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Abstract

We note that even if convexity of the potential U fails locally, overdamped Langevin diffusions in Rd are contrac-
tions w.r.t. the Kantorovich-Rubinstein-Wasserstein distance based on an appropriately chosen concave distance
function equivalent to the Euclidean distance. The choice of the distance function is then optimized to obtain a
large exponential decay rate. The results yield dimension-independent bounds of optimal order in R, L ∈ [0,∞)
and K ∈ (0,∞) if (x−y) · (∇U(x)−∇U(y)) is bounded from below by −L|x−y|2 for |x−y| < R and by K|x−y|2
for |x− y| ≥ R.

Résumé

Couplage de réflection et contractivité de Wasserstein sans convexité. On considére diffusions de Lan-
gevin sur Rd dans un potentiel U non convex dans un ensemble borné. A l’aide du couplage de réflection, on
observe que ces diffusions sont des contractions pour la distance de Kantorovich-Rubinstein-Wasserstein basée sur
une distance concave appropriée, équivalente à la distance Euclidienne. Le choix de la distance est optimisé pour
obtenir un grand taux de décroissance exponentielle. Les résultats impliquent bornes optimales pour R, L ∈ [0,∞)
et K ∈ (0,∞), indépendamment de la dimension, sous la condition que (x − y) · (∇U(x) − ∇U(y)) est borné
inférieurement par −L|x− y|2 pour |x− y| < R et par K|x− y|2 pour |x− y| ≥ R.

1. Introduction

Consider a diffusion process (Xt)t≥0 in Rd defined by a stochastic differential equation

dXt = b(Xt) dt + σ dBt. (1)

Here (Bt)t≥0 is a d-dimensional Brownian motion, σ ∈ Rd×d is a constant d × d matrix with det σ > 0,
and b : Rd → Rd is a locally Lipschitz continuous function. We assume that the unique strong solution
of (1) is non-explosive, which is essentially a consequence of the assumptions imposed further below.
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The transition kernels of the diffusion process on Rd defined by (1) will be denoted by pt(x, dy). We are
interested in upper bounds for Kantorovich-Rubinstein-Wasserstein distances of the distributions µpt and
νpt at a given time t ≥ 0 w.r.t. two different initial distributions µ and ν.

Example 1 (Overdamped Langevin dynamics) Suppose σ = Id and b(x) = − 1
2∇U(x) for a function

U ∈ C2(Rd) that is strictly convex (i.e. ∇2U ≥ K · Id for some K > 0) outside a given ball B ⊂ Rd. Then
Z :=

∫
exp(−U(x))dx < ∞, and dµ := Z−1 exp(−U) dx is a stationary distribution for the diffusion

process (Xt). The results below imply upper bounds for the L1 Wasserstein distances between the law νpt

of Xt and µ for an arbitrary initial distribution ν and t ≥ 0.

A coupling by reflection of two solutions of (1) with initial distributions µ and ν is a diffusion process
(Xt, Yt) with values in R2d defined by (X0, Y0) ∼ η where η is a coupling of µ and ν,

dXt = b(Xt) dt + σ dBt for t ≥ 0,

dYt = b(Yt) dt + σ(I − 2ete
>
t ) dBt for t < T , Yt = Xt for t ≥ T. (2)

Here ete
>
t is the orthogonal projection onto the unit vector et := σ−1(Xt − Yt)/|σ−1(Xt − Yt)|, and

T = inf{t ≥ 0 : Xt = Yt} is the coupling time, i.e., the first hitting time of the diagonal ∆ = {(x, y) ∈
R2d : x = y}, cf. [5,1]. The reflection coupling can be realized as a diffusion process in R2d, and the
marginal processes (Xt)t≥0 and (Yt)t≥0 are solutions of (1) w.r.t. the Brownian motions Bt and B̃t =∫ t

0
(Id − 2I{s<T}ese

>
s ) dBs. The difference vector Zt := Xt − Yt solves the s.d.e.

dZt = (b(Xt)− b(Yt)) dt + 2|σ−1Zt|−1Zt dWt for t < T, Zt = 0 for t ≥ T, (3)

w.r.t. the one-dimensional Brownian motion Wt =
∫ t

0
e>s dBs.

Lindvall and Rogers [5] introduced coupling by reflection in order to derive upper bounds for the total
variation distance of the distributions of Xt and Yt at a given time t ≥ 0. Here we are instead considering
the Kantorovich-Rubinstein (L1-Wasserstein) distances

Wf (µ, ν) = inf
η

∫
df (x, y) η(dx dy), df (x, y) = f(‖x− y‖) (x, y ∈ Rd), (4)

of probability measures µ, ν on Rd, where the infimum is over all couplings η of µ and ν, f : [0,∞) → [0,∞)
is an appropriately chosen concave increasing function with f(0) = 0, and ‖z‖ =

√
z ·Gz with G ∈ Rd×d

symmetric and strictly positive definite. Typical choices for the norm are the Euclidean norm ‖z‖ = |z|
and the intrinsic metric ‖z‖ = |σ−1z| corresponding to G = Id and G = (σσ>)−1 respectively.

2. Results

Similarly to Lindvall and Rogers [5], we define for r ∈ (0,∞):

κ(r) = inf
{
−2

|σ−1(x− y)|2

‖x− y‖2
(x− y) ·G(b(x)− b(y))

‖x− y‖2
: x, y ∈ Rd with ‖x− y‖ = r

}
.

Note that the factor |σ−1(x − y)|2/‖x − y‖2 equals 1 if ‖ · ‖ is the intrinsic metric. In Example 1 with
G = Id, we have κ(r) = inf

{∫ 1

0
∂2
(x−y)/|x−y|U((1− t)x + ty) dt : x, y ∈ Rd s.t. |x− y| = r

}
. We assume

from now on that lim infr→∞ κ(r) > 0, and we define constants R0, R1 ∈ [0,∞) with R0 ≤ R1 by

R0 = inf{R ≥ 0 : κ(r) ≥ 0 ∀ r ≥ R}, R1 = inf{R ≥ R0 : κ(r)R(R−R0) ≥ 8 ∀ r ≥ R}.
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We consider the particular distance function df (x, y) = f(‖x− y‖) given by

f(r) =

r∫
0

ϕ(s)g(s) ds, ϕ(r) = exp

−1
4

r∫
0

sκ(s)− ds

 , g(r) = 1− 1
2

r∧R1∫
0

Φ(s)
ϕ(s)

ds

/ R1∫
0

Φ(s)
ϕ(s)

ds, (5)

where Φ(r) =
∫ r

0
ϕ(s) ds. Note that Φ and f are concave, because ϕ and g are decreasing. Moreover,

Φ(r)/2 ≤ f(r) ≤ Φ(r) for any r ≥ 0. Hence df and dΦ as well as Wf and WΦ differ at most by a factor
2. The choice of f is obtained by trying to maximize the decay rate of Wf , cf. the proof below.

Theorem 1 Let α := sup{|σ−1z|2 : z ∈ Rd with ‖z‖ = 1}, and define c ∈ (0,∞) by

1
c

= α

R1∫
0

Φ(s)ϕ(s)−1 ds = α

R1∫
0

s∫
0

exp

1
4

s∫
t

uκ(u)− du

 dt ds . (6)

Then for df given by (4) and (5), the function t 7→ ectE[df (Xt, Yt)] is decreasing on [0,∞).

The theorem yields exponential contractivity at rate c > 0 for the transition kernels pt of (1) w.r.t. the
Kantorovich-Rubinstein-Wasserstein distance Wf . Moreover, it implies upper bounds for the standard
KRW distance W = Wid w.r.t. the distance function d(x, y) = ‖x− y‖:
Corollary 2.1 For any t ≥ 0 and any probability measures µ, ν on Rd,

Wf (µpt, νpt) ≤ e−ctWf (µ, ν), and W (µpt, νpt) ≤ 2ϕ(R0)−1e−ctW (µ, ν). (7)

The second estimate follows from the first, because ϕ(R0)‖x−y‖/2 ≤ df (x, y) ≤ ‖x−y‖ for any x, y ∈ Rd.
For the Wasserstein mixing times, the corollary yields the upper bound

τW (ε) := inf{t ≥ 0 : W (µpt, νpt) ≤ εW (µ, ν) ∀µ, ν} ≤ c−1 log(2/(εϕ(R0))) for any ε > 0.

Proof of Theorem 1. Let rt = ‖Zt‖ = ‖Xt − Yt‖. By (3) and Itô’s formula,

df(rt) = 2|σ−1Zt|−1rtf
′(rt) dWt + r−1

t Zt ·G(b(Xt)− b(Yt))f ′(rt) dt + 2|σ−1Zt|−2r2
t f ′′(rt) dt (8)

a.s. for t < T . The drift is bounded from above by Bt := 2|σ−1Zt|−2r2
t (f ′′(rt)− rtκ(rt)f ′(rt)/4). We

show that by our choice of f , this expression is smaller than −cf(rt). Indeed, for r < R1,

f ′′(r) = −1
4
rκ(r)−ϕ(r)g(r)− 1

2
Φ(r)

/∫ R1

0

Φ(s)
ϕ(s)

ds ≤ 1
4
rκ(r)f ′(r)− 1

2
f(r)

/∫ R1

0

Φ(s)
ϕ(s)

ds . (9)

For r ≥ R1, we have f ′(r) = ϕ(r)/2 = ϕ(R0)/2 and κ(r)R1(R1 −R0) ≥ 8 by definition of R1, whence

f ′′(r)− 1
4
rκ(r)f ′(r)≤−1

8
rκ(r)ϕ(R0) ≤ − ϕ(R0)

R1 −R0
· r

R1
≤ − ϕ(R0)

R1 −R0
· Φ(r)
Φ(R1)

≤−1
2
Φ(r)

/∫ R1

R0

Φ(s)ϕ(s)−1 ds ≤ −1
2
f(r)

/∫ R1

0

Φ(s)ϕ(s)−1 ds . (10)

Here we have used that for r ≥ R0, we have ϕ(r) = ϕ(R0),Φ(r) = Φ(R0) + (r −R0)ϕ(R0), and hence∫ R1

R0

Φ(s)ϕ(s)−1 ds =
∫ R1

R0

(Φ(R0) + (s−R0)ϕ(R0))ϕ(R0)−1 ds =
Φ(R0)
ϕ(R0)

(R1 −R0) +
1
2
(R1 −R0)2

≥ (R1 −R0)(Φ(R0) + (R1 −R0)ϕ(R0))ϕ(R0)−1/2 ≥ (R1 −R0)Φ(R1)ϕ(R0)−1/2.
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By (9) and (10), we conclude that Bt ≤ −cf(rt). Optional stopping in (8) at Tk = inf{t ≥ 0 : rt 6∈
(k−1, k)} now implies E[f(rt) ; t < Tk] ≤ −c

∫ t

0
E[f(rs) ; s < Tk]ds for any k ∈ N and t ≥ 0. The assertion

follows for k →∞ since rt = 0 for t ≥ T , and T = sup Tk by non-explosiveness. 2

A first application. To illustrate that the bounds derived above are fairly sharp, let us suppose that
κ(r) ≥ −L for r ≤ R and κ(r) ≥ K for r > R with constants R,L ∈ [0,∞) and K ∈ (0,∞). Then, since
ϕ(r) = ϕ(R0) and Φ(r) = Φ(R0) + (r −R0)ϕ(R0) for r ≥ R0,

α−1c−1 =
∫ R1

0

Φ(s)ϕ(s)−1 ds =
∫ R0

0

Φ(s)ϕ(s)−1 ds + (R1 −R0)Φ(R0)ϕ(R0)−1 + (R1 −R0)2/2. (11)

The lower bounds on the function κ imply the upper bounds R0 ≤ R, R1 −R0 ≤ min(8/(KR0),
√

8/K),
Φ(r)ϕ(r)−1 ≤

∫ r

0
exp(L(r2 − t2)/8) dt ≤ min(

√
2π/L, r) exp(Lr2/8) for r ≤ R0, and

R0∫
0

Φ(r)ϕ(r)−1 dr ≤

 4L−1(exp(LR2
0/8)− 1) ≤ (e− 1)R2

0/2 if LR2
0/8 ≤ 1,

8
√

2πL−3/2R−1
0 exp(LR2

0/8) if LR2
0/8 ≥ 1.

Combining these estimates, we obtain by (11),

α−1c−1 ≤

 (e− 1)R2/2 + e
√

8/KR + 4/K ≤ (3e/2)max(R2, 8/K) if LR2
0/8 ≤ 1,

8
√

2πR−1L−1/2(L−1 + K−1) exp(LR2/8) + 32R−2K−2 if LR2
0/8 ≥ 1.

In the first case, c is at least of order min(R−2,K). Even if L = 0 (convex case), this order can not be
improved as one-dimensional Langevin diffusions with potential U(x) = Kx2/2, or, respectively, with
vanishing drift on (−R/2, R/2) demonstrate. In the second case (LR2

0 ≥ 8), if K ≥ const. · L then the
upper bound for c−1 is of order R−1L−3/2 exp(LR2/8). This order in R and L is again optimal:

Example 2 (Double-well with U ′′(x) = −L for |x| ≤ R/2) Consider a Langevin diffusion in R1 with
a symmetric potential U ∈ C2(R) satisfying U(x) = −Lx2/2 for x ∈ [−R/2, R/2], U ′′ ≥ −L, and
lim inf |x|→∞ U ′′(x) > 0. If ‖ · ‖ is the Euclidean norm then κ(r) = −L for r ∈ (0, R]. On the other hand,

lim
t→∞

t−1 log PR/2[T0 > t] = −λ1(0,∞) ≥ −(2e− 2)−1(eL)3/2R exp(−LR2/8) for LR2 ≥ 4, (12)

where T0 denotes the first hitting time of 0 for the process starting at R/2, and λ1(0,∞) is the lowest
Dirichlet eigenvalue of the generator on (0,∞), cf. [3]. The bound for λ1 follows by inserting the function
g(x) = min(

√
Lx, 1) into the variational characterization of the Dirichlet eigenvalue. By (12), the L1

Wasserstein distance W (δ−R/2pt, δR/2pt) decays at most with a rate of order L3/2R exp(−LR2/8).

Remark. The idea to study Wasserstein contractivity w.r.t. concave distance functions goes back to
Chen and Wang [2], where it is implicitly contained in the proofs. Indeed, in [2] and [6], Chen and Wang
apply very similar methods to estimate spectral gaps of diffusion generators on Rd and on manifolds.
Related arguments have also been applied in [4] to quantify exponential ergodicity in infinite dimen-
sional situations. The techniques presented have natural extensions to non-constant diffusion coefficients
and diffusions on manifolds, Euler discretizations of s.d.e., and high and infinite dimensional diffusions
(dimension-independent bounds) that will be studied in detail in forthcoming work.
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