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Abstract. We consider contractivity for diffusion semigroups w.r.t. Kantoro-
vich (L1 Wasserstein) distances based on appropriately chosen concave func-
tions. These distances are inbetween total variation and usual Wasserstein
distances. It is shown that by appropriate explicit choices of the underlying
distance, contractivity with rates of close to optimal order can be obtained
in several fundamental classes of examples where contractivity w.r.t. standard
Wasserstein distances fails. Applications include overdamped Langevin diffu-
sions with locally non-convex potentials, products of these processes, and sys-
tems of weakly interacting diffusions, both of mean-field and nearest neighbour
type.

1. Introduction

Consider a diffusion process (Xt)t≥0 in R
d defined by a stochastic differential

equation

(1.1) dXt = b(Xt) dt+ σ dBt.

Here (Bt)t≥0 is a d-dimensional Brownian motion, σ ∈ R
d×d is a constant d × d

matrix with det σ > 0, and b : Rd → R
d is a locally Lipschitz continuous function.

We assume that the unique strong solution of (1.1) is non-explosive for any initial
condition, which is essentially a consequence of the assumptions imposed further
below. The transition kernels of the diffusion process on R

d defined by (1.1) will
be denoted by pt(x, dy).

Contraction properties of the transition semigroup (pt)t≥0 have been studied
by various approaches. In particular, L2 and entropy methods (e.g. spectral gap
estimates, logarithmic Sobolev and transportation inequalities) yield bounds that
both are relatively stable under perturbations and applicable in high dimensions,
cf. e.g. [1, 2, 3, 4, 5, 6, 33, 37]. On the other hand, coupling methods pro-
vide a more intuitive probabilistic understanding of convergence to equilibrium
[32, 31, 35, 12, 11, 14, 37, 21, 22]. In contrast to L2 and entropy methods, bounds
resulting from coupling methods typically hold for arbitrary initial values x0 ∈ R

d.
In many applications, couplings are used to bound the total variation distances
dTV (µpt, νpt) between the laws µpt and νpt of Xt w.r.t. two different initial distri-
butions µ and ν at a given time t ≥ 0 , cf. [31, 32]. Typically, however, the total
variation distance is decaying substantially only after a certain amount of time.
This is also manifested in cut-off phenomena [16, 30, 17, 10].
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Alternatively, it is well-known that synchronuous couplings (i.e., couplings given
by the flow of the s.d.e. (1.1)) can be used to show that the map µ 7→ µpt is
exponentially contractive w.r.t. Lp Wasserstein distances W p for any p ∈ [1,∞)
if, for example, (Xt) is an overdamped Langevin diffusion with a strictly convex
potential U ∈ C2(Rd), i.e., σ = Id and b = −∇U/2, see e.g. [6]. This leads to an
elegant and powerful approach to convergence to equilibrium and to many related
results if applicable. However, it has been pointed out in [36] that strict convexity
of U is also a necessary condition for exponential contractivity w.r.t. W p. This
seems to limit the applicability substantially.

Here, we are instead considering exponential contractivity w.r.t. Kantorovich
(L1 Wasserstein) distances Wf based on underlying distance functions of the form

df(x, y) = f(‖x− y‖) on R
d,

and, more generally,

df(x, y) =
n∑

i=1

fi(‖xi − yi‖) on R
d1 × · · · × R

dn ,

where f, fi : [0,∞) → [0,∞) are strictly increasing concave functions, cf. Sections
2.1 and 3.1 below for details. For proving exponential contractivity, we will apply a
reflection coupling on R

d and an (approximate) componentwise reflection coupling
on products of Euclidean spaces. It will become clear by the proofs below, that
for distances based on concave functions f, fi, these couplings are superior to
synchronuous couplings, whereas the synchronuous couplings are superior w.r.t.
the Wasserstein distances W p for p > 1, cf. e.g. Lemma 6.2.

The idea to study contraction properties w.r.t. Kantorovich distances based on
concave distance functions appears in Chen and Wang [13, 14] and Hairer and
Mattingly [21]. In [14], similar methods are applied to estimate spectral gaps of
diffusion generators on R

d and on manifolds. In [21] and [22], Hairer, Mattingly
and Scheutzow apply Wasserstein distances based on particular concave distance
functions to prove exponential ergodicity in infinite dimensional situations. The
key idea below is to obtain more quantitative results by “almost” optimizing the
choice of the functions f and fi to obtain large contraction rates. In the case n = 1,
this idea has also been exploited in [14] to derive lower bounds for spectral gaps.
The novelty here is that we suggest a simple and very explicit choice for f that leads
to close to optimal results in several examples. Furthermore, by a new extension
to the product case based on an approximate componentwise reflection coupling,
we obtain dimension free contraction results in product models and perturbations
thereof without relying on convexity.

Before stating the general results, we consider some examples illustrating the
scope of the approach:

Example 1.1 (Overdamped Langevin dynamics with locally non-convex
potential). Suppose that σ = Id and b(x) = −1

2
∇U(x) for a function U ∈ C2(Rd)
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that is strictly convex outside a given ball B ⊂ R
d. Then Z :=

∫
exp(−U(x))dx is

finite, and the probability measure

dµ = Z−1 exp(−U) dx

is a stationary distribution for the diffusion process (Xt). Corollary 2.3 below
yields exponential contractivity for the transition semigroup (pt) with an explicit
rate w.r.t. an appropriate Kantorovich distance Wf . As a consequence, we obtain
dimension-independent upper bounds for the standard L1 Wasserstein distances
between the laws νpt of Xt and µ for arbitrary initial distributions ν and t ≥
0. These bounds are of of optimal order in R,L ∈ [0,∞) and K ∈ (0,∞) if
(x− y) · (∇U(x)−∇U(y)) is bounded from below by −L|x − y|2 for |x− y| < R
and by K|x− y|2 for |x− y| ≥ R.

Example 1.2 (Product models). For a diffusion process Xt = (X1
t , . . . , X

n
t ) in

R
n·d with independent Langevin diffusions X1, . . . , Xn as in Example 1.1, Theorem

3.1 below yields exponential contractivity in an appropriate Kantorovich distance
with rate c = min(c1, . . . , cn) where c1, . . . , cn are the lower bounds obtained for
the contraction rates of the components.

Example 1.3 (Systems of interacting diffusions). More generally, consider a
system

dX i
t = −1

2
∇U(X i

t) dt −
α

n

n∑

j=1

∇V (X i
t −Xj

t ) dt + dBi
t, i = 1, . . . , n,

of n interacting diffusion processes in R
d where U ∈ C2(Rd) is strictly convex

outside a ball, V ∈ C2(Rd) has bounded second derivatives, and B1, . . . , Bn are
independent Brownian motions in R

d. Then Corollary 3.4 below shows that for α
sufficiently small, exponential contractivity holds in an appropriate Kantorovich
distance with a rate that does not depend on n.

We now introduce briefly the couplings to be considered in the proofs below:
A coupling by reflection of two solutions of (1.1) with initial distributions µ and

ν is a diffusion process (Xt, Yt) with values in R
2d defined by (X0, Y0) ∼ η where

η is a coupling of µ and ν,

dXt = b(Xt) dt+ σ dBt for t ≥ 0,

dYt = b(Yt) dt+ σ(I − 2ete
⊤
t ) dBt for t < T , Yt = Xt for t ≥ T.(1.2)

Here ete
⊤
t is the orthogonal projection onto the unit vector

et := σ−1(Xt − Yt)/|σ−1(Xt − Yt)|,
and T = inf{t ≥ 0 : Xt = Yt} is the coupling time, i.e., the first hitting time of
the diagonal ∆ = {(x, y) ∈ R

2d : x = y}, cf. [32, 12]. The reflection coupling can
be realized as a diffusion process in R

2d, and the marginal processes (Xt)t≥0 and
(Yt)t≥0 are solutions of (1.1) w.r.t. the Brownian motions Bt and

B̌t =

∫ t

0

(Id − 2I{s<T}ese
⊤
s ) dBs.
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Notice that by Lévy’s characterization, B̌ is indeed a Brownian motion since the
process Id − 2I{s<T}ese

⊤
s takes values in the orthogonal matrices. The difference

vector
Zt := Xt − Yt

solves the s.d.e.

dZt = (b(Xt)− b(Yt)) dt+ 2|σ−1Zt|−1Zt dWt for t < T,(1.3)

Zt = 0 for t ≥ T,

w.r.t. the one-dimensional Brownian motion

Wt =

∫ t

0

e⊤s dBs.

A synchronuous coupling of two solutions of (1.1) is defined correspondingly with
et ≡ 0, i.e., the same noise is applied both to Xt and Yt. Below we will also consider
mixed couplings that are reflection couplings for certain values of Zt, synchronuous
couplings for other values of Zt, and mixtures of both types of couplings for Zt in
an intermediate region. Notice that the standard reflection coupling introduced
above is a synchronuous coupling for t ≥ T , i.e., if Zt = 0 !

More generally, we will consider couplings for diffusion processes on product
spaces (such as in Examples 1.2 and 1.3) that are approximately componentwise
reflection couplings, i.e., the i-th component (X i

t , Y
i
t ) of the coupling (Xt, Yt) is

defined similarly to (1.2) provided |X i
t − Y i

t | ≥ δ for a given constant δ > 0, cf.
Section 6 below.

For diffusion processes with non-constant diffusion matrix σ(x), the reflection
coupling should be replaced by the Kendall-Cranston coupling w.r.t. the intrinsic

Riemannian metric G(x) =
(
σ(x)σ(x)T

)−1
induced by the diffusion coefficients, cf.

[28, 15, 25, 37]. Here, we restrict ourselves to the case of constant diffusion matrices
where the Kendall-Cranston coupling coincides with the standard coupling by
reflection.

The main results of this paper are stated in Section 2 for Reflection coupling,
and in Section 3 for componentwise Reflection coupling on product spaces. The
proofs are contained in Sections 4, 5 and 6. A part of the results in Section 2 have
been announced in the Comptes Rendus Note [18].

2. Main results for reflection coupling

2.1. Reflection couplings and contractivity on R
d. Lindvall and Rogers [32]

introduced coupling by reflection in order to derive upper bounds for the total
variation distance of the distributions of Xt and Yt at a given time t ≥ 0. Here we
are instead considering the Kantorovich-Rubinstein (L1-Wasserstein) distances

(2.1) Wf (µ, ν) = inf
η

∫
df(x, y) η(dx dy), df(x, y) = f(‖x− y‖) (x, y ∈ R

d),

of probability measures µ, ν on R
d, where the infimum is over all couplings η of µ

and ν, f : [0,∞) → [0,∞) is an appropriately chosen concave increasing function
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with f(0) = 0, and ‖z‖ =
√
z ·Gz with G ∈ R

d×d symmetric and strictly positive
definite. Typical choices for the norm are the Euclidean norm ‖z‖ = |z| and
the intrinsic metric ‖z‖ = |σ−1z| corresponding to G = Id and G = (σσ⊤)−1

respectively.

Remark 2.1 (Interpolating between total variation and Wasserstein dis-
tances). For the choice of the function f there are two extreme cases with minimal
and maximal concavity:

(1) Choosing f(x) = x yields the standard Kantorovich (L1 Wasserstein)
distance Wf = W 1. In this case it is well known that if, for example,
G = σ = Id and b(x) = −∇U(x)/2, then the transition kernels pt(x, dy) of
the diffusion process (Xt) satisfy

Wf (µpt, νpt) ≤ e−Kt/2Wf(µ, ν) for any µ, ν and t ≥ 0,

provided ∇2U ≥ K · Id holds globally. This condition is also sharp in the
sense that if U is not globally strictly convex, then contractivity of pt w.r.t.
Wf does not hold, cf. Sturm and von Renesse [36].

(2) On the other hand, choosing f(x) = I(0,∞)(x) yields the total variation
distance Wf = dTV . In this case,

Wf(µpt, νpt) ≤ P[T > t] for any µ, ν and t ≥ 0,

but there is no strict contractivity of pt w.r.t. dTV in general. Indeed, in
many applications dTV (µpt, νpt) only decreases substantially after a certain
amount of time (“cut-off phenomenon”).

By choosing for f an appropriate concave function, exponential contractivity
w.r.t. Wf may hold even without global convexity, cf. [14]. We now explain how the
function f can be chosen in a very explicit way such that the obtained exponential
decay rate w.r.t. the Kantorovich distance Wf differs from the maximal decay
rate that we can achieve by our approach based on reflection coupling only by a
constant factor.

At first, similarly to Lindvall and Rogers [32], let us define for r ∈ (0,∞):

κ(r) = inf

{
−2

|σ−1(x− y)|2
‖x− y‖2

(x− y) ·G(b(x)− b(y))

‖x− y‖2 : x, y ∈ R
d s.t. ‖x− y‖ = r

}
,

i.e., κ(r) is the largest constant such that

(2.2) (x− y) ·G(b(x)− b(y)) ≤ −1

2
κ(r)‖x− y‖4/|σ−1(x− y)|2

holds for any x, y ∈ R
d with ‖x−y‖ = r. Notice that if ‖ · ‖ is the intrinsic metric

then the factor |σ−1(x− y)|2/‖x− y‖2 equals 1 . In Example 1.1 with G = Id, we
have

κ(r) = inf

{∫ 1

0

∂2
(x−y)/|x−y|U((1− t)x+ ty) dt : x, y ∈ R

d s.t. |x− y| = r

}
.
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We assume from now on that κ(r) is a continuous function on (0,∞) satisfying

(2.3) lim inf
r→∞

κ(r) > 0 and

∫ 1

0

rκ(r)− dr < ∞.

In Example 1.1 with G = Id, this assumption is satisfied if U is strictly convex
outside a ball.

Next, we define constants R0, R1 ∈ [0,∞) with R0 ≤ R1 by

R0 = inf{R ≥ 0 : κ(r) ≥ 0 ∀ r ≥ R},(2.4)

R1 = inf{R ≥ R0 : κ(r)R(R− R0) ≥ 8 ∀ r ≥ R},(2.5)

Notice that by (2.3), both constants are finite. We now consider the particular
distance function df(x, y) = f(‖x− y‖) given by

f(r) =

r∫

0

ϕ(s)g(s) ds, where(2.6)

ϕ(r) = exp


−1

4

r∫

0

sκ(s)− ds


 , Φ(r) =

∫ r

0

ϕ(s) ds,

g(r) = 1− 1

2

r∧R1∫

0

Φ(s)

ϕ(s)
ds

/ R1∫

0

Φ(s)

ϕ(s)
ds.

Let us summarize some basic properties of the functions ϕ, g and f :

• ϕ is decreasing, ϕ(0) = 1, and ϕ(r) = ϕ(R0) for any r ≥ R0,
• g is decreasing, g(0) = 1, and g(r) = 1

2
for any r ≥ R1,

• f is concave, f(0) = 0, f ′(0) = 1, and

(2.7) Φ(r)/2 ≤ f(r) ≤ Φ(r) for any r ≥ 0.

The last statement shows that df and dΦ as well as Wf and WΦ differ at most by
a factor 2.

We will explain in Section 4 below how the choice of f is obtained by trying to
maximize the exponential decay rate. Let us now state our first main result which
will also be proven in Section 4.

Theorem 2.2 (Exponential contractivity of reflection coupling). Let α :=
sup{|σ−1z|2 : z ∈ R

d with ‖z‖ = 1}, and define c ∈ (0,∞) by

(2.8)
1

c
= α

R1∫

0

Φ(s)ϕ(s)−1 ds = α

R1∫

0

s∫

0

exp


1

4

s∫

t

uκ(u)− du


 dt ds .

Then for the distance df given by (2.1) and (2.6), the function t 7→ ectE[df (Xt, Yt)]
is decreasing on [0,∞).
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The theorem yields exponential contractivity at rate c > 0 for the transition
kernels pt of (1.1) w.r.t. the Kantorovich distance Wf . Moreover, it implies upper
bounds for the standard Kantorovich (L1 Wasserstein) distance W 1 = Wid w.r.t.
the distance function d(x, y) = ‖x− y‖:

Corollary 2.3. For any t ≥ 0 and any probability measures µ, ν on R
d,

Wf(µpt, νpt) ≤ exp(−ct)Wf(µ, ν), and(2.9)

W 1(µpt, νpt) ≤ 2ϕ(R0)
−1 exp(−ct)W 1(µ, ν).(2.10)

Note that the second estimate follows from the first, since by the properties of
ϕ and g stated above, ϕ(R0)/2 ≤ f ′ ≤ 1, and hence

(2.11) ϕ(R0)‖x− y‖/2 ≤ df(x, y) ≤ ‖x− y‖ for any x, y ∈ R
d.

The corollary yields an upper bound for mixing times w.r.t. the Kantorovich
distance W 1. For ε > 0 let

τW 1(ε) := inf{t ≥ 0 : W 1(µpt, νpt) ≤ εW 1(µ, ν) ∀µ, ν ∈ M1(R
d)}.

Then by Corollary 2.3,

τW 1(ε) ≤ c−1 log(2/(εϕ(R0))) for any ε > 0.

The proofs of Theorem 2.2 and Corollary 2.3 are given in Section 4 below.

Remark 2.4 (Non-constant diffusion coefficients). The methods and results
presented above have natural extensions to diffusion processes with non-constant
diffusion matrices. In that case, one possibility is to use an ad hoc coupling as
in [32], but this leads to restrictive assumptions and bounds that are far from
optimal. A better approach is to switch to a Riemannian setup where the metric
is the intrinsic metric G(x) = (σ(x)σ(x)T )−1 given by the diffusion coefficients.
Then by replacing the Reflection Coupling by the corresponding Kendall-Cranston
coupling, one should expect similar results as above.

2.2. Consequences. We summarize some important consequences of exponential
contractivity w.r.t. Kantorovich distances as stated in Corollary 2.3. These conse-
quences are essentially well-known, cf. e.g. Joulin [26], Joulin and Ollivier [27], and
Komorowski and Walczuk [29] for related results. For the reader’s convenience, the
proofs are nevertheless included in Section 4 below. We assume that ‖z‖ = |σ−1z|
is the intrinsic metric, b is in C1(Rd,Rd), and

(2.12)

∫
|z| pt(x0, dz) < ∞

holds for some x0 ∈ R
d and any t ≥ 0. Then, equivalently to (2.9), Theorem 2.2

implies Lipschitz contractivity for the transition semigroup

(ptg)(x) =

∫
g(z) pt(x, dz)

w.r.t. the metric df , i.e.,

(2.13) ‖ptg‖Lip(f) ≤ exp(−ct) ‖g‖Lip(f)
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holds for any t ≥ 0 and any Lipschitz continuous function g : Rd → R, where

‖g‖Lip(f) = sup

{ |g(x)− g(y)|
df(x, y)

: x, y ∈ R
d s.t. x 6= y

}

denotes the Lipschitz semi-norm w.r.t. df . An immediate consequence is the exis-
tence of a unique stationary distribution µ with finite second moments:

Corollary 2.5 (Convergence to equilibrium). There exists a unique stationary
distribution µ of (pt)t≥0 satisfying

∫
|y|µ(dy) < ∞, and

(2.14) Varµ(g) ≤ (2c)−1‖g‖2Lip(f) for any Lipschitz continuous g : Rd → R.

Moreover, for any probability measure ν on R
d,

(2.15) Wf(µ, νpt) ≤ exp(−ct)Wf (µ, ν) for any t ≥ 0.

We refer to [6, 9] for other recent results on convergence to equilibrium of diffu-
sion processes in Wasserstein distances.

Further important consequences of (2.13) are quantitative non-asymptotic bounds
for the decay of correlations and the bias and variance of ergodic averages. Let
x0 ∈ R

d and suppose that (X,P) is a solution of (1.1) with initial condition
X0 = x0.

Corollary 2.6 (Decay of correlations). For any Lipschitz continuous functions
g, h : Rd → R and s, t ≥ 0,

Cov (g(Xt), h(Xt+s)) ≤ 1− e−2ct

2c
e−cs ‖g‖Lip(f) ‖h‖Lip(f).

Corollary 2.7 (Bias and variance of ergodic averages). For any Lipschitz
continuous function g : Rd → R and t ∈ (0,∞),
∣∣∣∣E

(
1

t

∫ t

0

g(Xs) ds −
∫

g dµ

)∣∣∣∣ ≤ 1− e−ct

ct
‖g‖Lip(f)

∫
df(x0, y)µ(dy), and

Var

(
1

t

∫ t

0

g(Xs) ds

)
≤ 1

c2t
‖g‖2Lip(f).

In the variance estimate in Corollary 2.7, one of the factors 1/c is due to the
variance bound (2.14) w.r.t. the stationary distribution whereas the second factor
1/c bounds the decay rate for the correlations. Short proofs of Corollaries 2.5, 2.6,
and 2.7 are included in Section 4.

Remark 2.8 (CLT, Gaussian deviation inequality). The contractivity w.r.t.
Wf can also be used to prove a central limit theorem for the ergodic averages [29]
and a Gaussian deviation inequality strengthening Corollary 2.7, cf. Remark 2.10
in [26].
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2.3. Examples. In order to illustrate the quality of the bounds given in Theorem
2.2 and in Corollary 2.3, we estimate the constant c defined by (2.8) in different
scenarios, and we study the behaviour of c under perturbations of the drift b.

We first consider the situation where κ is bounded from below by a negative
constant for any r, and by a positive constant for large r:

Lemma 2.9 (Contractivity under lower bounds on κ). Suppose that

(2.16) κ(r) ≥ −L for r ≤ R, and κ(r) ≥ K for r > R

hold with constants R,L ∈ [0,∞) and K ∈ (0,∞). If LR2
0 ≤ 8 then

(2.17) α−1c−1 ≤ e− 1

2
R2 + e

√
8K−1R + 4K−1 ≤ 3e

2
max(R2, 8K−1),

and if LR2
0 ≥ 8 then

(2.18) α−1c−1 ≤ 8
√
2πR−1L−1/2(L−1 +K−1) exp

(
LR2

8

)
+ 32R−2K−2.

Remark 2.10. If L = 0 then the bound in (2.17) improves to

(2.19) α−1c−1 ≤ 2 max(R2, 2K−1).

The proofs of Lemma 2.9 and Remark 2.10 are given in Section 5 below.

In the first case considered in the lemma, the constant c is at least of order
min(R−2, K). Even if L = 0 (convex case), this order can not be improved as one-
dimensional Langevin diffusions with potential U(x) = Kx2/2, or, respectively,
with vanishing drift on (−R/2, R/2) demonstrate. In particular, for U(x) = Kx2/2
with K > 0, the distance Wf is equivalent to W 1, and the exact decay rate is
K/2. This differs from the bounds in (2.19) and (2.17) only by a factor 2, 6e
respectively. Thus, if LR2

0 is not too large, the contractivity properties are not
affected substantially by non-convexity !

In the second case (LR2
0 ≥ 8), if K ≥ const. · L then the upper bound for c−1

is of order L−3/2R−1 exp(LR2/8). By the next example, this order in R and L is
again optimal:

Example 2.11 (Double-well potential with U ′′(x) = −L for |x| ≤ R/2).
Consider a Langevin diffusion in R

1 with a symmetric potential U ∈ C2(R) satis-
fying U(x) = −Lx2/2 for x ∈ [−R/2, R/2], U ′′ ≥ −L, and lim inf |x|→∞U ′′(x) > 0.
If ‖ · ‖ is the Euclidean norm then κ(r) = −L for r ∈ (0, R]. On the other hand,
let τ0 = inf{t ≥ 0 : Xt = 0} denote the first hitting time of 0. Then for any initial
condition x0 > 0,

(2.20) lim
t→∞

t−1 log Px0
[τ0 > t] = −λ1(0,∞)

where −λ1(0,∞) is the first Dirichlet eigenvalue of the generator Lv = (v′′−U ′v′)/2
on (0,∞), cf. [20] or see Section 5 below for a short proof of the corresponding
lower bound that is relevant here. If LR2 ≥ 4 then by inserting the function g(x) =
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min(
√
Lx, 1) into the variational characterization of the Dirichlet eigenvalue, we

obtain the upper bound

(2.21) λ1(0,∞) ≤ 3

4
e1/2L3/2R exp(−LR2/8),

cf. Section 5 below. The estimates (2.20) and (2.21) seem to indicate that for
x0 > 0, the Kantorovich distance W 1(δ−x0

pt, δx0
pt) decays at most with a rate

of order L3/2R exp(−LR2/8). Indeed, under appropriate growth assumptions on
U(x) for |x| ≥ R, one can prove that

PR [τ0 > t] ≥ 3/4 for any t ≤ λ1(0,∞)−1/4,

cf. Section 5. Hence for t ≤ 3−1e−1/2L−3/2R−1 exp(LR2/8), the Kantorovich dis-
tance W 1(δRpt, µ) between δRpt and the stationary distribution µ is bounded from
below by a strictly positive constant that does not depend on L and R if LR2 ≥ 4.

For analysing the behaviour of c under perturbations of the drift, we assume
that ‖z‖ = |σ−1z| is the intrinsic metric corresponding to the diffusion matrix,
i.e., G = (σσT )−1. Suppose that

(2.22) b(x) = b0(x) + γ(x) for any x ∈ R

with locally Lipschitz continuous functions b0, γ : Rd → R
d. For r > 0 let

(2.23) κ0(r) = inf

{
−2

(x− y) ·G(b0(x)− b0(y))

‖x− y‖2 : x, y ∈ R
d s.t. ‖x− y‖ = r

}

be defined analogously to κ(r) with b replaced by b0. We assume that κ0 satisfies
the assumptions (2.3) imposed on κ above, and we define R0 and R1 similarly
to (2.4) and (2.5) but with κ replaced by κ0. Now suppose that there exists a
constant R ≤ R0 such that

(2.24) (x− y) · (γ(x)− γ(y)) ≤ 0 for any x, y ∈ R
d s.t. ‖x− y‖ ≥ R.

Then κ(r) ≥ κ0(r) for r ≥ R, and hence the constants R0 and R1 defined w.r.t. b
are smaller than the corresponding constants defined w.r.t. b0. In this situation,
we can compare the lower bounds c and c0 for the contraction rates w.r.t. b and
b0 given by (2.8):

Lemma 2.12 (Bounded and Lipschitz perturbations). Suppose that the drift
b : Rd → R

d is given by (2.22) with b0 and γ satisfying the assumptions stated
above, and let c and c0 denote the lower bounds for the contraction rates w.r.t. b
and b0 given by (2.8).

(1) If γ is bounded and (2.24) holds for a constant R ∈ [0, R0] then

(2.25) c ≥ c0 exp(−R sup ‖γ‖).
(2) If γ satisfies the one-sided Lipschitz condition

(2.26) (x− y) ·G(γ(x)− γ(y)) ≤ L · ‖x− y‖2 ∀ x, y ∈ R
d
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with a finite constant L ∈ [0,∞) and (2.24) holds for a constant R ∈ [0, R0]
then

(2.27) c ≥ c0 exp(−LR2/4).

Remark 2.13. The condition R ≤ R0 is required in Lemma 2.12. If (2.24) does
not hold for x, y ∈ R

d with ‖x − y‖ ≥ R0 then the constants R0(b) and R1(b)
defined w.r.t. b are in general greater than the corresponding constants defined
w.r.t. b0, i.e., the region of non-convexity increases by adding the drift γ. This will
also affect the bound in (2.8) significantly.

The proof of Lemma 2.12 is given in Section 5.

2.4. Local contractivity and a high-dimensional example. Consider again
the setup in Section 2.1. In some applications, the condition lim infr→∞ κ(r) > 0
imposed above is not satisfied, but the diffusion process will stay inside a ball B ⊂
R

d for a long time with high probability. In this case, one can still prove exponential
contractivity up to an error term that is determined by the exit probabilities from
the ball. Corresponding estimates are useful to prove non-asymptotic error bounds,
i.e., for fixed t ∈ (0,∞), cf. e.g. [8, 7, 19].

Fix R ∈ (0,∞) and let WfR denote the Kantorovich distance based on the
distance function dfR(x, y) = fR(‖x− y‖) given by

(2.28) fR(r) =

∫ r

0

ϕ(s)gR(s) ds for r ≥ 0,

where ϕ and Φ are defined by (2.6), and

(2.29) gR(r) = 1−
∫ r∧R

0

Φ(s)

ϕ(s)
ds

/∫ R

0

Φ(s)

ϕ(s)
ds .

Notice that

gR(r) = 0 and fR(r) = fR(R) for any r ≥ R,

i.e., we have cut the distance at fR(R).

Theorem 2.14 (Local exponential contractivity). Suppose that the assump-
tions from Section 2.1 are satisfied except for the condition lim infr→∞ κ(r) > 0.
Then for any t, R ≥ 0 and any probability measures µ, ν on R

d,

WfR(µpt, νpt) ≤ exp(−cRt)WfR(µ, ν)

+R ·
(
Pµ[τR/2 ≤ t] + Pν [τR/2 ≤ t]

)
,(2.30)

where (Xt,Pµ) is a diffusion process satisfying (1.1) with initial distribution µ,
τR/2 = inf{t ≥ 0 : ‖Xt‖ > R/2} denotes the first exit time from the ball of radius
R/2 around 0, and

(2.31)
1

cR
= α

R∫

0

Φ(s)ϕ(s)−1 ds = α

R∫

0

s∫

0

exp



1

4

s∫

t

uκ(u)− du



 dt ds.

The proof of the theorem is given in Section 5. In applications, the exit proba-
bilities are typically estimated by using appropriate Lyapunov functions.
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Example 2.15 (Stochastic heat equation). We consider the diffusion in R
d−1

given by X0
t ≡ Xd

t ≡ 0 and

(2.32) dX i
t =

[
d2 (X i+1

t − 2X i
t +X i−1

t ) + V ′(X i
t)
]
dt +

√
d dBi

t,

i = 1, . . . , d− 1, where V : R → R is a C2 function such that V ′′ ≥ −L for a finite
constant L ∈ R. The equation (2.32) is a spatial discretization at the grid points
i/d (i = 0, 1, . . . , d) of the stochastic heat equation with space-time white noise
and Dirichlet boundary conditions on the interval [0, 1] given by

(2.33) du = ∆Diru + V ′(u) dt + dW

with the Dirichlet Laplacian ∆Dir on the interval [0, 1] and a cylindrical Wiener
process (Wt)t≥0 over the Hilbert space L2(0, 1). We observe that (2.32) is of the

form (1.1) with σ =
√
dId−1 and b = −d∇U where

U(x) =
d

2

d∑

i=1

∣∣xi − xi−1
∣∣2 +

1

d

d∑

i=0

V (xi)

for x = (x1, . . . , xd−1) ∈ R
d−1 and x0 = xd = 0. By the discrete Poincaré inequality,

d∑

i=1

∣∣xi − xi−1
∣∣2 ≥ 2 (1− cos(π/d))

d−1∑

i=1

∣∣xi
∣∣2 .

Hence for any x, ξ ∈ R
d−1 and x0 = xd = ξ0 = ξd = 0, the lower bound

∂2
ξξU(x) = d

d∑

i=1

∣∣ξi − ξi−1
∣∣2 +

1

d

d−1∑

i=1

V ′′(xi)
∣∣ξi

∣∣2 ≥ 1

d
Kd

d−1∑

i=1

∣∣ξi
∣∣2

holds with Kd = 2 d2 (1− cos(π/d))− L, and thus

(x− y) · (b(x)− b(y)) = −d (x− y) · (∇U(x)−∇U(y)) ≤ −Kd |x− y|2

for any x, y ∈ R
d−1 where | · | denotes the Euclidean norm. Choosing for ‖ · ‖ the

intrinsic metric ‖x‖ = d−1/2|x|, we obtain

κ(r) ≥ 2Kd for any r > 0.

In particular, the function κ is bounded from below uniformly by a real constant
that does not depend on the dimension d since

(2.34) lim
d→∞

Kd = π2 − L > −∞.

Theorem 2.14 now shows that for any R > 0, local exponential contractivity in
the sense of (2.30) holds on the ball

BR/2 = {x ∈ R
d−1 : ‖x‖ ≤ R/2} = {x ∈ R

d−1 : |x| ≤ d1/2R/2}
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with rate cR satisfying

1

cR
≤ 4

√
πR−1|Kd|−3/2 exp(−KdR

2/4) for KdR
2 ≤ −4,

1

cR
≤ (e− 1)R2/2 for − 4 ≤ KdR

2 < 0,

1

cR
≤ R2/2 for Kd = 0 respectively.

Here the explicit upper bounds are obtained analogously as in the proof of Lemma
2.9. For Kd > 0, strict convexity holds, and we obtain global exponential con-
tractivity with a dimension-independent rate. We remark that because of (2.34),
the bounds also carry over to the limiting SPDE (2.33) for which they imply local
exponential contractivity on balls w.r.t. the L2 norm.

3. Main results for componentwise reflection couplings

3.1. Componentwise reflection couplings and contractivity on product
spaces. We now consider a system

(3.1) dX i
t = bi(Xt) dt + dBi

t, i = 1, . . . , n,

of n interacting diffusion processes taking values in R
di , di ∈ N. Here Bi, i =

1, . . . , n, are independent Brownian motions in R
di ,X = (X1, . . . , Xn) is a diffusion

process taking values in R
d where d =

∑n
i=1 di, and bi : Rd → R

di are locally
Lipschitz continuous functions. We will assume that

(3.2) bi(x) = bi0(x
i) + γi(x), i = 1, . . . , n,

where the functions bi0 : R
di → R

di are locally Lipschitz continuous, and γi : Rd →
R

di are “sufficiently small” perturbations, cf. Theorem 3.1 below. In particular,
for γi ≡ 0 the components X1, . . . , Xn are independent.

To analyse contraction properties of the process X , one could use a reflection
coupling on R

d and apply the results above based on a distance function of the
form df(x, y) = f(|x − y|). In some applications, this approach does indeed pro-
vide dimension-free bounds, cf. Example 2.15 above. However, in the product case
γi ≡ 0 it leads in general to lower bounds for contraction rates that degenerate
rapidly as n → ∞, even though one would expect exponential contractivity with
the minimum of the contraction rates for the components. The reason is that the
approach requires convexity outside a Euclidean ball in R

d whereas in correspond-
ing product models, in general convexity only holds if all components are outside
given balls in R

di .

Instead, we now consider contractivity w.r.t. Kantorovich distances Wf,w based
on distance functions on R

d = R
d1+···+dn of the form

(3.3) df,w(x, y) =

n∑

i=1

fi(|xi − yi|)wi .

Here fi : [0,∞) → [0,∞), 1 ≤ i ≤ n, are strictly increasing concave C1 functions
with fi(0) = 0 and f ′

i(0) = 1 that are obtained from bi0 in the same way as f
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has been obtained from b above, and wi ∈ (0, 1] are positive weights. In many
applications, one can choose wi = 1 for any i. The corresponding distance will
then be denoted by d1,f . Notice that d1,f is bounded from above by the ℓ1 distance

dℓ1(x, y) =

n∑

i=1

|xi − yi|.

Hence W1,f is bounded from above by the Kantorovich distance Wℓ1 based on dℓ1.

For r ∈ (0,∞) let

(3.4) κi(r) = r−2 inf
{
−2 (x− y) · (bi0(x)− bi0(y)) : x, y ∈ R

d s.t. |x− y| = r
}
.

Similarly as above, we assume that for 1 ≤ i ≤ n,

(3.5) κi : (0,∞) → R is continuous with lim inf
r→∞

κi(r) > 0.

Moreover, we assume

(3.6) lim
r→0

rκi(r) = 0.

Let Ri
0, R

i
1, gi(r), ϕi(r), fi(r) and Φi(r) =

∫ r

0
ϕi(s) ds be defined analogously to

(2.4), (2.5) and (2.6) with κ replaced by κi. Moreover, we define ci ∈ (0,∞) by

(3.7)
1

ci
=

Ri
1∫

0

Φi(s)ϕi(s)
−1 ds =

Ri
1∫

0

s∫

0

exp



1

4

s∫

t

uκi(u)
− du



 dt ds .

Recall that by Theorem 2.2 and Corollary 2.3, ci is a lower bound for the contrac-
tion rate of the diffusion process X̃ i on R

di satisfying the s.d.e. dX̃ i
t = bi0(X̃

i
t)+dBi

t.

Let pt(x, dy) denote the transition kernels of the diffusion processXt = (X1
t , . . . , X

d
t )

on R
d satisfying (3.1). We now state our second main result:

Theorem 3.1 (Exponential contractivity on product spaces). Suppose that
(3.5) and (3.6) hold, and suppose that there exist constants εi ∈ [0, ci), 1 ≤ i ≤ n,
such that for any x, y ∈ R

d,

(3.8)
n∑

i=1

|γi(x)− γi(y)|wi ≤
n∑

i=1

εi fi(|xi − yi|)wi.

Then for any t ≥ 0 and any probability measures µ, ν on R
d,

Wf,w(µpt, νpt) ≤ exp(−ct)Wf,w(µ, ν), and(3.9)

Wℓ1(µpt, νpt) ≤ A exp(−ct)Wℓ1(µ, ν),(3.10)

where c = min
i=1,...,n

(ci − εi) and A = 2

/
min

i=1,...,n
(ϕi(R

i
0)wi) .

Example 3.2 (Product model). In the product case, γi ≡ 0 for any i. Hence
Condition (3.8) is satisfied with εi = 0, and, therefore,

Wf,w(µpt, νpt) ≤ exp(−ct)Wf,w(µ, ν)

holds with c = min ci for any choice of the weights w1, . . . , wn.
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More generally than in the example, suppose now that γ = (γ1, . . . , γn) satisfies
an ℓ1-Lipschitz condition

(3.11)
n∑

i=1

|γi(x)− γi(y)| ≤ λ
n∑

i=1

|xi − yi| ∀ x, y ∈ R
d.

Then exponential contractivity holds for the perturbed product model provided
λ < ciϕ(R

i
0)/2 for any i:

Corollary 3.3 (Perturbations of product models). Suppose that (3.2), (3.5),
(3.6) and (3.11) hold with λ ∈ [0,∞). Then for any t ≥ 0 and any probability
measures µ, ν on R

d,

Wf,1(µpt, νpt) ≤ exp(−ct)Wf,1(µ, ν), and(3.12)

Wℓ1(µpt, νpt) ≤ A exp(−ct)Wℓ1(µ, ν),(3.13)

where c = min
i=1,...n

(ci − 2λϕi(R
i
0)

−1) and A = 2 max
i=1,...n

ϕi(R
i
0)

−1.

The inituitive idea of proof for Theorem 3.1 is to construct a coupling (Xt, Yt)
of two solutions of (3.1) by applying a reflection coupling individually for each
component (X i

t , Y
i
t ) if X

i
t 6= Y i

t , and a synchronuous coupling if X i
t = Y i

t . In the
product case this just means that X i

t = Y i
t for any t ≥ τ i where τ i = inf{t ≥ 0 :

X i
t = Y i

t } is the coupling time for the i-th component. In the non-product case,
however, X i

t and Y i
t can move apart again after the time τ i due to interactions with

other components. In that case it is not clear how to define a coupling as described
above rigorously. Instead we will use a regularized version where reflection coupling
is applied to the i-th component whenever |X i

t − Y i
t | ≥ δ for a given constant

δ > 0, and synchronuous coupling is applied whenever |X i
t − Y i

t | ≤ δ/2. A precise
description of the coupling and the proofs of Theorem 3.1 and Corollary 3.3 are
given in Sections 6 and 7 below.

3.2. Consequences. The contractivity results in Theorem 3.1 and Corollary 3.3
have corresponding consequences as the contractivity results in the non-product
case, cf. Section 2.2 above. An important difference to be noted is, however, that
on product spaces,

df,w(x, y) ≤
n∑

i=1

|xi − yi| ≤ n1/2 |x− y|

by the Cauchy-Schwarz inequality. Therefore, an additional factor n occurs in the
variance bounds from Corollaries 2.5, 2.6 and 2.7 on product spaces. Apart from
this additional factor, all results in Section 2.2 carry over to the setup considered
in Section 3.1.

3.3. Interacting Langevin diffusions. As an illustration of the results in Sec-
tion 3.1, we consider a system

(3.14) dX i
t = −1

2
∇U(X i

t ) dt −
n∑

j=1

aij ∇V (X i
t −Xj

t ) dt + dBi
t
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of n interacting overdamped Langevin diffusions taking values in R
k for some

k ∈ N. Here B1, . . . , Bn are independent Brownian motions in R
k, U ∈ C2(Rk)

is strictly convex outside a given ball, the interaction potential V is in C2(Rk)
with bounded second derivatives, and aij , 1 ≤ i, j ≤ n, are finite real constants.
For example, we are interested in nearest-neighbour interactions and mean-field
interactions given by

aij =

{
α/2 if i− j ≡ 1 mod n or i− j ≡ −1 mod n,
0 otherwise,

(3.15)

aij = αn−1 respectively,(3.16)

where α ∈ R is a finite coupling constant.

Choosing bi0(x
i) = −∇U(xi)/2 and γi(x) =

∑n
j=1 aij∇V (xi − xj), we observe

that the function

κi(r) = inf

{∫ 1

0

∂2
(x−y)/|x−y|U((1− t)x+ ty) dt : x, y ∈ R

k s.t. |x− y| = r

}

does not depend on i. Let ϕ and f be the corresponding functions given by (2.6),
and consider the distance

d1,f(x, y) =

n∑

i=1

f(|xi − yi|).

Morover, let c be given by (2.8) with α = 1, i.e., c is the lower bound for the
contraction rate of the diffusion process Y in R

k satisfying dY = −1
2
∇U(Y ) dt +

dB. We note that γ satisfies the ℓ1 Lipschitz condition (3.11) with

λ = M ·max
i

n∑

j=1

(|aij |+ |aji|)

where M = sup ‖∇2V ‖. Therefore, if
n∑

j=1

(|aij|+ |aji|) ≤ c ϕ(R0)M
−1

then by Corollary 3.3, contractivity in the sense of (3.12) holds with contraction
rate

c̄ = c− 2λϕ(R0)
−1 > 0.

In particular, in the nearest neighbour and mean field case, we obtain contractivity
with a rate that does not depend on the dimension if α is small:

Corollary 3.4 (Mean field and nearest neighbour interactions). Let pt,
t ≥ 0, denote the transition kernels of the diffusion process on R

nk solving (3.14).
Suppose that sup ‖∇2V ‖ < ∞ and that aij is given by (3.15) or by (3.16) with
α ∈ R. Then there exist finite constants c, θ, A ∈ (0,∞) that do not depend on the
dimension n such that

Wf,1(µpt, νpt) ≤ e(θα−c)t Wf,1(µ, ν), and(3.17)

Wℓ1(µpt, νpt) ≤ Ae(θα−c)t Wℓ1(µ, ν),(3.18)
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hold for any t ≥ 0 and any probability measures µ, ν on R
nk. In particular, expo-

nential contractivity holds for α < c/θ.

The bounds in (3.17) and (3.18) are not sharp. However, it is known that
for example in mean field models where U is a double-well potential and V is
quadratic, exponential contractivity with a rate independent of the dimension
can not be expected to hold for large α. Indeed, in this case the corresponding
McKean-Vlasov process has several stationary distributions if α > α1 for some
critical parameter α1 ∈ (0,∞), cf. [23, 24].

4. Proofs for Reflection Coupling

In this section, we first motivate our particular choice of the function f , and we
prove Theorem 2.2. Afterwards, we prove Corollaries 2.3, 2.5, 2.6 and 2.7.

Let rt = ‖Xt−Yt‖ where (X, Y ) is a reflection coupling of two solutions of (1.1).
Our goal is to find an explicit concave increasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f ′(0) = 1 such that ectf(rt) is a (local) supermartingale for t less
than the coupling time T with a constant c > 0 that we are trying to maximize
by the choice of f .

An application of Itô’s formula to the s.d.e. (1.3) satisfied by the difference
process Zt = Xt−Yt shows that the following Itô equations hold almost surely for
t < T whenever f is C1 and f ′ is absolutely continuous:

d‖Zt‖2 = 4 |σ−1Zt|−1‖Zt‖2 dWt

+2Zt ·G(b(Xt)− b(Yt)) dt + 4 |σ−1Zt|−2‖Zt‖2 dt,
drt = 2 |σ−1Zt|−1rt dWt + r−1

t Zt ·G(b(Xt)− b(Yt)) dt, and

df(rt) = 2 |σ−1Zt|−1rt f
′(rt) dWt

+ r−1
t Zt ·G(b(Xt)− b(Yt))f

′(rt) dt + 2 |σ−1Zt|−2r2t f
′′(rt) dt.(4.1)

By definition of the function κ, the drift term on the right hand side of (4.1) is
bounded from above by

(4.2) βt := 2 |σ−1Zt|−2r2t ·
(
f ′′(rt)−

1

4
rt κ(rt)f

′(rt)

)
.

Hence the process ectf(rt) is a supermartingale for t < T if βt ≤ −cf(rt). Since

(4.3) |σ−1z|2 ≤ α‖z‖2 for any z ∈ R
d,

a sufficient condition is

(4.4) f ′′(r)− 1

4
rκ(r)f ′(r) ≤ −αc

2
f(r) for a.e. r > 0.

We now first observe that this equation holds with c = 0 (i.e., f(rt) is a super-
martingale for t < T ) if f is chosen such that f ′(r) = ϕ(r) = exp(−

∫ r

0
sκ(s)−ds/4).

Indeed, f(r) =
∫ r

0
ϕ(s) ds is the least concave among all concave functions f sat-

isfying βt ≤ 0.

To satisfy the stronger condition βt ≤ −cf(rt) with c < 0, we make the ansatz

(4.5) f ′(r) = ϕ(r) g(r)
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with a decreasing absolutely continuous function g ≥ 1/2 such that g(0) = 1.
Note that the condition g ≥ 0 is required to ensure that f is non-decreasing. By
replacing this condition by the stronger condition g ≥ 1/2, we are loosing at most
a factor 2 in the estimates below. On the other hand, the condition 1/2 ≤ g ≤ 1
has the huge advantage of ensuring that

(4.6) Φ/2 ≤ f ≤ Φ

where Φ(r) =
∫ r

0
ϕ(s) ds. The ansatz (4.5) yields

f ′′ = −1

4
rκ−f + ϕg′ ≤ 1

4
rκf + ϕg′,

i.e., Condition (4.4) is satisfied if

(4.7) g′ ≤ −αc

2
f/ϕ . almost surely.

We will see in the proof below that for r ≥ R1, Condition (4.4) is automatically
satisfied since κ is sufficiently positive. Therefore, it is enough to assume that (4.7)
holds on (0, R1).

Now on the one hand, if (4.7) is satisfied on (0, R1) then

g(R1) ≤ 1− αc

2

∫ R1

0

f(s)ϕ(s)−1 ds ≤ 1− αc

4

∫ R1

0

Φ(s)ϕ(s)−1 ds.

This condition can only be satisfied with a function g taking values in [1/2, 1] if

α c ≤ 2

/∫ R1

0

Φ(s)ϕ(s)−1 ds .

On the other hand, by choosing

(4.8) g′(r) = − Φ(r)

2ϕ(r)

/∫ R1

0

Φ(s)

ϕ(s)
ds for r < R1,

Condition (4.7) is satisfied with the constant

α c = 1

/∫ R1

0

Φ(s)ϕ(s)−1 ds .

This shows that up to a factor 2, choosing g as in (4.8) is the best we can do under
the assumptions that we have made.

The considerations above explain the particular choice of the function f made
in (2.6). Once this choice has been made, the proof of Theorem 2.2 is almost
straightforward:

Proof of Theorem 2.2. As remarked above, the drift in the s.d.e. (4.1) for
f(rt) is bounded from above by βt defined by (4.2). We now show that by our
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choice of f in (2.6), this expression is smaller than −cf(rt) where c is given by
(2.8). Indeed, for r < R1,

f ′′(r) = −1

4
rκ(r)−ϕ(r)g(r)− 1

2
Φ(r)

/ R1∫

0

Φ(s)ϕ(s)−1 ds(4.9)

≤ 1

4
rκ(r)f ′(r)− 1

2
f(r)

/ R1∫

0

Φ(s)ϕ(s)−1 ds .

For r > R1, we have f ′(r) = ϕ(r)/2 = ϕ(R0)/2 and κ(r)R1(R1 − R0) ≥ 8 by
definition of R1, whence

f ′′(r)− 1

4
rκ(r)f ′(r) = −1

8
rκ(r)ϕ(R0) ≤ − ϕ(R0)

R1 − R0

· r

R1

≤ − ϕ(R0)

R1 − R0
· Φ(r)

Φ(R1)
≤ −1

2
Φ(r)

/∫ R1

R0

Φ(s)ϕ(s)−1 ds(4.10)

≤ −1

2
f(r)

/∫ R1

0

Φ(s)ϕ(s)−1 ds .

Here we have used that for r ≥ R0, the function ϕ(r) is constant, and, therefore,
Φ(r) = Φ(R0) + (r − R0)ϕ(R0), and

∫ R1

R0

Φ(s)ϕ(s)−1 ds =

∫ R1

R0

(Φ(R0) + (s− R0)ϕ(R0))ϕ(R0)
−1 ds

= Φ(R0)ϕ(R0)
−1(R1 − R0) + (R1 − R0)

2/2

≥ (R1 − R0) (Φ(R0) + (R1 − R0)ϕ(R0))ϕ(R0)
−1/2

= (R1 − R0)Φ(R1)ϕ(R0)
−1/2.

By (4.9) and (4.10), we conclude that βt ≤ −cf(rt). Optional stopping in (4.1) at
Tk = inf{t ≥ 0 : rt 6∈ (k−1, k)} now implies

E[f(rt) ; t < Tk] ≤ −c

∫ t

0

E[f(rs) ; s < Tk] ds

for any k ∈ N and t ≥ 0. The assertion follows for k → ∞ since rt = 0 for t ≥ T ,
and T = supTk by non-explosiveness. �

Proof of Corollary 2.3. Let (X, Y ) be a reflection coupling of two solutions
of (1.1) with joint initial distribution (X0, Y0) ∼ η. Then by Theorem 2.2,

Wf(µpt, νpt) ≤ E [df(Xt, Yt)] ≤ e−ct
E [df(X0, Y0)]

= e−ct

∫
df(x, y) η(dx dy)

for any t ≥ 0. The estimate (2.9) now follows by taking the infimum over all
couplings η of two given probability measures µ and ν on R

d. Moreover, (2.10)
follows from (2.9) by (2.11). �
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Next, we are going to prove the results in Section 2.2. Suppose that (2.12) holds,
‖z‖ = |σ−1z| is the intrinsic metric, and b is in C1. Corollary 2.3 implies

∫
|y| pt(x, dy) ≤

∫
|y| pt(x0, dy) + W 1(pt(x, ·), pt(x0, ·)) < ∞

for any t ≥ 0 and any x ∈ R
d. In particular, (ptg)(x) =

∫
g(y) pt(x, dy) is defined

for any Lipschitz continuous function g : Rd → R, and

|(ptg)(x)− (ptg)(y)| = |E[g(Xt)− g(Yt)]| ≤ ‖g‖Lip(f)E[df (Xt, Yt)]

for any coupling (Xt, Yt) of pt(x, ·) and pt(y, ·). Hence by Theorem 2.2,

(4.11) |(ptg)(x)− (ptg)(y)| ≤ e−ct ‖g‖Lip(f) df(x, y),
i.e., pt satisfies the exponential contractivity condition (2.13) w.r.t. ‖ · ‖Lip(f). If
ptg is C1 then by (4.11) and since

df(x, y) ≤ ‖x− y‖ = |σ−1(x− y)| ∀ x, y ∈ R
d,

we obtain the uniform gradient bound

(4.12) sup
∣∣σT∇ptg

∣∣ ≤ e−ct ‖g‖Lip(f) ∀ t ≥ 0.

It is well-known that this bound can be used to control variances w.r.t. the mea-
sures pt(x, ·):
Lemma 4.1. For any t ≥ 0, x ∈ R

d, and any Lipschitz continuous g : Rd → R,

(4.13) Varpt(x,·)(g) ≤ 1− exp(−2ct)

2c
‖g‖2Lip(f).

Proof. We may assume g ∈ C2(Rd) and t > 0. Then, by standard elliptic
regularity results, (t, x) 7→ (ptg)(x) is differentiable in t and x, and

d

dt
ptg = Lptg = ptLg

where L = 1
2

∑
aij

∂2

∂xi∂xj + b(x) · ∇, a = σσT , is the generator of (Xt), cf. e.g.
[34, 33]. In particular, for s ∈ (0, t),

d

ds
ps(pt−sg)

2 = ps
(
L(pt−sg)

2 − 2pt−sgLpt−sg
)

= ps
∣∣σT∇pt−sg

∣∣2 ≤ e−2c(t−s)‖g‖2Lip(f)
by (4.12). Integrating w.r.t. s, we obtain

ptg
2 − (ptg)

2 ≤ 1− exp(−2ct)

2c
‖g‖2Lip(f),

which is equivalent to (4.13). �

By Lemma 4.1 and (4.11), we can now easily prove Corollaries 2.5, 2.6 and 2.7:

Proof of Corollary 2.5. Existence and uniqueness of a stationary distribu-
tion µ for (pt)t≥0 satisfying

∫
|y|µ(dy) < ∞ follows easily as in [29], Section 3: By
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Corollary 2.3, the map ν 7→ νp1 is a contraction w.r.t. the distance Wf (equiv-
alent to W 1) on the complete metric space P1 of all probability measures ν on
(Rd,B(Rd)) satisfying

∫
|y|µ(dy) < ∞. Hence by the Banach fixed point theo-

rem, there exists a unique probability measure µ0 such that µ0p1 = µ0. It is then
elementary to verify that the measure µ =

∫ 1

0
µ0ps ds satisfies µpt = µ for any

t ∈ [0, 1], and hence for any t ∈ [0,∞). Moreover, by Corollary 2.3,

Wf(µ, νpt) = Wf(µpt, νpt) ≤ e−ctWf(µ, ν)

for any ν ∈ P1. In particular, as t → ∞, pt(x, ·) → µ in P1 for any x ∈ R
d.

The variance bound for µ now follows from the corresponding bound for pt(x, ·) in
Lemma 4.1. �

Proof of Corollary 2.6. By Lemma 4.1,

Cov (g(Xt), h(Xt+s)) = E [g(Xt) h(Xt+s)] − E [g(Xt)] E [h(Xt+s)]

= E [(g psh)(Xt)] − E [g(Xt)] E [(psh)(Xt)] = Covpt(x0,·)(g, psh)

≤ (1− exp(−2ct)) (2c)−1 ‖g‖Lip(f)‖psh‖Lip(f)
for any s, t ≥ 0. The assertion now follows by (4.11). �

Proof of Corollary 2.7. The bound for the bias follows immediately from
(4.11), since

∣∣∣∣E
[
1

t

∫ t

0

g(Xs) ds −
∫

g dµ

]∣∣∣∣ =

∣∣∣∣
1

t

∫ t

0

∫
(psg(x0)− psg(y))µ(dy) ds

∣∣∣∣

≤ 1

t

∫ t

0

e−cs ds ‖g‖Lip(f)
∫

df(x0, y)µ(dy).

Moreover, by Corollary 2.6,

Var

(
1

t

∫ t

0

g(Xs) ds

)
= Cov

(
1

t

∫ t

0

g(Xs) ds ,
1

t

∫ t

0

g(Xs) ds

)

=
2

t2

∫ t

0

∫ t

s

Cov (g(Xs), g(Xu)) du ds

≤ 1

ct2

∫ t

0

(1− e−2cs)

∫ t

s

e−c(u−s) du ds ‖g‖2Lip(f)

≤ 1

c2t
‖g‖2Lip(f). �

5. Examples

We now prove the results in Sections 2.3 and 2.4, including in particular Lemma
2.9, Lemma 2.12 and Theorem 2.14.

Proof of Lemma 2.9 and Remark 2.10. We first prove the lower bounds on
the exponential decay rate c in (2.8) stated in (2.19), (2.17) and (2.18). Notice that
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the constant c defined by (2.8) increases if κ(r) is replaced by a greater function.
Indeed, for r ≥ 0,

(5.1) Φ(r)ϕ(r)−1 =

r∫

0

ϕ(t)ϕ(r)−1 dt =

r∫

0

exp


1

4

r∫

t

sκ(s)− ds


 dt,

whence R0, R1 and c−1 = α
R1∫
0

Φ(s)ϕ(s)−1 ds are decreasing functions of κ.

Convex Case. Suppose first that κ(r) ≥ 0 for any r ≥ 0 and κ(r) ≥ K for r ≥ R

with constants K ∈ (0,∞) and R ∈ [0,∞). Then R0 = 0, R1 ≤ max(R,
√

8/K),
ϕ ≡ 1, and hence

c = (αR2
1/2)

−1 ≥ α−1min(R−2/2, K/4).

Locally non-convex case. Now suppose that κ(r) ≥ −L for r ≤ R and κ(r) ≥ K
for r > R with constants K,L ∈ (0,∞) and R ∈ [0,∞]. Since ϕ(r) = ϕ(R0) and
Φ(r) = Φ(R0) + (r − R0)ϕ(R0) for r ≥ R0, we have

α−1c−1 =

R1∫

0

Φ(s)ϕ(s)−1 ds

=

R0∫

0

Φ(s)ϕ(s)−1 ds+ (R1 − R0)Φ(R0)ϕ(R0)
−1 + (R1 − R0)

2/2.(5.2)

The lower curvature bounds imply the upper bounds

R0 ≤ R, R1 −R0 ≤ min(8/(KR0),
√
8/K), and(5.3)

Φ(r)ϕ(r)−1 ≤
r∫

0

exp(L(r2 − t2)/8) dt

≤ min(
√
2π/L, r) exp(Lr2/8) for r ≤ R0.(5.4)

Since exp x ≤ 1 + (e− 1)x for x ∈ [0, 1] and
∫ x

0

exp(u2) du ≤ e+

∫ x

1

(2− u−2) exp(u2) du = x−1 exp(x2) for x ≥ 1,

we can conclude that
R0∫

0

Φ(r)ϕ(r)−1 dr ≤
∫ R0

0

r exp(Lr2/8) dr = 4L−1(exp(LR2
0/8)− 1)

≤ (e− 1)R2
0/2 if LR2

0/8 ≤ 1, and
R0∫

0

Φ(r)ϕ(r)−1 dr ≤
√

2π
L

∫ R0

0

exp(Lr
2

8
) dr =

√
8·2π
L2

∫ √
LR2

0
/8

0

exp(u2) du

≤ 8
√
2πL−3/2R−1

0 exp(LR2
0/8) if LR2

0/8 ≥ 1.
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Combining these estimates, we obtain by (5.2), (5.3) and (5.4),

α−1c−1 ≤ (e− 1)R2/2 + e
√
8/KR + 4/K if LR2

0/8 ≤ 1, and

α−1c−1 ≤ 8
√
2πR−1L−1/2(L−1 +K−1) exp(LR2/8) + 32R−2K−2 if LR2

0/8 ≥ 1,

where we have used that the function x 7→ x−1 exp(x2) is increasing for x ≥ 1. �

Proofs for Example 2.11. Consider the one-dimensional Langevin diffusion
(Xt) with drift −∇U(x)/2 and generator

(5.5) Lv =
1

2
(v′′ − U ′v′) =

1

2
eU

(
e−Uv′

)′
.

The assumption lim inf |x|→∞U ′′(x) > 0 implies that there is a unique strictly
positive bounded eigenfunction v1 ∈ C2(0,∞) ∩ C([0,∞)) satisfying v1(0) = 0,
v′1(0) = 1 and Lv1 = −λ1v1, where

λ1 = λ1(0,∞) = inf
v∈C∞

0
(0,∞)

1
2

∫∞
0

v′(x)2 exp(−U(x)) dx∫∞
0

v(x)2 exp(−U(x)) dx

is the infimum of the spectrum of the self-adjoint realization of −L with Dirichlet
boundary conditions on (0,∞). Since Lv1 = −λ1v1 and v1 is bounded, the process
Mt = exp(λ1t)v1(Xt) is a martingale. Optional stopping applied to the diffusion
with initial condition X0 = x0 shows that

v1(x0) = Ex0
[M0] = Ex0

[Mτ0∧t] = Ex0
[exp(λ1t)v1(Xt); τ0 > t]

≤ exp(λ1t)Px0
[τ0 > t] sup v1(5.6)

for any x0 > 0 and t ≥ 0. Since v1(x0) > 0 and sup v1 < ∞, the estimate (5.6)
implies the asymptotic lower bound

(5.7) lim inf
t→∞

t−1 log Px0
[τ0 > t] ≥ −λ1(0,∞).

Moreover, for any fixed t ≤ λ−1/4,

PR [τ0 > t] ≥ e−1/4 v1(R)/ sup v1 ≥ 3/4

provided v1(R) ≥ 3
4
e1/4 sup v1 = 0.96 . . . · sup v1. By the eigenfunction equation

eU(e−Uv′1)
′ = −λ1v1, one verifies that the latter condition is satisfied whenever U

is growing fast enough on [R,∞).

For bounding λ1(0,∞) from above let

v(x) = min(
√
Lx, 1) =

{ √
Lx if x ≤ 1/

√
L,

1 if x ≥ 1/
√
L.

By the assumptions on U , the function v is contained in the weighted Sobolev
space H1,2

0 ((0,∞), e−U dx) (closure of C∞
0 (0,∞) w.r.t. the norm ‖w‖2 =

∫∞
0
(w2 +
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(w′)2) e−U dx). Therefore, if LR2/4 ≥ 1 then (2.21) holds, since

λ1 ≤
1
2

∫
v′(x)2 exp(−U(x)) dx∫
v(x)2 exp(−U(x)) dx

≤
∫ 1/

√
L

0
L exp(Lx2/2) dx

∫ R/2

0
v(x)2 exp(Lx2/2) dx

=
L

2

∫ 1

0
exp(y2/2) dy

∫√LR2/4

0
min(y, 1)2 exp(y2/2) dy

≤ 3Le1/2

2

√
LR2

4
exp

(
LR2

8

)
.

Here we have used that by assumption, U(x) ≥ −Lx2/2 for any x ∈ R with
equality for |x| < R/2, and for x ≥ 1,

∫ x

0

min(y, 1)2ey
2/2 dy =

∫ 1

0

. . .+

∫ x

1

. . . ≥ 1

3
+

1

x
ex

2/2 − 1 ≥ 1

3x
ex

2/2

as (x−1ex
2/2)′ = (1− x−2)ex

2/2 ≤ ex
2/2. �

Proof of Lemma 2.12. Since b = b0 + γ, we have

(x− y) ·G(b(x)− b(y)) = (x− y) ·G(b0(x)− b0(y)) + (x− y) ·G(γ(x)− γ(y))

for any x, y ∈ R
d. Therefore, by (2.24) and by definition of κ and κ0,

κ(r)− ≤ κ0(r)
− for any r ≤ R, and(5.8)

κ(r)− ≤ κ0(r)
− + 4r−1 sup ‖γ‖ for any r ∈ (0,∞).(5.9)

In particular, if γ is bounded then κ satisfies the conditions in (2.3). Since the con-
stant R1(b) defined w.r.t. b is smaller than the corresponding constant R1 defined
w.r.t. b0, we obtain

1

c
≤

∫ R1

0

∫ s

0

exp

(
1

4

∫ s

t

uκ(u)− du

)
dt ds

≤
∫ R1

0

∫ s

0

exp

(
1

4

∫ s

t

uκ0(u)
− du

)
exp (R sup ‖γ‖) dt ds

≤ 1

c0
· exp (R sup ‖γ‖) ,

i.e., (2.25) holds.

Similarly, if γ satisfies the one-sided Lipschitz condition (2.26) then

(5.10) κ(r)− ≤ κ0(r)
− + 2L for any r ∈ (0,∞).

Hence again the conditions in (2.3) are satisfied, and we obtain

1

c
≤ 1

c0
· exp

(
L

2

∫ R

0

r dr

)

similarly as above, i.e., (2.27) holds. �

Proof of Theorem 2.14. Fix R > 0 and probability measures µ, ν on R
d. By

definition of fR,

f ′′
R(r) ≤ 1

4
rκ(r)f ′

R(r)− fR(r)

/∫ R

0

Φ(s)

ϕ(s)
ds
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for any r < R. Therefore, similarly to the proof of Theorem 2.2, Equation (4.1)
shows that the process ecRtfR(rt) is a local supermartingale for t < τ̂R where

τ̂R = inf{t ≥ 0 : rt > R}.
Here rt = ‖Xt − Yt‖ again denotes the distance process for a reflection coupling
(Xt, Yt) of two solutions of (1.1) with initial distribution given by a coupling η of
µ and ν. By optional stopping and Fatou’s lemma, we thus obtain

E[fR(rt); τ̂R > t] ≤ E[fR(rt∧τ̂R)] ≤ exp(−cRt)E[fR(r0)]

for any t ≥ 0, and hence

E[fR(rt)] ≤ exp(−cRt)E[fR(r0)] + P[τ̂R ≤ t]

≤ e−cRt

∫
fR(‖x− y‖ η(dx dy) + Pµ[τR/2 ≤ t] + Pν [τR/2 ≤ t].

The assertion now follows as in the proof of Corollary 2.3 by minimizing over all
couplings η of µ and ν. �

6. Couplings on product spaces

Let d =
∑n

i=1 di with n, d1, . . . , dn ∈ N. We now consider “componentwise”
couplings for diffusion processes Xt = (X1

t , . . . , X
n
t ) and Yt = (Y 1

t , . . . , Y
n
t ) on R

d

satisfying the s.d.e.

(6.1) dX i
t = bi(Xt) dt + dBi

t, i = 1, . . . , n,

with initial conditions X0 ∼ µ and Y0 ∼ ν. Here Bi, i = 1, . . . , n, are independent
Brownian motions on R

di , and bi : Rdi → R
di are locally Lipschitz continuous

functions such that the unique strong solution of (6.1) is non-explosive for any
given initial condition.

Let δ > 0. Suppose that λi, πi : Rd → [0, 1], i = 1, . . . , n, are Lipschitz continu-
ous functions such that

λi(z)2 + πi(z)2 = 1 for any z ∈ R
d, and(6.2)

λi(z) = 0 if |zi| ≤ δ/2,(6.3)

and let Bi and B̃i, 1 ≤ i ≤ n, be independent Brownian motions on R
di . Then a

coupling of two solutions of (6.1) with initial distributions µ and ν is given by a
strong solution of the system

dX i
t = bi(Xt) dt + λi(Zt) dB

i
t + πi(Zt) dB̃

i
t,(6.4)

dY i
t = bi(Yt) dt + λi(Zt) (I − 2eite

i,T
t ) dBi

t + πi(Zt) dB̃
i
t,

1 ≤ i ≤ n, with initial distribution (X0, Y0) ∼ η where η is a coupling of µ and ν.
Here we use the notation

Zt = Xt − Yt,

and eit is a measurable process taking values in the unit sphere in R
di such that

eit =

{
Z i

t/|Z i
t | if Z i

t 6= 0,
ui if Z i

t = 0,
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where ui is an arbitrary fixed unit vector in R
di . Notice that by (6.3), the choice

of ui is not relevant for (6.4), which is a standard Itô s.d.e. in R
2d with locally

Lipschitz continuous coefficients. To see that (6.4) defines a coupling, we observe

that (Xt) and (Yt) satisfy (6.1) w.r.t. the processes B̂t = (B̂1
t , . . . , B̂

n
t ) and B̌t =

(B̌1
t , . . . , B̌

n
t ) defined by

B̂i
t =

∫ t

0

λi(Zs) dB
i
s +

∫ t

0

πi(Zs) dB̃
i
s,

B̌i
t =

∫ t

0

λi(Zs) (I − 2eise
i,T
s ) dBi

s +

∫ t

0

πi(Zs) dB̃
i
s.

By Lévy’s characterization and by (6.2), both B̂ and B̌ are indeed Brownian
motions in R

d, cp. the corresponding argument for reflection coupling.

Remark 6.1. (1) By Condition (6.3) and non-explosiveness of (6.1), the coupling
process (Xt, Yt) is defined for any t ≥ 0.

(2) By choosing λi ≡ 0 and πi ≡ 1 we recover the synchronuous coupling, i.e., the
same noise is applied to both processes X and Y .

(3) A componentwise reflection coupling would be informally given by choosing
λi(z) = 1 if zi 6= 0 and λi(z) = 0 if zi = 0. As this function is not continuous
and ei(z) = zi/|zi| also has a discontinuity at zero, it is not obvious how to
make sense of this coupling rigorously. Instead, we will use below an approximate
componentwise reflection coupling where λi(z) = 1 if |zi| ≥ δ and λi(z) = 0 if
|zi| ≤ δ/2 for a small positive constant δ.

By subtracting the equations for X and Y in (6.4), we see that the difference
process Z = X − Y satisfies the s.d.e.

(6.5) dZ i
t = (bi(Xt)− bi(Yt)) dt + 2λi(Zt) e

i
t dW

i
t ,

i = 1, . . . , n, where the processes

W i
t =

∫ t

0

ei,Tt dBi
t, 1 ≤ i ≤ n,

are independent one-dimensional Brownian motions.

Let rit = |X i
t − Y i

t | denote the Euclidean norm of Z i
t . The next lemma is crucial

for quantifying contraction properties of the coupling given by (6.4):

Lemma 6.2. Suppose that f : [0,∞) → [0,∞) is a strictly increasing concave
function in C1([0,∞)) such that f ′ is absolutely continuous on (0,∞). Then for
any i = 1, . . . , n, the process f(rit) satisfies the Itô equation

f(rit) = f(ri0) + 2

∫ t

0

λi(Xs − Ys) f
′(ris) dW

i
s

+

∫ t

0

{
eis · (bi(Xs)− bi(Ys)) f

′(ris) + 2λi(Xs − Ys)
2 f ′′(ris)

}
ds.(6.6)
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Remark 6.3. The lemma shows in particular that the process rit satisfies

(6.7) drit = eit · (bi(Xt)− bi(Yt)) dt + 2λi(Xt − Yt) dW
i
t .

Notice that in this equation, the drift term does not depend on the choice of λ.

Proof of Lemma 6.2. Recall that eit = Z i
t/|Z i

t | if rit = |Z i
t | 6= 0. Since the

function y 7→ y/|y| is smooth on R
di \ {0} and x 7→ √

x is smooth on (0,∞), we
can apply Itô’s formula and (6.5) to show that the Itô equations

d|Z i|2 = 2Z i · (bi(X)− bi(Y )) dt + 4 λi(Z)2 dt + 4λi(Z) |Z i| dW i ,

dri =
1

2ri
d|Z i|2 − 1

8(ri)3
d[|Z i|2]

= ei · (bi(X)− bi(Y )) dt + 2λi(X − Y ) dW i(6.8)

hold almost surely on any stochastic interval [τ1, τ2] such that Z i
t 6= 0 a.s. for

τ1 ≤ t ≤ τ2.

On the other hand, suppose that |Z i| < δ/2 a.s. on a stochastic interval [τ3, τ4].
Then on [τ3, τ4], λ(Z) ≡ 0 by (6.3), and hence Z i is almost surely absolutely
continuous with

dZ i/dt = bi(X)− bi(Y ) a.e. on [τ3, τ4].

This implies that ri = |Z i| is almost surely absolutely continuous on [τ3, τ4] as well
with

(6.9) dri/dt = ei · (bi(X)− bi(Y )) a.e. on [τ3, τ4],

which is equivalent to (6.7) on [τ3, τ4]. Note that the value of ei for Z i = 0 is
not relevant here, since Z i can only stay at 0 for a positive amount of time if
bi(X)− bi(Y ) vanishes during that time interval.

Since R+ is the union of countably many stochastic intervals of the first and
second type considered above, the Itô equation (6.7) holds almost surely on R+.
The assertion (6.6) now follows from (6.7) by another application of Itô’s formula.
Here it is enough to assume that f is C1 on [0,∞) and f ′ is absolutely continuous
on (0,∞) because λi(Xs − Ys) vanishes for r

i
s < δ/2. �

We now fix weights w1, . . . wn ∈ [0,∞) and strictly increasing concave functions
f1, . . . , fn ∈ C1([0,∞)) ∩ C2((0,∞)) such that fi(0) = 0 for any i. Consider

(6.10) ρt =
n∑

i=1

fi(r
i
t)wi = df,w(Xt, Yt)

where df,w is defined by (3.3). By Lemma 6.2,

dρt =

n∑

i=1

(
eit · (bi(Xt)− bi(Yt)) f

′
i(r

i
t) + 2λi(Xt − Yt)

2 f ′′
i (r

i
t)
)
wi dt

+2

n∑

i=1

λi(Xt − Yt) f
′
i(r

i
t) dW

i
t .(6.11)
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Notice that the last term on the right hand side is a martingale since λi and f ′
i

are bounded. This enables us to control the expectation E[ρt] if we can bound the
drift in (6.11) by m− cρt for constants m, c ∈ (0,∞):

Lemma 6.4. Let m, c ∈ (0,∞) and suppose that
(6.12)

n∑

i=1

(
cfi(r

i) + (xi − yi) · (bi(x)− bi(y))
f ′
i(r

i)

ri
+ 2λi(x− y)2 f ′′

i (r
i)

)
wi ≤ m

holds for any x, y ∈ R
d with ri := |xi − yi| > 0 ∀ i ∈ {1, . . . n}. Then

(6.13) E[ρt] ≤ e−ct
E[ρ0] + m (1− e−ct)/c for any t ≥ 0.

Proof. We first note that by continuity of bi and f ′
i , (6.12) implies that

(6.14)
n∑

i=1

(
cfi(r

i) + ei · (bi(x)− bi(y)) f ′
i(r

i) + 2λi(x− y)2 f ′′
i (r

i)
)
wi ≤ m

holds for any x, y ∈ R
d (even if xi − yi = 0) provided ei = (xi − yi)/ri if ri > 0

and ei is an arbitrary unit vector if ri = 0. Indeed, we obtain (6.14) by applying
(6.12) with xi replaced by xi + hei whenever xi − yi = 0 and taking the limit as
h ↓ 0. In particular, by (6.14), the drift term βt in (6.11) is bounded from above
by

βt ≤ m−
n∑

i=1

cfi(r
i
t)wi = m− cρt.

Therefore by (6.11) and by the Itô product rule,

d(ectρ) = ect dρ + cectρ dt ≤ ectmdt + dM

where M is a martingale, and thus

E[ectρt] ≤ E[ρ0] + m

∫ t

0

ecs ds for any t ≥ 0.

�

Since f ′′
i ≤ 0, the process ρt is decreasing more rapidly (or growing more slowly)

if λi takes larger values. In particular, the decay properties of ρt would be opti-
mized when λi(z) = 1 for any z with zi 6= 0. This optimal choice of λ1, . . . , λn

would correspond to a componentwise reflection coupling, but it violates Condition
(6.3). It is perhaps possible to construct a corresponding coupling process by an
approximation argument. For our purpose of bounding the Kantorovich distance
Wf,w(µpt, νpt) this is not necessary. Indeed, it will be sufficient to consider ap-
proximate componentwise reflection couplings where (6.2) and (6.3) are satisfied
and λi(z) = 1 whenever |zi| > δ. The limit δ ↓ 0 will then be considered for the
resulting estimates of the Kantorovich distance but not for the coupling processes.
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7. Application to interacting diffusions

We will now apply the couplings introduced in Section 6 to prove the contraction
properties for systems of interacting diffusions stated in Theorem 3.1 and Corollary
3.3. We consider the setup described in Section 3.1, i.e.,

(7.1) bi(x) = bi0(x
i) + γi(x) for i = 1, . . . , n

with bi0 : Rdi → R
di locally Lipschitz such that κi defined by (3.4) is continuous

on (0,∞) with

(7.2) lim inf
r→∞

κi(r) > 0 and lim
r→0

rκi(r) = 0 for any 1 ≤ i ≤ n.

The functions fi are defined via κi, and ci is the corresponding contraction rate
given by (3.7).

Proof of Theorem 3.1. We fix δ > 0 and Lipschitz continuous functions
λi, µi : R

d → [0, 1], 1 ≤ i ≤ n, such that (6.2) and (6.3) hold and λi(z) =
1 if |zi| ≥ δ. Let (Xt, Yt) denote a corresponding approximate componentwise
reflection coupling of two solutions of (3.1) given by (6.4), and let ρt = df,w(Xt, Yt).
We will apply Lemma 6.4 which requires bounding the right hand side in (6.12).
For this purpose recall that fi and ci have been chosen in such a way that

2f ′′
i (r)−

1

2
rκi(r)f

′
i(r) ≤ −ci fi(r) ∀ r > 0,

cf. (4.9) and (4.10). Therefore, by (7.1) and by definition of κi,

(xi − yi) · (bi(x)− bi(y)) f ′
i(r

i)/ri + 2λi(x− y)2 f ′′
i (r

i)

≤ −1

2
riκi(r

i)f ′
i(r

i) + |γi(x)− γi(y)|f ′
i(r

i) + 2λi(x− y)2 f ′′
i (r

i)

≤ −λi(x− y)2cifi(r
i) + |γi(x)− γi(y)| − 1

2
(1− λi(x− y)2) riκi(r

i)f ′
i(r

i)(7.3)

≤ −cifi(r
i) + |γi(x)− γi(y)| + ciδ +

1

2
sup
r<δ

(
rκi(r)

−)

for any x, y ∈ R
d with ri = |xi − yi| > 0. Here we have used that 0 ≤ f ′

i ≤ 1, and
that λi(x − y) 6= 1 only if ri < δ. In this case, fi(r

i) ≤ ri ≤ δ. By (7.3) and by
the assumption (3.8) on γi, we obtain

n∑

i=1

(
(xi − yi) · (bi(x)− bi(y)) f ′

i(r
i)/ri + 2λi(x− y)2 f ′′

i (r
i)
)
wi

≤ m(δ) +
n∑

i=1

(−ci + εi)fi(r
i)wi ≤ m(δ) − c

n∑

i=1

fi(r
i)wi

for x, y as above, where

m(δ) =

n∑

i=1

(ciδ +
1

2
sup
r<δ

(rκi(r)
−)
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is a finite constant by (7.2), and c = mini=1,...n(ci − εi). Hence (6.12) is satisfied
with c and m(δ) and, therefore,

(7.4) E[ρt] ≤ e−ct
E[ρ0] + m(δ) (1− e−ct)/c.

By choosing the coupling process (Xt, Yt) with initial distribution given by a cou-
pling η of probability measures µ and ν on R

d, we conclude that

Wf,w(µpt, νpt) ≤ E [df,w(Xt, Yt)] = E[ρt]

≤ e−ct

∫
df,w(x, y) η(dx dy) + m(δ) (1− e−ct)/c(7.5)

for any t ≥ 0. Moreover, by (3.6), m(δ) → 0 as δ ↓ 0. Hence the assertion (3.9)
follows from (7.5) by taking the limit as δ ↓ 0 and minimizing over all couplings η
of µ and ν. Finally, (3.10) follows from (3.9) since ϕ(Ri

0)r/2 ≤ fi(r) ≤ r implies

A−1 dℓ1(x, y) ≤ df,w(x, y) =
∑

fi(|xi − yi|)wi ≤ dℓ1(x, y). �

Proof of Corollary 3.3. The ℓ1-Lipschitz condition (3.11) for γ implies that
(3.8) holds with wi = 1 for any i, and

λε−1
i = inf

r>0
fi(r) = f ′

i(R
i
1) = ϕi(R

i
0)/2,

i.e., εi = 2λ/ϕi(R
i
0). The assertion now follows from Theorem 3.1.

�
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