

Multilevel Sampling Monte Carlo Methods for sequences of probability measures

Andreas Eberle

December 4, 2010

1 INTRODUCTION

THE PROBLEM : $\mu_0, \mu_1, \dots, \mu_k$ probability measures on state space *S*. E.g.: S = V vertex set of graph, $S = \{0, 1\}^V$, $S = \mathbb{R}^d$, $S = C([0, 1], \mathbb{R}^d)$.

$$\mu_t(dx) = \mu_t(x) \nu(dx); \qquad \mu_t(x) = \frac{1}{Z_t} \cdot \exp(-U_t(x))$$

- ν reference measure
- $U_t:S \to \mathbb{R}$ known/can be computed
- Z_t unknown normalization constant/partition function

AIM : Sequential Monte Carlo Estimation/Approximation of

$$\langle f, \mu_t \rangle := \int_S f(x) \,\mu_t(dx), \qquad t = 0, 1, \dots, k,$$

for appropriate class of functions $f: S \to \mathbb{R}$.

MOTIVATION:

• *Dynamical:* E.g. non-linear filtering, Hidden Markov Models

 X_0, X_1, \dots, X_k Markov chain *(unobserved signal)* Y_0, Y_1, \dots, Y_k noisy perturbations *(observation)* μ_t = conditional distribution of X_t given Y_0, \dots, Y_t

→ Particle filters, see e.g. [Doucet, de Freitas, Gordon: Sequential MC methods in practice].

- Static: $\mu(dx) = Z^{-1} \exp(-U(x)) \nu(dx)$ Target distribution
 - difficult to simulate because of multimodality, metastable states, singular density,...
 - \rightsquigarrow choose interpolation $~\nu=\mu_0,\mu_1,\ldots,\mu_k=\mu$, e.g. such that $\mu_k(x)/\mu_{k-1}(x)\leq 2$
 - ~> "resolution of singularity" by "homotopy method".

EXAMPLES: Choice of interpolating probability measures

- Annealing : $\mu_t(x) \propto \exp(-\beta_t U(x))$, β_t cooling schedule, $\beta_0 = 0$, $\beta_k = 1$.
- Equi-Energy Sampling : $\mu_t(x) \propto \exp(-\beta_t \cdot \max(U(x), E_t))$

Spatial Coarse Graining :

e.g. μ measure on $S = C([0, 1], \mathbb{R}^d)$, μ_t approximation on

 $S_k = \{ \omega : [0,1] \to \mathbb{R}^d : \omega \text{ linear on } [(k-1)2^{-t}, k2^{-t}] \text{ for any } k \}.$

→ Transition Path Sampling

MARKOV CHAIN MONTE CARLO :

- Energy Landscape: $U: S \to \mathbb{R}_+, \ \mu_t(x) \propto \exp(-\beta_t \cdot \max(U(x), E_t))$
- Markov Chain Monte Carlo Approach (MCMC):
 - Explore energy landscape by reversible stochastic dynamics: (X^i) Markov chain with transition density $p_t(x, y)$ s.t.

 $\mu_t(x) p_t(x, y) = \mu_t(y) p_t(y, x)$ Detailled Balance

- Estimate μ_t by $\hat{\mu}_t = \sum_{i=1}^{\lambda_t} \delta_{X^i}$.
- Example [Metropolis et al. (1953), Hastings (1971)]

 $p_t(x,y) = q(x,y) \cdot \min\left(\frac{\mu_t(y)q(y,x)}{\mu_t(x)q(x,y)},1\right), \ q \text{ proposal density}$

METASTABILITY PROBLEM :

- Local energy minima \rightsquigarrow metastable states \rightsquigarrow traps for Markov chain
- Simulated Annealing with logarithmic cooling schedule: Cool down so slowly that Markov chain escapes traps.

→ not feasible in practice !

- *Realistic approach:* Cool down much faster.
 - ~> Markov chain eventually gets trapped

DISCONNECTIVITY TREE OF ENERGY FUNCTION:

 $S \rightarrow$ Disconnectivity tree T

Energy function $U: S \to \mathbb{R}_+ \to Height$ function $h: \mathbb{T} \to \mathbb{R}_+$

Reference measure $\nu \rightarrow$ Density of states $\Omega(dx)$ on \mathbb{T}

 $\mu_t \rightarrow \bar{\mu}_t(dx) \propto e^{-\beta_t h(x)} \Omega(dx)$

- As t increases, the Markov chain gets trapped in deeper branches of the tree.
- The state space effectively splits into an increasing number of components (metastable states)

KEY PROBLEM:

- Are there feasible Markov chain based methods for Monte Carlo integral estimation w.r.t. the sequence μ_t (t = 0, 1, ..., k) in spite of trapping ?
- When do they apply ?
- Any quantitative error bounds for simple models ?

2 MONTE CARLO METHODS FOR SEQUENCES

- Importance Sampling
- Markov Chain Monte Carlo (MCMC) [Metropolis et al. 1953]
- Simulated Annealing [Kirkpatrick, Gelatt, Vecchi 1982]
- Simulated Tempering [Marinari, Parisi 1992]
- Parallel Tempering [Geyer 1991]
- Equi-Energy Sampler [Kou, Zhou, Wong 2006]
- Sequential Monte Carlo Samplers [Del Moral, Doucet, Jasra 2006]

REFERENCE: Liu, Monte Carlo Methods in Scientific Computing

IMPORTANCE SAMPLING:

ALGORITHM (Importance Sampling, Umbrella Sampling).

- Sample X^i ($1 \le i \le N$) i.i.d. $\sim \nu$
- For $t := 0, 1, \ldots, k$ do
 - Compute importance weights $w_t^i := \mu_t(X^i) / \sum_{j=1}^N \mu_t(X^j)$
 - Estimate μ_t by $\hat{\mu}_t^N := \sum_{i=1}^N w_t^i \, \delta_{X^i}$

Remarks.

- Computation of importance weights can be implemented sequentially
- Law of Large Numbers $\Rightarrow \langle f, \hat{\mu}_t^N \rangle$ is asymptotically unbiased estimator for $\langle f, \mu_t \rangle$
- $\operatorname{Var}(\langle f, \hat{\mu}_t^N \rangle) = O(N^{-1/2})$ for any $f \in L^2(\mu_t)$

Drawback.

• Variance can be very large if $\sup_x \mu_t(x) / \inf_x \mu_t(x)$ is large.

MCMC: t fixed, λ_t nr. of steps, $p_t(x, y)$ transition density, DB w.r.t. μ_t

ALGORITHM (Independent Monte Carlo Markov Chains).

- Sample X_t^i ($1 \le i \le N$) i.i.d. $\sim \nu$
- For m := 1 to λ_t do

- Sample Y_t^i condit. independent ~ $p_t(X_t^i, \cdot)$; replace X_t^i by Y_t^i .

• Estimate μ_t by $\hat{\mu}_t^N := N^{-1} \sum_{i=1}^N \delta_{X_t^i}$

TWO ERRORS.

 $\hat{\mu}_{t}^{N} - \mu_{t} = \underbrace{(\hat{\mu}_{t}^{N} - \nu_{t})}_{\text{MC error Deviation from equilibrium}} + \underbrace{(\nu_{t} - \mu_{t})}_{\text{MC error Deviation from equilibrium}}, \quad \nu_{t} = \text{distrib. of chain after } \lambda_{t} \text{ steps}$

•
$$E\left[\left|\langle f, \hat{\mu}_t^N \rangle - \langle f, \nu_t \rangle\right|^2\right] = N^{-1} \cdot \operatorname{Var}(f; \nu_t)$$

• $\langle f, \nu_t \rangle - \langle f, \mu_t \rangle \rightarrow 0$ as $\lambda_t \rightarrow \infty$ if ergodicity holds.

QUANTITATIVE BOUNDS FOR DISTANCE FROM EQUILIBRIUM: a) W.r.t. χ^2 divergence:

$$\begin{split} \chi^{2}(\nu_{t}|\mu_{t}) &= \sup_{\langle f^{2},\mu_{t}\rangle \leq 1} |\langle f,\nu_{t}\rangle - \langle f,\mu_{t}\rangle|^{2} \leq e^{-\lambda_{t}/C_{t}} \cdot \chi^{2}(\nu|\mu_{t}) \\ C_{t}^{-1} &= \inf_{\langle f,\mu_{t}\rangle = 0} \frac{\mathcal{E}_{t}(f,f)}{\langle f^{2},\mu_{t}\rangle} \quad \text{Spectral gap,} \\ \mathcal{E}_{t}(f,f) &= \int \int \int \mu_{t}(x)p_{t}(x,y) \left(f(y) - f(x)\right)^{2} \nu(dx) \nu(dy) \text{ Dirichlet form} \end{split}$$

b) W.r.t. Relative Entropy / Kullback-Leibler divergence: (Chain in cont. time)

$$\begin{split} H(\nu_t|\mu_t) &= \int \frac{d\nu_t}{d\mu_t} \log \frac{d\nu_t}{d\mu_t} \, d\mu_t \, \leq \, e^{-\lambda_t/\gamma_t} \cdot H(\nu|\mu_t) \\ \gamma_t^{-1} &= \, \inf_{\langle f^2, \mu_t \rangle = 1} \frac{\mathcal{E}_t(f, f)}{\langle f^2 \log f^2, \mu_t \rangle} \quad \text{Logarithmic Sobolev constant} \end{split}$$

REFERENCE: Peres, *Markov Chains and mixing times*

SIMULATED TEMPERING:

• MCMC on $S \times \{0, 1, \dots, k\}$ with stationary distribution

 $\bar{\mu}(x,t) \propto a_t \cdot \exp(-U_t(x)), \qquad \bar{\mu}(\cdot|t) = \mu_t.$

- $a_t = Z_t^{-1} \implies \bar{\mu}(S,t) = (k+1)^{-1}$ Uniform distribution in t
- In practice use estimate \hat{Z}_t

PARALLEL TEMPERING: MCMC on $S^{\{0,1,...,k\}}$ with equilibrium

Transition step.

- Sample $t \sim \text{Unif}\{0, 1, \dots, k\}$
- With probability 1ε : Sample $Y_t \sim p_t(X_t, \cdot)$; replace X_t by Y_t .
- With probability ε : Sample $U \sim \text{Unif}(0, 1)$; if t > 0 and $U < \min\left(1, \frac{\mu_t(X_{t-1})\mu_{t-1}(X_t)}{\mu_t(X_t)\mu_{t-1}(X_{t-1})}\right)$ then exchange X_t and X_{t-1} .

[Madras and Zheng], [Bhatnagar and Randall]

• Rapid Mixing on Mean Field Ising Model

 $C_t = O(N^{\alpha}), \qquad N =$ number of spins,

• BUT: Torpid Mixing on Mean-Field Potts Model.

$$[\longrightarrow] \longrightarrow [] \longrightarrow [$$

EQUI-ENERGY SAMPLER: [Kou, Zhou, Wong, *Annals of Statistics* 2006] **ALGORITHM (EE-Sampler).** Fix $\lambda_0, \lambda_1, \dots, \lambda_k \in \mathbb{N}, \ \delta_0, \delta_1, \dots, \delta_k > 0.$

- Initialization for t = 0:
 - Sample $X_0^0, X_0^1, \ldots, X_0^{\lambda_0} \sim \mu_0$; set $S_0 := \{X_0^0, \ldots, X_0^{\lambda_0}\}$.
- Step: For t := 1 to k do
 - Sample $X_t^0 \sim \text{Unif}(S_{t-1})$
 - For i := 1 to λ_t do
 - * With probability $1-\varepsilon$: Sample X_t^i condit. indep. $\sim p_t(X_t^{i-1}, \cdot)$
 - * With probability ε : PROPOSE EQUI-ENERGY MOVE
 - Sample $Y \sim \text{Unif}\{x \in S_{t-1} : |U_t(x) U_t(X_t^{i-1})| < \delta_t\};$
 - Sample $U \sim \text{Unif}(0, 1)$; if $U < \min\left(1, \frac{\mu_t(Y)\mu_{t-1}(X_t^{i-1})}{\mu_t(X_t^{i-1})\mu_{t-1}(Y)}\right)$ then set $X_t^i := Y$; else set $X_t^i := X_t^{i-1}$.

- Set $S_t := \{X_t^0, \dots, X_t^{\lambda_t}\}.$

EQUI-ENERGY SAMPLER

- Sequential algorithm
- Adaptive MCMC method : Detailed Balance w.r.t. μ_t holds only in the limit as $\lambda_i \to \infty$ for i < t !

3 SEQUENTIAL MONTE CARLO SAMPLERS

P. Del Moral, A. Doucet, A. Jasra, J. R. Statist. Soc. B 68 (2006)

 $\begin{array}{ll} \mu_0, \mu_1, \ldots, \mu_k \text{ probability measures,} & \lambda_0, \lambda_1, \ldots, \lambda_k \in \mathbb{N}, \\ p_1, p_2, \ldots, p_k \text{ Markov kernels s.t. } \mu_i p_i = \mu_i \end{array}$

ALGORITHM (SMCMC with multinomial resampling).

• Initialization:

- Sample X_0^i ($1 \le i \le N$) i.i.d. $\sim \mu_0$, set $\eta_0^N := N^{-1} \sum_{i=1}^N \delta_{X_0^i}$

- Step: For t := 1 to k do
 - SIR: Sample X_t^i i.i.d. $\sim \sum_{i=1}^N w_t^i \cdot \delta_{X_{t-1}^i}$, $w_t^i \propto \mu_t(X_{t-1}^i)/\mu_{t-1}(X_{t-1}^i)$
 - MCMC: For m := 1 to λ_t do

* Sample Y_t^i condit. indep. $\sim p_t(X_t^i, \cdot)$; set $X_t^i := Y_t^i$

- Set
$$\eta_t^N := N^{-1} \sum_{i=1}^N \delta_{X_t^i}$$

Related methods:

- Parallel tempering, Geyer (1991)
- Equi-energy sampler, Kou, Zhou, Wong, Annals of Statistics 34 (2006)

Good performance in various simulations, e.g. on Gaussian mixture models.

- Can we understand mathematically ?
- Can we even prove feasible quantitative bounds ?
- How to choose the interpolating probability measures ?
- How many MCMC moves per importance sampling/resampling step are required ?
- Dependence of error on structure of energy landscape ?

4 SMCMC IN CONTINUOUS TIME

[A.E., C. Marinelli 2009, 2010]

Aim : Sequential estimation / approximation of probability measures

$$\mu_t(x) \propto \exp\left(-\int_0^t H_s(x) \, ds\right) \, \mu(x)$$

on a finite state space S. W.I.o.g.

$$\langle H_s \, , \, \mu_s \rangle \; = \; 0 \, .$$

Estimator :

$$\mu_t \approx \eta_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

THE PARTICLE SYSTEM $(X_t^i)_{1 \le i \le N}$:

- Independent Markov chain moves with generator $\lambda_t \cdot \mathcal{L}_t$
- X_t^i replaced by X_t^j with rate $\frac{1}{N}(H_t(X_t^i) H_t(X_t^j))^+$

i.e., (X_t^1, \ldots, X_t^N) is the Markov process on S^N with generator

$$\mathcal{L}_t^N \varphi(x_1, \dots, x_N) = \lambda_t \sum_{i=1}^N \mathcal{L}_t^{(i)} \varphi(x_1, \dots, x_N) + \frac{1}{N} \sum_{i,j=1}^N \left(H_t(x_i) - H_t(x_j) \right)^+ \cdot \left(\varphi(x^{i \to j}) - \varphi(x) \right)$$

 $\lambda_t > 0$ constants, \mathcal{L}_t generator of a Markov process on S satisfying $\mu_t(x)\mathcal{L}_t(x,y) = \mu_t(y)\mathcal{L}_t(y,x)$ detailed balance,

 $\mathcal{L}_t^{(i)}$ action of \mathcal{L}_t on *i* th component.

SCALING LIMIT :

$$\begin{aligned} \frac{\partial}{\partial t} \mu_t &= -H_t \,\mu_t \\ &= \lambda_t \mathcal{L}_t^* \mu_t \,- \,H_t \mu_t \,+ \,\langle H_t, \mu_t \rangle \,\mu_t \end{aligned}$$

 η_t^N is a discretization of this equation:

$$\frac{\partial}{\partial t} \mathbb{E}\left[\langle f, \eta_t^N \rangle\right] = \mathbb{E}\left[\langle f, \lambda_t \mathcal{L}_t^* \eta_t^N - H_t \eta_t^N + \langle H_t, \eta_t^N \rangle \eta_t^N \rangle\right]$$

LLN / Scaling limit:

$$\eta_t^N \approx \mathbb{E}[\eta_t^N] \approx \mu_t \quad \text{for large} N.$$

5 QUANTITATIVE BOUNDS

• LLN, CLT, EXPRESSION FOR ASYMPTOTIC VARIANCE: (for closely related particle system)

P. Del Moral, L. Miclo. Branching and Interacting Particle Systems Approx. of Feynman-Kac Formulae (2000)

M. Rousset. On the control of an interacting particle approximation of Schrödinger ground states. *SIAM J. Math. An.* **38**(**3**) (2006)

• CLTs IN DISCRETE TIME:

P. Del Moral. Feynman-Kac Formulae, Springer 2004

N. Chopin. CLT for sequential SMC methods and its application to Bayesian inference. *Annals of Statistics* **32** (6) (2004)

H. R. Künsch. Recursive Monte Carlo Filters: Algorithms and Theoretical Analysis. *Annals of Statistics* **33**(**5**): 1983-2021, 2004.

PROBLEMS:

Implicit expression for asymptotic variance
 ~> need L^p bounds for Feynman-Kac propagators

A.E., C. Marinelli. L^p estimates for Feynman-Kac propagators with time dependent reference measures, *J.Math.Anal.Appl. 2009*.

• Feasible bound for fixed number of particles ? Under global mixing conditions:

A.E., C. Marinelli. Quantitative approximations of evolving probability measures and sequential MCMC methods, Preprint 2010.

AN UNBIASSED ESTIMATOR:

$$\nu_t^N := \exp\left(-\int_0^t \langle H_s, \eta_s^N \rangle\right) \eta_t^N$$

THEOREM.

$$E\left[\langle f, \nu_t^N
angle
ight] \ = \ \langle f, \, \mu_t
angle \qquad \forall \ t \ge 0, \ f: S \to \mathbb{R}.$$

FEYNMAN-KAC PROPAGATOR:

Define $q_{s,t}f$ as solution of backward equation

$$\frac{\partial}{\partial s}q_{s,t}f = -\lambda_s \mathcal{L}_s q_{s,t}f - H_s q_{s,t}f, \qquad q_{t,t}f = f,$$

Feynman-Kac representation:

$$q_{s,t}f(x) = \mathbb{E}_{s,x}\Big[e^{-\int_s^t H_r(X_r)\,dr}f(X_t)\Big],$$

where $(X_t, \mathbb{P}_{s,x})$ is Markov process with gen. $\lambda_t \mathcal{L}_t$ and init. cond. $X_s = x$.

Fix q > 6 and $p \in \left(\frac{4q}{q-2}, q\right)$.

THEOREM. Suppose that

$$N \geq \max(120 \cdot K_t, 80) \text{ and}$$

$$\lambda_s \geq \max\left(\frac{p}{4}A_s + \frac{p(p+3)}{4}tB_s, 35 \cdot \operatorname{osc}(H_s) \cdot C_s\right) \quad \forall s \in [0, t].$$

Then

$$\operatorname{Var} \left(\langle f, \nu_t^N \rangle \right)^{1/2} \leq \left(\operatorname{Var}_{\mu_t}(f) + V_t(f) + \|f\|_{L^p(\mu_t)}^2 \right)^{1/2} N^{-1/2} + 40 \cdot K_t \cdot \|f\|_{L^p(\mu_t)} N^{-1}$$

where

$$V_t(f) = -\int_0^t \langle H_s(q_{s,t}f)^2, \mu_s \rangle + 2 \int \int |H_s(x)| (q_{s,t}f(y) - q_{s,t}f(x))^2 \mu_s(dx) \mu_s(dy) \\ \leq 13 \cdot K_t \cdot \|f\|_{L^p(\mu_t)}$$

CONSTANTS:

$$K_{t} = \int_{0}^{t} \|H_{s}\|_{L^{q}(\mu_{s})} ds$$

$$A_{t} = \sup_{\langle f, \mu_{t} \rangle = 0} \frac{\int H_{t} f^{2} d\mu_{t}}{\mathcal{E}_{t}(f, f)} \qquad H\text{-Poincaré constant}$$

$$B_{t} = \sup_{\langle f, \mu_{t} \rangle = 0} \frac{\left|\int H_{t} f d\mu_{t}\right|^{2}}{\mathcal{E}_{t}(f, f)} \qquad \text{modified } H\text{-Poincaré}$$

$$C_{t} = \sup_{\langle f^{2}, \mu_{t} \rangle = 1} \frac{\int f^{2} \log f^{2} d\mu_{t}}{\mathcal{E}_{t}(f, f)} \qquad \text{Log-Sobolev constant}$$

COROLLARY. Similar estimates hold for

 $E\left[\left|\langle f,\eta_{t}^{N}\rangle-\langle f,\mu_{t}\rangle\right|\right]$

EXAMPLE. (Moving Gaussians)

 $\mu_t = N(m_t, \sigma_t^2)$ on $[-r, r]^d$, $\mathcal{L}_t = \text{Ornstein-Uhlenbeck generator}$

Quantitative bounds depending on \dot{m}_t/m_t and $\dot{\sigma}_t/\sigma_t$.

6 OUTLOOK

OPEN PROBLEMS:

 Generalization to discrete time and continuous space see PhD thesis of Nikolaus Schweizer

• Non-asymptotic bounds under local mixing conditions.

First step: Asymptotic bounds:

A.E., C. Marinelli. Stability of nonlinear flows of probability measures related to sequential MCMC methods.

Second step: Non-asymptotic analysis on trees:

PhD thesis of Nikolaus Schweizer

"Recipes" for applications

- Try to guarantee $osc(H_t) \le 1$, or at least $osc(H_t^-) \le 1$
- Use enough MCMC steps such that there is sufficient mixing in each metastable state
- Quality of error estimates depends (among other things) on structure of disconnectivity tree