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Chapter 1

Lévy processes and Poisson point
processes

A widely used class of possible discontinuous driving psses in stochastic differen-
tial equations are Lévy processes. They include BrowniatiampPoisson and com-
pound Poisson processes as special cases. In this chapteytime basics from the
theory of Lévy processes, focusing on prototypical exasplieLévy processes and
their construction. For more details we refer to the monplgsaof Applebaum [3] and
Bertoin [€].

Apart from simple transformations of Brownian motion, L&wsocesses do not have
continuous paths. Instead, we will assume that the pathsaatag (continue a droite,
limites a gauche) i.e., right continuous with left limits. This can always assured
by choosing an appropriate modification. We now summariznenbotations and facts
about cadlag functions that are frequently used below.: If — R is a cadlag function
defined on a real intervdl ands is a point in/ except the left boundary point, then we
denote by

T, = limz,_
s =10 s—¢

the left limit of z at s, and by

Ar, = 43— T
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the size of the jump at. Note that the functios — z,_ is left continuous with right
limits. Moreover,z is continuous if and only iNz, = 0 for all s. LetD(I) denote the
linear space of all cadlag functions I — R.

Exercise(Cadlag functions). Prove the following statements:
1) If I is a compact interval, then for any functienc D(7), the set

{sel:|Axs| > ¢}

is finite for anye > 0. Conclude that any function € D([0,)) has at most
countably many jumps.

2) A cadlag function defined on a compact interval is bounded.

3) A uniform limit of a sequence of cadlag functions is agaidlag .

1.1 Leévy processes

Lévy processes afR?-valued stochastic processes with stationary and indeperia-
crements. More generally, |eF;),~, be a filtration on a probability spa¢e, A, P).

Definition. An (F;) Lévy process is a(F;) adapted cadlag stochastic process
X, : Q — R?such that w.r.tP,

(a) X1+ — X, isindependent aoF; for anys,t > 0, and
b) Xopt — Xy ~  X;— X foranys,t > 0.

Any Lévy process X, ) is also a Lévy process w.r.t. the filtratio#X ) generated by the
process. Often continuity in probability is assumed indteficadlag sample paths. It
can then be proven that a cadlag modification exists| ci. @82, Thm.30].

Remark (Lévy processes in discrete time are Random Walks).A discrete-time
process X, )n—o,1.2.... With stationary and independent increments is a Random :Walk
Xn = Xo+ > 5, my withi.i.d. increments); = X; — X .

Remark (Lévy processes and infinite divisibility). The incrementsX,,; — X, of a
Lévy process ar@nfinitely divisible random variables, i.e., for any € N there ex-
ist i.i.d.random variable¥7, . . ., Y, such thatX,,; — X, has the same distribution as
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8 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

>~ Y. Indeed, we can simply choo3¢ = X, i/n — Xeti¢—1)/m- The Lévy-Khinchin
=1

formula gives a characterization of all distributions dinitely divisible random vari-
ables, cf. e.g.[[3]. The simplest examples of infinitely siilvle distributions are normal

and Poisson distributions.

Exercise (Strong Markov property for Lévy processeg. Let (X;) be an(F;) Lévy
process, and |€f’ be a finite stopping time. Show that = Xr,, — X1 is a process
that is independent of -, andX andY have the same law.

Hint: Consider the sequence of stopping times defined by (k + 1)2 ™ if k27" <
T < (k+ 1)27™. Notice thatl}, | T'asn — oo. In afirst step show that for any, € N
andt; < t, < ... < t,,, any bounded continuous functigron R™, and anyA € Fr
we have

E [f(XTn+t1 — X1y Xt — XTn)[A] =LK [f(XtN S 7Xtm)] P[A]-

Basic examples

We now consider first examples of continuous and discontisli@vy processes.

Example (Brownian motion and Gaussian Lévy processgs A d-dimensional Brow-
nian motion(B;) is by definition a continuous Lévy process with

By — Bs ~ N(0, (t — s)Iy) forany0 <s < t.

Moreover,X; = oB; + bt is a Lévy process with normally distributed marginals for
anyo € R4 andb € R Note that these Lévy processes are precisely the driving
processes in SDE considered so far.

First examples of discontinuous Lévy processes are Poastymore generally, com-
pound Poisson processes.

Example (Poisson processés The most elementary example of a pure jump Lévy
process in continuous time is the Poisson process. It tedeevin{0,1,2,...} and

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 9

jumps up one unit each time after an exponentially disteabuwvaiting time. Explicitly,
a Poisson processV;):>o with intensity A > 0 is given by

N o= > Iisien = f{neN: S5, <t} (1.1)
n=1

whereS,, = T} + 1> + - - - + T,, with independent random variablés~ Exp(\). The
incrementsV; — N, of a Poisson process over disjoint time intervals are inddget
and Poisson distributed with paramekét — s), cf. [12, Satz 10.12]. Note that by (1.1),
the sample paths— N,(w) are cadlag. In general, any Lévy process with

X, —Xs ~  Poisson (A(t —s)) forany0 < s <t

is called aPoisson process with intensity\, and can be represented as above. The paths
of a Poisson process are increasing and hence of finite iearial he compensated
Poisson process

M, = N —E[N|] = N, —M

is an(FY) martingale, yielding the semimartingale decomposition
Nt = Mt + )\t

with the continuous finite variation pakt. On the other hand, there is the alternative
trivial semimartingale decompositioW, = 0+ N, with vanishing martingale part. This
demonstrates that without an additional regularity caodjtthe semimartingale decom-
position of discontinuous processes is not unique. A corsgiexa Poisson process is a
Lévy process which has both a continuous and a pure jump part.

Exercise(Martingales of Poisson process@sProve that the compensated Poisson pro-
cessM; = N; — Mt and the process/? — A\t are(F}') martingales.

Exercise (A characterization of Poisson processésLet (X;);>o be a Lévy process
with Xy = 0 a.s. Suppose that the paths.fare piecewise constant, increasing, all
jumps of X are of size 1, anK is not identically0. Prove thatX is a Poisson process.

Hint: Apply the Strong Markov property to the jump tin{é%),—, . of X to conclude

gooo

that the random variable§; := T; — T;_; are i.i.d. (withT, := 0). Then, it remains to
show thatl/; is an exponential random variable with some parameter 0.

University of Bonn Winter Semester 2012/2013



10 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

For a different point of view on Poisson processes let
MF(S) = {Z 8y, | (s) finite or countable sequencej?n}

denote the set of all counting measures on aSsef Poisson proces§V;):>, can be
viewed as the distribution function of a random counting suee, i.e., of a random
variableN : Q@ — M ([0, 00)).

Definition. Letr be ac-finite measure on a measurable sp&seS). A collection of
random variablesV(B), B € S, on a probability spacé(2, A, P) is called aPoisson
random measure (or spatial Poisson process) of intensityf and only if

(i) B~ N(B)(w) is acounting measure for any € (2,

(i) if By,..., B, € S are disjoint then the random variablég(B,), ..., N(B,) are
independent,

(iii) N(B) is Poisson distributed with paramete{B) for any B € S withv(B) < oo.

A Poisson random measuléwith finite intensityr can be constructed as the empirical
measure of a Poisson distributed number of independentlsardipm the normalized
measure//v(S):.

K
N = 25)(]. with X; ~ v/v(s)ii.d.,, K ~ Poisson(r(S)) independent.
j=1
If the intensity measure does not have atoms then almost surdly{z}) € {0, 1} for
anyr € S,andN = ) _, 0, for arandom subset of S. For this reason, a Poisson
random measure is often called a Poisson point process goutliwse this terminology
differently below.

A real-valued procesg\V;);>( is a Poisson process of intensity> 0 if and only if
t — Ny(w) is the distribution function of a Poisson random meashiif@t)(w) on
B([0,00)) with intensity measure(dt) = Adt. The Poisson random measu¥édt)
can be interpreted as the derivative of the Poisson process:

N(dt)y= > d.(dt).

s: ANg#£0
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1.1. LEVY PROCESSES 11

In a stochastic differential equation of tyg@; = o(Y;_)dN,, N(dt) is the driving
Poisson noise

Any linear combination of independent Lévy processes isna@a évy process:

Example (Superpositions of Lévy processgs If (X;) and(X/) are independent Lévy
processes with values & andR? thena X, + 3X7 is a Lévy process with values &
for any constant matrices € R"*¢ and3 € R"*¢. For example, linear combinations
of independent Brownian motions and Poisson processegjane laévy processes.

Example (Inverse Gaussian subordinator$. Let (B;);>o be a one-dimensional Brow-
nian motion withB, = 0 w.r.t. a right continuous filtratio(%; ), and let

T, = inf{t>0: B;=s}

denote the first passage time to a leyvel R. Then(7})>¢ is an increasing stochastic
process that is adapted w.r.t. the filtratiofr, ) ;0. For anyw, s — Ti(w) is the gener-
alized right inverse of the Brownian path— B,(w). Moreover, by the strong Markov
property, the process

Et(S) = BTs+t - Bt s t Z 0,
Is a Brownian motion independent &, for anys > 0, and
Torw = T,+T¥  fors,u>0, (1.2)

whereT® = inf {t >0 : B = u} is the first passage time tofor the proces$ ().

B, B
stk I
s A MWL
TS Ts+k
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12 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

By (1.2), the incremerit, ,, — T, is independent of 1, and, by the reflection principle,

2
Toyo —Ts ~ T, ~ Lx_g/QeXp(—u—)](0700)(I)d$€.

V2T 2x
Hence(T;) is an increasing process with stationary and independergriments. The
procesgTy) is left-continuous, but it is not difficult to verify that

T,y = hﬂ)lT”a = inf{tZO : Et(s) >u}

is a cadlag modification, and hence a Lévy procdds.. ) is called“The Lévy sub-
ordinator” , where “subordinator” stands for an increasing Lévy precéf§e will see
below that subordinators are used for random time transfboms (“subordination”) of
other Lévy processes.

More generally, ifX; = 0B, + bt is a Gaussian Lévy process with coefficieats- 0,
b € R, then the right inverse

X = inf{t>0: X,=s} , s>0,

s

is called anlnverse Gaussian subordinator

Exercise(Sample paths of Inverse Gaussian procesge$rove that the process; )~
is increasing angurely discontinuous.e., with probability one(TY) is not continuous
on any non-empty open interval, b) C [0, co).

Example (Stable processes Stable processes are Lévy processes that appear as scaling
limits of Random Walks. Suppose thait = >~ 7; is a Random Walk ifR? with i.ii.d.
increments;. If the random variableg, are square-integrable with mean zero then
Donsker’s invariance principle (thdunctional central limit theoreff) states that the
diffusively rescaled procegs !/ %S |kt) )10 converges in distribution ter B, )~ where
(B;) is a Brownian motion inR¢ and o is a non-negative definite symmetricx d
matrix. However, the functional central limit theorem does apply if the increments
n; are not square integrableh@avy tail$). In this case, one considers limits of rescaled
Random Walks of the formx ") = k=1/%S 1) wherea € (0,2] is a fixed constant. It is
not difficult to verify that if(X*)) converges in distribution to a limit procegX;, ) then
(X;) is a Lévy process that is invariant under the rescaling, i.e.

kVeX, ~ X, foranyk € (0,00) andt > 0. (1.3)

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 13

Definition. Leta € (0, 2]. A Lévy processX;) satisfying[(1.B) is calle@strictly)
«a-stable

The reason for the restriction @ € (0,2] is that fora > 2, an a-stable process
does not exist. This will become clear by the proof of Theolekhbelow. There is
a broader class of Lévy processes that is callestable in the literature, cf. e.qg. [25].
Throughout these notes, by anstable processwe always mean a strictly-stable
process as defined above.

Forb € R, the deterministic process; = bt is a 1-stable Lévy process. Moreover,

a Lévy processY in R! is 2-stable if and only ifX, = ¢ B, for a Brownian motion
(B;) and a constant € [0, 00). Other examples of stable processes will be considered
below.

Characteristic exponents

From now on we restrict ourselves w.l.o.g. to Lévy procesgds X, = 0. The dis-
tribution of the sample paths is then uniquely determinedhgydistributions of the
incrementsX; — X, = X, for ¢t > 0. Moreover, by stationarity and independence of
the increments we obtain the following representation fier ¢haracteristic functions

pi(p) = Elexp(ip - Xy)J:
Theorem 1.1(Characteristic exponen). If (X;):>o is a Lévy process witlk, = 0
then there exists a continuous function R? — C with 1/(0) = 0 such that

Ele?X] = et (@) for anyt > 0 andp € R% (1.4)

Moreover, if(X;) has finite first or second moments, theis C!, C? respectively, and

0%

— ; k xrl —
E[Xy] = itVy(0) : Cov[ X/, X|| = t@pkapl

(0) (1.5)
foranyk,l =1,...,dandt > 0.
Proof. Stationarity and independence of the increments impliesdéntity

Oirs(p) = Elexp(ip - Xips)] = Elexp(ip - Xs)] - Elexp(ip - (Xpvs — X))
= pi(p) - ps(p) (1.6)

University of Bonn Winter Semester 2012/2013



14 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

for anyp € R? ands,t > 0. For a givenp € R, right continuity of the paths and
dominated convergence imply thiat> ¢, (p) is right-continuous. Since

pie(p) = Elexp(ip- (X; = X)),

the functiont — ¢,(p) is also left continuous, and hence continuous.[By (1.6) araes
vo(p) = 1, we can now conclude that for eaghe R¢, there exists)(p) € C such that
(1.4) holds. Arguing by contradiction we then see th&l) = 0 and+ is continuous,
since otherwise; would not be continuous for all

Moreover, if X, is (square) integrable thep, is C' (resp.C?), and hence) is also
C! (resp.C?). The formulae in[(1J5) for the first and second moment nowofolby

computing the derivatives w.rit.atp = 0 in (1.4). 0

The functiony is called thecharacteristic exponentof the Lévy process.

Examples. 1) For the Gaussian Lévy processes considered above,

1 1 .
Y(p) = §|UTP|2—ib-p = ép-ap—ib-p with a = oo .

2) The characteristic exponent of a Poisson process wigngitly \ is
Blp) = A1-e?).
3) In the superposition example above,
Yaxipx'(p) = Ux(a’p) + ¢y (67p).
Characteristic exponents can be applied to classify-aliable processes:

Theorem 1.2(Characterization of stable processés For « € (0,2] and a Lévy pro-
cess(X;) in R! with X, = 0 the following statements are equivalent:

() (Xy) is strictly a-stable.
(i) ¥(cp) = c*P(p) foranyc > 0andp € R.

(i) There exists constants > 0 andu € R such that

Y(p) = o%p|*(1+iusgn(p)).

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 15

Proof. (i) < (ii). The process$X;) is strictly a-stable if and only itX .., ~ cX; for
anyc,t > 0, i.e., if and only if

L CON. E[ez‘pcxt} _ E[ez‘pxcat} R ()

foranyc,t > 0 andp € R.

(71) < (ii7). Clearly, Condition(iz) holds if and only if there exist complex numbers
z, andz_ such that
Z+|p|a forp Z 07

vip) =
z_|p|* forp <0.

Moreover, sincep;(p) = exp(—ty(p)) is a characteristic function of a probability
measure for any > 0, the characteristic exponert satisfiesy(—p) = ¥(p) and
R((p)) > 0. Thereforez_ =7z, andR(z,) > 0. O

Example (Symmetric a-stable processes A Lévy process inR¢ with characteristic
exponent

b(p) = o%pl®
for somes > 0 anda € (0, 2] is called asymmetricx-stable processlt can be shown

by Fourier transformation that a symmetnestable process is a Markov process with
generator-o°(—A)*/2, In particular, Brownian motion is a symmetgestable process.

Martingales of Lévy processes

The notion of a martingale immediately extends to complexeator valued processes
by a componentwise interpretation. As a consequence ofréh&.]1 we obtain:

Corollary 1.3. If (X;) is a Lévy process witlX, = 0 and characteristic exponent,
then the following processes are martingales:

(i) exp(ip- X, +tp(p))  foranyp € RY,

i) M, =X, —bt withb=iVy(0), provided X, € £! V¢ > 0.
(if)

(i) M} MF — %t with o/% = 857_%%(0) (j,k = 1,...,d), provided X, € £?
Vit>D0.

University of Bonn Winter Semester 2012/2013



16 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Proof. We only prove (ii) and (iii) ford = 1 and leave the remaining assertions as an
exercise to the reader. df= 1 and(X,) is integrable then fop < s < ¢,

E[Xt - Xs | ‘Fs] = E[Xt - Xs] = Z(t - 5)1/’,(0)

by independence and stationarity of the increments an@d BY.(HenceM, = X, —
ity’(0) is a martingale. Furthermore,

M? — M? = (M; + M) (M; — M) = 2M (M, — M,) + (M, — M,)*.
If (X}) is square integrable then the same holdgfdf), and we obtain
E[M{ — M; | F] = E[(M, — M)* | Fy] = Var[M, — M, | F]
— Var[X, — X, | F.] = Var[X, — X,] = Var[X,_,] = (t — s)4(0)
HenceM? — t1”(0) is a martingale. O

Note that Corollary_1]8 (ij) shows that an integrable Lévggass is aemimartingale
with martingale parfl/; and continuous finite variation pdit The identity[(1.4) can be
used to classify all Lévy processes, c.f. eld. [3]. In pati we will prove below that
by Corollary 1.8, any continuous Lévy process with = 0 is of the typeX,; = o B;+bt
with a d-dimensional Brownian motio(B;) and constants € R¥¢ andb € R<,

From now on, we will focus on discontinuous Lévy processes.

Compound Poisson processes

Compound Poisson processes are pure jump Lévy processetha.paths are constant
apart from a finite number of jumps in finite time. A compoundsBon process is a
continuous time Random Walk defined by

Ny
Xp=>m ., t>0,
j=1

with a Poisson procedsV;) of intensity A > 0 and with independent identically dis-
tributed random variableg; : Q — R? (j € N) that are independent of the Poisson

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 17

process as well.
The process$X,) is again a pure jump process with jump times that do not actateu
A compound Poisson process has jumps of gingth intensity

vidy) = Aw(dy),
wherer denotes the joint distribution of the random variabjes

Lemma 1.4. A compound Poisson process is a Lévy process with charatiteeixpo-

nent
wlp) = [ (=) iay). @)
Proof. Let0 =t; < t; < --- < t,. Then the increments
Niy,
Xy =Xy = Y. m . k=12..n, (1.8)
§=Np,_,+1

are conditionally independent given thealgebra generated by the Poisson process
(Ny)i>o. Therefore, fopy, ..., p, € RY,

E[eXp (Z Zpk (X, — thfl) ‘ (Nt)} = H Elexp(ipy, - (Xp, — Xi,_,) | (IV2)]

k=1 k=1

= H Sp(pk)Ntk —Niy, ,

wherep denotes the characteristic function of the jump sigzes By taking the ex-
pectation value on both sides, we see that the incremeriis8h §re independent and
stationary, since the same holds for the Poisson prdcéss Moreover, by a similar
computation,

Elexp(ip - X;)] = E[Elexp(ip - Xo) | (N)]] = E[(p)™]

e (A _
— e )\tz o cp(p)k — NMle(r)—1)

k=0

for anyp € R?, which proves[(1]7). O

University of Bonn Winter Semester 2012/2013



18 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

The paths of a compound Poisson process are again of finitgisarand cadlag. One
can show that every pure jump Lévy process with finitely mamygs in finite time is a
compound Poisson process , cf. TheotemlI1.13 below.

Exercise (Martingales of Compound Poisson processgsShow that the following
processes are martingales:

(@ M; =X, —bt whereb= [yuv(dy) providedn € L,
(b) |M;]* —at  wherea = [ |y|* v(dy) providedn, € L2

We have shown that a compound Poisson process with jumgsitteneasure (dy) is
a Lévy process with characteristic exponent

bo(p) = / (1—é™(dy) . peR (1.9)

Since the distribution of a Lévy process on the spB¢#), co), R?) of cadlag paths is
uniquely determined by its characteristic exponent, weprame conversely:

Lemma 1.5. Suppose that is a finite positive measure d®(R?\ {0} ) with total mass

A =v(R?\ {0}), and (X;) is a Lévy process witlX, = 0 and characteristic exponent
Y, defined on a complete probability spage, A, P). Then there exists a sequence
(n,)jen Of i.i.d.random variables with distribution '~ and an independent Poisson
Procesq NV;) with intensity\ on (€2, A, P) such that almost surely,

Ny
Xoo= > . (1.10)
j=1

Proof. Let (7;) be an arbitrary sequence of i.i.d.random variables witlridigtion
A~'y, and let(N,) be an independent Poisson process of intensiB \ {0}), all
defined on a probability spac(é, ﬂ, ]3). Then the compound Poisson proc%s:
Zj\zﬁl n; is also a Lévy process Witfi’vo = 0 and characteristic exponent. Therefore,
the finite dimensional marginals ¢%,) and(X;), and hence the distributions 0K)
and (X,) on D([0, o), R) coincide. In particular, almost every path— X,(w) has
only finitely many jumps in a finite time interval, and is ccoanst inbetween. Now set
So = 0 and let

Sj = inf{s > Sj,1  AX, # 0} forj eN

Stochastic Analysis Andreas Eberle



1.1. LEVY PROCESSES 19

denote the successive jump-times(df;). Then(S;) is a sequence of non-negative
random variables ofX2, A, P) that is almost surely finite and strictly increasing with
lim S; = oo. Definingn; := AXg, if S; < oo, n; = 0 otherwise, and

N, = |{s€(0,f] : AX,#0}| = |{jeN:S;<t}|

as the successive jump sizes and the number of jumps up ta tiwe conclude that
almost surely,(V;) is finite, and the representatidn (1.10) holds. Moreovar,afoy

j € Nandt > 0, n; andN; are measurable functions of the process);~,. Hence the
joint distribution of all these random variables coincigeth the joint distribution of the
random variableg; (j € N) and N, (¢ > 0), which are the corresponding measurable
functions of the proces(s?(vt). We can therefore conclude th@f;) ey iS a sequence
of i.i.d. random variables with distributions '~ and (V;) is an independent Poisson
process with intensity. O

The lemma motivates the following formal definition of a camapd Poisson process:

Definition. Let v be a finite positive measure d&f, and lety, : R? — C be the
function defined by (11.9).

1) The unique probability measure on B(R<) with characteristic function

/ e?Vm,(dy) = exp(—(p) VpeR?
is called thecompound Poisson distribution with intensity measuwe

2) A Lévy proces$X;) onR? with X, — X, ~ 7, for anys,t > 0 is called a
compound Poisson process with jump intensity measure (Léwasurel .

The compound Poisson distributian is the distribution onle n; whereK is a Pois-
son random variable with parameter= v(R¢) and(n;) is a sequence of i.i.d. random
variables with distributiom\~!». By conditioning on the value ok , we obtain the
explicit series representation

wherer** denotes thé-fold convolution ofv.
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20 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Superpositions and subdivisions of Poisson processes

The following assertion about Poisson processes is imélyticlear from the interpre-
tation of a Poisson process as the distribution function Bbsson random measure.
Compound Poisson processes enable us to give a simple gribef ®econd part of the
lemma:

Theorem 1.6. Let K be a countable set.

1) Suppose the(ti\f,fk))tzo, k € K, are independent Poisson processes with intensi-
ties\;. Then
Nt — Z Nt(k) 3 t Z 07

keK
is a Poisson process with intensity= > A, provided\ < oo.

2) Conversely, ifV;):>o is a Poisson process with intensity> 0, and (C), ) e iS
a sequence of i.i.d.random variablé§ : ) — K that is also independent of
(Vy), then the processes

Nt(k) = ZI{CJ'ZIC} , t=> 07

are independent Poisson processes of intensjigswhereg, = P[C; = k].

The subdivision in the second assertion can be thought oblasiing the points in
the support of the corresponding Poisson random medsu#é) independently with
random colour€’;, and decomposing the measure into pait¥ (dt) of equal colour.

Proof. The first part is rather straightforward, and left as an agercFor the second
part, we may assume w.l.0.g. that K is finite. Then the prodéss Q — R* defined

by N
]\725 = (Nt(k)>keK:;7lj with Wj:([{k}(CJ’))keK

is a compound Poisson process®fi, and hence a Lévy process. Moreover, by the
proof of Lemmd_1}4, the characteristic function/dffor ¢ > 0 is given by

E |exp (ip- M) | = exp (M) = 1)), p € RE,
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where

— Z qkeipk.

keK

¢(p) = Eexp(ip-m)| = E

exp (z Zpk[{k}(01)>

keK

Noting that) _ ¢, = 1, we obtain

Elexp(ip- N,)] = H exp (Mg (e — 1)) for anyp € R andt > 0.
keK
The assertion follows, because the right hand side is thactaistic function of a Lévy
process inRX whose components are independent Poisson processes tgitsifies

1.2 Poisson point processes

A compensated Poisson process has only finitely many jumadimte time interval.
General Lévy jump processes may have a countably infinitebearof (small) jumps
in finite time. In the next section, we will construct such ggsses from their jumps.
As a preparation we will now study Poisson point processatsehcode the jumps of
Lévy processes. The jump part of a Lévy process can be remmbiem these counting
measure valued processes by integration, i.e., summdtitve gump sizes.

Note first that a Lévy procegsY;) has only countably many jumps, because the paths
are cadlag. The jumps can be encoded in the counting meealued stochastic pro-
cessl; : 2 — MF(R?\ {0}),

Ndy) = ) dax.(dy), t>0,
AXo

or, equivalently, in the random counting measife: @ — M (R; x (R?\ {0}))
defined by
N(dtdy) = > Oaxn(dtdy).

s<t
AX#0
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S L o

1

+—o

—o
AX,
1 . °
° ® 3
°
i Y [}

The processV;):>o is increasing and adds a Dirac masg &ach time the Lévy pro-
cess has a jump of size Since(X;) is a Lévy process/V,) also has stationary and
independent increments:

N,+(B) — N,(B) ~ Ny(B)  foranys,t >0 and B € B(R?\ {0}).

Hence for any seB with N,(B) < oo a.s. for allt, the integer valued stochastic process
(N:(B)):>0 is a Lévy process with jumps of sizel. By an exercise in Sectign 1.1, we
can conclude thgtV;(B)) is a Poisson process. In particular> E[N;(B)] is a linear
function.
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Definition. Thejump intensity measur®f a Lévy proces§X;) is theo-finite measure
v on the Borebr-algebraB3(R? \ {0}) determined by

E[N,(B)] = t-v(B) Vit>0, Be B[R {0}). (1.11)

It is elementary to verify that for any Lévy process, thera isnique measure satis-
fying (1.11). Moreover, since the paths of a Lévy processcariag, the measureg
andv are finite on{y € R? : |y| > ¢} for anye > 0.

Example (Jump intensity of stable processgs The jump intensity measure of strictly
a-stable processes iR! can be easily found by an informal argument. Suppose we
rescale in space and time hy— cy andt — ¢®t. If the jump intensity is/(dy) =

f(y) dy, then after rescaling we would expect the jump intensit§(cy)c dy. If scale
invariance holds then both measures should agreef{g).,oc |y|~'= both fory > 0

and fory < 0 respectively. Therefore, the jump intensity measure ofietlst a-stable
process ofR! should be given by

v(dy) = (c+Loeo) () + L) (¥)) Iy 7 dy (1.12)
with constants:,,c_ € [0, c0).

If (X;) is a pure jump process with finite jump intensity measure, (firitely many
jumps in a finite time interval) then it can be recovered frai)) by adding up the
jump sizes:

Xi-Xo = Y AX, = /y Ny (dy).

s<t

In the next section, we are conversely going to construcergeneral Lévy jump pro-
cesses from the measure-valued processes encoding ths. jé®a first step, we are
going to define formally the counting-measure valued preegshat we are interested
in.

Definition and construction of Poisson point processes

Let (S, S, v) be ao-finite measure space.
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24 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

Definition. A collectionNV;(B), t > 0, B € S, of random variables on a probability
space(€, A, P) is called aPoisson point process of intensity if and only if

(i) B +— N (B)(w) is a counting measure aofi for anyt > 0 andw € €,

(i) if By,...,B, € S are disjoint then(N;(B)):>o, - - -, (N:(Byn)):>0 are indepen-
dent stochastic processes and

(i) (N:(B)):>0 is a Poisson process of intensityB) for any B € S withv(B) < oo.

A Poisson point process adds random points with intengify) dy in each time instant
dt. It is the distribution function of a Poisson random meastifdt dy) onR* x S
with intensity measuret v(dy), i.e.

N(B) = N((0,t] x B) foranyt > 0andB € S.

The distribution of a Poisson point process is uniquely meitged by its intensity mea-
sure: If(IVy) and(ﬁt) are Poisson point processes with intensithen

(Ni(B), .., Ni(Ba))izo ~  (Nu(B), - (N(B))ezo

for any finite collection of disjoint set#,,...,B, € S, and, hence, for any finite
collection of measurable arbitrary sdts, ..., B, € S.

Applying a measurable map to the points of a Poisson poimga®yields a new Poisson
point process:

Stochastic Analysis Andreas Eberle



1.2. POISSON POINT PROCESSES 25

Exercise (Mapping theorem). Let (S,S) and (7,7 ) be measurable spaces and let
f S — T be a measurable function. Prove thatif;) is a Poisson point process with
intensity measure then the image measurég o f~!, t > 0, form a Poisson point
process on T with intensity measure f~!.

An advantage of Poisson point processes over Lévy procestes the passage from
finite to infinite intensity (of points or jumps respectively not a problem on the level
of Poisson point processes because the resulting sunaliriexist by positivity:

Theorem 1.7(Construction of Poisson point processgs

1) Suppose that is a finite measure with total mass= v(S). Then

is a Poisson point process of intensityprovided the random variables; are
independent with distributioA~'v, and (k) is an independent Poisson process
of intensity\.

2) If (Nt(k)), k € N, are independent Poisson point processes9ib) with intensity
measures;, then

o

A SIVE

k=1

is a Poisson point process with intensity measure > vy.

The statements of the theorem are consequences of the sidmli@nd superposition
properties of Poisson processes. The proof is left as acisger

Conversely, one can show that any Poisson point procesgimitihintensity measure
can be almost surely represented as in the first part of Thebre, wherel(;, = N;(5).
The proof uses uniqueness in law of the Poisson point prpeeskis similar to the
proof of Lemmad_1.b.
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Construction of compound Poisson processes from PPP

We are going to construct Lévy jump processes from Poissor pmcesses. Suppose
first that(V;) is a Poisson point process @ \ {0} with finite intensity measure.
Then the support al, is almost surely finite for any > 0. Therefore, we can define

Xoo= [Ny =Yy NG,
R0} yESUpNy)
Theorem 1.8.1f v(R?\ {0}) < oo then(X;):>o is a compound Poisson process with
jump intensityr. More generally, for any Poisson point process with finiteemsity
measure’ on a measurable spa¢é, S) and for any measurable functigh: S — R",
n € N, the process

N = / fW)Ndy) . >0,

is a compound Poisson process with intensity measurg —*.

Proof. By Theoreni1l7 and by the uniqueness in law of a Poisson paiaceps with
given intensity measure, we can represgit) almost surely asv, = Z]K:tl 4y, with

i.i.d. random variables; ~ v/v(S) and an independent Poisson procgss) of inten-
sity v(.S). Thus,

N = [rwNn) = 3 s amostsurely

Since the random variablggn;), j € N, are i.i.d. and independent oK) with distri-
butionv o 71, (Ntf) is a compound Poisson process with this intensity measurel

As a direct consequence of the theorem and the propertiesngb@und Poisson pro-
cesses derived above, we obtain:

Corollary 1.9 (Martingales of Poisson point processgs Suppose thatV,) is a Pois-
son point process with finite intensity measure Then the following processes are
martingales w.r.t. the filtratiod?Y = o(N,(B) |0 < s <t, B€ S):

W) N, =N/ —t[fdv foranyfe £'(v),

i) NN —t[fgdv  foranyf.ge £2(v),
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(iii) exp (ipN/ +t [(1 —¢®/) dv) for any measurabl¢ : S — R andp € R.

Proof. If fisin LP(v) for p = 1,2 respectively, then

[lalrve i) = [ 11)P vidy) < o,
/xuof /fdy and /:nyo (fg) *(dxdy) = /fgdu

Therefore (i) and (ii) (and similarly also (iii)) follow frm the corresponding statements
for compound Poisson processes. O

With a different proof and an additional integrability asgution, the assertion of Corol-
lary[1.9 extends te-finite intensity measures:

Exercise (Expectation values and martingales for Poisson point proses with in-
finite intensity). Let (V;) be a Poisson point process witHinite intensityv.
a) By considering first elementary functions, prove thatfor 0, the identity

E [/f(y)Nt(dy)] = t/f(y)V(dy)

holds for any measurable functigh: S — [0, oo]. Conclude that foy € £!(v),
the integrale [ f(y)N.(dy) exists almost surely and defines a random vari-
ableinL'(Q2, A, P).

b) Proceeding similarly as in a), prove the identities

E[N/] - t/f dv forany f € £'(v),
Cov[N/ Nf] = t/fg dv foranyf,g € £'(v) N L*(v),
Elexp(ipN/)] = exp(t /(e”’f 1)dv) foranyf c £'(v).

c) Show that the processes considered in Corollary 1.9 aim agartingales pro-
vided f € L*(v), f,g € L*(v) N L*(v) respectively.

If (V;) is a Poisson point process with intensity measutéen the signed measure
valued stochastic process

N/(dy) = N/(dy)—tv(dy) , t>0,
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is called acompensated Poisson point processNote that by Corollary 119 and the
exercise,

N - /ﬂ@ﬁ@»

is a martingale for any € £'(v), i.e., (ﬁt) Is ameasure-valued martingale

Stochastic integrals w.r.t. Poisson point processes

Let (S, S, v) be ao-finite measure space, and [gf;) be a filtration on a probability
spaceg((2, A, P). Our main interest is the case= R?. Suppose thatV;(dy)):>¢ is an

(F:) Poisson point process @1, S) with intensity measure. As usual, we denote by
N, = N,—tv the compensated Poisson point process, and (¥ dy) and]V(dt dy) the
corresponding uncompensated and compensated Poissamraneasure ok, x S.
Recall that ford, B € S with v/(A) < co andv(B) < oo, the processed, (4), N,(B),
andN,(A)N,(B) —tv(AN B) are martingales. Our goal is to define stochastic integrals

of type
<aNn:£/ G.(y) N(ds dy), (1.13)
(0,¢]xS
(GN), = / G.(y) N(ds dy) (1.14)
(0,t] xS

respectively for predictable processess, y) — Gs(y)(w) defined o2 x R, x S. In
particular, choosing;(y)(w) = y, we will obtain Lévy processes with possibly infinite
jump intensity from Poisson point processes. If the measisdnite and has no atoms,
the process:. N is defined in an elementary way as

GN = Y Gl

(s,y)ESUP(N), s<t

Definition. Thepredictable o-algebraon2 x R, x S is thecs-algebraP generated
by all sets of the formdl x (s,¢] x Bwith0 < s <t, A € F;andB € S. A stochastic
process defined ot x R, x S is called(F;) predictable iff it is measurable w.r.tP.

It is not difficult to verify thatany adapted left-continuous process is predictable
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Exercise. Prove thatP is theo-algebra generated by all procesgest, y) — G:(y)(w)
such thatG; is F; x S measurable for any > 0 andt — G,(y)(w) is left-continuous
foranyy € S andw € (.

Example. If (IV;) is an(F;) Poisson process then the left limit procégsy) = N, is
predictable, since it is left-continuous. Howevét(y) = N; is not predictable. This
is intuitively convincing since the jumps of a Poisson pgxean not be “predicted in
advance”. A rigorous proof of the non-predictability, hawee is surprisingly difficult
and seems to require some background from the general théstgchastic processes,
cf. e.g. [5].

We denote by the vector space consisting of alementary predictable processe&:
of the form

—_

n—

Gt(y) Z ZZ k tz tiy1] (t) ]Bk <y> (115)

k=1

I
=)

withm,n e N,0 <ty <t; <--- <t By,..., B, € Sdisjointwithv(By) < oo, and
Zir : 2 — R bounded andF,,-measurable. Fatr € £, the stochastic integraf, NV is
a well-defined Lebesgue integral given by

—

n—

(GoN)y = Zik (Niyyint(Br) — Niae(Br)) (1.16)
k=1

m

I
=)

7

Notice that the summands vanish fer> ¢ and thatG, NV is an(F;) adapted process
with cadlag paths.

Stochastic integrals w.r.t. Poisson point processes hangegies reminiscent of those
known from It integrals based on Brownian motion:

Lemma 1.10(Elementary properties of stochastic integrals w.r.t. PPP. LetG € £.
Then the following assertions hold:

1) Foranyt > 0,

E[(G.N)] = E [ /( Gl dsyi)|
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2) The procesé}.]\Nf defined by

@0 = [ awNad ~ [ i)

(0,t] xS

is a square integrabléF;) martingale with(G,N), = 0.

3) Foranyt > 0, G.N satisfies thetd isometry

Bl - £ /(O,t]XsGs(y)Qd”(dy)} .

4) The processG,N)? — f(o igxs Gs(y)? ds v(dy) is an(F;) martingale.

Proof. 1) Since the processéd/;(By)) are Poisson processes with intensiti€¢s;,),
we obtain by conditioning ot

E[(G.N),] = Z E [Zig (Nt nte(Br) — N, (By)) |
i,k:it; <t
= > E[Zy(tia At —t; At) v(By)]
= LK |:/(O,t]><SGS(y) ds I/(dy)} .

2) The proceséJ.N is bounded and hence square integrable. Moreover, it is armar
gale, since by 1), forany < s < tandA € F,,

E[(GuN) — (GuN)s A] = E /M SJAGr<y>f<s,ﬂ<r>N<drdy>}

— E / T4 Gr(y) Lisq(r) drl/(dy)}
(0,¢] xS

— E/ Gr(y)dry(dy)—/ Gr(y)dW(dy);A}
(0,¢] xS (0,s]x8

= E _/(O,t]xSGS(y) ds V(dy)} -

3) We have(G.]V)t = EM Zik AZ-ZV(BR), where

AZN(BR) = Ntht(Bk) - Ntmt(Bk)
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are increments of independent compensated Poisson porggses. Noticing that the
summands vanish tf > t, we obtain
E[GNE] = 3 B ZsZudN(B)A N (By)|
,7,k,l
= 23S B[ Zu 2N (B BIAN(B)|F)]
kl i<j
3 B |2 EIAN (B AN (B F |

kl 1

= ;;E[zgkm] v(By) = E U(

Gs(y)* ds V(dy)} :
0,t]xS

Here we have used that the coefficieats, are 7;, measurable, and the increments
AiN(Bk) are independent of;, with covarianceE[AiN(Bk)AZN(BZ)] = S (Br)Ajt.

4) now follows similarly as 2), and is left as an exercise ®thader. O

Lebesgue integrals

If the integrandG,(y) is non-negative, then the integrals (1.13) and (1.14) arié we
defined Lebesgue integrals for every By Lemma1.1D and monotone convergence,
the identity

E[(G.N)] = E { /WSGS(w dsv(dy)] (1.17)

holds for any predictablé’ > 0.

Now letu € (0,00], and suppose that : Q x (0,u) x S — R is predictable and
integrable w.r.t. the product measurex A ., ® v. Then by [(1.1F),

5| /(Oﬁuksms(y)uv(dsdy)} - 5| [O,U]XS'GS@)'“”(@)] < oo

Hence the processég N andG, N are almost surely finite o, ], and, correspond-
ingly G,N = Gf N — G, N is almost surely well-defined as a Lebesgue integral, and it
satisfies the identity (1.17).

Theorem 1.11.Suppose thatr € L' (P ® \,,) @) is predictable. Then the following
assertions hold:
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1) G,N is an(F?) adapted stochastic process satisfying (1.17).
2) The compensated proceSs]V is an(F) martingale.

3) The sample paths— (G, N), are cadlag with almost surely finite variation

VOGN < / 1Ga(y)] N(ds dy).
(0,t] xS

Proof. 1) extends by a monotone class argument from elementaricfableG to gen-
eral non-negative predictab{e, and hence also to integrable predictaile
2) can be verified similarly as in the proof of Lemma1.10.

3) We may assume w.l.o.¢g: > 0, otherwise we consider N andG, N separately.
Then, by the Monotone Convergence Theorem,

GV =(GN) = [ Gy Ndsdy) > 0. and
(tt+e]xS

(GoN)t - (GON)t—a — xS Gs(y) N(ds dy)

ase | 0. This shows that the paths are cadlag. Moreover, for anytipartr of [0, u],

Y HGN)w = (GuN),| = Y

rem remw

< / |Gs(y)| N(ds dy) < oo a.s.
(0,u] xS

/ G.(y) N(ds dy)
(r,r']xS

O

Remark (Watanabe characterization). It can be shown that a counting measure val-
ued processN;) is an(F;) Poisson point process if and only [f (1117) holds for any
non-negative predictable process

Itd integrals w.r.t. compensated Poisson point processes

Suppose thatw, s,y) — G,(y)(w) is a predictable process ¥ (P @ A, ® v) for
someu € (0, o0]. If Gis notintegrable w.r.t. the product measure, then the iatég N
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does not exist in general. Nevertheless, under the squiagrability assumption, the
integralG.N w.r.t. the compensated Poisson point process exists asagesqtegrable
martingale. Note that square integrability does not imphggrability if the intensity
measure is not finite.

To define the stochastic integlﬁLN for square integrable integrandswe use the I1t6
isometry. Let

ME([0,u]) = {M e M>*([0,u]) |t — My(w) cadlag for any € Q}

denote the space of all square-integrable cadlag maréagal.t. the completed filtra-
tion (F/). Recall that the.? maximal inequality
9 2
Blsw P < (527) B0
te[0,u]
holds for any right-continuous martingaleA?([0, u]). Since a uniform limit of cadlag
functions is again cadlag, this implies that the spafg |0, u]) of equivalence classes
of indistinguishable martingales itv1%([0, u]) is aclosedsubspace of the Hilbert space
M?([0,u]) w.r.t. the norm

Moy = EllM)Y?,
Lemma 11D, 3), shows that for elementary predictable ses%;,

|GeNlarzoy = Gllr2porg.ev)- (1.18)

On the other hand, it can be shown that any predictable ps@ees L (P ® Ap,,) @ v)

is a limitw.r.t. theL?(P® \(,.,) @v) norm of a sequence*)) consisting of elementary
predictable processes. Hence isometric extension ofteadimaps +— G.N can be
used to defing, N € M2(0, u) for any predictabl&? € L2(P ® A(.) ® v) in such a
way that

GHN — G.N in M>  whenever G® — G in L2

Theorem 1.12(It6 isometry and stochastic integrals w.r.t. compensated PP).
Suppose that € (0,00]. Then there is a unique linear isometty — G.N from
L3 x (0,u) x S;P,P®A®wv) to M3([0,u]) such thatG, N is given by [[1.16) for
any elementary predictable procesf the form[(1.15).
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Proof. As pointed out above, by (1.118), the stochastic integrareds isometrically to
the closuref of the subspace of elementary predictable processes inilbhertspace
L2(2 x (0,u) x S,P, P ® A ® v). It only remains to show thatny square integrable
predictable process is contained irt, i.e.,G is anL? limit of elementary predictable
processes. This holds by dominated convergence for bodefienbntinuous processes,
and by a monotone class argument or a direct approximatiogefioeral bounded pre-
dictable processes, and hence also for predictable pexass?. The details are left
to the reader. O

The definition of stochastic integrals w.r.t. compensataid$®n point processes can be
extended to locally square integrable predictable pre&sgs®y localization— we refer
to [3] for details.

Example (Deterministic integrands). If Hy(y)(w) = h(y) for some functionh €
L£2(S, 8, v) then
HN) = [n) N = N

i.e., H.N is a Lévy martingale with jump intensity measure h—!.

1.3 Leévy processes with infinite jump intensity

In this section, we are going to construct general Lévy pses from Poisson point
processes and Brownian motion. Afterwards, we will consséeeral important classes
of Lévy jump processes with infinite jump intensity.

Construction from Poisson point processes

Let v(dy) be a positive measure @&f \ {0} such that/ (1 A |y|*) v(dy) < o, i.e.,

v(ly] >¢e) < oo foranye >0, and (1.19)

/|<1|y|21/(dy) < 0. (1.20)

Note that the conditio (1.19) is necessary for the exig@fia Lévy process with jump
intensityv. Indeed, if [1.18) would be violated for some> 0 then a corresponding
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Lévy process should have infinitely many jumps of size greitan< in finite time.
This contradicts the cadlag property of the paths. The sgimegrability condition
(1.20) controls the intensity of small jumps. It is cruciat the construction of a Lévy
process with jump intensity given below, and actually it turns out to be also necessary
for the existence of a corresponding Lévy process.

In order to construct the Lévy process, I€t(dy), t > 0, be a Poisson point process
with intensity measure defined on a probability space, A, P), and Ietﬁt(dy) =
N,(dy) — tv(dy) denote the compensated process. For a measangl a measurable
setA, we denote by

p(B) = u(BNA)

the part of the measure on the sgti.e., " (dy) = I4(y)u(dy). The following decom-
position property is immediate from the definition of a Poispoint process:

Remark (Decomposition of Poisson point processes).If A, B € B(R? \ {0}) are
disjoint sets therfN/!),~, and (N?);>, are independent Poisson point processes with
intensity measures?, v” respectively.

If AN B.(y) = 0 for somes > 0 then the measure”* has finite total mass*(R?) =
v(A) by (1.19). Therefore,

X{ = /AyNt(dy) = /yNtA(dy)

is a compound Poisson process with intensity meastiyand characteristic exponent
Uxalp) = /A(l—exp(ip-y))V(dy)-

On the other hand, if , |y|* v(dy) < oo then
M = /Ayﬁt(dy) = /yﬁf(dy)

IS a square integrable martingale. If both conditions atisféad simultaneously then

M} = Xf—t/Ayy(dy).

University of Bonn Winter Semester 2012/2013



36 CHAPTER 1. LEVY PROCESSES AND POISSON POINT PROCESSES

In particular, in this cas@/“ is a Lévy process with characteristic exponent

Yualp) = /A(l—exp(ip-y)ﬂp-y) v(dy).

By (1.19) and[(1.20), we are able to construct a Lévy procetfsjump intensity mea-
surev that is given by

X7 = /| ) + / y No(dy). (1.21)

ly|<r

for anyr € (0, 00). Indeed, let

X[ = /| y Ny(dy) :/ y Iy >ry N(ds dy), and (1.22)
y|>r

(0,t] xR

ME" = / y N, (dy). (1.23)
e<|y|<r

fore,r € [0,00) with e < r. As a consequence of the It6 isometry for Poisson point
processes, we obtain:

Theorem 1.13(Existence of Lévy processes with infinite jump intensity. Letv be a
positive measure oR? \ {0} satisfying/ (1 A |y|*) v(dy) < co.

1) For anyr > 0, (X}) is a compound Poisson process with intensity measure
V' (dy) = Iy ey v(dy).

2) The proces$M,’") is a Lévy martingale with characteristic exponent
w) = [ G-y VpeRl @2
lyl<r
Moreover, for anyu € (0, o),

E [ sup | My — Mto’rﬂ — 0 ase } 0. (1.25)

0<t<u

3) The Lévy process¢d/’") and (X7) are independent, and” := X7 + M is
a Lévy process with characteristic exponent

@Zr(p) = / (1 — €Y 4 ip- ?/I{|y\§r}) v(dy) VpeRY (1.26)
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Proof. 1) is a consequence of Theorem|1.8.

2) By (1.20), the stochastic integral/") is a square integrable martingale [onu]
for anyu € (0, c0). Moreover, by the 1td isometry,

I3 = M oy = 1By = [ [ 0P Tsca vid) it = 0

ase | 0. By Theoreni18(M;") is a compensated compound Poisson process with
intensity /.|, j<r v(dy) and characteristic exponent

r(p) = / =iy i)
e<|y|<r

Ase | 0, 9. .(p) converges tay,.(p) sincel — e?¥ +ip -y = O(|y|*). Hence the limit
martingaleM;” = lim Mtl/"’r also has independent and stationary increments, and

n—oo

characteristic function

Elexp(ip- M{")] = lim Elexp(ip- M,"™")] = exp(—t¢,(p)).

n—oo

3) Sincel, <,y Ni(dy) and I,y N(dy) are independent Poisson point processes,
the Lévy processes)/") and(X[) are also independent. Hen&¢ = M + X7 is a
Lévy process with characteristic exponent

30 () = bo(p) + / (1 - ) (dy).

ly|>r

O

Remark. All the partially compensated process(éé[), r € (0,00), are Lévy pro-
cesses with jump intensity. Actually, these processes differ only by a finite drift term
since forany) < e < r,

X; = X/ +0bt, whereb= / y v(dy).
e<|y|<r
A totally uncompensated Lévy process
Xy = lim y Ni(dy)

does exist only under additional assumptions on the jungmsity measure:
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Corollary 1.14 (Existence of uncompensated Lévy jump processes Suppose that
J@ A Jyl) v(dy) < oo, or thatv is symmetric (i.e.p(B) = v(—B) for any B €
B(R*\ {0})) and [(1 A |y|*) v(dy) < co. Then there exists a Lévy procds§,) with
characteristic exponent

Y(p) = lim (1 — eip'y) v(dy) VpeR? (1.27)

0 Jly|>e

such that
E {sup | X, —Xtﬂ — 0 aselO0. (1.28)

0<t<u
Proof. For0 < € < r, we have

X5 =Xy + M;" + t/ y v(dy).

e<ly|<r
Ase | 0, M*" converges ta\/®" in M?([0,u]) for any finitew. Moreover, under the
assumption imposed an the integral on the right hand side converge&itwhere

b = lim y v(dy).

0 Secpyl<r

Therefore,(X;) converges to a procegs(;) in the sense of (1.28) as | 0. The
limit process is again a Lévy process, and, by dominatedergewice, the characteristic
exponent is given by (1.27). O

Remark (Lévy processes with finite variation paths). If [(1 A |y|) v(dy) < oo then
the processy; = [y N,(dy) is defined as a Lebesgue integral. As remarked above, in
that case the paths ¢K,) are almost surely of finite variation:

V) < / W Ni(dy) < o as.

The Lévy-1té6 decomposition

We have constructed Lévy processes corresponding to a gisgnintensity measure
v under adequate integrability conditions as limits of coomubPoisson processes or
partially compensated compound Poisson processes, teshedRemarkably, it turns
out that by taking linear combinations of these Lévy jumpcesses and Gaussian Lévy
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processes, we obtain all Lévy processes. This is the cootéhe Lévy-1td decompo-
sition theorem that we will now state before considering mrendetail some important
classes of Lévy processes.

Already the classical Lévy-Khinchin formula for infinityvdsible random variables (see
Corollary[I.16 below) shows that any Lévy proces®Rdrcan becharacterized by three
quantities a non-negative definite symmetric mateixc R4, a vectorb € R?, and a
o-finite measure on B(R4 \ {0}) such that

/(1 Alyl?) v(dy) < oo : (1.29)

Note that[(1.2P) holds if and only if is finite on complements of balls around 0, and
fly\<1 ly|? v(dy) < oo. The Lévy-Itd decomposition gives an explicit represeatabf
a Lévy process with characteristigs b, ).

Leto € R4 with a = 007, let(B;) be ad-dimensional Brownian motion, and Ig¥;)
be an independent Poisson point process with intensity uneas We define a Lévy
procesg X;) by setting

Xt = O'Bt + bt + /

ly[>1

y Ni(dy) + / y (Ni(dy) —tv(dy)) . (1.30)

ly|<1

The first two summands are the diffusion part and the drift Gaaissian Lévy process,
the third summand is a pure jump process with jumps of sizatgrehanl, and the last

summand represents small jumps compensated by drift. Asiva&independent Lévy

processes, the procesk,) is a Lévy process with characteristic exponent

vp) = Sprap—ib-p+ / (1—eP¥ 4ip -y Iy<ny) v(dy).  (1.31)
Re\{0}

We have thus proved the first part of the following theorem:

Theorem 1.15(Lévy-1td decomposition).
1) The expressiof (1.B0) defines a Lévy process with chaistatexponent).
2) Conversely, any Lévy process,) can be decomposed as n_(1.30) with the Pois-
son point process

Noo= ) AX, >0, (1.32)

s<t
AX#0
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an independent Brownian motid,), a matrixc € R?*4, a vectorb € R¢, and
a o-finite measurer onR<¢ \ {0} satisfying[(1.29).

We will not prove the second part of the theorem here. Thecjpa way to proceed
is to define(N;) via (1.29), and to consider the difference (0f;) and the integrals
w.r.t.(/V;) on the right hand side of (1.B0). One can show that the diffezeés a con-

tinuous Lévy process which can then be identified as a Gaukghay process by the
Lévy characterization, cf. Section 4.1 below. Carrying thet details of this argument,
however, is still a lot of work. A detailed proof is given in][3

As a byproduct of the Lévy-1td decomposition, one recoveestassical Lévy-Khinchin
formula for the characteristic functions of infinitely dsble random variables, which
can also be derived directly by an analytic argument.

Corollary 1.16 (Lévy-Khinchin formula ). For a functiony : R¢ — C the following
statements are all equivalent:

() + is the characteristic exponent of a Lévy process.
(i) exp(—1) is the characteristic function of an infinitely divisiblendom variable.

(iii) ¢ satisfies[(1.31) with a non-negative definite symmetric imatrc R’ a
vectorb € R?, and a measure on B(R¢\ {0}) such that[ (1 A |y|?) v(dy) < oo.

Proof. (iii) = (i) holds by the first part of Theorem 1]15.

()=(ii): If (X,) is a Lévy process with characteristic exponerthen X; — X, is an
infinitely divisible random variable with characteristignfctionexp(—).

(if) =(iii) is the content of the classical Lévy-Khinchin theoresee e.g![16]. O

We are now going to consider several important subclasde®bgfprocesses. The class
of Gaussian Lévy processes of type

Xt = O'Bt"‘bt

with o € R™4, p € R4, and ad-dimensional Brownian motiofB;) has already been
introduced before. The Lévy-Itd decomposition states ini@aar that these are the
only Lévy processes with continuous paths!
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Subordinators

A subordinator is by definition a non-decreasing real-valued Lévy proc&ékg. name
comes from the fact that subordinators are used to chandgertbgarametrization of a
Lévy process, cf. below. Of course, the deterministic pgeesX; = bt with b > 0 are
subordinators. Furthermore, any compound Poisson pregéssion-negative jumps
is a subordinator. To obtain more interesting examples, sgarae that is a positive
measure o010, co) with

/(0 )(1/\y)l/(dy) < 0.

Then a Poisson point proces; ) with intensity measure satisfies almost surely
supp(Ny)  C  [0,00) for anyt > 0.

Hence the integrals
Xt = /y Nt(dy) s t Z 0,

define a non-negative Lévy process wkh = 0. By stationarity, all increments ¢fX;)
are almost surely non-negative, i.€X,) is increasing. In particular, the sample paths
are (almost surely) of finite variation.

Example (Gamma proces$. The Gamma distributions form a convolution semigroup
of probability measures oft), cc), i.e.,

C(r, ) «T'(s,A) = T(r+s,A) for anyr, s, A > 0.

Therefore, for any:, A > 0 there exists an increasing Lévy procé¢bs),>, with incre-
ment distributions

Lyps =Ty~ T(at, \) foranys,t > 0.

Computation of the Laplace transform yields

Elexp(—uly)] = (1 + %)at = exp (—t /000(1 — e W) gy eV dy) (1.33)
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for everyu > 0, cf.e.g. [25, Lemma 1.7]. Sindé, > 0, both sides in[(1.33) have a
unique analytic extension o, € C : R(u) > 0}. Therefore, we can replaeeby —ip
in (1.33) to conclude that the characteristic exponert'of is

Y(p) = /000(1 — ™) v(dy), where v(dy) = ay~'e ™ dy.

Hence the Gamma process is a non-decreasing pure jump preitbgump intensity
measurer.

Example (Inverse Gaussian processésAn explicit computation of the characteristic
function shows that the Lévy subordinat@r,) is a pure jump Lévy process with Lévy
measure

v(dy) = 2m) 72y Lo (y) da.

More generally, ifX; = 0B, + bt is a Gaussian Lévy process with coefficieats- 0,
b € R, then the right inverse

X = inf{t>0: X,=s} , s>0,

S

is a Lévy jump process with jump intensity

v(dy) = (2n) Y2y exp(—0%y/2) 0.0 (y) dy.

Remark (Finite variation Lévy jump processes onR!).

Suppose thatV;) is a Poisson point process &\ {0} with jump intensity measure
satisfying [ (1 A |y|) v(dy) < co. Then the decompositial; = N 4 N nto
the independent restrictions 0N,;) to R, R_ respectively induces a corresponding
decomposition

X, =X+ X, X/=/y NN dy) | Xt\:/y N0 (dy),

of the associated Lévy jump proceds = [y N;(dy) into a subordinato;” and a
decreasing Lévy proces’ét\. In particular, we see once more that;) has almost
surely paths of finite variation.

An important property of subordinators is that they can bedudsr random time trans-
formations of Lévy processes:
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Exercise(Time change by subordinatorg. Suppose thatX;) is a Lévy process with
Laplace exponeniy : R, — R, i.e.,

Elexp(—aX;)] = exp(—tnx(«a)) foranya > 0.

Prove that if(7;) is an independent subordinator with Laplace expomenthen the
time-changed process

Xy = Xp. , 520,
is again a Lévy process with Laplace exponent
np) = nr(nx(p).
The characteristic exponent can be obtained from thisiigydmnt analytic continuation.

Example (Subordinated Lévy processes Let (B;) be a Brownian motion.
1) If (IV;) is an independent Poisson process with parameter( then(By,) is a
compensated Poisson process with Lévy measure

v(dy) = A@2m)exp(—y?/2) dy.
2) If (I';) is an independent Gamma process thewfére R the process
Xt = O'Brt + brt

is called aVariance Gamma process It is a Lévy process with characteristic
exponent)(p) = [(1 — e?¥) v(dy), where

v(dy) = eyl (e m)(y) + eI 0)(y)) dy

with constants:, A, x> 0. In particular, a Variance Gamma process satisfies

X = FE” — Fff) with two independent Gamma processes. Thus the increments o

(X;) have exponential tails. Variance Gamma processes havertiemtuced and
applied to option pricing by Madan and Senéta [28] as anradtefe to Brownian
motion taking into account longer tails and allowing for adei modeling of
skewness and kurtosis.
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3) Normal Inverse Gaussian (NIG) processeare time changes of Brownian mo-
tions with drift by inverse Gaussian subordinataors [4]. if iicrements over unit
time intervals have a normal inverse Gaussian distributidmnich has slower de-
caying tails than a normal distribution. NIG processes a@iad in statistical
modelling in finance and turbulence.

Stable processes

We have noted irL(1.12) that the jump intensity measure aictlgta-stable process in
R! is given by

v(dy) = (crdioo0)(¥y) + - Lioopy(¥)) Iyl dy (1.34)

with constants:, ,c_ € [0,00). Note that for anyv € (0, 2), the measure is finite on
R\ (—1,1), andf[_m ly|?v(dy) < oo.

We will prove now that ifa € (0,1) U (1,2) then for each choice of the constants
andc_, there is a strictlyn-stable process with Lévy measure (1.34). ko 1 this
is only true ifc, = c¢_, whereas a non-symmetriestable process is given by, = bt
with b € R\ {0}. To define the correspondingstable processes, let

X; = / y Ni(dy)
R\[—¢,¢]

where (N,) is a Poisson point process with intensity measureSetting || X ||, =
Elsup,, | X;|]'/?, an application of Theorem 113 yields:

Corollary 1.17 (Construction of a-stable processes Letr be the probability measure
onR \ {0} defined by[(1.34) with,,c_ € [0, c0).

1) If ¢, = c¢_ then there exists a symmetriestable processC with characteristic
exponent)(p) = v|p|®, v = [(1—cosy) v(dy) € R, suchthat|X'/"—X||, —
0 for anyu € (0, o0).

2) If o € (0,1) then [(1 A Jy|) v(dy) < oo, and X; = [y Ny(dy) is ana-stable
process with characteristic exponeftp) = =z |p|*, z = [ (1 — e¥) v(dy) € C.
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3) Fora =1 andb € R, the deterministic process; = bt is a-stable with charac-
teristic exponent)(p) = —ibp.

4) Finally, if o« € (1,2) then [(Jy| A |y|*) v(dy) < o, and the compensated process
X, =/ y Ny(dy) is ana-stable martingale with characteristic exponeftty) =

“Z=[(1-eY+iy) v(dy).

Z-lp

Proof. By Theorem 1.113 it is sufficient to prove convergence of therabteristic expo-

nents

o) = [ ety = bl [ (e vl
R\[—¢,e] R\[—ep,ep]

ie(p) = / (1 — ey 4 ipy) v(dy) = |p|* / (1 — e+ 255) v(dr)
R\[—&,¢] R\[—ep,ep]

to ¥ (p), ¥ (p) respectively ag | 0. This is easily verified in cases 1), 2) and 4) by
noting thatl — ¢ + 1 — ¢ = 2(1 — cosz) = O(2?), 1 — ¢® = O(|z]), and
1— e + iz = O(|z]*). O

Notice that although the characteristic exponents in thesyonmetric cases 2), 3) and
4) above take a similar form (but with different constantlg processes are actually
very different. In particular, forv > 1, a strictly a-stable process is always a limit of
compensated compound Poisson processes and hence a alalting

Example (a-stable subordinators vs.a-stable martingaleg. Forc_ = 0 anda €
(0,1), the a-stable process with jump intensityis increasing, i.e., it is an-stable
subordinator Forc. = 0 anda € (1,2) this is not the case since the jumps are
“compensated by an infinite diift The graphics below show simulations of samples
from a-stable processes for = 0 anda = 3/2, a = 1/2 respectively. Forv € (0, 2),

a symmetrico-stable process has the same law#8Br, ) where(B,) is a Brownian
motion and(7}) is an independent/2-stable subordinator.
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Chapter 2

Stochastic integrals and I1td calculus for
semimartingales

[Stochastic calculus for semimartingales] Our aim in thigter is to develop a stochas-
tic calculus for functions of finitely many real-valued dtastic processeﬁt(l), Xt(Q), cee Xt(d).

In particular, we will make sense of stochastic differdreguations of type

d
- Yl ax

with continuous time-dependent vector fields. . ., 04 : R, x R™ — R™. The sample

paths of the driving process(aXt(k)) and of the solutiorfY;) may be discontinuous, but
we will always assume that they acadlag i.e., right-continuous with left limits. In

most relevant cases this can be assured by choosing an appgopodification. For

example, a martingale or a Lévy process w.r.t.a right-ootis complete filtration
always has a cadlag modification, ¢f. [33, Ch.lI, 82] &nd [3&,] Thm.30].

An adequate class of stochastic processes for which a stiiclalculus can be devel-
oped aresemimartingalesi.e., sums of local martingales and adapted finite vamatio
processes with cadlag trajectories. To understand whysliseasonable class of pro-
cesses to consider, we first briefly review the discrete tiase c

a7
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Semimartingales in discrete time

If (Fi)n—o.1.,. is a discrete-time filtration on a probability space, A, P) then any
(F,) adapted integrable stochastic process) has a unique Doob decomposition

X, = Xo+ M, + A — A> (2.1)

into an(F,,) martingalg( M,,) and non-decreasing predictable procegggs) and(A,)
such thatV, = 4§ = A(}‘ = 0, cf. [13, Thm. 2.4]. The decomposition is determined
by choosing

Mn - Mnfl = Xn - anl - E[Xn - anl | Fn71]7

Al — AL = E[Xy—Xp1 | Fooa]®, and AX— A = E[X,— X, 1| Fuul™.

In particular,(X,) is a sub- or supermartingale if and onlyAf~ = 0 for anyn, or
A7 = 0 for anyn, respectively. The discrete stochastic integral

(GaX)n = D Gr(Xp—Xi1)

of a bounded predictable proce§s,) w.r.t.(X,,) is again a martingale ifX,,) is a
martingale, and an increasing (decreasing) process, if> 0 for any n, and (X,)
is increasing (respectively decreasing). For a boundegtadgrocess$H,,), we can
define correspondingly the integral

(H_oX), = ZHk—l (Xg — Xp—1)

of the predictable proced$ = (Hy_1)geny W.I.t. X.

The Taylor expansion of a functioR € C?*(R) yields a primitive version of thétd
formulain discrete time. Indeed, notice that forc N,

1
F(Xk) —F(Xk_l) = / F/(Xk_1+SAXk) ds AXk
0

1 s
= F/(kal) AXk + / / F//<Xk,1 —FTAXk) drds (AXk)Q
0 0

Stochastic Analysis Andreas Eberle



49

whereA X, := X, — X;_;. By summing ovef, we obtain
n 1 s

F(X,) = F(Xo) + (F'(X)_oX), + ) / / F"(Xp_1+7AXy) drds (AX,)?.
k=1 0 0

It6’s formula for a semimartingaleX;) in continuous time will be derived in Theorem
[2.22 below. It can be rephrased in a way similar to the formahtave, where the last term
on the right-hand side is replaced by an integral w.r.t. thadgatic variation process
[X]: of X, cf. (XXX).

Semimartingales in continuous time

In continuous time, it is no longer true that any adapted ggeaan be decomposed
into a local martingale and an adapted process of finite tiamidi.e., the sum of an
increasing and a decreasing process). A counterexamplerslgy fractional Brownian
motion, cf. Section 2.3 below. On the other hand, a largesadéselevant processes has
a corresponding decomposition.

Definition. Let (F;):>o be a filtration. A real-valuedF;)-adapted stochastic process
(X:)i>0 On a probability spaces?, A, P) is called an(F;) semimartingaldf and only
if it has a decomposition

Xt = XO + Mt + At7 t Z 07 (22)

into a strict local(F;)-martingale( ;) with cadlag paths, and afiF;)-adapted process
(A;) with cadlag finite-variation paths such thaf, = A, = 0.

Here astrict local martingale is a process that can be localized by martingales with uni-
formly bounded jumps, see Section 2.2 for the precise deimiAny continuous local
martingale is strict. In general, it can be shown that if theafion is right continuous
and complete then any local martingale can be decomposed sitict local martingale
and an adapted finite variation process (“Fundamental Eneaf Local Martingales”,

cf. [32]). Therefore, the notion of a semimartingale defiabdve is not changed if the
word “strict” is dropped in the definition. Since the nonvail proof of the Fundamental
Theorem of Local Martingales is not included in these notesnevertheless stick to
the definition above.
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Remark. (Assumptions on path regularity). Requiring(A;) to be cadlag is just a
standard convention ensuring in particular that A;(w) is the distribution function of
a signed measure. The existence of right and left limitsdf@idany monotone function,
and, therefore, for any function of finite variation. Simija every local martingale
w.r.t. a right-continuous complete filtration has a cadlaugification.

Without additional conditions of4,), the semimartingale decomposition[in (2.2h&t
unique see the example below. Uniqueness holds if, in additidp), is assumed to be
predictable, cf.[[5,32]. Under the extra assumption thi} is continuous, uniqueness
is a consequence of Corolldry 2115 below.

Example (Semimartingale decompositions of a Poisson procgssAn (F;) Poisson
procesg NV;) with intensity A has the semimartingale decompositions

Nt - Nt"‘)\t - O+Nt

into a martingale and an adapted finite variation procesdy @rhe first decomposi-
tion, the finite variation process is predictable and cardirs respectively.

The following examples show that semimartingales form digantly rich class of
stochastic processes.

Example (Stochastic integrald. Let (B;) and(N;) be ad-dimensional F;) Brownian
motion and an{.F;) Poisson point process orvafinite measure spade, S, v) respec-
tively. Then any process of the form

t t
X, = / H,-dB,+ / G, (y)N(ds dy)+ / K, ds+ / Ly(y)N(ds dy) (2.3)
0 (0,t] xS 0 (0,t] xS

is a semimartingale provided the integrarfds(z, K, L are predictableff andG are
(locally) square integrable w.r.? ® A\, P ® A\ ® v respectively, and< and L are
(locally) integrable w.r.t. these measures. In particldgithe Lévy-1t6 decomposition,
every Lévy process is a semimartingamilarly, the components @blutions of SDE
driven by Brownian motions and Poisson point processes emgraartingales More
generally, 1td’s formula yields an explicit semimartingalecomposition of (¢, X;) for
an arbitrary functiory € C* (R, x R") and(X;) as above, cf. Sectidn 2.4 below.
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Example (Functions of Markov processey If (X;) is a time-homogeneousF;)
Markov process on a probability spat@, A, P), and f is a function in the domain
of the generator, then f(X;) is a semimartingale with decomposition

t

f(X:) = local martingale + / (Lf)(Xs) ds, (2.4)
0
cf.e.g. [11] or[15]. Indeed, it is possible to define the gate £ of a Markov process

through a solution to a martingale problem adinl(2.4).

Many results for continuous martingales carry over to thdlagacase. However, there
are some important differences and pitfalls to be noted:

Exercise(Cadlag processes
1) A stopping time is callegredictableiff there exists an increasing sequer@g)
of stopping times such th&t, < T"on{7T > 0} andT" = sup T. Show that for
a cadlag stochastic process; );>o, the first hitting time

Ty = inf{t>0: X, e A}

of a closed se#l C R is not predictablan general.

2) Prove that for a right continuoys;) martingale(;):>, and an(F;) stopping
time 7', the stopped processf.r):>o is again anF;) martingale.

3) Prove that a cadlag local martingéle;) can be localized by a sequenc¥,.r, )
of bounded martingales provided the jumpg &f;) are uniformly bounded, i.e.,

sup {|AM;(w)|: t >0, w € Q} < 0.

4) Give an example of a cadlag local martingale that can nimtdadized by bounded
martingales.

Our next goal is to define the stochastic integrglX w.r.t. a semimartingalé for
the left limit processz = (H,;_) of an adapted cadlag proce&s and to build up a
corresponding stochastic calculus. Before studying nattémn w.r.t. cadlag martingales
in Sectior 2.2, we will consider integrals and calculustwiinite variation processes in
Sectior 2.11.

University of Bonn Winter Semester 2012/2013



CHAPTER 2. STOCHASTIC INTEGRALS AND ITO CALCULUS FOR
52 SEMIMARTINGALES

2.1 Finite variation calculus

In this section we extend Stieltjes calculus to cadlag patfisite variation. The results
are completely deterministic. They will be applied latettte sample paths of the finite
variation part of a semimartingale.

Fix u € (0, 00], and letA : [0,u) — R be a right-continuous function of finite variation.
In particular, A is cadlag. We recall that there issafinite measure.4 on (0, u) with
distribution function4, i.e.,

pa((s,t])) = A — A forany0 < s <t < u. (2.5)
The functionA has the decomposition
A, = A4 Al (2.6)

into the pure jump function
A = ) CAA, (2.7)

s<t

and the continuous function; = A, — A¢. Indeed, the series ii{2.7) converges abso-
lutely since

Y aAl < vYA) <oo foranyt € [0,u).

s<t

The measurg 4 can be decomposed correspondingly into

HaA = HAc T+ [ad
where
pas = Y AAG,
s€(0,u)
AAH£D

is the atomic part, ang 4. does not contain atoms. Note thai. is not necessarily
absolutely continuous!
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Lebesgue-Stieltjes integrals revisited

Let £5.([0,u), pa) := LL:([0,u), |nal) where|u4| denotes the positive measure with
distribution functionl/;(l)(A). ForG € L\.([0,u), ua), the Lebesgue-Stieltjes integral
of H w.r.t. A is defined as

/ G,dA, = /GT Tisq(r) pra(dr) for0 <s<t<u.

A crucial observation is that the function
t
I, = /GrdAr = / Gy paldr) , te(0,u),
0 (O,t]

is the distribution function of the measure

pr(dr) = Gy pa(dr)

with densityG w.r.t. ;4. This has several important consequences:
1) The function/ is again cadlag and of finite variation with

t t
v = / G |l (dr) = / 1G] AV (A).

2) I decomposes into the continuous and pure jump parts

t t
Ir = /GrdAﬁ . I = /GrdAff = ) G.AA,
0 0

3) ForanyG € Lk (1),

t . t/v
/ G, dl, = / GG, dA,,
0 0

i.e.,if “dl = G dA”then also ‘G dI = GG dA”.

Theorem 2.1(Riemann sum approximations for Lebesgue-Stieltjes intedls). Sup-
pose thatH : [0,u) — R is a cadlag function. Then for any € [0,u) and for any
sequencér,,) of partitions withmesh(m, ) — 0,

t
nlin;o Z H(Agp — Ay) = / H,_dA, uniformly fort € [0, a].
0

SETn
s<t
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Remark. If (A4;) is continuous then

t t
/ HS, dAS == / Hs dA87
0 0

becausef, AH,dA, = 3., AH,AA, = 0 for any cadlag functiorl. In general,
however, the limit of the Riemann sums in Theoifeni 2.1 takesrthdified form

t t
/ H,_dA, = / H,dAS+ ) H, AA,.
0 0

s<t

Proof. Forn € N andt > 0,

Z HS(AS’/\t - As) == Z / Hs dAT = H\_TJndAT
SEMy semy V(8,8 (0,1]
s<t s<t

where|r], = max{s € m, : s < r} is the next partition point strictly below. As
n — oo, |r|, — r from below, and thug{/|,|, — H,_. Since the cadlag functioff is
uniformly bounded on the compact interV@l a], we obtain

t t
/ H,y, dA, — / H,_ dA,
0 0

asn — oo by dominated convergence. O

sup
t<a

< /( }\Hmn — H,_| |pal(dr) =0
0,a

Product rule

The covariation H, A] of two functionsH, A : [0,u) — R w.r.t.a sequencér,,) of
partitions withmesh(m, ) — 0 is defined by
[H A, = lim > (Hopn — Hy)(Agp — As), (2.8)
n—o0 scm
s<t'
provided the limit exists. For finite variation functiori$/, A] can be represented as a
countable sum over the common jumpsibaand A:

Lemma 2.2. If H and A are cadlag andA has finite variation then the covariation
exists and is independently @f,,) given by

[H A, = > AHAA,

0<s<t
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Proof. We again represent the sums as integrals:

t
S (o= H) (Ao = A) = [ (Hi = Hpy,) dA,
0

SETY
s<t

with |r], as above, anfi], := min{s € 7, : s >r}. Asn — oo, Hy.ne — Hyy),,
converges td4, — H,_, and hence the integral on the right hand side converges to

t
/ (H,— H,_)dA, = Y AHAA,
0

r<t

by dominated convergence. O

Remark. 1) If H or A is continuous thef, A] = 0.
2) In general, the proof above shows that

t t
/ H,dA, = / H,_ dA, + [H, A,
0 0
i.e.,[H, A] is the difference between limits of right and left Riemanmsu

Theorem 2.3(Integration by parts, product rule). Suppose that/, A : [0,u) — R
are right continuous functions of finite variation. Then

t t
H A, — HyAy = / H,_ dA, + / A,_dH, +[H, 4], foranyt € [0,u). (2.9)
0 0

In particular, the covariation[H, A] is a cadlag function of finite variation, and for
a < u, the approximations ir.(2.8) converge uniformly[6na] w.r.t. any sequencer,,)
such thatmesh(m,) — 0.

In differential notation,[(2]9) reads
d(HA), = H, dA,+ A, dH,+d[H,A],.
As special cases we note thatifand A are continuous theH A is continuous with
d(HA), = H,dA,+ A, dH,,

and if H and A are pure jump functions (i.e{® = A° = 0) then H A is a pure jump
function with

A(HA), = H,_AA, +A,_AH, +AAAH,

University of Bonn Winter Semester 2012/2013



CHAPTER 2. STOCHASTIC INTEGRALS AND ITO CALCULUS FOR
56 SEMIMARTINGALES

In the latter casel (2.9) implies

H, A, — HoAg =Y A(HA),.
r<t
Note that this statement is not completely trivial, as itdsotven when the jump times
of H A form a countable dense subsef@ft)!

Since the product rule is crucial but easy to prove, we givepvoofs of Theorern 213:

Proof 1. For (m,) with mesh(r,) — 0, we have

HtAt - HOAO - Z (Hs’/\tAs’/\t - HSAS)

SETn
s<t

- Z HS(AS’/\t - As) + Z AS(HS’/\t - Hs) + Z(As’/\t - As)(Hs’/\t - Hs)

As n — oo, (2.9) follows by Theorerh 211 above. Moreover, the convecgeof the
covariation is uniform fort € [0,a], a < u, since this holds true for the Riemann sum
approximations off, H,_ dA, and [, A,_ dH, by TheoreniZJ1. ]
Proof 2. Note that fort € [0, u),

s>r

s<r

(o= )= A0) = [ () palds)
(0,¢] % (0,¢]

is the area of0, t] x (0, t] w.r.t.the product measure; ® 4. By dividing the square
(0,t]x(0,t] intothe part{ (s, 7) | s < r}, {(s,7) | s > r} and the diagondl(s,r) | s = r}
we see that this area is given by

t t
/ N / N / _ / (A, — Ag) dH, + / (H, — Ho) dA,+ Y AH,AA,,
s<r s>r s=r 0 0

s<t

The assertion follows by rearranging terms in the resukiggation. L]
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Chain rule

The chain rule can be deduced from the product rule by itarathd approximation of
C* functions by polynomials:

Theorem 2.4(Change of variables, chain rule, 1t6 formula for finite variation func-
tions). Suppose thatl : [0,u) — R is right continuous with finite variation, and let
F € CY(R). Then for anyt € [0, u),

| P(A) dA,+ Y (F(A) — F(AL) — F(A)AA,).,

(2.10)
or, equivalently,

FA) - FlA) = [ P Y (R - FAL). (2

0 s<t

If A is continuous therf'(A) is also continuous, and (2]10) reduces to the standard
chain rule

F(A) - F(4) = /OtF%As)dAs.

If Ais a pure jump function then the theorem shows thiatl) is also a pure jump
function (this is again not completely obvious!) with

F(A)—F(A) = > (F(A)—F(A:)).

s<t

Remark. Note that by Taylor's theorem, the sum [n (2.10) convergeskibely when-
every  _,(AA,)*> < oco. This observation will be crucial for the extension to It6’s
formula for processes with finite quadratic variation, dfedreni 2.22 below.

Proof of Theorem 2.4 Let A denote the linear space consisting of all functidghs
C!(R) satisfying [2.1ID). Clearly the constant functiband the identity?’(¢) = ¢ are in
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A. We now prove tha#d is an algebra: Lef’, G € A. Then by the integration by parts
identity and by[(2.111),

(FG)(A)=(FG)(Ao)

- [(Ftasyaca, + [ G ana, + Y aFA.a6(0).

- /t(F(AS)G’(AS) + G(As ) F'(As-)) dAS

+ > (F(AL)AG(A)s + G(A )AF(A), + AF(A),AG(A),)

s<t
t
- [Faya) ax+ X (PG)A) - (FO)AL )
s<t
foranyt € [0,u), i.e., FGisin A.
Since A is an algebra containing andt, it contains all polynomials. Moreover, i
is an arbitraryC! function then there exists a sequeripg) of polynomials such that

pn — F andp), — F’ uniformly on the bounded sdtA; | s < ¢}. Since [2.111) holds
for the polynomialg,,, it also holds forF'. O

Exponentials of finite variation functions

Let A : [0,00) — R be a right continuous finite variation function. Tke&ponen-
tial of A is defined as the right-continuous finite variation functi@h).>, solving the
equation

az, = Z;_dA; Zy=1 , ie.

t
Z; = 1 +/ Zs dA; for anyt > 0. (2.12)
0

If Ais continuous thel, = exp(A4;) solves[(2.1R) by the chain rule. On the other hand,
if A is piecewise constant with finitely many jumps then= []__,(1 + AA) solves

(2.12), since

Z, = Zo+» AZ, = 1+ Z,AA, = 1+/ Z,_ dAs.
(0.1

s<t s<t

In general, we obtain:
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Theorem 2.5. The unigue cadlag function solvirlg (2112) is

Z, = exp(4y)- [[(1+AA,), (2.13)

s<t

where the product converges for any 0.

Proof. 1) We first show convergence of the product

P = JJ0+AA).

s<t

Recall that sincel is cadlag, there are only finitely many jumps wjthA,| > 1/2.
Therefore, we can decompose

Po= exp| > logl+aA) |- J[ (+24) (2.14)
\AASS?él/Q |AA85|§>t1/2

in the sense that the produét converges if and only if the series converges. The series
converges indeed absolutely fawith finite variation, sincéog(1+ ) can be bounded

by a constant time&e| for |z| < 1/2. The limit S; of the series defines a pure jump
function with variationl;,") () < const.- V" (A) for any¢ > 0.

2) Equation forP;: The chain and product rule now imply ly (2114) that P, is also
a finite variation pure jump function. Therefore,

t
P, = P+Y AP, = 1+Y P AA, = 1+/ P,_dA% vt >0,
s<t s<t 0

(2.15)
i.e., P is the exponential of the pure jump patf = ngt AA,.

3) Equation forZ,: SinceZ, = exp(A¢)P, andexp(A°) is continuous, the product rule

and [2.15) imply
t t
Zi—1 = /eAi dPs+/ P,_ e dAC
0 0

t t
= / P d(AT+ A%, = / Z,_ dA,.
0 0
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4) Uniqueness Suppose tha is another cadlag solution df (2]12), and Jét :=
Zy — Z. ThenX solves the equation

t
Xy = /XS_dAS Vt>0
0
with zero initial condition. Therefore,

t
x| o< [ < My vezo
0

whereV; := Vt(l)(A) is the variation ofd and M, := sup,, | X,|. Iterating the estimate
yields

t
ST ) A N T
0

by the chain rule, and

M, [* M,
x| < = [ vrav, < Lyt vi>0,neN. (2.16)
)y ° (n+1)"

Note that the correction terms in the chain rule are nontnegainceV; > 0 and
[V]; > 0forall t. Asn — oo, the right hand side in_(2.16) converge9tsince/; and
V; are finite. HenceX; = 0 for eacht > 0. ]

From now on we will denote the unique exponential af) by (£4).

Remark (Taylor expansion). By iterating the equation (2.12) for the exponential, we
obtain the convergent Taylor series expansion

g4 = 1 4 Z/ / / JALdA, dA, + R,
k=1 (Ovt] (0731) (07Sn—1)

where the remainder term can be estimated by
RM < MYV (ot D)L

If Ais continuous then the iterated integrals can be evaluxigcily:

// / dAg dA,, - dAs, = (A — Ag)* /KL
(0,¢] ¥ (0,s1) (0,55_1)
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If Aisincreasing but not necessarily continuous then the hight side still is an upper
bound for the iterated integral.

We now derive a formula fof! - £F whereA and B are right-continuous finite variation
functions. By the product rule and the exponential equation

t t
EAEF -1 = / EN dEP + / EP dE}+) T AELAEP

0 0 s<t

t
= / ELEP A(A+ B),+ > ELEP AAAB,

0 s<t

t
= /ngfd(AJrBJr[A,B])s
0

for anyt > 0. This shows that in generaf A\ #£ £4+5,

Theorem 2.6.1f A, B : [0,00) — R are right continuous with finite variation then
gAgB _ gA—l—B—i—[A,B}.

Proof. The left hand side solves the defining equation for the exptadeon the right
hand side. O

In particular, choosing? = — A, we obtain:
1
£A

Example (Geometric Poisson procegs A geometric Poisson processith parameters

_ (c:fAJr[A]

A > 0ando, a € Ris defined as a solution of a stochastic differential equatictype
dSt = O'St_ dNt + OzSt dt (217)

w.r.t. a Poisson proce$$V;) with intensity\. Geometric Poisson processes are relevant
for financial models, cf. e.g! [35]. The equatién (2.17) canirderpreted pathwise as
the Stieltjes integral equation

t t
S, = So+a/ SrdNr+a/ S,.dr , t>0.
0 0
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Defining A; = o N; + at, (2.17) can be rewritten as the exponential equation
dSt - St, dAt 5
which has the unique solution

S, = So-&Y = Syl +0AN,) = Sp-e(1+0)M.
s<t
Note that foro > —1, a solution(S;) with positive initial valueS; is positive for all,
whereas in general the solution may also take negative valfiee = —\o then(A4;)
is a martingale. We will show below that this implies ttiat) is a local martingale.
Indeed, itis a true martingale which f65 = 1 takes the form

Sy = (1+U)Nte*)“’t

Corresponding exponential martingales occur as “likethoatio” when the intensity
of a Poisson process is modified, cf. Chapter 4 below.

Example (Exponential martingales for compound Poisson processgsFor com-
pound Poisson processes, we could proceed as in the lasplexdro obtain a different
point of view, we go in the converse direction: Let

K

Xy = Z 7j
j=1

be a compound Poisson processistwith jump intensity measure = A\ where\ €
(0, 00) andy is a probability measure dk?\{0}. Hence the); are i.i.d.~ u, and(K;) is
an independent Poisson process with intensitguppose that we would like to change
the jump intensity measure to an absolutely continuous ureagdy) = o(y)v(dy)
with relative density € £(v), and lethA = »(R?\ {0}). Intuitively, we could expect
that the change of the jJump intensity is achieved by chanifieginderlying probability
measure” on ;X with relative density (“likelihood ratio”)

K

7 = MV Jemy) = V] e(ax,).

j=1 s<t
AX,#0
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In Chaptei 4, as an application of Girsanov's Theorem, wé prdve rigorously that
this heuristics is indeed correct. For the moment, we ifleritt;) as an exponential
martingale. Indeed7; = £ with

A= (A=Nt+ ) (e(AX,) - 1)
Ao
- —()\—)\)t+/(g(y)—1) N, (dy). (2.18)

Here N, = Zf;l d,, denotes the corresponding Poisson point process withsityen
measures. Note that(A4;) is a martingale, since it is a compensated compound Poisson
process

A = / (o(y) —1) N,(dy) , where N, := N, —tv.

By the results in the next section, we can then conclude tteaexponential Z,) is a
local martingale. We can write down the SDE

t
Z, = 1+ / Z,_ dA, (2.19)
0

in the equivalent form

Z = 1+ /( Zy (oly) — 1) N(ds dy) (2.20)

0,t] xR?

where N (ds dy) := N(ds dy) — ds v(dy) is the random measure @ x R¢ with

N((0,1] x B) = Ny(B) for anyt > 0 andB € B(R?). In differential notation,(2.20) is
an SDE driven by the compensated Poisson point prq&\éts)s

iz = [ 7 (o)~ 1) Nt dy).

Example (Stochastic calculus for finite Markov chaing. Functions of continuous
time Markov chains on finite sets are semimartingales wiitefirariation paths. There-
fore, we can apply the tools of finite variation calculus. @eatment follows Rogers

& Williams [34] where more details and applications can benid.

Suppose thatX;) on (2, 4, P) is a continuous-time, time-homogeneous Markov pro-
cess with values in a finite setand cadlag paths. We denote the transition matrices by
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p: and the generator (Q-matrix) by = (L£(a,b))apes. ThusL = limy ot (p, — 1),
L.e., fora # b, L(a,b) is the jump rate fromu to b, andL(a, a) = — >, g2, L(a, b) is
the total (negative) intensity for jumping away framin particular,

(Lf)(a) = D L(a,b)f) = > L(a,b)(f(b)— f(a))

bes beS,b#a

for any real-valued functiorf = (f(a)).cs On S. Itis a standard fact that( X;), P)
solves the martingale problem fgr, i.e., the process

M = (X)) - /Ot(ﬁf)(Xs)dS , 120, (2.21)

is an(F;*) martingale for anyf : S — R. Indeed, this is a direct consequence of the
Markov property and the Kolmogorov forward equation, whiciply

B - M Y] = BIAOR) - 705) - [ (en0) dr| )
= DX~ 100 = [ L)X ds =0

for any0 < s < t. In particular, choosing = Iy, for b € S, we see that

M = Ig(Xy) — /Ot L(X,,b) ds (2.22)
is a martingale, and, in differential notation,

dlgy(Xy) = L(X,b)dt+dM,. (2.23)
Next, we note that by the results in the next section, thehsisttc integrals

Nt = /t Iy (X,_) dMP | >0,
0

are martingales for any, b € S. Explicitly, for anya # b,

NEP =Y Ty (X)) (Tovy (X ) Ty (X6) = Ty (X ) Loy (X))

s<t

t
_/ Iy (X.) L(X, b ds . ie.
0
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NFP = g £(a,b) LY (2.24)

whereJ* = |{s <t : X,_ =a, X, = b}| is the number of jumps from to b until
timet, and

t
Ly = / I.(X,) ds
0
is the amount of time spent atbefore timet (“local time at «”). In the form of an

SDE,
dJ = L(a,b) dLE +dN™ foranya # b. (2.25)

More generally, for any function : S x S — R, the process

Nt[g] = Z g(a, b)N®™
a,besS

is a martingale. If;(a, b) = 0 for a = b then by [2.24),

t
N = g x) - [ (e (XX ds (2.26)
s<t 0
Finally, the exponentials of these martingales are agaal lmartingales. For example,
we find that

EN = (14 )% exp(—aL(a,b)L})

Is an exponential martingale for anyc R anda, b € S. These exponential martingales
appear again as likelihood ratios when changing the jungs ratthe Markov chains.

Exercise(Change of measure for finite Markov chaing. Let (X;) on (2, A, P, (F}))
be a continuous time Markov chain with finite state spdand generator (Q-matrix)
L, ie.,

M = f(X) = F(Xo) — / (CF)(X,) ds

is a martingale w.r.tP for each functiornf : S — R. We assumé&(a, b) > 0 for a # b.
Let

g(a,b) == L(a,b)/L(a,b) —1 fora b, g(a,a) :== 0,

where. is another Q-matrix.
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1) LetA(a) = > ,, L(a,b) = —L(a, a) and\(a) = —L(a, a) denote the total jump
intensities atz. We define a “likelihood quotient” for the trajectories of Ntav
chains with generatorg andL by 7, = Zt/g} where

&= oo (- [eas) I Eex),

s<t: Xs_#Xs

and¢, is defined correspondingly. Prove thi&} ) is the exponential o(fN}g}), and
conclude thatZ;) is a martingale with&[Z;] = 1 for anyt.

2) Let P denote a probability measure ghthat is absolutely continuous w.ri.on
F; with relative densityZ, for everyt > 0. Show that for anyf : S — R,

t
MY = X0 = %)~ [(EN(X ds

is a martingale w.r.t?. Hence under the new probability measuﬁe(Xt) is a
Markov chain with generato[f.

Hint: You may assume without proof that/”)) is a local martingale w.r.tP if
and only if(Zt]\A/ftm) is a local martingale w.r.tP. A proof of this fact is given in
Section 3.3.

2.2 Stochastic integration for semimartingales

Throughout this section we fix a probability spd€e A, P) with filtration (F;):>o. We
now define the stochastic integral of the left limit of an addpcadlag process w.r.t.a
semimartingale in several steps. The key step is the firgrewve prove the existence
for the integral | H,_ dM; of a boundedadapted cadlag proce$s w.r.t. abounded
martingale)M .

Integrals with respect to bounded martingales

Suppose thal! = (M;)s>o is a uniformly bounded cadlagr;”) martingale, and? =
(Hy)¢>o is a uniformly bounded cadlggr?”’) adapted process. In particular, the left limit
process

H_ = (Htf)tzo
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is left continuous with right limits and7/") adapted. For a partition of R, we con-
sider the elementary processes

Hf = > H.I,w(t), and Hf = > H I«(1).
sem sEm

The proces$/™ is again cadlag and adapted, and the left lifiitis left continuous and
(hence) predictable . We consider the Riemann sum appréxinsa

Ir = > H(Myy—M,)

sem
s<t

to the integralf(f H,_ dM, to be defined. Note that if we define the stochastic integral
of an elementary process in the obvious way then

t
Ir = /H;f dM,
0

We remark that a straightforward pathwise approach for #igtence of the limit of
I™(w) asmesh(m) — 0 is doomed to fail, if the sample paths are not of finite vaiati

Exercise. Letw € 2 andt € (0, c0), and suppose thatr,) is a sequence of partitions
of R, with mesh(r,) — 0. Prove that ifzii’; hs(Mgpi(w) — Mg(w)) converges for
every deterministic continuous functidn: [0,¢] — R thenV," (M (w)) < oo (Hint:
Apply the Banach-Steinhaus theorem from functional arglys

The assertion of the exercise is just a restatement of theatd fact that the dual space
of C(]0, ¢]) consists of measures with finite total variation. There g@r@aches to ex-
tend the pathwise approach by restricting the class of iatets further or by assuming
extra information on the relation of the paths of the integrand the integrator (Young
integrals, rough paths theory, cf. [26], [17]). Here, foliag the standard development
of stochastic calculus, we also restrict the class of irteds further (to predictable pro-
cesses), but at the same time, we give up the pathwise apprivestead, we consider
stochastic modes of convergence.

For H and M as above, the procegs is again a bounded cadldg;”) martingale as
is easily verified. Therefore, it seems natural to study eggence of the Riemann sum
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approximations in the spac®?([0, a]) of equivalence classes of cadlag-bounded
(FF) martingales defined up to a finite tinee The following fundamental theorem
settles this question completely:

Theorem 2.7 (Convergence of Riemann sum approximations to stochastic te-
grals). Leta € (0,00) and letM and H be as defined above. Then for every- 0
there exists a constardt > 0 such that

1" = Fliega < 7 (2.27)
holds for any partitionsr and7 of R with mesh(7) < A andmesh(7) < A.

The constani\ in the theorem depends dvi, H anda. The proof of the theorem for
discontinuous processes is not easy, but it is worth theteffor continuous processes,
the proof simplifies considerably. The theorem can be adbilene assumes exis-
tence of the quadratic variation 8f. However, proving the existence of the quadratic
variation requires the same kind of arguments as in the freloiv (cf. [15]), or, alter-
natively, a lengthy discussion of general semimartingadety (cf. [34]).

Proof of Theorerh 2]7Let C' € (0, c0) be a common uniform upper bound for the pro-
cesseg H,;) and (M,). To prove the estimate if_(2227), we assume w.l.0.g.thdt bot
partitions7 and 7 contain the end point, andr is a refinement ofr. If this is not
the case, we may first consider a common refinement and themaésty the triangle
inequality. Under the additional assumption, we have

Ir—17 = Y (H,— Hy)(My— M,) (2.28)

sem

where from now on, we only sum over partition points less thasi denotes the suc-
cessor of in the fine partitionr, and

ls] = max{term :t<s}
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is the next partition point of the rough partitiGnbelow s. Now fix ¢ > 0. By (2.28),
the martingale property fab/, and the adaptedness @f we obtain

=1y = EIE—13)7]
=E[) (H, - H,))*(My — M,)] (2.29)
<SE[Y (Mg — M,)*] + (20)2E[Z > (Mg — M)

Te(e)<s<[t]

where[t] := min {u € 7 : u > t} is the next partition point of the rough partition, and
7(e) = min{sem s>t |Hs— H| >¢e} ANJt].

is the first time aftet whereH deviates substantially frofi/,. Note thatr, is a random
variable.

The summands on the right hand side[of (2.29) are now estinsafgarately. Sincé/
is a bounded martingale, we can easily control the first sumaima

E[) (My — M) => E[M; - M| = E[M? - Mg] < C”. (2.30)
The second summand is more difficult to handle. Noting that
E[(My — M,)* | F,] = FE[M,-M|F,] on {r<s},

we can rewrite the expectation value as

Y E[ DY E[(My— M)’ | F]] (2.31)
tem T <s<[t]
IZE[EW% - M7 | F]] ZE[Z(MM - M,)’] = B

Note thatM,; — M,, # Oonlyif 7, < [t], i.e., if H oscillates more thanin the interval
[t, 7;]. We can therefore use the cadlag property/adnd M to control [2.31). Let

D,y = A{rel0,q] : |H, —H,_| >¢/2}

denote the (random) set of “large” jumps Bt SinceH is cadlag,D. , contains only
finitely many elements. Moreover, for givens > 0 there exists a random variable
d(w) > 0 such that for, v € [0, a],
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(D) lu—v|<éd = |H,—H)J|<e or (u,v]JNDp#0 ,
(i) r€D.pp, uwvelr,r+d = |M,—M,|<E
Here we have used thaf is cadlag,D. , is finite, andM is right continuous.

Let A > 0. By (i) and (ii), the following implication holds oA < §}:
Tt< I_t_l = |Hﬂ —Ht| > € = [t,Tt]mDE/Q%Q = |M]—t] _MTt| Sé,

i.e., if, < [t] andA < ¢ then the increment ot/ betweenr, and|t] is small.

Now fix £ € N ande > 0. Then we can decompo$e= B; + B, where

By = E[Y (My—M,)’; A<6, |D.p| <k] < ke, (2.32)
tew
B, = E[Y (My—M,)”; A>d0r|D.p|> k]
temw
< B[ (M — M) P[A > §or |Dejo| > k] (2.33)

tem

< V6C*(P[A> 6]+ P[|D.ps| > K])"?

In the last step we have used the following upper bound fonthgingale increments
ne = My — M;

t

EI(Y ")) = E[D_n]+2B> Y ]

temw u>t

< 4C?E[Y ) 2B Y B[ Y n? | F]

u>t

<6C°E[> nj] < 6C°E[M;—-M;| < 6C*
t

This estimate holds by the Optional Sampling Theorem, ameedi[Y ", ., n2 | Fi] <
E[M? — M} | 7] < C? by the orthogonality of martingale incremenits,,, — Mr,
over disjoint time interval$T;, T;. ;] bounded by stopping times.

We now summarize what we have shown. By (2.29), (2.30) a&d)_2.
™ = IM|[Rppa < £°C°+4C*(By + By) (2.34)

whereB; and B, are estimated in(2.82) and (2133). ket- 0 be given. To bound the
right hand side ofi(2.34) by we choose the constants in the following way:
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1. Choose > 0 such thatC?s? < /4.
2. Chooset € N such thativ/6 C*P[|D.s| > k] V2 <,
3. Chooses > 0 such thattC?ke? < ~/4, then choose the random variablele-
pending ore andz such that (i) and (ii) hold.
4. Choose\ > 0 such thatly/6 C*P[A > §] 2 - v/4.
Then for this choice of\ we finally obtain

T T v
™ =1 ||?\/12([0,a}) < 4‘1 = 7
whenevermesh(7) < A andr is a refinement of. O

The theorem proves that the stochastic integfal M is well-defined as an/? limit of
the Riemann sum approximations:

Definition (Stochastic integral for left limits of bounded adapted cadag processes
w.r.t. bounded martingales). For H and M as above, the stochastic integrdl , M is
the unique equivalence class of cadl@”) martingales orj0, oc) such that

H,.M\[Ova] = lim Hf;M\[O,a] in M3([0, a])

n—oo

for anya € (0, 00) and for any sequender,,) of partitions ofR, with mesh(7,) — 0.

Note that the stochastic integral is defined uniquely onlyougadlag modifications. We
will often denote versions off _, M by f0° H,_ dM,, but we will not always distinguish
between equivalence classes and their representativefsiibarMany basic properties
of stochastic integrals with left continuous integrands ba derived directly from the
Riemann sum approximations:

Lemma 2.8(Elementary properties of stochastic integral$. For H and M as above,
the following statements hold:
1) If t — M, has almost surely finite variation theih_, M/ coincides almost surely
with the pathwise defined Lebesgue-Stieltjes inteﬁ?&ﬂs_ d M.
2) A(H_ M) = H_AM almost surely.
3) If T :Q — [0,00] is a random variable, andf, H, M, M are processes as
above such thati, = f[t foranyt < T and M; = ]\Z for anyt < T then,
almost surely,

H.M = H. M on][0T]

University of Bonn Winter Semester 2012/2013



CHAPTER 2. STOCHASTIC INTEGRALS AND ITO CALCULUS FOR
72 SEMIMARTINGALES

Proof. The statements follow easily by Riemann sum approximatindeed, let(r,,)
be a sequence of partitions&f. such thainesh(, ) — 0. Then almost surely along a
subsequencer,,),

(H_.M)t = 1111)1210 Z HS(MS’/\t - MS)
s<t
SETn

w.r.t. uniform convergence on compact intervals. This peothatH_,M coincides
almost surely with the Stieltjes integralif has finite variation. Moreover, fdr> 0 it
implies

A(H—-M)t = nhjglo HLtJn(Mt - Mt—) = H,_ AM, (2.35)
almost surely, wherét |,, denotes the next partition point ¢f,) below¢. Since both
H_,M andM are cadlag[(2.35) holds almost surely simultaneouslylfara 0. The
third statement can be proven similarly. O

Localization

We now extend the stochastic integral to local martingdtesirns out that unbounded
jumps can cause substantial difficulties for the localaatiTherefore, we restrict our-
selves to local martingales that can be localized by maatesggwith bounded jumps.
Remark 2 below shows that this is not a substantial resincti

Suppose thath;);>o is a cadlag F;) adapted process, whe(&;) is an arbitrary filtra-
tion. For an(F;) stopping timeT’, the stopped procedd” is defined by

ME = My for anyt > 0.

Definition (Local martingale, Strict local martingale). A localizing sequencéor M

is a non-decreasing sequen(g, ), cn of (F;) stopping times such thatip Ty = oo,

and the stopped procedg’" is an(F;) martingale for eachm. The procesd/ is called
alocal (F;) martingaleiff there exists a localizing sequence. Moreowdrjs called a
strict local (F;) martingaleiff there exists a localizing sequen¢g,) such thati/7»

has uniformly bounded jumps for eachi.e.,

sup {|AM;(w)| : 0<t<T,(w),weN} < oo VnelN
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Remark. 1) Any continuous local martingale is a strict local maratey
2) In general, any local martingale is the sum of a strictllotartingale and a local
martingale of finite variation. This is the content of the fidamental Theorem
of Local Martingales”, cf. [[32]. The proof of this theorenmgwever, is not trivial
and is omitted here.
The next example indicates how (local) martingales can lberdposed into strict (lo-
cal) martingales and finite variation processes:

Example (Lévy martingales). Suppose thak; = [y (N;(dy) — tv(dy)) is a compen-
sated Lévy jump process @t with intensity measure satisfying [ (|y|A|y|?) v(dy) <
oo. Then(X;) is a martingale but, in general, not a strict local martiegatowever,
we can easily decomposé, = M, + A, whereA;, = [y I, =13 (Ni(dy) — t v(dy))
is a finite variation process, and, = [ yI, <1y (N:(dy) — tv(dy)) is a strict (local)
martingale.

Strict local martingales can be localized by bounded mgaies:

Lemma 2.9. M is a strict local martingale if and only if there exists a ldizang se-
quence7;,) such thatM?» is a bounded martingale for each

Proof. If M* is a bounded martingale then also the jumps\f: are uniformly
bounded. To prove the converse implication, suppose #hatis a localizing sequence
such thatA M/ ™ is uniformly bounded for each. Then

Sp = ToAinf{t>0: |M]|>n} , néeN,

is a non-decreasing sequence of stopping times withS,, = oo, and the stopped
processed/°» are uniformly bounded, since

|Mys,| < n+|AMg,| = n+|AME|  foranyt>0.
|

Definition (Stochastic integrals of left limits of adapted cadlag procsses w.r.t. strict
local martingales).  Suppose that)M,);>, is a strict local (/) martingale, and
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(Hy)¢>o is cadlag and F7) adapted. Then the stochastic integfal , M is the unique
equivalence class of loc&/F”") martingales satisfying

H_ M|,y = H-M|,, as, (2.36)

wheneverT is an (F7) stopping timeH is a bounded cadlagr;?) adapted process
with H|jo.r = H|;o.r) almost surely, and/ is a bounded cadlagr;”) martingale with
M][Oﬂ = M\[Oﬂ almost surely.

You should convince yourself that the integfal, M is well defined by[(2.36) because
of the local dependence of the stochastic integral w.ntnded martingales o and

M (Lemmal2.8, 3). Note thall, and H, only have to agree for < 7', sO we may
chooseH, = H, - Iti<ry. This is crucial for the localization. Indeed, we can always
find a localizing sequenad’,) for M such that bottf, - Ij;r,; and M are bounded,
whereas the procegs’ stopped at an exit time from a bounded domain is not bounded
in general!

Remark (Stochastic integrals of cadlag integrands w.r.t.tsict local martingales are
again strict local martingales). This is a consequence of Leminal2.9 and Lemma
2.8, 2: If (T,,) is a localizing sequence far such that botd " = H - Ijy 7,y and M ™"

are bounded for eveny then

H..M = H"WM™ on [0,T,]

and, by Lemmaz18\ (H") M™) = H™ AM™ is uniformly bounded for each.

Integration w.r.t. semimartingales

The stochastic integral w.r.t. a semimartingale can novilyebe defined via a semi-
martingale decomposition. Indeed, suppose fkiais an (F}) semimartingale with
decomposition

Xy = Xo+M+A , t>0,

into a strict local 7/") martingaleM and an(F}") adapted process$ with cadlag finite-
variation paths — A;(w).
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Definition (Stochastic integrals of left limits of adapted cadlag procsses w.r.t. semi-
martingales). For any(F/?) adapted proces&H; );>o with cadlag paths, the stochastic
integral of H w.r.t. X is defined by

H_.X — H_.M+ H—.A7

where M and A are the strict local martingale part and the finite variatigart in
a semimartingale decomposition as abové,,M is the stochastic integral of_
w.rt. M, and (H_,A), = fot H,_ dA, is the pathwise defined Stieltjes integral iéf
wW.r.t. A.

Note that the semimartingale decomposition¥ofs not unique. Nevertheless, the inte-
gral H_,X is uniquely defined up to modifications:

Theorem 2.10.Suppose thdir, ) is a sequence of partitions Bf, with mesh(r,,) — 0.
Then for any: € [0, ),

(H—.X)t = nlggo Z HS(XS’/\t - Xs)

SET
s<t

w.r.t. uniform convergence fare [0, a] in probability, and almost surely along a subse-
quence. In particular:
1) The definition of/_, X does not depend on the chosen semimartingale decompo-
sition.
2) The definition does not depend on the choice of a filtratin such thatX is an
(FF) semimartingale and/ is (F!") adapted.
3) If X is also a semimartingale w.r.t. a probability measupethat is absolutely
continuous w.r.tP then each version of the integref_, X ) p defined w.r.tP is
a version of the integral H_, X '), defined w.r.tQ).

The proofs of this and the next theorem are left as exerastetreader.

Theorem 2.11(Elementary properties of stochastic integral3.
1) Semimartingale decompositionThe integral H_,X is again an(F}") semi-
martingale with decompositioH X = H_,M + H_,A into a strict local mar-
tingale and an adapted finite variation process.
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2) Linearity: The map(H, X) — H_,X is bilinear.
3) Jumps A(H_,X) = H_AX almost surely.
4) Localization If T is an(F/") stopping time then

(H-X)" = H_.X" = (H-Ipr)-.X.

2.3 Quadratic variation and covariation

From now on we fix a probability spad€?, A, P) with a filtration (F;). The vector
space of (equivalence classes sflict local (F7) martingales and of 7/") adapted
processes with cadlag finite variation paths are denotetf/pyandFV respectively.
Moreover,

S = Moc +FV

denotes the vector space (0F) semimartingales. If there is no ambiguity, we do not
distinguish carefully between equivalence classes ofgg®es and their representatives.
The stochastic integral induces a bilinear ndéax S — S, (H,X) — H_,X on the
equivalence classes that maps Mo 10 Mjoc andS x FV to FV.

A suitable notion of convergence on (equivalence clasgeseafiimartingales is uniform
convergence in probability on compact time intervals:

Definition (ucp-convergencg A sequence of semimartingal®s € S converges to a
limit X € S uniformly on compact intervals in probabilityff

sup | X' — Xy 50 asn — oo forany a € R,.
t<a

By Theorem[(2.10), for{, X € S and any sequence of partitions wittesh(m,) — 0,
the stochastic integrgl H_ dX is aucp-limit of predictable Riemann sum approxima-
tions, i.e., of the integrals of the elementary predictgirtcesses/ ™.
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Covariation and integration by parts

The covariation is a symmetric bilinear m&px S — FV. Instead of going once
more through the Riemann sum approximations, we can usewsdagave shown for
stochastic integrals and define the covariation by the ratean by parts identity

t t
XY - XY, = / X, dYs + / Yoo dX, +[X, Y]
0 0
The approximation by sums is then a direct consequence afréhé2.10.
Definition (Covariation of semimartingaleg. For X, Y € S,

X,Y] = XY—XOYO—/X_dY—/Y_dX.

Clearly, [ X, Y] is again an F) adapted cadlag process. Moreove¥, Y) — [X,Y]
is symmetric and bilinear, and hence the polarization itent

XY = S(X+Y]-[X]-[Y])

N | —

holds for anyX,Y € S where
Xl = [XX]

denotes thguadratic variation of X. The next corollary shows thak, Y] deserves
the name “covariation”:

Corollary 2.12. For any sequencér,,) of partitions ofR , with mesh(m,) — 0,

(X, Y] = uep—lim  (Xon —X,)(Yon — V). (2.37)

SETTY
s<t

In particular, the following statements hold almost surely
1) [X] is non-decreasing, andX, Y| has finite variation.
2) A[X,)Y] = AXAY.
3) X,V = [X1T)Y] = [X, Y] = [XT YT
4 XY < (X))
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Proof. (2.37) is a direct consequence of Theofem]2.10, and 1) felfoem [2.37) and
the polarization identity. 2) follows from Theordm 2.11,iathyields

AX,Y] = A(XY)-A(X_Y) - A(Y_.X)
= X_AY +YV_AX + AXAY — X_AY - Y_AX
— AXAY.

3) follows similarly and is left as an exercise and 4) holdg(®y7) and the Cauchy-
Schwarz formula for sums. O

Statements 1) and 2) of the corollary show th¥tY] is a finite variation process with
decomposition

X,Y], = XY+ AXAY, (2.38)

s<t

into a continuous part and a pure jump part.

If Y has finite variation then by Lemma .2,

X,Y], = Y AXAY..

s<t
Thus[X,Y]¢ = 0 and if, moreoverX orY is continuous thefiX, Y] = 0.

More generally, ifX andY are semimartingales with decompositioiis= M + A,
Y =N+ BintoM,N € M andA, B € FV then by bilinearity,

(X,Y]® = [M,N]°+[M,B]°+[A, N|°+[A Bl =[M,N].
It remains to study the covariations of the local martingelgs which turn out to be the

key for controlling stochastic integrals effectively.

Quadratic variation and covariation of local martingales

If M is a strict local martingale then by the integration by patéetity, M2 — [M] is a
strict local martingale as well. By localization and stoppwe can conclude:
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Theorem 2.13.Let M € Moc anda € [0,00). ThenM € M?3(]0,a)) if and only if
M, € £? and[M], € L. Inthis caseM? — [M]; (0 <t < a) is a martingale, and

HMH?W([O,CL}) = E[Mg] + E[[M]a] (2.39)

Proof. We may assumé/, = 0; otherwise we considel/ = M — M,. Let (T,) be a
joint localizing sequence for the local martingalesand /72 — [M] such thatM ™ is
bounded. Then by optional stopping,

EM.; ] = E[[Mr] forany t >0 andanyn € N. (2.40)
SinceM? is a submartingale, we have

EM}] < lminfEM} ;] < E[M] (2.41)
n—oo
by Fatou’s lemma. Moreover, by the Monotone Convergenceigme,

n—oo

Hence by[(2.411), we obtain
EM}] = E[M]] foranyt>0.

Fort < a, the right-hand side is dominated from above}j)/],], Therefore, iffM],
is integrable then/ is in MZ([0, a]) with M? norm E[[M],]. Moreover, in this case,
the sequencMy, ., — [Minr, ), iS Uniformly integrable for eache [0, a], because,

sup|MtQ—[M]t| < sup |[M)?+[M], €L,

t<a t<a

Therefore, the martingale property carries over from tloped processe¥/?, , —
[M]iar, t0 M? — [M];. O

Remark. The assertion of Theorem 2]13 also remains validifer oo in the sense that
if Myisin£? and[M]., = lim; . [M]; isin £ thenM extends to a square integrable
martingale( M, ).c(0,«] Satisfying (2.4D) withu = co. The existence of the limit/,, =
lim,_,~, M, follows in this case from thé&? Martingale Convergence Theorem.

The next corollary shows that th&/? norms also control the covariations of square
integrable martingales.
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Corollary 2.14. The map(M, N) — [M, N| is symmetric, bilinear and continuous on
M?2(]0, a]) in the sense that

Elsup [[M, N][i] < |[M]|arzqo.a) [Nl |ar20.a))-

t<a

Proof. By the Cauchy-Schwarz inequality for the covariation (12,4),

[IM,NL| < [MRPINL? < [MIPINL? Vi<a

Applying the Cauchy-Schwarz inequality w.r.t. thé-inner product yields

1/2 1/2

Efsup [[M,N].[] < E[[M]]

t<a

E[[N],] < [IM]|azqo.ap 1Nl ar2(0.a)

by Theorent 2.13. O

Corollary 2.15. Let M € M, and suppose thdt\/|, = 0 almost surely for some
a € [0, 00]. Then almost surely,

M, = M, foranyte[0,a].
In particular, continuous local martingales of finite vati@an are almost surely constant.

Proof. By Theoreni 2.113

M — My|| 20,0 = E[[M].] = 0. O

The assertion also extends to the case whisireplaced by a stopping time. Combined
with the existence of the quadratic variation, we have ncoven:

»Non-constant strict local martingales have non-triviab@dratic variation«
Example (Fractional Brownian motion is not a semimartingale). Fractional Brow-

nian motion with Hurst indeX? € (0, 1) is defined as the unique continuous Gaussian
procesg B{?),>, satisfying

E[Bf] = 0 and Cov [BZ,Bf'] = %(tm e

for anys,t > 0. It has been introduced by Mandelbrot as an example of asalfar
process and is used in various applications,[cf. [1]. Noa¢fibr H = 1/2, the covari-
ance is equal tmin(s, t), i.e., BY/? is a standard Brownian motion. In general, one can
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prove that fractional Brownian motion exists for aflyc (0, 1), and the sample paths
t — Bl (w) are almost surely-Holder continuous if and only it < H, cf. e.g. [17].

Furthermore,
Vt(l)(BH) = o0 foranyt > 0 almostsurely and
0 if H>1/2,
B") = lm Yy (BS,-BY) = <t it H=1/2,
SETR
s<t o if H<1/2 .

Since[B¥]; = oo, fractional Brownian motion isot a semimartingaléor H < 1/2.
Now suppose that/ > 1/2 and assume that there is a decomposifigh= M, + A,
into a continuous local martingald and a continuous finite variation proce$sThen

(M] = [BY] = 0  almostsurely,

so by Corollany 2,15 is almost surely constant, i.e3 has finite variation paths.
Since this is a contradiction, we see that alsofor> 1/2, B is not a continuous
semimartingalgi.e., the sum of a continuous local martingale and a contis@dapted
finite variation process. It is possible (but beyond the saufithese notes) to prove that
any semimartingale that is continuous is a continuous santiingale in the sense above
(cf. [32]). Hence forH # 1/2, fractional Brownian motion is not a semimartingale and
classical 1td calculus is not applicable. Rough paths theoovides an alternative way
to develop a calculus w.r.t. the paths of fractional Browmaotion, cf. [17].

The covariatiofM, N| of local martingales can be characterized in an alternatae
that is often useful for determining/, N] explicitly.

Theorem 2.16(Martingale characterization of covariation). For M, N € M, the
covariation[M, N1 is the unique procesd € FV such that

i) MN—-A € M,y , and

(i) A A = AMAN , Ay=0 almostsurely.

Proof. Since[M, N] = MN — MyNo— [ M_dN — [ N_dM, (i) and (i) are satisfied
for A = [M, N]. Now suppose thatl is another process IRV satisfying (i) and (ii).
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ThenA — A is both in M. and inFV, andA(A — A) = 0 almost surely. Hencel — A
is a continuous local martingale of finite variation, andstiu— A= Ay — AO =0
almost surely by Corollary 2.15. O

The covariation of two local martingalég and NV yields a semimartingale decomposi-
tion for M N
MN = local martingale + [M, N].

However, such a decomposition is not unique. By Corolladg4t is unique if we
assume in addition that the finite variation parts continuous withA, = 0 (which is
not the case fordl = [M, N] in general).

Definition. Let M, N € M. If there exists a continuous proceds= FV such that
(i) MN —-A € Mg, and
(i) AA = 0 , Ay = 0 almostsurely

then(M, N) = A is called theconditional covariance process d¥Z and IV.

In general, a conditional covariance process as definedeahbe®d not exist. General
martingale theory (Doob-Meyer decomposition) yields tkistence under an additional
assumption if continuity is replaced by predictability,el. [32]. For applications it is
more important that in many situations the conditional ciawvece process can be easily
determined explicitly, see the example below.

Corollary 2.17. Let M, N € Mqc.
1) If M is continuous theM, N) = [M, N| almost surely.
2) In general, if(M, N) exists then it is unique up to modifications.
3) If (M) exists then the assertions of Theofem2.13 hold true \#ithreplaced by
(M).

Proof. 1) If M is continuous thef)/, N] is continuous.
2) Uniqueness follows as in the proof[of 2.16.

3) If (T;,) is a joint localizing sequence far? — [M] and M2 — (M) then, by monotone
convergence,

for anyt > 0. The assertions of Theorém 2.13 now follow similarly as abov [
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Examples(Covariations of Lévy processes
1) Brownian motion If (B;) is a Brownian motion irR¢ then the component$¥) are
independent one-dimensional Brownian motions. TherefbeeprocesseBr B! — §;,t
are martingales, and hence almost surely,

[B¥,BY, = (B*BY = t-6, foranyt>0.
2) Lévy processes without diffusion palet

X, = / y (Ni(dy) — t Iyy<iyv(dy)) + bt
R4\ {0}

with b € R?, ao-finite measures onRR? \ {0} satisfying [(Jy|?> A 1) v(dy) < oo, and a

Poisson point processV; ) of intensityr. Suppose firstthatipp(v) C {y € R?: |y| > ¢}

for somes > 0. Then the components* are finite variation processes, and hence
XX = Soaxiaxt = [y ). (2.42)

s<t

In general,[(2.42) still holds true. Indeed X is the corresponding Lévy process with

intensity measure®) (dy) = Ijj,> v(dy) then||[X©F — X*|| 1204y — 0 ase | 0

foranya € R, andk € {1, ...,d}, and hence by Corollafty 2114,

(X5, X1, = uep-lim [(X@F XE = Y AXEAXL
s<t

On the other hand, we know thatXf is square integrable theWf, = X, — itV (0) and
MFM! — 2% (0) are martingales, and hence

OpiOp,
0?1
Xk Xh, = (MM MY, = t- 0).
(X5 XY = (M MY, 5o
3) Covariations of Brownian motion and Lévy jump proces$es B and X as above
we have
(B¥ X" = [B* X' = 0  almostsurely for any and!. (2.43)

Indeed, [(2.43) holds true X' has finite variation paths. The general case then follows
once more by approximating’ by finite variation processes. Note thatlependence

of B and X has not been assumed/Ne will see in Section 3.1 thaf (2.43) implies
that a Brownian motion and a Lévy process without diffusienmt defined on the same
probability space are always independent.
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Covariation of stochastic integrals

We now compute the covariation of stochastic integrals.sT&inot only crucial for
many computations, but it also yields an alternative charemation of stochastic inte-
grals w.r.t. local martingales, cf. Corolldry 2119 below.

Theorem 2.18. Suppose that and Y are (F/") semimartingales, andf is (F})
adapted and cadlag. Then

[ / H_dX)Y] = / H_d[X,Y]  almostsurely (2.44)

Proof. 1. We first note that (2.44) holds X or Y has finite variation paths. If, for
example, X € FV thenalsof H_ dX € FV, and hence

[/H dX,Y] = Y A(HX)AY = Y H AXAY = /H d[X,Y] .

The same holds Y € FV.

2. Now we show that (2.44) holds X andY are bounded martingales, atfl is
bounded. For this purpose, we fix a partitiorand we approximat& _ by the elemen-
tary procesdi™ = > _ H, - I . Let

I = H™dX = Y H/(Xon—X,)

(07t] sem

We can easily verify that

my] = /HTr d[X,Y] almostsurely (2.45)
Indeed, if(7,,) is a sequence of partitions such that 7, for anyn andmesh(7,,) — 0
then
DIy = INVenu=Ys) = D He > (Xon— X)) (Yo —Y2).
7“T€<7F tn e s grr€<7rsr} At

Since the outer sum has only finitely many non-zero summahestight hand side
converges as — oo to

S OH(X, Y] — [X,Y]) = H™ d[X,Y],

sem (Ovt}
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in theucp sense, and hende (2145) holds.
Having verified [[2.4b) for any fixed partitiom, we choose again a sequeneg ) of
partitions withmesh(7,,) — 0. Then

/H_ dX = lim I™ inM?*([0,a]) foranya € (0,00),

n— o0

and hence, by Corollaty 2.114 and (2.45),

[/H_ dX,Y] = ucp-lim[I™Y] = /H_ d[X,Y].

n—oo

3. Now suppose that andY are strict local martingales. T is a stopping time such
that X andY™” are bounded martingales, ahtf|, ) is bounded as well, then by Step
2, Theoreni 2.11 and Corollary 2]12,

[/H_ ax,y]" = [(/H_ ax)" YT = [/(H_ Iom) dXT,Y7]
_ /H_ Iory dIXT,YT] = (/H_ dX,Y))"

Since this holds for all localizing stopping times as abd#e15) is satisfied as well.

4. Finally, suppose that andY are arbitrary semimartingales. Th&h= M + A and
Y = N + B with M, N € M, andA, B € FV. The assertior (2.44) now follows by
Steps 1 and 3 and by the bilinearity of stochastic integrdlavariation. 0J

Perhaps the most remarkable consequences of Théaorem 2.18 is

Corollary 2.19 (Kunita-Watanabe characterization of stochastic integras).
Let M € M. andG = H_with H (F) adapted and cadlag. The®, M is the unique
element inM, satisfying

(i) (GeM)y = 0 , and

(i) [GeM,N] = G¢M,N] forany N € M.

Proof. By Theoreni 2.18(7, M satisfies (i) and (ii). It remains to prove uniqueness. Let
L € My such thatl,, = 0 and

[L,N] = GJM,N] foranyN € M.
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Then[L — G,M,N] = 0 forany N € M. ChoosingN = L — G,M, we conclude
that[L — G4, M| = 0. HenceL — G, M is almost surely constant, i.e.,

L — G.M = LO — (G,M)O = 0.
L

Remark. Localization shows that it is sufficient to verify Conditi@i) in the Kunita-
Watanabe characterization for bounded martingales

The corollary tells us that in order to identify stochastitegrals w.r.t. local martingales
it is enough to “test” with other (local) martingales via tt@variation. This fact can be
used to give aalternative definition of stochastic integralsthat applies to general pre-
dictable integrands. Recall that a stochastic prot@ss- is called(Fy) predictable

iff the function (w,t) — G.(w) is measurable w.r.t. the-algebra?” on  x [0, o)
generated by all7") adapted left-continuous processes.

Definition (Stochastic integrals with general predictable integrandp
Let M € M., and suppose that is an(F?) predictable process satisfying

t
/ G%d[M], < oo  almost surely for any > 0.
0

If there exists a local martingal€, M € Mo such that conditions (i) and (ii) in Corol-
lary[2.19 hold, thertz, M is called thestochastic integral oiG w.r.t. M.

Many properties of stochastic integrals can be deducedtfireom this definition, see
e.g. Theorerh 2.21 below.

The 1t6 isometry for stochastic integrals w.r.t. martingales

Of course, Theorein 2.118 can also be used to compute the atoarof two stochastic
integrals. In particular, ifM is a semimartingale and = H_ with H cadlag and
adapted then

G M, GM] = GJM,G.M] = GA[M].
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Corollary 2.20 (Itd isometry for martingales). Suppose thad/ € M. Then also
(J G dM)* — [ G2 d[M] € M, and

H/GdM jW([O,a}) B EK/OQGdM)Q] - E[/OQGQd[M]} Va>0, a.s.

Proof. If M € M. thenG,M € My, and hencéG,M)? — [G, M| € M. Moreover,
by Theoreni 2.13,

1GMIgay = ElGMl] = E[(G]M])].

The It6 isometry for martingales states that ##&([0, a|) norm of the stochastic integral
[ G dM coincides with theL? (2 x (0, a], Pag) norm of the integrand, t) — Gy (w),
whereP;, is the measure oft x R, given by

Pan(dwdt) = P(dw) [M](w)(dt).

This can be used to prove the existence of the stochastgraiter general predictable
integrands= € L*(Py), cf. Section 2.5 below.

2.4 1t0 calculus for semimartingales

We are now ready to prove the two most important rules of Itéutas for semimartin-
gales: The so-called “Associative Law” which tells us howrttegrate w.r.t. processes
that are stochastic integrals themselves, and the changeiables formula.

Integration w.r.t. stochastic integrals

Suppose thak andY” are semimartingales satisfyidy” = G dX for some predictable
integrandG, i.e.,Y — Y, = f@ dX. We would like to show that we are allowed to
multiply the differential equation formally by another gretable process:, i.e., we
would like to prove thatl G dY = [ GG dX:

dY = GdX — GdY = GGdX
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The covariation characterization of stochastic integvald. local martingales can be
used to prove this rule in a simple way.

Theorem 2.21(*Associative Law”). Let X € S. Then
G(G.X) = (GG)X (2.46)
holds for any processes = H_ andG = H_ with H and H cadlag and adapted.

Remark. The assertion extends with a similar proof to more generdiptable inte-
grands.

Proof. We already know that (2.46) holds faf € FV. Therefore, and by bilinearity of
the stochastic integral, we may assumec M,,.. By the Kunita-Watanabe characteri-
zation it then suffices to “test” the identity (2]46) with &denartingales. FoON € Mg,
Corollary[2.19 and the associative law 16V processes imply

[Go(GX),N] = GJGX,N] = GoG.X,N)
= (GG)LX,N] = [(GG).X,N].
Thus [2.46) holds by Corollafy 2.119. O
It6’s formula

We are now going to prove a change of variables formula focatisnuous semi-
martingales. To get an idea how the formula looks like we firg¢fly consider a
semimartingaleX € S with a finite number of jumps in finite time. Suppose that
0<Ty <T, <...arethejumptimes, and I& = 0. Then on each of the intervals
[Ty_1,Tk), X is continuous. Therefore, by a similar argument as in thefpob 1td’s
formula for continuous paths (cf._[13, Thm.6.4]), we coughect that

F(X) - F(Xo) = Y (F(Xin) - F(Xu, )

k
=) ( / F’(XS_)dXS+% / F”(XS_)d[X]S> +3 (F(Xp,) — F(Xg,-))
- /0 F'(XS)dX;er% /O F'(X,2) dIX]S+ Y (F(X,) - F(X,-)) (2.47)

s<t
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whereXy = X; — > _, AX, denotes the continuous part & However, this formula
does not carry over to the case when the jumps accumulat@apaths are not of finite
variation, since then the series may diverge and the camigpartX ® does not exist in
general. This problem can be overcome by rewriting (2.4 hénequivalent form

PPy = [ Pecax s [ rxoax e

s

+ ) (F(X,) = F(X,) — F'(X,0) AX,),

s<t

which carries over to general semimartingales.

Theorem 2.22(1td’s formula for semimartingales). Suppose thak; = (X}, ..., X?)
with semimartingale(!, ..., X¢ € S. Then for every functiof’ € C?(R%),

F(X,) — F(Xo) Z / W ) dX! + Z / ax@axﬂ X, ) d[X', X9

=10, ”_ Ot]

+ > (F F(X,_) - 8F_ (X,-)AX)) (2.49)

s€(0,] =1 o'
for anyt > 0, almost surely.

Remark. The existence of the quadratic variatidi§|; implies the almost sure abso-
lute convergence of the series owet (0, ¢] on the right hand side of (2.49). Indeed, a
Taylor expansion up to order two shows that

D IF(X,) = F(X,o) - gg(xsmxg <G> |AXP

s<t i=1 s<t 1

S Ct : Z[Xl]t < o0,

i

whereC; = Cy(w) is an almost surely finite random constant depending onlyhen t
maximum of the norm of the second derivativeobn the convex hull of X : s € [0, ¢]}.

It is possible to prove this general version of Itd’s formblaa Riemann sum approx-
imation, cf. [32]. Here, following([34], we instead derivieet “chain rule” once more
from the “product rule”:
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Proof. To keep the argument transparent, we restrict ourselvdsetodsel = 1. The
generalization to higher dimensions is straightforware. Mdw proceed in three steps:

1. Asin the finite variation case (Theoréml2.4), we first pritna the setd consisting
of all functionsF' € C*(R) satisfying [2.48) is an algebra, i.e.,

FFGe A = FGeA.

This is a consequence of the integration by parts formula

PX)GIX) ~ FX0)G() = [ POC) a6 + [ a0 ar(x)

+ [F(X),G(X)]°+ ) AF(X)AG(X), (2.50)
(0,4]

the associative law, which implies

/ F(X_)dG(X) = / F(X)G’(X)dXJr% / F(X_)G"(X_) d[X]°

+Y F(X0) (AG(X) — G'(X_)AX), (2.51)
the corresponding identity with' andG interchanged, and the formula

F(X),G(X)° = [/F’(X)dX,/G’(X)er (2.52)
- / PXOE(X) X)) = / (F'&)(X_) d[X]°

for the continuous part of the covariation. Bdth (2.51) @82) follow from [2.49) and
the corresponding identity faw. It is straightforward to verify that (2.50), (251) and
(2.52) imply the change of variable formula (2.48) 66, i.e., F'G € A. Therefore,
by induction, the formuld (2.48) holds for all polynomidils

2. Inthe second step, we prove the formula for arbitdarg C? assumingX = M + A
with a bounded martingalé/ and a bounded process € FV. In this case,X is
uniformly bounded by a finite constaat Therefore, there exists a sequeripg) of

Stochastic Analysis Andreas Eberle



2.4. 1ITO CALCULUS FOR SEMIMARTINGALES 91

polynomials such thagt, — F, p/, — F’ andp!! — F” uniformly on[-C,C]. For
t > 0, we obtain

F(X,) - F(Xo) = lim (pu(X,) — pa(Xo))

n—oo

t 1 t X
J— ] / _
_ 111220(/0 pn(Xs_)dXs+2/0 P +Z// dzdy

s<t

t 1 X
— F/X, X - F// F//
/O (s)ds+2/0 +Z/ / ) dz dy

w.r.t. convergence in probability. Here we have used anesgion of the jump terms in
(2.48) by a Taylor expansion. The convergence in probgliitilds sinceX = M + A,

EH/Otp;( ) dM, — /F’ }

~ /<pn—F'><X >d[MJS} < sup | — FP - E[(M]]
0 ke

by I1t6’s isometry, and

X
° " 1 1/ " 2
’Z/ / — F")(2) dz dy’ < g o — F| ) (AX,)

—C,C) s<t
3. Finally, the change of variables formula for general seamtingalesX = M + A
with M € M,,c and A € FV follows by localization. We can find an increasing se-
quence of stopping time4;,) such thatup 7,, = oo a.s.,M " is a bounded martingale,
and the procesd’~ defined by

A for t < T,
Al t

Ap, . for t > 1T,

is a bounded process KV for anyn. 1té’s formula then holds foX™ := M + ATn—
for everyn. SinceX™ = X on|[0,7,,) and7,, ,/* oo a.s., this implies Ité’s formula for
X. O

Note that the second term on the right hand side of 1t6’s féan{.49) is a continuous
finite variation process and the third term is a pure jumpdiadriation process. More-
over, semimartingale decompositions'f, 1 < i < d, yield corresponding decomposi-
tions of the stochastic integrals on the right hand side &R Therefore, Ité’s formula
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can be applied to derive an explicit semimartingale decaitipn of F(X}, ..., X?)
for any C? function £°. This will now be carried out in concrete examples.

Application to Lévy processes

We first apply 1t0’s formula to a one-dimensional Lévy praes

with z,0,b € R, a Brownian motion B;), and a compensated Poisson point process
N, = N, — tv with intensity measure. We assume thaf(|y| A |y|) v(dy) < oo. The
only restriction to the general case is the assumed intéigyadf |y| at oo, which en-
sures in particular thatX,) is integrable. The proce$%,) is a semimartingale w.r.t. the
filtration (V) generated by the Brownian motion and the Poisson point psoce

We now apply 1td’s formula td”(X;) whereF’ € C*(R). SettingC; = [y Ny(dy) we
first note that almost surely,

Xy = ’Bli+20[B,CLi+[Cl, = o*t+ > (AX,)

s<t

Therefore, by[(2.54),
F(Xy) — F(Xo)

t 1 t
— / F'(X_)dX + 3 / F(X_)dX]°+ ) (F(X) - F(X_) - F'(X_)AX)
0 0 s<t
t t 1 -
_ / (0F')(X._) dB, + / (bF + 5o?F)(X.) ds + / F(X. )y N(ds dy)
0 0 (0,t] xR
s [ F ) = P0G = PO )y) Nds dy) (2.54)
(0,t] xR
whereN (ds dy) is the Poisson random measurelon x R corresponding to the Pois-
son point process, amil(ds dy) = N(ds dy) — ds v(dy). Here, we have used a rule for
evaluating a stochastic integral w.r.t. the proc€ss= [y Nt(dy) which is intuitively
clear and can be verified by approximating the integrand &yehtary processes. Note
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also that in the second integral on the right hand side wedamylaceX,_ by X, since
almost surelyA X, = 0 for almost alls.

To obtain a semimartingale decomposition frém (2.54), we tivat the stochastic inte-
grals w.r.t(B;) and w.r.t.(ZVt) are local martingales. By splitting the last integral on the
right hand side of{Z.84) into an integral w.nt(ds dy) (i.e., a local martingale) and an
integral w.r.t. the compensatds v(dy), we have proven:

Corollary 2.23 (Martingale problem for Lévy processe$. For any I’ € C?(R), the
process

M = R0 - B0~ [ ()00 ds
(LF)a) = SF")e)+ GF)@) + [ (Floty) = F@) — Flay) vidy),
is a local martingale vanishing @t For I’ € C(R), M!¥! is a martingale, and
(LF)@) = lm B[F(X) - F(X)]

Proof. M¥] is a local martingale by the considerations above and side)) =
X, (w) for almost all(s,w). For F' € CZ, LF is bounded sinceF (z + y) — F(z) —
F'(z)y| = O(ly| A ly[*). HenceM ¥ is a martingale in this case, and

BlFC) - PO = E[; [enea] 5 ehw
ast | 0 by right continuity of(LF')(X). O

The corollary shows thaf is the infinitesimal generator of the Lévy process. The
martingale problem can be used to extend results on the cbandetween Brownian
motion and the Laplace operator to general Lévy processkthair generators. For ex-
ample, exit distributions are related to boundary valudlenms (or rather complement
value problems as is not a local operator), there is a potential theory for getoes of
Lévy processes, the Feynman-Kac formula and its applicatiarry over, and so on.

Example (Fractional powers of the Laplacian). By Fourier transformation one veri-
fies that the generator of a symmeticstable process with characteristic exporefit

is £ = —(—A)%/2. The behaviour of symmetrig-stable processes is therefore closely
linked to the potential theory of these well-studied psedif@rential operators.
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Exercise(Exit distributions for compound Poisson processés Let (X;);>, be a com-
pound Poisson process wilfyy = 0 and jump intensity measute= N(m, 1), m > 0.

i) Determine) € R such thaexp(\X;) is a local martingale.
i) Prove that fora < 0,
PT, < x] = blim PT, < T, < exp(ma/2).
—00

Why is it not as easy as for Brownian motion to compi{&,, < 7,] exactly?

Applications to It6 diffusions

Next we consider a solution of a stochastic differentialatiun
dXt = b(t, Xt) dt + O'(t, Xt) dBt, XO = Xy, (255)

defined on a filtered probability spa¢e, A, P, (F;)). We assume thdtB,) is an(F;)
Brownian motion taking values iR, b, 04,...,0, : RT x R® — R™ are continuous
time-dependent vector fields R", ando(t,z) = (o1(t,x)---04(t, x)) is then x d
matrix with column vectors; (¢, ). A solution of [255) is a continuous*;”) semi-
martingale(X,) satisfying

t d t
Xy = o +/ b(s, Xs) ds + Z/ o (s, Xs) dB* Vt>0 as. (2.56)
0 — Jo

If X is a solution then

X7, X7, Z [/ s, X) dB" /a{(s,X) dBlL
t ..
Z/ X)d[B*,B] = / a’(s, Xs) ds
k.l 0 0
whered’ = ", oioi, ie.,

a(s, ) = o(s,x)o(s,z)" € R™™,
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Therefore, 1td’s formula applied to the procéssX;) yields

OF i 92F o
= ? J
dF(t, X) -7 (6 X) dt+ VL F(t, X) - dX + Zaxlaj(t X) d[X?, X]
= (0"V.F)(t,X) -dB+ (a—F + ﬁF) (t, X) dt,
ot
forany F € C?(R, x R"), where
d
1 PF i OF
(LF)(t,z) = 522 Za]t:chth:c&C(tx).
We have thus derived tH#®-Doeblin formula
¢ b OF
F(t,Xt)—F<O,X0) = / (O'TVF)(S7XS)CZBS+/ (E‘FEF)(S,XS) ds
0 0
(2.57)

Again, the formula provides a semimartingale decompasfio F (¢, X;). It establishes
a connection between the stochastic differential equgHdB) and partial differential
equations involving the operatdr.

Example (Exit distributions and boundary value problems). Suppose that#' <
C?*(R, x R")is a classical solution of the p.d.e.

F
E(t,x)Jr(CF)(t,x) = —g(t,x) Vt>0,zeU
on an open subsét C R™ with boundary values

F(t,x) = ot ) Vt>0,zedU.

Then by [(2.5FF), the process

t
M, = F(t,Xt)Jr/g(s,Xs)ds
0

is a local martingale. If” andg are bounded ofo), ¢] x U, then the proces&/” stopped
at the first exit timel” = inf {t > 0 : X; ¢ U} is a martingale. Hence, if is almost
surely finite then

Elo(T, X7)] + E[/OTg(s,Xs) ds} = F(0,z0).
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This can be used, for example, to compute exit distribut{forsy = 0) and mean exit
times (forp = 0, g = 1) analytically or numerically.

Similarly as in the example, the Feynman-Kac-formula amgotonnections between
Brownian motion and the Laplace operator carry over to Iftugions and their gen-
eratorL in a straightforward way. Of course, the resulting partiéfedential equation
usually can not be solved analytically, but there is a widegeaof well-established
numerical methods for linear PDE available for explicit gartations of expectation
values.

Exercise (Feynman-Kac formula for 1td diffusions). Fix ¢t € (0,00), and suppose
thaty : R* — R andV : [0,¢] x R® — [0, c0) are continuous functions. Show that if
u € C%((0,t] x R*) N C([0,t] x R") is a bounded solution of the heat equation

%(s,x) = (Lu)(s,x) = V(s,z)u(s,x) fors € (0,t], x € R",

w(0,2) = ¢(z),

thenu has the stochastic representation

ult,z) = B, {w(xt) exp (— /0 tV(t—s,Xs) ds)]

Hint: Consider the time reversal(s, z) := u(t — s,z) of uw on [0,¢]. Show first that
M, := exp(—A,)a(r, X,) is a local martingale ifA, := [ V(s, X,) ds.

Often, the solution of an SDE is only defined up to some explosime ( where it
diverges or exits a given domain. By localization, we canyaphe results above in this
case as well. Indeed, suppose that R" is an open set, and let

Us. = {xe€U: |z|<kanddist(z,U°) >1/k}, keN.

ThenU = |JUy. Let T, denote the first exit time dfX;) from U,. A solution(X;) of
the SDE[(2.55) up to the explosion tinge= sup 7, is a proces$.X;):c(o.c)ugoy such that
for everyk € N, T;, < ¢ almost surely o{¢ € (0, 00)}, and the stopped process’* is

a semimartingale satisfying (2]56) fox T,. By applying Ité’s formula to the stopped
processes, we obtain:
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Corollary 2.24 (Martingale problem for Ito diffusions ). If X, : Q — U is a solution
of (Z55) up to the explosion tinig then for anyF’ € C*(R, x U) andz, € U, the

process

L OF
M, = F(t, X —/ — 4+ LF)(s,Xs)ds, t<C,
e [ (B er)ox
is a local martingale up to the explosion tinigand the stopped processkg’*, k € N,

are localizing martingales.

Proof. We can choose functior, € C2([0,a]xU), k € N, a > 0, such thaty,(t, z) =
F(t,x) fort € [0,a] andx in a neighbourhood af/ .. Then fort < a,

b OF
M;Tk — Mt/\Tk — Fk‘(taXt/\Tk) - / (a—tk +;CF]<;> (SaXs/\Tk) dS.
0
By (2.51), the right hand side is a bounded martingale. O

Exponentials of semimartingales

If X is a continuous semimartingale then by Itd’s formula,
5,5X = exp (Xt — %[X]t>

is the unique solution of the exponential equation

ex = &¥adx, & = 1

In particular,£¥ is a local martingale if{ is a local martingale. Moreover, if

I

ho(t,z) = Do exp(ax — o?t/2) . (2.58)
denotes the Hermite polynomial of ordeand X, = 0 then

solves the SDE
dH" = nH"'dX, H} =0,

for anyn € N, cf. Section 6.4 in[[13]. In particulaf/” is an iterated It6 integral:

t Sn 52
H = n'// / dX,,dX,, - dX,,.
0 0 0

The formula for the stochastic exponential can be genedlia the discontinuous case:
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Theorem 2.25(Doléans-Dadg. Let X € S. Then the unique solution of the exponen-

tial equation
t
Z, = 1+/ Z,_dX,, ~ t>0, (2.60)
0
is given by
1
Z, = exp (Xt— 5[)(];‘) I (1 +AX,) exp(~AX,). (2.61)
s€(0,t]

Remarks. 1) In the finite variation cas€, (261) can be written as

1
Z, = exp (X; - 5[)(]5) [T +ax,).
s€(0,t]

In general, however, neithéf“ nor[[(1 + AX) exist.

2) The analogues to the stochastic polynom#lsin the discontinuous case do not
have an equally simply expression as[in (2.59) . This is notstarprising: Also for

continuous two-dimensional semimartingale§, Y;) there is no direct expression for
the iterated integraf; [ dX, dY, = [, (X, — X,) dY, and for the Lévy area process

t s t s
A = / / dX, dY, — / / dY, dX,
0 0 0 0

in terms of XY and their covariations. IX is a one-dimensional discontinuous semi-
martingale thenX and.X _ are different processes that have both to be taken into atcou
when computing iterated integrals &f.

Proof of Theoren 2.25The proof is partially similar to the one given above fére
FV, cf. Theoreni 2J5. The key observation is that the product

P, = J] 1+AX,) exp(-AX,)
s€(0,t]

exists and defines a finite variation pure jump process. Dii®#s from the estimate

Z |log(1+ AX,) — AX,|] < const.- Z IAX,]* < const. - [X]

0<s<t s<t
[AX|<1/2
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which implies that

S = Y (log(1+AX,)—AX,), t>0,

s<t
|AX[<1/2

defines almost surely a finite variation pure jump processrdfore,( F;) is also a finite
variation pure jump process.
Moreover, the process; = exp (Xt —3[X ]g) satisfies
G = 1+ /G dX +) (AG - G_ AX) (2.62)
by 1t6’s formula. ForZ = GG P we obtain
AZ = 7. (eMu FAX)e Y 1) — 7 AKX,

and hence, by integration by parts and (2.62),

Z—-1 = /P dG+/GdP+[G,P]

= /PG dX + Y (P_AG - P_G_AX + G_ AP+ AG AP)

- /Z_dX+Z(AZ—Z_AX) — /Z_dX.

This proves that solves the SDH (2.60). Uniqueness of the solution followsfia
general uniqueness result for SDE with Lipschitz contiraiooefficients, cf. Section
3.1. O

Example (Geometric Lévy processes Consider a Lévy martingal&; = [y Nt(dy)
where(1V;) is a Poisson point process Bnwith intensity measure satisfying [ (|y| A
ly|?) v(dy) < oo, andN, = N, — tv. We derive an SDE for the semimartingale

Zy = exp(oX;+ ut), t>0,

wheres andy are real constants. Sin¢& ¢ = 0, 1td’s formula yields

Z, -1 :a/ZdX+u/st+ZZ<e"AX—1—o—AX> (2.63)
(0,4] (0,4] 0:t]
=0 / ZsyN(dsdy)+u/Zs ds+/ ZS,<e”y—1—ay> N(ds dy).
(0, xR 04 (xR
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If [ e*¥ v(dy) < oo then [2.6B) leads to the semimartingale decomposition
dZt = Zt— tho- + OéZt_ dt, ZO = 1, (264)

where

is a square-integrable martingale, and

a = u+/(6“y—1—0’y) v(dy).

In particular, we see that although,) again solves an SDE driven by the compensated
process IV, ), this SDE can not be written as an SDE driven by the Lévy pocEs).

2.5 General predictable integrands and local times

So far, we have considered stochastic integrals w.r.t.rgésemimartingales only for
integrands that are left limits of adapted cadlag proces3éss is indeed sufficient
for many applications. For some results including in pattic convergence theorems
for stochastic integrals, martingale representationréras and the existence of local
time, stochastic integrals with more general integrandsiraportant. In this section,
we sketch the definition of stochastic integrals w.r.t. netessarily continuous semi-
martingales for general predictable integrands. For etdithe proofs, we refer to
Chapter IV in Protter's book [32]. At the end of the sectiore apply the results to
define the local time process (occupation time density) @frdiouous semimartingale.

Throughout this section, we fix a filtered probability sp&Qe A, P, (F;)). Recall that
the predictable o-algebra P on Q2 x (0,00) is generated by all setd x (s, ¢] with

A € Fyand0 < s < t, or, equivalently, by all left-continuousF,) adapted processes
(w,t) — Gy(w). We denote by the vector space consisting of allementary pre-
dictable processes- of the form

i
L

Gt(w) = : Zi(w)l(ti,ti+1](t)

~
I
o

Stochastic Analysis Andreas Eberle



2.5. GENERAL PREDICTABLE INTEGRANDS AND LOCAL TIMES 101

withn € N,0 <ty <t <--- <t andZ; : Q — R bounded andF;,-measurable.
ForG € £ and a semimartingal® € S, the stochastic integral, X defined by

n—1

t
(GoX) = / GedXe = > Zi (Xtont — Xeont)
0 -

=0
is again a semimartingale. Clearly Afis a finite variation process then, A has finite
variation as well.

Now suppose thad/ € M?(0,00) is a square-integrable martingale. TheaM €
M3(0, 00), and the Ité isometry

G By = E|( [ GdM)]
= E[/OOOsz[M]} = /QR G? dPyy (2.65)
holds, where
Pan(dw dt) = P(dw) [M](w)(dt)

is the Doléans measureof the martingaleV/ on Q x R, . The Itd isometry has been
derived in a more general form in Corolldry 2.20, but for edetary processes it can
easily be verified directly (Excercise!).

In many textbooks, the angle bracket procéss) is used instead ofM]| to define
stochastic integrals. The next remark shows that this is/abant for predictable inte-
grands:

Remark ([M]vs.(M)). LetM € M3(0,00). If the angle-bracket proce$a/) exists
thenthe measure#,,; and P,y coincide on predictable setkideed, ifC' = A x (s, t]
with A € F, and0 < s < ¢ then

Pu(C) = E[M],—[M]s; Al = E[E[M]; - [M]|Fy]; A
= E[E[(M), — (M)|F]; A = Pan(C).

Since the collection of these setsis anN-stable generator for the predictahte
algebra, the measurés,; and P, coincide onP.
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Example (Doléans measures of Lévy martingalés If M; = X, — E[X;] with a square
integrable Lévy procesk; : 2 — R then

Pap = Puy = ¢'(0) P@Aow)

where is the characteristic exponent &f and )y ) denotes Lebesgue measure on
R, . Hence the Doléans measure of a general Lévy martingaleidesmwith the one
for Brownian motion up to a multiplicative constant.

Definition of stochastic integrals w.r.t. semimartingales

We denote byH? the vector space of all semimartingales vanishing af the form

X = M+ Awith M € M?(0,00) and A € FV predictable with total variation
va4) = Jo° |dAs] € L*(P). In order to define a norm on the spa&€, we as-

sume without proof the following result, cf. e.g. ChaptéinlProtter [32]:

Fact. Any predictable local martingale with finite variation patls almost surely con-
stant.

The result implies that thBoob-Meyer semimartingale decomposition
X = M+A (2.66)

is uniqueif we assume that/ is local martingale and\ is apredictablefinite variation
process vanishing @t Therefore, we obtain well-defined normon #? by setting

(M) + </OOO |dA|)2

Note that thel/? norm is the restriction of th@{*> norm to the subspack/?(0, cc) C

1XIG = IMIRe+IVOAIE = B

H2. As a consequence ¢f (2]65), we obtain:

Corollary 2.26 (Itd isometry for semimartingales). Let X € #? with semimartingale
decomposition as above. Then

|G X2z = ||IG||x forany G € £, where

o8] 2
2 2
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Hence the stochastic integral : £ — H?, Jx(G) = G.X, has a unique isometric
extension to the closu@" of £ w.rt. the norm|| - ||x in the space of all predictable
processes it (Py).

Proof. The semimartingale decompositioch = M + A implies a corresponding de-
compositionG,X = G,M + G,A for the stochastic integrals. One can verify that
for G € &€, G.M is in M3(0,00) andG,A is a predictable finite variation process.
Therefore, and by (2.65),

1GuX[fe = 1IG Ml + IV (Gl = [IG1Ean,y + | [ 161144

2
L2(P)

O

The It6 isometry yields a definition of the stochastic in&dgr, X for G € &*. For
G = H_ with H cadlag and adapted, this definition is consistent with tHaitien
given above since, by Corolldry 2120, the 1t6 isometry alsld& for the integrals defined
above, and the isometric extension is unique. The @asef admissible integrands is
already quite large:

Lemma 2.27.Z" contains all predictable processéswith ||G||x < oc.

Proof. We only mention the main steps of the proof, cf./[32] for detai

1) The approximation of bounded left-continuous procebgetementary predictable
processes W.r.t| - || x is straightforward by dominated convergence.

2) The approximability of bounded predictable processdsdmnded left-continuous
processes W.r.f| - ||x can be shown via the Monotone Class Theorem.

3) For unbounded predictable with ||G||x < oo, the processeS™ := G - I;g<n},
n € N, are predictable and bounded wjttr™ — G||x — 0.

U

Localization

Having defined, X for X € #? and predictable integrands with ||G||x < oo, the
next step is again a localization. This localization is Islig different than before, be-
cause there might be unbounded jumps at the localizing stgpipnes. To overcome

University of Bonn Winter Semester 2012/2013



CHAPTER 2. STOCHASTIC INTEGRALS AND ITO CALCULUS FOR
104 SEMIMARTINGALES

this difficulty, the process is stopped just before the stagppmeT, i.e., atT’—. How-
ever, stopping al’_ destroys the martingale propertylifis not a predictable stopping
time. Therefore, it is essential that we localize semimaggles instead of martingales!

For a semimartingal& and a stopping timé' we define the stopped procekss — by

X for t < T,
xX= = Xp_ fort>T >0,
0 for T =0.

The definition forl” = 0 is of course rather arbitrary. It will not be relevant belgimce
we are considering sequendds,) of stopping times witt/}, 1 co almost surely. We
state the following result from Chapter IV in [32] withoutqaf.

Fact. If X is a semimartingale witlX, = 0 then there exists an increasing sequence
(T,,) of stopping times withup T}, = oo such thatX™»~ € 2 for anyn € N.

Now we are ready to state the definition of stochastic integoa general predictable
integrands w.r.t. general semimartingalés By settingG,X = G4(X — X) we may
assumeX, = 0.

Definition. Let X be a semimartingale witlX, = 0. A predictable proces§ is called
integrable w.r.t. X iff there exists an increasing sequen@g ) of stopping times such
thatsup 7;, = oo a.s., and for any: € N, X"~ € H? and||G|| xr.- < o0o.

If G is integrable w.r.t.X then thestochastic integral7, X is defined by
t t
(G X)) = / GsdX, = / Gy dXIn~ forany t € [0,7,,), n € N.
0 0

Of course, one has to verify thét, X is well-defined. This requires in particular a
locality property for the stochastic integrals that aredusethe localization. We do not
carry out the details here, but refer once more to Chapten [22].

Exercise(Sufficient conditions for integrability of predictable pro cessep

1) Prove that ifG is predictable antbcally boundedn the sense tha&’~ is bounded
for a sequencéT;,) of stopping times withl;, 1T oo, thenG is integrable w.r.t. any
semimartingaleX € S.
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2) Suppose thak = M + A is a continuous semimartingale witd € M'"°¢ and
A € FV.. Prove thati is integrable w.r.tX if GG is predictable and

t t
/Gi d[M]s+/ |G| |[dAs] < oo a.s. foranyt > 0.
0 0

Properties of the stochastic integral

Most of the properties of stochastic integrals can be exeérehsily to general pre-
dictable integrands by approximation with elementary psses and localization. The
proof of Property (2) below, however, is not trivial. We nete Chapter IV in[[32] for
detailed proofs of the following basic properties:

(1) The mapG, X) — G, X is bilinear.
(2) A(G.X) = GAX almost surely.
3) (G.X)T = (G Ijpr))e X = G XT.
4) (G.X)T~ =G XT~.

(5) Gu(G.X) = (GG).X.

In all statementsX is a semimartingalé; is a process that is integrable w.Af, 7" is a
stopping time, and’ is a process such thatG is also integrable w.r.tX'. We state the
formula for the covariation of stochastic integrals sefeyebelow, because its proof is
based on the Kunita-Watanabe inequality, which is of indepat interest.

Exercise (Kunita-Watanabe inequality). Let X, Y € S, and letG, H be measurable
processes defined dn x (0,00) (predictability is not required). Prove that for any
a € [0, 00] andp, g € [1, oo] with % + % = 1, the following inequalities hold:

[y < ([erax)”([man)” e

E[/Oa\cum ax )] < H(/ng d[x])m (/Oagz d[Y])m’

Hint: First consider elementary processes.

La

(2.68)

Lp
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Theorem 2.28(Covariation of stochastic integralg. For any X, Y € S and any pre-
dictable process- that is integrable w.r.t.X,

[/GdX, Y] = /Gd[X, Y] almost surely. (2.69)

Remark. If X andY are local martingales, and the angle-bracket proc&s¥’) exists,
then also

</GdX,Y> = /Gd(X, Y) almost surely.

Proof of Theorermn 2.28We only sketch the main steps briefly, €f.[32] for detailssHy,
one verifies directly that (2.69) holds foX,Y ¢ #? andG < £. Secondly, for
X,Y € H? and a predictable process with ||G||x < oo there exists a sequence
(G™) of elementary predictable processes such|ti&t — G||x — 0, and

[/G” dX,Y] — /G" d[X,Y] foranyneN.
Asn — oo, [G"dX — [ G dX in H? by the Itd isometry for semimartingales, and

[/G” dX,Y] N [/de,y] u.c.p.

by Corollary{2.14. Moreover,

hence

/G" X, Y] — /Gd[X,Y] u.c.p.

by the Kunita-Watanabe inequality. HenLe (2.69) holdsFas well. Finally, by local-
ization, the identity can be extended to general semingatasX, Y and integrand&:
that are integrable w.r.. O

An important motivation for the extension of stochastiegrals to general predictable
integrands is the validity of a Dominated Convergence Té@or

Theorem 2.29%Dominated Convergence Theorem for stochastic integra)s Suppose
that X is a semimartingale with decompositioh = M + A as above, and let:",
n € N, andG be predictable processes. If

Gl w) — Gyw) forany t > 0, almost surely
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and if there exists a proceds that is integrable w.r.t.X such thatG"| < H for any
n € N, then
G X — GX u.c.p. asn — oc.

If, in addition to the assumptions abovg,is in %2 and||H||x < oo then even
|G X — G X3z — 0 as n — oo.

Proof. We may assumé&; = 0, otherwise we consider™ — G instead ofG™. Now
suppose first thak is in %2 and||H||x < oco. Then

leti = B[ [T+ ([T iemaa)] — o

asn — oo by the Dominated Convergence Theorem for Lebesgue insegrance by
the Itd isometry,
G"X — 0 in H? asn — oo.

The general case can now be reduced to this case by locatizathereX{? convergence
is replaced by the weakerp-convergence. O

We finally remark that basic properties of stochastic irdbgcarry over to integrals
with respect to compensated Poisson point processes. fetoehe monographs by
D.Applebaum([3] for basics, and to Jacod & Shiryeev [22] fdetailed study. We only
state the following extension of the associative law, wiiek already been used in the
last section:

Exercise (Integration w.r.t. stochastic integrals based on compengad PPP. Sup-
pose thatr{ : 2 x R, x S — R is predictable and square-integrable whitz A ® v,
andG : Q2 x R, — Ris a bounded predictable process. Show that if

X, — / H,(y) N(ds dy)
(0,t] xS

then

t
/ G.dX, = / G, H,(y) N(ds dy).
0 0,5

Hint: ApproximateGG by elementary processes.
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Local time

The occupation time of a Borel sét C R by a one-dimesional Brownian motigi; )
is given by

t
LV = / Iy (By) ds.
0

Brownian local time is accupation time densitior Brownian motion that is infor-
mally given by

t
‘Lo = / 5.(B.)ds”
0

for anya € R. It is a non-decreasing stochastic process satisfying

LY = /Lgda.
U

We will now apply stochastic integration theory for gengueddictable integrands to
define the local time procegs.);> for a € R rigorously for Brownian motion, and,
more generally, for a continuous semimartingalg). Note that by I1té’s formula,

f(Xy) — /f )dXs + = /f”

Informally, if X is a Brownian motion then the last integral on the right haile s
should coincide withZ¢ if f” = §,. A convex function with second derivativg is
f(xz) = (z —a)*. Noting that the left derivative of is given by f* = I, ), this
motivates the following definition:

Definition. For a continuous semimartingal€ anda € R, the procesd.® defined by

t
1
(X, —a)t = (Xo—a)" = / I(wo)(Xs) dX, + §L§
0

is called thdocal time of X at a.

Remark. 1) By approximating the indicator function by continuousdtions it can be
easily verified that the process ) (X,) is predictable and integrable w.rX..

2) Alternatively, we could have defined local timesdby the identity

t
1~
0
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involving the right derivativd|, ) instead of the left derivativg, ). Note that

t
Ly — Lo = /0 Iy (X,) dX.

This difference vanishes almost surelyXfis a Brownian motion, or, more generally,
a continuous local martingale. For semimartingales, hewehe processes® and L®
may disagree, cf. the example below LemimaR.30. The choid¢ af the definition
of local time is then just a standard convention that is cziast with the convention of
considering left derivatives of convex functions.

Lemma 2.30(Properties of local time, Tanaka formulae.
1) Suppose that, : R — [0, 00), n € N, is a sequence of continuous functions with
[ ¢, =1andp,(z) = 0forz & (a,a+ 1/n). Then
t

L? = ucp— lim @n(Xs) d[X]s
0

n—oo

In particular, the proces$L{ ).~ is non-decreasing and continuous.
2) The process* grows only whenX = q, i.e.,

t
/ Itx, 20y AL = 0 foranyt > 0.
0

3) The following identities hold:

t
1
(Xt - a)+ - (XO - a’)Jr = /0 I(a,oo) (Xs) dXs + §L?7 (270)
t
1

(Xt - a)_ - (XO - a)_ = _/(; I(foo,a}(Xs) dXs + §L?7 (271)
t

| X; —a| —|Xg—a|] = / sgn(X, —a)dX,s + LY, (2.72)

0

wheresgnz) := +1 for z > 0, andsgn(z) := —1 for z < 0.

Remark. Note that we set sdfl) := —1. This is related to our convention of using left
derivatives as sdn) is the left derivative ofz|. There are analogue Tanaka formulae
for L* with the intervalga, co) and(—co, a] replaced byja, co) and(—oo, a), and the
sign function defined by (z) := +1 for 2 > 0 and sgifiz) := —1 for z < 0.
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Proof. 1) Forn € N let f,(z) := [*_ [Y_¢n(2) dzdy. Then the functiory, is C*
with f" = ¢,,. By It0’s formula,

1

R0 = £u(0) = [ fxyax, = b / X)X @79

Asn — oo, f;,(X;) converges pointwise tf, ..)(X;). Hence

t t
/ f;L(XS) dXS — / I(apo)(Xs) dXS
0 0
in the ucp-sense by the Dominated Convergence Theoremd@@over,
fu(Xp) = fu(Xo) = (Xp—a)" = (Xo—a)".

The first assertion now follows frorh (2J]73).
2) By 1), the measures, (X;) d[X]; on R, converge weakly to the measuté? with

distribution function.*. Hence by the Portemanteau Theorem, and sin¢e) = 0 for
z ¢ (a,a+1/n),

n—o0

t t
/0 I{|Xs_a‘>5} dLg S liminf/o I{|Xs—a|>a} (pn(XS) d[X]S = 0

for anye > 0. The second assertion of the lemma now follows by the Moreton
Convergence Theorem ag, 0.

3) The first Tanaka formuld_(2.I70) holds by definition iof. Moreover, subtracting
(2.72) from [(2.70) yields

(X —a)— (Xog—a) = /Oths,

which is a valid equation. Therefore, the formulae (2.71d §a70) are equivalent.
Finally, (2.72) follows by addind (2.70) and (2171). O

Remark. In the proof above it is essential that the Dirac sequénpgg approximates

0, from the right If X is a continuous martingale then the assertion 1) of the lemma
also holds under the assumption that vanishes on the complement of the interval
(a—1/n,a+1/n). For semimartingales however, approximatipdrom the left would

lead to an approximation of the process which in general may differ froni..
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Exercise(Brownian local time). Show that the local time of a Brownian moti@hin
a € R is given by

e—0 25

1 t
LY = ucp— lim—/ T4z ate)(Bs)ds.
0

Example (Reflected Brownian motior). Suppose thak; = |B,| where(B,) is a one-
dimensional Brownian motion starting @t By Tanaka's formula(Z.72)X is a semi-
martingale with decomposition

Xy = Wy + Ly (2.74)

where L, is the local time ab of the Brownian motionB andW, := fg sgn(Bs) dBs.
By Lévy’s characterization, the martingdl is also a Brownian motion, cf. Theorem
[4.2. We now compute the local tinig® of X at0. By (2.71) and Lemma2.30, 2),

1 t
5[;5( = Xt_XO+/ I(—oo,O}<Xs>dXs (275)
0
t t t
- /1{0}(Bs)dws+/ Iioy(B.)dL, = / dL, = L, as,
0 0 0

i.e., ;X = 2L,;. Here we have used thfof L0y (Bs) dW, vanishes almost surely by It6’s
isometry, as botfl” and B are Brownian motions. Notice that on the other hand,

t
. a— Xt_X0+/O Iooo)(Xs)dXs =0 a.s,

so the processéds® and L~ do not coincide. By[(2.74) anf{2]75), the procéssolves
the singular SDE
1
X, = AW, + 5 dLT

driven by the Brownian motioml’. This justifies thinking ofX asBrownian motion
reflected at.

The identity [2.7%) can be used to compute the law of Browtdaal time:
Exercise(The law of Brownian local time).

a) ProveSkorohod’'s Lemma If (y:):>0 is a real-valued continuous function with
yo = 0 then there exists a unique péir, k) of functions on[0, co) such that
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() e =y+k,
(i) z is non-negative, and
(i) k is non-decreasing, continuous, vanishing at zero, and tesurelk; is
carried by the seft : x; = 0}.
The functionk is given byk, = sup,,(—ys).

b) Conclude that the local time proceds;) at 0 of a one-dimensional Brownian
motion (3;) starting at0 and the maximum proces$ := sup,, B, have the
same law. In particulat,; ~ |B;| for anyt > 0.

c) More generally, show that the two-dimensional proce§dels L) and(S — B, 5)
have the same law.

Notice that the maximum process;):>, is the generalized inverse of the Lévy subor-
dinator(7,),>o introduced in Section 1l.1. Thus we have identified Brownéal time
at0 as the inverse of a Lévy subordinator.

[t6-Tanaka formula

Local time can be used to extend Ité’s formula in dimensioa rom C? to general
convex functions. Recall that a functign R — R is convexiff

fOa+ (1= Ny) < Af@)+1-Nfly) YA€, zyeR.

For a convex functiorf, the left derivatives

: _f(x) = fla—h)
fo(x) = lim .

exist, the functiory’ is left-continuous and non-decreasing, and

f)— fla) = /b f'(x)dx  foranya,b € R.

The second derivative of in the distributional sense is the positive measfitaiven

by
f"([a,b)) = f.(b) = f.(a)  foranya,bcR.
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We will prove in Theoreni 3.10 below that there is a versiom) — L¢ of the local
time process of a continuous semimartingalesuch that — L¢ is continuous and
a — L¢ is cadlag. IfX is a local martingale theh¢{ is even jointly continuous inand
a. From now on, we fix a corresponding version.

Theorem 2.31(It6-Tanaka formula, Meyer). Suppose thak is a continuous semi-
martingale, andf : R — R is convex. Then

F(X,) — / FUX,) dX, + = / L "(da). (2.76)

Proof. We proceed in several steps:
1) Equation[(2.76) holds for linear functiorfs
2) By localization, we may assume thaf,| < C for a finite constant. Then both

sides of [2.76) depend only on the valuesfobn (—C, C'), so we may also assume
w.l.0.g. thatf is linear on each of the intervals-oco, —C] and[C, ), i.e.,

supp(f”) € [-C,C].

Moreover, by subtracting a linear function and multiplyifidoy a constant, we may
even assume thgtvanishes ori—oo, C], and f” is a probability measure. Then
Fw=n-ocy) and )= [ p-cmdy  @77)
wherey := f”.
3) Now suppose that = 4, is a Dirac measure. Thefl = I, .y andf(z) = (zr—a)™".
Hence Equation (2.76) holds by definition bf. More generally, by linearity[ (2.76)
holds whenevey. has finite support, since thenis a convex combination of Dirac
measures.
4) Finally, if . is a general probability measure then we approximaby measures
with finite support. Suppose that is a random variable with distribution, and let
w, denote the law o¥Z,, := 27"[2"Z]. By 3), the Itd6-Tanaka formula holds for the
functionsf,(z) := [*__ p,( oo,y) dy,i.e.,

FalX0) = (o) /f Mw-/mMm> (2.78)
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foranyn € N. Asn — oo, pi,(—00, X5) = u(—o0, X;), and hence

/Ot (X)) dX, — /Ot LX) dX,

in the ucp sense by dominated convergence. SimilggyX:) — f.(Xo) — f(X¢) —
f(Xo). Finally, the right continuity ofi — L¢ implies that

[ Ernataa) [ L2t

sinceZ,, converges td&Z from above. The Itd-Tanaka formul@a(2l76) fonow follows
from (2.78) as1 — oc. O

Clearly, the It6-Tanaka formula also holds for functiofhghat are the difference of
two convex functions. Iff is C? then by comparing the It6-Tanaka formula and It6's
formula, we can identify the integrdl L{ f”(da) overa as the stochastic time integral
fot f"(X;)d[X]s. The same remains true whenever the meagl(éa) is absolutely
continuous with density denoted B¥f(a):

Corollary 2.32. For any measurable functiovi : R — [0, co),

/Lg V(da) = /tV(XS) dX], Vt>0. (2.79)
R 0

Proof. The assertion assertion holds for any continuous fundtionR — [0, c0) as
V can be represented as the second derivative @f &unction f. The extension to
measurable non-negative functions now follows by a moretdass argument. [

Notice that forl/ = I, the expression in_(2.79) is the occupation time of thelsby
(X;), measured w.r.t. the quadratic variatigfiX |;.
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Chapter 3

SDE I. Strong solutions and
approximation schemes

In this chapter we study strong solutions of stochasticeddifitial equations and the
corresponding stochastic flows. We start with a crucial mgate inequality that is used
frequently to derive.? estimates for semimartingales. For real-valued cadlagtimms

r = (2¢)i>0 We set

xy = sup|w for t > 0, and x5 = |z
s<t

Then theBurkholder-Davis-Gundy inequality states that for any € (0,00) there
exist universal constants, C,, € (0, co) such that the estimates

o BIMIE?) < E((ML)] < Gy E[[MEP) (3.1)

[e.e]

hold for any continuous local martingalé satisfyingM, = 0, cf. [33]. The inequality
shows in particular that for continuous martingales, #fenorm, i.e., thel,” norm of
M, is equivalent taE[[M]%*]/?. Note that forp = 2, by Itd’s isometry and Doob’s
L* maximal inequality, Equatio_(3.1) holds with = 1 andC,, = 4. The Burkholder-
Davis-Gundy inequality can thus be used to generalize aegisrbased on Itd’s isome-
try from an? to anL? setting. This is, for example, important for proving thestence
of a continuous stochastic flow corresponding to an SDE, eetd®[ 3.2 below.
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Here, we only prove an easy special case of the BurkholdersBaundy inequality that
will be sufficient for our purposes. This estimate also héddsadlag local martingales:

Theorem 3.1(Burkholder’s inequality ). Letp € [2, o0). Then the estimate
BI(Mpy1e <y B[IMBP (3.2)

holds for any strict local martingalé/ € M, such that\/, = 0, and for any stopping
timeT : Q — [0, co], where

(r—1)/2
W = (1+p%1) p/V2 < We/2p.

Remark. The estimate does not depend on the underlying filtered prlityespace,
the local martingalé//, and the stopping timé&. However, the constant, goes toco
asp — oo.

Proof. 1) We first assume that = oo and M is a bounded cadlag martingale. Then,
by the Martingale Convergence Theoreid,, = tliglo M, exists almost surely. Since
the functionf(x) = |z|P is C* for p > 2 with ©”(z) = p(p — 1)|z|P~2, Itd’s formula
implies

2
+ Z (QP(MS) - (p(Ms—) - QPI(MS—)AM& ) ) (33)

o0 1 o
pp = [Ceon sy [ don;
0 0

where the first term is a martingale singeo M is bounded, in the second term

¢"(My) < p(p— 1ML

and the summand in the third term can be estimated by
/ ]‘ /!

(M) — (M) — ' (Ms—)AM, ) sup(p” o M)(AMS)Q

Splp — (ML) (AML)

IN
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Hence by taking expectation values on both sides$ of (3.3)pbtain forg satisfying
1 1 _ 1.
Lyd—1:

BMLY] < ¢ BllMal
o P2 gl (s, + Y (aan?)]
|

by Doob’s inequality, Holder’s inequality, and singe ], + > (AM)? = [M]. The
inequality [3.2) now follows by noting thatp(p — 1) = ¢*~'p°.

IN

8“"@
SIS

IN

o P2 a5 E()

2) ForT = oo and a strict local martingal@/ € M, there exists an increasing
sequenc€T;,) of stopping times such that/™ is a bounded martingale for eaeh
Applying Burkholder’s inequality ta// 7~ yields

E[(Mz)) = E(ME#P) < 2 E[MTRE = 2 B[MEP).
Burkholder’s inequality for\/ now follows asn — oc.

3) Finally, the inequality for an arbitrary stopping tirfiecan be derived from that for
T = oo by considering the stopped procegd . O

Forp > 4, the converse estimate in(B.1) can be derived in a similgr wa

Exercise. Prove that for a givep € [4, co), there exists a global constante (1, co)
such that the inequalities

[e.9] [e.9]

¢, E[[MIEP] < E(ML)] < ¢ B [[M]E7]
with M} = sup,_, | M,| hold for any continuous local martingal&/; );co,)-

The following concentration inequality for martingalesaken more powerful than
Burkholder’s inequality:

Exercise. Let M be a continuous local martingale satisfyilfy = 0. Show that

2
P supMSZx;[M]tgc} < exp(—i—)
c

s<t

foranyc,t,z € [0, 0).
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3.1 Existence and uniqueness of strong solutions

Let (S, S, v) be ac-finite measure space, and let» € N. Suppose that on a proba-
bility space((2, A, P), we are given aiR?-valued Brownian motio5;) and a Poisson
random measuré/(dt dy) overR, x S with intensity measuré ) ® v. Let (F;)
denote a complete filtration such thd,) is an (F;) Brownian motion andV,(B) =
N((0,t] x B) is an(F;) Poisson point process, and let

N(dtdy) = N(dt dy) — Xo,o)(dt) v(dy).

If T"is an(F;) stopping time then we call a predictable procésst) — G,(w) or
(w,t,y) — Gi(y)(w) defined for finitet < T'(w) andy € S locally square integrable
iff there exists an increasing sequer(@g) of (F;) stopping times withl" = sup 7,
such that for any., the trivially extended process,; /<7, is contained inC?(P @
A), L2(P @ A ® v) respectively. For locally square integrable predictahtegrands,
the stochastic integralﬁ G,dB, and f(o’ﬂx s Gs(y) N (ds dy) respectively are local
martingales defined fare [0, T).

In this section, we are going to study existence and pathuwiggueness for solutions
of stochastic differential equations of type

dX; = b(X)dt+ o (X) dBt—F/ ¢ (X,y) N(dt dy). (3.4)
yes
Hereb : R, x D(R,,R") — R*, o : R, x D(R,,R") — R™? andc : R, x
D(R;,R") x S — R™ are cadlag functions in the first variable such that; andc;
are measurable w.r.t. thealgebrass, := o(z — z, : s < t), B, ® S respectively for

anyt > 0. We also assumiecal boundednes®f the coefficients, i.e.,

sup sup sup ([bs(z)] + [los(@)[| + |es(z, y)]) < oo (3.5)

s<t mxy<r yes

foranyt, r € (0, c0).
Note that the assumptions imply tHais progressively measurable, and hebge) is

a measurable function of the path,);<; up to timet. Thereforeb;(x) is also well-
defined for cadlag paths:;);- with finite life-time ¢ provided¢ > t. Corresponding
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statements hold far, andc;. Condition (3.5) implies in particular that the jump sizes a
locally bounded. Locally unbounded jumps could be takea adcount by extending
the SDE [(3.4) by an additional term consisting of an integrakt. an uncompensated
Poisson point process.

Definition. Suppose thdt is an(F;) stopping time.

1) Asolution of the stochastic differential equatidn(B.4) fox. T is a cadlag(F;)
adapted stochastic proce&d, ), taking values irR” such that almost surely,

t t

X = Xo+ [ 00 dst [o(X)dB+ [ e (Xoy) Nidsdy) 36)
0 0 (0,4]x S

holds for anyt < T'.

2) A solution(X;),r is calledstrongiff it is adapted w.r.t. the completed filtration
F? = o(Xo, FPN)? generated by the initial value, the Brownian motion and the
Poisson point process.

For astrong solution X; is almost surely a measurable function of the initial valie
and the processé®;).; and(N;)s<; driving the SDE up to time. In Sectiori 4.1, we
will see an example of a solution to an SDE that does not peskesproperty.

Remark. The stochastic integrals ih (3.6) are well-defined strictalomartingales.
Indeed, the local boundedness of the coefficients guashbeal square integrabil-
ity of the integrands as well as local boundedness of the gufopthe integral w.r.t.
N. The process,(X) is not necessarily predictable, but observing thatX (w)) =
0s—(X(w)) for P ® X\ almost everyw, s), we may define

/ 0,(X) dB, = / o, (X) dB,.

LP Stability

In addition to the assumptions above, we assume from nowairthie coefficients in
the SDE[(3.4) satisfy bbcal Lipschitz condition:
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Assumption (Al). For anyt, € R, and for any open bounded s€t C R", there
exists a constant € R, such that the following Lipschitz conditidnip(t,, U) holds:

[be(2) = b (@)| + [lov(2) = 0o (@)]] + [ler(w, 8) = (T, @) |72y < L- sup |z, — |
s<t

foranyt € [0,¢] andz,z € D(R,,R") with z,, 7, € U for s < t,.
We now derive an a priori estimate for solutions [of {3.4) tisatrucial for studying

existence, uniqueness, and dependence on the initialteamndi

Theorem 3.2(A priori estimate). Fix p € [2,00) and an open se/ C R", and let
T be an(F;) stopping time. Suppose thaX;) and ()?t) are solutions of[(3]4) taking
values inU fort < T, and let

o(t) = E[sup \XS_)?S@.

s<tAT

If the Lipschitz conditiorLip(ty, U) holds then there exists a finite constante R,
depending only op and on the Lipschitz constantsuch that for any < ¢,

t
o) = (9 + [ o(s)ds). and (3.7)
0
p(t) < C-e“p(0). (3.8)
Proof. We only prove the assertion for = 2. Forp > 2, the proof can be carried
out essentially in a similar way by relying on Burkholdergquality instead of Itd’s

isometry.
Clearly, [3.8) follows from[(3]7) by Gronwell's lemma. Togwe (3.7), note that

¢ ¢
X, = X0+/ bs(X) ds+/ os(X) dBSJr/ cs— (X, y) N(ds dy) Vit<T,
0 0 (0.4]x5

and an analogue equation holds for Hence fort < ¢,

(X=X)y < 141 +0 +1V, where (3.9)
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| = |Xo— X,
I = /MT\bS(X)—bS()?)\dS,
/U(US(X) - 05()?)) dB,|, and

/ (co (X, 9) — e (X)) N(ds dy)|.

(0,u]xS

I = sup

u<tA\T

IV = sup

u<tA\T

The squared.?-norms of the first two expressions are bounded by
E[l’) = ¢(0), and
tAT " t
EN? < L% E[/ (X — X)*? ds] < L2t/ o(s) ds.
0 0

Denoting by M, and K, the stochastic integrals in 1ll and IV respectively, Doob’s
inequality and 1t6’s isometry imply

BN = E[M7] < 4AE[My]

_ 4E[/OMTHJS(X)—as()?)||2ds} < 4L2/Ot¢(s)ds,

EW? = E[K;7] < AE[K]

tAT t
= 4E / /|cs (X, y) — cs_ (X, y)|? v(dy) ds] < 4L2/0 ©(s) ds.
The assertion now follows since Hy (B.9),
pt) = B[(X-X)5%] < 4-E[RP+12+1%41v.
U

The a priori estimate shows in particular that under a glalgadchitz condition, solu-
tions depend continuously on the initial condition in meguae. Moreover, it implies
pathwise uniqueness under a local Lipschitz condition:

Corollary 3.3 (Pathwise uniqueness Suppose that Assumption (A1) holds.(Xf;)
and(f(t) are strong solutions of (3.1) with, = X, almost surely then

P[X, = X, foranyt] = 1.
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Proof. For any open bounded sétC R™ andt, € R, , the a priori estimate in Theorem
[3.2 implies thatX and X coincide almost surely of, ty A Tyre) whereTy- denotes the
first exit time fromU. ]

Existence of strong solutions

To prove existence of strong solutions, we need an additassaumption:

Assumption (A2). Foranyt, € R,

sup/\ct(O,y)\Q v(dy) < oo

t<to
Here0 denotes the constant path= 0 in D(R,R"™).
Note that the assumption is always satisfiedsf 0.

Remark (Linear growth condition). If both (A2) and a global Lipschitz condition
Lip(to, R™) hold then there exists a finite constéft,) such that for any: € D(R,,R"),

sup () + @I+ [ ol vidy) < Clt): L+ (310

t<to

Theorem 3.4(It6). Let¢ : 2 — R™ be a random variable that is independent of the
Brownian motionB and the Poisson random measuye
1) Suppose that the local Lipschitz condition (Al) and (A@dyhThen[(3.1) has a
strong solution(X;),.. with initial condition X, = ¢ that is defined up to the
explosion time

¢ = supTy, where T, = inf{t>0:|X;| > k}.

2) If, moreover, the global Lipschitz conditidrip(to, R™) holds for anyt, € R,
then{ = oo almost surely.

Proof ofi3.4. We first prove existence of a global strong solut{df} );c(o,-) assuming
(A2) and a global Lipschitz conditiohip(ty, R™) for anyt, € R,. The first assertion
will then follow by localization.
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For proving global existence we may assume w.l.0.g.ghatounded and thus square
integrable. We then construct a sequef&é) of approximate solutions td (3.1) by a
Picard-Lindelof iterationi.e., fort > 0 andn € Z, we define inductively

X = ¢ (3.11)

t t
X = e [y [ dBe [ a0y Nds dy).
0 0
(0,t] xS

Fix to € [0,00). We will show below that Assumption (A2) and the global Lipgz

condition imply that

(i) foranyn € N, X" is a square integrableF?) semimartingale or0, ¢,] (i.e.,
the sum of a square integrable martingale and an adapteégzodth square
integrable total variation), and

(i) there exists a finite constant(¢,) such that the mean square deviations
AP = B[(XMT - X)),
of the approximation&” and X"*! satisfy

t
A < C(to)/ A" ds forany n >0 and ¢ < t,.
0

Then, by induction,
tn
AP < C(to)" =AY foranyneN andt < t.
n:

In particular,) > | A7 < oo. An application of the Borel-Cantelli Lemma now shows
that the limit X, = lim,_.., X! exists uniformly fors € [0, ¢;] with probability one.
Moreover, X is a fixed point of the Picard-Lindel6f iteration, and hencsolution of
the SDE[(3.11). Since has been chosen arbitrarily, the solution is defined almostys
on [0, c0), and by construction it is adapted w.r.t. the filtratiof’).

We now show by induction that Assertion (i) holds. X" is a square integrable
(F?) semimartingale o), ¢,] then, by the linear growth condition (3]110), the process
bs(X™))2 + ||os (XM + [ |es(X™, y)|? v(dy) is integrable w.r.t. the product measure
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P ® Xo4,). Therefore, by Itd’s isometry, the integrals on the rightdhaide of [(3.111)
all define square integrab{ery) semimartingales, and thug"+" is a square integrable
(F?) semimartingale, too.

Assertion (ii) is a consequence of the global Lipschitz ¢ood. Indeed, by the Cauchy-
Schwarz inequality, 1td’s isometry arddp(t,, R™), there exists a finite constaét(t,)
such that

AT = [(Xn+2 _ Xn+1)t*2]

< 3tE Uot b, (X™+) — by(X™)|? ds] +3E Uot oo (X" — o (X)) ds
+3FE Uot/}cs(X”“,y) — c(X™,y)|” v(dy) dS}
< Cltp) /Ot A ds forany n >0 and t < t,.

This completes the proof of global existence under a gloi@ddhitz condition.

Finally, suppose that the coefficiertsr andc only satisfy the local Lipschitz condition
(A1). Then fork € Nandt, € R, we can find functiong®, o* andc* that are globally
Lipschitz continuous and that agree witho andc on paths(z;) taking values in the
ball B(0, k) for t < t,. The solutionX *) of the SDE with coefficients®, o*, ¢* is then

a solution of[[3.1) up to A T}, whereT}, denotes the first exit time of *) from B(0, k).
By pathwise uniqueness, the local solutions obtained swlay are consistent. Hence
they can be combined to construct a solutior ofl(3.1) thagfsdd up to the explosion
time { = sup T. O

Non-explosion criteria

Theoren 3.4 shows that under a global Lipschitz and lineawtyr condition on the
coefficients, the solution td (3.1) is defined for all timeghyprobability one. How-
ever, this condition is rather restrictive, and there aremhetter criteria to prove that
the explosion time& is almost surely infinite. Arguably the most generally agglile
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non-explosion criteria are those basedstochastic Lyapunov function€onsider for
example an SDE of type

whereb : R® — R™ ando : R" — R™*¢ are locally Lipschitz continuous, and let

1 ¢ 0? .
L = §Zaij<x)m+b(x).v, a(z) = o(x)o(z)?,

1,j=1

denote the corresponding generator.

Theorem 3.5 (Lyapunov condition for non-explosion). Suppose that there exists a
functiony € C?(R") such that
(i) ¢(x) >0 foranyz € R",
(i) p(z) > o as|z| -, and
(i) Lo < Ap forsomel € R,.
Then the strong solution df (3.1) with initial valug € R" exists up ta = oo almost
surely.

Proof. We first remark that by (iii),Z; := exp(—\t)¢(X;) is a supermartingale up to
the first exit timeT}, of the local solutionX from a ball B(0, k) C R". Indeed, by the
product rule and the 1t6-Doeblin formula,

dZ = —Xe Mp(X)dt + e Mdp(X) = dM + e M(Lp — Ap)(X) dt

holds on[0, 7}] with a martingale\/ up to7j.
Now we fixt > 0. Then, by the Optional Stopping Theorem and by Conditian (i)

Elp(Xo)] = Elexp(=A(t A Tk)) e(Xirz, )]
> Elexp(=At) o(X1,); Ti < ]
> exp(—A) ‘;llﬂ:fkw(y) P}, <]

¢(z0)

foranyk € N. Ask — oo, inf, 1, p(y) — oo by (ii). Therefore,

Plsup T, <t] = lim P[T, <t] = 0

k—o00

foranyt > 0, i.e.,( = sup T}, = oo almost surely. O
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By applying the theorem with the functian(z) = 1 + |z|*> we obtain:
Corollary 3.6. If there exists\ € R, such that

2t - b(x) + tr(a(z)) < X-(1+|z)>) foranyz € R"
then{ = oo almost surely.
Note that the condition in the corollary is satisfied if
— b(z) < const.-|z] and tra(r) < const. -|z|?

for sufficiently largex € R™, i.e., if the outward component of the drift is growing at
most linearly, and the trace of the diffusion matrix is grograt most quadratically.

3.2 Stochastic flow and Markov property

Let O = Ch(R,,R?%) endowed with Wiener measurg and the canonical Brownian
motionW,(w) = w(t). We consider the SDE

dXt = bt(X) dt + O't(X) dVVt, XO = a, (313)

with progressively measurable coefficiebts : R, x C(R,,R") — R* R"*? respec-
tively satisfying the global Lipschitz condition

|be(x) — be(Z)| + ||ow(z) — oe(Z)]] < L(x—2)f Vit x,x (3.14)

for some finite constant € R, as well as

sup (|b5(0)] +1|os(0)]]) < oo Vit (3.15)

s€[0,t]

Then by Ité’s existence and uniqueness theorem, theresexishique global strong
solution (X/);>o of (3.13) for any initial conditioru € R". Our next goal is to show
that there is a continuous modificatioha) — & of (X*). The proof is based on the
multidimensional version of Kolmogorov’s continuity @iton for stochastic processes:
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Theorem 3.7 (Kolmogorov, Centsoy). Suppose thatE, || - ||) is a Banach space,
C =[1,_, I is a product of real intervalg;, ..., I, C R,andX, : Q@ — E,u e C,is
an E-valued stochastic process (a random field) indexed'bif there exists constants
v,¢,e € R, such that

ElllX. - X,|"] < cu—o|"*  foranyu,veC, (3.16)

then there exists a modificatidg, ).cc of (X, ).cc such that

E[(sup wy{} < o0 forany a € [0,¢/7). (3.17)

wtv U — 0|

In particular, u — &, is almost surelyy-Holder continuous for any < /7.
For the proof cf. e.g/ [33, Ch. I, (2.1)].

Example. Brownian motion satisfies (3.116) with = 1 ande = 7 — 1 for anyy €
(2,00). Letting v tend tooco, we see that almost every Brownian pathnigH6lder
continuous for anyr < 1/2. This resultis sharp in the sense that almost every Brownian
path is not}-Holder-continuous, cf[[13, Thm. 1.20].

Existence of a continuous flow

We now apply the Kolmogoroéentsov continuity criterion to the solutian— (X¢)
of the SDE[(3.1B) as a function of its starting point.

Theorem 3.8(Flow of an SDE). Suppose that(3.14) and (3115) hold.

1) There exists a functioh: R™ x Q@ — C(R,R"), (a,w) — £*(w) such that

(i) €* = (&")+>0 is a strong solution 0f(3.13) for any€ R™, and
(i) the mapa — £%(w) is continuous w.r.t. uniform convergence on finite time
intervals for anyw € ().

2) Ifo(t,x) =o(x;) andb(t,z) = Z(xt) with Lipschitz continuous functions
5 : R" — R™4 andb : R" — R"*4 then¢ satisfies theocycle property

¢ (w) = &WO4w) Vs t>0, acR" (3.18)
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for uo-almost everyw, where
Oiw) = w(-+t) € COR,RY
denotes the shifted path, and the definitiog bhs been extended by
{w) = &w—w(0)) (3.19)
to pathsw € C(R., R?) with starting pointu(0) # 0.

Proof. 1) We fixp > d. By the a priori estimate in Theorelm B.2 there exists a finite
constant € R, such that

E[(X*—X9?" < c¢-e?la—alf foranyt>0 anda,a € R", (3.20)

whereX*“ denotes a version of the strong solution[of (8.13) with ahitionditiona.
Now fix ¢ € R,. We apply the Kolmogorowentsov Theorem witl = C([0, ¢], R™)
endowed with the supremum nothX ||, = X}. By (3.20), there exists a modificatign
Of (X)s<tacrr SUCh thatt — (£2),<. iS almost surelyv-Holder continuous w.r.t] - ||,
foranya < 1% Clearly, fort; < t,, the almost surely continuous még a) +— &2
constructed ofD, ;] x R™ coincides almost surely with the restriction of the coroesp

ing map on0, ¢;] x R™. Hence we can almost surely extend the definitioR fox R™
in a consistent way.

2) Fixt > 0 anda € R™. Thenpug-almost surely, both sides df(3]18) solve the same
SDE as a function of. Indeed,

t+s t+s
g, = $+[ M®w+[ F(2) AW,
_ $+ARQAM+A5@wdmw@m

oo, — g+ [ (o) dr+ [ 36T o0) W, 00)
0 0

hold yp-almost surely for ang > 0 wherer — W, o ©, = W, is again a Brownian
motion, and(¢ 0 ©,) (w) = ¢ (0,(w)). Pathwise uniqueness now implies

g, = oo, forany s > 0, almost surely.
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Continuity of ¢ then shows that the cocycle propefty (3.18) holds with poditya one
for all s, ¢ anda simultaneously. O

Remark (Extensions). 1) Joint Holder continuity irt anda: Since the constamptin the
proof above can be chosen arbitrarily large, the argumetdsa--Holder continuity of
a — &% foranya < 1. By applying Kolmogorov's criterion in dimensiom-1, it is also
possible to prove joint Holder continuity inanda. In Sectior{ 5.1 we will prove that
under a stronger assumption on the coefficidraado, the flow is even continuously
differentiable ina.

2) SDE with jumpsThe first part of Theorern 3.8 extends to solutions of SDE oétyp
(3.4) driven by a Brownian motion and a Poisson point pracésshat case, under a
global Lipschitz condition the same arguments go througreifeplace” ([0, t], R™) by
the Banach spacB([0, t], R™) when applying Kolmogorov's criterion. Hence in spite
of the jumps, the solution depends continuously on theainitiluea !

3) Locally Lipschitz coefficientdBy localization, the existence of a continuous flow can
also be shown under local Lipschitz conditions, cf. €.g].[3%2otice that in this case,
the explosion time depends on the initial value.

Above we have shown the existence of a continuous flow for DE §8.13) on the
canonical setup. From this we can obtain strong solutiorsioer setups:

Exercise. Show that the unique strong solution 6f (3.13) w.r.t. anteaby driving

Brownian motionB instead ofl¥ is given by X (w) = (B (w)).

Markov property

In the time-homogeneous diffusion case, the Markov prgdertsolutions of the SDE
(3.13) is a direct consequence of the cocycle property:

Corollary 3.9. Suppose that(t,z) = &(z,) andb(t, z) = b(z;) with Lipschitz contin-
uous functions : R» — R™*¢ andb : R — R", Then(&)):>o Is a time-homogeneous
(F""F) Markov process with transition function

pi(a,B) = P&} € B, t>0, a€R™

University of Bonn Winter Semester 2012/2013



18HHAPTER 3. SDE |I: STRONG SOLUTIONS AND APPROXIMATION SEMES

Proof. Let f : R — R be a measurable function. Then foK s < ¢,
Ow) = wt)+ (wt+:) —w()),
and hence, by the cocycle property and[by (B.19),
fEw) = fE W (wt+) —w))

for a.e.w. Sincew(t+-) —w(t) is a Brownian motion starting atindependent of,""",
we obtain

E[fE IR W) = BIfE)] = (pf)(§(w)  amostsurely
]
Remark. Without pathwise uniqueness, both the cocycle and the Mapkoperty do

not hold in general.

Continuity of local time

The Kolmogorovéentsov continuity criterion can also be applied to proesgkistence

of a jointly continuous versiofia,t) — L¢ of the local time of a continuous local
martingale. More generally, recall that the local time ofoattnuous semimartingale
X = M + Ais defined by the Tanaka formula

1
5[;? = (XO - CI,)Jr — (Xt — a)JF — / [(a oo) dM / aoo dA (3 21)
almost surely for any € R.

Theorem 3.10(Yor). There exists a versiofu, t) — L¢ of the local time process that
is continuous it and cadlag ine with

t
Ly — LY = 2/ Iix,—a) dAs,. (3.22)
0

In particular, (a,t) — L is jointly continuous if\/ is a continuous local martingale.
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Proof. By localization, we may assume thaf is a bounded martingale andl has
bounded total variatioh’o(ol)(A). The map(a,t) — (X; — a)* is jointly continuous int
anda. Moreover, by dominated convergence,

is continuous irt and cadlag ir with
t
Zf — Zg_ = —/ ]{a}(XS) dA,.
0
Therefore it is sufficient to prove that
t
Y;a = /0 I(apo)(Xs) dMS

has a version such that the map- (Y?),<; fromR to C([0,¢],R"™) is continuous for
anyt € [0, o).

Hence fixt > 0 andp > 4. By Burkholder’s inequality,

s<t

By -v");"| = E[sup

p} (3.23)

p/2]

holds for any. < b with a finite constant’; (p). The integral appearing on the right hand

/ Ty (X)dM
0

VAN

Ci(p) E / Tia (X) d[M]

side is an occupation time of the interval b]. To bound this integral, we apply 1td’s
formula with a functionf € C* such thatf'(z) = (x Ab— a)* and hencef” = I, .
Although f is not C?, an approximation off by smooth functions shows that It0’s
formula holds forf, i.e.,

/Ofw,b}(X)d[M] = /Ofw,b}(X)d[X]

= =2 (00 - g0 - [ ) ax)

< (b—a) + 2

[ reoav| + p-av®
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Here we have used in the last step thfdt < |0 — a| and|f| < (b — a)?/2. Combining

this estimate with 3.23 and applying Burkholder’s ineqyanother time, we obtain

(Kf@YﬂMowj)

< Cop,t) [b—al?’? (1 + [MPY

By ="’ < G (\b—a\”2+E

with a finite constantCy(p,t). The existence of a continuous modificationcof—
(Y),<; now follows from the KolmogorowGentsov Theorem. O

s

Remark. 1) The proof shows that for a continuous local martingale;> (L%),<; iS
a-Holder continuous for any < 1/2 andt € R,.

2) For a continuous semimartingale,” = L¢ by (3.22).

3.3 Stratonovich differential equations

Replacing It6 by Statonovich integrals has the advantaajedhle calculus rules (product
rule, chain rule) take the same form as in classical difféaénalculus. This is useful

for explicit computations (Doss-Sussman method), for exipnating solutions of SDE

by solutions of ordinary differential equations, and incétastic differential geometry.
For simplicity, we only consider Stratonovich calculus éontinuous semimartingales,
cf. [32] for the discontinuous case.

Let X andY” be continuous semimartingales on afiltered probabilitgefa, A, P, (F;)).

Definition (Fisk-Stratonovich integral). The Stratonovich integral X o dY is the
continuous semimartingale defined by
t t
1
/ X,o0dY, = / X, dY, + §[X,Y]t forany ¢t > 0.

0 0
Note that a Stratonovich integral w.r.t. a martingale isanfzical martingale in general.
The Stratonovich integral is a limit of trapezoidal Riemaum approximations:

Lemma 3.11.If (w,) is a sequence of partitions &, with mesh(r,) — 0 then

t X+ X .
/ X,odY, = lim E Aot Aont (Yyn —Y,)  intheucp sense
0 n—o00 2

SETY
s<t
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Proof. This follows smcefO X dY =ucp-lim) ., X, (Yon — Ys) and
(X, Y], =ucp-lim > _,(Xon — X)(Yone — Ys) by the results above. O

[t6-Stratonovich formula

For Stratonovich integrals w.r.t. continuous semimasdileg, the classical chain rule
holds:

Theorem 3.12.Let X = (X!, ..., X4) with continuous semimartingale§’. Then for
any functionF’ € C?(R%),

d ¢
F(X) — F(Xy) = Z/O o (Xs)o odX! Vit>0. (3.24)

=1

Proof. To simplify the proof we assumg < C®. Under this condition[{3.24) is just a
reformulation of the It6 rule

F(X;) — F(Xo) Z/ 57 (s ) dX! + Z/ g Xo) ) d[X*, X,
(3.25)

or

Indeed, applying Itd’s rule to th€? functio

oF
_ j
ox’ (X) = Z / 8x’(‘9x3 ) dX;

for some continuous finite variation process Hence the difference between the
Statonovich integral if(3.24) and the 1td integral (3.5

2on00x], = 33 [t .

O

Remark. For the extension of the proof {3* functionsF see e.g.[[32], where also a
generalization to cadlag semimartingales is considered.

The product rule for Stratonovich integrals is a speciaéazghe chain rule:
Corollary 3.13. For continuous semimartingales, Y,
t t
XY, — XYy = XsodYs+/Y;odXs Vit>0.
0 0

Exercise(Associative law. Prove an associative law for Stratonovich integrals.
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Stratonovich SDE

Since Stratonovich integrals differ from the correspogdid integrals only by the co-
variance term, equations involving Stratonovich integyn be rewritten as 1t equa-
tions and vice versa, provided the coefficients are suffilsieegular. We consider a
Stratonovich SDE ifiR¢ of the form

d

odX, = bX)dt+) op(X))odBf, X, = (3.26)
k=1
with =, € R, continuous vector fields, oy, ...,0, € C(R" R"), and anR‘-valued

Brownian motion(B;).

Exercise(Stratonovich to Ité conversion). 1) Provethatfor, ..., 04 € C'(R", R"),
the Stratonovich SDE(3.26) is equivalent to the 1td SDE

d
dX, = bX)dt+Y on(X)dBf, Xy = m, (3.27)
k=1
where
- 1
b o= b+§Zak-Vak.
k=1
2) Conclude that i and o1,...,0q are Lipschitz continuous, then there is a unique
strong solution of[(3.26).

Theorem 3.14(Martingale problem for Stratonovich SDE). Letb € C(R",R") and
o1,...,04 € C*(R",R™), and suppose thatX;);>, is a solution of [(3.26) on a given
setup(2, A, P, (F:), (By)). Then for any functiod” € C3(R"), the process

ME = R0 - FO) [ (200 ds

1
2

B
Il &
—_

is a local (FF) martingale.
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Proof. By the Stratonovich chain rule and by (3.26),

F(X,) - F(Xy) = /Ot VF(X)-odX

= /Ot(b VE)(X)dt+ ) /Ot(ak .VF)(X)odB"*. (3.28)
k
By applying this formula te, - VF', we see that
(on - VE)X)) = A+ / o, V(oy - VF)(X) dB'
l

with a continuous finite variation procegd,). Hence

/0 t(ak .VF)(X)odB* = /0 t(ak -VF)(X) dB* + [(0}, - VF)(X), B,

t
= local martingale+/ ok - V(oy, - VF)(X)dt.
0
(3.29)
The assertion now follows by (3.28) arnd (3.29). O

The theorem shows that the generator of a diffusion procdemg a Stratonovich SDE
is in sum of squares form. In geometric notation, one briefliges b for the derivative
b - V in the direction of the vector fieltl The generator then takes the form

1

Brownian motion on hypersurfaces

One important application of Stratonovich calculus is kastic differential geometry.

Itd calculus can not be used directly for studying stockadifferential equations on

manifolds, because the classical chain rule is essenti@rfsuring that solutions stay
on the manifold if the driving vector fields are tangent vestdnstead, one considers
Stratonovich equations. These are converted to 1t6 formrmvdoenputing expectation

values. To avoid differential geometric terminology, wéyoronsider Brownian motion

on a hypersurface iR"*!, cf. [34], [18] and[20] for stochastic calculus on more gehe

Riemannian manifolds.

University of Bonn Winter Semester 2012/2013



186APTER 3. SDE |I: STRONG SOLUTIONS AND APPROXIMATION SEMES

Let f € C°°(R"™!) and suppose thatc R is a regular value of, i.e.,V f(z) # 0 for
anyz € f~!(c). Then by the implicit function theorem, the level set

M, = fMeo = {zeR": f(z)=c}

is a smoot-dimensional submanifold @&" . For example, iff (z) = |z|> andc = 1
then M. is then-dimensional unit spherg”.

Forx € M., the vector

") = N €

is theunit normal to M, atx. Thetangent spaceo M, atz is the orthogonal comple-

ment

T,M, = span{n(z)}"
Let P(x) : R*"! — T, M. denote the orthogonal projection onto the tangent spade w.r
the Euclidean metric, i.e.,

Pz)v = wv—v-n(x)n(z), veR".
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Fork € {1,...,n+ 1}, we setP,(z) = P(z)ey.

Definition. A Brownian motion on the hypersurfacéZ. with initial valuexz, € M. is
a solution(X;) of the Stratonovich SDE

n+1
odX, = P(X;)odB, = > Pi(X)odBf, X, =m, (3.30)
k=1

with respect to a Brownian motigiB;) on R" .

We now assume for simplicity that/. is compact. Then, sinceis a regular value of

f, the vector fieldsP, are smooth with bounded derivatives of all orders in a neigh-
bourhood! of M, in R**1. Therefore, there exists a unique strong solution of the SDE
(3.30) inR"*! that is defined up to the first exit time frobh Indeed, this solution stays
on the submanifold/, for all times:

Theorem 3.15.1f X is a solution of[(3.30) with:y € M, then almost surelyX; € M.
foranyt > 0.

The proof is very simple, but it relies on the classical ctraie in an essential way:

Proof. We have to show thaf(X};) is constant. This is an immediate consequence of
the Stratonovich formula:

f(X,) — /Vf )-0dX, = nﬂ/ V(X X,)odB*¥ =0

sinceP;(z) is orthogonal tov f () for anyz. O

Although we have defined Brownian motion on the Riemannianifola M. in a non-
intrinsic way, one can verify that it actually is an intriagibject and does not depend on
the embedding off/. into R"*! that we have used. We only convince ourselves that the
corresponding generator is an intrinsic object. By Thedgeld, the Brownian motion
(X}) constructed above is a solution of the martingale problemthi® operator

n+1 n+1

L = —ZPk V= —ZPZ

From differential geometry it is well-known that this optnais §AMC whereA,,. de-
notes the (intrinsicl.aplace-Beltrami operator on ..
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Exercise (Itd SDE for Brownian motion on M._). Prove that the SDE (3.80) can be
written in 1t6 form as

1
dXt = P(Xt) dBt — éli(Xt)n(Xt) dt

wherer(z) = & divn(z) is the mean curvature df, atx.

Doss-Sussmann method

Stratonovich calculus can also be used to obtain explituti®ms for stochastic differ-
ential equations itR" that are driven by ane-dimensionaBrownian motion(B;). We
consider the SDE

o dXt = b(Xt) dt + U(Xt) @) dBt) XO = a, (331)

wherea € R", b : R® — R" is Lipschitz continuous and : R* — R" is C? with
bounded derivatives. Recall that (3.31) is equivalent ¢olth SDE

5 5

1
dX; = (b+§g.VU)(Xt)dt+a(Xt)dBt, X, = .a. (3.32)

We first determine an explicit solution in the case= 0 by the ansatzX;, = F(B;)
whereF € C?*(R,R"™). By the Stratonovich rule,

odX, = F'(B)odB, = o(F(B))odB,
providedF is a solution of the ordinary differential equation
F'(s) = o(F(s)). (3.33)
Hence a solution of (3.31) with initial conditiak, = « is given by
X, = F(Ba)

where (s, z) — F(s,z) is theflow of the vector fieldo, i.e., F(-,a) is the unique
solution of [3.3B) with initial condition.
Recall from the theory of ordinary differential equatiohattthe flow of a vector field
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as above defines a diffeomorphism~ F'(s,a) for anys € R. To obtain a solution of
(3.31) in the general case, we try the “variation of constaamsatz

X, = F(B,C) (3.34)

with a continuous semimartingal€’;) satisfyingCy = a. In other words: we make a
time-dependent coordinate transformation in the SDE thdetermined by the flow
and the driving Brownian patfB;). By applying the chain rule t¢(3.84), we obtain
OF OF
OdXt = E(Bt, Ct) O dBt + %
OF
= O'(Xt) o dBt + %(Bta Ct) o dCt

whereZE (s, -) denotes the Jacobi matrix of the diffeomorphisits, -). Hence(X;) is
a solution of the SDE_(3.31) providéd;) is almost surely absolutely continuous with

(Bta Ct) o dCy

derivative

d oF
ZC = So(BLC) T (B, C). (3.35)

For every givenw, the equation[(3.35) is an ordinary differential equation®(w)
which has a unique solution. Working out these argumentstaildyields the following
result:

Theorem 3.16(Doss 1977, Sussmann 19Y.8 Suppose thai : R* — R" is Lipschitz
continuous ana : R — R” is C? with bounded derivatives. Then the fldwof the
vector fields is well-defined,F (s, -) is a C? diffeomorphism for ang € R, and the
equation [(3.3b) has a unique pathwise soluti6h);-, satisfyingC, = a. Moreover,
the processX, = F(B;, C;) is the unique strong solution of the equatidn (3.31), (8.32)
respectively.

We refer to[23] for a detailed proof.

Exercise (Computing explicit solutions). Solve the following 1t6 stochastic differen-
tial equations explicitly:

1 ——s
dX, = X1+ X?)dt+ (1+ X}?)dB,, X, = 1. (3.37)

Do the solutions explode in finite time?

University of Bonn Winter Semester 2012/2013



18HAPTER 3. SDE |I: STRONG SOLUTIONS AND APPROXIMATION SEMES

Exercise(Variation of constants). We consider nonlinear stochastic differential equa-
tions of the form

dXt = f(t, Xt) dt + C(t)Xt dBt, XO =,

wheref : RT x R — R andc : RT — R are continuous (deterministic) functions.
Proceed as follows :

a) Find an explicit solutio; of the equation withf = 0.
b) To solve the equation in the general case, use the Ansatz
Xt — Ct . Zt .

Show that the SDE gets the form

dCt (CU)
dt

= f(t, Z(w) - Ct(w))/Zi(w) ; Cy=x. (3.38)

Note that for eachv € (), this is adeterministicdifferential equation for the
functiont — C;(w). We can therefore solve (3]38) withas a parameter to find

Ct(w)
c) Apply this method to solve the stochastic differentiali@ipn
1
dXt:—dt—l—othdBt, XOI.T>O,
Xi
whereq is constant.
d) Apply the method to study the solution of the stochastilecgntial equation

dXt:ngt+OéXtdBt7 X0:$>0,

wherea and~y are constants. For which values-pflo we get explosion?

Wong Zakai approximations of SDE

A natural way to approximate the solution of an SDE driven Brawnian motion is
to replace the Brownian motion by a smooth approximatiore fEsulting equation can
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then be solved pathwise as an ordinary differential eqoatibturns out that the limit
of this type of approximations as the driving smoothed psees converge to Brownian
motion will usually solve the corresponding Stratonovicu&tion.

Suppose thatB;):>¢ is @ Brownian motion iflR? with B, = 0. For notational conve-
nience we definé; := 0 for t < 0. We approximatds by the smooth processes

- t?
B = B x 1k, ee(t) = (2me) 1/26Xp(—2—6)-

Other smooth approximations could be used as well,_cf. [28][21]. LetX *) denote
the unique solution to the ordinary differential equation

d d
ax,fk) = (X)) +o(xP) £B§k>, x® = q (3.39)

with coefficientsh : R* — R” ando : R* — R"*4,

Theorem 3.17(Wong, Zakai 1965. Suppose thdtis C! with bounded derivatives and
o is C? with bounded derivatives. Then almost surely:as oo,

Xt('“) — X uniformly on compact intervals
where(X,) is the unique solution of the Stratonovich equation
OdXt = b(Xt) dt + O-(Xt) (o] dBt7 XO = a.

If the driving Brownian motion is one-dimensional, thereaisimple proof based on
the Doss-Sussman representation of solutions. This shoaiskt®) and X can be
represented in the forx(” = F(B® ¢y and X, = F(B,,C,) with the flow F
of the same vector field, and the processes*) and C' solving (3.35) w.r.t.3®),
B respectively. Therefore, it is not difficult to verify thaliraost surely, X®*) — X
uniformly on compact time intervals, cf. [23]. The proof etmore interesting general
case is much more involved, cf. e.g. Ikeda & Watanabé [21\ChThm. 7.2].
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3.4 Stochastic Taylor expansions and numerical meth-
ods

The goal of this section is to analyse the convergence oifdenrmerical schemes for
Itd6 stochastic differential equations of type

d
dX; = b(X))dt + Y ox(X,)dB, (3.40)
k=1
inRY, N € N. We will assume throughout this section that the coeffisignt,, . . ., o4
areC> vector fields oriRY, andB = (B, ..., BY) is ad-dimensional Brownian mo-
tion. Below, it will be convenient to set

Bto = t.

A solution of [3.40) satisfies
t+h d t+h
Xivn = Xi + / b(X)ds + ) / or(X,) dBk (3.41)
t k—1 t

foranyt, h > 0. By approximating(X;) ando(X;) in (3.41) byb(X;) ando(X;) re-
spectively, we obtain an Euler approximation of the solutigth step sizeé:. Similarly,
higher order numerical schemes can be obtained by apprtrognd X ;) and o (X)
by stochastic Taylor approximations.

It6-Taylor expansions

Suppose thaX is a solution of[([3.40), and let € C>°(R"). Then the It6-Doeblin
formula for f(X') on the intervalt, ¢ + k] can be written in the compact form

d t+h
F(Xe) = 100 + Y [ (Eaf)(X.) B (3.42)
k=01
foranyt,h > 0,whereB? = t, a = oo,
N
1 0%
= — LY .
Lof . JZ:la S5 b V/  and (3.43)
ﬁkf = O’k~Vf, fork = 1,...,d. (344)
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By iterating this formula, we obtain It6-Taylor expansidos f(X). For example, a
first iteration yields

t+h d t+h  ps
F(Xin) = O+ e () [ st 30 [ [ (et (x) aplas

d
k=0 k,1=0

The first two terms on the right hand side constitute a firseoficylor expansion for

f(X) in terms of the processés®, k = 0,1,...,d, and the iterated Itd integral in the
third term is the corresponding remainder. Similarly, wéagbhigher order expansions
in terms of iterated Itd integrals where the remainders atengoy higher order iterated
integrals, cf. Theorem? below. The next lemma yields? bounds on the remainder
terms:

Lemma 3.18. Suppose that’ : Q x (¢,t + h) — R is an adapted process ii*(P ®
)\(t,tJrh))- Then

t+h S1 Sn—1 2
( / / e / Gy, dBE - dB¥ dBfll)
t t t

foranyn € Nandk = (ky,...,k,) € {0,1,...,d}", where

hn—f—m(k)
E

< sup F [G?]

n! s€[t,t+h]

m(k) == {1 <i<n:k; =0}
denotes the number of integrations wdt.

Proof. By It6’s isometry and the Cauchy-Schwarz inequality,

t+h 2 t+h
E </ G, dBf) < / E[G?] ds for anyk # 0, and
t t

t+h 27 t+h
( [ e ds) <[ e
t t

E

By iteratively applying these estimates we see that therseomoment of the iterated
integral in the assertion is bounded from above by

t+h S1 Sn—1
hm(k)/ / / E[ng]dsn"'dSQ dSl.
t t t

University of Bonn Winter Semester 2012/2013
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18HAPTER 3. SDE |: STRONG SOLUTIONS AND APPROXIMATION SEMES

The lemma can be applied to control the strong convergertsr of stochastic Taylor
expansions. Far € N we denote by’ (R) the space of all’* functions with bounded
derivatives up to ordek. Notice that we do not assume that the functiong’jnare
bounded.

Definition (Stochastic convergence ordgr Suppose thatl;, h > 0, and A are ran-
dom variables, and let > 0.

1) A, converges tod with strongL? order « iff

1/2

E[|A, — AP = o).

2) A, converges tod with weak order iff

E[f(A)] - E[f(A)] = O(h*)  foranyfe )" *"V(R).

Notice that convergence with strong orderequires that the random variables are de-
fined on a common probability space. For convergence wittkweeder o this is not
necessary. 14, converges toA with strong ordekx then we also write

Ap = A+ O(h).

Examples. 1) If B is aBrownian motionthen B, ; converges td3; almost surely as
h | 0. By the law of the iterated logarithm, the pathwise conveogeorder is

Biin — B, = O(ht?loglogh™')  almost surely.

On the other hand, the strorg order is1/2, and the weak order is since by Kol-
mogorov’s forward equation,

t+h
P (B = BB = [ BGAf(B)ds < FsupAf

forany f € C?. The exercise below shows that similar statements hold ésemeneral
It6 diffusions.

2) Then-fold iterated It integrals w.r.t. Brownian motion considd in Lemma 3.18
have strong ordem + m)/2 wherem is the number of time integrals.

Stochastic Analysis Andreas Eberle



3.4. STOCHASTIC TAYLOR EXPANSIONS AND NUMERICAL METHODS Bt

Exercise(Order of Convergence for It6 diffusions). Let (X;);>, be anN-dimensional
stochastic process satisfying the SDE (8.40) whese : RY — RV k=1,...,d, are
bounded continuous functions, afdis ad-dimensional Brownian motion. Prove that
ash | 0,

1) X, converges toX; with strongZ? order1/2.
2) X, converges toX; with weak orderl.

Corollary 3.19 (It6-Taylor expansion with remainder of order «). Suppose that =
k/2 for somek € N. If X is a solution of [[3.40) with coefficientso,,..., 04 €
C**) (RN RY) then the following expansions hold for afiye C***(RN):

FXem) = >0 Y (LrLrn, - Lif) (X)) x (3.45)

n<2a k:in+m(k)<2a

t+h S1 Sn—1
X/ / / G, dBE-.-dB¥ daB" + O(h®),
t t t

Elf(Xe)] = B3 (X0) o + O(1), (3.46)

Proof. Iteration of the 1t6-Doeblin formuld {3.42) shows thai &).4olds with a re-
mainder term that is a sum of iterated integrals of the form

t+h S1 Sn—1
[ [ @kt (X aBly -l ds
t t t

with & = (kq, ..., k,) satisfyingn + m(k) > 2«candn — 1 + m(kq, ..., k,—1) < 2a.
By Lemmal3.1IB, these iterated integrals are of strbhgrder(n + m(k))/2. Hence
the full remainder term is of the ordé}(h?).

Equation[(3.46) follows easily by iterating the Kolmogofowward equation

E[f(Xe)] = EIf(X0)] + / E [(Lof)(X.)] ds.

Alternatively, it can be derived fromh (3.45) by noting thiiti@rated integrals involving
at least one integration w.r.t. a Brownian motion have mema.z O
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186APTER 3. SDE |I: STRONG SOLUTIONS AND APPROXIMATION SEMES

Remark (Computation of iterated It integrals). Iterated It6 integrals involving only
a single one dimensional Brownian motidh can be computed explicitly from the
Brownian increments. Indeed,

t+h s1 Sn—1
/ / . / dB;, - --dBs,dBs, = hy(h, By, — By)/nl,
t ¢ t

whereh,, denotes thei-th Hermite polynomial, cf.[(2.58). In the multi-dimensain
case, however, the iterated Itd integrals can not be rempiedén closed form as func-
tions of Brownian increments. Therefore, in higher ordemetical schemes, these
integrals have to be approximated separately. For exart@esecond iterated It6 inte-
gral

h s
= / / dB¥dB! = B*dB!
0 0

of two components of & dimensional Brownian motion satisfié§ + I}* = BFB!.
Hence the symmetric part can be computed easily. Howeverattisymmetric part
It — I'* is theLévy area processf the two dimensional Brownian motioiB*, B).
The Lévy area can not be computed explicitly from the incneté & # [. Controlling
the Lévy area is crucial for a pathwise stochastic integrattieory, cf.[[117, 26].

Exercise (Lévy Area). If c(t) = (x(t),y(t)) is a smooth curve ifR? with ¢(0) = 0,
then

A0 = [ o) - onds = [atn- [yar

describes the area that is covered by the secant from thia ¢oig(s) in the interval
[0,t]. Analogously, for a two-dimensional Brownian motiBa = (X, ;) with By = 0,
one defines theévy Area

t t
Ay = / X dY, — / Y,dX.
0 0

1) Leta(t), 5(t) beC*-functions,p € R, and

Vi, = ipA; — ? (XZ+Y7?) + B(1).

Show using Itd’s formula, that* is a local martingale provided (t) = «(t)* — p?
andg’(t) = a(t).
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2) Letty € [0,00). The solutions of the ordinary differential equations doand 3
with a(tg) = B(ty) = 0 are

a(t) = p-tanh(p- (to — 1)),

B(t) = —logcosh(p- (to —1)).
Conclude that )
Ele?n] = ———  VpeR.
[e7] cosh(pty) pe
3) Show that the distribution od; is absolutely continuous with density
1
fa(z) = 2t cosh(Z)

Numerical schemes for SDE

Let X be a solution of the SDE(3.40)), (3141) respectively. By gimgl the 1t6-Doeblin
formula too,(X,) and taking into account all terms up to strong or@éh' ), we obtain

the Itd-Taylor expansion
d

Xipn =X = bX)h + Y ou(X,) (Bf,, — B (3.47)
k=1
d t+h s
+ Y (01 Voy) (Xt)/ / dBLdBY + O (h*?).
kl=1 t t

Here the first term on the right hand side has stréAgrder O(h), the second term
O(h'/?), and the third tern® (k). Taking into account only the first two terms leads to
the Euler-Maruyama scheme with step sizevhereas taking into account all terms up
to orderO(h) yields the Milstein scheme:

e Euler-Maruyama scheme with step sizéh
d
Xl =X = WX b+ ) on(X)) (Bfy, — BY)  (t=0,h,2h,3h,...)
k=1
e Milstein scheme with step sizéh
d

d t+h s
Xh=XP = WX e S () (BB + Y (o Vo) (X1 [ [ aplaBt
t t

k=1 k=1
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The Euler and Milstein scheme provide approximations todbleition of the SDE
(3.40 that are defined for integer multiplesof the step sizé. To analyse the ap-
proximation error it is convenient to extend the definitidmhee approximation schemes
to all ¢ > 0 by considering the delay stochastic differential equation

dX! = b(X),)ds + Y on(X[,,)dBE, (3.48)
k

S

dX! = (X[, ds + Y (Uk(X@Jh)+(01V0k)(stJh>/
k,l

Lsln

dBi) dB" (3.49)

respectively, where
|s]n = max{t € hZ : t < s}

denotes the next discretization time belevNotice that indeed, the Euler and Milstein
scheme with step sizk are obtained by evaluating the solutions[of (8.48) and }3.49
respectively at = kh with k € Z.

Strong convergence order

Fix a € RY, let X be a solution of[(3.40) with initial conditioX, = a, and letX" be
a corresponding Euler or Milstein approximation satisfy{®.48, [(3.4P) respectively
with initial condition X = a.

Theorem 3.20(Strong order for Euler and Milstein scheme). Lett € [0, c0).

1) Suppose that the coefficietand o, are Lipschitz continuous. Then the Euler-
Maruyama approximation on the time interval t] has strongL? order 1/2 in
the following sense:

sup’Xg—XS’ = O(h?).

s<t

2) If, moreover, the coefficientsand o, are C* with bounded derivatives then the
Milstein approximation on the time intervdl, t] has strongZ? order1, i.e.,

| X} = X,| = O(h).
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The assumptions on the coefficients in the theorem are niobaldnd can be weakened.
However, it is well-known that even in the deterministiceadocal Lipschitz condition
is not sufficient to guarantee convergence of the Euler aqypiations. The iterated
integral in the Milstein scheme can be approximated by aiEpexpansion in such a
way that the strong ordep(h) still holds, cf. Kloeden and Platef2]XXX

Proof. For notational simplicity, we only prove the theorem in theealimensional
case. The proof in higher dimensions is analogous.

1) By (3.48) and sinceX? = X,, the difference of the Euler approximation and the
solution of the SDE satisfies the equation

t t
Xh—Xx, = / (b(X],,) —b(Xy)) ds + / (o(X[.),) — o(X,)) dB,.
0 0
This enables us to estimate the mean square error

&= F {sup’Xf—Xsﬂ .

s<t

By the Cauchy-Schwarz inequality and by Doob%inequality,
h ' h 2 ! h 2
o< 2t/0 E [\b(xwh) — b(X,)| ] ds + 8/0 E [\U(th) — o (X,)| } ds
t
< (2t+8).L2./ B [1xty, - x.[] ds (3.50)
0
t
< (4t+16)-L*- </ ehds + Cth) ,
0

wheret — C} is an increasing real-valued function, ahds a joint Lipschitz constant
for b ando. Here, we have used that by the triangle inequality,

2 [’Xﬁjh —Xslz] =2F [}XﬁJh —X?ﬂ t28 [}Xf —Xsﬂ )

and the first term representing the additional error by threetdiscretization on the
interval[|s|n, | s]n + h] is of orderO(h) uniformly on finite time intervals by Corollary
[3.19. By [3.50) and Gronwall’s inequality, we conclude that

gl < (4t +16)L*C; - exp ((4t + 16)L*t) - h,
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18BHHAPTER 3. SDE |I: STRONG SOLUTIONS AND APPROXIMATION SEMES

and hence,/z"" = O(v/h) for anyt € (0,00). This proves the assertion for the Euler
scheme.

2) To prove the assertion for the Milstein scheme we havegoeamore carefully. By
(3.49), the difference of the Milstein approximation ane siolution of the SDE satisfies
the equation

X, - X' = /Ot (b(X,) = b(X[,),)) ds (3.51)

t
4 / (0(X.) — o(XPE, ) — (00) (XL, )(By — Blay,) dB,
= L+ 1L+ 111+ 1V,

where
o= [ e —vo) s,
I, = /Ot (0(X;) — o(XD) dB;,
I, = /Ot (b(XT) —b(X],,)) ds,
W= [ (o)~ 00Xy, (0 (XL )(B. ~ Buo)) B

Here terms/ and /1 describe the continuation of the error made in previous time
whereas/ /1 and IV correspond to an additional error by the time discretizabo
the interval[|s|,, s]. We are now going to bound the second moments$, off, 111
and IV separately. Similarly as in the Euler case, we obtain by thecBy-Schwarz
inequality and by Doob’¢.? inequality:

E[I}] < t/OtE [[b(X) = b(XE)) ds < LQt/Ots’;ds, and (3.52)

t t
E[117] < 4t/ E DO‘(XS) - U(Xsh)ﬂ ds < 4L2t/ chds,  (3.53)
0 0
where
= B|lxl - X,
We are now going to prove th@f I and 7V are of strong.? orderO(h) uniformly on
finite time intervals. The proof can then be completed siryilas in the Euler case.

Stochastic Analysis Andreas Eberle



3.4. STOCHASTIC TAYLOR EXPANSIONS AND NUMERICAL METHODS 16

To bound/V we note that by((3.49) and It6’s formula,

s

a(Xg)—o—(X[;Jh)—/ o(X[,,)o' (X)) dB,

Lsln

) /LS {b(X[LSJh)UI(Xf) " % (U(X[;Jh) + (UUI)(X[;Jh)(Br - BLSJh))2 U//(th)} dr.

s]n

Since all the coefficients and their derivatives up to ordare8assumed to be bounded,
and, in particularg’ is Lipschitz continuous, we can conclude that

|0(X7) = o(X[y),) = (00")(X[,),) (Bs = By,

< Cl‘(l_'_’Bs_Bszh’z"i_Cb'/ 1+‘BT_BLrJh2dT
Lsln
with constants’; and(; that do not depend on Hence

B[] <

LETZTER SCHRITT STIMMT NOCH NICHT GANZ !
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Chapter 4

SDE II: Transformations and weak
solutions

LetU C R" be an open set. We consider a stochastic differential exuafithe form

with a d-dimensional Brownian motiofB;) and measurable coefficieris [0, co0) x

U — R"ando : [0,00) x U — R™, In applications one is often not interested in the
random variablesy; : 2 — R themselves but only in their joint distribution. In that
case, itis usually irrelevant w.r.t. which Brownian motids}) the SDE[(4.11) is satisfied.
Therefore, we can “solve” the SDE in a very different way:téasl of constructing the
solution from agivenBrownian motion, we first construct a stochastic prodess P)

by different types of transformations or approximationsg ahen we verify that the
process satisfies (4.1) w.rsomeBrownian motion( B;) that is usuallydefined through

@.1).
Definition. A weak solutionof the stochastic differential equatidn (4.1) is given by

(i) a “setup” consisting of a probability spac&?, A, P), a filtration (F;):>o on
(9, A) and an(F;) Brownian motionB; : Q — R? w.rt. P,

152
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(i) acontinuoug F;) adapted stochastic procegs,);. s whereS is an(F;) stopping
time such thab(-, X) € L} ,.([0,5),R"), o(-, X) € L2 ,.([0,5),R**?), and

a,loc

t t
X, = X0+/ b(s, Xs) ds+/ o(s, Xs) dBs foranyt < S a.s.
0 0

It is called astrong solutionw.r.t. the given setup if and only(iX,) is adapted w.r.t. the
filtration (o (F", Xo)),-, 9enerated by the Brownian motion and the initial condition.

Note that the concept of a weak solution of an SDE is not rélat¢he analytic concept
of a weak solution of a PDE!

Remark. A procesqX;);>o is astrong solution up t§ < oo w.r.t. a given setup if and
only if there exists a measurable map: R, x R" x C'(Ry,R?) — R", (¢, z9,y) —
Fi(z0,y), such that the proce$$});> is adapted w.r.t. the filtratioB(R™) ® B;, B; =
oly—y(s):0<s<t),and

X, = F(XoB) forany t > 0
holds almost surely. Hence strong solutions are (almostyguiunctions of thegiven

Brownian motion and the initial value!

There are SDE that have weak but no strong solutions. An ebesigiven in Sectidn4] 1.
The definition of weak and strong solutions can be genexhliaether types of SDE
including in particular functional equations of the form

dXt = bt(X) dt+0t(X) dBt
where(b,) and(o,) are(B;) adapted stochastic processes defined' @R, , R"), as well

as SDE driven by Poisson point processes, cf Chapter 3.

Different types of transformations of a stochastic prodess P) are useful for con-
structing weak solutions. These include:

e Random time changes:X;):>0 — (X1, )a.>0 Where(T,),>o is an increasing stochas-
tic process ofR , such thafl,, is a stopping time for any > 0.

¢ Transformations of the paths in spacéhese include for example coordinate changes
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154 CHAPTER 4. SDE II: TRANSFORMATIONS AND WEAK SOLUTIONS

(X1) = (p(Xy)), random translationsX;) — (X;+ H;) where(H,) is another adapted
process, and, more generally, a transformation that ifnépgo the strong solutiofy;)
of an SDE driven by X}).

e Change of measureHere the random variable’s, are kept fixed but the underlying
probability measuré is replaced by a new measuPesuch that both measures are mu-
tually absolutely continuous on each of thealgebrasF;, t € R, (but usually not on
Foo)-

In this chapter we study these transformations as well asioek between them. For
identifying the transformed processes, the Lévy charaetiéons in Section 411 play a
crucial réle.

4.1 Levy characterizations

Let (2, A, P, (F;)) be a given filtered probability space. We first note that Lékg-p
cesses can be characterized by their exponential martistgal

Lemma 4.1. Lety : RY — C be a given function. AQF;) adapted cadlag process
X; : Q — R4is an(F;) Lévy process with characteristic exponenif and only if the
complex-valued processes

Z¥ = exp (z’p - X+ tw(p)) , t>0,
are (F;) martingales, or, equivalently, loc&JF;) martingales for any € R<,

Proof. By Corollary[1.3, the processe® are martingales i is a Lévy process with
characteristic exponent. Conversely, suppose tha? is a local martingale for any
p € R?. Then, since these processes are uniformly bounded on fimieeintervals,

they are martingales. Hence fo< s < ¢t andp € R¢,

E[exp (ip (X — Xs)) ’]:s} = exp(—(t —s)¥(p)),

which implies thatX; — X is independent ofF, with characteristic function equal to
exp(—(t — s)v). O
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Exercise (Lévy characterization of Poisson point process@s Let (S, S,v) be ao-
finite measure space. Suppose that).>o on (2, A, P) is an (F;) adapted process
taking values in the spadd"(S) consisting of all counting measures SnProve that
the following statements are equivalent:

(i) (V;) is a Poisson point processes with intensity measure

(i) Forany functionf € £(S,S,v), the real valued process

N = / Fw) N, (dy), >0,

is a compound Poisson process with jump intensity meagsurg—.
(iii) For any functionf € £(S,S,v), the complex valued process

W= eVt 120w = [(-en)

is a local(F;) martingale.
Show that the statements are also equivalent if only eleamghinctionsf € L'(S, S, v)
are considered.

Lévy’s characterization of Brownian motion

By Lemmal4.1, arR¢-valued proces$X;) is a Brownian motion if and only if the
processesxp (ip - X; + t|p|?/2) are local martingales for aj € R?. This can be
applied to prove the remarkable fact that any contind®tisalued martingale with the
right covariations is a Brownian motion:

Theorem 4.2(P. Lévy 194§. Suppose that/!, ..., M? are continuous localF;) mar-
tingales with

[MF MY, = 64t P-as. foranyt > 0.

ThenM = (M*, ..., M%) is ad-dimensional Brownian motion.

The following proof is due to Kunita and Watanabe (1967):
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Proof. Fix p € R and let®; := exp(ip - M;). By Itd’s formula,

d
) 1
dd, = ip® -dM, — 5 Z D, i d[Mka Ml]t

k=1

1

Since the first term on the right hand side is a local martemgatrement, the product
rule shows that the proceds - exp(|p|® t/2) is a local martingale. Hence by Lemma
4.1, M is a Brownian motion. O

Lévy’s characterization of Brownian motion has a lot of rekadle direct consequences.

Example (Random orthogonal transformations). Suppose thak; : Q@ — R"is a
solution of an SDE
dXt = Ot dBt, XO = Xy, (42)

w.r.t. a d-dimensional Brownian motioi5;), a product-measurable adapted process
(t,w) — O(w) taking values iR"*?, and an initial valer, € R". We verify thatX is
ann-dimensional Brownian motion provided

Oy(w) Oy(w)" = 1, foranyt >0, almostsurely (4.3)

Indeed, by[(4.2) and (4.3), the components

d .t
X, = :cg+2/0 oF dBt
k=1

are continuous local martingales with covariations
(X X7] = Z/O“ﬂ O''d[B* B'] = /Z()ik O*dt = 4 dt.
k,l k

Applications include infinitesimal random rotations & d) and random orthogonal
projections . < d). The next example is a special application.

Example (Bessel procegs We derive an SDE for the radial componéiit = | B;| of
Brownian motion inR?. The function-(x) = |z| is smooth orR? \ {0} with Vr(x) =
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e,(z), andAr(z) = (d — 1) - |z|~! wheree,.(z) = z/|z|. Applying Itd’s formula to
functionsr. € C*(R?), e > 0, with r.(z) = r(z) for |x| > ¢ yields

th = er(Bt) : dBt +

dt forany t < Ty
t

whereTy is the first hitting time of) for (B;). By the last example, the process
t
A / e.(B.)-dB,,  1>0,
0

Is a one-dimensional Brownian motion defined for all timée (talue ofe, at0 being
irrelevant for the stochastic integral). Hendg,) is a weak solution of the SDE
d—1
2R,
up to the first hitting time ofl. The equatiori(414) makes sense for any particiikarmiR

th = th +

dt (4.4)

and is called thdessel equation Much more on Bessel processes can be found in
Revuz and Yorl[33] and other works by M. Yor.

Exercise.a) Let(X;)o<:<c be a solution of the Bessel equation
d—1
2Xy
where(B;);>¢ is a standard Brownian motion ands a real constant.

dXt = dt + dBt, XO = 2o,

i) Find a non-constant functiom: R — R such that.(X,) is a local martingale up
to the first hitting time ob.

ii) Compute the ruin probabilitie® [T, < T;] for a,b € R, with x4 € [a, b] .
iif) Proceeding similarly, determine the mean exit tilig'], whereT' = min{T,, T, }.

b) Now let(X;):>, be a compound Poisson process wiih = 0 and jump intensity
measure’ = N(m, 1), m > 0.

i) Determine) € R such thatxp(AX;) is a local martingale up t@y.
i) Prove that fora < 0,
PT, < ] = blim PT, < T, < exp(ma/2).
—r OO

Why is it not as easy as above to compute the ruin probatility, < 7, exactly ?
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The next application of Lévy’s characterization of Browmiaotion shows that there
are SDE that have weak but no strong solutions.

Example (Tanaka’'s example. Weak vs. strong solutionjs Consider the one dimen-
sional SDE

dXt = SgH(Xt) dBt (45)
. . . +1 for z >0,
where(B;) is a Brownian motion ansgn(z) := . Note the unusual
-1 for x <0

conventiorsgn(0) = 1 that is used below. We prove the following statements:

1) X is a weak solution of(415) off2, A, P, (F;)) if and only if X is an(F;) Brow-
nian motion.

2) If X is a weak solution w.r.t. a setuf, A, P, (F;), (B;)) then for anyt > 0, the
process B, ).<; is measurable w.r.t. the-algebra generated %, and 7117,

3) There is no strong solution to (4.5).
The proof of 1) is again a consequence of the first exampleeabtivX is a weak

solution thenX is a Brownian motion by Lévy’s characterization. Conveys#l X is
an(F;) Brownian motion then the process

t
B, = / sgn(X;) dX;
0
is a Brownian motion as well, and, by the “associative law”,
t t
/ sgn(X,)dBs = / sen(X,)?dX, = X, — Xo,
0 0

i.e., X is a weak solution td (415).

For proving 2) , we approximatgz) = |z| by symmetric and concave functions e
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C*>(R) satisfyingr.(z) = |z| for |x| > . Then the associative law, the Itd isometry,

and It6’s formula imply
t

¢
B, — By = / sgn(X,) dX, = ligl ol (X,) dX,
0 € 0

— i (200 — () — 5 [0 )

: I
— i (21X — p(Xol) = 5 | 1)) d)
with almost sure convergence along a subsequeng¢e.

Finally by 2), if X would be a strong solution w.r.t. a Brownian motighthen X,
would also be measurable w.r.t. thealgebra generated h¥, and]-"t‘XLP. This leads
to a contradiction as one can verify that the eviekit > 0} is not measurable w.r.t. this
o-algebra for a Brownian motiofX;).

Lévy characterization of Lévy processes

Lévy’s characterization has a natural extension to disnootis martingales.

Theorem 4.3.Leta € R™? b € R, and letv be ao-finite measure oiR? \ {0}
satisfying [ (Jy| A |y|?) v(dy) < oo. If X} ..., X! : Q — R are cadlag stochastic
processes such that

(i) M} .= X} -0kt isalocal(F;) martingale for anyk € {1,...,d},
(i) [X* XYs=art foranyk,le{1,...,d}, and

(i) E|> coqlp(AXS) ]—}} =v(B)-(t—r) almostsurely
for any0 < r < t and for anyB € B(R?\ {0}),

thenX, = (X}, ..., X?) is a Lévy process with characteristic exponent
1 : ip- :
vp) = gpeap—ip bt [Q-E iy vy (@6)

For proving the theorem, we assume without proof that a lotattingale is a semi-
martingale even if it is not strict, and that the stochasttegral of a bounded adapted
left-continuous integrand w.r.t. a local martingale isiagalocal martingale, cf. e.qg.
[32].
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Proof of Theorerh 413We first remark that (iii) implies

[ //G f(y) v(dy) ds
4.7)

for any bounded left-continuous adapted proaggssnd for any measurable function
[ R4\ {0} — C satisfying|f(y)| < const.- (Jy| A |y|?). This can be verified
by first considering elementary functions of typéy) = > ¢; I, (y) andGs(w) =
S Ai(W) Lty s (s) With ¢; € R, B; € B(R?\ {0}),0 < tg <ty < -+ < t,, and4;
bounded and;,-measurable.

T}, as. foro<r <t

Now fix p € R?, and consider the semimartingale

Zy = exp(ip- Xe+t0(p)) = exp(ip- My +t((p) +ip-b)).
Noting that[M*, M']¢ = [X*, X!]¢ = o™t by (ii), Itd’s formula yields
t t
1
Z, = 1+/ Z_z'p-dM+/ Z_ (@Z)(p)+ip-b—52pkplakl)dt (4.8)
0 0

k,l
+3 z ( ZpAX—l—ip-AX).
(0,4]
By (4.7) and sincée™? — 1 —ip - y| < const. - ([y| A |y|*), the series on the right hand
side of [4.8) can be decomposed into a martingale and the fiaiiation process

/Ot / Zs (P =1 —ip-y) v(dy) ds

Therefore, by[(418) and (4.6}7,) is a martingale for any € R¢. The assertion now
follows again by Lemma4l1. O

An interesting consequence of Theorem 4.3 is that a Browmiation B and a Lévy
process without diffusion part w.r.t. the same filtratioa always independent, because
[B%, X!'] = 0 for anyk, L.

Exercise (Independence of Brownian motion and Lévy procességs Suppose that
B, : Q - RtandX, : Q — R? are a Brownian motion and a Lévy process with
characteristic exponenty (p) = —ip - b+ [(1 — e®¥ + ip - y) v(dy) defined on the
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same filtered probability spa¢@, A, P, (F;)). Assuming thaff (|y| A|y|*) v(dy) < o,
prove that( B, X,) is a Lévy process oR%*? with characteristic exponent

1 ,
V(p.q) = §Iplf@+¢x(q), peRY geRY.

Hence conclude tha® and X are independent.

Lévy characterization of weak solutions

Lévy’s characterization of Brownian motion can be extenttesblutions of stochastic
differential equations of type

driven by ad-dimensional Brownian motio(3;). As a consequence, one can show that
a process is a weak solution pf (#.9) if and only if it solves¢brresponding martingale
problem. We assume that the coefficiehtsR, x RY — R? ando : R, x R? — R9*4

are measurable and locally bounded, i.e., boundel@,ahx K for anyt > 0 and any
compact seK C RY. Let

o (4.10)
:CZ

1< o” a
— - i %
c zijzﬂa (t2) 5o +;b(t,x)a
denote the corresponding generator whérezr) = o(t, z)o(t, z)? is a symmetriel x d

matrix for anyt andzx.

Theorem 4.4(Weak solutions and the martingale problen). If the matrixo (¢, z) is
invertible for anyt and =, and (t,z) — o(t,z)~! is a locally bounded function on
R, x R9, then the following statements are equivalent:

(i) (X;)is a weak solution of (419) on the setUp, A, P, (F;), (By)).

(i) The processes!; := X} — X; — [s bi(s, X,) ds, 1 < i < d, are continuous local
(FF) martingales with covariations

t
M M), = /aij(s,Xs) ds  P-a.s. foranyt > 0. (4.11)
0
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(i) The processest)’) .= f(X;) — f(Xo) — [J(Lf)(s,X,) ds, f € C*(RY), are
continuous localF/”) martingales.

(iv) The processes/}’! := ft, Xy) — f(0,Xq) — fo ( + Lf)(s, Xs) ds,
feC*(Ry xRY), are continuous local7") martingales.

Proof. (i)=-(iv) is a consequence of the I1td-Doeblin formula, cf. equa{@2.57) above.
(iv)=-(iii) trivially holds.

(iii) = (i) follows by choosing forf polynomials of degree: 2. Indeed, forf(z) = 7,
we obtainl f = ', hence

t
M = X;—Xf—/bi(s,xs)ds = MY (4.12)
0

is a local martingale by (iii). Moreover, if(z) = z'z7 thenLf = aV + 2°V + 27V by
the symmetry ofi, and hence

t
XiX] - XiX3 = th+/ (a” (s, X,) + X2V (s, X,) + XI b'(s, X,)) ds. (4.13)
0
On the other hand, by the product rule and (#.12),
XixXi - Xixi - / X dXI + / X7 X7+ [X7, X), (4.14)
0 0
t
— Nt+/ (X2V (s, X,) + XV (s, Xy)) ds + [ X', X7],
0
with a continuous local martingal¥. Comparing[(4.113) and (4.114) we obtain
MY M), = [ XX, = / a’(s, Xs) ds
0

since a continuous local martingale of finite variation isstant.

(il)=-(i) is a consequence of Lévy’s characterization of Browmiaotion: If (ii) holds
then

dXt - th -+ b(t, Xt) dt - O'(t, Xt) dBt -+ b(t, Xt) dt
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whereM, = (M}, ..., M) andB, := fot o(s, X,)~t dM, are continuous local martin-
gales with values ifR¢ becauser—! is locally bounded. To identify3 as a Brownian
motion it suffices to note that

[B* B, = /OZ(U,;;al;l)(s,Xs)d[Mi,Mj]

_ /(ala(al)T)kl (5, X.)ds = Gt

0

foranyk,l=1,...,d by (411). O

Remark (Degenerate case). If o(t, z) is degenerate then a corresponding assertion
still holds. However, in this case the Brownian motids)) only exists on an extension

of the probability spac€, A, P, (F;)). The reason is that in the degenerate case, the
Brownian motion can not be recovered directly from the sofut.X;) as in the proof
above, see [34] for details.

The martingale problem formulation of weak solutions is pdwl in many respects:
It is stable under weak convergence and therefore wellgfiteapproximation argu-
ments, it carries over to more general state spaces (imgudr example Riemannian
manifolds, Banach spaces, spaces of measures), and, sécdwprovides a direct link
to the theory of Markov processes. Do not miss to have a lotheatlassics by Stroock
and Varadhar [36] and by Ethier and Kurtz|[15] for much moreétmmartingale prob-
lem and its applications to Markov processes.

4.2 Random time change

Random time change is already central to the work of Doebimf1940 that has been
discovered only recently [10]. Independently, Dambis andibDs-Schwarz have de-
veloped a theory of random time changes for semimartingaléee 1960s([23],[[33].
In this section we study random time changes with a focus @ficgtions to SDE, in
particular, but not exclusively, in dimension one.

Throughout this section we fix @ght-continuous filtration (F;) such thatr, = F”
for anyt > 0. Right-continuity is required to ensure that the time tfamsation is
given by(F;) stopping times.
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164 CHAPTER 4. SDE II: TRANSFORMATIONS AND WEAK SOLUTIONS

Continuous local martingales as time-changed Brownian mabdns

Let (M;):>o be a continuous locdlF;) martingale w.r.t. the underlying probability mea-

sureP such thatV, = 0. Our aim is to show that/, can be represented &, with

a one-dimensional Brownian motid®,). For this purpose, we consider the random
time substitutioru — T, whereT,, = inf {u : [M], > a}is the first passage time to the

levelu. Note thata — T, is theright inverseof the quadratic variation— [M],, i.e.,

Mlr, = a on {T, < oo}, and
T, = inf{u:[M],>[M)} = sup{u:[M], = M|}
by continuity of[A/]. If [M] is strictly increasing thefi = [M]~!. By right-continuity
of (%), T, is an(F;) stopping time for any. > 0.
Theorem 4.5(Dambis, Dubins-Schwar3. If M is a continuous local.F;) martingale
with [M]., = oo almost surely then the time-changed procBss= My, a > 0, is an
(Fr,) Brownian motion, and

M, = B, foranyt > 0, almost surely (4.15)
The proof is again based on Lévy’s characterization.

Proof. 1) We firstnote tha3},;;, = M, almost surely. Indeed, by definitiof;,;, =
My, -
[t, Tiar,)- This holds true since the quadratic variatidi] is constant on this

It remains to verify thatV/ is almost surely constant on the interval

interval, cf. the exercise below.

2) Next, we verify thatB, = My, is almost surely continuous. Right-continuity
holds sinceV/ andT are both right-continuous. To prove left-continuity ndiatt
fora > 0,

ligl My, . = Mg, foranya > 0

by continuity of M. It remains to showdM, = My, almost surely. This again
holds true by the exercise below, becailse andT, are stopping times, and

M. = lm(M., = lm@-¢ = o = [Mg

by continuity of[}/].
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3) We now show thatB, ) is a square-integrableéFr, ) martingale. Since the random
variablesr, are(F;) stopping times(B,) is (Fr,) adapted. Moreover, for any,
the stopped proceg\gf“ = M,,r, IS a continuous local martingale with

E[[M"™]s] = FE[Ml] = a < ox.
HenceM ™ is in M2 ([0, ]), and
EB) = E[M;] = E[(MX)? =a foranya>0.
This shows thatB, ) is square-integrable, and, moreover,
E[B,|Fr,] = E[Mg|Fr] = My = B, forany0<r<a

by the Optional Sampling Theorem appliedit=.

Finally, we note thatB], = (B), = a almost surely. Indeed, by the Optional Sampling
Theorem applied to the martingal&/7=)? — [A/7=], we have

B|B; = B/\Fr,| = E[M;, —Mg|Fr]
=  E[M]g, — Mg, |Fr,] = a—r for0<r<a.

HenceB? — a is a martingale, and thus by continuitg], = (B), = a almost surely.

We have shown thdtB, ) is a continuous square-integralflg;, ) martingale with
[B], = a almost surely. Henc® is a Brownian motion by Lévy’s characterization]

Remark. The assumptiof/]., = oo in Theorem 4.5 ensurés, < oo almost surely.

If the assumption is violated thel can still be represented in the form (4.15) with a
Brownian motionB. However, in this caséd; is only defined on an extended probability
space and can not be obtained as a time-changé far all times, cf. e.g.[[33].

Exercise. Let M be a continuous locdlF;) martingale, and let andT" be (F;) stop-
ping times such that < 7. Prove that if{M]s = [M]r < oo almost surely, thed/
is almost surely constant on the stochastic intef¥al’]. Use this fact to complete the
missing step in the proof above.

We now consider several applications of Theoifem 4.5. (IEt);~, be a Brownian
motion with values ifR? w.r.t. the underlying probability measufe

University of Bonn Winter Semester 2012/2013



166 CHAPTER 4. SDE II: TRANSFORMATIONS AND WEAK SOLUTIONS

Time-change representations of stochastic integrals

By Theoreni 4.5 and the remark below the theorem, stochasgigrals w.r.t. Brownian
motions are time-changed Brownian motions. For any inmetyta € £2,, (R, R?),

there exists a one-dimensional Brownian motiBnpossibly defined on an enlarged
probability space, such that almost surely,

t
/0 G, -dW, = Bf(;thslg ds forany t > 0.

Example (Gaussian martingale$. If G is a deterministic function then the stochastic
integral is a Gaussian process that is obtained from the BeswmotionB by a deter-
ministic time substitution. This case has already beenedid Section 8.3 in [13].

Doeblin [10] has developed a stochastic calculus basedmngubstitutions instead of
It6 integrals. For example, an SDEIRt of type

t t
X, — X, = / o(s, Xs) dWs + / b(s, Xs) ds
0 0

can be rephrased in the form

t
Xt_XO — Bng'(S,XS)Q d8+/ b(S,XS) dS
0
with a Brownian motionB. The one-dimensional It6-Doeblin formula then takes the
form
X 0, X = B (ot L X d
f(ta t) - f( ) O) - f(fU(&Xs)z f(s,X5)? ds + ; g + f (S, 8) S

with £f = 1 62" + bf'.

Time substitution in stochastic differential equations

To see how time substitution can be used to construct weaki®io$, we consider at
first an SDE of type

Y, = o(¥;)dB, (4.16)
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in R! whereo : R — (0, c0) is a strictly positive continuous function. ¥ is a weak
solution then by Theorem 4.5 and the remark below,

t
Y, = X, Wwith A=[Y],= / o(Y,)? dr (4.17)
0

and a Brownian motioX'. Note thatA depends oY, so at first glacd(4.17) seems not
to be useful for solving the SDE_(4]16). However, the invéirse substitutio” = A1
satisfies

and hence

Therefore, we can construct a weak solufioof (4.16) from a given Brownian motion
X by first computingl’, then the inverse functiod = 7!, and finally settingt" =
X o A. More generally, the following result holds:

Theorem 4.6. Suppose thatX,) on (2, A, P, (F;)) is a weak solution of an SDE of the
form
dX, = 0(X,) dB,+b(X,)da (4.18)

with locally bounded measurable coefficiehts R? — R? ando : RY — R%*? such
thato(z) is invertible for almost all;, ando~! is again locally bounded. Let: R? —
(0, 00) be a measurable function such that almost surely,

T, = /Q(Xu)du < oo Va € (0,00), and T, =oco. (4.19)
0
Then the time-changed process defined by
Yi = Xy, A = T

is a weak solution of the SDE

dy, = (%) (Y;)dBtJr(g) (Y;) dt. (4.20)

We only give a sketch of the proof of the theorem:
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Proof ofl4.6. (Sketch)The processX is a solution of the martingale problem for the
operator = 1 3" a;;(x) %{;ﬂ + b(z) - V wherea = oo’ i.e.,

MY = f(X.) - F(Xo) - /Oa(ﬁf)(Xu)du

is a local(F,) martingale for anyf € C?. Therefore, the time-changed process
1£] .
M = = £ - [ Ene) du
0

= V)~ f(Ye) — / (CF)(V) AL dr

is a local(F4,) martingale. Noting that

v o 1 B 1 1
' T'(Ay) o(Xa,) o(Y;)’

we see that w.r.t. the filtratiofiF,,), the process” is a solution of the martingale
problem for the operator

~ 1 aij b
L= E L= 3 ZZJ: 0 8xlf‘3xﬂ v
Since? = ¢ f’? this implies that” is a weak solution 0f(4.20). O

In particular, the theorem shows thatXf is a Brownian motion and conditiof_(4]19)
holds then the time-changed procéssolves the SDEIY = o(Y)~ /2 dB.

Example (Non-uniqueness of weak solutiorjs Consider the one-dimensional SDE
ay, = [|Y|*dB;, Yo =0, (4.21)

with a one-dimensional Brownian motidi3;) anda > 0. If « < 1/2 andz is a
Brownian motion withX, = 0 then the time-chang€&, = [" o(X,) du with o(z) =
|z| 2~ satisfies

mr) = B /Oagm)du} - /O“E[|Xu|—2ﬂdu
= E[|X1|2a]~/0au°‘du < o0
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for anya € (0, 00). Hence[(4.1I9) holds, and therefore the prodéss X ,,, A =T 1,

is a non-trivial weak solution of (4.21). On the other hah@d,= 0 is also a weak
solution. Hence forr < 1/2, uniqueness in distribution of weak solutions fails. For
a > 1/2, the theorem is not applicable since Assumption (4.19)atated. One can
prove that in this case indeed, the trivial solutigre 0 is the unique weak solution.

Exercise(Brownian motion on the unit sphere). LetY; = B,/|B;| where(B;);>¢ iS a
Brownian motion inR™, n > 2. Prove that the time-changed process

t
Zy=Yr, T=A" with At:/ |1B,| 2 ds ,
0

is a diffusion taking values in the unit sphefe! = {z € R" : |z| = 1} with generator

1 62f n—1 .
i i ] z

One-dimensional SDE

By combining scale and time transformations, one can carrgoather complete study
of weak solutions for non-degenerate SDE of the form

dXt = O'(Xt) dBt -+ b(Xt) dt, XO = Ty, (422)

on a real intervala, ). We assume that the initial valug, is contained if«, ), and
b, o : (o, ) — R are continuous functions such thgtc) > 0 for anyz € («, 8). We
first simplify (4.22) by a coordinate transformatish= s(X;) where

s (a,B) — (8(04)75(5))

is C* and satisfies’(x) > 0 for all z. The scale function

s(z) = /Zexp<—/y iigg dx) dy

) o

has these properties and satisféeés” + bs’ = 0. Hence by the It6-Doeblin formula,
the transformed proced$ = s(X;) is a local martingale satisfying

dY, = (0)(X,)dB,
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i.e.,Y is a solution of the equation
dY, = G&(Y)dB, Yo = s(x), (4.23)

wheres := (0s') o s71. The SDE[(4.2B) is the original SDE in “natural scale”. It can
be solved explicitly by a time change. By combining scaledfarmations and time
change one obtains:

Theorem 4.7. The following statements are equivalent:

(i) The process$X,),.. onthe setugs?, A, P, (F;), (B;)) is a weak solution of (4.22)
defined up to a stopping time

(i) The process; = s(X;),t < ¢, on the same setup is a weak solutior_ of (4.23) up
to (.

(iii) The processY;);<¢ has a representation of the fori = §At, whereB, is a
one-dimensional Brownian motion satisfyifg = s(x,) and A = 7! with

T - /OZ_)(éu) du,  oly) = 1/5@w)>

Carrying out the details of the proof is left as an exerciséie heasuren(dy) :=
o(y) dy is called the'speed measure”of the procesg” althoughY is moving faster

if m is small. The generator d&f can be written in the fornC = %ﬁd%, and the
generator ofX is obtained from{ by coordinate transformation. For a much more
detailed discussion of one dimensional diffusions we refe$ection V.7 in[[34]. Here

we only note thdf 4]7 immediately implies existence and wengss of a maximal weak

solution of [4.2P):

Corollary 4.8. Under the regularity and non-degeneracy conditiong@ndb imposed
above there exists a weak soluti@nof (4.22) defined up to the first exit time

¢ = inf {t >0: lingt € {a,b}}

from the interval(c, 5). Moreover, the distribution of any two weak solutiq§, )¢
and(X,);.: onlJ,., C([0,u), R) coincide.

u>0
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Remark. We have already seen above that uniqueness may faiisfdegenerate.
For example, the solution of the equatifdn = |Y;|“ dB;, Yy, = 0, is not unique in
distribution fora. € (0, 1/2).

Example (Bessel SDE Suppose thatR; ), is a maximal weak solution of the Bessel

equation
d—

2R,
on the interval(a, ) = (0, c0) with initial condition Ry = ry € (0, 00) and the pa-

1
dR, = dW,+ dt, W ~ BM(RY),

rameterd € R. The ODELs = 1s” 4+ <15’ = 0 for the scale function has a strictly
increasing solution

B = for d #2,
s(r) =
logr for d =2

(More generally¢s + d is a strictly increasing solution for any> 0 andd € R).
Note thats is one-to-one from the intervél, oc) onto

(0, 00) for d < 2,
(5(0),5(0)) = {(~00,00) for d=2,
(—00,0) for d> 2.

By applying the scale transformation, we see that

s(ro) — s(a)
s(b) — s(a)

for anya < ry < b, whereTX denoted the first passage timectfor the processy. As

PTR<TF] = P [Tj((b’f) < Ts((R)]

a consequence,

1 for d <2,
Plimintr,=0] = P| () U {mF<1}] =
e a€(0,rg) bE(rp,00)
0 for d> 2,
1 for d > 2,
P[limsupRt:oo} [ ﬂ U {Tb <TR}} =
¢ be(rg,00) a€(0,ro)
0 for d<2.
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Note thatd = 2 is the critical dimension in both cases. Rewriting the SDBatural
scale yields

ds(R) = o(s(R)dW  with &(y) = s(s'(y)).

In thecritical cased = 2, s(r) = logr, o(y) = e ¥, and hence(y) = o(y) 2 = e%.
Thus the speed measurenigdy) = e?¥ dy, andlog R; = §T_1(t), ie.,

R, = exp (§T71(t)) with T, = /exp (2§u) du
0

and a one-dimensional Brownian motién

4.3 Girsanov transformation

In Section 3.3-3.6 we study connections between two difteneys of transforming a
stochastic procesy’, P):

1) Random transformations of the pathiSor instance, mapping a Brownian motion
(Y;) to the solution(X;) of s stochastic differential equation of type

corresponds to a random translation of the pathdpt

Xi(w) = Yi(w)+ H(w) where H, = /tb(Xs)ds.

2) Change of measureReplace the underlying probability measuitéy a modified
probability measuré) such thatP? and@ are mutually absolutely continuous on
F; for anyzt.

In this section we focus mainly on random transformatior3rofvnian motions and the
corresponding changes of measure. To understand whiclokires$ults we can expect
in this case, we first look briefly at a simplified situation:
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Example (Translated Gaussian random variables inR<). We consider the equation
X = bX)+Y, Y ~ N(0,1;) wrt. P, (4.25)

for random variablesy,Y : QO — R? whereb : R? — R? is a “predictable” map
in the sense that the i-th componéftitr) depends only on the first— 1 components
Xt ..., X1 of X. The predictability ensures in particular that the transfation
defined by[(4.25) is invertible, with'! = X! — !, V2 = X2 — p*(X1), V3 = X3 —
XY, X2), ... Y =X"— (X, X,

Arandom variablé X, P) is a “weak” solution of the equation (4.25) if and onlyif:=

X — b(X) is standard normally distributed w.r®, i.e., if and only if the distribution
P o X~!is absolutely continuous with density

, , d(a = b(w))
) = fE(x—b) )det St
_ (27T)fd/2€f|mfb(m)\2/2

_ ex-b(m)f|b(x)|2/2 (pd(x)’

wherey?(z) denotes the standard normal densitRin Therefore we can conclude:

(X, P) is a weak solution of (4.25) if and only X ~ N(0, I;) w.r.t. the unique proba-
bility measure onR¢ satisfyingP < Q with

dP

G = e (X b~ p0)2). (4.26)

In particular, we see that the distributigi of a weak solution of[(4.25) is uniquely
determined, ang, satisfies

pwp = PoX ' <« QoX ' = N(OIL) = puo

with relative density

iy

X)) = XPO-D@I/2
duo< )
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174 CHAPTER 4. SDE II: TRANSFORMATIONS AND WEAK SOLUTIONS

The example can be extended to Gaussian measures on Hillaegssand to more
general transformations, leading to the Cameron-Martiaofém (cf. Theorerh 4.17
below) and Ramer’s generalization [2]. Here, we study theentmncrete situation
whereY and X are replaced by a Brownian motion and a solution of the SDE4{4.
respectively. We start with a general discussion about gingnmeasure on filtered
probability spaces that will be useful in other contexts a.w

Change of measure on filtered probability spaces

Let (F;) be afiltration on a measurable spdte .A), and fixt, € (0,00). We consider
two probability measure® and@ on (€2, .A) that are mutually absolutely continuous
on theco-algebraF;, with relative density

dP
Zto == @

Then P and (@ are also mutually absolutely continuous on each ofdtedgebrasr;,

0 Q-almost surely.

Fro

t < tg, with Q- and P-almost surely strictly positive relative densities

dQ 1
_ EqlZy|FR]  and Pl = 7

dP
dQ

The process$Z;),<, is a martingale w.r.t), and, correspondinglyl/Z,).<, is a mar-

Zt -

tingale w.r.t.P. From now on, we always choose a cadlag version of thesengaktés.

Lemma4.9. 1) Forany0 < s <t < ty, and for any.F;-measurable random vari-
ableX : Q — [0, o0],

Eg[XZ|F,] _ Eq[XZ|F)
EQ[Zt|-7:S] Zs

Ep[X|Fs] = P-a.s. and@-a.s. (4.27)

2) Suppose thatM;):<., is an(F;) adapted cadlag stochastic process. Then

(i) M isamartingalew.r.tP < M -Zisamartingale w.r.tQ),

(i) M isalocal martingale w.rtP <« M -Zisalocal martingale w.r.tQ).
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4.3. GIRSANOV TRANSFORMATION 175

Proof. 1) The right-hand side of (4.27) i&,-measurable. Moreover, for any € 7,
EplEQIXZi|Fi]/Zs s Al = EQlEQ[XZi|F]; Al

2) (i) is adirect consequence of 1).
(i) By symmetry, it is enough to prove the implicatior=". Hence suppose that
M - Z is a local@Q-martingale with localizing sequenc#,,). We show that\/’ is a
P-martingale, i.e.,

Ep[Mt/\T" ; A] = EP[MS/\T" ; A] for anyA € .FS, 0<s<t<Ht. (428)
To verify (4.28), we first note that

EP[Mt/\Tn 3 A N {Tn S 8}] = EP[MS/\Tn 3 A N {Tn S 8}] (429)

sincet AT, =T, = s AT, on{T, < s}. Moreover, one verifies from the definition of
theo-algebraF;,r, that for anyA € F;, the eventA N {T,, > s} is contained inFr,,
and hence it¥;,r, . Therefore,

Ep[Minr, ; AN{T, > s} = Eg[Minr, Zint, ; AN{T, > s}] (4.30)
= Eq[Msr, Zsar, ; AN{Tn > s}]| = Ep[Msar, ; AN{T, > s}]
by the martingale property fgn/ Z)*=, the optional sampling theorem, and the fact that
P < @ onF;,r, with relative densityZ; 1, . (4.28) follows from[(4.209) and (4.80).0J

If the probability measureB and() are mutually absolutely continuous on thalgebra

F:, then theQ-martingaleZz; = j—g of relative densities is actually an exponential
]:

martingale. Indeed, to obtain a corrésponding representhst

t
L, = dZ,
K /0 7.

denote thestochastic "logarithm" of Z. Note that(L;);<;, is a well-defined local

martingale w.r.t() since@-a.s.,(Z;) is cadlag and strictly positive. Moreover, by the
associative law,
dZt - th st7 ZO = 1,

S0 Z; is the stochastic exponential of the lo¢amartingale(L;):
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176 CHAPTER 4. SDE II: TRANSFORMATIONS AND WEAK SOLUTIONS

Translated Brownian motions

We now return to our original problem of identifying the clganof measure induced
by a random translation of the paths of a Brownian motion. pgsp that’X;) is a
Brownian motion inR¢ with X, = 0 w.r.t. the probability measur@ and the filtration
(F), and fixtg € [0, 00). Let

t
Lt - / GS'dXS, tZO,
0

with G € £2 o.(Ry,R?). Then[L], = [, |G,|? ds, and hence

t 1 t
Z, = exp (/ G, dX, — 5/ |G |? ds) (4.31)
0 0

is the exponential of.. In particular, sincd. is a local martingale w.r.tp, Z is a non-
negative local martingale, and hence a supermartingale g.r It is a -martingale
for ¢t < ¢, if and only if Eg[Z;,] = 1 (Exercise). In order to usg,, for changing the
underlying probability measure of, we have to assume the martingale property:

Assumption. (Z;):<, is a martingale w.r.tQ).

If the assumption holds then we can consider a probabilitgsueeP on A with

dP
— A -a.s. 4.32
dQ -7:t0 to Q ( )
Note thatP and(@ are mutually absolutely continuous @n for anyt¢ < t, with
dpP dQ 1
- - 7 d - - =
dQ |7, oA bl Z,

both P- and Q-almost surely. We are now ready to prove one of the most itapor
results of stochastic analysis:

Theorem 4.10(Maruyama 1954, Girsanov 1960. Suppose thaX is ad-dimensional
Brownian motion w.r.tQ) and (Z;)<, is defined by[(4.31) withy € L2 (R, R?). If
EolZ:,] = 1 then the process

t
Bt = Xt — / GS dS, t S t(],
0

is a Brownian motion w.r.t. any probability measupeon A satisfying [(4.3R).
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Proof. By Lévy’s characterization, it suffices to show th#, );;, is anR9-valued P-
martingale with B’, B7], = 4,;t P-almostsurely forany, j € {1,...,d}. Furthermore,
by Lemmd 4.9, and sinde and( are mutually absolutely continuous &, this holds
true provided(B;Z,):<;, is a@-martingale andB’, B’] = ¢;;t Q-almost surely. The
identity for the covariations holds sin¢&,) differs from the@)-Brownian motion(X;)
only by a continuous finite variation process. To show fhak is a localQ)-martingale,
we apply 1td’s formula: Fol < i < d,

d(B'Z) = B'dZ+ZdB +d[B' 7] (4.33)
= BZG-dX + ZdX'— Z Gldt + ZG' dt,
where we have used that
dB',7] = ZG-dB,X|] = ZG'dt Q-as.

The right-hand side of (4.83) is a stochastic integral wtg ()-Brownian motionX,
and hence a locd@)-martingale. O

The theorem shows that ¥ is a Brownian motion w.r.tQ), andZ defined by[(4.31) is
a(-martingale, thernX satisfies

dXt — Gt dt + dBt

with a P-Brownian motionB. It generalizes the Cameron-Martin Theorem to non-
deterministic adapted translation

Xi(w) — Xi(w)— Hi(w), H, = /Ot Gs ds,

of a Brownian motionX.

Remark (Assumptions in Girsanov’s Theorem). 1) Absolute continuity and adapt-
edness of the “translation procesH; = f(f G, ds are essential for the assertion of
Theoreni4.10.

2) The assumptiod,[Z;,| = 1 ensuring thatZ,).;, is a@Q-martingale is not always
satisfied— a sufficient condition is given in Theorém 4112 below 4% ) is not a martin-
gale w.r.t.QQ it can still be used to define a positive meastyavith densityZ; w.r.t.

on eachv-algebraF,. However, in this case[?] < 1. The sub-probability measures
P, correspond to a transformed process with finite life-time.
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First applications to SDE

The Girsanov transformation can be used to construct wdakiaus of stochastic dif-
ferential equations. For example, consider an SDE

dX, = b(t,X,)dt+dB,, X, = o, B ~ BM(R?), (4.34)

whereb : R, x R? — R? is continuous, and ¢ R? is a fixed initial value. Let
X,(z) = z; denote the canonical process on

Q = {3: S C([O, oo),Rd) DXy = 0} ,
and let;,° denote Wiener measure 60, 7). Then(X, 11°) is a Brownian motion. By

changing measure, we will transform it into a weak solutib(@d34).

Assumption (A). The process

t 1 t
Zy = exp (/ b(s, Xs) - dXs — 5/ b(s, X,)|? ds) , t>0,
0 0

is a martingale w.r.tu°.

We will see later that the assumption is always satisfiédsfbounded, or, more gen-
erally, growing at most linearly iw. If (A) holds then by the Kolmogorov extension
theorem, there exists a probability measufren 7= such thag’ is mutually absolutely
continuous w.r.tu° on each of ther-algebrasF¥, t € [0, o), with relative densities

dp’ 0
d—,uo ]-‘tX = Zt % -a.s.
By Girsanov’s Theorem, the process
t
Bt = Xt — / b(S,XS) dS, t Z 0,
0

is a Brownian motion w.r.tu*. Thus we have shown:
Corollary 4.11. Suppose that (A) holds. Then:

1) The proces$X, 11°) is a weak solution of (4.34).
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2) Foranyt € [0, o0), the distribution.’o X ! is absolutely continuous w.r.t. Wiener
measure.’ on F;X with relative densityZ;.

The second assertion holds sindeoc X! = pb. It yields a rigorousgpath integral
representatiorfor the solution( X, 1) of the SDE [4.3K): Ifu® denotes the distribution
of (X,)s<¢ 0nCy([0,#], RY) w.r.t. u® then

t 1 [t ,
pb(de) = exp (/0 b(s,:ps)-dxs—é/o |b(s, xs)]| ds) 1) (dz). (4.35)

By combining [4.3b) with théeuristic path integral representation

1 1 [t , ,
“pd(dr) = g &XP (—5/0 |2 |2 ds) do(dxo) H dx,

0<s<t

Wiener measure, we obtain the non-rigorous but very imgiitepresentation

1 [t .,
“pb(dr) = — exp <—§/0 |z, — b(s, x,)]? ds) do(dzo) H dxs " (4.36)
0<s<t
of °. Hence intuitively, the “likely” paths w.r.1.* should be those for which treetion
functional

I(x) = %/le;—b(s,xs)Fds

takes small values, and the “most likely trajectory” shawddthe solution of the deter-
ministic ODE

. = b(s,x)

obtained by setting the noise term in the SIDE _(#.34) equakto.zOf course, these
arguments do not hold rigorously, because) = oo for - and - almost everyr.
Nevertheless, they provide an extremely valuable guidebrconclusions that can then
be verified rigorously, e.g. via(4.85).

Example (Likelihood ratio test for non-linear filtering ). Suppose that we are observ-
ing a noisy signal X;) taking values inR? with X, = o. We would like to decide if
there is only noise, or if the signal is coming from an objeoing with law of motion
dz/dt = —V H(x) whereH € C%*(R?). The noise is modelled by the increments of a
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Brownian motion (white noise). This is a simplified form of deds that are used fre-
guently in nonlinear filtering (in realistic models ofterethelocity or the acceleration is
assumed to satisfy a similar equation). In a hypothesisttesinull hypothesis and the
alternative would be

HQ : Xt = Bt7
H1 . dXt = b(Xt) dt + dBt,
where(B,) is ad-dimensional Brownian motion, artd= —V H. In a likelihood ratio

test based on observations up to timéhe test statistic would be the likelihood ratio
dub /dud which by [4.35) and Ité's formula is given by

dub (/t 1 )
— = exp b( X, ~dXs——/bXs ds
- o0y ax - 5 [ocx)

1 t

= exp (H(XO) —H(X) + 5 /O (AH — |[VH|?)(X,) ds) (4.37)

The null hypothesi#/, would then be rejected if this quantity exceeds some givareva
c for the observed signal, i.e. , if

H(x¢) — H(xy) + % /Ot(AH — |VH|*)(z,)ds > loge. (4.38)

Note that the integration by parts in (4137) shows that thien@sion procedure is quite
stable, because theg likelihood ratio in [4.38) is continuous w.r.t. the supremoorm
onC,([0, ], R9).

Novikov’s condition
We finally derive a sufficient condition due to Novikov for enigg that the exponential
Zy = exp (Lt —-1/2 [L]t)

of a continuous local.F;) martingale is a martingale. Recall thétis always a non-
negative local martingale, and hence a supermartingale ().

Theorem 4.12(Novikov 1971). Lett, € R,. If Elexp (E[L];,)] < oo for somep > 1
then(Z,).<, is an(F;) martingale.
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Remark (p = 1). The Novikov criterion also applies if the condition aboveadisfied
for p = 1. Since the proof in this case is slightly more difficult, welyoprove the
restricted form of Novikov’s criterion stated above.

Proof. Let (T,,).en be alocalizing sequence for the marting&leThen(Z;,r,, )i>0 IS @
martingale for any:. To carry over the martingale property to the prodg&s;co | it
Is enough to show that the random variablesr, , n € N, are uniformly integrable for
each fixed < t,. However, forc > 0 andp, q € (1, 00) with p~! + ¢! = 1, we have

E[Zt/\Tn ; Zt/\Tn > C]

1
= Elexp (Liv, = 5[Llinr,) exp (5= [Llnn,) : Zina, = (4.39)
p? 1/p p—1 , 1/q
< E[exp (th/\Tn - E[L]t/\Tn)] : E[GXP (q T [L]t/\Tn) i ZinT, 2> C]

< Elexp (%[L]t) : Ty, > ]

for anyn € N. Here we have used Hélder’s inequality and the fact délﬁﬁt(pLMTn —

%[L]MTH) is an exponential supermartingaleesfp (2[L],) is integrable then the right

hand side ofl(4.39) convergesGaniformly inn asc — oo, because
PlZipr, >0 < ¢ ' ElZipr,] < ¢' — 0
uniformly inn asc — co. Hence{Z;,r,, | n € N} is uniformly integrable. O

Example. If L, = fot G, - dX, with a Brownian motion X;) and an adapted process
(G,) that is uniformly bounded oft), ¢] for any finitet the quadratic variation then the
quadratic variationL]; = fot |G2| ds is also bounded for finite. Henceexp(L — 1[L])

is an(F;) martingale fort € [0, c0).

A more powerful application of Novikov’s criterion is codgred in the beginning of

Section 3.4.

4.4 Drift transformations for 1td6 diffusions

We now consider an SDE

dX; = b(X;)dt+dB, Xy = o, B ~ BM(RY (4.40)
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with initial conditiono € R? andb € L£X(R? R?). We will show that the solution

loc
constructed by Girsanov transformation is a Markov procass we will study its tran-

sition function, as well as the bridge process obtained logitmning on a given value
at a fixed time. Lep denote Wiener measure ¢ft, 72X ) whereQ = Cy([0, 00), R%)
and X;(x) = x, is the canonical process 6h Similarly as above, we assume:

Assumption (A). The exponentiak, = exp (f(f b(X) - dX, — 3 [0 |b(X,)[? d5> is a
martingale w.r.tu°.

We note that by Novikov's criterion, the assumption alwagklh if
b(z)] < - (1+]2]) for some finite constantc > 0 : (4.41)

Exercise(Martingale property for exponentials).

a) Prove that a non-negative supermartingalg satisfyingE[Z;] = 1 foranyt > 0
is a martingale.

b) Now consider

t 1 t
Zi = exp ( / HX) X, - / |b<Xs>\2ds),
0 0

whereb : R — R? is a continuous vector field, ar{c(;) is a Brownian motion

w.r.t. the probability measurg.
(i) Show that(Z,) is a supermartingale.
(i) Prove that(Z,) is a martingale if[(4.41) holds.

Hint: Prove first thatEfexp [ |b(X,)|*ds] < oo for ¢ > 0 sufficiently
small, and conclude thaf[Z.] = 1. Then show by induction th@[Z,.] =
1 foranyk € N.

The Markov property

Recall that if (A) holds then there exists a (unique) proligtineasureu.® on (2, FX)

such that
pPlA] = E°[Z,; A]  foranyt>0 and A € F~.
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Here E° denotes expectation w.rt’. By Girsanov’'s Theorem, the proce&¥, i°)
is a weak solution of{4.40). Moreover, we can easily verifgt{ X, °) is a Markov
process:

Theorem 4.13(Markov property ). If (A) holds then(X, u*) is a time-homogeneous
Markov process with transition function

P, C) = pX,eC] = E’Z; X, e€C] v C € B(RY).

Proof. Let0 < s < ¢, and letf : R — R, be a non-negative measurable function.
Then, by the Markov property for Brownian motion,

Eb[f(Xt)lff] = Eo[f(Xt)Ztlff]/Z

= E°| (X)) exp (/:b( / [b(X |2dr) 7]

= EX X9z = (- )(X)

u°- andpb-almost surely wheré?® denotes the expectation w.r.t. Wiener measure with
start atz. U

Remark. 1) If bis time-dependent then one verifies in the same way(tkiat.) is a
time-inhomogeneous Markov process.

2) lItis not always easy to prove that solutions of SDE are Manrocesses. If the
solution is not unique then usually, there are solutionsdah@not Markov processes.

Bridges and heat kernels

We now restrict ourselves to the time-interi@l1], i.e., we consider a similar setup as
before withQ) = ([0, 1], RY). Note thatF;" is the Borelo-algebra on the Banach
spacef2. Our goal is to condition the diffusion proce(sisfz) on a given terminal value
X, =y, y € R% More precisely, we will construct @gular version y +— MZ of the
conditional distribution p®[-|X; = ] in the following sense:

(i) Foranyy e R% 1! is a probability measure of8(2) such that! [X; = y] = 1.
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(i) Disintegration: For any A € B((2), the functiory — ,uZ[A] is measurable, and
Al = [ Ak,

e b . - e
(iii) The mapy — u, is continuous w.r.t. weak convergence of probability messu

Example (Brownian bridge). Forb = 0, a regular versiory — ,ug of the conditional
distributionu®[ - | X; = y] w.r.t. Wiener measure can be obtained by linearly transform
ing the paths of Brownian motion, cf. Theorem 8.11[in![13]: d&nx°, the process
X! = X; —tX; +ty, 0 <t <1,isindependent ok with terminal valuey, and the
law 11;) Of (X?)icio) W.r.t. 1° is @ regular version oi°[ - |X; = y|. The measurg; is
called“pinned Wiener measure”.

The construction of a bridge process described in the exaomly applies for Brow-

nian motion, which is a Gaussian process. For more gendfasidins, the bridge can
not be constructed from the original process by a lineastamation of the paths. For
perturbations of a Brownian motion by a drift, however, wa epply Girsanov’s The-
orem to construct a bridge measure.

We assume for simplicity thatis the gradient of &2 function:
b(z) = —VH(x) with H € C*(R%).

Then the exponential martingal&;) takes the form

Z = exp (H(XO) _H(X) + % /Ot(AH L VHP)(X,) ds) ,

cf. (4.37). Note that the expression on the right-hand siotmfinedug-almost surely
for anyy. Therefore,(Z;) can be used for changing the measure w.r.t. the Brownian
bridge.

Theorem 4.14(Heat kernel and Bridge measurg. Suppose that (A) holds. Then:

1) The measure® (o, dy) is absolutely continuous w.r.ti-dimensional Lebesgue
measure with density

piloy) = plloy)- ENZ).
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2) Aregular version of:’[ - | X, = y] is given by

L0} 20 08 e (5 [ (At — (VAP ds ) i)

The theorem yields the existence and a formula for the heatke (o, y), as well as a

y (dz)

path integral representation for the bridge mea&sgre

1 1
ug(dx) X exp (5/ (AH — |[VH|*)(x,) ds) iy (da). (4.42)
0
Proof ofl4d14.Let ' : O — R, andg : R — R, be measurable functions. By the
disintegration of Wiener measure into pinned Wiener messur
BIF-g(0)] = EUR0Z] = [ EFZ) o) o) dy

ChoosingF' = 1, we obtain

/g(y) pi(o,dy) = /g(y) EY[Z1] pY(z,y) dy
for any non-negative measurable functigrwhich implies 1).
Now, by choosing; = 1, we obtain

E'IF] = /ES[FZl]p?(O,y)dy = /EEyngZl]ﬂ P} (0, dy) (4.43)

= / EF) p3(0, dy) (4.44)

by 1). This proves 2), becausg = y !-almost surely, ang — 1 is weakly contin-
uous. U

Remark (Non-gradient case). If b is not a gradient then things are more involved
because the expressions for the relative densifjeéavolve a stochastic integral. One
can proceed similarly as above after making sense of thhastic integral fon” -
almost everyr.

Example (Reversibility in the gradient casg. The representation (4.42) immediately
implies the following reversibility property of the diffie bridge wherb is a gradient:

If R:C([0,1],R?Y) — C([0, 1], RY) denotes the time-reversal defined(#z); = x;_+,
then the imaggu’; o R~! of the bridge measure fromto y coincides with the bridge
measure fromy to o. Indeed, this property holds for the Brownian bridge, anel th
relative density in[(4.42) is invariant under time reversal
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Drift transformations for general SDE

We now consider a drift transformation for an SDE of the form

wherelV is anR¢-valued Brownian motion w.r.t. the underlying probabiliteasure).
We change measure via an exponential martingale of type

t 1 t
z = oo [ ot avo—d [ xor )
0 0
whereb, 3 : R, x R" — R" ando : R, x R" — R™*4 are continuous functions.

Corollary 4.15. Suppose thatX, Q) is a weak solution of (4.45). 1f7;),<, is a Q-
martingale andP < ) on F;, with relative density?Z;, then((X;):<s,, P) is a weak
solution of

dX; = o(t,X;) dB; + (b+ oB)(t, X;) dt, B ~ BM(R?). (4.46)
Proof. By (4.45), the equation_(4.46) holds with
B, = W, —/Otﬁ(s,Xs) ds.
Girsanov’s Theorem implies that is a Brownian motion w.r.tP. O

Note that the Girsanov transformation induces a corresgpgridansformation for the
martingale problemlf (X, Q) solves the martingale problem for the operator

1 07
- = ij__ 7 . _ T
L szja 8:ci8:cj+b V, a oo,
then(X, P) is a solution of the martingale problem for
L = L+8-6"V.

This “Girsanov transformation for martingale problem&arries over to diffusion pro-
cesses with more general state spacesitfan
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Doob’s h-transform and diffusion bridges

In the case of 1t6 diffusions, thie-transform for Markov processes is a special case of
the drift transform studied above. Suppose that C*(R, x R") is a strictly positive
space-time harmonic function for the generafoof the Itd diffusion(.X, @) (defined
by (4.41)) withi(0,0) = 1:
h
% +Lh = 0, h(0,0) = 1. (4.47)
Then, by I1td’s formula, the process

Zt — h(t,Xt), t Z 0,

is a positive localy-martingale satisfyingZ, = 1 Q-almost surely. We can therefore
try to change the measure \{(i&;). For this purpose we writ&, in exponential form.
By the It6-Doeblin formula and(4.47),

dZ, = (o'Vh)(t, X;) - dW,.

HenceZ, = £F = exp(L; — 1[L];) where

t 1 t
L, = / —dZz, = / (c"V1ogh)(s, X,) - dW,
0 Zs 0

is the stochastic logarithm &f. Thus if Z is a martingale, an® < (Q with j—g
then(X, P) solves the SDE{(4.45) with

‘]:t - Zt

g = o'Viegh.
Example. If X; = W, is a Brownian motion w.r.tQ) then
dX, = Vlogh(t,X,)dt+dB;, B ~ BM(RY) w.rt. P.

For example, choosing(t, z) = exp(a - = — 3|al*t),a € R?, (X, P) is a Brownian
motion with constant drift..
A more interesting application of thetransform is the interpretation of diffusion bridges

by a change of measure w.r.t. the law of the unconditionddsiidn proces$X, 1°) on
Co([0, 1], R?) satisfying

dX, = dB,+bX,)dt, Xy = o,
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with anR?-valued Brownian motio#3. We assume that the transition densityr, y) —
p2(x,y) is smooth fort > 0 and bounded fot > ¢ for anye > 0. Then fory € R,
p°(-,y) satisfies the Kolmogorov backward equation

19)
api’(-,y) = L'(,y) foranyt >0,

wheref’ = %A + b - Vis the corresponding generator. Hence

h(tv Z) = plift(zvy)/pll)(ovy)v t < 17

is a space-time harmonic function withi0, o) = 1. Sinceh is bounded for < 1 — ¢
foranys > 0, h(t, X;) is a martingale fot < 1. Now suppose that} < x’ on F; with
relative densityh(¢, X;) for anyt < 1. Then the marginal distributions of the process
(Xi)i<1 undery’, 12 respectively are

(thv s 7th> ~ plt)1 <07 551)]??2_,51 ('Tlu 562) o 'pgk—tk,_l ('Tk*h .Tk) da* w.r.t. ,ubv
PZ(Oa fcl)Ple (71, 22) -~ 'pgkftk,1<xk*17 xk‘)pli—tk (x,y) k b
~ 7 dx W.LE fy .
pl (07 y)

This shows thay — MZ coincides with the regular version of the conditional dlgttion
of 1’ given X1, i.e., ! is the bridge measure fromto y. Hence, by Corollarj 4.15, we
have shown:

Theorem 4.16(SDE for diffusion bridges). The diffusion bridgg X, ,ug) is a weak
solution of the SDE

dX, = dB; + b(X,)dt + (Vlegp: ,(,y)(X,) dt, t < 1. (4.48)

Note that the additional driff(¢,z) = Vlogp® ,(-,y)(z) is singular ag 1 1. Indeed,
if at a time close td the process is still far away from then a strong drift is required
to force it towards;. On thes-algebraF;, the measureg andﬂg are singular.

Remark (Generalized diffusion bridges). Theorem[ 4.16 carries over to bridges
of diffusion processes with non-constant diffusion coéfits . In this case, the
SDE [4.48) is replaced by

dXy = o(Xy) dBi+b(Xy) dt + (00" Viegpi_i(-,y)) (Xy) dt. (4.49)

The last term can be interpreted as a gradient of the logaiGgtheat kernel w.r.t. the
Riemannian metrig = (c¢”)~! induced by the diffusion process.
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4.5 Large deviations on path spaces

In this section, we apply Girsanov’s Theorem to study rang@mrturbations of a dy-
namical system of type

dX; = bX)dt++EdB, — Xi =0, (4.50)

asymptotically ag | 0. We show that on the exponential scale, statements about the
probabilities of rare events suggested by path integraistezs can be put in a rigorous
form as a large deviation principle on path space. Beforegme a complete proof of

the Cameron-Martin Theorem.

LetQ = Cy([0, 1], R?) endowed with the supremum notfw|| = sup {|w(t)| : t € [0,1]},
let .« denote Wiener measure #(2), and letlV;(w) = w(t).

Translations of Wiener measure

For h € (2, we consider the translation operatgr: 2 — €,
m(w) = w+h,

and the translated Wiener measpfe.= po 7, .

Theorem 4.17(Cameron, Martin 1944). Leth € Q. Thenu; < p if and only ifh is
contained in th&Cameron-Martin space

Hey = {h€Q : hisabsolutely contin. with’ € L*([0,1],R%)} .

In this case, the relative density of w.r.t. p is
dun exp(/th;.dws—lftm;\?ds). (4.51)
dp 0 2 Jo
Proof. “=" is a consequence of Girsanov’s Theorem: Roe H¢,,, the stochastic
integral [ &’ - dW has finite deterministic quadratic variatiphn' - dW1]; = fol |I/|? ds.
Hence by Novikov’s criterion,

t 1 t
Z, = eXp(/ h’~dW——/\h’\2ds>
0 2 0
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Is a martingale w.r.t. Wiener measute Girsanov’s Theorem implies that w.r.t. the
measure = 7, - u, the proces$iV;) is a Brownian motion translated kg¥,). Hence

pn = po(W+h)t = voW ! = u

<" To prove the converse implication leéte €2, and suppose that, < u. SincelWV
IS a Brownian motion w.r.tu, W — h is a Brownian motion w.r.tu,. In particular, it
Is a semimartingale. Moreovaéi/ is a semimartingale w.r... and hence also w.r.ty,.
Thush = W — (W — h) is also a semimartingale w.rit,,. Sinceh is deterministic, this
implies thath hasfinite variation We now show:

Claim. The mapg — fol g - dh is a continuous linear functional di¥ ([0, 1], R%).

The claim impliesh € H¢y,. Indeed, by the claim and the Riesz Representation Theo-
rem, there exists a function€ L2([0, 1], R%) such that

1 1
/ g-dh = / g-fds  forany g € L*([0,1],R%).
0 0

Henceh is absolutely continuous with’ = f € L?([0,1],R?). To prove the claim
let (¢g,,) be a sequence in?([0, 1], R?) with ||g,||zz= — 0. Then by Itd’'s isometry,

[ 9o dW — 0in L?(u), and hence.- andy,-almost surely along a subsequence. Thus
also

/gn-dh = /gn-d(W+h)—/gn-dW — 0

pu-almost surely along a subsequence. Applying the same angibma subsequence of
(9s), we see that every subsequefigg) has a subsequen¢g,) such that/ g,,-dh — 0.
This shows thaff g, - dh converges td as well. The claim follows, sincgy,,) was an
arbitrary null sequence ih?([0, 1], R9). O

A first consequence of the Cameron-Martin Theorem is thagdipgort of Wiener mea-
sure is the whole spaée = C;([0, 1], R?):

Corollary 4.18 (Support Theorem). For anyh € 2 andé > 0,

pl{we : lw—h||<d}] > o0
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Proof. Since the Cameron-Martin space is dens&iw.r.t. the supremum norm, it is
enough to prove the assertion foe Hy,. In this case, the Cameron-Martin Theorem
implies

ullW —hll <] = poi

Wl <é] > o.

asul||[W]| < 4] > 0andu_p, < pu. Il
Remark (Quantitative Support Theorem). More explicitly,

u[llw=nll<d] = pa[lW] <]

1 1/
= E[exp(—/ h'-dW——/ |h'|2ds>;max|Ws|<5
0 2 Jo s<l

where the expectation is w.r.t. Wiener measure. This carsbd to derive quantitative
estimates.

Schilder’s Theorem

We now study the solution of (4.60) fér= 0, i.e.,
Xf — \/g Bta t e [0, ]_],

with ¢ > 0 and ad-dimensional Brownian motiofB;). Path integral heuristics suggests
that forh € Heyy,

“ P[)(€ ~ h] = M[W ~ i:| ~ efl(h/\/g) _ e*I(h)/e "

Ve
where! : Q — [0, oo] is theaction functionaldefined by
%fol lw'(s)]*ds if we Hey,

I(w) =
+00 otherwise

The heuristics can be turned into a rigorous statement asyicglly ase — 0 on the
exponential scale. This is the content of the next two reghkt together are know as
Schilder’s Theorem:
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Theorem 4.19(Schilder’s large derivation principle, lower bound).

1) Foranyh € Hgyr andd > 0,
limui)nf elog u[veW € B(h,8)] > —I(h).
2) For any open subsét C ,

limiionf elog u[veW e U] > —inf I(w).

wel
HereB(h,d) ={w € Q : |lw — h|| < 0} denotes the ball w.r.t. the supremum norm.

Proof. 1) Letc = /81(h). Then fore > 0 sufficiently small,

u[VEW € B(h,0)] = u[W € B(h/VE,3/VE)]
= th/\/E{B(O 5/\/_)}

— E[exp( \/_ h' dw — —/ |n'|? ds) ; B(O,%)]
exp(—é[(h)—%) ,MH/O h’-dWSc}ﬂB(O,%)}
> %exp <—é[(h) — 81(h)>

3

Y

whereFE stands for expectation w.r.t. Wiener measure. Here we hsee that

1 1 )
M[/ h'-dW>c} < c_QE[(/ h’-dW) ] = 2(h)/¢ < 1/4
0 0
by Itd’s isometry and the choice of

2) LetU be an open subset 6f. Forh € U N Hgyy, there exist$ > 0 such that
B(h,0) C U. Hence by 1),

limui)nf clog plvVeW e U] > —I(h).

Since this lower bound holds for atlye U N Hyy, and sincd = co onU \ Heyy, We
can conclude that

. > . .

lngénf elog u[v/eW e U] > he(}g}%@j I(h) :}Iel(f] I(w)

O
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To prove a corresponding upper bound, we consider lineaoappations of the Brow-
nian paths. Fon € N let

W = (1= 8)Wim + $Wis1/m
whenevert = (k + s)/nfork € {0,1,...,n— 1} ands € [0, 1].
Theorem 4.20(Schilder’s large deviations principle, upper bound.
1) Foranyn € Nand\ > 0,

limsup elog pu[l(v/eW ™) > Al
el0

IN
I
>

2) For any closed subset C (2,

limsup elog u[veW € A] < —inf I(w).
el0 weA

Proof. 1) Lete > 0andn € N. Then
n 1 -
[(\/EW( )) = 58 ; n (Wk/n — W(k_l)/n)z.

Since the random variablgs := \/n - (W, — W_1)/,) are independent and standard
normally distributed, we obtain

PIVEWS) 2N = [ DIl = 2)/e]
< exp(—2Xc/e) E [exp (CZ |77k\2>],
where the expectation on the right hand side is finitefar1 /2. Hence forany < 1/2,

limsup elog p[I(vEW™) >\ < =2\
el0

The assertion now follows ast 1/2.
2) Now fix a closed setl C Q and\ < inf {/(w) : w € A}. To prove the second

assertion it suffices to show

limsup elog pu[v/eW € A] < =\ (4.52)
el0
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By the Theorem of Arzéla-Ascoli, the séf < \} is acompactsubset of the Banach
spac€. Indeed, by the Cauchy-Schwarz inequality,

lw(t) —w(s)| = /tw'(u)du} < VoAVit—s Vs tel01]

holds for anyw € Q satisfying/(w) < A. Hence the paths ifif < A} are equicontinu-
ous, and the Arzéla-Ascoli Theorem applies.

Let 6 denote the distance between the sétand{/ < A} w.r.t. the supremum norm.
Note thaty > 0, becaused is closed{/ < A} is compact, and both sets are disjoint by
the choice of\. Hence fors > 0, we can estimate

plVew e Al < plI(VEW™) > A + pl|[VEW — VEW ™[, > 4],
The assertiori (4.52) now follows from

limsup elog p[l(veW™) >\ < =X, and (4.53)
el0

limsup elog p[|[W — W™ || >0/vE] < =\ (4.54)
el0

The bound[{4.53) holds by 1) for amyc N. The proof of [4.54) reduces to an estimate
of the supremum of a Brownian bridge on an interval of length. We leave it as an
exercise to verify that (4.54) holdsiifis large enough. O

Remark (Large deviation principle for Wiener measure). Theorem$ 4.19 arld 420
show that

plVew € Al ~ exp ( 1 inf I(w))

£ weA
holds on the exponential scale in the sense that a lower booidg for open sets and
an upper bound holds for closed sets. This is typical fordatgviation principles,
see e.g..[8] orl[9]. The proofs above based on “exponentiadgi of the underlying
Wiener measure (Girsanov transformation) for the lowemalhand an exponential esti-
mate combined with exponential tightness for the upper daua typical for the proofs
of many large deviation principles.
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Random perturbations of dynamical systems

We now return to our original problem of studying small ramdperturbations of a
dynamical system

dX: = b(X{)dt++/edBy, X; = 0. (4.55)
This SDE can be solved pathwise:
Lemma 4.21(Control map). Suppose that: R? — R is Lipschitz continuous. Then:

1) Forany functionv € C([0, 1], R?) there exists a unique functiane C([0, 1], R?)
such that ,
z(t) = / b(z(s)) ds + w(t) Vtelo,1]. (4.56)
0

The functionz is absolutely continuous if and only.ifis absolutely continuous,
and in this case,

2() = bla(t) +u'(t) forae.teo,1]. (4.57)

2) Thecontrol map 7 : C([0,1],R%) — C([0, 1], R%) that mapsw to the solution
J(w) = x of (4.56) is continuous.

Proof. 1) Existence and uniqueness holds by the classical Picadkelof Theorem.
2) Suppose that = J(w) andz = J(w) are solutions ofl(4.56) w.r.t. driving paths
w,w € C[0,1],R%). Then fort € [0, 1],

o) =0 = | [ e~ @061 ds + VEwl0) - 300
< 1 [ olo) ~06) ds -+ VEI(m — 300
whereL ¢ R, is a Lipschitz constant fdr. Gronwall’s Lemma now implies
o)~ 70 < ep(tD) VEllo —Blly Vi€ [0,1],

and hence
||l’ - §||sup S eXp(L) \/g ||w - (’T]HSUP'

This shows that the control mgp is even Lipschitz continuous. O
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Fore > 0, the unique solution of the SDE (4155) @ih 1] is given by

X° = J(/EB).

Since the control mayy is continuous, we can apply Schilder's Theorem to study the
large deviations oK< ase | 0:

Theorem 4.22(Fredlin & Wentzel 1970, 1989. If b is Lipschitz continuous then the
large deviations principle

hniionf elog P[X*eU] > - inlfj Iy(x) for any open setU C Q,
[ FAS
limi%nf celog P[IX*e€ Al > —inf [(x) for any closed setd C ,

TEA

holds, where the rate functial : 2 — [0, o] is given by

LIy la'(s) = b(x(s))[? ds for = € Heay,
+00 for € Q\ How.

]b(ZC) =

Proof. For any setd C (2, we have
PX*€e Al = PeBeJ 'A)] = plVeW e g '(A4)].
If Aisopenthen7—!(A) is open by continuity of7, and hence

liminf elog P[X*€ A] > — inf [
il elog PTE A2 gl 1)

by Theoreni 4.19. Similarly, ifi is closed thery7 ~*(A) is closed, and hence the corre-
sponding upper bound holds by Theorlem 4.20. Thus it only iresrta show that

inf [ = inf [(x).
wE}IEl(A) () a:HelA ()
To this end we note that € 7~1(A) if and only if z = J(w) € A, and in this case

w' =2’ — b(z). Therefore,

inf I(w) = inf /\w (s)]* ds
weEJT ~1(A) weJ~1(A) mHCM
_ ; 2 _
= ) el ds = inf e,

O
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Remark. The large deviation principle in Theordm 41.22 generalipasan-Lipschitz
continuous vector fieldsand to SDEs with multiplicative noise. However, in this gase
there is no continuous control map that can be used to retiecgdatement to Schilder’s
Theorem. Therefore, a different proof is required, cf. {8j.

4.6 Change of measure for jump processes

A change of the underlying probability measure by an exptalemartingale can also
be carried out for jump processes. In this section, we firssicker absolutely continu-
ous measure transformations for Poisson point processeshé&i apply the results to
Lévy processes, and finally we prove a general result forrsamingales.

Poisson point processes

Let (MV:):>0 be a Poisson point process on affinite measure spacgS, S, v) that
is defined and adapted on a filtered probability spdeeA, @, (F;)). Suppose that
(w,t,y) — Hy(y)(w) is a predictable process £} .(P ® A ® v). Our goal is to change
the underlying measur@ to a new measuré such that w.r.tP, (\V;):>o is a point
process with intensity of points in the infinitesimal timédrval[t, ¢t + dt] given by

(1+ Hi(y)) dt v(dy).

Note that in general, this intensity may depend.om a predictable way. Therefore,
under the new probability measutethe procesgN;) is not necessarily Roissorpoint
process. We define a local exponential martingale by

Z, = & where L, = (H,N),. (4.58)

Lemma 4.23. Suppose thaif H# > —1, and letGG := log (1 + H). Then fort > 0,

et = eo(f G Nad) [ ()G dsvid)
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Proof. The assumptioinf # > —1 impliesinf AL > —1. Since, moreovefL]* = 0,
we obtain

gl = Ll H(1+AL)G*AL
= exp (L + Z(log(l + AL) — AL))

= exp (G.N + /(G — H)ds V(dg/)).

Here we have used that
S (log(1— AL) —AL) = / (log (1+ H.(y)) — Hy(y)) N(ds dy)

holds, sincd log(1 + H,(y)) — H,(y)| < const. |H,(y)|? is integrable on finite time
intervals. O

The exponentialZ; = £F is a strictly positive local martingale w.r®, and hence a
supermartingale. As usual, we fixe R, and assume:
Assumption. (Z;):<:, is a martingale w.r.tQ), i.e. Eg[Z;,] = 1.

Also tThen there is a probability measureon F;, such that

dpr
dQ 7,

In the deterministic casH;(y)(w) = h(y), we can prove that w.r.f2, (IV;) is a Poisson

= 7 forany t < t,.

point process with changed intensity measure

wdy) = (1+h(y)) v(dy):

Theorem 4.24(Change of measure for Poisson point processed et (V;, Q) be a
Poisson point process with intensity measurand letg := log (1+h) whereh € £2(v)
satisfieanf h > —1. Suppose that the exponential

Zy = 5tﬁh = exp(]vtg+t/(g—h)dl/)

is a martingale w.r.t(), and assume that < () on F; with relative density% ‘E =7,
for anyt > 0. Then the proces&N,, P) is a Poisson point process with intensity
measure

du = (1+h)dv.
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Proof. By the Lévy characterization for Poisson point processkeshe exercise below
Lemmad4.1) it suffices to show that the process

M = e (NI L r(), W) = / (1- ) dp,

is a local martingale w.r.tP for any elementary functiong € £'(S,S,v). Further-
more, by Lemm&4]9)// is a local martingale w.r.tP if and only if M/ Z is a local
martingale w.r.tQ). The local martingale property fqi// Z, Q) can be verified by a
computation based on I1t6’s formula. O

Remark (Extension to general measure transformations). The approach in Theo-
rem[4.24 can be extended to the case where the funkfignis replaced by a general
predictable procesH,(y)(w). In that case, one verifies similarly that under a new mea-
sureP with local densities given by (4.58), the process

M = exp (¢N5+/(1_eif<y>)(1+Ht(y))dy)

is a local martingale for any elementary functighs £'(v). This property can be used
as a definition of a point process with predictable intendity H;(y)) dt v(dy).

Application to Lévy processes

Since Lévy processes can be constructed from Poisson pooggses, a change of mea-
sure for Poisson point processes induces a correspondimgfarmation for Lévy pro-
cesses. Suppose thais ac-finite measure ofR? \ {0} such that/ (|y| A |y|?) v(dy) <

oo, and let

pldy) = (14 h(y)) v(dy).
Recall that if(V;, ) is a Poisson point process with intensity measyrinen

Xt = /y Nt(dy), Nt = Nt—tV,

is a Lévy martingale with Lévy measurew.r.t. Q).
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Corollary 4.25. Suppose thak € £%(v) satisfiesinf h» > —1 andsuph < oo. Then
the process

Xy = /yﬁtdyﬂ/yh(yw(dy), Ny = Ny —tp,

is a Lévy martingale with Lévy measurev.r.t. P providedP < ) on F; with relative
densityZ,; for anyt < 0.

Example. Suppose thatX, @)) is a compound Poisson process with finite jump inten-
sity measures, and let

N} = ) h(AX,).

s<t
with h as above. TheriX, P) is a compound Poisson process with jump intensity
measurely = (1 + h) dv provided
dpP

@ . _ gtﬁh — e tfhav H(1+h(AXs))-

s<t

A general theorem

We finally state a general change of measure theorem forlgpsiscontinuous semi-
martingales:

Theorem 4.26(P.A. Meyer). Suppose that the probability measuréand( are equiv-
alent onF, for anyt > 0 with relative densit)%’ = Z;. If M is a local martingale
Fi

w.rt. Q thenM — [~ d[Z, M]is alocal martingale w.r.tP.

The theorem shows that w.rR, (M,) is again a semimartingale, and it yields an explicit
semimartingale decomposition foi/, P). For the proof we recall thdtZ,) is a local
martingale w.r.tQ) and(1/7,) is a local martingale w.r.tP.

Proof. The proces¥’ M — [Z, M| is a local martingale w.r.t). Hence by Lemmj/ 4]9,
the process/ — +[Z, M| is alocal martingale w.r.t>. It remains to show tha} [Z, M|
differs from f% d[Z, M| by a local P-martingale. This is a consequence of the Itd
product rule: Indeed,

%[Z,M] — /[Z,M] d%+/zi [Z,M]—%[%,[Z,MH.
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The first term on the right-hand side is a lo€amartingale, sincé/~Z is aQ-martingale.
The remaining two terms add up ol d[Z, M], because

[%,[Z,MH = ZA%A[Z,M].
O

Remark. Note that the procesﬁ% d[Z, M] is not predictable in general. For a pre-
dictable counterpart to Theorém 4.26 cf. e.g! [32].
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Chapter 5

Variations of stochastic differential
equations

This chapter contains a first introduction to basic concaptkresults of Malliavin cal-
culus. For a more thorough introduction to Malliavin calauwe refer to[[31],[[30],
[37], [21], [28] and [7].

Let 1 denote Wiener measure on the Bosehlgebra3({2) over the Banach space
Q = Cy([0, 1], RY) endowed with the supremum noitw|| = sup {|w(t)| : t € [0, 1]}.
We consider an SDE of type

dXt = b(Xt) dt -+ O'(Xt) th, X(] =, (51)

driven by the canonical Brownian motidi;(w) = w(t). In this chapter, we will be
interested in variations of the SDE and its solutions resypalg. We will study the
relations between different types of variations[of(5.1):

e Variations of the initial condition: z — x(¢)
e Variations of the coefficients: b(x) — b(e,z), o(x) — o(e, )
e Variations of the driving paths: W, — W, + ¢H,, (H,) adapted

e Variations of the underlying probability measureu — u® = 72 - u

202
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We first prove differentiability of the solution w.r.t. vations of the initial condition
and the coefficients, see Section 5.1. In Section 5.2, wedntre the Malliavin gradi-
ent which is a derivative of a function on Wiener space (ég.dolution of an SDE)
w.r.t. variations of the Brownian path. Bismut’s integoatiby parts formula is an in-
finitesimal version of the Girsanov Theorem, which relabese variations to variations
of Wiener measure. After a digression to representatioortéims in Section 5.3, Sec-
tion 5.4 discusses Malliavin derivatives of solutions ofESBnd their connection to
variations of the initial condition and the coefficients. Asonsequence, we obtain
first stability results for SDE from the Bismut integratiog parts formula. Finally,
Section 5.5 sketches briefly how Malliavin calculus can bgliad to prove existence
and smoothness of densities of solutions of SDE. This shouig a first impression
of a powerful technique that eventually leads to impressageilts such as Malliavin's
stochastic proof of Hérmander’s theorem, cf./[19],/[30].

5.1 \Variations of parameters in SDE

We now consider a stochastic differential equation
d
dX; = b(e,X{)dt+ Y ox(e, X{)dWF,  X§ = x(e), (5.2)
k=1
on R™ with coefficients and initial condition depending on a pagsan: € U, where
U is a convex neighbourhood ofin R™, m € N. Hereb,o : U x R* — R" are
functions that are Lipschitz continuous in the second Weisandx : U — R". We
already know that for any € U, there exists a unique strong solutioXy )~ of (5.2).
Forp € [1,00) let
. cp 1/p
X, = B[ sw xi]
te[0,1]
Exercise(Lipschitz dependence ore). Prove that if the maps, b ando, are all Lip-
schitz continuous, then— X°© is also Lipschitz continuous w.rlt. ||,,, i.e., there exists

aconstanf, € R, such that
X — Xe||, < L,|hl forany e,h € R™ with ¢,e +h € U.

We now prove a stronger result under additional regulassuanptions.
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Differentation of solutions w.r.t. a parameter

Theorem 5.1.Letp € [2,00), and suppose that, b and o, are C* with bounded
derivatives up to orde2. Then the functios — X* is differentiable o/ w.r.t. || - ||,,
and the differential’® = <= is the unique strong solution of the SDE

dY; = (g( X€)+§b( X*f)Y) dt (5.3)
d
> (e, x0) + (e, Xopv7 ) v,

Yo = () (5.4)

that is obtained by formally differentiating (5.2) w.Et.

Here and belowa% anda% denote the differential w.r.t. theandz variable, and:’ de-
notes the (total) differential of the functian

Remark. Note that if(X7) is given, then[(5]3) is a linear SDE fo¥,°) (with mul-
tiplicative noise). In particular, there is a unique strawution. The SDE for the
derivative proces¥’® is particularly simple ifo is constant: In that casd, (5.3) is a
deterministic ODE with coefficients depending &n.

Proof of[5.1. We prove the stronger statement that there is a constar (0, co) such
that

[ X = XF=YER|| < M, (A (5.5)

holds for anys, h € R™ with ¢, + h € U, whereY* is the unique strong solution of
(5.3). Indeed, by subtracting the equations satisfiedkby", X* andY*h, we obtain
fort € [0, 1]:

t d t
}X§+h_X§—th} < |I|+/ ||||ds+2’/ Illde”“),
0 k=1 Y0
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where
| = z(e+h)—x(e) —2'(e)h,

h
I = be+h, X)) —be, X°) = V/(e, X°) <Y€h> , and

h
W, = ople+h, X —0p(e, X°) — 07,(g, X°) (Y%) :

Hence by Burkholder’s inequality, there exists a finite ¢cansC,, such that
t d
Bl(X*™ - X*-Y*h)["] < C,- <|||p+/ B[P+ [ 7] ds) . (5.6)
0 k=1

Sincez, b ando;, are C? with bounded derivatives, there exist finite constaiitsC),,
C\ such that

1< P 5.7)
ab

np < Cylh]*+ ]%(5,)(5)()(5%—)(5—}/%)}, (5.8)
)

M, < Culhl?+ }%(5, X9) (X — X* —Veh)]. (5.9)

Hence there exist finite constartts, C,, such that
d
ENP+Y g < G, (|7 + B[ X = X7 —Y<h|"]),
k=1
and thus, byl((5]6) and (5.7),

. t
E[(X*™ —X* —Y*h)"] < GC,lh/*+C,C, / E[(X*™" — X° = Y°h)¥?] ds
0

for anyt < 1. The assertiori(5.5) now follows by Gronwall’'s lemma. O

Derivative flow and stability of stochastic differential equations

We now apply the general result above to variations of thegaincondition, i.e., we
consider the flow

d
deg = b(&)dt+Y on(&)dWf, & =z (5.10)
k=1
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Assuming thab ando;, (k = 1,...,d) areC? with bounded derivatives, Theordm15.1
shows that thelerivative flow

x / 6 x
o i = (ge),,

exists w.r.t|| - ||, and(Y;*):> satisfies the SDE

d
dYP = VE Y di+ Y o) VAWt Yy = I (5.11)
k=1

Note that again, this is a linear SDE forif £ is given, andY” is the fundamental solu-
tion of this SDE.

Remark (Flow of diffeomorphisms). One can prove that — £7(w) is a diffeomor-
phism onR™ for anyt andw, cf. [24] or [14].

In the sequel, we will denote the directional derivativetw tlow¢, in directionv € R”
by Y, +:

Yoo = Y&, = Yiu = 0.8
(i) Constant diffusion coefficientsLet us now first assume thdt= »n ando(x) = I,
for anyx € R". Then the SDE reads

¢t = b(&%) dt + dW, & =
and the derivative flow solves the ODE
ay® = V(&MY dt, Yo = I,,.

This can be used to study the stability of solutions w.r.tiateons of initial conditions
pathwise:

Theorem 5.2(Exponential stability ). Suppose that: R" — R" is C? with bounded
derivatives, and let
k = sup supv-V(x)v.
zeR” TﬁEZ

Then for anyt > 0 andz, y,v € R",

0.671 < e, and g =& < Mz -yl
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The theorem shows in particular that exponential stabdldls if < < 0.

Proof. The derivativey ", = 9, satisfies the ODE

dy, = UV (9)Y,dt.
Hence
dY,)? = 2V,-0()Y,dt < 2x|Y,|*dt,
which implies
0.7 = |YhP < ¢o’,  andthus
1
|€f—€f‘ — ’/ amiy §173)$+Sy ds < e“t\x—y\.
0

O

Example (Ornstein-Uhlenbeck procesy Let A € R™*". The generalized Ornstein-
Uhlenbeck process solving the SDE

is exponentially stable it = sup {v- Av : v € S"71} <.

(if) Non-constant diffusion coefficientdf the diffusion coefficients are not constant, the
noise term in the SDE for the derivative flow does not vanidter&fore, the derivative
flow can not be bounded pathwise. Nevertheless, we can stdirostability in anZ?
sense.

Lemma 5.3. Suppose thak, o1,...,04 : R® — R" are C* with bounded derivatives.
Then for anyt > 0 andz,v € R", the derivative flow, = 9,£ is in L*(Q2, A, P),
and

d
SEIVLP) = 2ER, K€Y
where
1 d
K@) = V(@)+5Y ok o).
k=1
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Proof. Let Y, denote thé-the component of,. The It6 product rule yields
dy,? = 2v,-dY,+> d[y"]
k

BLY oy eyt + 23V o€ it + 3 o ey
k k

Noting that the stochastic integrals on the right-hand stdpped at
T, =inf{t > 0:|Y, .| > n} are martingales, we obtain

tATy,
El[Your )] = +2E[/ Y, - K(8)Y, ds].
0
The assertion follows as — oo. O

Theorem 5.4(Exponential stability Il ). Suppose that the assumptions in Leniméa 5.3
hold, and let

Kk = sup supv- K(x)v. (5.12)
o

Then foranyt > 0 andz, y,v € R",
Ello.&17 < e*of’, and (5.13)
Ellgr =€l < ez -yl (5.14)
Proof. SinceK (z) < kI, holds in the form sense for any Lemmd.5.B implies
CEIY.P < 2mE[Yul)

(5.13) now follows immediately by Gronwell’s lemma, ahdl®) follows from [5.1B)
sincecy — &/ = [ 0, &V ds, O

Remark. (Curvature) The quantity—«x can be viewed as a lower curvature bound
w.r.t. the geometric structure defined by the diffusion pssc In particular, exponential
stability w.r.t. theL? norm holds ifs < 0, i.e., if the curvature is bounded from below
by a strictly positive constant.
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Consequences for the transition semigroup

We still consider the flow¢?) of the SDE[(5.11) with assumptions as in Lemimd 5.3 and
Theorem 5.14. Let

p(a,B) = PleB], zeR", BeBR"),
denote the transition function of the diffusion processin For two probability mea-

suresy, v onR™, we define the.? Wasserstein distance

Wolpv) = inf E[|X — Y[
XN;L’,YNI/

as the infimum of the.? distance among all couplings pfandv. Here a coupling of:
andv is defined as a pairX, Y') of random variables on a joint probability space with
distributionsX ~ p andY ~ v. Letx be defined as in(5.12).

Corollary 5.5. Foranyt > 0 andx,y € R™,

W2(pt('r7')7pt<y7')) < elit|x_y‘.
Proof. The flow defines a coupling betwegyix, - ) andp,(y, - ) for anyt, x andy:

& ~ plx), & ~ply,)
Therefore,

2 xT
WQ(pt(x7')7pt(y7')) < E[‘gt _fﬂﬂ

The assertion now follows from Theorém15.4. O
Exercise (Exponential convergence to equilibriun). Suppose that: is a stationary
distribution for the diffusion process, i.@.js a probability measure ds(R") satisfying

pp: = p for everyt > 0. Prove that ifsx < 0 and [ |z|* u(dzx) < oo, then for any
z € R, Wa(pi(x, - ), n) — 0 exponentially fast with rate ast — co.

Besides studying convergence to a stationary distributio® derivative flow is also
useful for computing and controlling derivatives of traostfunctions. Let

(0 f) () = / pile.dy) () = ELF(ED)]

denote the transition semigroup acting on functignsR™” — R. We still assume the
conditions from LemmBa35l3.
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Exercise (Lipschitz bound). Prove that for any Lipschitz continuous functigh :
R™ — R,
pefllip < e[| fllup V20,

where || f||Lip = sup {|f(z) — f(W)l/|z —y| : v,y € R" S.t. & # y}.

For continuously differentiable functions we even obtain an explicit formula for the
gradient ofp, f:

Corollary 5.6 (First Bismut-Elworthy Formula ). For any functionf € C}(R") and
t >0, p.f is differentiable with

v-Vopf = E[V), Vef] vV, v e R (5.15)

HereV,p; f denotes the gradient evaluated:aiNote thatY?, - V- f is the directional
derivative off in the direction of the derivative flow",.

Proof of(5.6. For A € R\ {0},

t x + Av) — t X z+Av x g z+sv
(pef)(x + /\) (pef) () _ %E[f(t )_f(gt)] - %/0 E[Yv,t 'Vggv-ksvf] ds.

The assertion now follows sinae— & andx — Y7, are continuousy f is continuous

and bounded, and the derivative flow is boundedin O

The first Bismut-Elworthy Formula shows that the gradieng,gfcan be controlled by
the gradient off for all t > 0. In Sectiori 5.4, we will see that by applying an integration
by parts on the right hand side 6f (5115), for 0 it is even possible to control the gra-
dient ofp; f in terms of the supremum norm ¢f provided a non-degeneracy condition
holds, cf. ¢?).

5.2 Malliavin gradient and Bismut integration by parts

formula

Let W;(w) = w; denote the canonical Brownian motion @n= Cy([0, 1], R¢) endowed
with Wiener measure. In the sequel, we denote Wiener medsure, expectation
values w.r.t. Wiener measure 1 - |, and the supremum norm by ||.
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Definition. Le