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1 INTRODUCTION

THE PROBLEM : 1, 1t1,. .., probability measures on state space S.

1

pe(dx) = pi(x) v(de); pe(r) = Z -exp(—Ui(z))

e 1 reference measure
e U, : S — R known/can be computed

e Z; unknown normalization constant/partition function

AIM : Sequential Monte Carlo Estimation/Approximation of

fa:ut ‘= /f :utdaj t:O,l,...,k,

for appropriate class of functions f : S — R.






MOTIVATION:

e Dynamical: E.g. non-linear filtering, Hidden Markov Models

Xo, X1,...,X; Markov chain (unobserved signal)
Yo, Y1, ..., Y, noisy perturbations (observation)

1 = conditional distribution of X; given Yy, ....Y;

~» Particle filters, see e.g. [Doucet, de Freitas, Gordon: Sequential MC
methods in practice).

o Static: p(dx) = Z texp(—=U(x))v(dz) Target distribution
— difficult to simulate because of multimodality, metastable states,

singular density,...

— ~» choose interpolation v = pug, pu1,...,ux = @, €.9g. such that
() / pr—1(z) <2
— ~ “resolution of singularity” by “homotopy method”.



EXAMPLES: Choice of interpolating probability measures

o Annealing : . (z) x exp(—B,U(x)),

o Equi-Energy Sampling : 11:(x) o exp(—p; - max(U(z), E;))
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Spatial Coarse Graining :
e.g. 1 measure on S = C([0,1],R9), u; approximation on

Si={w:[0,1] = R? : wlinearon [(k — 1)27¢ k27t] for any k}.

~ Transition Path Sampling
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MARKOV CHAIN MONTE CARLO:

e Energy Landscape: U : S — Ry, pi(z) o exp(—pF; - max(U(x), Ey))
e Markov Chain Monte Carlo Approach (MCMC):

— Explore energy landscape by reversible stochastic dynamics: (X*)
Markov chain with transition density p;(x,y) S.t.

pe(x) pe(2,y) = pe(y) pe(y,z)  Detailled Balance

— Estimate i by i = S0, 6y .

— Example [Metropolis et al. (1953), Hastings (1971)]

e (y)q(y, x)
pe(x)q(x,y)’

pe(xz,y) = q(z,y) -min( 1) , g proposal density



METASTABILITY PROBLEM :

e Local energy minima ~~ metastable states ~» traps for Markov chain

e Simulated Annealing with logarithmic cooling schedule: Cool down so
slowly that Markov chain escapes traps.

~~ not feasible in practice !

e Realistic approach: Cool down much faster.
~ Markov chain eventually gets trappped



Tree(H)

DISCONNECTIVITY TREE OF ENERGY FUNCTION:
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Energy function U : S — R,

Reference measure
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Disconnectivity tree T
Height function h: T — R
Density of states (dx) on T
fi(dz) o e Peh@) Q(dx)



e As t increases, the Markov chain gets trapped in deeper branches of
the tree.

e The state space effectively splits into an increasing number of compo-
nents (metastable states)

KEY PROBLEM:

e Are there feasible Markov chain based methods for Monte Carlo integral
estimation w.r.t. the sequence u; (t =0,1,..., k) in spite of trapping ?

e When do they apply ?

e Any quantitative error bounds for simple models ?



2 MONTE CARLO METHODS FOR SEQUENCES

e Importance Sampling

e Markov Chain Monte Carlo (MCMC) [Metropolis et al. 1953]

e Simulated Annealing [Kirkpatrick, Gelatt, Vecchi 1982]
e Simulated Tempering [Marinari, Parisi 1992]

e Parallel Tempering [Geyer 1991]

e Equi-Energy Sampler [Kou, Zhou, Wong 2006]

e Sequential Monte Carlo Samplers [Del Moral, Doucet, Jasra 2006]



IMPORTANCE SAMPLING:
ALGORITHM (Importance Sampling, Umbrella Sampling).

e Sample X* (1 <i< N)iid. ~v
e Fort:=0,1,...,kdo
~ Compute importance weights w} := p¢(X?)/ 32| e (X7)
— Estimate p, by 4 := 32" widy
Remarks.
e Computation of importance weights can be implemented sequentially

e Law of Large Numbers = (f, iV) is asymptotically unbiased estimator
for <f7 :ut>

o Var((f,f)) = O(N~1/2) forany f € L?(u)
Drawback.

e Variance can be very large if sup,, u:(x)/inf, u:(z) is large.



MCMC: tfixed, \; nr. of steps, p:(x,y) transition density, DB w.r.t. u,

ALGORITHM (Independent Monte Carlo Markov Chains).
e Sample X! (1 <i< N)iid. ~v
e Form:=11to )\, do
— Sample Y} condit. independent ~ p;(X?, -); replace X/ by Y;.
o Estimate y, by 4l :=N"1320 6
TWO ERRORS.
AR Suiv — )+ (ve — ), vy = distrib. of chain after \; steps

7 \ 7
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o B[ i)~ (fw)[F] = NU-Vax(fim)

o (f,vy)—(f,ue) — 0 as Ay — oo if ergodicity holds.



QUANTITATIVE BOUNDS FOR DISTANCE FROM EQUILIBRIUM:
a) W.r.t. y? divergence:

Cwilp) = sup |[(fov) = (fp)l < e MO P ()
<f2),ut>§1
_ &S5 )
c:t = inf : Spectral gap,
: (Foe)=0 (f2, put) P Jap
&) = [ [ m@pie.y) (F0) - £))? v(do) v(dy) Diichlet form
b) W.r.t. Relative Entropy / Kullback-Leibler divergence: (Chain in cont. time)
dv dv
H(velp) = /—tlog—td,ut < e M H (v
dput dput
E I
vto= inf i/, /) Logarithmic Sobolev constant

(r2ue)=1 (f?log f?, 1)



SIMULATED TEMPERING:
e MCMC on S x {0,1,...,k} with stationary distribution

IL_L(x7 t) X Qg - eXp(_Ut(x)) ; Ia( ' ‘t> = Mt -

e a, =27, = (S t) = (k+1)~! Uniform distribution in ¢

e In practice use estimate Z,
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PARALLEL TEMPERING: MCMC on S19:1:-k} with equilibrium

k
,&(l’o, L1y ,$k) — H :ut(ajt) .
t=0

AN

Transition step.
e Sample t ~ Unif{0,1,...,k}
o With probability 1 — ¢ : Sample Y; ~ p:(X;, -); replace X; by Y;.
o With probability ¢ : Sample U ~ Unif(0, 1);

if t >0and U < min (1, Zigiﬁjfi&iﬁ;) then exchange X; and X;_;.




[Madras and Zheng], [Bhatnagar and Randall]
e Rapid Mixing on Mean Field Ising Model

Cy = O(N?), N = number of spins,

e BUT: Torpid Mixing on Mean-Field Potts Model.
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EQUI-ENERGY SAMPLER: [Kou, Zhou, Wong, Annals of Statistics 2006]
ALGORITHM (EE-Sampler). Fix Ao, A\1,--- ,A\x €N, 69,01, ,0r > 0.
e Initialization for ¢t = 0:
— Sample X9, X}, ..., X3° ~ uo; set Sp:={X3,...,X;°}.
e Step: Fort:=11to kdo

— Sample X} ~ Unif(S;_1)
— Fori:=1to \;, do
« With probability 1 —e : Sample X/ condit. indep. ~ p: (X!~ 1, -)
« With probability c : PROPOSE EQUI-ENERGY MOVE
. Sample Y ~ Unif{z € S;_; : |Uy(x) — U (X7 1| < 6, };
- Sample U ~ Unif(0, 1);

: . ,ujt(Y).,ut_l(XZ_l)) (R Ve
If U < min (1, (X () then set X} :=Y;

else set X/ := X/~
- Set S, :={X?, ..., XM}




EQUI-ENERGY SAMPLER

WA

e Sequential algorithm

e Adaptive MCMC method : Detailed Balance w.r.t. u; holds only in the
limitas \; — oo forz < ¢!



3 SEQUENTIAL MONTE CARLO SAMPLERS

P. Del Moral, A. Doucet, A. Jasra, J. R. Statist. Soc. B 68 (2006)

Lo, 41, - - ., i Probability measures, Aoy A, Ak €N,
p1,P2,-..,pr Markov kernels s.t. p;p; = p;

ALGORITHM (SMCMC with multinomial resampling).
¢ Initialization:
— Sample X{ (1 <i < N)iid. ~ po, setn) := N30, oy
e Step: Fort:=11to k do
~ SIR: Sample X/ i.i.d. ~ Y7 wi -0y
— MCMC: Form :=11to \; do
+ Sample Y} condit. indep. ~ p; (X}, -); set X} =Y}
- SetnY = N30 0x;

; w;ﬁ X Nt(Xti—1)//it—1(XZ—1)

1
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Evolution




Related methods:
e Parallel tempering, Geyer (1991)
e Equi-energy sampler, Kou, Zhou, Wong, Annals of Statistics 34 (2006)

Good performance in various simulations, e.g. on Gaussian mixture models.

e Can we understand mathematically ?
e Can we even prove feasible quantitative bounds ?
e How to choose the interpolating probability measures ?

e How many MCMC moves per importance sampling/resampling step are
required ?

e Dependence of error on structure of energy landscape ?



4 SMCMC IN CONTINUOUS TIME

[A.E., C. Marinelli 2009, 2010]

Aim : Sequential estimation / approximation of probability measures

t
o) x exp (= [ Hi(@)ds) (o
0
on a finite state space S. W.l.o.g.

<H87:u8> — O

Estimator :



THE PARTICLE SYSTEM (X}) _ _ . :

e Independent Markov chain moves with generator \; - £,

e X/ replaced by X; with rate & (H,(X}) — H,(X]))*

i.e., (X},..., X") is the Markov process on S with generator
N .
Lon.on) = MY L, o)
1=1
- o
N > (Hi(xs) — Hi(z))" - (o2 7) — o(x))
i,j=1
constants, generator of a Markov process on S satisfying

pe(x)Li(x,y) = pe(y)Le(y,z) detailed balance,

action of £; on i th component.



SCALING LIMIT :

0
2. = —H
= NLipe — Hypy + (Hy,y pig) pie

nY is a discretization of this equation:

0
EE Kf’ni\fﬂ — F [<f, )\t/;j;ni\’ — Hmiv -+ (HtaﬁfVWfVH

LLN / Scaling limit:

n ~ E[n'] ~ u  forlargeN.



S5 QUANTITATIVE BOUNDS

e LLN, CLT, EXPRESSION FOR ASYMPTOTIC VARIANCE:

P. Del Moral, L. Miclo. Branching and Interacting Particle Systems Ap-
prox. of Feynman-Kac Formulae (2000)

M. Rousset. On the control of an interacting particle approximation of
Schrodinger ground states. SIAM J. Math. An. 38(3) (2006)

e CLTs IN DISCRETE TIME:

P. Del Moral. Feynman-Kac Formulae, Springer 2004

N. Chopin. CLT for sequential SMC methods and its application to
Bayesian inference. Annals of Statistics 32 (6) (2004)

H. R. Kinsch. Recursive Monte Carlo Filters: Algorithms and Theoreti-
cal Analysis. Annals of Statistics 33(5): 1983-2021, 2004.



PROBLEMS:

e Implicit expression for asymptotic variance
~ need LP bounds for Feynman-Kac propagators

A.E., C. Marinelli. LP estimates for Feynman-Kac propagators with time
dependent reference measures, J.Math.Anal. Appl. 2009.

e Feasible bound for fixed number of particles ?
Under global mixing conditions:

A.E., C. Marinelli. Quantitative approximations of evolving probability
measures and sequential MCMC methods, Preprint 2010.



AN UNBIASSED ESTIMATOR:
t
v = exp (—/ <Hs,77iv>> Y
0

E[(f,v)] = (fim) Vt=0, f:5—R

THEOREM.



FEYNMAN-KAC PROPAGATOR:
Define ¢, . f as solution of backward equation

0
gqutf — —Asﬁsqs,tf - Hst,tfa Qt,tf — f’

Feynman-Kac representation:

QS,tf(x) — Es,x {6_ fst HT(XT) drf(Xt)} )

where (X;, P ) is Markov process with gen. A\:£; and init. cond. X = z.

. 4
Fix ¢ >6 and p € (q_—qQ,q).



THEOREM. Suppose that

N > max(120- K;, 80) and
A > max<§As+p(pjg)tBs,35-osc(Hs).Cs) Vs € [0,1].
Then
N\ 1/2 2 1/2 —1/2
Var (£, < (Van (D + Vi) + 1)~ N

40 K [ fllzoguy N7

Vilf) = / (oo f)?, is) + 2 / / ()] (G () — @o.e F(@))? 1s(da) as (dy)
13- Ky |l

IN



CONSTANTS:

t
K, - / IHulpag,, ds

H, f?d . ,
Ay = sup fgt(; f)ﬂt H—-Poincaré constant
<f7,ut>:0 t ?
2
H:fd
By = sup U 2 Mt| modified H—Poincaré

=0 E(fi f)

21 2
C, = sup ff og = duy

Log-Sobolev constant
(f2,ue)=1 gt(fv f)




COROLLARY. Similar estimates hold for

E([(f;m) = (f )]

EXAMPLE. ( Moving Gaussians )

d

e = N(mg,o2) on[—rr]% £, = Ornstein-Uhlenbeck generator

Quantitative bounds depending on 7 /m,; and &, /o,.



6 OUTLOOK

OPEN PROBLEMS:

e Generalization to discrete time and continuous space

see PhD thesis of Nikolaus Schweizer

e Non-asymptotic bounds under local mixing conditions.

First step: Asymptotic bounds:

A.E., C. Marinelli. Stability of nonlinear flows of probability measures
related to sequential MCMC methods.

Second step: Non-asymptotic analysis on trees:

PhD thesis of Nikolaus Schweizer



“Recipes’ for applications

e Try to guarantee osc(H;) < 1, oratleastosc(H;, ) <1

e Use enough MCMC steps such that there is sufficient mixing in each
metastable state

e Quality of error estimates depends (among other things) on structure of
disconnectivity tree



