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ERROR BOUNDS FOR METROPOLIS-HASTINGS
ALGORITHMS APPLIED TO PERTURBATIONS OF
GAUSSIAN MEASURES IN HIGH DIMENSIONS

By Andreas Eberle

Universität Bonn

The Metropolis-adjusted Langevin algorithm (MALA) is a Metro-
polis-Hastings method for approximate sampling from continuous
distributions. We derive upper bounds for the contraction rate in
Kantorovich-Rubinstein-Wasserstein distance of the MALA chain with
semi-implicit Euler proposals applied to log-concave probability mea-
sures that have a density w.r.t. a Gaussian reference measure. For suf-
ficiently “regular” densities, the estimates are dimension-independent,
and they hold for sufficiently small step sizes h that do not depend
on the dimension either. In the limit h ↓ 0, the bounds approach the
known optimal contraction rates for overdamped Langevin diffusions
in a convex potential.

A similar approach also applies to Metropolis-Hastings chains with
Ornstein-Uhlenbeck proposals. In that case, the resulting estimates
are still independent of the dimension but less optimal, reflecting the
fact that MALA is a higher order approximation of the diffusion limit
than Metropolis-Hastings with Ornstein-Uhlenbeck proposals.

1. Introduction. The performance of Metropolis-Hastings (MH) meth-
ods [23, 16, 27] for sampling probability measures on high dimensional con-
tinuous state spaces has attracted growing attention in recent years. The pio-
neering works by Roberts, Gelman and Gilks [28] and Roberts and Rosenthal
[29] show in particular that for product measures πd on Rd, the average ac-
ceptance probabilities for the Random Walk Metropolis Algorithm (RWM)
and the Metropolis adjusted Langevin algorithm (MALA) converge to a
strictly positive limit as d → ∞ only if the step sizes h go to zero of order
O(d−1), O(d−1/3) respectively. In that case, a diffusion limit as d → ∞ has
been derived, leading to an optimal scaling of the step sizes maximizing the
speed of the limiting diffusion, and an asymptotically optimal acceptance
probability.

Recently, the optimal scaling results for RWM and MALA have been
extended significantly to targets that are not of product form but have a
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sufficiently regular density w.r.t. a Gaussian measure, cf. [22, 26]. On the
other hand, it has been pointed out [3, 4, 14, 8] that for corresponding per-
turbations of Gaussian measures, the acceptance probability has a strictly
positive limit as d → ∞ for small step sizes that do not depend on the dimen-
sion, provided the Random Walk or Euler proposals in RWM and MALA
are replaced by Ornstein-Uhlenbeck or semi-implicit (“preconditioned”) Eu-
ler proposals respectively, cf. also below. Pillai, Stuart and Thiéry [25] show
that in this case, the Metropolis-Hastings algorithm can be realized directly
on an infinite dimensional Hilbert space arising in the limit as d → ∞, and
the corresponding Markov chain converges weakly to an infinite dimensional
overdamped Langevin diffusion as h ↓ 0.

Mixing properties and convergence to equilibrium of Langevin diffusions
have been studied intensively [15, 24, 1, 2, 9, 31]. In particular, it is well-
known that contractivity and exponential convergence to equilibrium in
Wasserstein distance can be quantified if the stationary distribution is strictly
log-concave [7, 35], cf. also [11] for a recent extension to the non-log-concave
case. Because of the diffusion limit results, one might expect that the ap-
proximating Metropolis-Hastings chains have similar convergence proper-
ties. However, this heuristics may also be wrong, since the convergence of the
Markov chains to the diffusion is known only in a weak and non-quantitative
sense.

Although there is a huge number of results quantifying the speed of con-
vergence to equilibrium for Markov chains on discrete state spaces (cf. [18,
32] for an overview), there are relatively few quantitative results on Metroplis-
Hastings chains on Rd when d is large. The most remarkable exception are
the well-known works [10, 17, 19, 20, 21] which prove an upper bound for the
mixing time that is polynomial in the dimension for Metropolis chains with
ball walk proposals for uniform measures on convex sets and more general
log-concave measures.

Below, we develop an approach to quantify Wasserstein contractivity
and convergence to equilibrium in a dimension-independent way for the
Metropolis-Hastings chains with Ornstein-Uhlenbeck and semi-implicit Eu-
ler proposals. Our approach applies in the strictly log-concave case (or, more
generally, if the measure is strictly log-concave on an appropriate ball) and
yields bounds for small step sizes that are very precise. The results for
semi-implicit Euler proposals require less restrictive assumptions than those
for Ornstein-Uhlenbeck proposals, reflecting the fact that the corresponding
Markov chain is a higher order approximation of the diffusion.

Our results are closely related and complementary to the recent work
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[13], and to the dimension-dependent geometric ergodicity results in [5].
In particular, in [13], M. Hairer, A. Stuart and S. Vollmer apply related
methods to establish exponential convergence to equilibrium in Wasserstein
distance for Metropolis-Hastings chains with Ornstein-Uhlenbeck propos-
als in a less quantitative way, but without assuming log-concavity. In the
context of probability measures on function spaces, the techniques devel-
oped here are applied in the PhD Thesis [12] of D. Gruhlke. I would like to
thank in particular Daniel Gruhlke and Sebastian Vollmer for many fruitful
discussions related to the contents of this paper.

We now recall some basic facts on Metropolis-Hastings algorithms, and de-
scribe our setup and the main results. Sections 2 and 3 contain basic results
on Wasserstein contractivity of Metropolis-Hastings kernels, and contractiv-
ity of the proposal kernels. In Sections 4 and 5, we prove bounds quantifying
rejection probabilities and the dependence of the rejection event on the cur-
rent state for Ornstein-Uhlenbeck and semi-implicit Euler proposals. These
bounds, combined with an upper bound for the exit probability of the cor-
responding Metropolis-Hastings chains from a given ball derived in Section
6 are crucial for the proof of the main results in Section 7.

1.1. Metropolis-Hastings algorithms. Let U : Rd → R be a lower bounded
measurable function such that

Z =

∫
Rd

exp(−U(x)) dx < ∞,

and let µ denote the probability measure on Rd with density proportional
to exp(−U). We use the same letter µ for the measure and its density, i.e.,

(1.1) µ(dx) = µ(x) dx = Z−1 exp(−U(x)) dx.

Below, we view the measure µ defined by (1.1) as a perturbation of the
standard normal distribution γd in Rd, i.e., we decompose

(1.2) U(x) =
1

2
|x|2 + V (x), x ∈ Rd,

with a measurable function V : Rd → R, and obtain the representation

(1.3) µ(dx) = Z̃−1 exp(−V (x)) γd(dx)

with normalization constant Z̃ = Z/(2π)d/2. Here | · | denotes the Euclidean
norm.
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Note that in Rd, any probability measure with a strictly positive den-
sity can be represented as an absolutely continuous perturbation of γd as in
(1.3). In an infinite dimensional limit, however, the density may degenerate.
Nevertheless, also on infinite dimensional spaces, absolutely continuous per-
turbations of Gaussian measures form an important and widely used class
of models.

Example 1.1 (Transition Path Sampling). We briefly describe a
typical application, cf. [14] and [12] for details. Suppose that we are inter-
ested in sampling a trajectory of a diffusion process in Rℓ conditioned to a
given end-point b at time t = 1. We assume that the unconditioned diffusion
process (Yt,P) satisfies a stochastic differential equation of the form

(1.4) dYt = −∇H(Yt) dt + dBt

where (Bt) is an ℓ-dimensional Brownian motion, and H ∈ C2(Rℓ) is bounded
from below. Then, by Girsanov’s Theorem and Itô’ s formula, a regular ver-
sion of the law of the conditioned process satisfying Y0 = a and Y1 = b on
the path space E = {y ∈ C([0, 1],Rℓ) : y0 = a, y1 = b} is given by

(1.5) µ(dy) = C−1 exp(−V (y)) γ(dy),

where γ is the law of the Brownian bridge from a to b,

(1.6) V (y) =
1

2

∫ 1

0
ϕ(ys) ds with ϕ(x) = |∇H(x)|2 −∆H(x),

and C = exp (H(b)−H(a)), cf. [31]. In order to obtain finite dimensional
approximations of the measure µ on E, we consider the Wiener-Lévy expan-
sion

(1.7) yt = et +

∞∑
n=0

2n−1∑
k=0

ℓ∑
i=1

xn,k,i e
n,k,i
t , t ∈ [0, 1],

of a path y ∈ E in terms of the basis functions et = (1 − t)a + tb and

en,k,it = 2−n/2g(2nt − k)ei with g(s) = min(s, 1 − s)+. Here the coefficients
xn,k,i, n ≥ 0, 0 ≤ k < 2n, 1 ≤ i ≤ ℓ, are real numbers. Recall that truncating
the series at n = m− 1 corresponds to taking the polygonal interpolation of
the path y adapted to the dyadic partition Dm = {k2−m : k = 0, 1, . . . , 2m}
of the interval [0, 1]. Now fix m ∈ N, let d = (2m − 1)ℓ, and let

xd = (xn,k,i : 0 ≤ n < m, 0 ≤ k < 2n, 1 ≤ i ≤ l) ∈ Rd
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denote the vector consisting of the first d components in the basis expansion
of a path y ∈ E. Then the image of the Brownian bridge measure γ under
the projection πd : E → Rd that maps y to xd is the d-dimensional standard
normal distribution γd, cf. e.g. [33]. Therefore, a natural finite dimensional
approximation to the infinite dimensional sampling problem described above
consists in sampling from the probability measure

(1.8) µd(dx) = Z̃−1
d exp(−Vd(x)) γ

d(dx)

on Rd where Z̃d is a normalization constant, and

(1.9) Vd(x) = 2−m−1

(
1

2
ϕ(y0) +

2m−1∑
k=1

ϕ(yk2−m) +
1

2
ϕ(y1)

)
.

with y = e +
∑

n<m

∑
k

∑
i xn,k,ie

n,k,i denoting the polygonal path corre-
sponding to xd = (xn,k,i) ∈ Rd.

Returning to our general setup, suppose that p(x, dy) = p(x, y) dy is an
absolutely continuous transition kernel on Rd with strictly positive densities
p(x, y). Let

(1.10) α(x, y) = min

(
µ(y)p(y, x)

µ(x)p(x, y)
, 1

)
, x, y ∈ Rd.

Note that α(x, y) does not depend on Z. The Metropolis-Hastings algorithm
with proposal kernel p is the following Markov chain Monte Carlo method
for approximate sampling and Monte-Carlo integration w.r.t. µ:

1. Choose an initial state X0.
2. For n := 0, 1, 2, . . . do

• Sample Yn ∼ p(Xn, dy) and Un ∼ Unif(0, 1) independently.

• If Un < α(Xn, Yn) then accept the proposal and set Xn+1 := Yn,
else reject the proposal and set Xn+1 := Xn.

The algorithm generates a time-homogeneous Markov chain (Xn)n=0,1,2,...

with initial state X0 and transition kernel

(1.11) q(x, dy) = α(x, y)p(x, y)dy + r(x) · δx(dy).

Here

(1.12) r(x) = 1− q(x,Rd \ {x}) = 1−
∫
Rd

α(x, y)p(x, y)dy
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is the average rejection probability for the proposal when the Markov chain
is at x. Note that q(x, dy) restricted to Rd\{x} is again absolutely continuous
with density

q(x, y) = α(x, y)p(x, y).

Since

µ(x)q(x, y) = α(x, y)µ(x)p(x, y) = min(µ(y)p(y, x), µ(x)p(x, y))

is a symmetric function in x and y, the kernel q(x, dy) satisfies the detailed
balance condition

(1.13) µ(dx)q(x, dy) = µ(dy)q(y, dx).

In particular, µ is a stationary distribution for the Metropolis-Hastings
chain, and the chain with initial distribution µ is reversible. Therefore, un-
der appropriate ergodicity assumptions, the distribution of Xn will converge
to µ as n → ∞.

To analyze Metropolis-Hastings algorithms it is convenient to introduce the
function

(1.14) G(x, y) = log
µ(x)p(x, y)

µ(y)p(y, x)
= U(y)− U(x) + log

p(x, y)

p(y, x)
.

For any x, y ∈ Rd,

(1.15) α(x, y) = exp(−G(x, y)+).

In particular, for any x, y, x̃, ỹ ∈ Rd,

1− α(x, y) ≤ G(x, y)+,(1.16)

(α(x, y)− α(x̃, ỹ))+ ≤ (G(x, y)−G(x̃, ỹ))−, and(1.17)

(α(x, y)− α(x̃, ỹ))− ≤ (G(x, y)−G(x̃, ỹ))+.(1.18)

The function G(x, y) defined by (1.14) can also be represented in terms of
V : Indeed, since

log
γd(x)

γd(y)
=

1

2
(|y|2 − |x|2),

we have

(1.19) G(x, y) = V (y)− V (x) + log
γd(x)p(x, y)

γd(y)p(y, x)

where γd(x) = (2π)−d/2 exp(−|x|2/2) denotes the standard normal density
in Rd.
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1.2. Metropolis-Hastings algorithms with Gaussian proposals. We aim
at proving contractivity of Metropolis-Hastings kernels w.r.t. appropriate
Kantorovich-Rubinstein-Wasserstein distances. For this purpose, we are look-
ing for a proposal kernel that has adequate contractivity properties and suf-
ficiently small rejection probabilities. The rejection probability is small if
the proposal kernel approximately satisfies the detailed balance condition
w.r.t. µ.

1.2.1. Ornstein-Uhlenbeck proposals. A straightforward approach would
be to use a proposal density that satisfies the detailed balance condition

(1.20) γd(x)p(x, y) = γd(y)p(y, x) for any x, y ∈ Rd

w.r.t. the standard normal distribution. In this case,

(1.21) G(x, y) = V (y)− V (x).

The simplest form of proposal distributions satisfying (1.20) are the transi-
tion kernels of AR(1) (discrete Ornstein-Uhlenbeck) processes given by

(1.22) pOU
h (x, dy) = N

((
1− h

2

)
x,

(
h− h2

4

)
Id

)
for some constant h ∈ (0, 2). If Z is a standard normally distributed Rd-
valued random variable then the random variables

(1.23) Y OU
h (x) :=

(
1− h

2

)
x+

√
h− h2

4
Z, x ∈ Rd,

have distributions pOU
h (x, dy). Note that by (1.21), the acceptance probabil-

ities

(1.24) αOU(x, y) = exp(−GOU(x, y)+) = exp
(
−(V (y)− V (x))+

)
for Ornstein-Uhlenbeck proposals do not depend on h.

1.2.2. Euler proposals. In continuous time, under appropriate regularity
and growth conditions on V , detailed balance w.r.t. µ is satsfied exactly
by the transition functions of the diffusion process solving the over-damped
Langevin stochastic differential equation

(1.25) dXt = −1

2
Xt dt−

1

2
∇V (Xt) dt+ dBt ,
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because the generator

L =
1

2
∆− 1

2
x · ∇ − 1

2
∇V · ∇ =

1

2
(∆−∇U · ∇)

is a self-adjoint operator on an appropriate dense subspace of L2(Rd;µ), cf.
[31]. Although we can not compute and sample from the transition functions
exactly, we can use approximations as proposals in a Metropolis-Hastings
algorithm. A corresponding MH algorithm where the proposals are obtained
from a discretization scheme for the SDE (1.25) is called a Metropolis-
adjusted Langevin Algorithm (MALA), cf. [30, 27].

In this paper, we focus on the MALA scheme with proposal kernel

(1.26) ph(x, ·) = N

((
1− h

2

)
x− h

2
∇V (x),

(
h− h2

4

)
· Id
)

for some constant h ∈ (0, 2), i.e., ph(x, ·) is the distribution of

Yh(x) = x− h

2
∇U(x) +

√
h− h2

4
Z

=

(
1− h

2

)
x− h

2
∇V (x) +

√
h− h2

4
Z ,(1.27)

where Z ∼ γd is a standard normal random variable with values in Rd.

Note that if h − h2/4 is replaced by h, then (1.27) is a standard Euler
discretization step for the SDE (1.25). Replacing h by h−h2/4 ensures that
detailed balance is satisfied exactly for V ≡ 0. Alternatively, (1.27) can be
viewed as a semi-implicit Euler discretization step for (1.25):

Remark 1.2 (Euler schemes). The explicit Euler discretization of the
over-damped Langevin equation (1.25) with time step size h > 0 is given by

(1.28) Xn+1 =

(
1− h

2

)
Xn − h

2
∇V (Xn) +

√
hZn+1, n = 0, 1, 2, . . . ,

where Zn, n ∈ N, are i.i.d. random variables with distribution γd. The process
(Xn) defined by (1.28) is a time-homogeneous Markov chain with transition
kernel

(1.29) pEulerh (x, ·) = N

((
1− h

2

)
x− h

2
∇V (x), h · Id

)
.
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Even for V ≡ 0, the measure µ is not a stationary distribution for the kernel
pEulerh . A semi-implicit Euler scheme for (1.25) with time-step size ε > 0 is
given by

(1.30) Xn+1 −Xn = −ε

2
· Xn+1 +Xn

2
− ε

2
∇V (Xn) +

√
εZn+1

with Zn i.i.d. with distribution γd, cf. [14]. Note that the scheme is implicit
only in the linear part of the drift but explicit in ∇V . Solving for Xn+1 in
(1.30) and substituting h = ε/(1 + ε

4) with h ∈ (0, 2) yields the equivalent
equation

(1.31) Xn+1 =

(
1− h

2

)
Xn − h

2
∇V (Xn) +

√
h− h2

4
Zn+1.

We call the Metropolis-Hastings algorithm with proposal kernel ph(x, ·) a
semi-implicit MALA scheme with step size h.

Proposition 1.3 (Acceptance probabilities for semi-implicit MALA).
Let V ∈ C1(Rd) and h ∈ (0, 2). Then the acceptance probabilities for the
Metropolis-adjusted Langevin algorithm with proposal kernels ph are given
by αh(x, y) = exp(−Gh(x, y)

+) with

Gh(x, y) = V (y)− V (x)− y − x

2
· (∇V (y) +∇V (x))

+
h

8− 2h

[
(y + x) · (∇V (y)−∇V (x)) + |∇V (y)|2 − |∇V (x)|2

]
.(1.32)

For explicit Euler proposals with step size h > 0, a corresponding represen-
tation holds with

GEuler
h (x, y) = V (y)− V (x)− y − x

2
· (∇V (y) +∇V (x))

+
h

8

[
|y +∇V (y)|2 − |x+∇V (x)|2

]
.(1.33)

The proof of the proposition is given in Section 4 below.

Remark 1.4. For explicit Euler proposals, the O(h) correction term in
(1.33) does not vanish for V ≡ 0. More significantly, this term goes to infin-
ity as |y−x| → ∞, and the variance of y−x w.r.t. the proposal distribution
is of order O(d).
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1.3. Bounds for rejection probablities. We fix a norm ∥ · ∥− on Rd such
that

(1.34) ∥x∥− ≤ |x| for any x ∈ Rd.

We assume that V is sufficiently smooth w.r.t. ∥ · ∥− with derivatives growing
at most polynomially:

Assumption 1.5. The function V is in C4(Rd), and for any n ∈ {1, 2, 3, 4},
there exist finite constants Cn ∈ [0,∞), pn ∈ {0, 1, 2, . . .} such that

|(∂n
ξ1,...,ξnV )(x)| ≤ Cnmax(1, ∥x∥−)pn∥ξ1∥− · · · · · ∥ξn∥−

holds for any x ∈ Rd and ξ1, . . . , ξn ∈ Rd.

For discretizations of infinite dimensional models, ∥·∥− will typically be a
finite dimensional approximation of a norm that is almost surely finite w.r.t.
the limit measure in infinite dimensions.

Example 1.6 (Transition Path Sampling). Consider the situation
of Example 1.1 and assume that H is in C6(Rd). Then by (1.9) and (1.6),
Vd is C4. For n ≤ 4 and x, ξ1, . . . , ξn ∈ Rd, the directional derivatives of Vd

are given by

(1.35) ∂n
ξ1···ξnVd(x) = 2−m−1

2m∑
k=0

wk D
nϕ(yk2−m)

[
η1,k2−m , . . . , ηn,k2−m

]
where y, η1, . . . , ηn are the polygonal paths in E corresponding to x, ξ1, . . . , ξn
respectively, wk = 1 for k = 1, . . . , 2m − 1, and w0 = w1 = 1/2. Assuming
∥D4ϕ(z)∥ = O(|z|r) for some integer r ≥ 0 as |z| → ∞, we can estimate∣∣∂n

ξ1···ξnVd(x)
∣∣ ≤ Cn max(1, ∥y∥Lq)pn∥η1∥Lq · · · · · ∥ηn∥Lq

where q = r + 4, pn = r + (4 − n), ∥y∥Lq = 2−m
∑2m

k=0wk|yk|q is a discrete
Lq norm of the polygonal path y, and C1, . . . , C4 are finite constants that
do not depend on the dimension d. One could now choose for the minus
norm the norm on Rd corresponding to the discrete Lq norm on polygonal
paths. However, it is more convenient to choose a norm coming from an
inner product. To this end, we consider the norms

∥y∥α =

∑
n,k,i

2−2αnx2n,k,i

1/2

, y = e+
∑

xn,k,ie
n,k,i,
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on path space E, and the induced norms

∥x∥α =

∑
n<m

∑
k,i

2−2αnx2n,k,i

1/2

, x ∈ Rd,

on Rd where d = (2m − 1)ℓ. One can show that for α < 1/2 + 1/q, the Lq

norm can be bounded from above by ∥ · ∥α independently of the dimension,
cf. [12]. On the other hand, if α > 1/2 then ∥y∥α < ∞ for γ-almost every
path y of the Brownian bridge. This property will be crucial when restricting
to balls w.r.t. ∥ · ∥α. For ∥ · ∥− = ∥ · ∥α with α ∈ (1/2, 1/2 + 1/q), both
requirements are satisfied, and Assumption 1.5 holds with constants that do
not depend on the dimension.

The next proposition yields in particular an upper bound for the average
rejection probability w.r.t. both Ornstein-Uhlenbeck and semi-implicit Euler
proposals at a given position x ∈ Rd, cf. [6] for an analogue result:

Proposition 1.7 (Upper bounds for MH rejection probabilities).
Suppose that Assumption 1.5 is satisfied and let k ∈ N. Then there exist
polynomials POU

k : R → R+ and Pk : R2 → R+ of degrees p1 + 1, max(p3 +
3, 2p2 + 2) respectively, such that for any x ∈ Rd and h ∈ (0, 2),

E[(1− αOU(x, Y OU
h (x)))k]1/k ≤ POU

k (∥x∥−) · h1/2, and

E[(1− αh(x, Yh(x)))
k]1/k ≤ Pk(∥x∥−, ∥∇U(x)∥−) · h3/2.

The result is a consequence of Proposition 1.3. The proof is given in
Section 4 below.

Remark 1.8. (1) The polynomials POU
k and Pk in Proposition 1.7 are

explicit, cf. the proof below. They depend only on the values Cn, pn in As-
sumption 1.5 for n = 1, n = 2, 3 respectively, and on the moments

mn = E[∥Z∥n−], n ≤ k · (p1 + 1), n ≤ k ·max(p3 + 3, 2p2 + 2) resp.,

but they do not depend on the dimension d. For semi-implicit Euler propos-
als, the upper bound in Proposition 1.7 is stated in explicit form for the case
k = 1 and p2 = p3 = 0 in (4.6) below.
(2) For explicit Euler proposals, corresponding estimates hold with mn re-
placed by m̃n = E[|Z|n], cf. Remark 4.3 below. Note, however, that m̃n → ∞
as d → ∞.
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Our next result is a bound of order O(h1/2), O(h3/2) respectively, for
the average dependence of the acceptance event on the current state w.r.t.
Ornstein-Uhlenbeck and semi-implicit Euler proposals. Let ∥ · ∥+ denote the
dual norm of ∥ · ∥− on Rd, i.e.,

∥ξ∥+ = sup{ξ · η | η ∈ Rd with ∥η∥− ≤ 1}.

Note that
∥ξ∥− ≤ |ξ| ≤ ∥ξ∥+ ∀ ξ ∈ Rd.

For a function F ∈ C1(Rd),

|F (y)− F (x)| =

∣∣∣∣∫ 1

0
(y − x) · ∇F ((1− t)x+ ty) dt

∣∣∣∣
≤ ∥y − x∥− · sup

z∈[x,y]
∥∇F (z)∥+,

i.e., the plus norm of ∇F determines the Lipschitz constant w.r.t. the minus
norm.

Proposition 1.9 (Dependence of rejection on the current state).
Suppose that Assumption 1.5 is satisfied and let k ∈ N. Then there exist
polynomials QOU

k : R → R+ and Qk : R2 → R+ of degrees p2 + 1, max(p4 +
3, p3+p2+2, 3p2+1) respectively, such that for any x, x̃ ∈ Rd and h ∈ (0, 2),

E[∥∇xG
OU(x, Y OU

h (x))∥k+]1/k ≤ QOU
k (∥x∥−) · h1/2,(1.36)

E[∥∇xGh(x, Yh(x))∥k+]1/k ≤ Qk (∥x∥−, ∥∇U(x)∥−) · h3/2,(1.37)

E[|αOU(x, Y OU
h (x))− αOU(x̃, Y OU

h (x̃))|k]1/k

≤ QOU
k (max(∥x∥−, ∥x̃∥−)) · ∥x− x̃∥− · h1/2, and(1.38)

E[|αh(x, Yh(x))− αh(x̃, Yh(x̃))|k]1/k

≤ Qk

(
max(∥x∥−, ∥x̃∥−), supz∈[x,x̃] ∥∇U(z)∥−

)
· ∥x− x̃∥− · h3/2,(1.39)

where [x, x̃] denotes the line segment between x and x̃.

The proof of the proposition is given in Section 5 below.

Remark 1.10. Again, the polynomials QOU
k and Qk are explicit. They

depend only on the values Cn, pn in Assumption 1.5 for n = 1, 2, n = 2, 3, 4
respectively, and on the moments mn = E[∥Z∥n−] for n ≤ k · (p2 + 1), n ≤
k · max(p4 + 3, p3 + p2 + 2, 2p2 + 1) respectively, but they do not depend
on the dimension d. For semi-implicit Euler proposals, the upper bound in
Proposition 1.9 is made explicit for the case k = 1 and p2 = p3 = p4 = 0 in
(5.18) below.
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For Ornstein-Uhlenbeck proposals it will be useful to state the bounds in
Propositions 1.7 and 1.9 more explicitly for the case p2 = 0, i.e., when the
second derivatives of V are uniformly bounded w.r.t. the minus norm:

Proposition 1.11. Suppose that Assumption 1.5 is satisfied for n = 1, 2
with p2 = 0. Then for any x, x̃ ∈ Rd and h ∈ (0, 2),

E[1− αOU(x, Y OU
h (x))] ≤ m1(C1 + C2∥x∥−) · h1/2

+
1

2
(2m2C2 + C1∥x∥− + C2∥x∥2−) · h +

1

2
m1C2∥x∥− · h3/2,

and

E[|αOU(x, Y OU
h (x))− αOU(x̃, Y OU

h (x̃))|2]1/2

≤
(
m

1/2
2 C2 · h1/2 +

1

2
(C1 + 2C2max(∥x∥−, ∥x̃∥−)) · h

)
· ∥x− x̃∥−.

The proof is given in Sections 4 and 5 below. Again, corresponding bounds
also hold for Lk norms for k ̸= 1, 2.

1.4. Wasserstein contractivity. The bounds in Propositions 1.7, 1.9 and
1.11 can be applied to study contractivity properties of Metropolis-Hastings
transition kernels. Recall that theKantorovich-Rubinstein or L1-Wasserstein
distance of two probability measures µ and ν on the Borel σ-algebra B(Rd)
w.r.t. a given metric d on Rd is defined by

W(µ, ν) = inf
η∈Π(µ,ν)

∫
d(x, x̃) η(dx dx̃)

where Π(µ, ν) consists of all couplings η of µ and ν, i.e., all probability
measures η on Rd × Rd with marginals µ and ν, cf. e.g. [34]. Recall that a

coupling of µ and ν can be realized by random variables W and W̃ defined
on a joint probability space such that W ∼ µ and W̃ ∼ ν.

In order to derive upper bounds for the distances W(µqh, νqh), and, more
generally, W(µqnh , νq

n
h), n ∈ N, we define a coupling of the MALA transition

probabilities qh(x, · ), x ∈ Rd, by setting

Wh(x) :=

{
Yh(x) if U ≤ αh(x, Yh(x)),

x if U > αh(x, Yh(x)).

Here Yh(x), x ∈ Rd, is the basic coupling of the proposal distributions ph(x, ·)
defined by (1.27) with Z ∼ γd, and the random variable U is uniformly
distributed in (0, 1) and independent of Z.
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Correspondingly, we define a coupling of the Metropolis-Hastings transi-
tion kernels qOU

h based on Ornstein-Uhlenbeck proposals by setting

WOU
h (x) :=

{
Y OU
h (x) if U ≤ αOU(x, Y OU

h (x)),

x if U > αOU(x, Y OU
h (x)).

Let
B−

R := {x ∈ Rd : ∥x∥− < R}

denote the centered ball of radius R w.r.t. ∥ · ∥−. As a consequence of Propo-
sition 1.11 above, we obtain the following upper bound for the Kantorovich-
Rubinstein-Wasserstein distance of qOU

h (x, ·) and qOU
h (x̃, ·) w.r.t. the metric

d(x, x̃) = ∥x− x̃∥−:

Theorem 1.12 (Contractivity of MH transitions based on OU
proposals). Suppose that Assumption 1.5 is satisfied for n = 1, 2 with
p2 = 0. Then for any h ∈ (0, 2), R ∈ (0,∞), and x, x̃ ∈ B−

R ,

E[∥WOU
h (x)−WOU

h (x̃)∥−] ≤ cOU
h (R) · ∥x− x̃∥−, where

cOU
h (R) = 1 − 1

2
h + m2C2 h + A(1 +R)(1 + h1/2R)h3/2

with an explicit constant A that only depends on the values m1,m2, C1 and
C2.

The proof is given in Section 7 below.

Theorem 1.12 shows that Wasserstein contractivity holds on the ball B−
R

provided 2m2C2 < 1 and h is chosen sufficiently small depending on R (with
h1/2 = O(R−1)). In this case, the contraction constant cOU

h (R) depends
on the dimension only through the values of the constants C1, C2,m1 and
m2. On the other hand, the following one-dimensional example shows that
for m2C2 > 1, the Acceptance-Rejection step may destroy the contraction
properties of the OU proposals:

Example 1.13. Suppose that d = 1 and ∥ · ∥− = | · |. If V (x) = bx2/2
with a constant b ∈ (−1/2, 1/2) then by Theorem 1.12, Wasserstein con-
tractivity holds for the Metropolis Hastings chain with Ornstein Uhlenbeck
proposals on the interval (−R,R) provided h is chosen sufficiently small. On
the other hand, if V (x) = bx2/2 for |x| ≤ 1 with a constant b < −1, then
the logarithmic density

U(x) = V (x) + x2/2 = (b+ 1) · x2/2
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is strictly concave for |x| ≤ 1, and it can be easily seen that Wasserstein
contractivity on (−1, 1) does not hold for the MH chain with OU proposals
if h is sufficiently small.

A disadvantage of the result for Ornstein-Uhlenbeck proposals stated
above is that not only a lower bound on the second derivative of V is re-
quired (this would be a fairly natural condition as the example indicates),
but also an upper bound of the same size. For semi-implicit Euler propos-
als, we can derive a better result that requires only a strictly positive lower
bound on the second derivative of U(x) = V (x)+ |x|2/2 and Assumption 1.5
with arbitrary constants to be satisfied. For this purpose we assume that

∥ · ∥− = ⟨ · , · ⟩1/2

for an inner product ⟨ · , · ⟩ on Rd, and we make the following assumption
on U :

Assumption 1.14. There exists a strictly positive constant K ∈ (0, 1]
such that

(1.40) ⟨η,∇2U(x) · η⟩ ≥ K⟨η, η⟩ for any x, η ∈ Rd.

Of course, Assumption 1.14 is still restrictive, and it will often be satisfied
only in a suitable ball around a local minimum of U . Most of the results
below are stated on a given ball B−

R w.r.t. the minus norm. In that case it
is enough to assume that 1.14 holds on that ball. If ∥ · ∥− coincides with
the Euclidean norm | · | then the assumption is equivalent to convexity of
U(x)−K|x|2. Moreover, since ∇2U(x) = Id+∇2V (x), a sufficient condition
for (1.40) to hold is

(1.41)
∥∥∇2V (x) · η

∥∥
− ≤ (1−K) ∥η∥− for any x, η ∈ Rd.

As a consequence of Propositions 1.7 and 1.9 above, we obtain the fol-
lowing upper bound for the Kantorovich-Rubinstein-Wasserstein distance of
qh(x, · ) and qh(x̃, · ) w.r.t. the metric d(x, x̃) = ∥x− x̃∥−:

Theorem 1.15 (Contractivity of semi-implicit MALA transitions).

Suppose that Assumptions 1.5 and 1.14 are satisfied. Then for any h ∈ (0, 2),
R ∈ (0,∞), and x, x̃ ∈ B−

R ,

E [∥Wh(x)−Wh(x̃)∥−] ≤ ch(R) · ∥x− x̃∥−, where
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ch(R) = 1 − 1

2
K h +

(
1

8
M(R)2 + γ(R)

)
h2 +

(
Kβ(R) +

1

2
δ(R)

)
h5/2

with

M(R) = sup{∥∇2U(z) · η∥− : η ∈ B−
1 , z ∈ B−

R},
β(R) = sup{P1(∥z∥−, ∥∇U(z)∥−) : z ∈ B−

R},

γ(R) = m
1/2
2 · sup{Q2(∥z∥−, ∥∇U(z)∥−) : z ∈ B−

R},
δ(R) = sup{Q2(∥z∥−, ∥∇U(z)∥−)∥∇U(z)∥− : z ∈ B−

R}.

The proof is given in Section 7 below.

Remark 1.16. Theorem 1.15 shows in particular that under Assump-
tions 1.5 and 1.14, there exist constants C, q ∈ (0,∞) such that the contrac-
tion

E[∥Wh(x)−Wh(x̃)∥−] ≤
(
1− K

4
h

)
∥x− x̃∥

holds for x, x̃ ∈ B−
R whenever h−1 ≥ C · (1 +Rq).

Example 1.17 (Transition Path Sampling). In the situation of Ex-
amples 1.1 and 1.6 above, Condition (1.41) and (hence) Assumption 1.14 are
satisfied on a ball B−

R with K independent of d provided ∥D2ϕ(x)∥ ≤ 1−K
for any x ∈ B−

R , cf. (1.35). More generally, by modifying the metric in a
suitable way if necessary, one may expect Assumption 1.14 to hold uniformly
in the dimension in neighbourhoods of local minima of U .

1.5. Conclusions. For R ∈ (0,∞), we denote by WR the Kantorovich-
Rubinstein-Wasserstein distance based on the distance function

(1.42) dR(x, x̃) := min(∥x− x̃∥−, 2R).

Note that dR is a bounded metric that coincides with the distance function
induced by the minus norm on B−

R . The bounds resulting from Theorems
1.15 and 1.12 can be iterated to obtain estimates for the KRW distance WR

between the distributions of the corresponding Metropolis-Hastings chains
after n steps w.r.t. two different initial distributions.

Corollary 1.18. Suppose that Assumptions 1.5 and 1.14 are satisfied,
and let h ∈ (0, 2) and R ∈ (0,∞). Then for any n ∈ N, and for any proba-
bility measures µ, ν on B(Rd),

WR(µq
n
h , νq

n
h) ≤ ch(R)nWR(µ, ν)

+ 2R · (Pµ[∃k < n : Xk ̸∈ B−
R ] + Pν [∃k < n : Xk ̸∈ B−

R ]).
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Here ch(R) is the constant in Theorem 1.15, and (Xn,Pµ) and (Xn,Pν)
are Markov chains with transition kernel qh and initial distributions µ, ν
respectively. A corresponding result with ch replaced by cOU

h holds for the
Metropolis-Hastings chain with Ornstein-Uhlenbeck proposals.

Since the joint law of Wh(x) and Wh(x̃) is a coupling of qh(x, ·) and
qh(x̃, ·) for any x, x̃ ∈ Rd, Corollary 1.18 is a direct consequence of Theo-
rems 1.15, 1.12 respectively, and Theorem 2.3 below. The corollary can be
used to quantify the Wasserstein distance between the distribution of the
Metropolis-Hastings chain after n steps w.r.t. two different initial distribu-
tions. For this purpose, one can estimate the exit probabilities from the ball
B−

R via an argument based on a Lyapunov function. For semi-implicit Euler
proposals we eventually obtain the following main result:

Theorem 1.19 (Quantitative convergence bound for semi-implicit
MALA). Suppose that Assumptions 1.5 and 1.14 are satisfied. Then there
exist constants C,D, q ∈ (0,∞) such that the estimate

W2R(νq
n
h , πq

n
h) ≤

(
1− K

4
h

)n

W2R(ν, π) + DR exp

(
−KR2

8

)
nh

holds for any n ∈ N, h,R ∈ (0,∞) such that h−1 ≥ C · (1+R)q, and for any
probability measures ν, π on Rd with support in B−

R . The constants C, D and
q can be made explicit. They depend only on the values of the constants in
Assumptions 1.5 and 1.14 and on the moments mk, k ∈ N, w.r.t. the minus
norm, but they do not depend explicitly on the dimension.

The proof of Theorem 1.19 is given in Section 7 below.

Let µR(A) = µ(A|B−
R) denote the conditional probability measure given

B−
R . Recalling that µ is a stationary distribution for the kernel qh, we can

apply Theorem 1.19 to derive a bound for the Wasserstein distance of the
discretization of the MALA chain and µR after n steps:

Theorem 1.20. Suppose that Assumptions 1.5 and 1.14 are satisfied.
Then there exist constants C, D̄, q ∈ (0,∞) that do not depend explicitly on
the dimension such that the estimate

W2R(νq
n
h , µR) ≤ 58R

(
1− K

4
h

)n

+ D̄ R exp

(
−KR2

33

)
nh

holds for any n ∈ N, h,R ∈ (0,∞) such that h−1 ≥ C · (1 + R)q, and for
any probability measure ν on Rd with support in B−

R .
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The proof is given in Section 7.

Given an error bound ε ∈ (0,∞) for the Kantorovich-Rubinstein-Wasserstein
distance, we can now determine how many steps of the MALA chain are re-
quired such that

(1.43) W2R(νq
n
h , µR) < ε for any ν with support in B−

R .

Assuming

(1.44) nh ≥ 4

K
log

(
116R

ε

)
,

we have 58R (1−Kh/4)n ≤ ε/2. Hence (1.43) holds provided the assump-
tions in Theorem 1.20 are satisfied, and

(1.45) D̄R exp(−KR2/33)nh < ε/2.

For a minimal choice of n, all conditions are satisfied if R is of order
(log ε−1)1/2 up to a log log correction, and the inverse step size h−1 is of
order (log ε−1)q/2 up to a log log correction. Hence if Assumption 1.14 holds
on Rd, then a number n of steps that is polynomial in log ε−1 is sufficient to
bound the error by ε independently of the dimension.

On the other hand, if Assumption 1.14 is satisfied only on a ball B−
R

of given radius R, then a given error bound ε is definitely achieved only
provided (1.45) holds with the minimal choice for nh satisfying (1.44), i.e.,
if

(1.46) 8D̄K−1 log(116Rε−1)R exp(−KR2/33) < ε.

If ε is chosen smaller, then the chain may leave the ball B−
R before sufficient

mixing on B−
R has taken place.

2. Wasserstein contractivity of Metropolis-Hastings kernels. In
this section, we first consider an arbitrary stochastic kernel q : S × B(S) →
[0, 1] on a metric space (S, d). Further below, we will choose S = Rd and
d(x, y) = ∥x − y∥− ∧ R for some constant R ∈ (0,∞], and we will assume
that q is the transition kernel of a Metropolis-Hastings chain.

The Kantorovich-Rubinstein or L1-Wasserstein distance of two probabil-
ity measures µ and ν on the Borel-σ-algebra B(S) w.r.t. the metric d is
defined by

Wd(µ, ν) = inf
η

∫
d(x, x̃) η(dxdx̃)
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where the infimum is over all couplings η of µ and ν, i.e., over all probability
measures η on S×S with marginals µ and ν, cf. e.g. [34]. In order to derive
upper bounds for the Kantorovich distances Wd(µq, νq), and more generally,
Wd(µq

n, νqn), n ∈ N, we construct couplings between the measures q(x, ·) for
x ∈ S, and we derive bounds for the distances Wd(q(x, ·), q(x̃, ·)), x, x̃ ∈ S.

Definition 2.1. A Markovian coupling of the probability measures q(x, ·),
x ∈ S, is a stochastic kernel c on the product space (S × S,B(S × S)) such
that for any x, x̃ ∈ S, the distribution of the first and second component
under c((x, x̃), dy dỹ) is q(x, dy) and q(x̃, dỹ) respectively.

Example 2.2. 1) Suppose that (Ω,A,P) is a probability space, and let
(x, x̃, ω) 7→ Y (x, x̃)(ω), (x, x̃, ω) 7→ Ỹ (x, x̃)(ω) be product measurable func-
tions from S × S × Ω to S such that Y (x, x̃) ∼ q(x, ·) and Ỹ (x, x̃) ∼ q(x̃, ·)
w.r.t. P for any x, x̃ ∈ S. Then the joint distributions

c((x, x̃), ·) = P ◦ (Y (x, x̃), Ỹ (x, x̃))−1, x, x̃ ∈ S,

define a Markovian coupling of the measures q(x, ·), x ∈ S.

2) In particular, if (x, ω) 7→ Y (x)(ω) is a product measurable function from
S × Ω to S such that Y (x) ∼ q(x, ·) for any x ∈ S then

c((x, x̃), ·) = P ◦ (Y (x), Y (x̃))−1

is a Markovian coupling of the measures q(x, ·), x ∈ S.

Suppose that (Xn, X̃n) on (Ω,A,P) is a Markov chain with values in S×S
and transition kernel c, where c is a Markovian coupling w.r.t. the kernel
q. Then the components (Xn) and (X̃n) are Markov chains with transition
kernel q and initial distributions given by the marginals of the initial dis-
tribution of (Xn, X̃n), i.e., (Xn, X̃n) is a coupling of these Markov chains.
We will apply the following general theorem to quantify the deviation from
equilibrium after n steps of the Markov chain with transition kernel q:

Theorem 2.3. Let γ ∈ (0, 1) and let c((x, x̃), dy dỹ) be a Markovian
coupling of the probability measures q(x, ·), x ∈ S. Suppose that O is an
open subset of S, and assume that the metric d is bounded. Let

∆ := diamS = sup{d(x, x̃) : x, x̃ ∈ S} .

If the contractivity condition

(2.1)

∫
d(y, ỹ) c((x, x̃), dy dỹ) ≤ γ · d(x, x̃)
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holds for any x, x̃ ∈ O, then
(2.2)
Wd(µq

n, νqn) ≤ γnWd(µ, ν)+∆·(Pµ[∃k < n : Xk ̸∈ O]+Pν [∃k < n : Xk ̸∈ O])

for any n ∈ N and for any probability measures µ, ν on B(S). Here (Xn,Pµ)
and (Xn,Pν) are Markov chains with transition kernel q and initial distri-
butions µ, ν respectively.

Proof of Theorem 2.3. Suppose that µ and ν are probability measures
on B(S) and η(dx dx̃) is a coupling of µ and ν. We consider the coupling
chain (Xn, X̃n) on (Ω,A,P) with initial distribution η and transition kernel
c. Since (Xn) and (X̃n) are Markov chains with transition kernel q and initial
distributions µ and ν, we have P ◦X−1

n = µqn and P ◦ X̃−1
n = νqn for any

n ∈ N. Moreover, by (2.1),

E
[
d(Xn, X̃n) ; (Xk, X̃k) ∈ O ×O ∀ k < n

]
= E

[∫
d(xn, x̃n) c((Xn−1, X̃n−1), dxn dx̃n) ; (Xk, X̃k) ∈ O ×O ∀ k < n

]
≤ γ E

[
d(Xn−1, X̃n−1) ; (Xk, X̃k) ∈ O ×O ∀ k < n− 1

]
.

Therefore, by induction,

Wd(µq
n, νqn) ≤ E

[
d(Xn, X̃n)

]
= E

[
d(Xn, X̃n) ; (Xk, X̃k) ∈ O ×O ∀ k < n

]
+E

[
d(Xn, X̃n) ; ∃k < n : (Xk, X̃k) ̸∈ O × O

]
≤ γnd(x, x̃) + ∆ · P

[
∃k < n : (Xk, X̃k) ̸∈ O × O

]
,

which implies (2.2).

Remark 2.4. Theorem 2.3 may also be useful for studying local equi-
libration of a Markov chain within a metastable state. In fact, if O is a
region of the state space where the process stays with high probability for a
long time, and if a contractivity condition holds on O, then the result can
be used to bound the Kantorovich-Rubinstein-Wasserstein distance between
the distribution after a finite number of steps and the stationary distribution
conditioned to O.

From now on, we assume that we are given a Markovian coupling of the
proposal distributions p(x, ·), x ∈ Rd, of a Metropolis-Hastings algorithm
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which is realized by product measurable functions (x, x̃, ω) 7→ Y (x, x̃)(ω),
Ỹ (x, x̃)(ω) on a probability space (Ω,A,P) such that

Y (x, x̃) ∼ p(x, ·) and Ỹ (x, x̃) ∼ p(x̃, ·) for any x, x̃ ∈ Rd.

Let α(x, y) and q(x, dy) again denote the acceptance probabilities and the
transition kernel of the Metropolis-Hastings chain with stationary distribu-
tion µ, cf. (1.10), (1.11) and (1.12). Moreover, suppose that U is a uniformly
distributed random variable with values in (0, 1) that is independent of

{Y (x, x̃) : x, x̃ ∈ Rd}. Then the functions (x, x̃, ω) 7→ W (x, x̃)(ω), W̃ (x, x̃)(ω)
defined by

W (x, x̃) :=

{
Y (x, x̃) if U ≤ α(x, Y (x, x̃))

x if U > α(x, Y (x, x̃))
,

W̃ (x, x̃) :=

{
Ỹ (x, x̃) if U ≤ α(x, Ỹ (x, x̃))

x̃ if U > α(x, Ỹ (x, x̃))
,

realize a Markovian coupling between the Metropolis-Hastings transition
functions q(x, ·), x ∈ Rd, i.e.,

W (x, x̃) ∼ q(x, ·) and W̃ (x, x̃) ∼ q(x̃, ·)

for any x, x̃ ∈ Rd. This coupling is optimal in the acceptance step in the
sense that it minimizes the probability that a proposed move from x to
Y (x, x̃) is accepted and the corresponding proposed move from x̃ to Ỹ (x, x̃)
is rejected or vice versa.

Lemma 2.5 (Basic contractivity lemma for MH kernels). For any
x, x̃ ∈ Rd,

E[d(W (x, x̃), W̃ (x, x̃))]

≤ E[d(Y (x, x̃), Ỹ (x, x̃))]

+E[(d(x, x̃)− d(Y (x, x̃), Ỹ (x, x̃))) ·max(1− α(x, Y (x, x̃)), 1− α(x̃, Ỹ (x, x̃)))]

+E[d(x, Y (x, x̃) · (α(x, Y (x, x̃))− α(x̃, Ỹ (x, x̃)))+]

+E[d(x̃, Ỹ (x, x̃) · (α(x, Y (x, x̃))− α(x̃, Ỹ (x, x̃)))−].

Proof. By definition of W and by the triangle inequality, we obtain the
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estimate

E[d(W (x, x̃), W̃ (x, x̃))]

≤ E[d(Y (x, x̃), Ỹ (x, x̃)) ; U < min(α(x, Y (x, x̃)), α(x̃, Ỹ (x, x̃)))]

+d(x, x̃) · P[U ≥ min(α(x, Y (x, x̃)), α(x̃, Ỹ (x, x̃)))]

+E[d(x, Y (x, x̃)) ; α(x̃, Ỹ (x, x̃)) ≤ U < α(x, Y (x, x̃))]

+E[d(x̃, Ỹ (x, x̃)) ; α(x, Y (x, x̃)) ≤ U < α(x̃, Ỹ (x, x̃))].

The assertion now follows by conditioning on Y and Ỹ .

Remark 2.6. (1) Note that the upper bound in Lemma 2.5 is close to
an equality. Indeed, the only estimate in the proof is the triangle inequality
that has been applied to bound d(x, Ỹ ) by d(x, x̃) + d(x̃, Ỹ ) and d(x̃, Y ) by
d(x, x̃) + d(x, Y ).

(2) For the couplings and distances considered in this paper, d(Y, Ỹ ) will
always be deterministic. Therefore, the upper bound in the lemma simplifies
to

E[d(W, W̃ )]

≤ d(Y, Ỹ ) + (d(x, x̃)− d(Y, Ỹ )) · E[max(1− α(x, Y ), 1− α(x̃, Ỹ ))]

+E[d(x, Y )(α(x, Y )− α(x̃, Ỹ ))+ + d(x̃, Ỹ )(α(x, Y )− α(x̃, Ỹ ))−].(2.3)

Here E[max(1− α(x, Y ), 1− α(x̃, Ỹ ))] is the probability that at least one of
the proposals is rejected.

(3) If the metric d is bounded with diameter ∆ then the last two expectations
in the upper bound in Lemma 2.5 can be estimated by ∆ times the probability
E[|α(x, Y )−α(x̃, Ỹ )|] that one of the proposals is rejected and the other one
is accepted. Alternatively (and usually more efficiently), these terms can be
estimated by Hölder’s inequality.

3. Contractivity of the proposal step. In this section we assume
V ∈ C2(Rd). We study contractivity properties of the Metropolis-Hastings
proposals defined in (1.23) and (1.27).

Note first that the Ornstein-Uhlenbeck proposals do not depend on V . For
h ∈ (0, 2), the contractivity condition

(3.1)
∥∥Y OU

h (x)− Y OU
h (x̃)

∥∥ = ∥(1− h/2) (x− x̃)∥ = (1− h/2) ∥x− x̃∥

holds pointwise for any x, x̃ ∈ Rd w.r.t. an arbitrary norm ∥ · ∥ on Rd.
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For the semi-implicit Euler proposals

Yh(x) = x− h

2
∇U(x) +

√
h− h2

4
Z, Z ∼ γd,

Wasserstein contractivity does not necessarily hold. Close to optimal suffi-
cient conditions for contractivity w.r.t. the minus norm can be obtained in
a straightforward way by considering the derivative of Yh w.r.t. x.

Lemma 3.1. Let h ∈ (0, 2) and let C be a convex subset of Rd. If there
exists a constant λ ∈ (0,∞) such that

(3.2)

∥∥∥∥(Id − h

2
∇2U(x)

)
· η
∥∥∥∥
−

≤ λ∥η∥− for any η ∈ Rd, x ∈ C,

then
∥Yh(x)− Yh(x̃)∥− ≤ λ∥x− x̃∥− for any x, x̃ ∈ C.

Proof. If (3.2) holds, then

∥∂ηYh(x)∥− =

∥∥∥∥η − h

2
∇2U(x) · η

∥∥∥∥
−

≤ λ∥η∥−

for any x ∈ C and η ∈ Rd. Hence

∥Yh(x)− Yh(x̃)∥− =

∥∥∥∥∫ 1

0

d

dt
Yh(tx+ (1− t)x̃) dt

∥∥∥∥
−

≤
∫ 1

0
∥∂x−x̃Yh(tx+ (1− t)x̃)∥− dt

≤ λ∥x− x̃∥− for x, x̃ ∈ C.

Remark 3.2. (1) Note that condition (3.2) requires a bound on ∇2U in
both directions. This is in contrast to the continuous time case where a lower
bound by a strictly positive constant is sufficient to guarantee contractivity
of the derivative flow.

(2) Condition (3.2) is equivalent to

(3.3) ξ · η − h

2
∂2
ξηU(x) ≤ λ∥ξ∥+∥η∥− for any x ∈ C, ξ, η ∈ Rd.
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Recall that for R ∈ (0,∞],

(3.4) M(R) = sup{∥∇2U(x) · η∥− : η ∈ B−
1 , x ∈ B−

R}.

Hence M(R) bounds the second derivative of U on B−
R in both directions,

whereas the constantK in Assumption 1.14 is a strictly positive lower bound
for the second derivative. We also define

(3.5) N(R) = sup{∥∇2V (x) · η∥− : η ∈ B−
1 , x ∈ B−

R}.

Note that M(R) ≤ 1 +N(R). As a consequence of Lemma 3.1 we obtain:

Proposition 3.3. For any h ∈ (0, 2) and x, x̃ ∈ B−
R ,

(3.6) ∥Yh(x)− Yh(x̃)∥− ≤
(
1− 1−N(R)

2
h

)
· ∥x− x̃∥−.

Moreover, if Assumption 1.14 holds then

(3.7) ∥Yh(x)− Yh(x̃)∥− ≤
(
1− K

2
h+

M(R)2

8
h2
)
· ∥x− x̃∥−.

Proof. Note that for z ∈ [x, x̃] and η ∈ R,

(3.8) (I − h

2
∇2U(z)) · η = (1− h

2
)η − h

2
∇2V (z) · η.

Therefore, by (3.5),

∥(I − h

2
∇2U(z)) · η∥− ≤ (1− h

2
)∥η∥− +

h

2
N(R) · ∥η∥−.

The inequality (3.6) now follows by Lemma 3.1.
Moreover, if Assumption 1.14 holds then for z ∈ [x, x̃] and η ∈ Rd,

∥(I − h

2
∇2U(z)) · η∥2− = ∥η∥2− − h⟨η,∇2U(z) · η⟩+ h2

4
∥∇2U(z) · η∥2−

≤ (1−Kh+M(R)2h2/4) ∥η∥2− =
(
1−Kh/2 +M(R)2h2/8

)2 ∥η∥2−.

The inequality (3.7) again follows by Lemma 3.1.
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4. Upper bounds for rejection probabilities. In this section we
derive the upper bounds for the MH rejection probabilities stated in Propo-
sition 1.7. As a first step we prove the explicit formula for the MALA accep-
tance probabilities w.r.t. explicit and semi-implicit Euler proposals stated
in Proposition 1.3:

Proof of Proposition 1.3. For explicit Euler proposals with given step
size h > 0,

log γd(x)pEulerh (x, y) =
1

2
|x|2 + 1

2h

∣∣∣∣y − (1− h

2

)
x+

h

2
∇V (x)

∣∣∣∣2 + C

=
1

2h

(
h|x|2 + |y − x|2 − hx · y + 1

4
h2|x|2 + h(y − x) · ∇V (x)

+
1

2
h2x · ∇V (x) +

1

4
h2|∇V (x)|2

)
+ C

= S(x, y) +
1

2
(y − x) · ∇V (x) +

h

8
|x+∇V (x)|2

with a normalization constant C that does not depend on x and y, and a
symmetric function S : Rd × Rd → R. Therefore, by (1.19),

GEuler
h (x, y) = V (y)− V (x) + log γd(x)pEulerh (x, y)− log γd(y)pEulerh (y, x)

= V (y)− V (x)− (y − x) · (∇V (y) +∇V (x))/2

+h(|y +∇V (y)|2 − |x+∇V (x)|2)/8.

Similarly, for semi-implicit Euler proposals we obtain

− log γd(x)ph(x, y) =
1

2
|x|2 + 1

2

∣∣∣∣y − (1− h

2

)
x+

h

2
∇V (x)

∣∣∣∣2
/(

h− h2

4

)
+ C

=
1

2

((
h− h2

4

)
|x|2 +

∣∣∣∣y − (1− h

2

)
x+

h

2
∇V (x)

∣∣∣∣2
)/(

h− h2

4

)
+ C

= −1

2

h

4− h
|x|2 + S̃(x, y) +

1

2
· 4

4− h
(y − x)∇V (x) +

1

2
· h

4− h
|x+∇V (x)|2

= S̃(x, y) +
1

2
(y − x) · ∇V (x) +

1

2

4

4− h

[
(y + x) · ∇V (x) + |∇V (x)|2

]
,

and, therefore,

Gh(x, y) = V (y)− V (x)− (y − x) · (∇V (y) +∇V (x))/2

+
h

8− 2h

[
(y + x) · (∇V (y)−∇V (x)) + |∇V (y)|2 − |∇V (x)|2

]
.
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From now on we assume that Assumption 1.5 holds. We will derive upper
bounds for the functions Gh(x, y) computed in Proposition 1.3. By (1.16),
these directly imply corresponding upper bounds for the MALA rejection
probabilities.

Let ∂n
ξ1,...,ξn

V (z) denote the n-th order directional derivative of the func-
tion V at z in directions ξ1, . . . , ξn. By ∂nV we denote the n-th order dif-
ferential of V , i.e., the n-form (ξ1, . . . , ξn) 7→ ∂n

ξ1,...,ξn
V . For x, x̃ ∈ Rd and

n = 1, 2, 3, 4 let

(4.1) Ln(x, x̃) = sup{(∂n
ξ1,...,ξnV )(z) : z ∈ [x, x̃], ξ1, . . . , ξn ∈ B−

1 }.

In other words,
Ln(x, x̃) = sup

z∈[x,x̃]
∥(∂nV )(z)∥∗−

where ∥ · ∥∗− is the dual norm on n-forms defined by

∥l∥∗− = sup{l(ξ1, . . . , ξn) : ξ1, . . . , ξn ∈ B−
1 }.

In particular,
L1(x, x̃) = sup

z∈[x,x̃]
∥∇V (z)∥+.

By Assumption 1.5,

(4.2) Ln(x, x̃) ≤ Cn ·max(1, ∥x∥−, ∥x̃∥−)pn ∀ x, x̃ ∈ Rd, n = 1, 2, 3, 4.

We now derive upper bounds for the terms in the expression for Gh(x, y)
given in Proposition 1.3. We first express the leading order term in terms of
3rd derivatives of V :

Lemma 4.1. For x, y ∈ Rd,

V (y)−V (x)−y − x

2
·(∇V (y)+∇V (x)) = −1

2

∫ 1

0
t(1−t)∂3

y−xV ((1−t)x+ty)dt.

Proof. A second order expansion for f(t) = V (x + t(y − x)), t ∈ [0, 1],
yields

V (y)− V (x) =

∫ 1

0
∂y−xV (x+ t(y − x)) dt

= (y − x) · ∇V (x) +

∫ 1

0

∫ t

0
∂2
y−xV (x+ s(y − x)) ds dt

= (y − x) · ∇V (x) +

∫ 1

0
(1− s) ∂2

y−xV (x+ s(y − x)) ds,
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and, similarly,

V (y)− V (x) = (y − x) · ∇V (y)−
∫ 1

0

∫ 1

t
∂2
y−xV (x+ s(y − x)) ds dt

= (y − x) · ∇V (y)−
∫ 1

0
s ∂2

y−xV (x+ s(y − x)) ds.

By averaging both equations, we obtain

V (y)− V (x)− y − x

2
· (∇V (y) +∇V (x))

=
1

2

∫ 1

0
(1− 2s)∂2

y−xV (x+ s(y − x)) ds

=
1

2

∫ 1

0
t(1− t)∂3

y−xV (x+ t(y − x)) dt.

Here we have used that for any function g ∈ C1([0, 1]),∫ 1

0
(1− 2s)g(s) ds =

∫ 1

0
(1− 2s)

∫ s

0
g′(t) dt ds

=

∫ 1

0

∫ 1

t
(1− 2s) ds g′(t) dt = −

∫ 1

0
t(1− t)g′(t) dt.

Lemma 4.2. For x, y ∈ Rd, the following estimates hold:

1. |V (y)− V (x)| ≤ L1(x, y) · ∥y − x∥−,
2.
∣∣V (y)− V (x)− y−x

2 · (∇V (y) +∇V (x))
∣∣ ≤ 1

12
L3(x, y) · ∥y − x∥3−,

3. |(∇U(y) +∇U(x)) · (∇V (y)−∇V (x))|
≤ L2(x, y) · ∥∇U(y) +∇U(x)∥− · ∥y − x∥−,

4. ∥∇U(y) +∇U(x)∥− ≤ 2∥∇U(x)∥− + (1 + L2(x, y)) · ∥y − x∥−.

Remark 4.3. The estimates in Lemma 4.2 provide a bound for the terms
in the expression (1.32) for Gh(x, y) in the case of semi-implicit Euler pro-
posals. For explicit Euler proposals, one also has to bound the term

|∇U(y)|2 − |∇U(x)|2 = |y +∇V (y)|2 − |x+∇V (x)|2.

Note that even when V vanishes, this term can not be controlled in terms of
∥ · ∥− in general. A valid upper bound is

|∇U(y) +∇U(x)| · |y − x|+ L2(x, y)∥∇U(y) +∇U(x)∥− · ∥y − x∥−.
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Proof of Lemma 4.2. By Lemma 4.1 and by definition of Ln(x, y), we
obtain

|V (y)− V (x)| ≤ sup
z∈[x,y]

|∂y−xV (z)| ≤ L1(x, y) · ∥y − x∥−,∣∣∣∣V (y)− V (x)− y − x

2
· (∇V (y) +∇V (x))

∣∣∣∣
≤ 1

2

∫ 1

0
t(1− t) dt sup

z∈[x,y]
|∂3

y−xV (z)| ≤ 1

12
L3(x, y) · ∥y − x∥3−,

(∇U(y) +∇U(x)) · (∇V (y)−∇V (x))

= ∂∇U(y)+∇U(x)V (y)− ∂∇U(y)+∇U(x)V (x)

=

∫ 1

0
∂2
∇U(y)+∇U(x),y−xV ((1− t)x+ ty) dt

≤ L2(x, y) · ∥∇U(y) +∇U(x)∥− · ∥y − x∥−.

Moreover, the estimate

∥∇U(y) +∇U(x)∥− ≤ 2∥∇U(x)∥− + ∥∇U(y)−∇U(x)∥−
≤ 2∥∇U(x)∥− + ∥y − x∥− + ∥∇V (y)−∇V (x)∥−
≤ 2∥∇U(x)∥− + (1 + L2(x, y)) · ∥y − x∥−

holds by definition of L2(x, y) and since

∥∇V (y)−∇V (x)∥− ≤ |∇V (y)−∇V (x)| = sup
|ξ|=1

(∂ξV (y)− ∂ξV (x))

≤ sup
∥ξ∥−≤1

(∂ξV (y)− ∂ξV (x)).

Recalling the definitions of Y OU
h (x) and Yh(x) from (1.23) and (1.27), we

obtain:

Lemma 4.4. For x ∈ Rd, h ∈ (0, 2) and n ∈ {1, 2, 3, 4} with pn ≥ 1, we
have:

1. ∥Y OU
h (x)− x∥− ≤ h

2∥x∥− +
√
h∥Z∥−,

2. ∥Yh(x)− x∥− ≤ h
2∥∇U(x)∥− +

√
h∥Z∥−,

3. ∥Y OU
h (x)∥− ≤ (1− h

2 )∥x∥− +
√
h∥Z∥−,

4. ∥Yh(x)∥− ≤ ∥x∥− + h
2∥∇U(x)∥− +

√
h∥Z∥−,
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5. Ln(x, Y
OU
h (x)) ≤ Cn2

pn−1
(
max(1, ∥x∥−)pn + hpn/2∥Z∥pn−

)
6. Ln(x, Yh(x)) ≤ Cn3

pn−1
(
max(1, ∥x∥−)pn +

(
h
2

)pn ∥∇U(x)∥pn− + hpn/2∥Z∥pn−
)
.

Proof. Estimates (1)-(4) are direct consequences of the triangle inequal-
ity. Moreover, by (3) and (4),

max(1, ∥x∥−, ∥Y OU
h (x)∥−) ≤ max(1, ∥x∥−) +

√
h∥Z∥−, and

max(1, ∥x∥−, ∥Yh(x)∥−) ≤ max(1, ∥x∥−) +
h

2
∥∇U(x)∥− +

√
h∥Z∥−.

Estimates (5) and (6) now follow from (4.2) and Hölder’s inequality.

We now combine the estimates in Lemma 4.2 and Lemma 4.4 in order to
prove Proposition 1.7 and the first part of Proposition 1.11:

Proof of Proposition 1.7. By (1.16) and Proposition 1.3, for h ∈
(0, 2),

(4.3) E
[
(1− αh(x, Yh(x)))

k
]1/k

≤
∥∥Gh(x, Yh(x))

+
∥∥
Lk ≤ I +

h

4
II

where

I =

∥∥∥∥V (Yh(x))− V (x)− Yh(x)− x

2
· (∇V (Yh(x))−∇V (x))

∥∥∥∥
Lk

,

II = ∥(∇U(Yh(x)) +∇U(x)) · (∇V (Yh(x))−∇V (x))∥Lk .

By Lemma 4.2,

(4.4) I ≤ E
[
L3(x, Yh(x))

k · ∥Yh(x)− x∥3k−
]1/k

/12, and

II ≤ E
[
L2(x, Yh(x))

k · ∥Yh(x)− x∥k−

×(2∥∇U(x)∥− + (1 + L2(x, Yh(x))) · ∥Yh(x)− x∥−)k
]1/k

.(4.5)

The assertion of Proposition 1.7 for semi-implicit Euler proposals is now a
direct consequence of the estimates (2) and (6) in Lemma 4.4. The asser-
tion for Ornstein-Uhlenbeck proposals follows similarly from (1.21) and the
estimates (1) in Lemma 4.2, and (1), (3) and (5) in Lemma 4.4.
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It is possible to write down the polynomial in Proposition 1.7 explicitly.
For semi-implicit Euler proposals, we illustrate this in the case k = 1 and
p2 = p3 = 0. Here, by (4.4) and (4.5) we obtain

I ≤ C3

12
E
[(

h∥∇U(x)∥−/2 +
√
h∥Z∥−

)3]
≤ C3

4

(
h3∥∇U(x)∥3−/8 + h3/2m3

)
,

II ≤ C2E
[(

h∥∇U(x)∥−/2 +
√
h∥Z∥−

)
×
(
2∥∇U(x)∥− + (1 + C2)

(
h∥∇U(x)∥−/2 +

√
h∥Z∥−

))]
≤ C2

(
h∥∇U(x)∥2− + 2

√
h∥∇U(x)∥−m1 + (1 + C2)(

h2

2
∥∇U(x)∥2− + 2hm2)

)
,

Hence by (4.3),

E[1− αh(x, Yh(x))] ≤ h3/2 ·
(
1

4
C3m3 +

1

2
C2m1∥∇U(x)∥−

)
+h2 ·

(
1

4
C2∥∇U(x)∥2− +

1

2
C2(1 + C2)m2

)
+h3 ·

(
1

32
C3∥∇U(x)∥3− +

1

8
C2(1 + C2)∥∇U(x)∥2−

)
.(4.6)

For Ornstein-Uhlenbeck proposals, we derive the explicit bound for the
rejection probabilities stated in Proposition 1.11 for the case k = 1 and
p2 = 0.

Proof of Proposition 1.11, first part. If p2 = 0 then for any x ∈
Rd,

(4.7) ∥∇V (x)∥+ ≤ ∥∇V (0)∥+ + ∥∇V (x)−∇V (0)∥+ ≤ C1 +C2 · ∥x∥− .

Therefore, for any x, y ∈ Rd,

|V (y)− V (x)| ≤ (C1 + C2 ·max(∥x∥−, ∥y∥−)) · ∥y − x∥− .

Hence, by (1.21) and by (1) and (3) in Lemma 4.4,

E
[
1− αOU(x, Y OU

h (x))
]

≤ E
[
(V (Y OU

h (x))− V (x))+
]

≤ E
[(
C1 + C2 ·max(∥x∥−, ∥Y OU

h (x)∥−)
)
· ∥Y OU

h (x)− x∥−
]

≤ E
[(

C1 + C2 · (∥x∥− +
√
h∥Z∥−)

)
·
(
h∥x∥−/2 +

√
h∥Z∥−

)]
= m1(C1 + C2∥x∥−) · h1/2

+
1

2
(2m2C2 + C1∥x∥− + C2∥x∥2−) · h +

1

2
m1C2∥x∥− · h3/2.
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5. Dependence of rejection on the current state. We now derive
estimates for the derivatives of the functions

Fh(x,w) = Gh(x, x− h

2
∇U(x) + w),(5.1)

FOU
h (x,w) = GOU(x, x− h

2
x+ w), (x,w) ∈ Rd × Rd,(5.2)

w.r.t. x. Since

Gh(x, Yh(x)) = Fh(x,

√
h− h2

4
Z) with Z ∼ γd, and(5.3)

GOU(x, Y OU
h (x)) = FOU

h (x,

√
h− h2

4
Z) with Z ∼ γd,(5.4)

these estimates can then be applied to control the dependence of rejection
on the current state x.

For Ornstein-Uhlenbeck proposals, by (1.21), we immediately obtain

(5.5) ∇xF
OU
h (x,w) = (1− h

2
) (∇V (y)−∇V (x))− h

2
∇V (x),

where y := (1− h
2 )x+ w.

For semi-implicit Euler proposals, the formula for the derivative is more
involved. To simplify the notation we set for x ∈ Rd and fixed h ∈ (0, 2):

(5.6) x′ := x− h

2
∇U(x).

In the sequel, we use the conventions

v·w =

d∑
i=1

viwi, (v·T )j =
d∑

i=1

viTi,j , (T ·v)j =
d∑

j=1

Ti,jvj , (S·T )ik =

d∑
j=1

Si,jTj,k

for vectors v, w ∈ Rd and (2, 0) tensors S, T ∈ Rd ⊗ Rd. In particular,

v · (S · T ) = (v · S) · T,

i.e., the brackets may be omitted. We now give an explicit expression for the
derivative of Fh(x,w) w.r.t. the first variable:
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Proposition 5.1. Suppose V ∈ C2(Rd). Then for any x,w ∈ Rd,

∇xFh(x,w) = ∇V (y)−∇V (x)− y − x

2
· (∇2V (y) +∇2V (x))

+
h

4
(y − x) · ∇2V (y) · (Id +∇2V (x))

+
h

8− 2h
(∇V (y)−∇V (x) +∇U(y) +∇U(x)) · (∇2V (y)−∇2V (x))

− h2

16− 4h
(∇V (y)−∇V (x) +∇U(y) +∇U(x)) · ∇2V (y) · (Id +∇2V (x))

with y := x′ + w = x− h
2∇U(x) + w.

Proof. Let

W (x) := ∇V (x) = ∇U(x)− x, x ∈ Rd.

By Proposition 1.3,

(5.7) Fh(x,w) = Ah(x,w)+
h

8− 2h
Bh(x,w) for any x,w ∈ Rd, where

Ah(x,w) := V (x′ + w)− V (x)− x′ + w − x

2
· (∇V (x′ + w) +∇V (x)), and

Bh(x,w) := (∇U(x′ + w) +∇U(x)) · (∇V (x′ + w)−∇V (x)).

Noting that by (5.6),

x− x′ =
h

2
∇U(x) =

h

2
x+

h

2
∇V (x),(5.8)

∇x(x− x′) =
h

2
∇2U(x) =

h

2
Id +

h

2
∇2V (x), and(5.9)

∇xx
′ = Id −

h

2
∇2U(x) =

(
1− h

2

)
Id −

h

2
∇2V (x),(5.10)

we obtain with y = x′ + w:

∇xAh(x,w) = W (x′ + w) · (Id −
h

2
∇2U(x))−W (x)

−x′ + w − x

2
·
(
∇W (x′ + w) · (Id −

h

2
∇2U(x)) +∇W (x)

)
+
h

4
(W (x′ + w) +W (x)) · ∇2U(x)

= W (y)−W (x)− y − x

2
· (∇W (y) +∇W (x))

−h

4
(W (y)−W (x)) · ∇2U(x) +

h

4
(y − x) · (∇W (y) · ∇2U(x)),



ERROR BOUNDS FOR METROPOLIS-HASTINGS ALGORITHMS 33

∇xBh(x,w) = (W (x′ + w)−W (x)) ·
(
∇2U(x′ + w) · (Id −

h

2
∇2U(x)) +∇2U(x)

)
+(∇U(x′ + w) +∇U(x)) ·

(
∇W (x′ + w) · (Id −

h

2
∇2U(x))−∇W (x)

)
= (W (y)−W (x)) · (∇2U(y) +∇2U(x)) + (∇U(y) +∇U(x)) · (∇W (y)−∇W (x))

− h

2
(W (y)−W (x)) · (∇2U(y) · ∇2U(x))− h

2
(∇U(y) +∇U(x)) · (∇W (y) · ∇2U(x)).

In total, we obtain

∇xFh(x,w) = ∇xAh(x,w) +
h

8− 2h
∇xBh(x,w)

= W (y)−W (x)− y − x

2
· (∇W (y) +∇W (x))

+
h

8− 2h
(W (y)−W (x)) · (∇2U(y)−∇2U(x)) +

h

4
(y − x) · ∇W (y) · ∇2U(x)

+
h

8− 2h
(∇U(y) +∇U(x)) · (∇W (y)−∇W (x))

+

(
2h

8− 2h
− h

4

)
(W (y)−W (x)) · ∇2U(x)

− h2

16− 4h
(W (y)−W (x)) · ∇2U(y) · ∇2U(x)

− h2

16− 4h
(∇U(y) +∇U(x)) · ∇W (y) · ∇2U(x)

= W (y)−W (x)− y − x

2
· (∇W (y) +∇W (x)) +

h

4
(y − x) · ∇W (y) · ∇2U(x)

+
h

8− 2h
(W (y)−W (x) +∇U(y) +∇U(x)) · (∇W (y)−∇W (x))

− h2

16− 4h
((W (y)−W (x)) · (∇2U(y)− Id) + (∇U(y) +∇U(x)) · ∇W (y)) · ∇2U(x).

Here we have used that

∇2U = Id +∇2V = Id +∇W.

The assertion follows by applying this identity to the remaining ∇2U terms
as well.

Similarly to Lemma 4.2 above, we now derive bounds for the individual
summands in the expressions for ∇xF

OU
h and ∇xFh in (5.5) and Proposition

5.1.
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Lemma 5.2. For V ∈ C4(Rd) and x, y ∈ Rd the following estimates hold:

1. ∥∇V (y)−∇V (x)∥+ ≤ L2(x, y) · ∥y − x∥−,
2.
∥∥∇V (y)−∇V (x)− y−x

2 · (∇2V (y) +∇2V (x))
∥∥
+

≤ L4(x, y) · ∥y − x∥3−/12,

3. ∥(y−x) ·∇2V (y) ·(Id+∇2V (x))∥+ ≤ L2(y, y) ·(1+L2(x, x)) ·∥y−x∥−,

4. ∥(∇V (y)−∇V (x) +∇U(y) +∇U(x)) · (∇2V (y)−∇2V (x))∥+
≤ L3(x, y) · (L2(x, y)∥y − x∥− + ∥∇U(y) +∇U(x)∥−) · ∥y − x∥−,

5. ∥(∇V (y)−∇V (x) +∇U(y) +∇U(x)) · ∇2V (y) · (Id +∇2V (x))∥−
≤ L2(y, y) · (L2(x, y)∥y − x∥− + ∥∇U(y) +∇U(x)∥−) · (1 + L2(x, x)).

Proof. (1) For any ξ ∈ Rd, we have

|∂ξV (y)− ∂ξV (x)| ≤ sup
z∈[x,y]

|∂2
y−x,ξV (z)| ≤ L2(x, y)∥x− y∥−∥ξ∥−.

This proves (1) by definition of ∥ · ∥+ .

(2) By Lemma 4.1 applied to ∂ξV ,

|∂ξV (y)− ∂ξV (x)− y − x

2
· (∇∂ξV (y)−∇∂ξV (x))|

≤ 1

2

∫ 1

0
t(1− t) dt · sup

z∈[x,y]
|∂3

y−x∂ξV (z)| ≤ 1

12
L4(x, y)∥x− y∥3−∥ξ∥−.

(3) For v, w ∈ Rd, we have

(5.11) |v · ∇2V (y)w| = |∂2
vwV (y)| ≤ L2(x, y)∥v∥−∥w∥−.

Since ∥ · ∥− is weaker than the Euclidean norm, we obtain

|(y − x) · ∇2V (y) · (I +∇2V (x)) · ξ| ≤ L2(y, y)∥y − x∥−∥(I +∇2V (x)) · ξ∥−
≤ L2(y, y)∥y − x∥−(1 + L2(x, x))∥ξ∥−.

(4),(5) For v, w ∈ Rd,

|v · (∇2V (y)−∇2V (x)) · w| =

∣∣∣∣∫ 1

0
∂3
y−x,v,wV ((1− t)x+ ty) dt

∣∣∣∣
≤ L3(x, y)∥y − x∥−∥v∥−∥w∥−.

Therefore,

|(∇V (y)−∇V (x) +∇U(y) +∇U(x)) · (∇2V (y)−∇2V (x)) · ξ|
≤ L3(x, y)∥y − x∥− · (∥∇V (y)−∇V (x)∥− + ∥∇U(y) +∇U(x)∥−) · ∥ξ∥−
≤ L3(x, y)∥y − x∥− · (L2(x, y)∥y − x∥− + ∥∇U(y) +∇U(x)∥−) · ∥ξ∥−,
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and, correspondingly,

|(∇V (y)−∇V (x) +∇U(y) +∇U(x)) · ∇2V (y) · (I +∇2V (x)) · ξ|
≤ L2(y, y) · (L2(x, y)∥y − x∥− + ∥∇U(y) +∇U(x)∥−) · (1 + L2(x, x))∥ξ∥−.

By combining Proposition 5.1 with the estimates in Lemma 5.2 and
Lemma 4.4, we will now prove Proposition 1.9.

Proof of Proposition 1.9. Fix h ∈ (0, 2). By (1.17) and (1.18), for
any x, x̃ ∈ Rd,

∥αh(x, Yh(x))− αh(x̃, Yh(x̃))∥Lk

≤ ∥Gh(x, Yh(x))−Gh(x̃, Yh(x̃))∥Lk

≤ ∥x− x̃∥− · sup
z∈[x,x̃]

∥∥∇xGh(x, Yh(x))∥+∥Lk(5.12)

Moreover, by (5.3) and Proposition 5.1,

∥ ∥∇xGh(x, Yh(x))∥+ ∥Lk = ∥ ∥∇xFh(x,
√

h− h2/4Z)∥+ ∥Lk

≤ I +
h

4
· II + h

8− 2h
· III + h2

16− 4h
· IV(5.13)

where

I = E[∥∇V (Yh(x))−∇V (x)− 1

2
(Yh(x)− x) · (∇2V (Yh(x)) +∇2V (x))∥k+]1/k,

II = E[∥(Yh(x)− x) · ∇2V (Yh(x)) · (I +∇2V (x))∥k+]1/k,

III = E[∥(∇V (Yh(x))−∇V (x) +∇U(Yh(x)) +∇U(x)) ·
·(∇2V (Yh(x))−∇2V (x))∥k+]1/k,

IV = E[∥(∇V (Yh(x))−∇V (x) +∇U(Yh(x)) +∇U(x)) ·
·∇2V (Yh(x)) · (I +∇2V (x))∥k+]1/k.
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By applying the estimates from Lemma 5.2 and Lemma 4.2 (4), we obtain

I ≤ 1

12
E
[
L4(x, Yh(x))

k∥Yh(x)− x∥3k−
]1/k

,(5.14)

II ≤ (1 + L2(x, x)) · E
[
L2(Yh(x), Yh(x))

k∥Yh(x)− x∥k−
]1/k

,(5.15)

III ≤ E
[
L3(x, Yh(x))

k∥Yh(x)− x∥k−

×((1 + 2L2(x, Yh(x)))
k∥Yh(x)− x∥k− + 2∥∇U(x)∥k−)

]1/k
(5.16)

IV ≤ (1 + L2(x, x)) · E
[
L2(Yh(x), Yh(x))

k

×((1 + L2(x, Yh(x)))
k∥Yh(x)− x∥k− + 2∥∇U(x)∥k−)

]1/k
.(5.17)

The assertion for semi-implicit Euler proposals is now a direct consequence
of the estimates in Lemma 4.4, (4.2) and (5.12).

The assertion for Ornstein-Uhlenbeck proposals follows in a similar way
from (5.5), Lemma 5.2 (1), and the estimates in Lemma 4.4.

Again, it is possible to write down the polynomial in Proposition 1.9
explicitly. For semi-implicit Euler proposals, we illustrate this in the case
k = 1 and p2 = p3 = p4 = 0. Here, by (5.14), (5.15), (5.16) and (5.17) we
obtain

I ≤ C4

12
E

[(
h

2
∥∇U(x)∥− +

√
h∥Z∥−

)3
]

≤ C4

4

(
h3

8
∥∇U(x)∥3− + h3/2m3

)
,

II ≤ (C2 + C2
2 )E

[
h

2
∥∇U(x)∥− +

√
h∥Z∥−

]
= (C2 + C2

2 )

(
h

2
∥∇U(x)∥− + h1/2m1

)
,

III ≤ C3

(
2∥∇U(x)∥− · E

[
h

2
∥∇U(x)∥− +

√
h∥Z∥−

]
+ (1 + 2C2)E

[(
h

2
∥∇U(x)∥− +

√
h∥Z∥−

)2
])

≤ 2C3∥∇U(x)∥−
(
h

2
∥∇U(x)∥− +

√
hm1

)
+C3(1 + 2C2)

(
h2

2
∥∇U(x)∥2 + 2hm2

)
,
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IV ≤ (1 + C2)C2

(
(1 + C2)E

[
h

2
∥∇U(x)∥− +

√
h∥Z∥−

]
+ 2∥∇U(x)∥−

)
≤ 2(1 + C2)C2∥∇U(x)∥− + (1 + C2)

2C2

(
h

2
∥∇U(x)∥− +

√
hm1

)
.

Hence by (5.13), for h ∈ (0, 2),

E[∥∇xGh(x, Yh(x))∥+] ≤ 1

4
h3/2(C4m3 + (1 + C2)C2m1 + 2C3∥∇U(x)∥−m1)

+
1

8
h2(4C2(1 + 2C2)m2 + 3C2(1 + C2)∥∇U(x)∥− + 2C3∥∇U(x)∥2−)

+
1

16
h5/2C2(1 + C2)

2(2m1 + h1/2∥∇U(x)∥−)(5.18)

+
1

32
h3
(
4C3(1 + 2C2)∥∇U(x)∥2− + C4∥∇U(x)∥3−

)
.

For Ornstein-Uhlenbeck proposals, we prove the explicit bound for the
dependence of the rejection probabilities on the current state for the case
k = 2 and p2 = 0 as stated in Proposition 1.11 .

Proof of Proposition 1.11, second part. If p2 = 0 then by (5.4),
(5.5) and (4.7),

∥∇xG
OU(x, Y OU

h (x))∥+ ≤ ∥∇V (Y OU
h (x))−∇V (x)∥+ +

h

2
∥∇V (x)∥+

≤ C2∥Y OU
h (x)− x∥− + (C1 + C2∥x∥−)h/2

≤ C2∥Z∥− h1/2 + (C1 + 2C2∥x∥−)h/2

for any x ∈ Rd. Therefore,

E
[
∥∇xG

OU(x, Y OU
h (x))∥2+

]1/2 ≤ C2m
1/2
2 h1/2 + (C1 + 2C2∥x∥−)h/2.

The assertion now follows similarly to (5.12).

6. Upper bound for exit probabilities. In this section, we prove an
upper bound for the exit probabilities of the MALA chain from the ball B−

R

that is required in the proof of Theorem 1.19, cf. [12] for a detailed proof of
a more general result. Let

(6.1) f(x) := exp
(
K∥x∥2−/16

)
.

The following lemma shows that f(x) acts as a Lyapunov function for the
MALA transition kernel on B−

R :
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Lemma 6.1. Suppose that Assumptions 1.5 and 1.14 hold. Then there
exist constants C1, C2, ρ1 ∈ (0,∞) such that

(6.2) qhf ≤ f1−Kh/4 eC2h on B−
R

for any R, h ∈ (0,∞) such that h−1 ≥ C1(1 +R)ρ1.

Proof. We first observe that a corresponding bound holds for the pro-
posal kernel ph. Indeed, by (1.27), and since ∥v∥2− = v · Gv with a non-
negative definite symmetric matrix G ≤ I, an explicit computation yields

(phf)(x) = E
[
exp(K∥x− h

2
∇U(x) +

√
h− h2/4Z∥2−/16)

]
≤ exp

(
K(1 +Kh/4)∥x− h

2
∇U(x)∥2−/16

)
.

Moreover, by Assumption 1.14,

∥x− h

2
∇U(x)∥2− ≤ (1− Kh

2
)∥x∥2− +

h

2K
∥∇U(0)∥2− +

h2

4
∥∇U(x)∥2−.

Hence by Assumption 1.5, there exist constants C3, C4, ρ2 ∈ (0,∞) such
that

(phf)(x) ≤ f(x)1−Kh/4 eC3h

for any x ∈ Rd and h ∈ (0,∞) such that h−1 ≥ C4(1 + ∥x∥−)ρ2 . By the
upper bound for the rejection probabilities in Proposition 1.7, we conclude
that there exists a polynomial s such that the corresponding upper bound

qhf ≤ f1−Kh/4eC3h + s(R)h3/2 f = f1−Kh/4
(
eC3h + s(R)h3/2 fKh/4

)
≤ f1−Kh/4e(C3+1)h

holds on B−
R whenever both h−1 ≥ C4(1+R)ρ2 and s(R)h1/2fKh/4 ≤ 1. The

assertion follows, since the second condition is satisfied if K2hR2/64 ≤ 1 and
s(R)eh1/2 ≤ 1.

Now consider the first exit time

TR := inf{n ≥ 0 : Xn ̸∈ B−
R},

where (Xn,Px) is the Markov chain with transition kernel qh and initial con-
ditionX0 = x Px-a.s. We can estimate TR by constructing a supermartingale
based on the Lyapunov function f :
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Theorem 6.2. If Assumptions 1.5 and 1.14 hold then there exist con-
stants C, ρ,D ∈ (0,∞) such that the upper bound

(6.3) Px[TR ≤ n] ≤ Dnh exp[K(∥x∥2− −R2)/24]

holds for any n ≥ 0, R, h ∈ (0,∞) such that h−1 ≥ C(1+R)ρ, and x ∈ B−
R .

Proof. Fix n ∈ N, choose C1, C2, ρ1 as in the lemma above, and let

Mj := f(Xj)
(1−Kh/4)n−j

exp

(
−C2h

j∑
i=0

(1−Kh/4)n−i

)

for j = 0, 1, . . . , n. If h−1 ≥ C1(1 + R)ρ1 then by Jensen’s inequality and
(6.2),

Ex [Mj+1|Fj ] ≤ (qhf)(Xj)
1−Kh/4 exp

(
−C2h

j+1∑
i=0

(1−Kh/4)n−i

)
≤ Mj on {Xj ∈ B−

R} for any j < n.

Hence the stopped process (MTR
j )0≤j≤n is a supermartingale, and thus

Ex [MTR
; n−m ≤ TR ≤ n] ≤ Ex [M0] for any 0 ≤ m ≤ n.

Noting that M0 = f(x)(1−Kh/4)n = exp
(
(1−Kh/4)nK∥x∥2−/16

)
, and

MTR
≥ (f(XTR

) exp(−4C2/K))(1−Kh/4)n−TR

= exp

[
(
K

16
R2 − 4C2/K) · (1−Kh/4)n−TR

]
,

we obtain the bound

Px[n−m ≤ TR ≤ n] ≤ exp

[(
1− Kh

4

)m(K

16
((1− Kh

4
)n−m∥x∥2− −R2) +

4C2

K

)]
for any 0 ≤ m ≤ n provided R2 ≥ 64C2/K

2. In particular, if mKh/2 ≤
log(3/2) then (1−Kh/4)m ≥ exp(−mKh/2) ≥ 2/3, and hence

Px[n−m ≤ TR ≤ n] ≤ exp(4C2K) · exp
(
K(∥x∥2− −R2)/24

)
.

The assertion follows by partitioning {0, 1, . . . , n} into blocks of length ≤ m
where m = ⌊2 log(3/2)K−1h−1⌋.
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7. Proof of the main results. In this section, we combine the results
in order to derive the contraction properties for Metropolis Hastings tran-
sition kernels stated in Theorems 1.15, 1.12 and 1.19, and we finally prove
1.20. Note that for x, x̃ ∈ Rd, the distances∥∥Y OU

h (x)− Y OU
h (x̃)

∥∥
− = (1− h/2) ∥x− x̃∥−, and(7.1)

∥Yh(x)− Yh(x̃)∥− = ∥x− x̃− (∇U(x)−∇U(x̃))h/2∥−(7.2)

are deterministic. We now combine Lemma 2.5 with the estimates in Propo-
sitions 1.7 and 1.9:

Proof of Theorem 1.15. We fix h ∈ (0, 2),R ∈ (0,∞), and x, x̃ ∈ B−
R .

By the basic contractivity lemma 2.5 and by (2.3) respectively,

E
[
∥Wh(x)−Wh(x̃)∥−

]
≤ ∥x− x̃∥−

− (1− E [max(1− αh(x, Yh(x)), 1− αh(x̃, Yh(x̃)))]) · (∥x− x̃∥− − ∥Yh(x)− Yh(x̃)∥−)
+ E[max(∥x− Yh(x)∥−, ∥x̃− Yh(x̃)∥−)2]1/2 · E[(αh(x, Yh(x))− αh(x̃, Yh(x̃)))

2]1/2.

By Proposition 3.3,

∥Yh(x)− Yh(x̃)∥− ≤ (1−Kh/2 +M(R)2h2/8) · ∥x− x̃∥−,

and by Lemma 4.4 (2),

E[max(∥x−Yh(x)∥−, ∥x̃−Yh(x̃)∥−)2]1/2 ≤ m
1/2
2 h1/2+max(∥∇U(x)∥−, ∥∇U(x̃)∥−)h/2.

The assertion of Theorem 1.15 follows by combining these estimates with
the bounds for the acceptance probabilities in Propositions 1.7 and 1.9.

The corresponding bound for Ornstein-Uhlenbeck proposals follows simi-
larly from Lemma 2.5 and Proposition 1.11:

Proof of Theorem 1.12. We again fix h ∈ (0, 2), R ∈ (0,∞), and
x, x̃ ∈ B−

R . Since Y
OU
h (x)−Y OU

h (x̃) = (1−h/2)(x− x̃) and ∥x−Y OU
h (x)∥− ≤

∥x∥−h/2 + ∥Z∥−
√
h, the basic contractivity lemma 2.5 implies

E
[∥∥WOU

h (x)−WOU
h (x̃)

∥∥
−

]
≤ (1− h

2
) ∥x− x̃∥−

+
h

2
∥x− x̃∥− E

[
max(1− αOU(x, Y OU

h (x)), 1− αOU(x̃, Y OU
h (x̃)))

]
+ (

h

2
max(∥x∥−, ∥x̃∥−) +

√
hm

1/2
2 )E[(αOU(x, Y OU

h (x))− αOU(x̃, Y OU
h (x̃)))2]1/2.

The assertion of Theorem 1.12 follows by combining this estimates with the
bounds for the acceptance probabilities in Proposition 1.11.
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Proof of Theorem 1.19. Noting that

∥x∥− − (2R)2 ≤ −3R2 for any x ∈ B−
R ,

the assertion is a direct consequence of Corollary 1.18 and Theorem 6.2
applied with R replaced by 2R.

Let µR = µ(·|B−
R) denote the conditional measure on B−

R . The fact that
µR is a stationary distribution for the Metropolis-Hastings transition kernel
qh can be used to bound the Wasserstein distance between µRq

n
h and µR:

Lemma 7.1. For any R ≥ 0 and a ∈ (0, 1),

W2R(µRq
n
h , µR) ≤ 8R (µRq

n
h)(Rd \B−

R)

≤ 8(1− a)−1W2R(µRq
n
h , δ0q

n
h) + 8R (δ0q

n
h)(B

−
aR) .

Proof. The distance induced by the total variation norm ∥ · ∥TV is the
Wasserstein distance w.r.t. the metric d(x, y) = I{x̸=y}. Since d2R(x, y) ≤
4Rd(x, y), we obtain

W2R(µRq
n
h , µR) ≤ 4R∥µRq

n
h − µR∥TV = 8R∥(µRq

n
h − µR)

+∥TV

≤ 8R (µRq
n
h)(Rd \B−

R).(7.3)

Here we have used in the last step that µqh = µ, and hence

(µRq
n
h)(A) ≤ (µRq

n
h)(A ∩B−

R) + (µRq
n
h)(Rd \B−

R)

≤ µR(A) + (µRq
n
h)(Rd \B−

R)

for any Borel set A ⊆ Rd. Moreover, for a ∈ (0, 1),
(7.4)

W2R(µRq
n
h , δ0q

n
h) ≥ (R− aR) ·

(
(µRq

n
h)(Rd \B−

R)− (δ0q
n
h)(Rd \B−

aR)
)
.

Indeed, for any coupling η(dx dx̃) of the two measures,

η(d2R(x, x̃) ≥ R− aR) ≥ (µRq
n
h)(Rd \B−

R)− (δ0q
n
h)(Rd \B−

aR).

The assertion follows by combining the estimates in (7.3) and (7.4).

Proof of Theorem 1.20. By combining the estimates in Theorem 1.19,
Lemma 7.1 with a = 6/7, and Theorem 6.2, we obtain

W2R(νq
n
h , µR) ≤ W2R(νq

n
h , µRq

n
h) +W2R(µRq

n
h , µR)

≤ (1− K

4
h)nW2R(ν, µR) + DR exp(−KR2/8)nh

+56 · (1− K

4
h)nW2R(µR, δ0) + 56DR exp(−KR2/8)nh+ 8RP0[T6R/7 ≤ n]

≤ 58R · (1− K

4
h)n + 57DR exp(−KR2/8)nh+ 8DR exp(−KR2/33)nh.
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