) = V(y) - V(x) - (y - x) \cdot (\nabla V(y) + \nabla V(x))/2 + \frac{h}{8 - 2h} \left((y + x) \cdot (\nabla V(y) - \nabla V(x)) + |\nabla V(y)|^{2} - |\nabla V(x)|^{2} \right).$$

ASSUMPTION. There exist finite constants $C_n, p_n \in [0, \infty)$ such that

$$|(\partial_{\xi_1,\dots,\xi_n}^n V)(x)| \leq C_n \max(1, ||x||_{-})^{p_n} ||\xi_1||_{-} \cdots ||\xi_n||_{-}$$

for any $x \in \mathbb{R}^d$, $\xi_1, \ldots, \xi_n \in \mathbb{R}^d$, and n = 2, 3, 4.

THEOREM. If the assumption above is satisfied then there exists a polynomial $\mathcal{P}: \mathbb{R}^2 \to \mathbb{R}_+$ of degree $\max(p_3 + 3, 2p_2 + 2)$ such that

 $E[1 - \alpha_h(x, Y_h(x))] \leq E[G_h(x, Y_h(x))^+] \leq \mathcal{P}(\|x\|_{-}, \|\nabla U(x)\|_{-}) \cdot h^{3/2}$

for all $x \in \mathbb{R}^d$, $h \in (0, 2)$.

REMARK.

• The polynomial \mathcal{P} is explicit. It depends only on the values C_2, C_3, p_2, p_3 and on the moments

$$m_k = E[||Z||_{-}^k], \qquad 0 \le k \le \max(p_3 + 3, 2p_2 + 2)$$

but it does not depend on the dimension d.

For MALA with explicit Euler proposals, a corresponding estimate holds with m_k replaced by m̃_k = E[|Z|^k]. Note, however, that m̃_k → ∞ as d → ∞.

Proof.

$$|V(y) - V(x) - (y - x) \cdot (\nabla V(y) + \nabla V(x))/2|$$

$$= \left| \frac{1}{2} \int_0^1 t(1 - t) \partial_{y - x}^3 V(x + t(y - x)) dt \right|$$

$$\leq \frac{1}{12} \|y - x\|_{-}^3 \cdot \sup\{\partial_{\eta}^3 V(z) : z \in [x, y], \|\eta\|_{-} \le 1\}$$
(2)

$$E\left[\|Y_h(x) - x\|_{-}^3\right] \leq const. \cdot h^{3/2}$$
(3)

$$|(y+x) \cdot (\nabla V(y) - \nabla V(x))|$$

$$\leq ||y+x||_{-} \cdot \sup_{\|\xi\|_{-} \leq 1} |\partial_{\xi} V(y) - \partial_{\xi} V(x)|$$

$$\leq ||y+x||_{-} \cdot ||y-x||_{-} \cdot \sup\{\partial_{\xi\eta}^{2} V(z) : z \in [x,y], \|\xi\|_{-}, \|\eta\|_{-} \leq 1\}$$
(4)

5 Dependence of rejection on current state

THEOREM. If the assumption above is satisfied then there exists a polynomial $Q : \mathbb{R}^2 \to \mathbb{R}_+$ of degree $\max(p_4 + 2, p_3 + p_2 + 2, 3p_2 + 1)$ such that

 $E\left[\|\nabla_x G_h(x, Y_h(x))\|_+\right] \leq \mathcal{Q}(\|x\|_-, \|\nabla U(x)\|_-) \cdot h^{3/2}$

for all $x \in \mathbb{R}^d$, $h \in (0, 2)$, where

```
\|\eta\|_{+} := \sup\{\xi \cdot \eta : \|\xi\|_{-} \le 1\}.
```

CONSEQUENCE.

$$P[\operatorname{Accept}(x) \bigtriangleup \operatorname{Accept}(\tilde{x})] \leq E[|\alpha_h(x, Y_h(x)) - \alpha_h(\tilde{x}, Y_h(\tilde{x}))|]$$

$$\leq E[|G_h(x, Y_h(x)) - G_h(\tilde{x}, Y_h(\tilde{x}))|]$$

$$\leq \|x - \tilde{x}\|_{-} \cdot \sup_{z \in [x, \tilde{x}]} \|\nabla_z G_h(z, Y_h(z))\|_{+}$$

$$\leq h^{3/2} \|x - \tilde{x}\|_{-} \sup_{z \in [x, \tilde{x}]} Q(\|x\|_{-}, \|\nabla U(x)\|_{-})$$