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Abstract

Sequential Monte Carlo Samplers are a class of stochastic algorithms for Monte
Carlo integral estimation w.r.t. probability distributions which combine elements of
Markov chain Monte Carlo methods and importance sampling/resampling schemes.
We develop a stability analysis by functional inequalities for a nonlinear flow of
probability measures describing the limit behavior of the algorithms as the number
of particles tends to infinity. Stability results are derived both under global and local
assumptions on the generator of the underlying Metropolis dynamics. This allows
us to prove that the combined methods sometimes have good asymptotic stability
properties in multimodal setups where traditional MCMC methods mix extremely
slowly. For example, this holds for the mean field Ising model at all temperatures.

1 Introduction

Spectral gap estimates and related functional inequalities provide powerful tools for the
study of convergence to equilibrium of reversible time-homogeneous Markov processes
(see e.g. [2], [3], [4]). They have been employed successfully to analyze convergence
properties of Markov Chain Monte Carlo (MCMC) methods for approximate sampling
and integral estimation with respect to a fixed probability measure µ, see e.g. [12] and
references therein. In several applications of MCMC methods one is further interested in
estimating sequentially expectation values w.r.t. evolving probability measures (µt)t≥0.
For example, the measures µt may be used as the basis of a homotopy method for inter-
polating between a nice initial distribution µ0 and a target distribution µβ that cannot
be approximated directly in a feasible way (cf. the examples in XXX). Corresponding
sequential MCMC methods rely on replacing the Kolmogorov forward equation of a sta-
tionary time-homogeneous Markov process by a nonlinear Fokker-Planck equation that
is satisfied by the measures µt. The empirical distribution of an interacting particle
system discretizing the Fokker-Planck equation are then used as estimators for expec-
tation values w.r.t. µt, cf. [DMDJ], [arXiv ’10]. In [arXiv ’10] we apply functional
inequalities to derive non-asymptotic error bounds for the particle system approxima-
tions. The results are partially restrictive, since the validity of appropriate logarithmic
Sobolev inequalities is assumed. The purpose of the present article is to show that under
less restrictive assumptions, functional inequalities can be used efficiently to study the
stability properties of the limiting nonlinear Fokker-Planck equation.
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2 Setup

2.1 Evolving probability measures

Let (µt)t≥0 denote a family of mutually absolutely continuous probability measures on
a set S. To keep the presentation as simple and non-technical as possible, we assume
that S is finite.

We assume that the measures are represented in the form

µt(x) =
1
Zt

exp (−Ut(x)) µ0(x), t ≥ 0, (1)

where Zt is a normalization constant, and (t, x) 7→ Ut(x) is a given function on [0,∞)×S
that is continuously differentiable in the first variable. If, for example, Ut(x) = tU(x)
for some function U : S → R, then (µt)t≥0 is the exponential family corresponding to U
and µ0. Let

Ht(x) := − ∂

∂t
log µt(x) = − ∂

∂t
log

µt(x)
µ0(x)

denote the negative logarithmic time derivative of the measures µt. Note that

µt(x) = exp
(
−
∫ t

0
Hs(x) ds

)
µ0(x) , (2)

and
〈Ht, µt〉 = − d

dt
µt(S) = 0 for all t ≥ 0, (3)

where
〈f, ν〉 :=

∫
S

f dν =
∑
x∈S

f(x) ν(x)

denotes the integral of a function f : S → R w.r.t. a measure ν on S. In particular,

Ht =
∂

∂t
Ut −

〈
∂

∂t
Ut, µt

〉
.

In applications we have in mind, the functions Ut are given explicitly. Hence Ht is known
explicitly up to an additive time-dependent constant. The evaluation of this constant,
however, would require integration w.r.t. µt.

If all the functions Ht, t ≥ 0, vanish then µt = µ0 for all t ≥ 0. In this case the
measures are invariant for a Markov transition semigroup (pt)t≥0, i.e.,

µspt−s = µt for all t ≥ s ≥ 0,

provided the generator L satisfies µ0L = 0, i.e.∑
x∈S

µ0(x)L(x, y) = 0 for all y ∈ S.

This fact is exploited in Markov Chain Monte Carlo (MCMC) methods for approximating
expectation values w.r.t. the measure µ0. The particle systems studied below can be
applied for the same purpose when the measures µt are time-dependent.
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2.2 Associated Fokker-Planck equations

To obtain approximations of the measures µt, we consider generators (Q-matrices) Lt,
t ≥ 0, of a time-inhomogeneous Markov process on S satisfying the detailed balance
conditions

µt(x)Lt(x, y) = µt(y)Lt(y, x) ∀ t ≥ 0, x, y ∈ S. (4)

For example, Lt could be the generator of a Metropolis dynamics w.r.t. µt, i.e.

Lt(x, y) = Kt(x, y) ·min
(

µt(y)
µt(x)

, 1
)

for x 6= y,

Lt(x, x) = −
∑

y 6=x Lt(x, y), where the proposal matrix Kt is a given symmetric transition
matrix on S. In the sequel we will use the notation L∗t µ to denote the adjoint action of
the generator on a probability measure, i.e.

(L∗t µ)(y) := (µLt)(y) =
∑
x∈S

µ(x)Lt(x, y).

By (4), L∗t µt = 0, i.e.

〈Ltf, µt〉 = 0 for all f : S → R and t ≥ 0.

We fix non-negative constants λt, t ≥ 0. Since the state space S is finite, the measures
µt are the unique solution of the evolution equation for measures

∂

∂t
νt = λt L∗t νt −Htνt (5)

with initial condition ν0 = µ0. In general, solutions of (5) are not necessarily probability
measures, even if ν0 is a probability measure. Therefore, we consider the equation

∂

∂t
ηt = λt L∗t ηt − Htηt + 〈Ht, ηt〉 ηt (6)

satisfied by the normalized measures ηt = νt
νt(S) . Note that, by (3), µt also solves (6).

Moreover, if ηt is a solution of (6), then

νt = exp
(
−
∫ t

0
〈Hs, ηs〉

)
ηt

is the unique solution of (5) with initial condition ν0 = η0.
The Fokker-Planck equation (6) is an evolution equation for probability measures

which, in contrast to the unnormalized equation, is not modified by adding constants to
the functions Ht.

2.3 Stability

Let ηt be the solution of (6) with initial condition ν ∈M1(S), and let

gt(y) :=
ηt(y)
µt(y)

, t ≥ 0,
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denote the relative density of ηt w.r.t. the measure µt defined by (1). Moreover, let

εt := Et[(gt − 1)2] =
〈
(gt − 1)2, µt

〉
denote the mean square error (χ2–contrast) of ηt w.r.t. µt.

The main objective of this article is to develop efficient tools to bound the growth
of εt. The analysis will be based on Theorem 1. To estimate the right-hand side of
(8) we have to control the two terms involving Ht (which correspond to importance
sampling/resampling) by the Dirichlet form Et (which corresponds to MCMC moves).
We first discuss how this can be achieved in the presence of a good global spectral gap
estimate. Afterwards, we give results based on local Poincaré-type inequalities, which
can sometimes be used to control the error growth in multimodal setups where good
global mixing properties of the underlying Markov chains do not hold.

3 Stability based on global estimates

3.1 Preliminaries

The associated Dirichlet form on functions f, g : S → R is

Et(f, g) := −Et[f Ltg] =
1
2

∑
x,y∈S

(f(y)− f(x))(g(y)− g(x))Lt(x, y) µt(x),

where Et stands for expectation w.r.t. µt, and

(Ltg)(x) :=
∑

y

Lt(x, y)g(y).

We shall often use the abbreviated notation Et(f) := Et(f, f).

Now we have a first result about time evolution of the mean square error.

Theorem 1. The densities gt solve

∂

∂t
gt = λtLtgt + Et[Htgt] gt. (7)

Moreover, the time evolution of the mean square error is given by

1
2

d

dt
εt = −λt Et(gt − 1)− 1

2
Et[Ht(gt − 1)2] + Et[Ht(gt − 1)] εt. (8)

Proof. To simplify the notation, we assume λt = 1 for all t ≥ 0. The general case is
similar with Lt replaced by λtLt. Let us first derive equation (7): since µt has full
support and is differentiable in t, we have

∂

∂t
gt =

1
µt

∂

∂t
ηt −

ηt

µt

∂

∂t
log µt. (9)

Note that, by the detailed balance condition (4), the relative density of L∗t ηt w.r.t. µt is

L∗t ηt(y)
µt(y)

=
∑

x

ηt(x)
Lt(x, y)
µt(y)

=
∑

x

ηt(x)
Lt(y, x)
µt(x)

= Ltgt(y).
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Hence (6) yields

1
µt

∂

∂t
ηt = Ltgt −Htgt + 〈Ht, ηt〉 gt

= (Lt −Ht)gt + 〈Htgt, µt〉 gt. (10)

Recalling that Ht(x) := − ∂
∂t log µt(x), x ∈ S, one has

− ηt

µt

∂

∂t
log µt = Htgt. (11)

Inserting (10) and (11) into (9) we obtain (7).
Let us now derive the equation for the quadratic error

εt =
〈
(gt − 1)2, µt

〉
≡ Et

[
(gt − 1)2

]
.

Differentiating this expression with respect to t one gets

d

dt
εt = 2 〈(gt − 1)∂tgt, µt〉+

〈
(gt − 1)2, ∂tµt

〉
,

where, by (6),

〈(gt − 1)∂tgt, µt〉 =
〈
(gt − 1)

(
Ltgt + 〈Htgt, µt〉 gt

)
, µt

〉
= 〈Lt(gt − 1), (gt − 1)〉+ 〈Htgt, µt〉 〈gt(gt − 1), µt〉
= −Et(gt − 1) + 〈Ht(gt − 1), µt〉 εt,

and, taking again into account that Ht := − ∂
∂t log µt,〈

(gt − 1)2, ∂tµt

〉
=
〈
(gt − 1)2, (∂t log µt)µt

〉
= −

〈
Ht(gt − 1)2, µt

〉
.

In the above derivation we have used the identities 〈gt − 1, µt〉 = ηt(S) − µt(S) = 0,
Lt1 = 0, and 〈Ht, µt〉 = 0. We have thus proved (8) in the case λt ≡ 1. The general case
follows similarly.

For t ≥ 0 let

Ct := sup
{

Et[f2]/Et(f)
∣∣ f : S → R s.t. Et[f ] = 0 , f 6≡ 0

}
denote the (possibly infinite) inverse spectral gap of Lt, and let

At := sup
{

Et[H−
t f2]/Et(f)

∣∣ f : S → R s.t. Et[f ] = 0 , f 6≡ 0
}

.

Thus Ct and At are the optimal constants in the global Poincaré inequalities

Vart(f) ≤ Ct Et(f) ∀f : S → R, (12)

Et[H−
t (f − Et[f ])2] ≤ At Et(f) ∀f : S → R. (13)

Here Vart stands for variance w.r.t. µt.
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Remark 2. (i) There exist efficient techniques to obtain upper bounds for Ct, for ex-
ample the method of canonical paths, comparison methods (see e.g. [10]), as well as
decomposition methods (see e.g. [6]). Variants of these techniques can be applied to
estimate At as well.

(ii) Clearly, one has
At ≤ Ct · sup

x∈S
H−

t (x), (14)

so an upper bound on Ct yields a trivial (and usually far from optimal) upper bound on
At.

Let
σt(H) := Vart(H)1/2 = Et[H2

t ]1/2

denote the standard deviation of H w.r.t. µt. The next result bounds the error growth
in terms of Ct and At.

Theorem 3. If λt ≥ At/2 for all t ≥ 0, then

d

dt
log εt ≤ −2λt −At

Ct
+ 2σt(H)ε1/2

t (15)

and

d

dt
log εt ≤ −2λt −At

Ct
+ 2
(At

Ct
Et[H−

t ]
)1/2

ε
1/2
t + Et[H−

t ] εt. (16)

Inequality (15) is straightforward to prove, but sometimes (16) is stronger, since the
constants only depend on the negative part of Ht.

Proof. We have to estimate the terms on the right hand side of (8). By the assumed
H–Poincaré inequality (13), we obtain

−1
2

Et

[
Ht(gt − 1)2

]
≤ 1

2
Et

[
H−

t (gt − 1)2
]
≤ 1

2
At · Et(gt − 1) .

Moreover,

Et [Ht(gt − 1)] ≤
(
Et[H2

t ]
)1/2 (Et[(gt − 1)2]

)1/2 = σt(H) ε
1/2
t .

Substituting into (8) yields

d

dt
εt ≤ −2 (λt −At/2) Et(gt − 1) + 2 σt(H) ε

3/2
t

≤ −2λt −At

Ct
εt + 2σt(H) ε

3/2
t ,

by the global Poincaré inequality (12), provided λt ≥ At/2. This proves (15).

On the other hand,

Et

[
Ht

(
− (gt − 1)2/2 + (gt − 1)εt

)]
=

1
2

Et

[
H−

t (gt − 1)2
]
+ Et

[
H−

t (1− gt)
]

εt (17)

+Et

[
H+

t

(
− (gt − 1)2/2 + (gt − 1)εt

)]
.
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Estimating the three summands on the right hand side separately yields

Et

[
H−

t (gt − 1)2
]
≤ At · Et(gt − 1)

by the H-Poincaré inequality (13),

Et

[
H−

t (1− gt)
]
≤ Et[H−

t ]1/2 Et[H−
t (gt − 1)2]1/2

≤ Et[H−
t ]1/2A

1/2
t Et(gt − 1)1/2

by the Cauchy-Schwarz inequality and (13), and

Et

[
H+

t

(
− (gt − 1)2/2 + (gt − 1)εt

)]
≤ 1

2
Et[H+

t ] ε2
t =

1
2

Et[H−
t ] ε2

t .

The last estimate follows since

1
2

ε2
t ≥ (gt − 1)εt −

1
2
(gt − 1)2

and
Et[H+

t ]− Et[H−
t ] = Et[Ht] = 0 .

By combining the estimates, (17) and (8), we obtain

d

dt
εt ≤ −(2λt −At) Et(gt − 1) + 2A

1/2
t Et[H−

t ]1/2Et(gt − 1)1/2εt + Et[H−
t ] ε2

t .

This combined with the global Poincaré inequality (12) yields

d

dt
εt ≤ −2λt −At

Ct
εt + 2

A
1/2
t

C
1/2
t

Et[H−
t ]1/2ε

3/2
t + Et[H−

t ] ε2
t ,

and hence (16).

As an immediate consequence of the theorem we obtain estimates on the average
relative frequency λt of MCMC moves that is sufficient to guarantee stability of the
corresponding nonlinear flow of probability measures.

Corollary 4. Let 0 ≤ β0 < β1, and assume that for all t ∈ (β0, β1),

λt >
At

2
+ Ctσt(H) ε

1/2
β0

(18)

or
λt >

At

2
+ (AtCtEt[H−

t ])1/2 ε
1/2
β0

+
1
2

CtEt[H−
t ] εβ0 . (19)

Then t 7→ εt is strictly decreasing on the interval [β0, β1].

Proof. If (18) or (19) holds for t ∈ (β0, β1), then by Theorem 3 and continuity, t 7→ εt

is strictly decreasing near β0 and near any s ∈ (β0, β1) such that εs ≤ εβ0 . Hence it is
strictly decreasing on the whole interval [β0, β1].
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Remark 5. (i) On the finite state spaces considered here, the constants Ct and At are
finite if Lt is irreducible. However, in multimodal situations, the numerical values of these
constants are often extremely large. Alternative estimates based on local Poincaré-type
inequalities are in the next section.

(ii) Similarly to the above corollary, one obtains that the error decays exponentially
with rate γ > 0, i.e. t 7→ eγt εt is decreasing on [β0, β1], provided

λt >
At + γCt

2
+ Ctσt(H) e−γ(t−β0)/2 ε

1/2
β0

∀ t ∈ (β0, β1) , (20)

or a similar condition replacing (19) holds.
(iii) One can often assume that the initial error εβ0 is very small. In this case, λt

slightly greater than (At + γCt)/2 is enough to ensure exponential decay with rate γ.
(iv) The case H ≡ 0 corresponds to classical MCMC. Here At = 0 for all t, so

∂εt/∂t ≤ −2 λt
Ct

εt. This yields the classical exponential decay with rate 2γ of the mean
square error in the presence of the global spectral gap λt/Ct ≥ γ of the generator λt · Lt.
For H 6≡ 0, additional MCMC moves are required to make up for the error growth due
to importance sampling/resampling.

Roughly, the corollary says that is the initial error is sufficiently small, the stabi-
lizing effects of the MCMC dynamics make up for the error growth due to importance
sampling/resampling provided λt ≥ At/2.

3.2 Comparison with parallel MCMC

Suppose that we want to simulate µβ for a fixed β > 0. Parallel MCMC consists in
simulating N independent time homogeneous Markov chains with generator Lβ . This
algorithm is clearly a special case of the sequential MCMC procedure introduced above,
where µt = µβ for all t > 0 and H = 0. If the chains are run with initial distribution µ0,
one has

εt ≤ e−2t/Cβ ε0 ≤ e−2t/Cβ ·
(
eβ osc(H) − 1

)
where we have used that

ε0 =
∑
x∈S

(
µ0(x)
µβ(x)

− 1
)2

µβ(x) =
∑
x∈S

µ0(x)
µβ(x)

µ0(x) − 1 ≤ eβ osc(H) − 1 .

Hence to ensure εT < ε̄ for a given ε̄ > 0 and T > 0, a total running time

T ≥
Cβ

2
·
(

β osc(H) + log
1
ε̄

)
is sufficient. If (??) holds, the number of MCMC steps required for a simulation is of
the same order as T . Alternatively, we can apply the sequential MCMC method with
varying distributions µt (0 ≤ t ≤ β). Using the rough estimate At ≤ Ct · supH−

t and
(19), we see that εt decreases in time if

λt ≥ 1
2

Ct supH−
t (1 + ε

1/2
0 )2 ∀ t ∈ (0, β).
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Thus an expected total number of MCMC steps of order

1
2
(1 + ε

1/2
0 )2

∫ β

0
Ct supH−

t dt

suffices to guarantee stability of the corresponding nonlinear semigroup.

More drastic improvements due to sequential MCMC appear when good global spec-
tral gap estimates do not hold, as we shall now demonstrate.

4 Error control based on local estimates

Madras and Randall [8] and Jerrum, Son, Tetali and Vigoda [6] have shown how to
derive estimates for spectral gaps and logarithmic Sobolev constants of the generator of
a Markov chain from corresponding local estimates on the sets of a decomposition of the
state space combined with estimates for the projected chain. This has been applied to
tempering algorithms in [9], [1] and [?]. We now develop related decomposition tech-
niques for sequential MCMC. However, in this case, we will assume only local estimates
for the generators Lt, and no mixing properties for the projections – whence there will be
an unavoidable error growth due to importance sampling/resampling between the com-
ponents. The results and examples below indicate that nevertheless sequential MCMC
methods might potentially be at least equally efficient as tempering algorithms in many
applications. Since mixing properties for the projections do not have to be taken into
account, the analysis of the decomposition simplifies considerably.

Let 0 ≤ β0 < β1 ≤ ∞. We assume that for every t ∈ (β0, β1), there exists a
decomposition

S =
⋃
i∈I

Si
t

into finitely many disjoint sets with µt(Si
t) > 0, as well as non–negative definite quadratic

forms E i
t (i ∈ I) on functions on S such that∑

i

µt(Si
t) E i

t (f) ≤ K · Et(f) ∀ t ∈ (β0, β1), f : S → R (21)

for some fixed finite constant K. For example, one might choose E i
t as the Dirichlet form

of the Markov chain corresponding to Lt restricted to Si
t , i.e.,

E i
t (f) =

1
2

∑
x,y∈Si

t

(f(y)− f(x))2 Lt(x, y) µt(x |Si
t) . (22)

In this case, (21) holds with K = 1.
Let us denote by Ei

t and Vari
t, respectively, the expectation and variance w.r.t. the

conditional measure
µi

t(A) := µt(A|Si
t),

and by π : S → I the natural projection. In particular,

Et[f |π] =
∑
i∈S

Ei
t[f ] · χSi

t
,
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for any function f : S → R. We set

H̃t := Ht − Et[Ht|π].

Assume that the following local Poincaré-type inequalities hold for all t ∈ (β0, β1)
and i ∈ I with constants Ai

t, B
i
t ∈ (0,∞):

Ei
t[−H̃t f2] ≤ Ai

t · E i
t (f) ∀f : S → R : Et[f |π] = 0 , (23)∣∣Ei

t[H̃t f ]
∣∣2 ≤ Bi

t · E i
t (f) ∀f : S → R : Et[f |π] = 0 . (24)

Remark 6. (i) Note that to verify (23) it is enough to estimate Ei
t[H̃

−
t f2], while for (24)

one has to take into account the positive part of H̃t as well. In particular, (23) can not
be used to derive an estimate of type (24). However, if (23) holds with −H̃t replaced by
|H̃t|, then (24) holds with Bi

t = Ei
t[|H̃t|] ·Ai

t.
(ii) If local Poincaré inequalities of the type

Vari
t(f) ≤ Ci

t · E i
t (f) ∀ f : S → R, i ∈ I, (25)

hold, then (23) and (24) hold with Ai
t = Ci

t ·maxSi H̃−
t and Bi

t = Ci
t ·Vari

t(H).

Combining (21) and (23), (24) respectively yields

Et[−H̃tf̃
2
t ] =

∑
i∈I

µt(Si
t) Ei

t[−H̃tf̃
2
t ] ≤ Ât · Et(f) ∀ f : S → R , (26)

and ∑
i∈I

µt(Si
t)
∣∣∣Ei

t[H̃tf̃t]
∣∣∣2 ≤ B̂t · Et(f) ∀ f : S → R , (27)

where
Ât := K ·max

i
Ai

t and B̂t := K ·max
i

Bi
t.

The following error estimate is our key result.

Theorem 7. If λt > Ât/2 for all t ∈ (β0, β1) then

d

dt
log εt ≤ B̂t

λt − Ât/2
· (1 + εt) + (1 +

√
εt)

2 ·max
i∈I

h−t (i) (28)

where

ht(i) := Ei
t[Ht] = − ∂

∂s
log µs(Si

t)
∣∣∣∣
s=t

(i ∈ I). (29)

Proof. Similarly to Theorem 3, we have to control the right hand side of (8), but now
by using only local Poincaré type inequalities. Let

ft := gt − 1 and f̃t := ft − Et[ft|π].
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Then

Et

[
Ht

(
− (gt − 1)2/2 + (gt − 1)εt

)]
= Et

[
H̃t

(
− (gt − 1)2/2 + (gt − 1)εt

)]
+
∑
i∈I

µt(Si
t) Ei

t[Ht] Ei
t

[
−(gt − 1)2/2 + (gt − 1)εt

]
= −1

2
Et[H̃tf̃

2
t ]− Et

[
H̃tf̃t Et[ft|π]

]
+ Et[H̃tf̃t εt]

+
∑
i∈I

µt(Si
t) Ei

t[H] Ei
t

[
−f2

t /2 + ftεt

]
(30)

= −1
2

Et[H̃tf̃
2
t ] +

∑
i∈I

µt(Si
t) Ei

t[H̃tf̃t]
(
εt − Ei

t[ft]
)

+
∑
i∈I

µt(Si
t) ht(i) Ei

t[−f2
t /2 + ftεt].

Here we have used the definitions of Ht, H̃t and ht, and the fact that Et[H̃t|π] = 0.
We now estimate the three summands on the right hand side separately. By the local
H-Poincaré inequality (26),

−1
2

Et[H̃tf̃
2
t ] ≤ 1

2
Ât · Et(ft).

By (27), and since ∑
i

µt(Si
t) Ei

t[ft] = Et[ft] = 0,

we have ∑
i∈I

µt(Si
t) · Ei

t[H̃tf̃t] ·
(
εt − Ei

t[ft]
)

≤

(∑
i∈I

µt(Si
t) Ei

t[H̃tf̃t]2
)1/2(∑

i∈I

µt(Si
t) (εt − Ei

t[ft])2
)1/2

≤ B̂
1/2
t Et(ft)1/2 ·

(
ε2
t +

∑
µt(Si

t)Ei
t[f

2
t ]
)1/2

=
(
B̂t Et(ft) · εt · (1 + εt)

)1/2
.

Moreover, since
−f2

t /2 + ftεt ≤ ε2
t /2,

we obtain ∑
i∈I

µt(Si
t) ht(i) Ei

t[−f2
t /2 + ftεt]

≤
∑
i∈I

µt(Si
t) h+

t (i) · 1
2

ε2
t +

∑
i∈I

µt(Si
t) h−t (i) Ei

t[f
2
t /2− ftεt]

≤
(

1
2

ε2
t +

1
2

εt + ε
3/2
t

)
·max h−t = εt · (1 +

√
εt)

2 ·max h−t .

11



Here we have used that∑
µt(Si

t)h
+
t (i) =

∑
µt(Si

t)h
−
t (i) ≤ max h−t

and ∑
µt(Si

t) Ei
t[−ft] ≤

(∑
µt(Si

t) Ei
t[f

2
t ]
)1/2

= ε
1/2
t .

Combining the estimates yields, by (8) and (30):

1
2

d

dt
εt ≤ −λt · Et(ft) + Et

[
Ht(−f2

t /2 + ftεt)
]

≤ −

(
λt −

Ât

2

)
· Et(ft) +

(
B̂tEt(ft)εt(1 + εt)

)1/2
+

1
2

εt(1 +
√

εt)2 max h−t

≤ B̂t

2λt − Ât

εt (1 + εt) +
1
2

εt (1 +
√

εt)
2 max h−t ,

provided λt > Ât/2. This proves (28).
Moreover, for any subset A ⊆ S,

d

dt
log µt(A) =

1
µt(A)

∑
x∈A

∂tµt(x) =
1

µt(A)

∑
x∈A

(
∂t log µt(x)

)
µt(x)

=
1

µt(A)

∑
x∈A

Ht(x)µt(x) = Et[Ht|A],

which proves (29).

To understand the consequences of (28), let us first consider the asymptotics as λt

tends to infinity. In this case, (28) reduces to

d

dt
log εt ≤ (1 +

√
εt)

2 ·max h−t .

In order to ensure that for t > β0 the error εt remains below a given threshold δ > 0,
note that as long as εt ≤ δ, we have

d

dt
log εt ≤

(
1 +

√
δ
)2

max h−t .

Thus
min(εt, δ) ≤ εβ0G

(1+
√

δ)2

t ∀t ∈ [β0, β1], (31)

where

Gt := exp
(∫ t

β0

max h−r dr

)
= exp

(∫ t

β0

max
i

∂

∂s
log µs(Si

r)
∣∣∣∣
s=r

dr

)
.

Remark 8. The term G
(1+

√
δ)2

t in (31) accounts for the maximum error growth due to
importance sampling between the components. If Si

t = Si is independent of t for every

12



i, and there is an i0 ∈ I such that ∂s log µs(Si) is maximized by Si0 for all s ∈ (β0, β1),
then

Gt = exp
(∫ t

β0

max
i

d

ds
log µs(Si) ds

)
=

µt(Si0)
µβ0(Si0)

∀ t ∈ [β0, β1],

i.e., Gt is the growth rate of this strongest growing component. In general, things
are more complicated, but a similar interpretation is at least possible on appropriate
subintervals of [β0, β1].

Now we return to the case when λt is finite. The next corollary tells us how many
MCMC moves are sufficient to obtain an estimate on the growth of εt that is not much
worse than (31).

Corollary 9. Let β ∈ (β0, β1] and δ > 0, and assume that

λt ≥
Ât

2
+ αt · B̂t ∀t ∈ (β0, β) (32)

for some function α : (β0, β) → (0,∞). Then

min(εβ, δ) ≤ εβ0G
(1+

√
δ)2

β exp
∫ β

β0

1 + δ

αs
ds ∀t ∈ [β0, β]. (33)

In particular, if

λt ≥
Ât

2
+ (β − β0)B̂t ∀t ∈ (β0, β), (34)

then
min(εβ , δ) ≤ εβ0G

(1+
√

δ)2

β e1+δ. (35)

Proof. Assume that (32) holds, and let

ut := εt/G
(1+

√
δ)2

t .

Then by the definition of Gt, Theorem 7, and (32),

d

dt
log ut =

d

dt
log εt − (1 +

√
δ)2 max h−t

≤ B̂t

λt − Ât/2
(1 + δ) ≤ 1 + δ

αt

for all t ∈ (β0, β) such that εt ≤ δ. Hence

εt = ut G
(1+

√
δ)2

t ≤ εβ0G
(1+

√
δ)2

t exp
∫ t

β0

1 + δ

αs
ds

holds for t ∈ [β0, β] provided the right hand side is smaller than δ. This proves (33).
The second assertion is a straightforward consequence.

Remark 10. The main difference to Corollary 4 is that under local conditions it can
not be guaranteed that the error remains bounded. Instead, εt can grow with a rate
dominated by G

(1+
√

δ)2

t . As already pointed out, this is due to importance sampling
between the components.
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5 Examples

5.1 Exponential model with k valleys in the energy landscape

This is an extended version of a model considered in [7], [9] as a test case for some
multi-level MCMC methods. We fix k ∈ N, and r1, r2, . . . , rk ∈ N. Let S0 := {0} and

Si := {(i, j) : j = 1, 2, . . . , ri} , 1 ≤ i ≤ k.

We consider the graph with vertex set

S =
k⋃

i=0

Si

and edges (0, (i, 1)), 1 ≤ i ≤ k, and ((i, j), (i, j + 1)), 1 ≤ i ≤ k, 1 ≤ j ≤ ri − 1. Suppose
that

H(x) = −d(x, 0), x ∈ S,

where d(x, 0) stands for the graph distance of x from 0, i.e., H(0) = 0 and H((i, j)) = −j.
We assume that µt is given by (??), where µ is an arbitrary probability distribution on
S such that µ(x) > 0 for all x ∈ S and µ is log-concave on each of the valleys Si of the
energy landscape, i.e.,

1
2
(
log µ((i, j + 1)) + log µ((i, j − 1))

)
≤ log µ((i, j))

for all 1 ≤ i ≤ k and 1 ≤ j ≤ ri. We consider the setup for sequential MCMC as
described above where Lt is the generator of the Metropolis dynamics w.r.t. µt based
on the nearest neighbor random walk on S. Of course, there are more efficient ways to
carry out Monte Carlo integrations in this special situation. The point, however, is that
sequential MCMC methods can be applied even though the underlying structure of the
energy landscape is unknown. Let R = max1≤i≤k ri. An application of Corollary 9 with
β0 = 0 and Si

t = Si for all t ≥ 0 yields the following result :

Theorem 11. If

λt ≥ R3 +
β

2
R4 ∀t ∈ (0, β),

then
min(εβ , δ) ≤ e1+δ · ε0G

(1+
√

δ)2

β · ε0 ∀ δ ∈ (0, 1). (36)

Moreover, if the conditional distribution µ(·|Si0) lies deeper in one of the valleys than in
the others in the sense that

µ
(
{(i, j) : j ≥ h}

∣∣Si0
)
≥ µ

(
{(i, j) : j ≥ h}

∣∣Si
)

, (37)

then

Gβ =
µβ(Si0)
µ(Si0)

,

and thus
min(εβ, δ) ≤ e1+δ · ε0

µ(Si0)(1+
√

δ)2
∀ 0 < δ < 1. (38)
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Proof. The log-concavity of µ easily implies that µt as well is log-concave on Si for all
t ≥ 0 and 1 ≤ i ≤ k. In particular, the restriction of µt to Si has a unique local maximum
for every i. By the method of canonical paths it is then not difficult to prove that the
spectral gap of the Metropolis dynamics w.r.t. µt(·|Si) based on the standard random
walk is bounded from below by 1/2r2

i for all t ≥ 0 and 1 ≤ i ≤ k, cf. e.g. Proposition
6.3 in [5]. Now we are in the setting of Remark 6 (ii), according to which (23) and (24)
hold with E i

t as in (22),

Ai
t = 2r3

i , and Bi
t =

1
2
r4
i .

Estimate (36) now follows by a straightforward application of Corollary 9.
To prove the second part of the assertion, we show that (37) places us in the setting

of Remark 8. In fact, for t > 0,

d

dt
log µt(Si) = Et[H]− Ei

t[H] for all i

and

−Ei
t[H] = −

µ
(
He−tH

∣∣Si

)
µ (e−tH |Si)

=

∑
j jetjµ((i, j))∑
j etjµ((i, j))

.

If (37) holds, then for any t > 0, the right hand side is maximized when i = i0. Hence
by Remark 8,

Gt =
µt(Si0)
µ(Si0)

for all t ≥ 0.

Remark 12. (i) The last estimate indicates that to obtain good bounds it is crucial that
the mass allocated by the initial distribution on the component Si0 with strongest impor-
tance growth is not too small (although it can be rather small if the initial distribution
ν0 is a good approximation of µ0).

(ii) Let Kβ =
∫ β
0 λt dt. Note that Kβ is a measure for the total number of MCMC

steps that a corresponding sequential MCMC algorithm will perform on average. The
theorem implies that choosing λt constant on [0, β] with Kβ of order O(β2) is sufficient
to guarantee that the nonlinear flow of measures has good stability properties on [0, β],
and can thus be used to efficiently approximate µβ. In contrast to this situation, the
flow of measures corresponding to the standard simulated annealing algorithm has good
stability properties only if Kβ grows exponentially in β.

5.2 The mean field Ising model

As a very simple example for a model with a phase transition, we now consider the
mean field Ising (Curie–Weiss) model, i.e. µβ is of type (??) where µ0 = µ is the
uniform distribution on the hypercube

S = {−1,+1}N ,

and

H(σ) = − 1
2N

N∑
i,j=1

σiσj (39)
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for some N ∈ N. Let Lβ be the generator of the (time–continuous) Metropolis chain
w.r.t. µβ based on the nearest neighbor random walk on S as proposal matrix. It is well
known that this chain is rapidly mixing (i.e. the spectral gap decays polynomially in N)
for β < 1, but torpid mixing holds (i.e. the spectral gap decays exponentially fast in N)
for β > 1. Thus in the multi-phase regime β > 1, the classical Metropolis algorithm
converges to equilibrium extremely slowly for large N .

Now assume for simplicity that N is odd, and decompose S into the two components

S+ :=

{
σ ∈ S

∣∣∣∣∣
N∑

i=1

σi > 0

}
and

S− :=

{
σ ∈ S

∣∣∣∣∣
N∑

i=1

σi < 0

}
.

Improving on previous results (e.g. of Madras and Zheng [9]), Schweizer [?] showed
recently that the spectral gaps of the restricted Metropolis chains on both S+ and S−

are bounded from below by 1
9N−2 for every t ≥ 0. Applying the results above to the

error growth for the non-linear semigroup corresponding to sequential MCMC in this
situation, we obtain :

Theorem 13. For every β > 0 and N ∈ N,

sup
0≤t≤β

εt ≤ e2 · ε0

holds whenever ε0 ≤ 1 and

λt ≥ 9
4

N3 +
9
8

β N4 ∀ t ∈ (0, β). (40)

Proof. Since −N/2 ≤ H(σ) ≤ 0 for all σ, we have osc (H) ≤ N/2 and

Vart(H|S+) = Vart(H|S−) ≤
(

1
2

osc (H)
)2

≤ N2/8

for every t ≥ 0. By Schweizer’s result [?], a local Poincaré inequality of type (25) holds
on S+ and S− with C+

t = C−t = 9N2. Hence by Remark 6 (ii), (23) and (24) hold with

A±t =
9
2

N3 and B±
t =

9
8

N4 .

The assertion now follows from Corollary 9, since

E+
t [H] = E−t [H] = Et[H] .

Remark 14. (i) The result is based on a rough estimate of Ât and B̂t in terms of the
local spectral gap. We expect that a more precise estimate of these constants would
yield a smaller power of N in (40). Furthermore, for β ≤ 1, the result can be improved
by applying global instead of local spectral gap estimates. However, our main interest
is the phase transition regime.
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(ii) Related results for the mean field Ising model have been obtained for mixing
times of Markov chains for umbrella sampling in [7], and for simulated and parallel
tempering in [9], [1], [?]. Schweizer [?] obtains an upper bound on the order in N and
β of the L2 mixing time (inverse spectral gap) for simulated tempering that is close to
the one in (40). In contrast, the best known order for parallel tempering is much worse.
In general, it seems that the analysis of sequential MCMC is partially simpler than
the one for parallel tempering, where one has to take into account that a particle can
only move in temperature if another particle moves in the opposite direction. In fact,
for this reason we would expect that sequential MCMC methods can have substantial
advantages compared to parallel tempering.

(iii) The theorem can be extended to a mean field Ising model with magnetic field. In
this case, however, one has to take into account an additional (but well controlled) error
growth due to importance sampling/resampling between the components. Moreover, the
decomposition into the two components will now depend on t. Without magnetic field
this is not the case because of the built-in symmetry.
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