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Chapter 0

Introduction

0.1 Stochastic processes

Let I = Z+ = {0, 1, 2, . . .} (discrete time) orI = R+ = [0,∞) (continuous time), and let

(Ω,A, P ) be a probability space. If(S,B) is a measurable space then astochastic process with

state spaceS is a collection(Xt)t∈I of random variables

Xt : Ω→ S.

More generally, we will consider processes with finite life-time. Here we add an extra point∆ to

the state space and we endowS∆ = S∪̇{∆} with theσ-algebraB∆ = {B,B ∪ {∆} : B ∈ B}.
A stochastic process with state spaceS and life time ζ is then defined as a process

Xt : Ω→ S∆ such that Xt(ω) = ∆ if and only if t ≥ ζ(ω).

Hereζ : Ω→ [0,∞] is a random variable.

We will usually assume that the state spaceS is a polish space, i.e., there exists a metric

d : S × S → R+ such that(S, d) is complete and separable. Note that for example open sets in

Rn are polish spaces, although they are not complete w.r.t. theEuclidean metric. Indeed, most

state spaces encountered in applications are polish. Moreover, on polish spaces regular version of

conditional probability distributions exist. This will becrucial for much of the theory developed

below. IfS is polish then we will always endow it with its Borelσ-algebraB = B(S).

A filtration on (Ω,A, P ) is an increasing collection(Ft)t∈I of σ-algebrasFt ⊂ A. A stochastic

process(Xt)t∈I is adapted w.r.t. a filtration(Ft)t∈I iff Xt is Ft-measurable for anyt ∈ I. In

particular, any processX = (Xt)t∈I is adapted to the filtrations(FX
t ) and(FX,P

t ) where

FX
t = σ(Xs : s ∈ I, s ≤ t), t ∈ I,

7



8 CHAPTER 0. INTRODUCTION

is thefiltration generated by X, andFX,P
t denotes thecompletionof theσ-algebraFt w.r.t. the

probability measureP :

FX,P
t = {A ∈ A : ∃Ã ∈ FX

t with P [Ã∆A] = 0}.

Finally, a stochastic process(Xt)t∈I on (Ω,A, P ) with state space(S,B) is called an(Ft)

Markov process iff (Xt) is adapted w.r.t. the filtration(Ft)t∈I , and

P [Xt ∈ B|Fs] = P [Xt ∈ B|Xs] P -a.s. for anyB ∈ B ands, t ∈ I with s ≤ t. (0.1.1)

Any (Ft) Markov process is also a Markov process w.r.t. the filtration(FX
t ) generated by the

process. Hence an(FX
t ) Markov process will be called simply aMarkov process. We will see

other equivalent forms of the Markov property below. For themoment we just note that (0.1.1)

implies

P [Xt ∈ B|Fs] = ps,t(Xs, B) P -a.s. forB ∈ B ands ≤ t and (0.1.2)

E[f(Xt)|Fs] = (ps,tf)(Xs) P -a.s. for any measurable functionf : S → R+ ands ≤ t.

(0.1.3)

whereps,t(x, dy) is a regular version of the conditional probability distribution ofXt givenXs,

and

(ps,tf)(x) =

ˆ

ps,t(x, dy)f(y).

Furthermore, by the tower property of conditional expectations, the kernelsps,t (s, t ∈ I with

s ≤ t) satisfy the consistency condition

ps,u(Xs, B) =

ˆ

ps,t(Xs, dy)pt,u(y, B) (0.1.4)

P -almost surely for anyB ∈ B ands ≤ t ≤ u, i.e.,

ps,uf = ps,tpt,uf P ◦X−1
s -almost surely for any0 ≤ s ≤ t ≤ u. (0.1.5)

Exercise.Show that the consistency conditions (0.1.4) and (0.1.5) follow from the defining prop-

erty (0.1.2) of the kernelsps,t.

0.2 Transition functions and Markov processes

From now on we assume thatS is a polish space andB is the Borelσ-algebra onS. We denote

the collection of all non-negative respectively bounded measurable functionsf : S → R by

Markov processes Andreas Eberle



0.2. TRANSITION FUNCTIONS AND MARKOV PROCESSES 9

F+(S),Fb(S) respectively. The space of all probability measures resp. finite signed measures

are denoted byP(S) andM(S). For µ ∈ M(S) and f ∈ Fb(S), and forµ ∈ P(S) and

f ∈ F+(S) we set

µ(f) =

ˆ

fdµ.

The following definition is natural by the considerations above:

Definition (Sub-probability kernel, transition function ). 1) A(sub) probability kernelp on

(S,B) is a map(x,B) 7→ p(x,B) fromS × B to [0, 1] such that

(i) for any x ∈ S, p(x, ·) is a positive measure on(S,B) with total massp(x, S) = 1

(p(x, S) ≤ 1 respectively), and

(ii) for anyB ∈ B, p(·, B) is a measurable function on(S,B).

2) A transition function is a collectionps,t (s, t ∈ I with s ≤ t) of sub-probability kernels on

(S,B) satisfying

pt,t(x, ·) = δx for anyx ∈ S andt ∈ I, and (0.2.1)

ps,tpt,u = ps,u for anys ≤ t ≤ u, (0.2.2)

where the composition of two sub-probability kernelsp andq on(S,B) is the sub-probability

kernelpq defined by

(pq)(x,B) =

ˆ

p(x, dy)q(y, B) for anyx ∈ S,B ∈ B.

The equations in (0.2.2) are called theChapman-Kolmogorov equations. They correspond to

the consistency conditions in (0.1.4). Note, however, thatwe are now assuming that the consis-

tency conditions hold everywhere. This will allow us to relate a family of Markov processes with

arbitrary starting points and starting times to a transition function. The reason for considering

sub-probability instead of probability kernels is that mass may be lost during the evolution if the

process has a finite life-time.

Example(Discrete and absolutely continuous transition kernels). A sub-probability kernel on

a countable setS takes the formp(x, {y}) = p(x, y) wherep : S × S → [0, 1] is a non-negative

function satisfying
∑
y∈S

p(x, y) ≤ 1. More generally, letλ be a non-negative measure on a general

polish state space (e.g. the counting measure on a discrete space or Lebesgue measure onRn). If

p : S × S → R+ is a measurable function satisfying
ˆ

p(x, y)λ(dy) ≤ 1 for anyx ∈ S,

University of Bonn April 2015



10 CHAPTER 0. INTRODUCTION

thenp is the density of a sub-probability kernel given by

p(x,B) =

ˆ

B

p(x, y)λ(dy).

The collection of corresponding densitiesps,t(x, y) for the kernels of a transition function w.r.t.

a fixed measureλ is called atransition density. Note however, that many interesting Markov

processes on general state spaces do not possess a transition density w.r.t. a natural reference

measure. A simple example is the Random Walk Metropolis algorithm on Rd. This Markov

chain moves in each time step with a positive probability according to an absolutely continuous

transition density, whereas with the opposite probability, it stays at its current position, cf.XXX

below.

Definition (Markov process with transition function ps,t). Let ps,t (s, t ∈ I with s ≤ t) be a

transition function on(S,B), and let(Ft)t∈I be a filtration on a probability space(Ω,A, P ).

1) A stochastic process(Xt)t∈I on(Ω,A, P ) is called an(Ft) Markov process with transition

function (ps,t) iff it is (Ft) adapted, and

(MP) P [Xt ∈ B|Fs] = ps,t(Xs, B) P -a.s. for anys ≤ t andB ∈ B.

2) It is calledtime-homogeneousiff the transition function is time-homogeneous, i.e., iffthere

exist sub-probability kernelspt (t ∈ I) such that

ps,t = pt−s for anys ≤ t.

Notice that time-homogeneity does not mean that the law ofXt is independent oft; it is only

a property of the transition function. For the transition kernels(pt)t∈I of a time-homogeneous

Markov process, the Chapman-Kolmogorov equations take thesimple form

ps+t = pspt for anys, t ∈ I. (0.2.3)

A time-inhomogeneous Markov process(Xt) with state spaceS can be identified with the time-

homogeneous Markov process(t, Xt) on the enlarged state spaceR+ × S :

Exercise(Reduction to time-homogeneous case). Let ((Xt)t∈I , P ) be a Markov process with

transition function(ps,t). Show that for anys ∈ I the time-space procesŝXt = (s+ t, Xs+t) is a

time-homogeneous Markov process with state spaceR+ × S and transition function

p̂t ((s, x), ·) = δs+t ⊗ ps,s+t(x, ·).

Markov processes Andreas Eberle



0.2. TRANSITION FUNCTIONS AND MARKOV PROCESSES 11

Markov processes(Xt)t∈Z+ in discrete time are calledMarkov chains. The transition function of

a Markov chain is completely determined by its one-step transition kernelsπn = pn−1,n (n ∈ N).

Indeed, by the Chapman-Kolmogorov equation,

ps,t = πs+1πs+2 · · · πt for anys, t ∈ Z+ with s ≤ t.

In particular, in the time-homogeneous case, the transition function takes the form

pt = πt for anyt ∈ Z+,

whereπ = pn−1,n is the one-step transition kernel that does not depend onn.

Examples.

1) Random dynamical systems:A stochastic process on a probability space(Ω,A, P ) de-

fined recursively by

Xn+1 = Φn+1(Xn,Wn+1) for n ∈ Z+ (0.2.4)

is a Markov chain ifX0 : Ω → S andW1,W2, · · · : Ω → T are independent random vari-

ables taking values in measurable spaces(S,B) and(T, C), andΦ1,Φ2, . . . are measurable

functions fromS × T to S. The one-step transition kernels are

πn(x,B) = P [Φn(x,Wn) ∈ B],

and the transition function is given by

ps,t(x,B) = P [Xt(s, x) ∈ B],

whereXt(s, x) for t ≥ s denotes the solution of the recurrence relation (0.2.4) with initial

valueXs(s, x) = x at time s. The Markov chain is time-homogeneous if the random

variablesWn are identically distributed, and the functionsΦn coincide for anyn ∈ N.

2) Continuous time Markov chains: If (Yn)n∈Z+ is a time-homogeneous Markov chain

on a polish space(Ω,A, P ), and(Nt)t≥0 is a Poisson processwith intensityλ > 0 on

(Ω,A, P ) that is independent of(Yn)n∈Z+ then the process

Xt = YNt , t ∈ [0,∞),

is a time-homogeneous Markov process in continuous time, see e.g. [11]. Conditioning on

the value ofNt shows that the transition function is given by

pt(x,B) =

∞∑

k=0

e−λt (λt)
k

k!
πk(x,B) = eλt(π−I)(x,B).

University of Bonn April 2015



12 CHAPTER 0. INTRODUCTION

The construction can be generalized to time-inhomogeneousjump processes with finite

jump intensities, but in this case the processes(Yn) and (Nt) determining the positions

and the jump times are not necessarily Markov processes on their own, and they are not

necessarily independent of each other, see Section 3.1 below.

3) Diffusion processes onRn: A Brownian motion ((Bt)t≥0, P ) taking values inRn is a

time-homogeneous Markov process with continuous sample paths t 7→ Bt(ω) and transi-

tion density

pt(x, y) = (2πt)−n/2 exp

(
−|x− y|

2

2t

)

with respect to then-dimensional Lebesgue measureλn. In general, Markov processes with

continuous sample paths are calleddiffusion processes. It can be shown that a solution to

an Itô stochastic differential equation of the form

dXt = b(t, Xt)dt+ σ(t, Xt)dBt, X0 = x0, (0.2.5)

is a diffusion process if, for example, the coefficients are Lipschitz continuous functions

b : R+×Rn → Rn andσ : R+×Rn → Rn×d, and(Bt)t≥0 is a Brownian motion inRd. In

this case, the transition function is usually not known explicitly.

Kolmogorov’s Theorem states that for any transition function and any given initial distribution

there is a unique canonical Markov process on the product space

Ωcan = SI
∆ = {ω : I → S∆}.

Indeed, letXt : Ωcan→ S∆, Xt(ω) = ω(t), denote the evaluation at timet, and endowΩcan with

the productσ-algebra

Acan =
⊗

t∈I
B∆ = σ(Xt : t ∈ I).

Theorem 0.1(Kolmogorov’s Theorem). Letps,t (s, t ∈ I with s ≤ t) be a transition function on

(S,B). Then for any probability measureν on (S,B), there exists a unique probability measure

Pν on (Ωcan,Acan) such that((Xt)t∈I , Pν) is a Markov process with transition function(ps,t) and

initial distributionPν ◦X−1
0 = ν.

Since the Markov property (MP) is equivalent to the fact thatthe finite-dimensional marginal

laws of the process are given by

(Xt0 , Xt1 , . . . , Xtn) ∼ µ(dx0)p0,t1(x0, dx1)pt1,t2(x1, dx2) · · · ptn−1,tn(xn−1, dxn)
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for any0 = t0 ≤ t1 ≤ · · · ≤ tn, the proof of Theorem 0.1 is a consequence of Kolmogorov’s

extension theorem (which follows from Carathéodory’s extension theorem), cf.XXX. Thus

Theorem 0.1 is a purely measure-theoretic statement. Its main disadvantage is that the spaceSI

is too large and the productσ-algebra is too small whenI = R+. Indeed, in this case important

events such as the event that the process(Xt)t≥0 has continuous trajectories are not measurable

w.r.t. Acan. Therefore, in continuous time we will usually replaceΩcan by the spaceD(R+, S∆)

of all right-continuous functionsω : R+ → S∆ with left limits ω(t−) for anyt > 0. To realize a

Markov process with a given transition function onΩ = D(R+, S∆) requires modest additional

regularity conditions, cf. e.g. Rogers & Williams I [35].

0.3 Generators and Martingales

Since the transition function of a Markov process is usuallynot known explicitly, one is looking

for other natural ways to describe the evolution. An obviousidea is to consider the rate of change

of the transition probabilities or expectations at a given time t.

In discrete time this is straightforward: Forf ∈ Fb(S) andt ≥ 0,

E[f(Xt+1)− f(Xt)|Ft] = (Ltf)(Xt) P -a.s.

whereLt : Fb(S)→ Fb(S) is the linear operator defined by

(Ltf)(x) = (πtf) (x)− f(x) =
ˆ

πt(x, dy) (f(y)− f(x)) .

Lt is called thegenerator at timet - in the time homogeneous case it does not depend ont.

In continuous time, the situation is more involved. Here we have to consider the instantaneous

rate of change, i.e., the derivative of the transition function. We would like to define

(Ltf)(x) = lim
h↓0

(pt,t+hf)(x)− f(x)
h

= lim
h↓0

1

h
E[f(Xt+h)− f(Xt)|Xt = x]. (0.3.1)

By an informal calculation based on the Chapman-Kolmogorovequation, we could then hope

that the transition function satisfies the differential equations

(FE)
d

dt
ps,tf =

d

dh
(ps,tpt,t+hf) |h=0 = ps,tLtf, and (0.3.2)

(BE) − d

ds
ps,tf = − d

dh
(ps,s+hps+h,tf) |h=0 + ps,sLsps,tf = Lsps,tf. (0.3.3)
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These equations are calledKolmogorov’s forward and backward equation respectively, since

they describe the forward and backward in time evolution of the transition probabilities.

However, making these informal computations rigorous is not a triviality in general. The problem

is that the right-sided derivative in (0.3.1) may not exist for all bounded functionsf . Moreover,

different notions of convergence on function spaces lead todifferent definitions ofLt (or at least

of its domain). Indeed, we will see that in many cases, the generator of a Markov process in

continuous time is an unbounded linear operator - for instance, generators of diffusion processes

are (generalized) second order differential operators. One way to circumvent these difficulties

partially is the martingale problem of Stroock and Varadhanwhich sets up a connection to the

generator only on a fixed class of nice functions:

Let A be a linear space of bounded measurable functions on(S,B), and letLt : A → F(S),
t ∈ I, be a collection of linear operators with domainA taking values in the spaceF(S) of

measurable (not necessarily bounded) functions on(S,B).

Definition (Martingale problem ). A stochastic process((Xt)t∈I , P ) that is adapted to a filtra-

tion (Ft) is said to be asolution of the martingale problem for((Lt)t∈I,A) iff the real valued

processes

Mf
t = f(Xt)−

t−1∑

s=0

(Lsf)(Xs) if I = Z+, resp.

Mf
t = f(Xt)−

ˆ t

0

(Lsf)(Xs) if I = R+,

are (Ft) martingales for all functionsf ∈ A.

In the discrete time case, a process((Xt), P ) is a solution to the martingale problem w.r.t. the

operatorLt = πt − I with domainA = Fb(S) if and only if it is a Markov chain with one-

step transition kernelsπt. Again, in continuous time the situation is much more trickysince the

solution to the martingale problem may not be unique, and notall solutions are Markov processes.

Indeed, the price to pay in the martingale formulation is that it is usually not easy to establish

uniqueness. Nevertheless, if uniqueness holds, and even incases where uniqueness does not

hold, the martingale problem turns out to be a powerful tool for deriving properties of a Markov

process in an elegant and general way. This together with stability under weak convergence turns

the martingale problem into a fundamental concept in a modern approach to Markov processes.

Example. 1) Markov chains. As remarked above, a Markov chain solves the martingale

problem for the operators(Lt,Fb(S)) where(Ltf)(x) =
´

(f(y)− f(x))πt(x, dy).
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2) Continuous time Markov chains. A continuous time processXt = YNt constructed from

a time-homogeneous Markov chain(Yn)n∈Z+ with transition kernelπ and an independent

Poisson process(Nt)t≥0 solves the martingale problem for the operator(L,Fb(S)) defined

by

(Lf)(x) =
ˆ

(f(y)− f(x))q(x, dy)

whereq(x, dy) = λπ(x, dy) are the jump rates of the process(Xt)t≥0. More generally, we

will construct in Section 3.1 Markov jump processes with general finite time-dependent

jump intensitiesqt(x, dy).

3) Diffusion processes.By Itô’s formula, a Brownian motion inRn solves the martingale

problem for

Lf =
1

2
∆f with domainA = C2

b (R
n).

More generally, an Itô diffusion solving the stochastic differential equation (0.2.5) solves

the martingale problem for

Ltf = b(t, x) · ∇f +
1

2

n∑

i,j=1

aij(t, x)
∂2f

∂xi∂xj
, A = C∞

0 (Rn),

wherea(t, x) = σ(t, x)σ(t, x)T . This is again a consequence of Itô’s formula, cf. Stochas-

tic Analysis, e.g. [8]/[10].

0.4 Stability and asymptotic stationarity

A question of fundamental importance in the theory of Markovprocesses are the long-time sta-

bility properties of the process and its transition function. In the time-homogeneous case that we

will mostly consider here, many Markov processes approach an equilibrium distributionµ in the

long-time limit, i.e.,

Law(Xt)→ µ ast→∞ (0.4.1)

w.r.t. an appropriate notion of convergence of probabilitymeasures. The limit is then necessarily

a stationary distribution for the transition kernels, i.e.,

µ(B) = (µpt)(B) =

ˆ

µ(dx)pt(x,B) for anyt ∈ I andB ∈ B.
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More generally, the laws of the trajectoriesXt:∞ = (Xs)s≥t from time t onwards converge to

the lawPµ of the Markov process with initial distributionµ, and ergodic averages approach

expectations w.r.t.Pµ, i.e.,

1

t

t−1∑

n=0

F (Xn, Xn+1, . . . )→
ˆ

SZ+

FdPµ, (0.4.2)

1

t

ˆ t

0

F (Xs:∞)ds→
ˆ

D(R+,S)

FdPµ respectively (0.4.3)

w.r.t. appropriate notions of convergence.

Statements as in (0.4.2) and (0.4.3) are calledergodic theorems. They provide far-reaching gen-

eralizations of the classical law of large numbers. We will spend a substantial amount of time on

proving convergence statements as in (0.4.1), (0.4.2) and (0.4.3) w.r.t. different notions of conver-

gence, and on quantifying the approximation errors asymptotically and non-asymptotically w.r.t.

different metrics. This includes studying the existence and uniqueness of stationary distributions.

In particular, we will see inXXX that for Markov processes on infinite dimensional spaces (e.g.

interacting particle systems with an infinite number of particles), the non-uniqueness of station-

ary distributions is often related to aphase transition. On spaces with high finite dimension the

phase transition will sometimes correspond to a slowdown ofthe equilibration/mixing properties

of the process as the dimension (or some other system parameter) tends to infinity.

We start in Sections 1.1 - 1.4 by applying martingale theory to Markov chains in discrete time.

A key idea in the theory of Markov processes is to relate long-time properties of the process to

short-time properties described in terms of its generator.Two important approaches for doing

this are the coupling/transportation approach consideredin Section 7.1 - 7.3 and 7.4 for discrete

time chains, and theL2/Dirichlet form approach considered in Chapter 6. Chapter 2focuses on

ergodic theorems and bounds for ergodic averages as in (0.4.2) and (0.4.3), and in Chapter 3 we

introduce basic concepts and examples for Markov processesin continuous time and the relation

to their generator. The concluding Chapter?? studies a few selected applications to interacting

particle systems. Other jump processes with infinite jump intensities (e.g. general Lévy pro-

cesses) as well as jump diffusions will be constructed and analyzed in the stochastic analysis

course.
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Chapter 1

Markov chains & stochastic stability

1.1 Transition probabilities and Markov chains

LetX, Y : Ω→ S be random variables on a probability space(Ω,A, P )with polish state spaceS.

A regular version of the conditional distribution of Y givenX is a stochastic kernelp(x, dy)

onS such that

P [Y ∈ B|X ] = p(X,B) P − a.s. for anyB ∈ B.

If p is a regular version of the conditional distribution ofY givenX then

P [X ∈ A, Y ∈ B] = E [P [Y ∈ B|X ];X ∈ A] =
ˆ

A

p(x,B)µX(dx) for anyA,B ∈ B,

whereµX denotes the law ofX. For random variables with a polish state space, regular versions

of conditional distributions always exist, cf. [XXX] []. Now let µ andp be a probability measure

and a transition kernel on(S,B). The first step towards analyzing a Markov chain with initial

distributionµ and transition probability is to consider a single transition step:

Lemma 1.1(Two-stage model). Suppose thatX andY are random variables on a probability

space(Ω,A, P ) such thatX ∼ µ andp(X, dy) is a regular version of the conditional law ofY

givenX. Then

(X, Y ) ∼ µ⊗ p and Y ∼ µp,

whereµ⊗ p andµp are the probability measures onS × S andS respectively defined by

(µ⊗ p)(A) =
ˆ

µ(dx)

(
ˆ

p(x, dy)1A(x, y)

)
for A ∈ B ⊗ B,

(µp)(C) =

ˆ

µ(dx)p(x, C) for C ∈ B.

17
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Proof. LetA = B × C with B,C ∈ B. Then

P [(X, Y ) ∈ A] = P [X ∈ B, Y ∈ C] = E[P [X ∈ B, Y ∈ C|X ]]

= E[1{X∈B}P [Y ∈ C|X ]] = E[p(X,C);X ∈ B]

=

ˆ

B

µ(dx)p(x, C) = (µ⊗ p)(A), and

P [Y ∈ C] = P [(X, Y ) ∈ S × C] = (µp)(C).

The assertion follows since the product sets form a generating system for the productσ-algebra

that is stable under intersections.

1.1.1 Markov chains

Now suppose that we are given a probability measureµ on (S,B) and a sequencep1, p2, . . . of

stochastic kernels on(S,B). Recall that a stochastic processXn : Ω → S (n ∈ Z+) defined

on a probability space(Ω,A, P ) is called an(Fn) Markov chain with initial distributionµ and

transition kernelspn iff (Xn) is adapted to the filtration(Fn), X0 ∼ µ, and pn+1(Xn, ·) is a

version of the conditional distribution ofXn+1 givenFn for anyn ∈ Z+. By iteratively applying

Lemma 1.1, we see that w.r.t. the measure

P = µ⊗ p1 ⊗ p2 ⊗ · · · ⊗ pn onS{0,1,...,n}

the canonical processXk(ω0, ω1, . . . , ωn) = ωk (k = 0, 1, . . . , n) is a Markov chain with initial

distributionµ and transition kernelsp1, . . . , pn (e.g. w.r.t. the filtration generated by the process).

More generally, there exists a unique probability measurePµ on

Ωcan = S{0,1,2,... } = {(ωn)n∈Z+ : ωn ∈ S}

endowed with the productσ-algebraAcan generated by the mapsXn(ω) = ωn (n ∈ Z+) such

that w.r.t.Pµ, the canonical process(Xn)n∈Z+ is a Markov chain with initial distributionµ and

transition kernelspn. The probability measurePµ can be viewed as the infinite product

Pµ = µ⊗ p1 ⊗ p2 ⊗ p3 ⊗ . . . ,i.e.,

Pµ (dx0:∞) = µ(dx0)p1(x0, dx1)p2(x1, dx2)p3(x2, dx3) . . . .

We denote byP (n)
x the canonical measure for the Markov chain with initial distribution δx and

transition kernelspn+1, pn+2, pn+3, . . . .
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1.1. TRANSITION PROBABILITIES AND MARKOV CHAINS 19

Theorem 1.2(Markov properties ). Let(Xn)n∈Z+ be a stochastic process with state space(S,B)
defined on a probability space(Ω,A, P ). Then the following statements are equivalent:

(i) (Xn, P ) is a Markov chain with initial distributionµ and transition kernelsp1, p2, . . . .

(ii) X0:n ∼ µ⊗ p1 ⊗ p2 ⊗ · · · ⊗ pn w.r.t. P for anyn ≥ 0.

(iii) X0:∞ ∼ Pµ.

(iv) For anyn ∈ Z+, P (n)
Xn

is a version of the conditional distribution ofXn:∞ givenX0:n, i.e.,

E[F (Xn, Xn+1, . . . )|X0:n] = E
(n)
Xn

[F ] P -a.s.

for anyAcan-measurable functionF : Ωcan→ R+.

In the time homogeneous case, the properties (i)-(iv) are also equivalent to thestrong Markov

property:

(v) For any(FX
n ) stopping timeT : Ω→ Z+ ∪ {∞},

E
[
F (XT , XT+1, . . . )|FX

T

]
= EXT

[F ] P -a.s. on{T <∞}

for anyAcan-measurable functionF : Ωcan→ R+.

The proofs can be found in the lectures notes of Stochastic processes [11], Sections 2.2 and 2.3.

On a Polish state spaceS, any Markov chain can be represented as a random dynamical sys-

tem in the form

Xn+1 = Φn+1(Xn,Wn+1)

with independent random variablesX0,W1,W2,W3, . . . and measurable functionsΦ1,Φ2,Φ3, . . . ,

see e.g. Kallenberg[XXX ]. Often such representations arise naturally:

Example. 1) Random Walk on Rd. A d-dimensional Random Walk is defined by a recur-

rence relationXn+1 = Xn +Wn+1 with i.i.d. random variablesW1,W2,W3, ... : Ω→ Rd

and a independent initial valueX0 : Ω→ Rd.
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20 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

2) Reflected Random Walk onS ⊂ Rd. There are several possibilities for defining a re-

flected random walk on a measurable subsetS ⊂ Rd. The easiest is to set

Xn+1 = Xn +Wn+11{Xn+Wn+1∈S}

with i.i.d. random variablesWi : Ω→ Rd. One application where reflected random walks

are of interest is the simulation ofhard-core models. Suppose there ared particles of

diameterr in a boxB ⊂ R3. The configuration space of the system is given by

S =
{
(x1, . . . , xd) ∈ R3d : xi ∈ B and|xi − xj | > r ∀i 6= j

}
.

Then the uniform distribution onS is a stationary distribution of the reflected random walk

onS defined above.

3) State Space Models with additive noise.Several important models of Markov chains in

Rd are defined by recurrence relations of the form

Xn+1 = Φ(Xn) +Wn+1

with i.i.d. random variablesWi (i ∈ N). Besides random walks these include e.g.linear

state space modelswhere

Xn+1 = AXn +Wn+1 for some matrixA ∈ Rd×d,

and stochastic volatility models defined e.g. by

Xn+1 = Xn + eVn/2Wn+1,

Vn+1 = m+ α(Vn −m) + σZn+1

with constantsα, σ ∈ R+, m ∈ R, and i.i.d. random variablesWi andZi. In the latter

class of modelsXn stands for the logarithmic price of an asset andVn for the logarithmic

volatility.

1.1.2 Markov chains with absorption

Given an arbitrary Markov chain and a possibly time-dependent absorption rate on the state space

we can define another Markov chain that follows the same dynamics until it is eventually ab-

sorbed with the given rate. To this end we add an extra point∆ to the state spaceS where the

Markov chain stays after absorption. Let(Xn)n∈Z+ be the original Markov chain with state space
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S and transition probabilitiespn, and suppose that the absorption rates are given by measurable

functionswn : S × S → [0,∞], i.e., the survival (non-absorption) probability ise−wn(x,y) if the

Markov chain is jumping fromx to y in the n-th step. LetEn (n ∈ N) be independent exponential

random variables with parameter1 that are also independent of the Markov chain(Xn). Then we

can define the absorbed chains with state spaceS∪̇∆ recursively byXw
0 = X0,

Xw
n+1 =

{
Xn if Xw

n 6= ∆ and En+1 ≥ wn(Xn, Xn+1),

∆ otherwise.

Example (Absorption at the boundary). If D is a measurable subset ofS and we set

wn(x, y) =

{
0 for y ∈ D,
∞ for y ∈ S\D,

then the Markov chain is absorbed completely when exiting the domainD for the first time.

Lemma 1.3(Absorbed Markov chain). The process(Xw
n ) is a Markov chain onS∆ w.r.t. the

filtration Fn = σ(X0, X1, . . . , Xn, E1, . . . , En). The transition probabilities are given by

Pw
n (x, dy) = e−wn(x,y)pn(x, dy) +

(
1−
ˆ

e−wn(x,z)pn(x, dz)

)
δ∆(dy) for x ∈ S.

Pw
n (∆, ·) = δ∆

Proof. For any Borel subsetB of S,

P
[
Xw

n+1 ∈ B|Fn

]
= E [P [Xn+1 ∈ B,En+1 ≥ wn(Xn, Xn+1)|σ(X0:∞, E1:n)] |Fn]

= E
[
1B(Xn+1)e

−wn(Xn,Xn+1)|X0:n

]

=

ˆ

B

e−wn(Xn,y)pn(Xn, dy).

Here we have used the properties of conditional expectations and the Markov property for(Xn).

The assertion follows since theσ-algebra onS ∪ {∆} is generated by the sets inB, andB is

stable under intersections.

1.2 Generators and martingales

Let (Xn, Px) be a time-homogeneous Markov chain with transition probability p and initial dis-

tributionX0 = x Px-almost surely for anyx ∈ S.
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1.2.1 Generator

The average change off(Xn) in one transition step of the Markov chain starting atx is given by

(Lf)(x) = Ex[f(X1)− f(X0)] =

ˆ

p(x, dy)(f(y)− f(x)). (1.2.1)

Definition (Generator of a time-homogeneous Markov chain).

The linear operatorL : Fb(S)→ Fb(S) defined by(1.2.1)is called thegeneratorof the Markov

chain(Xn, Px).

Examples. 1) Simple random walk onZ. Herep(x, ·) = 1
2
δx+1 +

1
2
δx−1. Hence the gener-

ator is given by

(Lf)(x) = 1

2
(f(x+ 1) + f(x− 1))−f(x) = 1

2
[(f(x+ 1)− f(x))− (f(x)− f(x− 1))] .

2) Random walk onRd. A random walk onRd with increment distributionµ can be repre-

sented as

Xn = x+
n∑

k=1

Wk (n ∈ Z+)

with independent random variablesWk ∼ µ. The generator is given by

(Lf)(x) =
ˆ

f(x+ w)µ(dw)− f(x) =
ˆ

(f(x+ w)− f(x))µ(dw).

3) Markov chain with absorption. Suppose thatL is the generator of a time-homogeneous

Markov chain with state spaceS. Then the generator of the corresponding Markov chain

onS∪̇{∆} with absorption ratew(x, y) is given by

(Lwf)(x) = (pwf)(x)− f(x) = p
(
e−w(x,·)f

)
− f(x)

= L
(
e−w(x,·)f

)
(x) +

(
e−w(x,x) − 1

)
f(x)

for any bounded functionf : S ∪ {∆} → R with f(0) = 0, and for anyx ∈ S.

1.2.2 Martingale problem

The generator can be used to identify martingales associated to a Markov chain. Indeed if(Xn, P )

is an(Fn) Markov chain with transition kernelp then forf ∈ Fb(S),

E [f(Xk+1)− f(Xk)|Fk] = EXk
[f(X1)− f(X0)] = (Lf)(Xk) P -a.s.∀k ≥ 0.
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Hence the processM [f ] defined by

M [f ]
n = f(Xn)−

n−1∑

k=0

(Lf)(Xk), n ∈ Z+, (1.2.2)

is an(Fn) martingale. We even have:

Theorem 1.4(Martingale problem characterization of Markov chains). LetXn : Ω→ S be

an (Fn) adapted stochastic process defined on a probability space(Ω,A, P ). Then(Xn, P ) is

an (Fn) Markov chain with transition kernelp if and only ifM [f ], defined by(1.2.2)is an (Fn)

martingale for any functionf ∈ Fb(S).

The proof is left as an exercise.

The result in Theorem 1.4 can be extended to the time-inhomogeneous case. Indeed, if(Xn, P )

is an inhomogeneous Markov chain with state spaceS and transition kernelspn, n ∈ N, then

the time-space procesŝXn := (n,Xn) is a time-homogeneous Markov chains with state space

Z+ × S. Let

(L̂f)(n, x) =
ˆ

pn+1(x, dy)(f(n+ 1, y)− f(n, x))

= Ln+1f(n+ 1, ·)(x) + f(n+ 1, x)− f(n, x)

denote the correspondingtime-space generator.

Corollary 1.5 (Time-dependent martingale problem). LetXn : Ω → S be an(Fn) adapted

stochastic process defined on a probability space(Ω,A, P ). Then(Xn, P ) is an (Fn) Markov

chain with transition kernelsp1, p2, . . . if and only if the processes

M [f ]
n := f(n,Xn)−

n−1∑

k=0

(L̂f)(k,Xk) (n ∈ Z+)

are (Fn) martingales for all bounded functionsf ∈ Fb(Z+ × S).

Proof. By definition, the process(Xn, P ) is a Markov chain with transition kernelspn if and

only if the time-space process((n,Xn), P ) is a time-homogeneous Markov chain with transition

kernel

p̂((n, x), ·) = δn+1 ⊗ pn+1(x, ·).

The assertion now follows from Theorem 1.4.
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In applications it is often not possible to identify relevant martingales explicitly. Instead one

is frequently using supermartingales (or, equivalently, submartingales) to derive upper or lower

bounds on expectation values one is interested in. It is thenconvenient to drop the integrability

assumption in the martingale definition:

Definition (Non-negative supermartingale). A real-valued stochastic process(Mn, P ) is called

a non-negative supermartingalew.r.t. a filtration(Fn) if and only if for anyn ∈ Z+,

(i) Mn ≥ 0 P -almost surely,

(ii) Mn isFn-measurable, and

(iii) E[Mn+1|Fn] ≤Mn P -almost surely.

The optional stopping theorem and the supermartingale convergence theorem have versions for

non-negative supermartingales. Indeed by Fatou’s lemma,

E[MT ;T <∞] ≤ lim inf
n→∞

E[MT∧n] ≤ E[M0]

holds for anarbitrary (Fn) stopping timeT : Ω→ Z+ ∪ {∞}. Similarly, the limit

M∞ = lim
n→∞

Mn

exists almost surely in[0,∞).

1.2.3 Potential theory for Markov chains

Let (Xn, Px) be a canonical time-homogeneous Markov chain with state space(S,B) and

generator

(Lf)(x) = (pf)(x)− f(x) = Ex[f(X1)− f(X0)]

By Theorem 1.4,

M [f ]
n = f(Xn)−

∑

i<n

(Lf)(Xi)

is a martingale w.r.t.(FX
n ) andPx for anyx ∈ S andf ∈ Fb(S). Similarly, one easily verifies

that if the inequalityLf ≤ −c holds for non-negative functionsf, c ∈ F+(S), then the process

M [f,c]
n = f(Xn) +

∑

i<n

c(Xi)

is a non-negative supermartingale w.r.t.(FX
n ) andPx for any x ∈ S. By applying optional

stopping to these processes, we will derive upper bounds forvarious expectations of the Markov
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chain.

LetD ∈ B be a measurable subset ofS. We define theexterior boundary ofD w.r.t. the Markov

chain as

∂D =
⋃

x∈D
suppp(x, ·) \D

where the support supp(µ) of a measureµ on (S,B) is defined as the smallest closed set A such

thatµ vanishes onAc. Thus, open sets contained in the complement ofD∪∂D can not be reached

by the Markov chain in a single transition step fromD.

Examples. (1). For the simple random walk onZd, the exterior boundary of a subsetD ⊂ Zd

is given by

∂D = {x ∈ Zd \D : |x− y| = 1 for somey ∈ D}.

(2). For the ball walk onRd with transition kernel

p(x, ·) = Unif (B(x, r)) ,

the exterior boundary of a Borel setD ∈ B is ther-neighbourhood

∂D = {x ∈ Rd \D : dist(x,D) ≤ r}.

Let

T = min{n ≥ 0 : Xn ∈ Dc}

denote the first exit time fromD. Then

XT ∈ ∂D Px-a.s. on{T <∞} for anyx ∈ D.

Our aim is to compute or bound expectations of the form

u(x) = Ex

[
e
−

T−1∑
n=0

w(Xn)
f(XT );T <∞

]
+ Ex

[
T−1∑

n=0

e
−

n−1∑
i=0

w(Xi)
c(Xn)

]
(1.2.3)

for given non-negative measurable functionsf : ∂D → R+, c, w : D → R+. The general

expression (1.2.3) combines a number of important probabilities and expectations related to the

Markov chain:

Examples. (1). w ≡ 0, c ≡ 0, f ≡ 1: Exit probability from D:

u(x) = Px[T <∞]
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(2). w ≡ 0, c ≡ 0, f = 1B, B ⊂ ∂D : Law of the exit point XT :

u(x) = Px[XT ∈ B;T <∞].

For instance if∂D is the disjoint union of setsA andB andf = 1B then

u(x) = Px[TB < TA].

(3). w ≡ 0, f ≡ 0, c ≡ 1: Mean exit time from D:

u(x) = Ex[T ]

(4). w ≡ 0, f ≡ 0, c = 1B: Average occupation time ofB before exitingD:

u(x) = GD(x,B) where

GD(x,B) = Ex

[
T−1∑

n=0

1B(Xn)

]
=

∞∑

n=0

Px[Xn ∈ B, n < T ].

GD is called thepotential kernel or Green kernel of the domainD, it is a kernel of

positive measure.

(5). c ≡ 0, f ≡ 1, w ≡ λ for some constantλ ≥ 0: Laplace transform of mean exit time:

u(x) = Ex[exp (−λT )].

(6). c ≡ 0, f ≡ 1, w = λ1B for someλ > 0, B ⊂ D: Laplace transform of occupation time:

u(x) = Ex

[
exp

(
−λ

T−1∑

n=0

1B(Xn)

)]
.

The next fundamental theorem shows that supersolutions to an associated boundary value prob-

lem provide upper bounds for expectations of the form (1.2.3). This observation is crucial for

studying stability properties of Markov chains.

Theorem 1.6(Maximum principle ). Supposev ∈ F+(S) is a non-negative function satisfying

Lv ≤ (ew − 1)v − ewc onD, (1.2.4)

v ≥ f on∂D.

Thenu ≤ v.
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The proof is straightforward application of the optional stopping theorem for non-negative super-

martingales, and will be given below. The expectationu(x) can be identified precisely as the

minimal non-negative solution of the corresponding boundary value problem:

Theorem 1.7(Dirichlet problem, Poisson equation, Feynman-Kac formula). The functionu

is theminimal non-negative solutionof the boundary value problem

Lv = (ew − 1)v − ewc onD, (1.2.5)

v = f on∂D.

If c ≡ 0, f is bounded andT <∞ Px-almost surely for anyx ∈ S, then u is theunique bounded

solution of (1.2.5). We first prove both theorems in the casew ≡ 0. The extension to the general

case will be discussed afterwards.

Proof of Theorem 1.6 forw ≡ 0: Let v ∈ F+(S) such thatLv ≤ −c onD. Then the process

Mn = v(Xn) +
n−1∑

i=0

c(Xi)

is a non-negative supermartingale. In particular,(Mn) converges almost surely to a limit

M∞ ≥ 0, and thusMT is defined and non-negative even on{T =∞}. If v ≥ f on∂D then

MT ≥ f(XT )1{T<∞} +

T−1∑

i=0

c(Xi). (1.2.6)

Therefore, by optional stopping combined with Fatou’s lemma,

u(x) ≤ Ex[MT ] ≤ Ex[M0] = v(x) (1.2.7)

Proof of Theorem 1.7 forw ≡ 0: By Theorem 1.6, all non-negative solutionsv of (1.2.5) dom-

inateu from above. This proves minimality. Moreover, ifc ≡ 0, f is bounded, andT < ∞
Px-a.s. for anyx, then(Mn) is a bounded martingale, and hence all inequalities in (1.2.6) and

(1.2.7) are equalities. Thus if a non-negative solution of (1.2.5) exists then it coincides withu,

i.e., uniqueness holds.

It remains to verify thatu satisfies (1.2.4). This can be done by conditioning on the first step of
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the Markov chain: Forx ∈ D, we haveT ≥ 1 Px-almost surely. In particular, ifT <∞ thenXT

coincides with the exit point of the shifted Markov chain(Xn+1)n≥0, andT − 1 is the exit time

of (Xn+1). Therefore, the Markov property implies that

Ex

[
f(XT )1{T<∞} +

∑

n<T

c(Xn)|X1

]

= c(x) + Ex

[
f(XT )1{T<∞} +

∑

n<T−1

c(Xn+1)|X1

]

= c(x) + EX1

[
f(XT )1{T<∞} +

∑

n<T

c(Xn)

]

= c(x) + u(X1) Px-almost surely,

and hence

u(x) = Ex [c(x) + u(X1)] = c(x) + (pu)(x),

i.e., Lu(x) = −c(x).

Moreover, forx ∈ ∂D, we haveT = 0 Px-almost surely and hence

u(x) = Ex[f(X0)] = f(x).

We now extend the results to the casew 6≡ 0. This can be done by representing the expectation

in (1.2.5) as a corresponding expectation withw ≡ 0 for an absorbed Markov chain:

Reduction of general case tow ≡ 0: We consider the Markov chain(Xw
n ) with absorption rate

w defined on the extended state spaceS∪̇{∆} byXw
0 = X0,

Xw
n+1 =

{
Xn+1 if Xw

n 6= ∆ andEn+1 ≥ w(Xn),

∆ otherwise,

with independent Exp(1) distributed random variablesEi(i ∈ N) that are independent of(Xn) as

well. Settingf(∆) = c(∆) = 0 one easily verifies that

u(x) = Ex[f(X
w
T );T <∞] + Ex[

T−1∑

n=0

c(Xw
n )].

By applying Theorem 1.6 and 1.7 withw ≡ 0 to the Markov chain(Xw
n ), we see thatu is the

minimal non-negative solution of

Lwu = −c onD, u = f on∂D, (1.2.8)
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and any non-negative supersolutionv of (1.2.8) dominatesu from above. Moreover, the boundary

value problem (1.2.8) is equivalent to (1.2.5) since

Lwu = e−wpu− u = e−wLu+ (e−w − 1)u = −c
if and only if Lu = (ew − 1)u− ewc.

This proves Theorem 1.6 and the main part of Theorem 1.7 in thecasew 6≡ 0. The proof of the

last assertion of Theorem 1.7 is left as an exercise.

Example (Random walks with bounded steps). We consider a random walk onR with tran-

sition stepx 7→ x +W where the incrementW : Ω → R is a bounded random variable, i.e.,

|W | ≤ r for some constantr ∈ (0,∞). Our goal is to derive tail estimates for passage times.

Ta = min{n ≥ 0 : Xn ≥ a}.

Note thatTa is the first exit time from the domainD = (−∞, a). Since the increments are

bounded byr, ∂D ⊂ [a, a+r]. Moreover, the moment generating functionZ(λ) = E[exp (λW )],

λ ∈ R, is bounded byeλr, and forλ ≤ 0, the functionu(x) = eλx satisfies

(Lu)(x) = Ex

[
eλ(x+W )

]
− eλx = (Z(λ)− 1) eλx for x ∈ D,

u(x) ≥ eλ(a+r) for x ∈ ∂D.

By applying Theorem 1.6 with the constant functionsw and f satisfyingew(x) ≡ Z(λ) and

f(x) ≡ eλ(a+r) we conclude that

Ex

[
Z(λ)−Taeλ(a+r);T <∞

]
≤ eλx ∀x ∈ R (1.2.9)

We now distinguish cases:

(i) E[W ] > 0 : In this case, by the Law of large numbers,Xn → ∞ Px-a.s., and hence

Px[Ta <∞] = 1 for anyx ∈ R. Moreover, forλ < 0 with |λ| sufficiently small,

Z(λ) = E[eλW ] = 1 + λE[W ] +O(λ2) < 1.

Therefore, (1.2.9) yields the exponential moment bound

Ex

[(
1

Z(λ)

)Ta
]
≤ e−λ(a+r−x) (1.2.10)

for anyx ∈ R andλ < 0 as above. In particular, by Markov’s inequality, the passage time

Ta has exponential tails:

Px[Ta ≥ n] ≤ Z(λ)nEx[Z(λ)
−Ta] ≤ Z(λ)ne−λ(a+r−x).
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(ii) E[W ] = 0 : In this case, we may haveZ(λ) ≥ 1 for anyλ ∈ R, and thus we can not

apply the argument above. Indeed, it is well known that for instance for the simple random

walk onZ even the first momentEx[Ta] is infinite, cf. [Eberle:Stochastic processes] [11].

However, we may apply a similar approach as above to the exit timeTR\(−a,a) from a finite

interval. We assume thatW has a symmetric distribution, i.e.,W ∼ −W . By choosing

u(x) = cos(λx) for someλ > 0 with λ(a+ r) < π/2, we obtain

(Lu)(x) = E[cos(λx+ λW )]− cos(λx)
= cos(λx)E[cos(λW )] + sin(λx)E[sin(λW )]− cos(λx)
= (C(λ)− 1) cos(λx)

whereC(λ) := E[cos(λW )], andcos(λx) ≥ cos (λ(a+ r)) > 0 for x ∈ ∂(−a, a). Here

we have used that∂(−a, a) ⊂ [−a − r, a + r] andλ(a + r) < π/2. If W does not vanish

almost surely thenC(λ) < 1 for sufficiently smallλ. Hence we obtain similarly as above

the exponential tail estimate

Px

[
T(−a,a)c ≥ n

]
≤ C(λ)nE

[
C(λ)−T(−a,a)c

]
≤ C(λ)n

cos(λx)

cos(λ(a+ r))
for |x| < a.

1.3 Lyapunov functions and recurrence

The results in the last section already indicated that superharmonic functions can be used to con-

trol stability properties of Markov chains, i.e., they can serve as stochastic Lyapunov functions.

This idea will be developed systematically in this and the next section. As before we consider a

time-homogeneous Markov chain(Xn, Px) with generatorL = p − I on a Polish state spaceS

endowed with the Borelσ-algebraB. We start with the following simple observation:

Lemma 1.8(Locally Superharmonic functions and supermartingales). LetA ∈ B and sup-

pose thatV ∈ F+(S) is a non-negative function satisfying

LV ≤ −c onS \ A

for some constantc ≥ 0. Then the process

Mn = V (Xn∧TA
) + c · (n ∧ TA) (1.3.1)

is a non-negative supermartingale.

The elementary proof is left as an exercise.
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1.3.1 Recurrence of sets

The first return time to a setA is given by

T+
A = inf{n ≥ 1 : Xn ∈ A}.

Notice that

TA = T+
A · 1{X0 /∈A},

i.e., the first hitting time and the first return time coincideif and only if the chain is not started in

A.

Definition (Harris recurrence and positive recurrence). A setA ∈ B is calledHarris recur-

rent iff

Px[T
+
A <∞] = 1 for anyx ∈ A.

It is calledpositive recurrentiff

Ex[T
+
A ] <∞ for anyx ∈ A.

The name “Harris recurrence” is used to be able to differentiate between several possible notions

of recurrence that are all equivalent on a discrete state space but not necessarily on a general state

space, cf. [Meyn and Tweedie: Markov Chains and Stochastic Stability] [25]. Harris recurrence

is the most widely used notion of recurrence on general statespaces. By the strong Markov

property, the following alternative characterisations holds:

Exercise. Prove that a setA ∈ B is Harris recurrent if and only if

Px[Xn ∈ A infinitely often] = 1 for anyx ∈ A

We will now show that the existence of superharmonic functions with certain properties provides

sufficient conditions for non-recurrence, Harris recurrence and positive recurrence respectively.

Below, we will see that for irreducible Markov chains on countable spaces these conditions are

essentially sharp. The conditions are:

(LT) There exists a functionV ∈ F+(S) andy ∈ S such that

LV ≤ 0 onAc andV (y) < inf
A
V.

(LR) There exists a functionV ∈ F+(S) such that

LV ≤ 0 onAc andT{V >c} <∞ Px-a.s. for anyx ∈ S andc ≥ 0.
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(LP) There exists a functionV ∈ F+(S) such that

LV ≤ −1 onAc andpV <∞ onA.

Theorem 1.9. (Foster-Lyapunov conditions for non-recurrence, Harris recurrence and

positive recurrence)

(1). If (LT ) holds then

Py[TA <∞] ≤ V (y)/ inf
A
V < 1.

(2). If (LR) holds then

Px[TA <∞] = 1 for anyx ∈ S.

In particular, the setA is Harris recurrent.

(3). If (LP ) holds then

Ex[TA] ≤ V (x) <∞ for anyx ∈ Ac, and

Ex[T
+
A ] ≤ (pV )(x) <∞ for anyx ∈ A.

In particular, the setA is positive recurrent.

Proof: (1). If LV ≤ 0 onAc then by Lemma 1.8 the processMn = V (Xn∧TA
) is a non-negative

supermartingale w.r.t.Px for any x. Hence by optional stopping and Fatou’s lemma,

V (y) = Ey[M0] ≥ Ey[MTA
;TA <∞] ≥ Py[TA <∞] · inf

A
V.

Assuming(LT ), we obtainPy[TA <∞] < 1.

(2). Now assume that(LR) holds. Then by applying optional stopping to(Mn), we obtain

V (x) = Ex[M0] ≥ Ex[MT{V >c}
] = Ex[V (XTA∧T{V >c}

)] ≥ cPx[TA =∞]

for any c > 0 andx ∈ S. Here we have used thatT{V >c} < ∞ Px-almost surely and

henceV (XTA∧T{V >c}
) ≥ c Px-almost surely on{TA = ∞}. By letting c tend to infinity,

we conclude thatPx[TA =∞] = 0 for anyx.

(3). Finally, suppose thatLV ≤ −1 onAc. Then by Lemma 1.8,

Mn = V (Xn∧TA
) + n ∧ TA
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is a non-negative supermartingale w.r.t.Px for anyx. In particular,(Mn) convergesPx-

almost surely to a finite limit, and hencePx[TA <∞] = 1. Thus by optional stopping and

sinceV ≥ 0,

Ex[TA] ≤ Ex[MTA
] ≤ Ex[M0] = V (x) for anyx ∈ S. (1.3.2)

Moreover, we can also estimate the first return time by conditioning on the first step. In-

deed, forx ∈ A we obtain by (1.3.2):

Ex[T
+
A ] = Ex

[
Ex[T

+
A |X1]

]
= Ex [EX1 [TA]] ≤ Ex[V (X1)] = (pV )(x)

ThusA is positive recurrent if(LP ) holds.

Example (State space model onRd). We consider a simple state space model with one-step

transition

x 7→ x+ b(x) +W

whereb : Rd → Rd is a measurable vector field andW : Ω→ Rd is a square-integrable random

vector withE[W ] = 0 andCov(W i,W j) = δij . As a Lyapunov function we try

V (x) = |x|2/ε for some constantε > 0.

A simple calculation shows that

ε(LV )(x) = E
[
|x+ b(x) +W |2

]
− |x|2

= |x+ b(x)|2 + E[|W |2]− |x|2 = 2x · b(x) + |b(x)|2 + d.

Therefore, the conditionLV (x) ≤ −1 is satisfied if and only if

2x · b(x) + |b(x)|2 + d ≤ −ε.

By choosingε small enough we see that positive recurrence holds for ballB(0, r) with r suffi-

ciently large provided

lim sup
|x|→∞

(
2x · b(x) + |b(x)|2

)
< −d. (1.3.3)

This condition is satisfied in particular if outside of a ball, the radial componentbr(x) = x
|x| · b(x)

of the drift satisfies(1− δ)br(x) ≤ − d
2|x| for someδ > 0, and|b(x)|2/r ≤ −δ · br(x).
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Exercise. Derive a sufficient condition similar to (1.3.3) for positive recurrence of state space

models with transition step

x 7→ x+ b(x) + σ(x)W

whereb andW are chosen as in the example above andσ is a measurable function fromRd to

Rd×d.

Example(Recurrence and transience for the simple random walk onZd). The simple random

walk is the Markov chain onZd with transition probabilitiesp(x, y) = 1
2d

if |x − y| = 1 and

p(x, y) = 0 otherwise. The generator is given by

(Lf)(x) = 1

2d
(∆Zdf)(x) =

1

2d

d∑

i=1

[(f(x+ ei)− f(x))− (f(x)− f(x− ei))] .

In order to find suitable Lyapunov functions, we approximatethe discrete Laplacian onZd by the

Laplacian onRd. By Taylor’s theorem, forf ∈ C4(Rd),

f(x+ ei)− f(x) = ∂if(x) +
1

2
∂2iif(x) +

1

6
∂3iiif(x) +

1

24
∂4iiiif(ξ),

f(x− ei)− f(x) = −∂if(x) +
1

2
∂2iif(x)−

1

6
∂3iiif(x) +

1

24
∂4iiiif(η),

whereξ andη are intermediate points on the line segments betweenx andx + ei, x andx − ei
respectively. Adding these2d equations, we see that

∆Zdf(x) = ∆f(x) +R(x), where (1.3.4)

|R(x)| ≤ d

12
sup
B(x,1)

‖∂4f‖. (1.3.5)

This suggests to choose Lyapunov functions that are close toharmonic functions onRd outside a

ball. However, since there is a perturbation involved, we will not be able to use exactly harmonic

functions, but we will have to choose functions that are strictly superharmonic instead. We try

V (x) = |x|p for somep ∈ R.

By the expression for the Laplacian in polar coordinates,

∆V (x) =

(
d2

dr2
+
d− 1

r

d

dr

)
rp

= p · (p− 1 + d− 1) rp−2
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wherer = |x|. In particular,V is superharmonic onRd if and only ifp ∈ [0, 2−d] orp ∈ [2−d, 0]
respectively. The perturbation term can be controlled by noting that there exists a finite constant

C such that

‖∂4V (x)‖ ≤ C · |x|p−4 (Exercise).

This bound shows that the approximation of the discrete Laplacian by the Laplacian onRd im-

proves if|x| is large. Indeed by (1.3.4) and (1.3.5) we obtain

LV (x) =
1

2d
∆ZdV (x)

≤ p

2d
(p+ d− 2)rp−2 +

C

2d
rp−4.

ThusV is superharmonic forL outside a ball providedp ∈ (0, 2−d) orp ∈ (2−d, 0) respectively.

We now distinguish cases:

d > 2 : In this case we can choosep < 0 such thatLV ≤ 0 outside some ballB(0, r0). Sincerp

is decreasing, we have

V (x) < inf
B(0,r0)

V for anyx with |x| > r0,

and hence by Theorem 1.9,

Px[TB(0,r0) <∞] < 1 whenever|x| > r0.

Theorem 1.10 below shows that this implies that any finite setis transient, i.e., it is almost

surely visited only finitely many times by the random walk with an arbitrary starting point.

d < 2 : In this case we can choosep ∈ (0, 2− d) to obtainLV ≤ 0 outside some ballB(0, r0).

Now V (x)→∞ as|x| → ∞. Sincelim sup |Xn| =∞ almost surely, we see that

T{V >c} <∞ Px-almost surely for anyx ∈ Zd andc ∈ R+.

Therefore, by Theorem 1.9, the ballB(0, r0) is (Harris)recurrent . By irreducibility this

implies that any statex ∈ Zd is recurrent, cf. Theorem 1.10 below.

d = 2 : This is the critical case and therefore more delicate. The Lyapunov functions considered

above can not be used. Since a rotationally symmetric harmonic function for the Laplacian

onR2 is log |x|, it is natural to try choosingV (x) = (log |x|)α for someα ∈ R+. Indeed,

one can show by choosing appropriately that the Lyapunov condition for recurrence is

satisfied in this case as well:
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Exercise (Recurrence of the two-dimensional simple random walk). Show by choosing an

appropriate Lyapunov function that the simple random walk on Z2 is recurrent.

Exercise(Recurrence and transience of Brownian motion). A continuous-time stochastic pro-

cess
(
(Bt)t∈[0,∞), Px

)
taking values inRd is called aBrownian motion starting at xif the sample

pathst 7→ Bt(ω) are continuous,B0 = x Px-a.s., and for everyf ∈ C2
b (R

d), the process

M
[f ]
t = f(Bt)−

1

2

ˆ t

0

∆f(Bs)ds

is a martingale w.r.t. the filtrationFB
t = σ(Bs : s ∈ [0, t]). LetTa = inf{t ≥ 0 : |Bt| = a}.

a) ComputePx[Ta < Tb] for a < |x| < b.

b) Show that ford ≤ 2, a Brownian motion is recurrent in the sense thatPx[Ta <∞] = 1 for

anya < |x|.

c) Show that ford ≥ 3, a Brownian motion is transient in the sense thatPx[Ta < ∞] → 0 as

|x| → ∞.

You may assume the optional stopping theorem and the martingale convergence theorem in con-

tinuous time without proof. You may also assume that the Laplacian applied to a rotationally

symmetric functiong(x) = γ(|x|) is given by

∆g(x) = r1−d d

dr

(
rd−1 d

dr
γ

)
(r) =

d2

dr2
γ(r) +

d− 1

r

d

dr
γ(r) wherer = |x|.

(How can you derive this expression rapidly if you do not remember it?)

1.3.2 Global recurrence

For irreducible Markov chains on countable state spaces, recurrence respectively transience of an

arbitrary finite set already implies that recurrence resp. transience holds for any finite set. This

allows to show that the Lyapunov conditions for recurrence and transience are both necessary

and sufficient. On general state spaces this is not necessarily true, and proving corresponding

statements under appropriate conditions is much more delicate. We recall the results on countable

state spaces, and we state a result on general state spaces without proof. For a thorough treatment

of recurrence properties for Markov chains on general statespaces we refer to the monograph

“Markov chains and stochastic stability” by Meyn and Tweedie, [25].
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a) Countable state space

Suppose thatp(x, y) = p(x, {y}) are the transition probabilities of a homogeneous Markov chain

(Xn, Px) taking values in a countable setS, and letTy andT+
y denote the first hitting resp. return

time to a set{y} consisting of a single statey ∈ S.

Definition (Irreducibility on countable state spaces). The transition matrixp and the Markov

chain(Xn, Px) are calledirreducible if and only if

(1). ∀x, y ∈ S : ∃n ∈ Z+ : pn(x, y) > 0, or equivalently, if and only if

(2). ∀x, y ∈ S : Px[Ty <∞] > 0.

If the transition matrix is irreducible then recurrence andpositive recurrence of different states

are equivalent to each other, since between two visits to a recurrent state the Markov chain will

visit any other state with positive probability:

Theorem 1.10(Recurrence and positive recurrence of irreducible Markov chains). Suppose

thatS is countable and the transition matrixp is irreducible.

(1). The following statements are all equivalent:

(i) There exists a finite recurrent setA ⊂ S.

(ii) For any x ∈ S, the set{x} is recurrent.

(iii) For any x, y ∈ S,

Px[Xn = y infinitely often] = 1.

(2). The following statements are all equivalent:

(i) There exists a finite positive recurrent setA ⊂ S.

(ii) For any x ∈ S, the set{x} is positive recurrent.

(iii) For any x, y ∈ S,
Ex[Ty] <∞.

The proof is left as an exercise, see also the lecture notes on“Stochastic Processes”, [11]. The

Markov chain is called(globally) recurrent iff the equivalent conditions in (1) hold, and tran-

sient iff these conditions do not hold. Similarly, it is called (globally) positive recurrent iff the
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conditions in (2) are satisfied. By the example above, ford ≤ 2 the simple random walk onZd is

globally recurrent but not positive recurrent. Ford ≥ 3 it is transient.

As a consequence of Theorem 1.10, we obtain Lyapunov conditions for transience, recurrence

and positive recurrence on a countable state space that are both necessary and sufficient:

Corollary 1.11 (Foster-Lyapunov conditions for recurrence on a countable state space).

Suppose thatS is countable and the transition matrixp is irreducible. Then:

1) The Markov chain is transient if and only if there exists a finite setA ⊂ S and a function

V ∈ F+(S) such that(LT ) holds.

2) The Markov chain is recurrent if and only if there exists a finite setA ⊂ S and a function

V ∈ F+(S) such that

(LR′) LV ≤ 0 onAc, and{V ≤ c} is finite for anyc ∈ R+.

3) The Markov chain is positive recurrent if and only if thereexists a finite setA ⊂ S and a

functionV ∈ F+(S) such that(LP ) holds.

Proof: Sufficiency of the Lyapunov conditions follows directly by Theorems 1.9 and 1.10: If

(LT ) holds then by 1.9 there existsy ∈ S such thatPy[TA <∞], and hence the Markov chain is

transient by 1.10. Similarly, if(LP ) holds thenA is positive recurrent by 1.9, and hence global

positive recurrence holds by 1.10. Finally, if(LR′) holds and the state space is not finite, then

for anyc ∈ R+, the set{V ≤ c} is not empty. Therefore,(LR) holds by irreducibility, and the

recurrence follows again from 1.9 and 1.10. IfS is finite then any irreducible chain is globally

recurrent.

We now prove that the Lyapunov conditions are alsonecessary:

1) If the Markov chain is transient then we can find a statex ∈ S and a finite setA ⊂ S such

that the functionV (x) = Px[TA <∞] satisfies

V (x) < 1 = inf
A
V.

By Theorem 1.7,V is harmonic onAc and thus(LT ) is satisfied.

2) Now suppose that the Markov chain is recurrent. IfS is finite then(LR′) holds withA = S

for an arbitrary functionV ∈ F+(S). If S is not finite then we choose a finite setA ⊂ S

and an arbitrary decreasing sequence of setsDn ⊂ S such thatA ⊂ Dc
1, D

c
n is finite for

anyn, and
⋂
Dn = ∅, and we set

Vn(x) = Px[TDn < TA].
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ThenVn ≡ 1 onDn and asn→∞,

Vn(x)ց Px[TA =∞] = 0 for anyx ∈ S.

SinceS is countable, we can apply a diagonal argument to extract a subsequence such that

V (x) :=

∞∑

k=0

Vnk
(x) <∞ for anyx ∈ S.

By Theorem 1.7, the functionsVn andV are harmonic onS \A. Moreover,V ≥ k onDnk
.

Thus the sub-level sets ofV are finite, and(LR′) is satisfied.

3) Finally if the chain is positive recurrent then for an arbitrary finite setA ⊂ S, the function

V (x) = Ex[TA] is finite and satisfiesLV = −1 onAc. Since

(pV )(x) = Ex [EX1 [TA]] = Ex

[
Ex[T

+
A |X1]

]
= Ex[T

+
A ] <∞

for anyx, condition(LP ) is satisfied.

b) Extension to locally compact state spaces

Extensions of Corollary 1.11 to general state spaces are nottrivial. Suppose for example thatS

is locally compact, i.e., there exists a sequence of compact setsKn ⊂ S such thatS =
⋃
n∈N

Kn.

Let p be a transition kernel on(S,B), and letλ be a positive measure on(S,B) with full support,

i.e., λ(B) > 0 for any non-empty open setB ⊂ S. For instance,S = Rd andλ the Lebesgue

measure.

Definition (λ-irreducibility and Feller property ).

1) The transition kernelp is calledλ-irreducible if and only if for anyx ∈ S and for any

Borel setA ∈ B with λ(A) > 0, there existsn ∈ Z+ such thatpn(x,A) > 0.

2) p is calledFeller iff

(F) pf ∈ Cb(S) for anyf ∈ Cb(S)

One of the difficulties on general state spaces is that there are different concepts of irreducibility.

In general,λ-irreducibility is a strictly stronger condition thantopological irreducibility which
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means that every non-empty open setB ⊂ S is accessible from any statex ∈ S.

The following equivalences are proven in Chapter 9 of [Meyn and Tweedie: Markov Chains and

Stochastic Stability] [25]:

Theorem 1.12(Necessary and sufficient conditions for Harris recurrence on a locally com-

pact state space). Suppose thatp is aλ-irreducible Feller transition kernel on(S,B). Then the

following statements are all equivalent:

(i) There exists a compact setK ⊆ S and a functionV ∈ F+(S) such that

(LR′′) LV ≤ 0 onKc, and{V ≤ c} is compact for anyc ∈ R+.

(ii) There exists a compact setK ⊂ S such thatK is Harris recurrent.

(iii) Every non-empty open BallB ⊂ S is Harris recurrent.

(iv) For anyx ∈ S and any setA ∈ B with λ(A) > 0,

Px[Xn ∈ A infinitely often] = 1.

The idea of the proof is to show at first that ifp is λ-irreducible and Feller then for any compact

setK ⊂ S, there exist a probability mass function(an) onZ+, a probability measureν on(S,B),
and a constantε > 0 such that the minorization condition

∞∑

n=0

anp
n(x, ·) ≥ εν (1.3.6)

holds for anyx ∈ K. In the theory of Markov chain on general state spaces, a setK with this

property is calledpetite. Given a petite setK and a Lyapunov condition onKc one can then

find a strictly increasing sequence of regeneration timesTn (n ∈ N) such that the law ofXTn

dominates the measureεν from above. By the strong Markov property, the Markov chain makes

a “fresh start” with probabilityε at each of the regeneration times, and during each excursion

between two fresh start it visits a given setA satisfyingλ(A) > 0 with a fixed strictly positive

probability.

Example (Recurrence of Markov chains onR).
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1.4 The space of probability measures

A central topic in Markov chain theory is the existence, uniqueness and convergence of Markov

chains to stationary distributions. To this end we will consider different topologies and metrics

on the spaceP(S) of probability measures on a Polish spaceS endowed with its Borelσ-algebra

B. In this section, we study weak convergence of probability measures, and applications to exis-

tence of stationary distributions. Convergence in Wasserstein and total variation metrics will be

considered in Chapter 7. A useful additional reference for this section is the classical monograph

“Convergence of probability measures” by Billingsley [2].

Recall thatP(S) is a convex subset of the vector space

M(S) = {αµ+ − βµ− : µ+, µ− ∈ P(S), α, β ≥ 0}

consisting of all finite signed measures on(S,B). By M+(S) we denote the set of all (not

necessarily finite) non-negative measures on(S,B). For a measureµ and a measurable function

f we set

µ(f) =

ˆ

fdµ whenever the integral exists.

Definition (Invariant measures, stationary distribution). A measureµ ∈ M+(S) is called

invariant w.r.t. a transition kernelp on (S,B) iff µp = µ, i.e., iff
ˆ

µ(dx)p(x,B) = µ(B) for anyB ∈ B.

An invariant probability measure is also called astationary (initial) distribution or an equilib-

rium of p.

Exercise. Show that the set of invariant probability measures for a given transition kernelp is a

convex subset ofP(S).

1.4.1 Weak topology

Recall that a sequence(µk)k∈N of probability measures on(S,B) is said toconverge weaklyto

a measureµ ∈ P(S) if and only if

(i) µk(f)→ µ(f) for anyf ∈ Cb(S).

ThePortemanteau Theoremstates that weak convergence is equivalent to each of the following

properties:
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(ii) µk(f)→ µ(f) for any uniformly continuousf ∈ C(S).

(iii) lim sup µk(A) ≤ µ(A) for any closed setA ⊂ S.

(iv) lim inf µk(O) ≥ µ(O) for any open setO ⊂ S.

(v) lim sup µk(f) ≤ µ(f) for any upper semicontinuous functionf : S → R that is bounded

from above.

(vi) lim inf µk(f) ≥ µ(f) for any lower semicontinuous functionf : S → R that is bounded

from below.

(vii) µk(f)→ µ(f) for any functionf ∈ Fb(S) that is continuous atµ-almost everyx ∈ S.

For the proof see e.g. [Stroock:Probability Theory: An Analytic View] [37], Theorem 3.1.5, or

[Billingsley:Convergence of probability measures] [2]. The following observation is crucial for

studying weak convergence on polish spaces:

Remark (Polish spaces as measurable subset of[0, 1]N). Suppose that(S, ̺) is a separable

metric space, and{xn : n ∈ N} is a countable dense subset. Then the map

h :
S → [0, 1]N

x →
(

̺(x,xn)
1+̺(x,xn)

)
n∈N

(1.4.1)

is a homeomorphism fromS to h(S) provided[0, 1]N is endowed with the product topology (i.e.,

the topology corresponding to pointwise convergence). In general,h(S) is a measurable subset

of the compact space[0, 1]N (endowed with the productσ-algebra that is generated by the product

topology). IfS is compact thenh(S) is compact as well. In general,

S ∼= h(S) ⊂ Ŝ ⊂ [0, 1]N

whereŜ := h(S) is compact since it is a closed subset of the compact space[0, 1]N. ThusŜ can

be viewed as a compactification ofS.

On compact spaces, any sequence of probability measures hasa weakly convergent subsequence.

Theorem 1.13.If S is compact thenP(S) is compact w.r.t. weak convergence.
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Proof: Suppose thatS is compact. Then it can be shown based on the remark above thatC(S)

is separable w.r.t. uniform convergence. Thus there existsa sequencegn ∈ C(S) (n ∈ N) such

that‖gn‖sup ≤ 1 for anyn, and the linear span of the functionsgn is dense inC(S).

Now consider an arbitrary sequence(µk)k∈N in P(S). We will show that(µk) has a convergent

subsequence. Note first that(µk(gn))k∈N is a bounded sequence of real numbers for anyn. By a

diagonal argument, we can extract a subsequence(µkl)l∈N of (µk)k∈N such thatµkl(gn) converges

asl →∞ for everyn ∈ N. Since the span of the functionsgn is dense inC(S), this implies that

Λ(f) := lim
l→∞

µkl(f) (1.4.2)

exists for anyf ∈ C(S). It is easy to verify thatΛ is apositive (i.e.,Λ(f) ≥ 0 wheneverf ≥ 0)

linear functional onC(S) with Λ(1) = 1. Moreover, if(fn)n∈N is a decreasing sequence inC(S)

such thatfn ց 0 pointwise, thenfn → 0 uniformly by compactness ofS, and henceΛ(fn)→ 0.

Therefore, there exists a probability measureµ onS such that

Λ(f) = µ(f) for anyf ∈ C(S).

By (1.4.2), the sequence(µkl) converges weakly toµ.

Remark (A metric for weak convergence). Choosing the functiongn as in the proof above, we

see that a sequence(µk)k∈N of probability measures inP(S) converges weakly toµ if and only

if µk(gn)→ µ(gn) for anyn ∈ N. Thus weak convergence inP(S) is equivalent to convergence

w.r.t. the metric

d(µ, ν) =

∞∑

n=1

2−n|µ(gn)− ν(gn)|.

1.4.2 Prokhorov’s theorem

We now consider the case whereS is a non-compact polish space. By identifyingS with the

imageh(S) under the maph defined by (1.4.1), we can still viewS as a measurable subset of the

compact spacêS:

S ⊂ Ŝ ⊂ [0, 1]N.

HenceP(S) can be viewed as a subset of the compact spaceP(Ŝ):

P(S) = {µ ∈ P(Ŝ) : µ(Ŝ \ S) = 0} ⊂ P(Ŝ).
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If µk (k ∈ N) andµ are probability measures onS (that trivially extend toŜ) then:

µk → µ weakly inP(S) (1.4.3)

⇔ µk(f)→ µ(f) for any uniformly continuousf ∈ Cb(S)

⇔ µk(f)→ µ(f) for anyf ∈ C(Ŝ)
⇔ µk → µ weakly inP(Ŝ).

ThusP(S) inherits the weak topology fromP(Ŝ). The problem is, however, that sinceS is

not necessarily a closed subset ofŜ, it can happen that a sequence(µk) in P(S) converges to a

probability measureµ on Ŝ s.t. µ(S) < 1. To exclude this possibility, the following tightness

condition is required:

Definition (Tightness of collections of probability measures). LetR ⊂ P(S) be a set consist-

ing of probability measures onS. ThenR is calledtight iff for any ε > 0 there exists a compact

setK ⊂ S such that

sup
µ∈R

µ(S \K) < ε.

Thus tightness means that the measures in the setR are concentrated uniformly on a compact set

up to an arbitrary small positive amount of mass. A setR ⊂ P(S) is calledrelatively compact

iff every sequence inR has a subsequence that converges weakly inP(S).

Theorem 1.14(Prokhorov). Suppose thatS is polish, and letR ⊂ P(S). Then

R is relatively compact⇔R is tight .

In particular, every tight sequence inP(S) has a weakly convergent subsequence.

We only prove the implication “⇐” that will be the more important one for our purposes. This

implication holds in arbitrary separable metric spaces. For the proof of the converse implication

cf. e.g. [Billingsley:Convergence of probability measures] [2].

Proof of “⇐”: Let (µk)k∈N be a sequence inR. We have to show that(µk) has a weakly con-

vergent subsequence inP(S). SinceP(Ŝ) is compact by Theorem 1.13, there is a subsequence

(µkl) that converges weakly inP(Ŝ) to a probability measureµ on Ŝ. We claim that by tightness,

µ(S) = 1 andµkl → µ weakly inP(S). Let ε > 0 be given. Then there exists a compact subset
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K of S such thatµkl(K) ≥ 1− ε for anyl. SinceK is compact, it is also a compact and (hence)

closed subset of̂S. Therefore, by the Portmanteau Theorem,

µ(K) ≥ lim sup
l→∞

µkl(K) ≥ 1− ε,

and thus

µ(Ŝ \ S) ≤ µ(Ŝ \K) ≤ ε.

Lettingε tend to0, we see thatµ(Ŝ \ S) = 0. Henceµ ∈ P(S) andµkl → µ weakly inP(S) by

(1.4.3).

1.4.3 Existence of invariant probability measures

We now apply Prokhorov’s Theorem to derive sufficient conditions for the existence of an invari-

ant probability measure for a given transition kernelp(x, dy) on (S,B).

Definition (Feller property ). The stochastic kernelp is called(weakly) Felleriff pf is continu-

ous for anyf ∈ Cb(S).

A kernelp is Feller if and only ifx 7→ p(x, ·) is a continuous map fromS toP(S) w.r.t. the weak

topology onP(S). Indeed, by definition,p is Feller if and only if

xn → x⇒ (pf)(xn)→ (pf)(x) ∀f ∈ Cb(S).

A topological space is said to beσ-compactiff it is the union of countably many compact subsets.

For example,Rd is σ-compact whereas an infinite dimensional Hilbert space is not σ-compact.

Theorem 1.15(Foguel, Krylov-Bogolionbov). Suppose thatp is a Feller transition kernel on

the Polish spaceS, and letpn := 1
n

n−1∑
i=0

pi. Then there exists an invariant probability measureµ

of p if one of the following conditions is satisfied for somex ∈ S:

(i) The sequence{pn(x, ·) : n ∈ N} is tight, or

(ii) S is σ-compact, and there exists a compact setK ⊂ S such that

lim inf
n→∞

pn(x,K) > 0.
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Remark. If (Xn, Px) is a canonical Markov chain with transition kernelp then

pn(x,K) = Ex

[
1

n

n−1∑

i=0

1K(Xi)

]

is the average proportion of time spent by the chain in the setK during the firstn steps. Condi-

tions(i) and(ii) say that

(i) ∀ε > 0 ∃K ⊂ S compact:pn(x,K) ≥ 1− ε for all n ∈ N,

(ii) ∃ε > 0, K ⊂ S compact,nk ր∞: pnk
(x,K) ≥ ε for all k ∈ N.

Clearly, the second condition is weaker than the first one in several respects.

Proof of Theorem 1.15: (i) Suppose that the sequenceνn := pn(x, ·) is tight for somex ∈ S.

Then by Prokhorov’s Theorem, there exists a subsequenceνnk
and a probability measure

µ onS such thatνnk
→ µ weakly. We claim thatµp = µ. Indeed for,f ∈ Cb(S) we have

pf ∈ Cb(S) by the Feller property. Therefore,

(µp)(f) = µ(pf) = lim
k→∞

νnk
(pf) = lim

k→∞
(νnk

p)(f)

= lim
k→∞

νnk
(f) = µ(f) for anyf ∈ Cb(S),

where the second last equality holds since

νnk
p =

1

nk

nk−1∑

i=0

pi+1(x, ·) = νnk
− 1

nk

δx +
1

nk

pnk(x, ·).

(ii) Now suppose that Condition(ii) holds. We may also assume thatS is a Borel subset of a

compact spacêS. SinceP(Ŝ) is compact and(ii) holds, there existsε > 0, a compact set

K ⊂ S, a subsequence(νnk
) of (νn), and a probability measurêµ on Ŝ such that

νnk
(K) ≥ ε for anyk ∈ N, and νnk

→ µ̂ weakly inŜ.

Note that weak convergence in̂S does not imply weak convergence inS. However

νnk
(f)→ µ̂(f) for any compactly supported functionf ∈ C(S), and

µ̂(S) ≥ µ̂(K) ≥ lim sup νnk
(K) ≥ ε.

Therefore, it can be verified similarly as above that the conditioned measure

µ(B) =
µ̂(B ∩ S)
µ̂(S)

= µ̂(B|S), B ∈ B(S),

is an invariant probability measure forp.

Markov processes Andreas Eberle



1.4. THE SPACE OF PROBABILITY MEASURES 47

In practice, the assumptions in Theorem 1.15 can be verified via appropriate Lyapunov functions:

Corollary 1.16 (Lyapunov condition for the existence of an invariant probability measure).

Suppose thatp is a Feller transition kernel andS is σ-compact. Then an invariant probability

measure forp exists if the following Lyapunov condition is satisfied:

(LI) There exists a functionV ∈ F+(S), a compact setK ⊂ S, and constantsc, ε ∈ (0,∞)

such that

LV ≤ c1K − ε.

Proof: By (LI),

c1K ≥ ε+ LV = ε+ pV − V.

By integrating the inequality w.r.t. the probability measurepn(x, ·), we obtain

cpn(·, K) = cpn1K ≥ ε+
1

n

n−1∑

i=0

(pi+1V − piV )

= ε+
1

n
pnV − 1

n
V ≥ ε− 1

n
V

for anyn ∈ N. Therefore,

lim inf
n→∞

pn(x,K) ≥ ε for anyx ∈ S.

The assertion now follows by Theorem 1.15.

Example. 1) Countable state space:If S is countable andp is irreducible then an invariant

probability measure exists if and only if the Markov chain ispositive recurrent. On the other

hand, by Corollary 1.11, positive recurrence is equivalentto (LI). Hence for irreducible

Markov chains on countable state spaces, Condition(LI) is both necessary and sufficient

for the existence of a stationary distribution.

2) S = Rd: OnRd, Condition(LI) is satisfied in particular ifLV is continuous and

lim sup
|x|→∞

LV (x) < 0.
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Chapter 2

Ergodic averages

Suppose that(Xn, Px) is a canonical time-homogeneous Markov chain with transition kernelp.

Recall that the process(Xn, Pµ) with initial distributionµ is stationary, i.e.,

Xn:∞ ∼ X0:∞ for anyn ≥ 0,

if and only if

µ = µp.

A probability measureµ with this property is called astationary (initial) distribution or an

invariant probability measure for the transition kernel p. In this chapter we will prove law

of large number type theorems for ergodic averages of the form

1

n

n−1∑

i=0

f(Xi)→
ˆ

fdµ asn→∞,

and, more generally,

1

n

n−1∑

i=0

F (Xi, Xi+1, . . . )→
ˆ

FdPµ asn→∞

whereµ is a stationary distribution for the transition kernel. At first these limit theorems are

derived almost surely or inLp w.r.t. the lawPµ of the Markov chain in stationarity. Indeed,

they turn out to be special cases of more general ergodic theorems for stationary (not necessarily

Markovian) stochastic processes. After the derivation of the basic results we will consider exten-

sions to continuous time. Moreover, we will study the fluctuations of ergodic averages around

their limit. The validity of ergodic theorems for Markov chains that are not started in stationarity

is considered in Section 7.4.

As usual,S will denote a polish space endowed with its Borelσ-algebraB.
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2.1 Ergodic theorems

Supplementary references for this section are the probability theory textbooks by Breiman [XXX],

Durrett [XXX] and Varadhan [XXX].We first introduce the more general setup of ergodic the-

ory that includes stationary Markov chains as a special case:

Let (Ω,A, P ) be a probability space, and let

Θ : Ω→ Ω

be a measure-preserving measurable map on(Ω,A, P ), i.e.,

P ◦Θ−1 = P.

The main example is the following: Let

Ω = SZ+ , Xn(ω) = ωn, A = σ(Xn : n ∈ Z+),

be the canonical model for a stochastic process with state spaceS. Then the shift transformation

Θ = X1:∞ given by

Θ(ω0, ω1, . . . ) = (ω1, ω2, . . . ) for anyω ∈ Ω

is measure-preserving on(Ω,A, P ) if and only if (Xn, P ) is a stationary process.

2.1.1 Ergodicity

We denote byJ the sub-σ-algebra ofA consisting of allΘ-invariant events, i.e.,

J :=
{
A ∈ A : Θ−1(A) = A

}
.

It is easy to verify thatJ is indeed aσ-algebra, and that a functionF : Ω→ R isJ -measurable

if and only if

F = F ◦Θ.

Definition (Ergodic probability measure). The probability measureP on (Ω,A) is calleder-

godic(w.r.t. Θ) if and only if any eventA ∈ J has probability zero or one.

Exercise(Characterization of ergodicity). 1) Show thatP is not ergodic if and only if there

exists a non-trivial decompositionΩ = A ∪ Ac of Ω into disjoint setsA andAc with

P [A] > 0 andP [Ac] > 0 such that

Θ(A) ⊂ A and Θ(Ac) ⊂ Ac.
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2) Prove thatP is ergodic if and only if any measurable functionF : Ω → R satisfying

F = F ◦Θ isP -almost surely constant.

Before considering general stationary Markov chains we look at two elementary examples:

Example (Deterministic rotations of the unit circle).

LetΩ = R/Z or, equivalently,Ω = [0, 1]/ ∼ where “∼” is the equivalence relation that identifies

the boundary points0 and1. We endowΩ with the Borelσ-algebraA = B(Ω) and the uniform

distribution (Lebesgue measure)P = Unif(Ω). Then for any fixeda ∈ R, the rotation

Θ(ω) = ω + a (modulo1)

is a measure preserving transformation of(Ω,A, P ). Moreover,P is ergodic w.r.t.Θ if and only

if a is irrational:

a ∈ Q: If a = p/q with p, q ∈ Z relatively prime then

Θn(ω) ∈
{
ω +

k

q
: k = 0, 1, . . . , q − 1

}
for anyn ∈ Z.

This shows that for instance the union

A =
⋃

n∈Z
Θn

([
0,

1

2q

))

isΘ-invariant withP [A] /∈ {0, 1}, i.e.,P is not ergodic.

a /∈ Q: Supposea is irrational andF is a bounded measurable function onΩ with F = F ◦ Θ.

ThenF has a Fourier representation

F (ω) =
∞∑

n=−∞
cne

2πinω for P -almost everyω ∈ Ω,

andΘ invariance ofF implies

∞∑

n=−∞
cne

2πin(ω+a) =
∞∑

n=−∞
cne

2πinω for P -almost everyω ∈ Ω,

i.e., cne2πina = cn for anyn ∈ Z. Sincea is irrational this implies that all Fourier coeffi-

cientscn exceptc0 vanish, i.e.,F isP -almost surely a constant function. ThusP is ergodic

in this case.
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Example (IID Sequences). Let µ be a probability measure on(S,B). The canonical process

Xn(ω) = ωn is an i.i.d. sequence w.r.t. the product measureP =
∞⊗
n=0

µ on Ω = SZ+ . In par-

ticular, (Xn, P ) is a stationary process, i.e., the shiftΘ(ω0, ω1, . . . ) = (ω1, ω2, . . . ) is measure-

preserving. To see thatP is ergodic w.r.t.Θ we consider an arbitrary eventA ∈ J . Then

A = Θ−n(A) = {(Xn, Xn+1, . . . ) ∈ A} for anyn ≥ 0.

This shows thatA is a tail event, and henceP [A] ∈ {0, 1} by Kolmogorov’s zero-one law.

2.1.2 Ergodicity of stationary Markov chains

Now suppose that(Xn, Pµ) is a general stationary Markov chain with initial distribution µ and

transition kernelp satisfyingµ = µp. Note that by stationarity, the mapf 7→ pf is a contraction

onL2(µ). Indeed, by the Cauchy-Schwarz inequality,

ˆ

(pf)2dµ ≤
ˆ

pf 2dµ ≤
ˆ

f 2d(µp) =

ˆ

f 2dµ ∀f ∈ L2(µ).

In particular,

Lf = pf − f

is an element inL2(µ) for anyf ∈ L2(µ).

Theorem 2.1(Characterizations of ergodicity for Markov chains). The following statements

are equivalent:

1) The measurePµ is shift-ergodic.

2) Any functionh ∈ L2(µ) satisfyingLh = 0 µ-almost surely isµ-almost surely constant.

3) Any Borel setB ∈ B satisfyingp1B = 1B µ-almost surely has measureµ(B) ∈ {0, 1}.

Proof. 1)⇒ 2). Suppose thatPµ is ergodic and leth ∈ L2(µ) with Lh = 0 µ-a.e. Then the

processMn = h(Xn) is a square-integrable martingale w.r.t.Pµ. Moreover, the martingale

is bounded inL2(Pµ) since by stationarity,

Eµ[h(Xn)
2] =

ˆ

h2dµ for anyn ∈ Z+.
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Hence by theL2 martingale convergence theorem, the limitM∞ = lim
n→∞

Mn exists in

L2(Pµ). We fix a version ofM∞ by defining

M∞(ω) = lim sup
n→∞

h(Xn(ω)) for everyω ∈ Ω.

Note thatM∞ is aJ -measurable random variable, since

M∞ ◦Θ = lim sup
n→∞

h(Xn+1) = lim sup
n→∞

h(Xn) =M∞.

Therefore, by ergodicity ofPµ, M∞ is Pµ-almost surely constant. Furthermore, by the

martingale property,

h(X0) =M0 = Eµ[M∞|FX
0 ] Pµ-a.s.

Henceh(X0) isPµ-almost surely constant, and thush is µ-almost surely constant.

2)⇒ 3). If B is a Borel set withp1B = 1B µ-almost surely then the functionh = 1B satisfies

Lh = 0 µ-almost surely. If 2) holds thenh is µ-almost surely constant, i.e.,µ(B) is equal

to zero or one.

3)⇒ 1). For proving that 3) implies ergodicity ofPµ let A ∈ J . Then1A = 1A ◦ Θ. We will

show that this property implies that

h(x) := Ex[1A]

satisfiesph = h, andh is µ-almost surely equal to an indicator function1B. Hence by 3),

eitherh = 0 or h = 1 holdsµ-almost surely, and thusPµ[A] =
´

hdµ equals zero or one.

The fact thath is harmonic follows from the Markov property and the invariance ofA: For

anyx ∈ S,

(ph)(x) = Ex [EX1 [1A]] = Ex[1A ◦Θ] = Ex[1A] = h(x).

To see thath is µ-almost surely an indicator function observe that by the Markov property

invariance ofA and the martingale convergence theorem,

h(Xn) = EXn[1A] = Eµ[1A ◦Θn|FX
n ] = Eµ[1A|FX

n ]→ 1A

Pµ-almost surely asn→∞. Hence

µ ◦ h−1 = Pµ ◦ (h(Xn))
−1 w→ Pµ ◦ 1−1

A .

Since the left-hand side does not depend onn,

µ ◦ h−1 = Pµ ◦ 1−1
A ,

and soh takesµ-almost surely values in{0, 1}.
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The third condition in Theorem 2.1 is reminiscent of the definition of irreducibility. However,

there is an important difference as the following example shows:

Exercise(Invariant and almost invariant events). An eventA ∈ A is calledalmost invariant

iff

Pµ[A∆Θ−1(A)] = 0.

Prove that the following statements are equivalent forA ∈ A:

(i) A is almost invariant.

(ii) A is contained in the completionJ Pµ of theσ-algebraJ w.r.t. the measurePµ.

(iii) There exist a setB ∈ B satisfyingp1B = 1B µ-almost surely such that

Pµ[A∆ {Xn ∈ B eventually}] = 0.

Example (Ergodicity and irreducibility ). Consider the constant Markov chain onS = {0, 1}
with transition probabilitiesp(0, 0) = p(1, 1) = 1. Obviously, any probability measure onS

is a stationary distribution forp. The matrixp is not irreducible, for instancep1{1} = 1{1}.

Nevertheless, condition 3) is satisfied andPµ is ergodic if (and only if)µ is a Dirac measure.

2.1.3 Birkhoff’s ergodic theorem

We return to the general setup whereΘ is a measure-preserving transformation on a probability

space(Ω,A, P ), andJ denotes theσ-algebra ofΘ-invariant events inA.

Theorem 2.2(Birkhoff ). Suppose thatP = P ◦Θ−1 and letp ∈ [1,∞). Then asn→∞,

1

n

n−1∑

i=0

F ◦Θi → E[F |J ] P -almost surely and inLp(Ω,A, P ) (2.1.1)

for any random variableF ∈ Lp(Ω,A, P ). In particular, if P is ergodic then

1

n

n−1∑

i=0

F ◦Θi → E[F ] P -almost surely and inLp(Ω,A, P ). (2.1.2)
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Example (Law of large numbers for stationary processes). Suppose that(Xn, P ) is a station-

ary stochastic process in the canonical model, i.e.,Ω = SZ+ andXn(ω) = ωn. Then the shift

Θ = X1:∞ is measure-preserving. By applying Birkhoff’s theorem to afunction of the form

F (ω) = f(ω0), we see that asn→∞,

1

n

n−1∑

i=0

f(Xi) =
1

n

n−1∑

i=0

F ◦Θi → E[f(X0)|J ] (2.1.3)

P -almost surely and inLp(Ω,A, P ) for anyf : S → R such thatf(X0) ∈ Lp andp ∈ [1,∞). If

ergodicity holds thenE[f(X0)|J ] = E[f(X0)] P -almost surely, where (2.1.3) is a law of large

numbers. In particular, we recover the classical law of large numbers for i.i.d. sequences. More

generally, Birkhoff’s ergodic can be applied to arbitraryLp functionsF : SZ+ → R. In this case,

1

n

n−1∑

i=0

F (Xi, Xi+1, . . . ) =
1

n

n−1∑

i=0

F ◦Θi → E[F |J ] (2.1.4)

P -almost surely and inLp asn → ∞. Even in the classical i.i.d. case whereE[F |J ] = E[F ]

almost surely, this result is an important extension of the law of large numbers.

Before proving Birkhoff’s Theorem, we give afunctional analytic interpretation for theLp

convergence.

Remark (Functional analytic interpretation ). If Θ is measure preserving on(Ω,A, P ) then the

mapU defined by

UF = F ◦Θ

is a linear isometry onLp(Ω,A, P ) for anyp ∈ [1,∞]. Indeed, ifp is finite then
ˆ

|UF |pdP =

ˆ

|F ◦Θ|pdP =

ˆ

|F |pdP for anyF ∈ Lp(Ω,A, P ).

Similarly, it can be verified thatU is isometric onL∞(Ω,A, P ). Forp = 2, U induces a unitary

transformation on the Hilbert spaceL2(Ω,A, P ), i.e.,

(UF, UG)L2(P ) =

ˆ

(F ◦Θ) (G ◦Θ)dP = (F,G)L2(P ) for anyF,G ∈ L2(Ω,A, P ).

TheLp ergodic theorem states that for anyF ∈ Lp(Ω,A, P ),

1

n

n−1∑

i=0

U iF → πF in Lp(Ω,A, P ) asn→∞, whereπF := E[F |J ]. (2.1.5)

In the Hilbert space casep = 2, πF is the orthogonal projection ofF onto the closed subspace

H0 = L2(Ω,J , P ) =
{
F ∈ L2(Ω,A, P ) : UF = F

}
(2.1.6)
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of L2(Ω,A, P ). Note thatH0 is the kernel of the linear operatorU − I. SinceU is unitary,H0

coincides with the orthogonal complement of the range ofU − I, i.e.,

L2(Ω,A, P ) = H0 ⊕ (U − I)(L2). (2.1.7)

Indeed, every functionF ∈ H0 is orthogonal to the range ofU − I, since

(UG−G,F )L2 = (UG, F )L2− (G,F )L2 = (UG, F )L2− (UG,UF )L2 = (UG, F −UF )L2 = 0

for anyG ∈ L2(Ω,A, P ). Conversely, every functionF ∈ Range(U − I)⊥ is contained inH0

since

‖UF − F‖2L2 = (UF, UF )L2 − 2(F, UF )L2 + (F, F )L2 = 2(F, F − UF )L2 = 0.

TheL2 convergence in (2.1.5) therefore reduces to a simple functional analytic statement that

will be the starting point for the proof in the general case given below.

Exercise(L2 ergodic theorem). Prove that (2.1.5) holds forp = 2 and anyF ∈ L2(Ω,A, P ).

Notation (Averaging operator). From now on we will use the notation

AnF =
1

n

n−1∑

i=0

F ◦Θi =
1

n

n−1∑

i=0

U iF

for ergodic averages ofLp random variables. Note thatAn defines a linear operator. Moreover,

An induces a contraction onLp(Ω,A, P ) for anyp ∈ [1,∞] andn ∈ N since

‖AnF‖Lp ≤ 1

n

n−1∑

i=0

‖U iF‖Lp = ‖F‖Lp for anyF ∈ Lp(Ω,A, P ).

Proof of Theorem 2.2.The proof of the ergodic theorem will be given in several steps. At first we

will show in Step 1 below that for a broad class of functions the convergence in (2.1.1) follows

in an elementary way. As in the remark above we denote by

H0 = {F ∈ L2(Ω,A, P ) : UF = F}

the kernel of the linear operatorU − I on the Hilbert spaceL2(Ω,A, P ). Moreover, let

H1 = {UG−G : G ∈ L∞(Ω,A, P )} = (U − I)(L∞),

and letπF = E[F |J ].
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Step 1: We show that for anyF ∈ H0 +H1,

AnF − πF → 0 in L∞(Ω,A, P ). (2.1.8)

Indeed, suppose thatF = F0 + UG − G with F0 ∈ H0 andG ∈ L∞. By the remark

above,πF is the orthogonal projection ofF ontoH0 in the Hilbert spaceL2(Ω,A, P ), and

UG−G is orthogonal toH0. HenceπF = F0 and

AnF − πF =
1

n

n−1∑

i=0

U iF0 − F0 +
1

n

n−1∑

i=0

U i(UG−G)

=
1

n
(UnG−G).

SinceG ∈ L∞(Ω,A, P ) andU is anL∞-isometry, the right hand side converges to0 in

L∞ asn→∞.

Step 2:L2-convergence:By Step 1,

AnF → πF in L2(Ω,A, P ) (2.1.9)

for anyF ∈ H0+H1. As the linear operatorsAn andπ are all contractions onL2(Ω,A, P ),

the convergence extends to all random variablesF in theL2 closure ofH0 +H1 by anε/3

argument. Therefore, in order to extend (2.1.9) to allF ∈ L2 it only remains to verify that

H0 + H1 is dense inL2(Ω,A, P ). But indeed, sinceL∞ is dense inL2 andU − I is a

bounded linear operator onL2,H1 is dense in theL2-range ofU − I, and hence by (2.1.7),

L2(Ω,A, P ) = H0 + (U − I)(L2) = H0 +H1 = H0 +H1.

Step 3:Lp-convergence: For F ∈ L∞(Ω,A, P ), the sequence(AnF )n∈N is bounded inL∞.

Hence for anyp ∈ [1,∞),

AnF → πF in Lp(Ω,A, P ) (2.1.10)

by (2.1.9) and the dominated convergence theorem. SinceAn andπ are contractions on

eachLp space, the convergence in (2.1.10) extends to allF ∈ Lp(Ω,A, P ) by an ε/3

argument.

Step 4: Almost sure convergence:By Step 1,

AnF → πF P -almost surely (2.1.11)
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for anyF ∈ H0 + H1. Furthermore, we have already shown thatH0 + H1 is dense in

L2(Ω,A, P ) and hence also inL1(Ω,A, P ). Now fix an arbitraryF ∈ L1(Ω,A, P ), and

let (Fk)k∈N be a sequence inH0 + H1 such thatFk → F in L1. We want to show that

AnF converges almost surely asn → ∞, then the limit can be identified asπF by theL1

convergence shown in Step 3. We already know thatP -almost surely,

lim sup
n→∞

AnFk = lim inf
n→∞

AnFk for anyk ∈ N,

and therefore, fork ∈ N andε > 0,

P [lim supAnF − lim inf AnF ≥ ε] ≤ P [sup
n
|AnF −AnFk| ≥ ε/2]

= P [sup
n
|An(F − Fk)| ≥ ε/2]. (2.1.12)

Hence we are done if we can show for anyε > 0 that the right hand side in (2.1.12)

converges to0 ask →∞. SinceE[|F − Fk|]→ 0, the proof is now completed by Lemma

2.3 below.

Lemma 2.3 (Maximal ergodic theorem). Suppose thatP = P ◦ Θ−1. Then the following

statements hold for anyF ∈ L1(Ω,A, P ):

1) E[F ; max
1≤i≤n

AiF ≥ 0] ≥ 0 for anyn ∈ N,

2) P [sup
n∈N
|AnF | ≥ c] ≤ 1

c
E[|F |] for anyc ∈ (0,∞).

Note the similarity to the maximal inequality for martingales. The proof is not very intuitive but

not difficult either:

Proof.

1) LetMn = max
1≤i≤n

(F +F ◦Θ+ · · ·+F ◦Θi−1), and letB = {Mn ≥ 0} = {max
1≤i≤n

AiF ≥ 0}.
ThenMn = F +M+

n−1 ◦Θ, and hence

F =M+
n −M+

n−1 ◦Θ ≥M+
n −M+

n ◦Θ onB.

Taking expectations we obtain

E[F ;B] ≥ E[M+
n ;B]− E[M+

n ◦Θ;Θ−1(Θ(B))]

≥ E[M+
n ]−E[(M+

n 1Θ(B)) ◦Θ]

= E[M+
n ]− E[M+

n ; Θ(B)] ≥ 0

sinceB ⊂ Θ−1(Θ(B)).
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2) We may assume thatF is non-negative - otherwise we can apply the corresponding estimate

for |F |. ForF ≥ 0 andc ∈ (0,∞),

E

[
F − c; max

1≤i≤n
AiF ≥ c

]
≥ 0

by 1). Therefore,

c · P
[
max
i≤n

AiF ≥ c

]
≤ E

[
F ; max

i≤n
AiF ≥ c

]
≤ E[F ]

for anyn ∈ N. Asn→∞ we can conclude that

c · P
[
sup
i∈N

AiF ≥ c

]
≤ E[F ].

The assertion now follows by replacingc by c− ε and lettingε tend to zero.

2.1.4 Application to Markov chains

Suppose thatΘ is the shift onΩ = SZ+ , and(Xn, Pµ) is a canonical time-homogeneous Markov

chain with state spaceS, initial distribution µ and transition kernelp. ThenΘ is measure-

preserving w.r.t.Pµ if and only if µ is a stationary distribution forp. Furthermore, by Theorem

2.1, the measurePµ is ergodic if and only if any setB ∈ B such thatp1B = 1B µ-almost surely

has measureµ(B) ∈ {0, 1}. In this case, Birkhoff’s theorem has the following consequences:

a) Law of large numbers: For any functionf ∈ L1(S, µ),

1

n

n−1∑

i=0

f(Xi)→
ˆ

fdµ Pµ-almost surely asn→∞. (2.1.13)

The law of large numbers for Markov chains is exploited in Markov chain Monte Carlo

(MCMC) methods for the numerical estimation of integrals w.r.t. a given probability mea-

sureµ.

b) Estimation of the transition kernel: For any Borel setsA,B ∈ B,

1

n

n−1∑

i=0

1A×B(Xi, Xi+1)→ E[1A×B(X0, X1)] =

ˆ

A

µ(dx)p(x,B) (2.1.14)

Pµ-a.s. asn → ∞. This is applied in statistics of Markov chains for estimating the

transition kernel of a Markov chain from observed values.
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Both applications lead to new questions:

• How can the deviation of the ergodic average from its limit bequantified?

• What can be said if the initial distribution of the Markov chain is not a stationary distribu-

tion?

We return to these important questions later - in particularin Sections 2.4 and 7.4. For the moment

we conclude with some preliminary observations concerningthe second question:

Remark (Non-stationary initial distributions ).

1) If ν is a probability measure onS that is absolutely continuous w.r.t. a stationary distri-

butionµ then the lawPν of the Markov chain with initial distributionν is absolutely con-

tinuous w.r.t.Pµ. Therefore, in this casePν-almost sure convergence holds in Birkhoff’s

Theorem. More generally,Pν-almost sure convergence holds wheneverνpk is absolutely

continuous w.r.t.µ for somek ∈ N, since the limits of the ergodic averages coincide for

the original Markov chain(Xn)n≥0 and the chain(Xn+k)n≥0 with initial distributionνpk.

2) SincePµ =
´

Px µ(dx), Pµ-almost sure convergence also impliesPx-almost sure conver-

gence of the ergodic averages forµ-almost everyx.

3) Nevertheless,Pν-almost sure convergence does not hold in general. In particular, there

are many Markov chains that have several stationary distributions. Ifν andµ are different

stationary distributions for the transition kernelp then the limitsEν [F |J ] andEµ[F |J ] of

the ergodic averagesAnF w.r.t. Pν andPµ respectively donot coincide.

Exercise(Ergodicity of stationary Markov chains ). Suppose thatµ is a stationary distribution

for the transition kernelp of a canonical Markov chain(Xn, Px) with state space(S,B). Prove

that the following statements are equivalent:

(i) Pµ is ergodic.

(ii) For anyB ∈ B,

1

n

n−1∑

i=0

pi(x,B)→ µ(B) asn→∞ for µ-a.e.x ∈ S.

(iii) For anyB ∈ B, such thatµ(B) > 0,

Px[TB <∞] > 0 for µ-a.e.x ∈ S.

(iv) Any B ∈ B such thatp1B = 1B µ-a.s. has measureµ(B) ∈ {0, 1}.
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2.2 Ergodic theory in continuous time

We now extend the results in Section 2.1 to the continuous time case. Indeed we will see that the

main results in continuous time can be deduced from those in discrete time.

2.2.1 Ergodic theorem

Let (Ω,A, P ) be a probability space. Furthermore, suppose that we are given a product-measurable

map

Θ : [0,∞)× Ω→ Ω

(t , ω) 7→ Θt(ω)

satisfying the semigroup property

Θ0 = idΩ and Θt ◦Θs = Θt+s for anyt, s ≥ 0. (2.2.1)

The analogue in discrete time are the mapsΘn(ω) = Θn(ω). As in the discrete time case,

the main example for the mapsΘt are the time-shifts on the canonical probability space of a

stochastic process:

Example (Stationary processes in continuous time). SupposeΩ = C([0,∞), S) or

Ω = D([0,∞), S) is the space of continuous, right-continuous or càdlàg functions from[0,∞)

to S, Xt(ω) = ω(t) is the evolution of a function at timet, andA = σ(Xt : t ∈ [0,∞)). Then,

by right continuity oft 7→ Xt(ω), the time-shiftΘ : [0,∞)× Ω→ Ω defined by

Θt(ω) = ω(t+ ·) for t ∈ [0,∞), ω ∈ Ω,

is product-measurable and satisfies the semigroup property(2.2.1). Suppose moreover thatP is

a probability measure on(Ω,A). Then the continuous-time stochastic process((Xt)t∈[0,∞), P ) is

stationary, i.e.,

(Xs+t)t∈[0,∞) ∼ (Xt)t∈[0,∞) underP for anys ∈ [0,∞),

if and only if P is shift-invariant , i.e., iff P ◦Θ−1
s = P for anys ∈ [0,∞).

Theσ-algebra of shift-invariant events is defined by

J =
{
A ∈ A : A = Θ−1

s (A) for anys ∈ [0,∞)
}
.

Verify for yourself that the definition is consistent with the one in discrete time, and thatJ is

indeed aσ-algebra.
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Theorem 2.4(Ergodic theorem in continuous time). Suppose thatP is a probability measure

on (Ω,A) satisfyingP ◦ Θ−1
s = P for anys ∈ [0,∞). Then for anyp ∈ [1,∞] and any random

variableF ∈ Lp(Ω,A, P ),

lim
t→∞

1

t

ˆ t

0

F ◦Θs ds = E[F |J ] P -almost surely and inLp(Ω,A, P ). (2.2.2)

Similarly to the discrete time case, we use the notation

AtF =
1

t

ˆ t

0

F ◦Θs ds

for the ergodic averages. It is straightforward to verify thatAt is a contraction onLp(Ω,A, P )

for anyp ∈ [1,∞] provided the mapsΘs are measure-preserving.

Proof.

Step 1: Time discretization. Suppose thatF is uniformly bounded, and let

F̂ :=

ˆ 1

0

F ◦Θs ds.

Since(s, ω) 7→ Θs(ω) is product-measurable,̂F is a well-defined uniformly bounded ran-

dom variable. Furthermore, by the semigroup property (2.2.1),

AnF = ÂnF̂ for anyn ∈ N, where ÂnF̂ :=
1

n

n−1∑

i=0

F̂ ◦Θi

denotes the discrete time ergodic average ofF̂ . If t ∈ [0,∞) is not an integer then we can

estimate

|AtF − Â⌊t⌋F̂ | = |AtF −A⌊t⌋F | ≤
∣∣∣∣
1

t

ˆ t

⌊t⌋
F ◦Θs ds

∣∣∣∣+
(

1

⌊t⌋ −
1

t

)
·
∣∣∣∣∣

ˆ ⌊t⌋

0

F ◦Θs ds

∣∣∣∣∣

≤ 1

t
sup |F |+

(
t

⌊t⌋ − 1

)
· sup |F |.

The right-hand side is independent ofω and converges to0 as t → ∞. Hence by the

ergodic theorem in discrete time,

lim
t→∞

AtF = lim
n→∞

ÂnF̂ = E[F̂ |Ĵ ] P -a.s. and inLp for anyp ∈ [1,∞), (2.2.3)

whereĴ =
{
A ∈ A : Θ−1

1 (A) = A
}

is the collection ofΘ1-invariant events.
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Step 2: Identification of the limit. Next we show that the limit in (2.2.3) coincides with the

conditional expectationE[F |J ] P -almost surely. To this end note that the limit superior

of AtF ast→∞ isJ -measurable, since

(AtF ) ◦Θs =
1

t

ˆ t

0

F ◦Θu ◦Θs du =
1

t

ˆ t

0

F ◦Θu+s du =
1

t

ˆ s+t

s

F ◦Θu du

has the same limit superior asAtF for anys ∈ [0,∞). SinceL1 convergence holds,

lim
t→∞

AtF = E[limAtF |J ] = limE[AtF |J ] = lim
t→∞

1

t

ˆ t

0

E[F ◦Θs|J ] ds

P -almost surely. SinceΘs is measure-preserving, it can be easily verified thatE[F ◦Θs|J ]
= E[F |J ] P -almost surely for anys ∈ [0,∞). Hence

lim
t→∞

AtF = E[F |J ] P -almost surely.

Step 3: Extension to generalF ∈ Lp. SinceFb(Ω) is a dense subset ofLp(Ω,A, P ) andAt is

a contraction w.r.t. theLp-norm, theLp convergence in (2.2.2) holds for anyF ∈ Lp by

anε/3-argument. In order to show that almost sure convergence holds for anyF ∈ L1 we

apply once more the maximal ergodic theorem 2.3. Fort ≥ 1,

|AtF | ≤
1

t

ˆ ⌊t⌋+1

0

|F ◦Θs| ds =
⌊t⌋ + 1

t
Â⌊t⌋+1

ˆ|F | ≤ 2Â⌊t⌋+1
ˆ|F |.

Hence for anyc ∈ (0,∞),

P

[
sup
t>1
|AtF | ≥ c

]
≤ P

[
sup
n∈N

Ân
ˆ|F | ≥ c/2

]
≤ 2

c
E[ ˆ|F |] ≤ 2

c
E[|F |].

Thus we have deduced a maximal inequality in continuous timefrom the discrete time

maximal ergodic theorem. The proof of almost sure convergence of the ergodic averages

can now be completed similarly to the discrete time case by approximatingF by uniformly

bounded functions, cf. the proof of Theorem 2.2 above.

The ergodic theorem implies the following alternative characterizations of ergodicity:

Corollary 2.5 (Ergodicity and decay of correlations). Suppose thatP ◦ Θ−1
s = P for any

s ∈ [0,∞). Then the following statements are equivalent:

(i) P is ergodic w.r.t.(Θs)s≥0.
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(ii) For any F ∈ L2(Ω,A, P ),

Var

(
1

t

ˆ t

0

F ◦Θs ds

)
→ 0 ast→∞.

(iii) For any F ∈ L2(Ω,A, P ),

1

t

ˆ t

0

Cov (F ◦Θs, F ) ds→ 0 ast→∞.

(iv) For anyA,B ∈ A,

1

t

ˆ t

0

P
[
A ∩Θ−1

s (B)
]
ds→ P [A]P [B] ast→∞.

The proof is left as an exercise.

2.2.2 Applications

a) Flows of ordinary differential equations

Let b : Rd → Rd be a smooth(C∞) vector field. The flow(Θt)t∈R of b is a dynamical system on

Ω = Rd defined by

d

dt
Θt(ω) = b(Θt(ω)), Θ0(ω) = ω for anyω ∈ Rd. (2.2.4)

For a smooth functionF : Rd → R andt ∈ R let

(UtF )(ω) = F (Θt(ω)).

Then the flow equation (2.2.4) implies theforward equation

d

dt
UtF = Θ̇t · (∇F ) ◦Θt = (b · ∇F ) ◦Θt, i.e.,

(F)
d

dt
UtF = UtLF where LF = b · ∇F

is the infinitesimal generator of the time-evolution. There is also a correspondingbackward

equation that follows from the identityUhUt−hF = UtF . By differentiating w.r.t.h ath = 0 we

obtainLUtF − d
dt
UtF = 0, and thus

(B)
d

dt
UtF = LUtF = b · ∇(F ◦Θt).
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The backward equation can be used to identifyinvariant measuresfor the flow(Θt)t∈R. Suppose

thatP is a positive measure onRd with a smooth density̺ w.r.t. Lebesgue measureλ, and let

F ∈ C∞
0 (Rd). Then

d

dt

ˆ

UtF dP =

ˆ

b · ∇(F ◦Θt)̺ dλ =

ˆ

F ◦Θt div(̺b) dλ.

Hence we can conclude that if

div(̺b) = 0

then
´

F ◦Θt dP =
´

UtF dP =
´

F dP for anyF ∈ C∞
0 (Rd) andt ≥ 0, i.e.,

P ◦Θ−1
t = P for anyt ∈ R.

Example (Hamiltonian systems). In Hamiltonian mechanics, the state space of a system is

Ω = R2d where a vectorω = (q, p) ∈ Ω consists of the position variableq ∈ Rd and the

momentum variablep ∈ Rd. If we choose units such that the mass is equal to one then the total

energy is given by theHamiltonian

H(q, p) =
1

2
|p|2 + V (q)

where1
2
|p|2 is the kinetic energy andV (q) is the potential energy. Here we assumeV ∈ C∞(Rd).

The dynamics is given by the equations of motion

dq

dt
=
∂H

∂p
(q, p) = p,

dp

dt
= −∂H

∂q
(q, p) = −∇V (q).

A simple example is the harmonic oscillator (pendulum) where d = 1 andV (q) = 1
2
q2. Let

(Θt)t∈R be the corresponding flow of the vector field

b(q, p) =

(
∂H
∂p

(q, p)

−∂H
∂q

(q, p)

)
=

(
p

−∇V (q)

)
.

The first important observation is that the system does not explore the whole state space, since

the energy is conserved:

d

dt
H(q, p) =

∂H

∂q
(q, p) · dq

dt
+
∂H

∂p
(q, p) · dp

dt
= (b · ∇H) (q, p) = 0 (2.2.5)

where the dot stands both for the Euclidean inner product inRd and inR2d. ThusH ◦ Θt is

constant, i.e.,t 7→ Θt(ω) remains on a fixed energy shell.
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p

q

Figure 2.1: Trajectories of harmonic oscillator

As a consequence, there are infinitely many invariant measures. Indeed, suppose that

̺(q, p) = g(H(q, p)) for a smooth non-negative functiong onR. Then the measure

P (dω) = g(H(ω)) λ2d(dω)

is invariant w.r.t.(Θt) because

div(̺b) = b · ∇̺+ ̺ div(b) = (g′ ◦H) (b · ∇H) + ̺

(
∂2H

∂q∂p
− ∂2H

∂p∂q

)
= 0

by (2.2.5). What about ergodicity? For any Borel setB ⊆ R, the event{H ∈ B} is invariant

w.r.t. (Θt) by conservation of the energy. Therefore, ergodicity can not hold if g is a smooth

function. However, the example of the harmonic oscillator shows that ergodicity may hold if we

replaceg by a Dirac measure, i.e., if we restrict to a fixed energy shell.

Remark (Deterministic vs. stochastic dynamics). The flow of an ordinary differential equation

can be seen as a very special Markov process - with a deterministic dynamics. More generally,

the ordinary differential equation can be replaced by a stochastic differential equation to obtain

Itô type diffusion processes, cf. below. In this case it is not possible any more to chooseΩ as

the state space of the system as we did above - insteadΩ has to be replaced by the space of all

trajectories with appropriate regularity properties.

b) Gaussian processes

Simple examples of non-Markovian stochastic processes canbe found in the class of Gaussian

processes. We consider the canonical model withΩ = D([0,∞),R),Xt(ω) = ω(t),

A = σ(Xt : t ∈ R+), andΘt(ω) = ω(t+ ·). In particular,

Xt ◦Θs = Xt+s for anyt, s ≥ 0.
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Let P be a probability measure on(Ω,A). The stochastic process(Xt, P ) is called aGaussian

processif and only if (Xt1 , . . . , Xtn) has a multivariate normal distribution for anyn ∈ N and

t1, . . . , tn ∈ R+ (Recall that it is not enough to assume thatXt is normally distributed for anyt!).

The lawP of a Gaussian process is uniquely determined by the averagesand covariances

m(t) = E[Xt], c(s, t) = Cov(Xs, Xt), s, t ≥ 0.

It can be shown (Exercise) that a Gaussian process is stationary if and only ifm(t) is constant,

and

c(s, t) = r(|s− t|)

for some functionr : R+ → R (auto-correlation function). To obtain a necessary condition for

ergodicity note that if(Xt, P ) is stationary and ergodic then1
t

´ t

0
Xs ds converges to the constant

averagem, and hence

Var

(
1

t

ˆ t

0

Xs ds

)
→ 0 ast→∞.

On the other hand, by Fubini’s theorem,

Var

(
1

t

ˆ t

0

Xs ds

)
= Cov

(
1

t

ˆ t

0

Xs ds,
1

t

ˆ t

0

Xu du

)

=
1

t2

ˆ t

0

ˆ t

0

Cov (Xs, Xu) duds =
1

2t2

ˆ t

0

ˆ s

0

r(s− u) duds

=
1

2t2

ˆ t

0

(t− v)r(v) dv = 1

2t

ˆ t

0

(
1− v

t

)
r(v) dv

∼ 1

2t

ˆ t

0

r(v)dv asymptotically ast→∞.

Hence ergodicity can only hold if

lim
t→∞

1

t

ˆ t

0

r(v) dv = 0.

It can be shown by Spectral analysis/Fourier transform techniques that this condition is also suf-

ficient for ergodicity, cf. e.g. Lindgren, “Lectures on Stationary Stochastic Processes” [22].

c) Random Fields

We have stated the ergodic theorem for temporal, i.e., one-dimensional averages. There are

corresponding results in the multi-dimensional case, i.e., t ∈ Zd or t ∈ Rd, cf. e.g. Stroock,

“Probability Theory: An Analytic View” [37]. These apply for instance to ergodic averages of

the form

AtF =
1

(2t)d

ˆ

(−t,t)d
F ◦Θs ds, t ∈ R+,
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where(Θs)s∈Rd is a group of measure-preserving transformations on a probability space(Ω,A, P ).

Multi-dimensional ergodic theorems are important for the study of stationary random fields. Here

we just mention briefly two typical examples:

Example (Massless Gaussian free field onZd). LetΩ = RZd
whered ≥ 3, and letXs(ω) = ωs

for ω = (ωs) ∈ Ω. Themassless Gaussian free fieldis the probability measureP onΩ given

informally by

“P (dω) =
1

Z
exp

(
− 1

2

∑

s,t∈Zd

|s−t|=1

|ωt − ωs|2
)
∏

s∈Zd

dωs ” . (2.2.6)

The expression is not rigorous since the Gaussian free field on RZd
does not have a density

w.r.t. a product measure. Indeed, the density in (2.2.6) would be infinite for almost everyω.

Nevertheless,P can be defined rigorously as the law of a centered Gaussian process (or random

field) (Xs)s∈Zd with covariances

Cov(Xs, Xt) = G(s, t) for anys, t ∈ Zd,

whereG(s, t) =
∞∑
n=0

pn(s, t) is the Green’s function of the Random Walk onZd. The connection

to the informal expression in (2.2.6) is made by observing that the generator of the random walk

is the discrete Laplacian∆Zd , and the informal density in (2.2.6) takes the form

Z−1 exp

(
−1
2
(ω,∆Zdω)l2(Zd)

)
.

For d ≥ 3, the random walk onZd is transient. Hence the Green’s function is finite, and one

can show that there is a unique centered Gaussian measureP on Ω with covariance function

G(s, t). Since G(s, t) depends only ons − t, the measureP is stationary w.r.t. the shift

Θs(ω) = ω(s+ ·), s ∈ Zd. Furthermore, decay of correlations holds ford ≥ 3 since

G(s, t) ∼ |s− t|2−d as|s− t| → ∞.

It can be shown that this implies ergodicity ofP , i.e., theP -almost sure limits of spatial ergodic

averages are constant. In dimensionsd = 1, 2 the Green’s function is infinite and the massless

Gaussian free field does not exist. However, in any dimensiond ∈ N it is possible to define

in a similar way the Gaussian free field with massm ≥ 0, whereG is replaced by the Green’s

function of the operatorm2 −∆Zd .

Example (Markov chains in random environment). Suppose that(Θx)x∈Zd is stationary and

ergodic on a probability space(Ω,A, P ), and letq : Ω× Zd → [0, 1] be a stochastic kernel from

Ω toZd. Then random transition probabilities onZd can be defined by setting

p(ω, x, y) = q (Θx(ω), y − x) for anyω ∈ Ω andx, y ∈ Zd.
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For any fixedω ∈ Ω, p(ω, ·) is the transition matrix of a Markov chain onZd. The variableω

is called therandom environment - it determines which transition matrix is applied. One is

now considering a two-stage model where at first an environment ω is chosen at random, and

then (givenω) a Markov chain is run in this environment. Typical questions that arise are the

following:

• Quenched asymptotics.How does the Markov chain with transition kernelp(ω, ·, ·) be-

have asymptotically for a typicalω (i.e., forP -almost everyω ∈ Ω)?

• Annealed asymptotics.What can be said about the asymptotics if one is averaging over ω

w.r.t. P?

For an introduction to these and other questions see e.g. Sznitman, “Ten lectures on Random

media” [3].

2.2.3 Ergodic theory for Markov processes

We now return to our main interest in these notes: The application of ergodic theorems to

Markov processes in continuous time. Suppose that(pt)t∈[0,∞) is a transition function of a time-

homogeneous Markov process(Xt, Pµ) on (Ω,A). We assume that(Xt)t∈[0,∞) is the canonical

process onΩ = D([0,∞), S), A = σ(Xt : t ∈ [0,∞)), andµ is the law ofX0 w.r.t. Pµ. The

measureµ is a stationary distribution for(pt) iff

µpt = µ for anyt ∈ [0,∞).

The existence of stationary distributions can be shown similarly to the discrete time case:

Theorem 2.6(Krylov-Bogoliubov ). Suppose that the family

νpt =
1

t

ˆ t

0

νps ds, t ≥ 0,

of probability measures onS is tight for someν ∈ P(S). Then there exists a stationary distribu-

tionµ of (pt)t≥0.

The proof of this and of the next theorem are left as exercises.
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Theorem 2.7(Characterizations of ergodicity in continuous time). 1) The shift semi-

groupΘs(ω) = ω(t + ·), t ≥ 0, preserves the measurePµ if and only ifµ is a stationary

distribution for(pt)t≥0.

2) In this case, the following statements are all equivalent

(i) Pµ is ergodic.

(ii) For any f ∈ L2(S, µ),

1

t

ˆ t

0

f(Xs) ds→
ˆ

f dµ Pµ-a.s. ast→∞.

(iii) For any f ∈ L2(S, µ),

VarPµ

(
1

t

ˆ t

0

f(Xs) ds

)
→ 0 ast→∞.

(iv) For anyf, g ∈ L2(S, µ),

1

t

ˆ t

0

CovPµ (g(X0), f(Xs)) ds→ 0 ast→∞.

(v) For anyA,B ∈ B,

1

t

ˆ t

0

Pµ [X0 ∈ A,Xs ∈ B] ds→ µ(A)µ(B) ast→∞.

(vi) For anyB ∈ B,

1

t

ˆ t

0

ps(x,B) ds→ µ(B) µ-a.e. ast→∞.

(vii) For anyB ∈ B with µ(B) > 0,

Px[TB <∞] > 0 for µ-a.e.x ∈ S.

(viii) For anyB ∈ B such thatpt1B = 1B µ-a.e. for anyt ≥ 0,

µ(B) ∈ {0, 1}.

(ix) Any functionh ∈ Fb(S) satisfyingpth = h µ-a.e. for anyt ≥ 0 is constant up to a

set ofµ-measure zero.
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One way to verify ergodicity is the strong Feller property:

Definition (Strong Feller property). A transition kernelp on (S,B) is calledstrong Feller iff

pf is continuous for any bounded measurable functionf : S → R.

Corollary 2.8. Suppose that one of the transition kernelspt, t > 0, is strong Feller. ThenPµ is

stationary and ergodic for any stationary distributionµ of (pt)t≥0 that has connected support.

Proof. LetB ∈ B such that

pt1B = 1B µ-a.e. for anyt ≥ 0. (2.2.7)

By Theorem 2.7 it suffices to showµ(B) ∈ {0, 1}. If pt is strong Feller for somet thenpt1B

is a continuous function. Therefore, by (2.2.7) and since the support ofµ is connected, either

pt1B ≡ 0 or pt1B ≡ 1 on supp(µ). Hence

µ(B) = µ(1B) = µ(pt1B) ∈ {0, 1}.

Example (Brownian motion on R/Z). A Brownian motion(Xt) on the circleR/Z can be

obtained by considering a Brownian motion(Bt) onR modulo the integers, i.e.,

Xt = Bt − ⌊Bt⌋ ∈ [0, 1) ⊆ R/Z.

Since Brownian motion onR has the smooth transition density

pRt (x, y) = (2πt)−1/2 exp(−|x− y|2/(2t)),

the transition density of Brownian motion onR/Z w.r.t. the uniform distribution is given by

pt(x, y) =
∑

n∈Z
pRt (x, y + n) =

1√
2πt

∑

n∈Z
e−

|x−y−n|2

2t for anyt > 0 andx, y ∈ [0, 1).

Sincept is a smooth function with bounded derivatives of all orders,the transition kernels are

strong Feller for anyt > 0. The uniform distribution onR/Z is stationary for(pt)t≥0. Therefore,

by Corollary 2.8, Brownian motion onR/Z with uniform initial distribution is a stationary and

ergodic Markov process.

A similar reasoning as in the last example can be carried out for general non-degenerate diffusion

processes onRd. These are Markov processes generated by a second order differential operator

of the form

L =
1

2

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑

i=1

bi(x)
∂

∂xi
.
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By PDE theory it can be shown that if the coefficients are locally Hölder continuous, the matrix

(aij(x)) is non-degenerate for anyx, and appropriate growth conditions hold at infinity then there

is a unique transition semigroup(pt)t≥0 with a smooth transition density corresponding toL, cf.

e.g. [XXX]. Therefore, Corollary 2.8 can be applied to prove that the law of a corresponding

Markov process with stationary initial distribution is stationary and ergodic.

2.3 Structure of invariant measures

In this section we apply the ergodic theorem to study the structure of the set of all invariant

measures w.r.t. a given one-parameter family of transformations(Θt)t≥0, as well as the structure

of the set of all stationary distributions of a given transition semigroup(pt)t≥0.

2.3.1 The convex set ofΘ-invariant probability measures

LetΘ : R+×Ω→ Ω, (t, ω) 7→ Θt(ω) be product-measurable on(Ω,A) satisfying the semigroup

property

Θ0 = idΩ, Θt ◦Θs = Θt+s for anyt, s ≥ 0,

and letJ =
{
A ∈ A : Θ−1

t (A) = A for anyt ≥ 0
}

. Alternatively, the results will also hold in

the discrete time case, i.e.,R+ may be replaced byZ+. We denote by

S(Θ) =
{
P ∈ P(Ω) : P ◦Θ−1

t = P for anyt ≥ 0
}

the set of all(Θt)-invariant (stationary) probability measures on(Ω,A).

Lemma 2.9(Singularity of ergodic probability measures). SupposeP,Q ∈ S(Θ) are distinct

ergodic probability measures. ThenP andQ are singular on theσ-algebraJ , i.e., there exist an

eventA ∈ J such thatP [A] = 1 andQ[A] = 0.

Proof. This is a direct consequence of the ergodic theorem. IfP 6= Q then there is a random

variableF ∈ Fb(Ω) such that
´

F dP 6=
´

F dQ. The event

A :=

{
lim sup
t→∞

AtF =

ˆ

F dP

}

is contained inJ , and by the ergodic theorem,P [A] = 1 andQ[A] = 0.

Recall that an elementx in a convex setC is called an extreme point ofC if x can not be

represented in a non-trivial way as a convex combination of elements inC. The setCe of all

extreme points inC is hence given by

Ce = {x ∈ C : ∃x1, x2 ∈ C\{x}, α ∈ (0, 1) : x = αx1 + (1− α)x2} .
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Theorem 2.10(Structure and extremals ofS(Θ)). 1) The setS(Θ) is convex.

2) A (Θt)-invariant probability measureP is extremal inS(Θ) if and only ifP is ergodic.

3) If Ω is a polish space andA is the Borelσ-algebra then any(Θt)-invariant probability

measureP on (Ω,A) can be represented as a convex combination of extremal (ergodic)

elements inS(Θ), i.e., there exists a probability measure̺ onS(Θ)e such that

P =

ˆ

S(Θ)e

Q̺(dQ).

Proof. 1) If P1 andP2 are(Θt)-invariant probability measures then any convex combination

αP1 + (1− α)P2, α ∈ [0, 1], is (Θt)-invariant, too.

2) Suppose first thatP ∈ S(Θ) is ergodic andP = αP1 + (1−α)P2 for someα ∈ (0, 1) and

P1, P2 ∈ S(Θ). ThenP1 andP2 are both absolutely continuous w.r.t.P . HenceP1 and

P2 are ergodic, i.e., they only take the values0 and1 on sets inJ . Since distinct ergodic

measures are singular by Lemma 2.9 we can conclude thatP1 = P = P2, i.e., the convex

combination is trivial. This showsP ∈ S(Θ)e.

Conversely, suppose thatP ∈ S(Θ) is not ergodic, and letA ∈ J such thatP [A] ∈ (0, 1).

ThenP can be represented as a non-trivial combination by conditioning onσ(A):

P = P [ · |A]P [A] + P [ · |Ac]P [Ac].

As A is in J , the conditional distributionsP [ · |A] andP [ · |Ac] are both(Θt)-invariant

again. HenceP /∈ S(Θ)e.

3) This part is a bit tricky, and we only sketch the main idea. For more details see e.g. Varad-

han, “Probability Theory” [39]. Since(Ω,A) is a polish space with Borelσ-algebra, there

is a regular versionpJ (ω, ·) of the conditional distributionsP [ · |J ](ω) given theσ-algebra

J . Furthermore, it can be shown thatpJ (ω, ·) is stationary andergodic for P -almost

everyω ∈ Ω (The idea in the background is that we “divide out” the non-trivial invariant
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events by conditioning onJ ). Assuming the ergodicity ofpJ (ω, ·) for P -a.e.ω, we obtain

the representation

P (dω) =

ˆ

pJ (ω, ·)P (dω)

=

ˆ

S(Θ)e

Q̺(dQ)

where̺ is the law ofω 7→ pJ (ω, ·) underP . Here we have used the definition of a

regular version of the conditional distribution and the transformation theorem for Lebesgue

integrals.

To prove ergodicity ofpJ (ω, ·) for almost everyω one can use that a measure is ergodic if

and only if all limits of ergodic averages of indicator functions are almost surely constant.

For a fixed eventA ∈ A,

lim
t→∞

1

t

ˆ t

0

1A ◦Θs ds = P [A|J ] P -almost surely, and thus

lim
t→∞

1

t

ˆ t

0

1A ◦Θs ds = pJ (ω,A) pJ (ω, ·)-almost surely forP -a.e.ω.

The problem is that the exceptional set in “P -almost every” depends onA, and there are

uncountably many eventsA ∈ A in general. To resolve this issue, one can use that the Borel

σ-algebra on a Polish space is generated by countably many sets An. The convergence

above then holds simultaneously with the same exceptional set for allAn. This is enough

to prove ergodicity ofpJ (ω, ·) for P -almost everyω.

2.3.2 The set of stationary distributions of a transition semigroup

We now specialize again to Markov processes. Letp = (pt)t≥0 be a transition semigroup on

(S,B), and let(Xt, Px) be a corresponding canonical Markov process onΩ = D(R+, S). We

now denote byS(p) the collection of all stationary distributions for(pt)t≥0, i.e.,

S(p) = {µ ∈ P(S) : µ = µpt for anyt ≥ 0} .

As usually in this setup,J is theσ-algebra of events inA = σ(Xt : t ≥ 0) that are invariant

under time-shiftsΘt(ω) = ω(t+ ·).

Exercise(Shift-invariants events for Markov processes). Show that for anyA ∈ J there exists

a Borel setB ∈ B such thatpt1B = 1B µ-almost surely for anyt ≥ 0, and

A =
⋂

n∈N

⋃

m≥n

{Xm ∈ B} = {X0 ∈ B} P -almost surely.
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The next result is an analogue to Theorem 2.10 for Markov processes. It can be either deduced

from Theorem 2.10 or proven independently.

Theorem 2.11(Structure and extremals ofS(p)). 1) The setS(p) is convex.

2) A stationary distributionµ of (pt) is extremal inS(p) if and only if any setB ∈ B such that

pt1B = 1B µ-a.s. for anyt ≥ 0 has measureµ(B) ∈ {0, 1}.

3) Any stationary distributionµ of (pt) can be represented as a convex combination of ex-

tremal elements inS(p).

Remark (Phase transitions). The existence of several stationary distributions can correspond to

the occurrence of a phase transition. For instance we will see in Section 5.2 below that for the

heat bath dynamics of the Ising model onZd there is only one stationary distribution above the

critical temperature but there are several stationary distributions in the phase transition regime

below the critical temperature.

2.4 Quantitative bounds & CLT for ergodic averages

Let (pt)t≥0 be the transition semigroup of a Markov process((Xt)t∈Z+ , Px) in discrete time or a

right-continuous Markov process((Xt)t∈R+ , Px) in continuous time with state space(S,B). In

discrete time,pt = pt wherep is the one-step transition kernel. Suppose thatµ is a stationary

distribution of(pt)t≥0. If ergodicity holds then by the ergodic theorem, the averages

Atf =
1

t

t−1∑

i=0

f(Xi), Atf =
1

t

ˆ t

0

f(Xs) ds respectively,

converge toµ(f) =
´

fdµ for anyf ∈ L1(µ). In this section, we study the asymptotics of the

fluctuations ofAtf aroundµ(f) ast→∞ for f ∈ L2(µ).

2.4.1 Bias and variance of stationary ergodic averages

Theorem 2.12(Bias, variance and asymptotic variance of ergodic averages). Let f ∈ L2(µ)

and letf0 = f − µ(f). The following statements hold:
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1) For anyt > 0, Atf is an unbiased estimator forµ(f) w.r.t. Pµ, i.e.,

EPµ[Atf ] = µ(f).

2) The variance ofAtf in stationarity is given by

VarPµ[Atf ] =
1

t
Varµ(f) +

2

t

t∑

k=1

(
1− k

t

)
Covµ(f, p

kf) in discrete time,

VarPµ[Atf ] =
2

t

ˆ t

0

(
1− r

t

)
Covµ(f, prf)dr in continuous time, respectively.

3) Suppose that the seriesGf0 =
∞∑
k=0

pkf0 or the integralGf0 =
´∞
0
psf0 ds (in discrete/

continuous time respectively) converges inL2(µ). Then the asymptotic variance of
√
tAtf

is given by

lim
t→∞

t · VarPµ[Atf ] = σ2
f , where

σ2
f = Varµ(f) + 2

∞∑

k=1

Covµ(f, p
kf) = 2(f0, Gf0)L2(µ) − (f0, f0)L2(µ)

in the discrete time case, and

σ2
f =

ˆ ∞

0

Covµ(f, psf)ds = 2(f0, Gf0)L2(µ)

in the continuous time case, respectively.

Remark. 1) The asymptotic variance equals

σ2
f = VarPµ[f(X0)] + 2

∞∑

k=1

CovPµ[f(X0), f(Xk)],

σ2
f =

ˆ ∞

0

CovPµ [f(X0), f(Xs)]ds respectively.

If Gf0 exists then the variance of the ergodic averages behaves asymptotically asσ2
f/t.

2) The statements hold under the assumption that the Markov process is started in stationarity.

Bounds for ergodic averages of Markov processes with non-stationary initial distribution

are given in Section 7.4 below.

Proof of Theorem 2.12:

We prove the results in the continuous time case. The analogue discrete time case is left as
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an exercise. Note first that by right-continuity of(Xt)t≥0, the process(s, ω) 7→ f(Xs(ω)) is

product-measurable and square integrable on[0, t]× Ω w.r.t. λ⊗ Pµ for anyt ∈ R+.

1) By Fubini’s theorem and stationarity,

EPµ

[
1

t

ˆ t

0

f(Xs) ds

]
=

1

t

ˆ t

0

EPµ [f(Xs)] ds = µ(f) for anyt > 0.

2) Similarly, by Fubini’s theorem, stationarity and the Markov property,

VarPµ [Atf ] = CovPµ

[
1

t

ˆ t

0

f(Xs) ds,
1

t

ˆ t

0

f(Xu) du

]

=
2

t2

ˆ t

0

ˆ u

0

CovPµ [f(Xs), f(Xu)] dsdu

=
2

t2

ˆ t

0

ˆ u

0

Covµ(f, pu−sf) dsdu

=
2

t2

ˆ t

0

(t− r) Covµ(f, prf) dr.

3) Note that by stationarity,µ(prf) = µ(f), and hence

Covµ(f, prf) =

ˆ

f0 prf0 dµ for anyr ≥ 0.

Therefore, by 2) and Fubini’s theorem,

t · VarPµ [Atf ] = 2

ˆ t

0

(
1− r

t

) ˆ
f0 prf0 dµdr

= 2

(
f0,

ˆ t

0

(
1− r

t

)
prf0 dr

)

L2(µ)

→ 2

(
f0,

ˆ ∞

0

prf0 dr

)

L2(µ)

ast→∞

provided the integral
´∞
0
prf0 dr converges inL2(µ). Here the last conclusion holds since

L2(µ)-convergence of
´ t

0
prf0 dr ast→∞ implies that

ˆ t

0

r

t
prf0 dr =

1

t

ˆ t

0

ˆ r

0

prf0 dsdr =
1

t

ˆ t

0

ˆ t

s

prf0 drds→ 0 in L2(µ) ast→∞.

Remark (Potential operator, existence of asymptotic variance). The theorem states that the

asymptotic variance of
√
tAtf exists if the series/integralGf0 converges inL2(µ). Notice thatG

is a linear operator that is defined in the same way as the Green’s function. However, the Markov
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process is recurrent due to stationarity, and thereforeG1B =∞ µ-a.s. onB for any Borel setB ⊆
S. Nevertheless,Gf0 often exists becausef0 has meanµ(f0) = 0. Some sufficient conditions

for the existence ofGf0 (and hence of the asymptotic variance) are given in the exercise below.

If Gf0 exists for anyf ∈ L2(µ) thenG induces a linear operator on the Hilbert space

L2
0(µ) = {f ∈ L2(µ) : µ(f) = 0},

i.e., on the orthogonal complement of the constant functions in L2(µ). This linear operator is

called thepotential operator. It is the inverse of the negative generator restricted to the orthog-

onal complement of the constant functions. Indeed, in discrete time,

−LGf0 = (I − p)
∞∑

n=0

pnf0 = f0

wheneverGf0 converges. Similarly, in continuous time, ifGf0 exists then

−LGf0 = − lim
h↓0

ph − I
h

ˆ ∞

0

ptf0 dt = lim
h↓0

1

h

(
ˆ ∞

0

ptf0 dt−
ˆ ∞

0

pt+hf0 dt

)

= lim
h↓0

1

h

ˆ h

0

ptf0 dt = f0.

The last conclusion holds by strong continuity oft 7→ ptf0, cf. Theorem 4.2 below.

Exercise (Sufficient conditions for existence of the asymptotic variance). Prove that in the

continuous time case,Gf0 =
´∞
0
ptf0 converges inL2(µ) if one of the following conditions is

satisfied:

(i) Decay of correlations:
´∞
0

∣∣CovPµ[f(X0), f(Xt)]
∣∣ dt <∞.

(ii) L2 bound:
´∞
0
‖ptf0‖L2(µ)dt <∞.

Deduce non-asymptotic (t finite) and asymptotic (t → ∞) bounds for the variances of ergodic

averages under the assumption that either the correlations|CovPµ[f(X0), f(Xt)]| or theL2(µ)

norms‖ptf0‖L2(µ) are bounded by an integrable functionr(t).

2.4.2 Central limit theorem for Markov chains

We now restrict ourselves to the discrete time case. Letf ∈ L2(µ), and suppose that the asymp-

totic variance

σ2
f = lim

n→∞
nVarPµ[Anf ]
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exists and is finite. Without loss of generality we assumeµ(f) = 0, otherwise we may consider

f0 instead off . Our goal is to prove a central limit theorem of the form

1√
n

n−1∑

i=0

f(Xi)
D→ N(0, σ2

f ) (2.4.1)

where “
D→” stands for convergence in distribution. The key idea is to use the martingale problem

in order to reduce (2.4.1) to a central limit theorem for martingales. Ifg is a function inL2(µ)

theng(Xn) ∈ L2(Pµ) for anyn ≥ 0, and hence

g(Xn)− g(X0) =Mn +

n−1∑

k=0

(Lg)(Xk) (2.4.2)

where(Mn) is a square-integrable(FX
n ) martingale withM0 = 0 w.r.t. Pµ, andLg = pg − g.

Now suppose that there exists a functiong ∈ L2(µ) such thatLg = −f µ-a.e. Note that this is

always the case withg = Gf if Gf =
∞∑
n=0

pnf converges inL2(µ). Then by (2.4.2),

1√
n

n−1∑

k=0

f(Xk) =
Mn√
n
+
g(X0)− g(Xn)√

n
. (2.4.3)

As n →∞, the second summand converges to0 in L2(Pµ). Therefore, (2.4.1) is equivalent to a

central limit theorem for the martingale(Mn). Explicitly,

Mn =
n∑

i=1

Yi for anyn ≥ 0,

where the martingale incrementsYi are given by

Yi =Mi −Mi−1 = g(Xi)− g(Xi−1)− (Lg)(Xi−1)

= g(Xi)− (pg)(Xi−1).

These increments form a stationary sequence w.r.t.Pµ. Thus we can apply the following theorem:

Theorem 2.13(CLT for martingales with stationary increments ). Let (Fn) be a filtration on

a probability space(Ω,A, P ). Suppose thatMn =
n∑

i=1

Yi is an(Fn) martingale on(Ω,A, P ) with

stationary incrementsYi ∈ L2(P ), and letσ ∈ R+. If

1

n

n∑

i=1

Y 2
i → σ2 in L1(P ) asn→∞ (2.4.4)

then
1√
n
Mn

D→ N(0, σ2) w.r.t. P. (2.4.5)
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The proof of Theorem 2.13 will be given at the end of this section. Note that by the ergodic

theorem, the condition (2.4.4) is satisfied withσ2 = E[Y 2
i ] if the process(Yi, P ) is ergodic. As a

consequence of Theorem 2.13 and the considerations above, we obtain:

Corollary 2.14 (CLT for stationary Markov chains ). Let (Xn, Pµ) be a stationary and ergodic

Markov chain with initial distributionµ and one-step transition kernelp, and letf ∈ L2(µ).

Suppose that there exists a functiong ∈ L2(µ) such that

−Lg = f − µ(f). (2.4.6)

Then asn→∞,

1√
n

n−1∑

k=0

(f(Xk)− µ(f)) D→ N(0, σ2
f ), where

σ2
f = 2Covµ(f, g)− Varµ(f).

Remark. Recall that (2.4.6) is satisfied withg = G(f − µ(f)) if it exists.

Proof. Let Yi = g(Xi) − (pg)(Xi−1). Then underPµ (Yi) is a stationary sequence of square-

integrable martingale increments. By the ergodic theorem,for the process(Xn, Pµ),

1

n

n∑

i=1

Y 2
i → Eµ[Y

2
1 ] in L1(Pµ) asn→∞.

The limiting expectation can be identified as the asymptoticvarianceσ2
f by an explicit computa-

tion:

Eµ[Y
2
1 ] = Eµ[(g(X1)− (pg)(X0))

2]

=

ˆ

µ(dx)Ex[g(X1)
2 − 2g(X1)(pg)(X0) + (pg)(X0)

2]

=

ˆ

(pg2 − 2(pg)2 + (pg)2)dµ =

ˆ

g2 dµ−
ˆ

(pg)2dµ

= (g − pg, g + pg)L2(µ) = 2(f0, g)L2(µ) − (f0, f0)L2(µ) = σ2
f .

Heref0 := f − µ(f) = −Lg = g − pg by assumption. The martingale CLT 2.13 now implies

that
1√
n

n∑

i=1

Yi
D→ N(0, σ2

f ),

and hence

1√
n

n−1∑

i=0

(f(Xi)− µ(f)) =
1√
n

n∑

i=1

Yi +
g(X0)− g(Xn)√

n

D→ N(0, σ2
f )

as well, becauseg(X0)− g(Xn) is bounded inL2(Pµ).
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Some explicit bounds onσ2
f are given in Section 7.4. We conclude this section with a proof of

the CLT for martingales with stationary increments:

2.4.3 Central limit theorem for martingales

LetMn =
n∑

i=1

Yi where(Yi) is a stationary sequence of square-integrable random variables on a

probability space(Ω,A, P ) satisfying

E[Yi|Fi−1] = 0 P -a.s. for anyi ∈ N (2.4.7)

w.r.t. a filtration(Fn). We now prove the central limit theorem 2.13, i.e.,

1

n

n∑

i=1

Y 2
i → σ2 in L1(P )⇒ 1√

n
Mn

D→ N(0, σ2). (2.4.8)

Proof of Theorem 2.13.Since the characteristic functionϕ(p) = exp (−σ2p2/2) of N(0, σ2) is

continuous, it suffices to show that for any fixedp ∈ R,

E
[
eipMn/

√
n
]
→ ϕ(p) asn→∞, or, equivalently,

E
[
eipMn/

√
n+σ2p2/2 − 1

]
→ 0 asn→∞. (2.4.9)

Let

Zn,k := exp

(
i
p√
n
Mk +

σ2p2

2

k

n

)
, k = 0, 1, . . . , n.

Then the left-hand side in (2.4.9) is given by

E[Zn,n − Zn,0] =
n∑

k=1

E[Zn,k − Zn,k−1]

=
n∑

k=1

E

[
Zn,k−1 · E

[
exp

(
ip√
n
Yk +

σ2p2

2n

)
− 1|Fk−1

]]
. (2.4.10)

The random variablesZn,k−1 are uniformly bounded independently ofn andk, and by a Taylor

approximation and (2.4.7),

E

[
exp

(
ip√
n
Yk +

σ2p2

2n

)
− 1|Fk−1

]
= E

[
ip√
n
Yk −

p2

2n

(
Y 2
k − σ2

)
|Fk−1

]
+Rn,k

= − p
2

2n
E[Y 2

k − σ2|Fk−1] +Rn,k

with a remainderRn,k of ordero(1/n). Hence by (2.4.10),

E
[
eipMn/

√
n+σ2p2/2 − 1

]
= − p

2

2n

n∑

k=1

E
[
Zn,k−1 · (Y 2

k − σ2)
]
+ rn
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wherern =
n∑

k=1

E[Zn,k−1Rn,k]. It can be verified thatrn → 0 asn → ∞, so we are only left

with the first term. To control this term, we divide the positive integers into blocks of sizel where

l → ∞ below, and we apply (2.4.4) after replacingZn,k−1 by Zn,jl on thej-th block. We first

estimate
∣∣∣∣∣
1

n

n∑

k=1

E[Zn,k−1(Y
2
k − σ2)]

∣∣∣∣∣

≤ 1

n

⌊n/l⌋∑

j=0




∣∣∣∣∣∣∣
E


Zn,jl

∑

jl≤k<(j+1)l

k<n

(Y 2
k − σ2)




∣∣∣∣∣∣∣
+ sup

jl≤k<(j+1)l

k<n

E[|Zn,k−1 − Zn,jl| · |Y 2
k − σ2|]




≤ c1 ·E
[∣∣∣∣∣

1

l

l∑

k=1

(Y 2
k − σ2)

∣∣∣∣∣

]
+
c2
n

+ c3 sup
1≤k<l

E
[
|Zn,k−1 − 1| ·

∣∣Y 2
k − σ2

∣∣] . (2.4.11)

Here we have used that the random variablesZn,k are uniformly bounded, the sequence(Yk) is

stationary, and

|Zn,k−1 − Zn,jl| ≤ |Zn,jl| ·
∣∣∣∣exp

(
ip(Mk −Mjl) +

σ2p2

2

k − jl
n

)
− 1

∣∣∣∣

where the exponential has the same law asZn,k−jl by stationarity. By the assumption (2.4.4), the

first term on the right-hand side of (2.4.11) can be made arbitrary small by choosingl sufficiently

large. Moreover, for any fixedl ∈ N, the two other summands converge to0 asn → ∞ by

dominated convergence. Hence the left-hand side in (2.4.11) also converges to0 asn→∞, and

thus (2.4.4) holds.
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Chapter 3

Constructions of Markov processes in

continuous time

In this chapter, we give constructions for solutions of several important classes of martingale

problems. Section 3.1 is devoted to an explicit construction of jump processes with finite jump

intensities from their jump rates (i.e. from their generators), and the derivation of forward and

backward equations and the martingale problem in this more concrete context. A very important

way to obtain solutions of martingale problems is by approximation. In Section 3.2 the necessary

tools for weak convergence of stochastic processes are developed and applied to obtain Brownian

motion as a universal scaling limit of random walks. In Section 3.3, the techniques are general-

ized and applied to prove an existence result for diffusion processes inRd. Finally, Section 3.4

briefly discusses the application of Lyapunov function techniques in continuous time.

3.1 Jump processes with finite intensity

We will now construct a time-continuous Markov process withinfinitesimal generator at timet

given by

(Ltf)(x) =

ˆ

(f(y)− f(x)) qt(x, dy). (3.1.1)

Hereqt : S ×B → [0,∞) is a kernel of finite positive measures for anyt ≥ 0, i.e.,x 7→ qt(x,B)

is a measurable function for anyB ∈ B andB 7→ qt(x,B) is a finite positive measure for any

x ∈ S. The process jumps from the current statex to a new state contained in the setB with

transition rateqt(x,B), i.e., the transition probabilities satisfy

pt,t+h(x,B) = qt(x,B)h + o(h)

82
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for anyB ∈ B such thatx /∈ B.

Examples. 1) Non-homogeneous Poisson process with intensitiesλt. This is the process

with state spaceZ+ and transition rates

qt(x, ·) = λt · δx+1

b b b b b b b

high intensity low intensity

2) Birth-death process. This is a process onZ+ with transition rates given by

qt(x, ·) = bt(x)δx+1 + dt(x)δx−1

for functions(t, x) 7→ bt(x), dt(x) on [0,∞)× Z+.

| | | | | | |
xx− 1 x+ 1

rateb(x)rated(x)

3) Time-dependent branching process. Suppose the particles in a population are indepen-

dently giving birth to a child with ratebt and dying with ratedt. Then the total population

size at timet can be described by a Markov process onZ+ with transition rates

qt(x, ·) = btxδx+1 − dtxδx−1.
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3.1.1 Construction

We now give an explicit construction of a process(Xt)t∈[0,∞) with generatorLt given by (3.1.1)

and initial distribution at timet0 given byXt0 ∼ ν. To this end we assume that

qt(x,B) = λt(x)πt(x,B) for anyx ∈ S andB ∈ B, (3.1.2)

whereπt is a stochastic kernel on(S,B) andλt : S → [0,∞) is a measurable function. Note that

the valuesqt(x, {x}) are not relevant in (3.1.1), so we may indeed assume that (3.1.2) even holds

for setsB containingx. λt(x) is an upper bound for the jump intensity fromx at timet since

qt(x, S \ {x}) ≤ qt(x, S) = λt(x).

The subsequent jump timesJn and positionsYn of a Markov process with jump intensitiesqt and

initial law ν at timet0 can be obtained by the following algorithm.

Algorithm (Construction of minimal jump process). 1) SetJ0 := t0 and sampleY0 ∼ ν.

2) Forn := 1, 2, . . . do

(i) SampleEn ∼ Exp(1) independently ofY0, . . . , Yn−1, E0, . . . , En−1.

(ii) SetJn := inf
{
t ≥ 0 :

´ t

Jn−1
λs(Yn−1)ds ≥ En

}
.

(iii) SampleYn|(Y0, . . . , Yn−1, E0, . . . , En) ∼ πJn(Yn−1, ·).

Here we setinf∅ =∞. It may happen (for instance whenλt(Yn−1) = 0 for anyt) thatJn =∞
with positive probability, and in that case we use the conventionπ∞(x, ·) = δx. Note that actually

the value ofπ∞ is not relevant since the process gets stuck atYn anyway. It may also happen

that the process “explodes”, i.e., there are infinitely manyjumps in finite time. We define the

explosion timeζ as

ζ = supJn.

The Markov process(Xt)t≥t0 is then given by

Xt = Yn on [Jn,Jn+1) for anyn ∈ Z+,

Xt = ∆ on [ζ,∞).

The process is minimal in the sense that we assign the distinct value∆ after the explosion time

ζ . There may exist other Markov processes with the same transition rates that start again in a

different state at the explosion time, see the exercises.
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Let P(t0,x0) denote the underlying probability measure for the random variables defined by the

algorithm with initial lawν = δx0 at timet0. Hence underP(t0,x0), J0 = t0 andY0 = x0 almost

surely, the conditional law ofJn given(J0, Y0, . . . ,Jn−1, Yn−1) is

λt(Yn−1)e
−
´ t
Jn−1

λr(Yn−1)dr1{t>Jn−1}dt, (3.1.3)

and the conditional law ofYn given(J0, Y0, . . . ,Jn−1, Yn−1,Jn) is πJn(Yn−1, ·). The probability

measure onR+ defined by (3.1.3) is called asurvival distribution with time-dependent hazard

rate λs(Yn−1). Notice that an exponential distribution is a special survival distribution with time-

independent hazard rateλ. Furthermore, the survival distribution has a property generalizing the

memoryless property of the exponential distribution, which in our case says that

P(t0,x0) [Jn > t+ h |Jn−1, Yn−1,Jn > t ] = e−
´ t+h
t

λs(Yn−1)ds.

In particular, the conditional probability that there is nojump in the time interval(t, t+ h] given

the next jump occurs after timet is 1− hλt(Yn−1) + o(h) ash ↓ 0.

Example (Time-homogeneous case). Suppose that the jump intensitiesqt(x,B) do not depend

on t. Then we may assume that alsoπt andλt do not depend ont. In particular, in this case the

transition probabilities do not depend on the jump times, i.e., the sequence(Yn)n∈Z+ of positions

of the process is a Markov chain with transition kernelπ. Givenσ(Yn : n ∈ Z+), the waiting

times for the next jumps are independent with

Jn − Jn−1 =
En

λ(Yn−1)
∼ Exp(λ(Yn−1)).

Example (Time-homogeneous case with bounded jump intensities). Things simplify further

if we assume that the intensities are time-independent withsup
x∈S

q(x, S \ {x}) ≤ λ for a finite

constantλ. In this case we assume

q(x, dy) = λπ(x, dy)

whereπ is a transition kernel. The process constructed correspondingly according to the algo-

rithm above has i.i.d. waiting times

Jn − Jn−1 ∼ Exp(λ)

between jumps. Hence the number of jumps up to timet is a Poisson process with parameterλ.

The process(Yn) of positions is an independent Markov chain with transitionkernelπ, and the

continuous-time process is given by

Xt = YNt. (3.1.4)
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The process(Xt) is called thecontinuization of the Markov chain(Yn). For example if(Yn) is

a Random Walk then(Xt) is a compound Poisson process. By (3.1.4), it is easy to compute the

transition functions of the process in continuous time. Indeed, by independence of(Yn) and(Nt),

(Ptf)(x) = E0,x [f(Xt)] =
∞∑

k=0

E0,x [f(Yk);Nt = k]

=

∞∑

k=0

(πkf)(x)
(λt)k

k!
e−λt

=
(
eλtπf

)
(x)e−λt =

(
etLf

)
(x)

for anyt ≥ 0, x ∈ S andf ∈ Fb(S) whereetL =
∑∞

k=0
1
k!
(tL)k denotes the exponential of the

bounded linear operator

(Lf)(x) = (λ(π − I)f)(x) =
ˆ

q(x, dy)(f(y)− f(x)).

Standard properties of the operator exponential now show thatptf satisfies the Kolmogorov for-

ward and backward equation
d

dt
ptf = ptLf = Lptf

where the derivative can be taken w.r.t. the supremum norm. For unbounded jump intensities, the

derivation of Kolmogorov’s equations will be technically much more demanding.

3.1.2 Markov property

We now want to show that the process constructed above is indeed a Markov process with the right

generator. We first remark that in the general case, the sequence(Yn) of positions isnot a Markov

chain since the transition kernels depend on the (random) jump times. Similarly, the sequence

(Jn) of jump times is not a Markov chain in general. However, the processes(Yn−1,Jn)n∈N and

(Jn, Yn)n∈Z+ are both Markov chains w.r.t. the filtrations

Gn = σ(Y0, . . . , Yn−1, E1, . . . , En), G̃n = σ(Y0, . . . , Yn, E1, . . . , En),

respectively. The corresponding transition function are given by

P ((x, s), dy dt) = πs(x, dy)λt(y) exp

(
−
ˆ t

s

λr(y)dr

)
1(s,∞)(t)dt,

P̃ ((s, x), dt dy) = λt(x) exp

(
−
ˆ t

s

λr(x)dr

)
1(s,∞)(t)πt(x, dy)dt.
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The continuous-time process(Xt)t≥t0 is obtained as a deterministic function from the Markov

chains:

Xt = Φt(J0, Y0,J1, Y1, . . . )

where we set

Φt(t0, x0, t1, x1, . . . ) :=

{
Xn for t ∈ [tn, tn+1) for somen ∈ Z+,

∆ for t ≥ sup tn
. (3.1.5)

LetFX
t = σ(Xs : s ∈ [0, t]).

Theorem 3.1(Markov property ). The process((Xt)t≥t0 , (Pt0,x0)) is an(FX
t ) Markov process,

i.e.,

E(t0,x0)

[
F (Xs:∞)1{s<ζ}

∣∣FX
s

]
= E(s,Xs) [F (Xs:∞)] P(t0,x0)-a.s.

for any0 ≤ t0 ≤ s, x0 ∈ S, and any bounded measurable functionF : D(R+, S ∪ {∆})→ R.

For proving the theorem we will apply the Markov property of the chain(Yn−1,Jn). Here the

problem is that the relevant filtration is(Gn)n∈N but we are interested in the conditional expecta-

tion givenFX
s for somes ∈ R+. To overcome this difficulty let

Ks = min {n ∈ Z+ : Jn > s}

denote the index of the first jump after times.

t0 s JKs
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Note thatKs is a stopping time w.r.t.(Gn), and

{Ks <∞} = {s < ζ}.

Besides the Markov property of the chain(Yn−1,Jn), the following fact will be crucial for the

proof of Theorem 3.1:

Lemma 3.2(Memoryless property). Let s ≥ t0. Then for anyt ≥ s,

P(t0,x0)

[
{JKs > t} ∩ {s < ζ} | FX

s

]
= e−

´ t
s λr(Xs) dr P -a.s. on{s < ζ}, i.e.,

P(t0,x0) [{JKs > t} ∩ {s < ζ} ∩ A] = E(t0,x0)

[
e−
´ t
s λr(Xs) dr ; A ∩ {s < ζ}

]
∀A ∈ Fs

Note that the assertion is already a restricted form of the Markov property in continuous time: The

conditional distribution with respect toP(t0,x0) of JKs givenFX
s coincides with the distribution

of J1 with respect toP(s,Xs).

Proof. LetA ∈ FX
s . Then it can be verified that for anyn ∈ N,

A ∩ {Ks = n} ∈ σ (J0, Y0, . . . , Jn−1, Yn−1) = G̃n−1.

Since

P [Jn > t | G̃n−1] = exp


−

t
ˆ

Jn−1

λr(Yn−1) dr


 = exp


−

t
ˆ

s

λr(Yn−1︸︷︷︸
=Xs

) dr


 · P [Jn > s | G̃n−1],

we obtain

P [{JKs > t} ∩ A ∩ {Ks = n}] = E
[
P [Jn > t | G̃n−1] ; A ∩ {Ks = n}

]

= E
[
e−
´ t
s λr(Xs) dr ; A ∩ {Ks = n} ∩ {Jn > s}

]

= E
[
e−
´ t
s λr(Xs)dr;A ∩ {Ks = n}

]
.

Summing overn gives the assertion since{s < ζ} = ⋃̇n∈N{Ks = n}.

Proof of Theorem 3.1.Let s ≥ t0. Then for anyt ≥ 0,

Xs+t = Φt(s, YKs−1,JKs, YKs,JKs+1, . . . ) on{Ks <∞} = {s < ζ}
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whereΦt is defined by (3.1.5). In other words, the processXs:∞ = (Xs+t)t≥0 from time s

onwards is constructed in the same way froms, YKs−1,JKs, . . . as the original process is con-

structed fromt0, Y0, J1, . . .. Let F : D(R+, S ∪ {∆}) → R be bounded and measurable. Then

the Strong Markov property for the chain(Yn−1, Jn),

E(t0,x0)

[
F (Xs:∞) · 1{s<ζ} | GKs

]

=E(t0,x0)

[
F ◦ Φ(s, YKs−1, JKs, . . .) · 1{Ks<∞} | GKs

]

=EMarkov chain
(YKs−1,JKs)

[F ◦ Φ(s, (Y0, J1), (Y1, J2), . . .)] a.s. on{Ks <∞} = {s < ζ},

whereΦ = (Φt)t≥0. SinceFs ⊆ GKs, we obtain by the projectivity of the conditional expectation,

E(t0,x0)

[
F (Xs:∞) · 1{s<ζ} | FX

s

]
= E(t0,x0)

[
EMarkov chain

(Xs,JKs)
[F ◦ Φ(s, (Y0, J1), . . .)] · 1{s<ζ}

∣∣∣FX
s

]
,

where we haven taken into account that the conditional expectation givenGKs is 0 on {s ≥ ζ}
and thatYKs−1 = Xs. By the lemma above, the conditional distribution ofJKs givenFX

s is

k(Xs, ·) where

k(x, dt) = λt(x) · e−
´ t
s λr(x) dr · 1(s,∞)(t) dt.

Hence we obtain

E(t0,x0)

[
F (Xs:∞) · 1{s<ζ} | FX

s

]
= EMarkov chain

(Xs,k(Xs,·)) [F ◦ Φ(s, (Y0, J1), . . . )] a.s. on{s < ζ}.

Sincek(Xs, ·) is also the distribution ofJ1 with respect toPs,Xs, we conclude that

E(t0,x0)

[
F (Xs:∞) · 1{s<ζ} | FX

s

]
= E(s,Xs) [F (Φ(s, Y0, J1, . . .))] = E(s,Xs) [F (Xs:∞)] .

3.1.3 Generator and backward equation

Theorem 3.1 shows that the process((Xt)t≥t0 , P(t0,x0)) constructed as above is a time-inhomogeneous

Markov process w.r.t. the filtration(FX
t )t≥t0 with transition function given by

ps,t(x,B) = P(s,x) [Xt ∈ B] for any0 ≤ s ≤ t, x ∈ S andB ∈ B.

We will now link the process to the generator that is given by

Lt(x, dy) = qt(x, dy)− λt(x)δx(dy), i.e.,

(Ltf)(x) = (qtf)(x)− λt(x)f(x) =

ˆ

qt(x, dy) · (f(y)− f(x))
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for any bounded and measurable functionf : S → R.

If the state spaceS is finite thenLt can be identified with the matrix with entriesLt(x, y) =

qt(x, y)− λt(x)δ(x, y). This matrix is sometimes called the Q-matrix, see e.g. Norris [26]. The

connection between the process and its generator is most easily established through a weak form

of the Kolmogorov backward equation.

Theorem 3.3(Integrated backward equation). (1). The transition probabilities satisfy the

Chapman-Kolmogorov equations

ps,tpt,u = ps,u for any 0 ≤ s ≤ t ≤ u.

(2). Theintegrated backward equation

ps,t(x,B) = e−
´ t
s λu(x) duδx(B) +

t
ˆ

s

e−
´ r
s λu(x) du(qrpr,t)(x,B) dr (3.1.6)

holds for any0 ≤ s ≤ t , x ∈ S andB ∈ S. Equivalently, for anyf ∈ Fb(S),

ps,tf = e−
´ t
s λu duf +

ˆ t

s

e−
´ r
s λduduqrpr,tf dr. (3.1.7)

(3). If t 7→ λt(x) is continuous for anyx ∈ S, then

(ps,s+hf)(x) = (1− λs(x) · h)f(x) + h · (qsf)(x) + o(h) (3.1.8)

holds for anys ≥ 0 , x ∈ S and functionsf ∈ Fb(S) such thatt 7→ (qtf)(x) is continuous.

In particular, equation (3.1.8) shows that(Xt) has jump intensitiesλt(x) and transition rates

qt(x, dy).

Remark (Explosions and non-uniqueness of backward equation). It can be shown that for

f ≥ 0, ps,tf is the minimal non-negative solution of (3.1.7). Ifζ = sup Jn is finite with strictly

positive probability, then there are other possible continuations ofXt after the explosion timeζ .

These correspond to other non-negative solutions of the integrated backward equation. It is more

standard (and more intuitive) to write the backward equation in the differential form

− ∂

∂s
ps,tf = Lsps,tf for s ∈ [0, t], pt,tf = f. (3.1.9)
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Under additional regularity conditions, it can be shown that (3.1.9) is indeed equivalent to (3.1.7).

The details are left for an exercise. By (3.1.9) we see more clearly that the backward equation

does indeed describe thebackward in time evolution of the expectation valuesps,tf(x) =

E(s,x)[f(Xt)], considered as a function of the initial times.

Proof of Theorem 3.3. (1). By the Markov property,

P(t0,µ)

[
Xt ∈ B|FX

s

]
= P(s,Xs) [Xt ∈ B] = ps,t(Xs, B) a.s.

Since this holds for any initial condition, the Chapman-Kolmogorov equations

(ps,tpt,uf)(x) = (ps,uf)(x)

are satisfied for anyx ∈ S , 0 ≤ s ≤ t ≤ u andf : S → R.

(2). First step analysis: The idea for deriving the integrated backward equation is to condition

on time and position of the first jump, i.e., on theσ-algebraG̃1 = σ(J0, Y0, J1, Y1). Since

Xt = Φt(J0, Y0, J1, Y1, J2, Y2, . . .), the Markov property of(Jn, Yn) implies

P(s,x)

[
Xt ∈ B | G̃1

]
(ω) = P(J1(ω),Y1(ω)) [Φt(s, x, J0, Y0, J1, Y1, . . .) ∈ B]

for almost everyω. Furthermore,

Φt(s, x, J0, Y0, J1, Y1, . . .) =




x if t < J1(ω),

Φt(J0, Y0, J1, Y1, . . .) if t ≥ J1(ω),

and hence

P(s,x)

[
Xt ∈ B | G̃1

]
(ω) = δx(B) · 1{t<J1}(ω) + P(J1(ω),Y1(ω))[Xt ∈ B] · 1{t≥J1}(ω)

P(s,x)-almost surely. We conclude

ps,t(x,B) = P(s,x)[Xt ∈ B]

= δx(B)P(s,x)[J1 > t] + E(s,x)[pJ1,t(Y1, B); t ≥ J1]

= δx(B) · e−
´ t
s λr(x) dr +

t
ˆ

s

λr(x)e
−
´ r
s λu(x) du(πrpr,t)(x,B) dr

= δx(B) · e−
´ t
s λr(x) dr +

t
ˆ

s

e−
´ r
s λu(x) du(qrpr,t)(x,B) dr.
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(3). This is a direct consequence of (3.1.6). Fix a functionf ∈ Fb(S), and note that

0 ≤ (qrpr,tf)(x) = λr(x)(πrpr,tf)(x) ≤ λr(x) sup |f |

for any0 ≤ r ≤ t andx ∈ S. Hence ifr 7→ λr(x) is continuous then

(pr,tf)(x) −→ f(x) (3.1.10)

asr, t ↓ s for anyx ∈ S. Thus, by dominated convergence,

(qrpr,tf)(x)− (qsf)(x)

=

ˆ

qr(x, dy)(pr,tf(y)− f(y)) + (qrf)(x)− (qsf)(x) −→ 0

asr, t ↓ s providedr 7→ (qrf)(x) is continuous. The assertion now follows from (3.1.7).

Exercise(A first non-explosion criterion). 1) Show that ifλ̄ := sup
t≥0

sup
x∈S

λt(x) < ∞, then

ζ =∞ P(t0,x0)-almost surely for anyt0 ≥ 0 andx0 ∈ S.

2) In the time-homogeneous case, givenσ(Yk : k ∈ Z+),

Jn =

n∑

k=1

Ek

λ(Yn−1)

is a sum of conditionally independent exponentially distributed random variables. Con-

clude that the events

{ζ <∞}and
{ ∞∑

k=0

1

λ(Yk)
<∞

}

coincide almost surely (apply Kolmogorov’s 3-series Theorem).

3.1.4 Forward equation and martingale problem

Next, we are going to derive a forward equation from the integrated backward equation. As

a consequence, we will see that the jump process solves a time-dependent martingale problem

w.r.t. the generatorLt. Establishing the connection between (integrated) backward and forward

equation requires the introduction of an appropriate norm on functionsf : S → R w.r.t. which

the transition functions depend continuously on time. We will assume that the jump intensities are

uniformly bounded on finite time-intervals since in this case, we can use the supremum norm. The

case of only locally bounded jump intensities can then be handled afterwards by a localization
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procedure. We denote byC1,0
b ([0,∞)× S) the linear space of functionsf ∈ C([0,∞), S) such

that(t, x) 7→ f(t, x) isC1 in thet-variable for anyx, and bothf and∂f
∂t

are bounded on[0, t]×S
for any finitet ∈ R+.

Theorem 3.4(Kolmogorov’s forward equation and martingale problem). Suppose that

λt = sup
s∈[0,t]

sup
x∈S

λs(x) <∞ for anyt ∈ R+, and (3.1.11)

t 7→ qtf is continuous w.r.t. the supremum norm for anyf ∈ Cb(S). (3.1.12)

Then the following assertions hold:

1) Strong continuity: For anyf ∈ Fb(S), the function(s, t) 7→ ps,tf is continuous w.r.t. the

supremum norm onFb(S).

2) Forward equation:For anyf ∈ C1,0
b ([0,∞)× S) andr ∈ R+,

d

ds
pr,sf(s, ·) = pr,s

(
∂f

∂s
+ Lsf

)
(s, ·) for s ≥ r (3.1.13)

where derivative is a limit of difference quotients w.r.t. the supremum norm onFb(S).

3) Time-dependent martingale problem:For any f ∈ C1,0
b ([0,∞) × S) and r ∈ R+, the

process

Mf
t = f(t, Xt)−

ˆ t

r

(
∂f

∂s
+ Lsf

)
(s,Xs)ds, t ≥ r,

is an(FX
t ) martingale underP(r,x) for anyx ∈ S.

Remark. Assumption (3.1.5) guarantees that the process is non-explosive. Moreover, by (3.1.5)

and (3.1.11), the functiont 7→ (Ltf)(t, x) is continuous for anyx ∈ S andf ∈ C1,0
b ([0,∞)×S).

Proof of Theorem 3.4. (1). Strong continuity: Letf ∈ Fb(S). Note that‖qrf‖sup ≤ λ̄r‖f‖sup
for anyr ≥ 0. Hence by the assumption and the integrated backward equation (3.1.7),

‖ps,tf − f‖sup ≤ (t− s)λt‖f‖sup + (t− s)‖qupu,tf‖sup ≤ 2(t− s)λt‖f‖sup,

and thus

‖pr,tf − pr,sf‖sup = ‖pr,s(ps,tf − f)‖sup ≤ ‖ps,tf − f‖sup ≤ 2(t− s)λt‖f‖sup
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and, similarly,

‖pr,tf − ps,tf‖sup = ‖pr,sps,tf − ps,tf‖sup ≤ 2(s− r)λt‖ps,tf‖sup ≤ 2(s− r)λt‖f‖sup

for any0 ≤ r ≤ s ≤ t.

(2). Forward equation: We first assumef ∈ Cb(S). By 1.) and the assumption,

(r, u, x) 7→ (qrpr,uf)(x)

is uniformly bounded for0 ≤ r ≤ u ≤ t0 andx ∈ S, and

qrpr,uf = qr(pr,uf − f)︸ ︷︷ ︸
−→0 uniformly

+qrf −→ qtf

uniformly asr, u ↓ t. Hence by the integrated backward equation (3.1.7) and the continuity

of t 7→ λt,

pt,t+hf(x)− f(x)
h

h↓0−→ −λt(x)f(x) + qtf(x) = Ltf(x)

uniformly, and thus

ps,t+hf − ps,tf
h

= ps,t
pt,t+hf − f

h
−→ ps,tLtf

pointwise ash ↓ 0. A similar argument shows that also

ps,tf − ps,t−hf

h
= ps,t−h

pt−h,tf − f
h

−→ ps,tLtf

pointwise. Now considerf ∈ C1,0
b ([0,∞)× S). Then forr ≤ s ≤ t,

pr,tf(t, x)− pr,sf(s, x)
t− s = pr,t

f(t, x)− f(s, x)
t− s + pr,s

ps,tf(s, x)− f(s, x)
t− s

→ pr,s

(
∂

∂s
+ Ls

)
f(s, x)

uniformly in x ast ↓ s. Again, the convergence fort ↑ s can be shown in a similarly way.

3) Martingale problem. The forward equation states in integrated form that

ps,tft = fs +

t
ˆ

s

ps,r

(
∂

∂r
+ Lr

)
fr dr
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for any0 ≤ s ≤ t. Hence by the Markov property, fort0 ≤ s ≤ t,

E(t0,x0)[f(t, Xt)− f(s,Xs) | FX
s ]

=E(s,Xs)[f(t, Xt)− f(s,Xs)] = (ps,tf(t, ·))(Xs)− f(s,Xs)

=

t
ˆ

s

(
ps,r

(
∂

∂r
+ Lr

)
f(r, ·)

)
(Xs) dr

=E(t0,x0)




t
ˆ

s

(
∂

∂r
+ Lr

)
f(r,Xr) dr

∣∣∣∣∣∣
FX

r


 ,

because all the integrands are uniformly bounded.

Notation:

< µ, f >:= µ(f) =

ˆ

f dµ

µ ∈M1(S), s ≥ 0, µt := µps,t = P(s,µ) ◦X−1
t mass distribution at timet

Corollary (Fokker-Planck equation). Under the assumptions in the theorem,

d

dt
< µt, f >=< µt,Ltf >

for all t ≥ s and bounded functionsf : S → R such thatt 7→ qtf and t 7→ λt are pointwise

continuous. Abusing notation, one sometimes writes

d

dt
µt = L∗

tµt

Proof.

< µt, f >=< µps,t, f >=

ˆ

µ(dx)

ˆ

ps,t(x, dy)f(y) =< µ, ps,tf >

hence we get

< µt+h, f > − < µt, f >

h
=< µps,t,

pt,t+hf − f
h

>−→< µt,Ltf >

ash ↓ 0 by dominated convergence.

Remark. (Important! )

P(s,µ)[ζ <∞] > 0

⇒ < µt, 1 >= µt(S) < 1 for larget
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hence the Fokker-Planck equation doesnot hold forf ≡ 1:

< µt, 1 >︸ ︷︷ ︸
<1

< < µ, 1 >︸ ︷︷ ︸
=1

+

t
ˆ

0

< µs,Ls1 > ds

whereLs1 = 0.

Example. Birth process onS = {0, 1, 2, . . .}

q(i, j) =




b(i) if j = i+ 1

0 else

π(i, j) = δi+1,j ,

Yn = n,

Sn = Jn − Jn−1 ∼ Exp(b(n− 1)) independent,

ζ = sup Jn =
∞∑

n=1

Sn <∞ ⇐⇒
∞∑

n=1

b(n)n−1 <∞

In this case, Fokker-Planck does not hold.

3.1.5 Localization

Definition. A Markov process(Xt, P(s,x) | 0 ≤ s ≤ t, x ∈ S) is called non-explosive(or

conservative) if and only ifζ =∞ P(s,x)-a.s. for alls, x.

Now we consider again the minimal jump process(Xt, P(t0,µ)) constructed above. A function

f : [0,∞)× S → R

(t, x) 7→ ft(x)

is calledlocally boundedif and only if there exists an increasing sequence of open subsetsBn ⊆
S such thatS =

⋃
Bn, and

sup
x∈Bn
0≤s≤t

|fs(x)| <∞

for all t > 0, n ∈ N.
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Theorem 3.5(Time-dependent martingale problem). Suppose thatt 7→ λt(x) is continuous

for all x. Then:

(1). The process

Mf
t := ft(Xt)−

t
ˆ

t0

(
∂

∂r
+ Lr

)
fr(Xr) dr, t ≥ t0

is a local(FX
t )-martingale up toζ with respect toP(t0,µ) for any locally bounded function

f : R+ × S → R such thatt 7→ ft(x) isC1 for all x, (t, x) 7→ ∂
∂t
ft(x) is locally bounded,

andr 7→ (qr,tft)(x) is continuous atr = t for all t, x.

(2). More generally, if the process is non-explosive thenMf is a global martingale provided

sup
x∈S

t0≤s≤t

(
|fs(x)| +

∣∣∣∣
∂

∂s
fs(x)

∣∣∣∣ + |(Lsfs)(x)|
)
<∞ (3.1.14)

for all t > t0.

Corollary. If the process is conservative then the forward equation

ps,tft = fs +

t
ˆ

s

pr,t

(
∂

∂r
+ Lr

)
fr dr, t0 ≤ s ≤ t (3.1.15)

holds for functionsf satisfying (3.1.14).

Proof of corollary. Mf being a martingale, we have

(ps,tfr)(x) = E(s,x)[ft(Xt)] = E(s,x)


fs(Xs) +

t
ˆ

s

(
∂

∂r
+ Lr

)
fr(Xr) dr




= fs(x) +

t
ˆ

s

ps,r

(
∂

∂r
+ Lr

)
fr(x) dr

for all x ∈ S.

Remark. The theorem yields the Doob-Meyer decomposition

ft(Xt) = local martingale+ bounded variation process
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Remark. (1). Time-homogeneous case:

If h is an harmonic function, i.e.Lh = 0, thenh(Xt) is a martingale

(2). In general:

If ht is space-time harmonic, i.e. ∂
∂t
ht+Ltht = 0, thenh(Xt) is a martingale. In particular,

(ps,tf)(Xt), (t ≥ s) is a martingale for all bounded functionsf .

(3). If ht is superharmonic (orexcessive), i.e. ∂
∂t
ht+Ltht ≤ 0, thenht(Xt) is a supermartingale.

In particular,E[ht(Xt)] is decreasing

 stochastic Lyapunov function, stability criteria

e.g.

ht(x) = e−tch(tc), Lth ≤ ch

Proof of theorem. 1) Fork ∈ N let

q
(k)
t (x,B) := (λt(x) ∧ k) · πt(x,B)

denote the jump rates for the processX
(k)
t with the same transition probabilities asXt and

jump rates cut off atk. By the construction above, the processX
(k)
t , k ∈ N, andXt can be

realized on the same probability space in such a way that

X
(k)
t = Xt a.s. on{t < Tk}

where

Tk := inf {t ≥ 0 : λt(Xt) ≥ k, Xt /∈ Bk}

for an increasing sequenceBk of open subsets ofS such thatf and ∂
∂t
f are bounded on

[0, t] × Bk for all t, k andS =
⋃
Bk. Sincet 7→ λt(Xt) is piecewise continuous and the

jump rates do not accumulate beforeζ , the function is locally bounded on[0, ζ). Hence

Tk ր ζ a.s. ask →∞

By the theorem above,

Mf,k
t = ft(X

(k)
t )−

t
ˆ

t0

(
∂

∂r
+ L(k)

r

)
fr(X

(k)
r ) dr, t ≥ t0,

is a martingale with respect toP(t0,x0), which coincides a.s. withMf
t for t < Tk. Hence

Mf
t is a local martingale up toζ = sup Tk.
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2) If ζ = sup Tk = ∞ a.s. andf satisfies (3.1.14), then(Mf
t )t≥0 is a bounded local martin-

gale, and hence, by dominated convergence, a martingale.

3.2 From Random Walks to Brownian motion

Limits of martingale problems occur frequently in theoretical and applied probability. Exam-

ples include the approximation of Brownian motion by randomwalks and, more generally, the

convergence of Markov chains to diffusion limits, the approximation of Feller processes by jump

processes, the approximation of solutions of stochastic differential equations by solutions to more

elementary SDEs or by processes in discrete time, the construction of processes on infinite-

dimensional or singular state spaces as limits of processeson finite-dimensional or more regular

state spaces etc. A general and frequently applied approachto this type of problems can be

summarized in the following scheme:

1. Write down generatorsLn of the approximating processes and identify a limit generatorL
(on an appropriate collection of test functions) such thatLn → L in an appropriate sense.

2. Prove tightness for the sequence(Pn) of laws of the solutions to the approximating martin-

gale problems. Then extract a weakly convergent subsequence.

3. Prove that the limit solves the martingale problem for thelimit generator.

4. Identify the limit process.

The technically most demanding steps are usually 2 and 4. Notice that Step 4 involves a unique-

ness statement. Since uniqueness for solutions of martingale problems is often difficult to estab-

lish (and may not hold!), the last step can not always be carried out. In this case, there may be

different subsequential limits of the sequence(Pn).

In this section, we introduce the necessary tools from weak convergence that are required to make

the program outlined above rigorous. We then apply the techniques in a simple but important

case: The approximation of Brownian motion by random walks.

3.2.1 Weak convergence of stochastic processes

An excellent reference on this subject is the book by Billingsley [2]. LetS be a polish space. We

fix a metricd onS such that(S, d) is complete and separable. We consider the laws of stochastic
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processes either on the spaceC = C([0,∞), S) of continuous functionsx : [0,∞) → S or on

the spaceD = D([0,∞), S) consisting of all càdlàg functionsx : [0,∞) → S. The spaceC is

again a polish space w.r.t. the topology of uniform convergence on compact time intervals:

xn
C→ x :⇔ ∀T ∈ R+ : xn → x uniformly on[0, T ].

On càdlàg functions, uniform convergence is too restrictive for our purposes. For example, the

indicator functions1[0,1+n−1) do not converge uniformly to1[0,1) asn → ∞. Instead, we endow

the spaceD with the Skorokhod topology:

Definition (Skorokhod topology). A sequence of functionsxn ∈ D is said toconverge to a

limit x ∈ D in the Skorokhod topologyif and only if for anyT ∈ R+ there exist continuous and

strictly increasing mapsλn : [0, T ]→ [0, T ] (n ∈ N) such that

xn(λn(t))→ x(t) and λn(t)→ t uniformly on[0, T ].

It can be shown that the Skorokhod spaceD is again a polish space, cf. [2]. Furthermore, the

Borelσ-algebras on bothC andD are generated by the projectionsXt(x) = x(t), t ∈ R+.

Let (Pn)n∈N be a sequence of probability measures (laws of stochastic processes) onC,D re-

spectively. By Prokhorov’s Theorem, every subsequence of(Pn) has a weakly convergent subse-

quence provided(Pn) is tight. Here tightness means that for everyε > 0 there exists a relatively

compact subsetK ⊆ C, K ⊆ D respectively, such that

sup
n∈N

Pn[K
c] ≤ ε.

To verify tightness we need a characterization of the relatively compact subsets of the function

spacesC andD. In the case ofC such a characterization is the content of the classical Arzelà-

Ascoli Theorem. This result has been extended to the spaceD by Skorokhod. To state both

results we define the modulus of continuity of a functionx ∈ C on the interval[0, T ] by

ωδ,T (x) = sup
s,t∈[0,T ]

|s−t|≤δ

d(x(s), x(t)).

Forx ∈ D we define a modification ofωδ,T by

ω′
δ,T (x) = inf

0=t0<t1<···<tn−1<T≤tn

|ti−ti−1|>δ

max
i

sup
s,t∈[ti−1,ti)

d(x(s), x(t)).

As δ ↓ 0, ωδ,T (x) → 0 for anyx ∈ C andT > 0. For a discontinuous functionx ∈ D, ωδ,T (x)

does not converge to0. However, the modified quantityω′
δ,T (x) again converges to0, since the
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partition in the infimum can be chosen in such a way that jumps of size greater than some constant

ε occur only at partition points and are not taken into accountin the inner maximum.

Exercise(Modulus of continuity and Skorokhod modulus). Let x ∈ D.

1) Show thatlim
δ↓0

ωδ,T (x) = 0 for anyT ∈ R+ if and only if x is continuous.

2) Prove thatlim
δ↓0

ω′
δ,T (x) = 0 for anyT ∈ R+.

Theorem 3.6(Arzelà-Ascoli, Skorokhod). 1) A subsetK ⊆ C is relatively compact if and

only if

(i) {x(0) : x ∈ K} is relatively compact inS, and

(ii) sup
x∈K

ωδ,T (x)→ 0 asδ ↓ 0 for anyT > 0.

2) A subsetK ⊆ D is relatively compact if and only if

(i) {x(t) : x ∈ K} is relatively compact for anyt ∈ Q+, and

(ii) sup
x∈K

ω′
δ,T (x)→ 0 asδ ↓ 0 for anyT > 0.

The proofs can be found in Billingsley [2] or Ethier/Kurtz [12]. By combining Theorem 3.6 with

Prokhorov’s Theorem, one obtains:

Corollary 3.7 (Tightness of probability measures on function spaces).

1) A subset{Pn : n ∈ N} ofP(C) is relatively compact w.r.t. weak convergence if and only if

(i) For anyε > 0, there exists a compact setK ⊆ S such that

sup
n∈N

Pn[X0 /∈ K] ≤ ε, and

(ii) For any T ∈ R+,

sup
n∈N

Pn[ωδ,T > ε]→ 0 asδ ↓ 0.

2) A subset{Pn : n ∈ N} ofP(D) is relatively compact w.r.t. weak convergence if and only if

(i) For anyε > 0 andt ∈ R+ there exists a compact setK ⊆ S such that

sup
n∈N

Pn[Xt /∈ K] ≤ ε, and
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(ii) For any T ∈ R+,

sup
n∈N

Pn[ω
′
δ,T > ε]→ 0 asδ ↓ 0.

In the sequel we restrict ourselves to convergence of stochastic processes with continuous paths.

We point out, however, that many of the arguments can be carried out (with additional difficulties)

for processes with jumps if the space of continuous functions is replaced by the Skorokhod space.

A detailed study of convergence of martingale problems for discontinuous Markov processes can

be found in Ethier/Kurtz [12].

To apply the tightness criterion we need upper bounds for theprobabilitiesPn[ωδ,T > ε]. To

this end we observe thatωδ,T ≤ ε if

sup
t∈[0,δ]

d(Xkδ+t, Xkδ) ≤
ε

3
for anyk ∈ Z+ such thatkδ < T.

Therefore, we can estimate

Pn[ωδ,T > ε] ≤
⌊T/δ⌋∑

k=0

Pn

[
sup
t≤δ

d(Xkδ+t, Xkδ) > ε/3

]
. (3.2.1)

Furthermore, onRn we can bound the distancesd(Xkδ+t, Xkδ) by the sum of the differences

|X i
kδ+t −X i

kδ| of the componentsX i, i = 1, . . . , d. The suprema can then be controlled by ap-

plying a semimartingale decomposition and the maximal inequality to the component processes.

3.2.2 Donsker’s invariance principle

As a first application of the tightness criterion we prove Donsker’s invariance principle stating

that rescaled random walks with square integrable increments converge in law to a Brownian

motion. In particular, this is a way (although not the easiest one) to prove that Brownian motion

exists. Let(Yi)i∈N be a sequence of i.i.d. square-integrable random variableson a probability

space(Ω,A, P ) with E[Yi] = 0 andVar[Yi] = 1, and consider the random walk

Sn =

n∑

i=1

Yi (n ∈ N).

We rescale diffusively, i.e., by a factorn in time and a factor
√
n in space, and define

X
(n)
t :=

1√
n
Snt for t ∈ R+ such thatnt ∈ Z.

In between the partition pointst = k/n, k ∈ Z+, the process(X(n)
t ) is defined by linear interpo-

lation so thatX(n) has continuous paths.
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1

1 2

√
m

m

S
(m)
t

t

Figure 3.1: Rescaling of a Random Walk.

The diffusive rescaling guarantees that the variances ofX
(n)
t converge to a finite limit asn→∞

for any fixedt ∈ R+. Indeed, the central limit theorem even shows that for anyk ∈ N and

0 ≤ t0 < t1 < t2 < · · · < tn,

(X
(n)
t1 −X

(n)
t0 , X

(n)
t2 −X

(n)
t1 , . . . , X

(n)
tn −X

(n)
tn−1

)
D→

k⊗

i=1

N(0, ti − ti−1). (3.2.2)

This shows that the marginals of the processesX(n) converge weakly to the marginals of a Brow-

nian motion. Using tightness of the laws of the rescaled random walks onC, we can prove that

not only marginals but the whole processes converge in distribution to a Brownian motion:

Theorem 3.8(Invariance principle, functional central limit theorem ). LetPn denote the law

of the rescaled random walkX(n) on C = C([0,∞),R). Then(Pn)n∈N converges weakly to

Wiener measure, i.e., to the law of a Brownian motion starting at0.

Proof. Since by (3.2.2), the marginals converge to the right limit,it suffices to prove tightness

of the sequence(Pn)n∈N of probability measures onC. Then by Prokhorov’s Theorem, every

subsequence has a weakly convergent subsequence, and all subsequential limits are equal to

Wiener measure because the marginals coincide. Thus(Pn) also converges weakly to Wiener

measure.

For proving tightness note that by (3.2.1) and time-homogeneity,

Pn[ωδ,T > ε] ≤
(⌊

T

δ

⌋
+ 1

)
· P
[
sup
t≤δ

∣∣∣X(n)
t −X(n)

0

∣∣∣ ≥ ε

3

]

≤
(⌊

T

δ

⌋
+ 1

)
· P
[
max
k≤⌈nδ⌉

|Sk| ≥
ε

3

√
n

]
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for anyε, δ > 0, T ∈ R+ andn ∈ N. By Corollary 3.7, tightness holds if the probability on the

right hand side is of order o(S) uniformly in n, i.e., if

lim sup
n→∞

P

[
max
k≤m
|Sk| ≥

ε

3

√
m√
δ

]
= o(δ). (3.2.3)

For the simple random walk, this follows from the reflection principle and the central limit theo-

rem as

P

[
max
k≤m

Sk ≥
ε

3

√
m√
δ

]
≤ P

[
|Sm| ≥

ε

3

√
m√
δ

]
m↑∞−→ N(0, 1)

[
|x| ≥ ε

3
√
δ

]
,

cf. e.g. [9]. For general random walks one can show with some additional arguments that (3.2.3)

also holds, see e.g. Billingsley [2].

In the proof of Donsker’s Theorem, convergence of the marginals was a direct consequence of the

central limit theorem. In more general situations, other methods are required to identify the limit

process. Therefore, we observe that instead of the central limit theorem, we could have also used

the martingale problem to identify the limit as a Brownian motion. Indeed, the rescaled random

walk
(
X

(n)
k/n

)
k∈Z+

is a Markov chain (in discrete time) with generator

(L(n)f)(x) =

ˆ
(
f

(
x+

z√
n

)
− f(x)

)
ν(dz)

whereν is the distribution of the incrementsYi = Si− Si−1. It follows that w.r.t.Pn, the process

f(Xt)−
nt−1∑

i=0

(nL(n)f)(Xi/n) ·
1

n
, t =

k

n
with k ∈ Z+,

is a martingale for any functionf ∈ C∞
b (R). Asn→∞,

f

(
x+

z√
n

)
− f(x) = f ′(x) ·

ˆ

z√
n
ν(dz) +

1

2
f ′′(x)

ˆ

z2

n
ν(dz) + o(n−1)

=
1

2n
f ′′(x) + o(n−1)

by Taylor, and

(nL(n)f)(x)→ 1

2
f ′′(x) uniformly.

Therefore, one can conclude that the process

f(Xt)−
ˆ t

0

1

2
f ′′(Xs)ds

is a martingale underP∞ for any weak limit point of the sequence(Pn). Uniqueness of the

martingale problem then implies thatP∞ is the law of a Brownian motion.

Exercise (Martingale problem proof of Donsker’s Theorem). Carry out carefully the argu-

ments sketched above and give an alternative proof of Donsker’s Theorem that avoids application

of the central limit theorem.
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3.3 Limits of martingale problems

A broad class of diffusion processes onRn can be constructed by stochastic analysis meth-

ods. Suppose that((Bt)t≥0, P ) is a Brownian motion with values inRn for somen ∈ N, and

((Xt)t<ζ , P ) is a solution to an Itô stochastic differential equation of the form

dXt = b(t, Xt)dt+ σ(t, Xt)dBt, X0 = x0, (3.3.1)

up to the explosion timeζ = sup Tk whereTk is the first exit time of(Xt) from the unit ball of

radiusk, cf. [8]. We assume that the coefficients are continuous functions b : R+ × Rn → Rn,

σ : R+ × Rn → Rn·d. Then((Xt)t<ζ , P ) solves thelocal martingale problem for the operator

Lt = b(t, x) · ∇x +
1

2

n∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
, a := σσT ,

in the following sense: For any functionf ∈ C1,2(R+ × Rn),

Mf
t = f(t, Xt)−

ˆ t

0

(
∂f

∂s
+ Lsf

)
(s,Xs) ds

is a local martingale up toζ . Indeed, by the Itô-Doeblin formula,Mf
t is a stochastic integral w.r.t.

Brownian motion:

Mf
t = f(0, X0) +

ˆ t

0

(
σT∇f

)
(s,Xs) · dBs.

If the explosion timeζ is almost surely infinite thenMf is even aglobal martingale provided

the functionσT∇f is bounded.

In general, a solution of (3.3.1) is not necessarily a Markovprocess. If, however, the coefficients

are Lipschitz continuous then by Itô’s existence and uniqueness result there is a unique strong

solution for any given initial value, and it can be shown thatthe strong Markov property holds,

cf. [10].

By extending the methods developed in 3.2, we are now going tosketch another construction of

diffusion processes inRn that avoids stochastic analysis techniques to some extent.The raeson

for our interest in this method is that the basic approach is very generally applicable – not only

for diffusions inRn.

3.3.1 Regularity and tightness for solutions of martingaleproblems

We will extend the martingale argument for proving Donsker’s Theorem that has been sketched

above to limits of general martingale problems on the spaceC = C([0,∞), S) whereS is a pol-

ish space. We first introduce a more general framework that allows to include non-Markovian
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processes. The reason is that it is sometimes convenient to approximate Markov processes by

processes with a delay, see the proof of Theorem 3.12 below.

Suppose thatA is a linear subspace ofFb(S), and

f 7→ (Ltf)t≥0

is a linear map defined onA such that

(t, x) 7→ (Ltf)(x) is a function inL2([0, T ]× C, λ⊗ P )

for anyT ∈ R+ andf ∈ A. The main example is still the one of time-homogeneous Markov

processes with generatorL where we set

Ltf := (Lf)(Xt).

We say that the canonical processXt(ω) = ω(t) solves the martingale problemMP(Lt,A)
w.r.t. a probability measureP onC iff

Mf
t = f(Xt)− f(X0)−

ˆ t

0

Lrf dr

is a martingale underP for anyf ∈ A. Note that for0 ≤ s ≤ t,

f(Xt)− f(Xs) =Mf
t −Mf

s +

ˆ t

s

Lrf dr. (3.3.2)

Therefore, martingale inequalities can be used to control the regularity of the processf(Xt). As a

first step in this direction we compute the angle-bracket process〈Mf 〉, i.e., the martingale part in

the Doob-Meyer decomposition of(Mf )2. Since we are considering processes with continuous

paths, the angle-bracket process coincides with the quadratic variation[Mf ]. The next theorem,

however, is also valid for processes with jumps where〈Mf 〉 6= [Mf ]:

Theorem 3.9(Angle-bracket process for solutions of martingale problems). Let f, g ∈ A
such thatf · g ∈ A. Then

Mf
t ·Mg

t = Nf,g
t +

ˆ t

0

Γr(f, g) dr for anyt ≥ 0,

whereNf,g is a martingale, and

Γt(f, g) = Lt(f · g)− f(Xt)Ltg − g(Xt)Ltf.

Thus

〈Mf ,Mg〉t =
ˆ t

0

Γr(f, g) dr.
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Example (Time-homogeneous Markov processes, Carré du champ operator ).

HereLtf = (Lf)(Xt), and therefore

Γt(f, g) = Γ(f, g)(Xt),

whereΓ : A×A → F(S) is theCarré du champ operator defined by

Γ(f, g) = L(f · g)− fLg − gLf.

If S = Rd,A is a subset ofC∞(Rd), and

(Lf)(x) = 1

2

d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂f

∂xi
(x) ∀f ∈ A

with measurable coefficientsaij , bi then

Γ(f, g)(x) =

d∑

i,j=1

aij(x)
∂f

∂xi
(x)

∂g

∂xj
(x) ∀f, g ∈ A.

In particular, foraij ≡ δij ,Γ(f, f) = |∇f |2 which explains the name “carré du champ” (= square

field) operator. For general symmetric coefficientsaij with det(aij) > 0, the carré du champ is

the square of the gradient w.r.t. the intrinsic metric(gij) = (aij)
−1:

Γ(f, f) = ‖ gradg f‖2g.

Proof of Theorem 3.9.We may assumef = g, the general case follows by polarization. We write

“X ∼s Y ” if E[X|Fs] = E[Y |Fs] almost surely. To prove the claim we have to show that for

0 ≤ s ≤ t andf ∈ A,

(Mf
t )

2 − (Mf
s )

2 ∼s

ˆ t

s

Γr(f, f) dr.

SinceMf is a square-integrable martingale, we have

(Mf
t )

2 − (Mf
s )

2 ∼s (M
f
t −Mf

s )
2 =

(
f(Xt)− f(Xs)−

ˆ t

s

Lrf dr

)2

= (f(Xt)− f(Xs))
2 − 2(f(Xt)− f(Xs))

ˆ t

s

Lrf dr +

(
ˆ t

s

Lrf dr

)2

= I + II + III + IV
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where

I := f(Xt)
2 − f(Xs)

2 ∼s

ˆ t

s

Lrf
2 dr,

II := −2f(Xs)

(
f(Xt)− f(Xs)−

ˆ t

s

Lrf dr

)
∼s 0,

III := −2f(Xt)

ˆ t

s

Lrf dr = −2
ˆ t

s

f(Xt)Lrf dr, and

IV :=

(
ˆ t

s

Lrf dr

)2

= 2

ˆ t

s

ˆ t

r

Lrf Luf dudr.

Noting thatf(Xt)Lrf ∼r

(
f(Xr) +

´ t

r
Luf du

)
Lrf , we see that fors ≤ r ≤ t also the condi-

tional expectations givenFs of these terms agree, and therefore

III ∼s −2
ˆ t

s

f(Xr)Lrf dr − 2

ˆ t

s

ˆ t

r

Lrf Luf dudr.

Hence in total we obtain

(Mf
t )

2 − (Mf
s )

2 ∼s

ˆ t

s

Lrf
2 dr − 2

ˆ t

s

f(Xr)Lrf dr =

ˆ t

s

Γrf dr.

We can now derive a bound for the modulus of continuity off(Xt) for a functionf ∈ A. Let

ωf
δ,T := ωδ,T (f ◦X), V f

s,t := sup
r∈[s,t]

|f(Xr)− f(Xs)|.

Lemma 3.10(Modulus of continuity of solutions to martingale problems). For p ∈ [2,∞)

there exist universal constantsCp, C̃p ∈ (0,∞) such that the following bounds hold for any

solution(Xt, P ) of a martingale problem as above and for any functionf ∈ A such that the

processf(Xt) has continuous paths:

1) For any0 ≤ s ≤ t,

‖V f
s,t‖Lp(P ) ≤ Cp(t− s)1/2 sup

r∈[s,t]
‖Γr(f, f)‖1/2Lp/2(P )

+ (t− s) sup
r∈[s,t]

‖Lrf‖Lp(P ).

2) For anyδ, ε, T ∈ (0,∞),

P
[
ωf
δ,T ≥ ε

]
≤ C̃p ε

−p

(
1 +

⌊
T

δ

⌋)
·
(
δp/2 sup

r≤T
‖Γr(f, f)‖p/2Lp/2(P )

+ δp sup
r≤t
‖Lrf‖Lp(P )

)
.
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Proof. 1) By (3.3.2),

V f
s,t ≤ sup

r∈[s,t]
|Mf

r −Mf
s |+

ˆ t

s

|Luf | du.

Sincef(Xt) is continuous,Mf is a continuous martingale. Therefore, byBurkholder’s

inequality,
∥∥∥ sup

r∈[s,t]

∣∣Mf
r −Mf

s

∣∣
∥∥∥
Lp(P )

≤ Cp

∥∥〈Mf 〉t − 〈Mf 〉s
∥∥1/2
Lp/2(P )

= Cp

∥∥∥∥
ˆ t

s

Γr(f, f) dr

∥∥∥∥
1/2

Lp/2(P )

≤ Cp(t− s)1/2 sup
r∈[s,t]

‖Γr(f, f)‖1/2Lp/2(P )
.

Forp = 2, Burkholder’s inequality reduces to the usual maximal inequality for martingales

- a proof forp > 2 can be found in many stochastic analysis textbooks, cf. e.g.[10].

2) We have already remarked above that the modulus of continuity ωf
δ,T can be controlled by

bounds forV f
s,t on intervals[s, t] of lengthδ. Here we obtain

P
[
ωf
δ,T ≥ ε

]
≤

⌊T/δ⌋∑

k=0

P
[
V f
kδ,(k+1)δ ≥ ε/3

]

≤
⌊T/δ⌋∑

k=0

(
3

ε

)p ∥∥∥V f
kδ,(k+1)δ

∥∥∥
p

Lp(P )
.

The estimate in 2) now follows from 1).

Remark. 1) The right-hand side in 2) converges to0 asδ ↓ 0 if the suprema are finite and

p > 2.

2) If f(Xt) is not continuous then the assertion still holds forp = 2 but not for p > 2.

The reason is that Burkholder’s inequality for discontinuous martingalesMt is a bound in

terms of the quadratic variation[M ]t and not in terms of the angle bracket process〈M〉t.
For continuous martingales,〈M〉t = [M ]t.

Example (Stationary Markov process).

If (Xt, P ) is a stationary Markov process with generator extending(L,A) and stationary distri-

butionXt ∼ µ thenLtf = (Lf)(Xt), Γt(f, f) = Γ(f, f)(Xt), and therefore

‖Ltf‖Lp(P ) = ‖Lf‖Lp(µ), ‖Γt(f, f)‖Lp/2(P ) = ‖Γ(f, f)‖Lp/2(µ) for anyt ≥ 0.
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3.3.2 Construction of diffusion processes

The results above can be applied to prove the existence of diffusion processes generated by second

order differential operators with continuous coefficientsonRd. The idea is to obtain the law of the

process as a weak limit of laws of processes with piecewise constant coefficients. The latter can

be constructed from Brownian motion in an elementary way. The key step is again to establish

tightness of the approximating laws.

Theorem 3.11(Existence of diffusions inRd). For 1 ≤ i, j ≤ d let aij , bi ∈ Cb(R+ ×Rd) such

thataij = aji. Then for anyx ∈ Rd there exists a probability measurePx onC([0,∞),Rd) such

that the canonical process(Xt, Px) solves the martingale problem for the operator

Ltf =
1

2

d∑

i,j=1

aij(t, Xt)
∂2f

∂xi∂xj
(Xt) +

d∑

i=1

bi(t, Xt)
∂f

∂xi
(Xt)

with domain

A =

{
f ∈ C∞(Rd) :

∂f

∂xi
∈ C∞

b (Rd) for i = 1, . . . , d

}

and initial conditionPx[X0 = x] = 1.

Remark (Connections to SDE results). 1) If the coefficients are locally Lipschitz continu-

ous then the existence of a diffusion process follows more easily from the Itô existence and

uniqueness result for stochastic differential equations.The point is, however, that variants

of the general approach presented here can be applied in manyother situations as well.

2) The approximations used in the proof below correspond to Euler discretizations of the

associated SDE.

Proof. 1) We first define the approximating generators and constructprocesses solving the

corresponding martingale problems. Forn ∈ N let

a
(n)
ij (t, X) = aij(⌊t⌋n, X⌊t⌋n), bni (t, X) = bi(⌊t⌋n, X⌊t⌋n)

where⌊t⌋n := max
{
s ∈ 1

n
Z : s ≤ t

}
, i.e., for t ∈

[
k
n
, k+1

n

)
, we freeze the coefficients at

their value at timek
n
. Then the martingale problem for

L(n)
t f =

1

2

d∑

i,j=1

a
(n)
ij (t, X)

∂2f

∂xi∂xj
(Xt) +

d∑

i=1

b
(n)
i (t, X)

∂f

∂xi
(Xt)
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can be solved explicitly. Indeed let(Bt) be a Brownian motion onRd defined on a prob-

ability space(Ω,A, P ), and letσ : R+ × Rd → Rd×d be measurable such thatσσT = a.

Then the processX(n)
t defined recursively by

X
(n)
0 = x, X

(n)
t = X

(n)
k/n+σ

(
k

n
,X

(n)
k/n

)
(Bt−Bk/n)+b

(
k

n
,X

(n)
k/n

)
k

n
for t ∈

[
0,

1

n

]
,

solves the martingale problem for(L(n)
t ,A) with initial conditionδx. Hence the canonical

process(Xt) onC([0,∞),Rd) solves the same martingale problem w.r.t.

P (n) = P ◦
(
X(n)

)−1
.

2) Next we prove tightness of the sequence{P (n) : n ∈ N}. For i = 1, . . . , d let fi(x) := xi.

Since|x− y| ≤∑d
i=1 |fi(x)− fi(y)| for anyx, y ∈ Rd, we have

ωδ,T ≤
d∑

i=1

ωfi
δ,T for anyδ, T ∈ (0,∞).

Furthermore, the functions

L(n)
t fi = b

(n)
i (t, X) and Γ

(n)
t (fi, fi) = a

(n)
ii (t, X)

are uniformly bounded since the coefficientsaij andbi are bounded functions. Therefore,

for anyε, T ∈ (0,∞),

P (n) [ωδ,T ≥ ε] ≤
d∑

i=1

P (n)
[
ωfi
δ,T ≥ ε/d

]
→ 0

uniformly in n asδ ↓ 0 by Lemma 3.10.

Hence by Theorem 3.8, the sequence{P (n) : n ∈ N} is relatively compact, i.e., there exists

a subsequential limitP ∗ w.r.t. weak convergence.

3) It only remains to show that(Xt, P
∗) solves the limiting martingale problem. We know that

(Xt, P
(n)) solves the martingale problem for(L(n)

t ,A) with initial law δx. In particular,

E(n)

[(
f(Xt)− f(Xs)−

ˆ t

s

L(n)
r f dr

)
g(Xs1, . . . , Xsk)

]
= 0

for any0 ≤ s1 < s2 < · · · < sk ≤ s ≤ t andg ∈ Cb(R
k·d). The assumptions imply that

L(n)
r f → Lrf pointwise asn → ∞, andL(n)

r f is uniformly bounded. This can be used

to show that(Xt, P
∗) solves the martingale problem for(Lt, f) - the details are left as an

exercise.
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Remark (Uniqueness). The assumptions in Theorem 3.11 are too weak to guarantee uniqueness

of the solution. For example, the ordinary differential equation dx = b(x)dt does not have a

unique solution withx0 = 0 whenb(x) =
√
x. As a consequence, one can show that the trivial

solution to the martingale problem for the operatorb(x) d
dx

on R1 is not the only solution with

initial law δ0. A uniqueness theorem of Stroock and Varadhan states that the martingale problem

has a unique solution for every initial law if the matrixa(x) is strictly positive definite for each

x, and the growth of the coefficients as|x| → ∞ is at most of orderaij(x) = O(|x|2) and

bi(x) = O(|x|), cf. (24.1) in Roger&Williams II [34] for a sketch of the proof.

3.3.3 The general case

We finally state a general result on limits of martingale problems for processes with continuous

paths. Let(P (n))n∈N be a sequence of probability measures onC([0,∞), S) whereS is a polish

space. Suppose that the canonical process(Xt, P
(n)) solves the martingale problem for(L(n)

t ,A)
whereA is a dense subspace ofCb(S) such thatf 2 ∈ A wheneverf ∈ A.

Theorem 3.12.Suppose that the following conditions hold:

(i) Compact containment:For anyT ∈ R+ andγ > 0 there exists a compact setK ⊆ S such

that

P (n)
[
∃ t ∈ [0, T ] : Xt /∈ K

]
≤ γ for anyn ∈ N.

(ii) Uniform Lp bound: There existsp > 2 such that for anyT ∈ R+,

sup
n∈N

sup
t≤T

(∥∥∥Γ(n)
t (f, f)

∥∥∥
Lp/2(P (n))

+
∥∥∥L(n)

t f
∥∥∥
Lp(P (n))

)
<∞.

Then{P (n) : n ∈ N} is relatively compact. Furthermore, if

(iii) Convergence of initial law:There existsµ ∈ P(S) such that

P (n) ◦X−1
0

w→ µ asn→∞, and

(iv) Convergence of generators:

L(n)
t f → Ltf uniformly for anyf ∈ A,

then any subsequential limit of(P (n))n∈N is a solution of the martingale problem for(Lt,A) with

initial distributionµ.
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The proof, including extensions to processes with discontinuous paths, can be found in Ethier

and Kurtz [12].

3.4 Lyapunov functions and stability

In this section we explain briefly how Lyapunov function methods similar to those considered in

Section 1.3 can be applied to Markov processes in continuoustime. An excellent reference is the

book by Khasminskii [16] that focuses on diffusion processes inRn. Most results in [16] easily

carry over to more general Markov processes in continuous time.

We assume that we are given a right continuous process((Xt), P ) with polish state spaceS,

initial valueX0 = x0 ∈ S, and life timeζ . Let Â ⊆ C1,0([0,∞)× S) be a linear subspace, and

let L̂ : Â → F([0,∞)× S) be a linear operator of the form

(L̂f)(t, x) =
(
∂f

∂t
+ Ltf

)
(t, x)

whereLt acts only on the x-variable. Forf ∈ Â andt < ζ we define

Mf
t = f(t, Xt)−

ˆ t

0

(L̂f)(s,Xs) ds

where it is implicitly assumed that the integral exists almost surely and defines a measurable

function. We assume that(Xt) is adapted to a filtration(Ft) and it solves the local martingale

problem for(L̂, Â) up to the life-timeζ in the following sense:

Assumption (A): There exists an increasing sequence(Bk)k∈N of open sets inS such that

(i) S =
⋃
Bk

(ii) The exit timesTk := inf{t ≥ 0 : Xt /∈ Bk} satisfy

Tk < ζ on{ζ <∞} for anyk ∈ N, andζ = supTk.

(iii) The stopped processes
(
Mf

t∧Tk

)
t≥0

are(Ft) martingales for anyk ∈ N andf ∈ Â.

Examples. 1) Minimal jump process: A minimal jump process as constructed in Section

3.1 satisfies the assumption if(Bk) is an increasing sequence exhausting the state space

such that the jump intensitiesλt(x) are uniformly bounded for(t, x) ∈ R+ ×Bk, and

Â =

{
f ∈ C1,0 : f,

∂f

∂t
bounded on[0, t]× Bk for anyt ≥ 0 ank ∈ N

}
.
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2) Minimal diffusion process: A minimal Itô diffusion inRn satisfies the assumption with

Bk = B(0, k) andÂ = C1,2([0,∞)× Rn).

3.4.1 Non-explosion criteria

A first important application of Lyapunov functions in continuous time are conditions for non-

explosiveness of a Markov process:

Theorem 3.13(Khasminskii). Suppose that Assumption (A) is satisfied and there exists a func-

tion V ∈ Â such that

(i) V (t, x) ≥ 0 for anyt ≥ 0 andx ∈ S,

(ii) inf
x∈Bc

k
s∈[0,t]

V (s, x)→∞ ask →∞ for anyt ≥ 0,

(iii) ∂V
∂t

+ LtV ≤ 0.

ThenP [ζ =∞] = 1.

Proof. SinceV (t, Xt) =MV
t +
´ t

0

(
∂V
∂s

+ LsV
)
(s,Xs) ds, optional stopping and Conditions (iii)

and (i) imply

V (0, x0) ≥ E[V (t ∧ Tk, Xt∧Tk
)] ≥ P [Tk ≤ t] · inf

y∈Bc
k

s≤t

V (s, y)

for anyt ≥ 0 andk ∈ N. Therefore, for anyt ≥ 0,

P [Tk ≤ t]→ 0 ask →∞

by (ii), and henceP [ζ <∞] = lim
t→∞

P [ζ ≤ t] = 0.

Remark (Time-independent Lyapunov functions). Suppose thatU is a continuous function on

S such that

(i) U ≥ 0, (ii) lim
k→∞

inf
Bc

k

U = 0, (iii) LtU ≤ αU for someα > 0.

The Theorem 3.13 can be applied withV (t, x) = e−αtU(x) provided this function is contained

in Â.
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Example (Time-dependent branching). Suppose a population consists initially(t = 0) of one

particle, and particles die with time-dependent ratesdt > 0 and divide into two with ratesbt > 0

whered, b : R+ → R+ are continuous functions, andb is bounded. Then the total numberXt of

particles at timet is a birth-death process with rates

qt(n,m) =





n · bt if m = n+ 1

n · dt if m = n− 1

0 else

, λt(n) = n · (bt + dt)

The generator is

Lt =




0 0 0 0 0 0 · · ·
dt −(dt + bt) bt 0 0 0 · · ·
0 2dt −2(dt + bt) 2bt 0 0 · · ·
0 0 3dt −3(dt + bt) 3bt 0 · · ·

. . . . . . . . . . . . . . . . . .




Since the rates are unbounded, we have to test for explosion.chooseψ(n) = n as Lyapunov

function. Then

(Ltψ) (n) = n · bt · (n + 1− n) + n · dt · (n− 1− n) = n · (bt − dt) ≤ n sup
t≥0

bt

Since the individual birth ratesbt, t ≥ 0, are bounded, the process is non-explosive. To study

long-time survival of the population, we consider the generating functions

Gt(s) = E
[
sXt
]
=

∞∑

n=0

snP [Xt = n], 0 < s ≤ 1

of the population size. Forfs(n) = sn we have

(Ltfs) (n) = nbts
n+1 − n(bt + dt)s

n + ndts
n−1

=
(
bts

2 − (bt + dt)s+ dt
)
· ∂
∂s
fs(n)

Since the process is non-explosive andfs andLtfs are bounded on finite time-intervals, the

forward equation holds. We obtain

∂

∂t
Gt(s) =

∂

∂t
E [fs(Xt)] = E [(Ltfs)(Xt)]

= (bts
2 − (bt + dt)s+ dt) · E

[
∂

∂s
sXt

]

= (bts− dt)(s− 1) · ∂
∂s
Gt(s),

G0(s) = E
[
sX0
]
= s
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The solution of this first order partial differential equation fors < 1 is

Gt(s) = 1−


 e̺t

1− s +
t
ˆ

0

bne
̺u du




−1

where

̺t :=

t
ˆ

0

(du − bu) du

is the accumulated death rate. In particular, we obtain an explicit formula for the extinction

probability:

P [Xt = 0] = lim
s↓0

Gt(s) =


e̺t +

t
ˆ

0

bne
̺u du




−1

= 1−


1 +

t
ˆ

0

due
̺u du




−1

sinceb = d− ̺′. Thus we have shown:

Theorem 3.14.

P [Xt = 0 eventually] = 1 ⇐⇒
∞̂

0

due
̺u du =∞

Remark. Informally, the mean and the variance ofXt can be computed by differentiatingGt at

s = 1 :

d

ds
E
[
sXt
] ∣∣∣

s=1
= E

[
Xts

Xt−1
] ∣∣∣

s=1
= E[Xt]

d2

ds2
E
[
sXt
] ∣∣∣

s=1
= E

[
Xt(Xt − 1)sXt−2

] ∣∣∣
s=1

= Var(Xt)

3.4.2 Hitting times and recurrence

Next, we apply Lyapunov functions to prove upper bounds for moments of hitting times. Let

TA = inf{t ≥ 0 : Xt ∈ A}

whereA is a closed subset ofS.
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Theorem 3.15(Lyapunov bound for hitting times ). Suppose that Assumption A holds, and the

process(Xt, P ) is non-explosive. Furthermore, assume that there existV ∈ Â and a measurable

functionα : R+ → R+ such that

(i) V (t, x) ≥ 0 for anyt ≥ 0 andx ∈ S,

(ii)
(
∂V
∂t

+ LtV
)
(t, x) ≤ −α(t) for anyt ≥ 0 andx ∈ S \A,

(iii) β(t) :=
´ t

0
α(s) ds→∞ ast→∞.

ThenP [TA <∞] = 1, and

E[β(TA)] ≤ V (0, x0). (3.4.1)

Proof. By Condition (ii),

V (t, Xt) ≤MV
t −
ˆ t

0

α(s) ds =MV
t − β(t)

holds fort < TA. For anyk ∈ N,MV
t∧Tk

is a martingale. Hence by (i),

0 ≤ E [V (t ∧ TA ∧ Tk, Xt∧TA∧Tk
)] ≤ V (0, x0)−E[β(t ∧ TA ∧ Tk)].

As k →∞, Tk →∞ almost surely, and we obtain

β(t)P [t ≤ TA] ≤ E[β(t ∧ TA)] ≤ V (0, x0)

for anyt > 0. The assertion follows ast→∞.

Example (Moments of hitting times).

If α(s) = csn−1 for somec > 0 andn ∈ N thenβ(s) = c
n
sn. In this case, (3.4.1) is the moment

bound

E[T n
A ] ≤

n

c
V (0, x0).

3.4.3 Occupation times and existence of stationary distributions

Similarly to the discrete time case, Lyapunov conditions can also be used in continuous time to

show the existence of stationary distributions. The following exercise covers the case of diffu-

sions inRn:
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Exercise (Explosion, occupation times and stationary distributionsfor diffusions on Rn).

Consider a diffusion process(Xt, Px) onRn solving the local martingale problem for the gener-

ator

Ltf =
1

2

n∑

i,j=1

ai,j(t, x)
∂2f

∂xi ∂xj
+

n∑

i=1

bi(t, x)
∂f

∂xi
, f ∈ C1,2(R+ × Rn).

We assume that the coefficients are continuous functions andPx[X0 = x] = 1.

a) Prove that the process is non-explosive if there exist finite constantsc1, c2, r such that

tr a(t, x) ≤ c1 |x|2 and x · b(t, x) ≤ c2 |x|2 for |x| ≥ r.

b) Now suppose thatζ = ∞ almost surely, and that there existV ∈ C1,2(R+ × Rn) and

ε, c ∈ R+ such thatV ≥ 0 and

∂V

∂t
+ LtV ≤ ε+ c1B onR+ × Rn,

whereB is a ball inRn. Prove that

E

[
1

t

ˆ t

0

1B(Xs) ds

]
≥ ε

c
− V (0, x0)

ct
.

b) Conclude that if(Xt, Px) is a time-homogeneous Markov process and the conditions above

hold then there exists a stationary distribution.

Again the results carry over with similar proofs to general Markov processes. Let

At(B) =
1

t

ˆ t

0

1B(Xs) ds

denote the relative amount of time spent by the process in thesetB during the time interval[0, t].

Lemma 3.16(Lyapunov bound for occupation times). Suppose Assumption A holds, the pro-

cess is almost surely non-explosive, and there exist constants ε, c ∈ R+ and a non-negative

functionV ∈ Â such that

∂V

∂t
+ LtV ≤ −ε + c1B onR+ × S.

Then

E[At(B)] ≥ ε

c
− V (0, x0)

ct
.
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Now assume that(Xt, P ) is a time-homogeneousMarkov process with transition semigroup

(pt)t≥0, and, correspondingly,Lt does not depend ont. Then by Fubini’s Theorem,

E[At(B)] =
1

t

ˆ t

0

ps(x0, B) ds =: pt(x0, B).

Theorem 3.17(Existence of stationary distributions). Suppose that the assumptions in Lemma

3.16 hold, and moreover, assume thatS is σ-compact,V (t, x) = U(x) for some continuous

functionU : S → [0,∞), and there existε, c ∈ R+ and a compact setK ⊆ S such that

LU ≤ −ε+ c1K .

Then there exists a stationary distributionµ of (pt)t≥0.

Proof. The assumptions imply

lim inf
t→∞

pt(x0, K) > 0.

The assertion now follows similarly as in discrete time, cf.Theorem 1.15.

University of Bonn April 2015



Chapter 4

Markov processes, generators and

martingales

This chapter focuses on the connection between continuous-time Markov processes and their

generators. Throughout we assume that the state spaceS is a Polish space with Borelσ-algebra

B. Recall that a right-continuous stochastic process((Xt)t∈R+ , P ) that is adapted to a filtration

(Ft)t∈R+ is called asolution of the martingale problem for a family (Lt,A), t ∈ R+, of linear

operatorswith domainA ⊆ Fb(S) if and only if

M
[f ]
t = f(Xt)−

ˆ t

0

(Lsf)(Xs) ds (4.0.1)

is an(Ft) martingale for any functionf ∈ A. Here functionsf : S → R are extended trivially

to S ∪ {∆} by settingf(∆) := 0.

If ((Xt), P ) solves the martingale problem for((Lt),A) and the function(t, x) 7→ (Ltf)(x) is,

for example, continuous and bounded forf ∈ A, then

(Ltf)(Xt) = lim
h↓0

E

[
f(Xt+h)− f(Xt)

h

∣∣∣∣Ft

]
(4.0.2)

is the expected rate of change off(Xt) in the next instant of time given the previous information.

In general, solutions of a martingale problem are not necessarily Markov processes, but it can

be shown under appropriate assumptions, that the strong Markov property follows from unique-

ness of solutions of the martingale problem with a given initial law, cf. Theorem 4.13. Now

suppose that for anyt ≥ 0 andx ∈ S, ((Xs)s≥t, P(t,x)) is an(Ft) Markov process with initial
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valueXt = x P(t,x)-almost surely and transition function(ps,t)0≤s≤t that solves the martingale

problem above. Then for anyt ≥ 0 andx ∈ S,

(Ltf)(x) = lim
h↓0

Ex

[
f(Xt+h)− f(Xt)

h

]
= lim

h↓0

(pt,t+hf)(x)− f(x)
h

provided(t, x) 7→ (Ltf)(x) is continuous and bounded. This indicates that the infinitesimal gen-

erator of the Markov process at timet is an extension of the operator(Lt,A) - this fact will be

made precise in Section 4.2.

In this chapter we will mostly restrict ourselves to the time-homogeneous case. The time-

inhomogeneous case is nevertheless included implicitly since we may apply most results to the

time space procesŝXt = (t0 + t, Xt0+t) that is always a time-homogeneous Markov process if

X is a Markov process w.r.t. some probability measure. In Section 4.1 we show how to realize

transition functions of time-homogeneous Markov processes as strongly continuous contraction

semigroups on appropriate Banach space of functions, and weestablish the relation between

such semigroups and their generators. The connection to martingale problems is made in Section

4.2, and Section 4.3 indicates in a special situation how solutions of martingale problems can be

constructed from their generators by exploiting stabilityof the martingale problem under weak

convergence.

4.1 Semigroups, generators and resolvents

In the discrete time case, there is a one-to-one correspondence between generatorsL = p − I,

transition semigroupspt = pt, and time-homogeneous canonical Markov chains((Xn)n∈Z+ , (Px)x∈S)

solving the martingale problem forL on bounded measurable functions. Our goal in this section

is to establish a counterpart to the correspondence betweengenerators and transition semigroups

in continuous time. Since the generator will usually be an unbounded operator, this requires the

realization of the transition semigroup and the generator on an appropriate Banach space con-

sisting of measurable functions (or equivalence classes offunctions) on the state space(S,B).
Unfortunately, there is no Banach space that is adequate forall purposes - so the realization on

a Banach space also leads to a partially more restrictive setting. Supplementary references for

this section are Yosida: Functional Analysis [42], Pazy: Semigroups of Linear Operators [27],

Davies: One-parameter semigroups [5] and Ethier/Kurtz [12].

We assume that we are given a time-homogeneous transition function(pt)t≥0 on (S,B), i.e.,
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122 CHAPTER 4. MARKOV PROCESSES, GENERATORS AND MARTINGALES

(i) pt(x, dy) is a sub-probability kernel on(S,B) for anyt ≥ 0, and

(ii) p0(x, ·) = δx andptps = pt+s for anyt, s ≥ 0 andx ∈ S.

Remark (Inclusion of time-inhomogeneous case). Although we restrict ourselves to the time-

homogeneous case, the time-inhomogeneous case is includedimplicitly. Indeed, if((Xt)t≥s, P(s,x))

is a time-inhomogeneous Markov process with transition function ps,t(x,B) = P(s,x)[Xt ∈ B]

then the time-space procesŝXt = (t + s,Xt+s) is a time-homogeneous Markov process w.r.t.

P(s,x) withs state spaceR+ × S and transition function

P̂t ((s, x), dudy) = δt+s(du)ps,t+s(x, dy).

4.1.1 Sub-Markovian semigroups and resolvents

The transition kernelspt act as linear operatorsf 7→ ptf on bounded measurable functions onS.

They also act onLp spaces w.r.t. a measureµ if µ is sub-invariant for the transition kernels:

Definition. A positive measureµ ∈M+(S) is calledsub-invariantw.r.t. the transition semigroup

(pt) iff µpt ≤ µ for anyt ≥ 0 in the sense that
ˆ

ptfdµ ≤
ˆ

fdµ for anyf ∈ F+(S) andt ≥ 0.

For processes with finite life-time, non-trivial invariantmeasures often do not exist, but in many

cases non-trivial sub-invariant measures do exist.

Lemma 4.1(Sub-Markov semigroup and contraction properties). 1) Any transition func-

tion (pt)t≥0 induces asub-Markovian semigrouponFb(S) or F+(S) respectively, i.e., for

anys, t ≥ 0

(i) Semigroup property:pspt = ps+t,

(ii) Positivity preserving:f ≥ 0⇒ ptf ≥ 0,

(iii) pt1 ≤ 1.

2) The semigroup is contractive w.r.t. the supremum norm:

‖ptf‖sup≤ ‖f‖sup for anyt ≥ 0 andf ∈ Fb(S).

3) If µ ∈ M+(S) is a sub-invariant measure then(pt) is also contractive w.r.t. theLp(µ)

norm for everyp ∈ [1,∞]:
ˆ

|ptf |pdµ ≤
ˆ

|f |pdµ for anyf ∈ Lp(S, µ).

In particular, the mapf 7→ ptf respectsµ-classes.
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Proof. Most of the statements are straightforward to prove and leftas an exercise. We only prove

the last statement forp ∈ [1,∞):

For t ≥ 0, the sub-Markov property impliesptf ≤ pt|f | and−ptf ≤ pt|f | for anyf ∈ Lp(S, µ).

Hence

|ptf |p ≤ (pt|f |)p ≤ pt|f |p

by Jensen’s inequality. Integration w.r.t.µ yields

ˆ

|ptf |pdµ ≤
ˆ

pt|f |pdµ ≤
ˆ

|f |pdµ

by the sub-invariance ofµ. Hencept is a contraction onLp(S, µ). In particular,pt respects

µ-classes sincef = g µ-a.e. ⇒ f − g = 0 µ-a.e. ⇒ pt(f − g) = 0 µ-a.e. ⇒ ptf = ptg

µ-a.e.

The theorem shows that(pt) induces contraction semigroups of linear operatorsPt on the follow-

ing Banach spaces:

• Fb(S) endowed with the supremum norm,

• Cb(S) if pt is Feller for anyt ≥ 0,

• Ĉ(S) = {f ∈ C(S) : ∀ε > 0 ∃K ⊂ S compact:|f | < ε onS\K} if pt mapsĈ(S) to

Ĉ(S) (classical Feller property),

• Lp(S, µ), p ∈ [1,∞], if µ is sub-invariant.

We will see below that for obtaining a densely defined generator, an additional property called

strong continuity is required for the semigroups. This willexclude some of the Banach spaces

above. Before discussing strong continuity, we introduce another fundamental object that will

enable us to establish the connection between a semigroup and its generator: the resolvent.

Definition (Resolvent kernels). Theresolvent kernelsassociated to the transition function(pt)t≥0

are defined by

gα(x, dy) =

ˆ ∞

0

e−αtpt(x, dy)dt for α ∈ (0,∞),

i.e., forf ∈ F+(S) or f ∈ Fb(S),

(gαf)(x) =

ˆ ∞

0

e−αt(ptf)(x)dt.
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Remark. For anyα ∈ (0,∞), gα is a kernel of positive measures on(S,B). Analytically,gα is

theLaplace transform of the transition semigroup(pt). Probabilistically, if(Xt, Px) is a Markov

process with transition function(pt) then by Fubini’s Theorem,

(gαf)(x) = Ex

[
ˆ ∞

0

e−αtf(Xt)dt

]
.

In particular,gα(x,B) is the average occupation time of a setB for the absorbed Markov process

with start inx and constantabsorption rate α.

Lemma 4.2(Sub-Markovian resolvent and contraction properties). 1) The family(gα)α>0

is asub-Markovian resolventacting onFb(S) orF+(S) respectively, i.e., for anyα, β > 0,

(i) Resolvent equation:gα − gβ = (β − α)gαgβ
(ii) Positivity preserving:f ≥ 0⇒ gαf ≥ 0

(iii) αgα1 ≤ 1

2) Contractivity w.r.t. the supremum norm:For anyα > 0,

‖αgαf‖sup≤ ‖f‖sup for anyf ∈ Fb(S).

3) Contractivity w.r.t.Lp norms: If µ ∈M+(S) is sub-invariant w.r.t.(pt) then

‖αgαf‖Lp(S,µ) ≤ ‖f‖Lp(S,µ) for anyα > 0, p ∈ [1,∞], andf ∈ Lp(S, µ).

Proof. 1) By Fubini’s Theorem and the semigroup property,

gαgβf =

ˆ ∞

0

ˆ ∞

0

e−αte−βspt+sf ds dt

=

ˆ ∞

0

ˆ u

0

e(β−α)tdt e−βupuf du

=
1

β − α(gαf − gβf)

for anyα, β > 0 andf ∈ Fb(S). This proves (i). (ii) and (iii) follow easily from the

corresponding properties for the semigroup(pt).

2),3) Let‖ · ‖ be either the supremum norm or anLp norm. Then contractivity of(pt)t≥0 w.r.t.

‖ · ‖ implies that also(αgα) is contractive w.r.t.‖ · ‖:

‖αgαf‖ ≤
ˆ ∞

0

αe−αt‖ptf‖dt ≤
ˆ ∞

0

αe−αtdt ‖f‖ = ‖f‖ for anyα > 0.
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The lemma shows that(gα)α>0 induces contraction resolvents of linear operators(Gα)α>0 on the

Banach spacesFb(S), Cb(S) if the semigroup(pt) is Feller,Ĉ(S) if (pt) is Feller in the classical

sense, andLp(S, µ) if µ is sub-invariant for(pt). Furthermore, the resolvent equation implies that

the range of the operatorsGα is independent ofα:

(R) Range(Gα) = Range(Gβ) for anyα, β ∈ (0,∞).

This property will be important below.

4.1.2 Strong continuity and Generator

We now assume that(Pt)t≥0 is a semigroup of linear contractions on a Banach spaceE. Our

goal is to define the infinitesimal generatorL of (Pt) by Lf = lim
t↓0

1
t
(Ptf − f) for a classD of

elementsf ∈ E that forms a dense linear subspace ofE. Obviously, this can only be possible if

lim
t↓0
‖Ptf−f‖ = 0 for anyf ∈ D, and hence, by contractivity of the operatorsPt, for anyf ∈ E.

A semigroup with this property is called strongly continuous:

Definition (C0 semigroup, Generator). 1) The semigroup(Pt)t≥0 on the Banach spaceE is

calledstrongly continuous(C0) iff P0 = I and

‖Ptf − f‖ → 0 ast ↓ 0 for anyf ∈ E.

2) Thegeneratorof (Pt)t≥0 is the linear operator(L,Dom(L)) given by

Lf = lim
t↓0

Ptf − f
t

, Dom(L) =

{
f ∈ E : lim

t↓0

Ptf − f
t

exists

}
.

Here the limits are taken w.r.t. the norm on the Banach spaceE.

Remark (Strong continuity). A contraction semigroup(Pt) is always strongly continuous on

the closure of the domain of its generator. Indeed,Ptf → f ast ↓ 0 for anyf ∈ Dom(L), and

hence for anyf ∈ Dom(L) by anε/3 - argument. If the domain of the generator is dense inE

then(Pt) is strongly continuous onE. Conversely, Theorem 4.6 below shows that the generator

of aC0 contraction semigroup is densely defined.

Theorem 4.3(Forward and backward equation).

Suppose that(Pt)t≥0 is aC0 contraction semigroup with generatorL. Thent 7→ Ptf is continu-

ous for anyf ∈ E. Moreover, iff ∈ Dom(L) thenPtf ∈ Dom(L) for anyt ≥ 0, and

d

dt
Ptf = PtLf = LPtf,
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where the derivative is a limit of difference quotients on the Banach spaceE.

The first statement explains why right continuity oft 7→ Ptf at t = 0 for anyf ∈ E is called

strong continuity: For contraction semigroups, this property is indeed equivalent to continuity of

t 7→ Ptf for t ∈ [0,∞) w.r.t. the norm onE.

Proof. 1) Continuity oft 7→ Ptf follows from the semigroup property, strong continuity and

contractivity: For anyt > 0,

‖Pt+hf − Ptf‖ = ‖Pt(Phf − f)‖ ≤ ‖Phf − f‖ → 0 ash ↓ 0,

and, similarly, for anyt > 0,

‖Pt−hf − Ptf‖ = ‖Pt−h(f − Phf)‖ ≤ ‖f − Phf‖ → 0 ash ↓ 0.

2) Similarly, the forward equationd
dt
Ptf = PtLf follows from the semigroup property, con-

tractivity, strong continuity and the definition of the generator: For anyf ∈ Dom(L) and

t ≥ 0,
1

h
(Pt+hf − Ptf) = Pt

Phf − f
h

→ PtLf ash ↓ 0,
and, fort > 0,

1

−h(Pt−hf − Ptf) = Pt−h
Phf − f

h
→ PtLf ash ↓ 0

by strong continuity.

3) Finally, the backward equationd
dt
Ptf = LPtf is a consequence of the forward equation:

Forf ∈ Dom(L) andt ≥ 0,

PhPtf − Ptf

h
=

1

h
(Pt+hf − Ptf)→ PtLf ash ↓ 0.

HencePtf is in the domain of the generator, andLPtf = PtLf = d
dt
Ptf .

4.1.3 Strong continuity of transition semigroups of Markovprocesses

Let us now assume again that(pt)t≥0 is the transition function of aright-continuoustime homo-

geneous Markov process((Xt)t≥0, (Px)x∈S) defined for any initial valuex ∈ S. We have shown

above that(pt) induces contraction semigroups on different Banach spacesconsisting of func-

tions (or equivalence classes of functions) fromS to R. The following example shows, however,

that these semigroups are not necessarily strongly continuous:
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Example (Strong continuity of the heat semigroup). Let S = R1. The heat semigroup(pt) is

the transition semigroup of Brownian motion onS. It is given explicitly by

(ptf)(x) = (f ∗ ϕt)(x) =

ˆ

R

f(y)ϕt(x− y) dy,

whereϕt(z) = (2πt)−1/2 exp (−z2/(2t)) is the density of the normal distributionN(0, t). The

heat semigroup induces contraction semigroups on the Banach spacesFb(R), Cb(R), Ĉ(R) and

Lp(R, dx) for p ∈ [1,∞]. However, the semigroups onFb(R), Cb(R) andL∞(R, dx) are not

strongly continuous. Indeed, sinceptf is a continuous function for anyf ∈ Fb(R),

‖pt1(0,1) − 1(0,1)‖∞ ≥
1

2
for anyt > 0.

This shows that strong continuity fails onFb(R) and onL∞(R, dx). To see that(pt) is not

strongly continuous onCb(R) either, we may consider the functionf(x) =
∞∑
n=1

exp (−2n(x− n)2).
It can be verified thatlim sup

x→∞
f(x) = 1 whereas for anyt > 0, lim

x→∞
(ptf)(x) = 0. Hence

‖ptf − f‖sup≥ 1 for anyt > 0. Theorem 4.5 below shows that the semigroups induced by(pt)

on the Banach spaceŝC(R) andLp(R, dx) with p ∈ [1,∞) are strongly continuous.

Lemma 4.4.

If (pt)t≥0 is the transition function of a right-continuous Markov process((Xt)t≥0, (Px)x∈S) then

(ptf)(x)→ f(x) ast ↓ 0 for anyf ∈ Cb(S) andx ∈ S. (4.1.1)

Moreover, if the linear operators induced bypt are contractions w.r.t. the supremum norm or an

Lp norm then

‖ptf − f‖ → 0 ast ↓ 0 for anyf = gαh, (4.1.2)

whereα ∈ (0,∞) andh is a function inFb(S) or in the correspondingLp-space respectively.

Proof. For f ∈ Cb(S), t 7→ f(Xt) is right continuous and bounded. Therefore, by dominated

convergence,

(ptf)(x) = Ex [f(Xt)]→ Ex [f(X0)] = f(x) ast ↓ 0.

Now suppose thatf = gαh =
´∞
0
e−αspsh ds for someα > 0 and a functionh in Fb(S) or in the

Lp space where(pt) is contractive. Then fort ≥ 0,

ptf =

ˆ ∞

0

e−αsps+th ds = eαt
ˆ ∞

t

e−αupuh du

= eαtf − eαt
ˆ t

0

e−αupuh du,
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and hence

‖ptf − f‖ ≤ (eαt − 1)‖f‖+ eαt
ˆ t

0

‖puh‖du.

Since‖puh‖ ≤ ‖h‖ by assumption, the right-hand side converges to0 ast ↓ 0.

Theorem 4.5(Strong continuity of transition functions ). Suppose that(pt) is the transition

function of a right-continuous time-homogeneous Markov process on(S,B).

1) If µ ∈ M+(S) is a sub-invariant measure for(pt) then(pt) induces a strongly continuous

contraction semigroup of linear operators onLp(S, µ) for everyp ∈ [1,∞).

2) If S is locally compact andpt
(
Ĉ(S)

)
⊆ Ĉ(S) for anyt ≥ 0 then(pt) induces a strongly

continuous contraction semigroup of linear operators onĈ(S).

Proof. 1) We have to show that for anyf ∈ Lp(S, µ),

‖ptf − f‖Lp(S,µ) → 0 ast ↓ 0. (4.1.3)

(i) We first show that (4.1.3) holds forf ∈ Cb(S) ∩ L1(S, µ). To this end we may

assume w.l.o.g. thatf ≥ 0. Thenptf ≥ 0 for all t, and hence(ptf − f)− ≤ f . By

sub-invariance ofµ:
ˆ

|ptf − f |dµ =

ˆ

(ptf − f)dµ+ 2

ˆ

(ptf − f)−dµ ≤ 2

ˆ

(ptf − f)−dµ,

and hence by dominated convergence and (4.1.1),

lim sup
t↓0

ˆ

|ptf − f |dµ ≤ 0.

This proves (4.1.3) forp = 1. Forp > 1, we now obtain
ˆ

|ptf − f |pdµ ≤
ˆ

|ptf − f |dµ · ‖ptf − f‖p−1
sup → 0 ast ↓ 0,

where we have used thatpt is a contraction w.r.t. the supremum norm. For an arbitrary

functionf ∈ Lp(S, µ), (4.1.3) follows by anε/3 argument: Let(fn)n∈N be a sequence

in Cb(S) ∩ L1(µ) such thatfn → f in Lp(S, µ). Then, givenε > 0,

‖ptf − f‖Lp ≤ ‖ptf − ptfn‖Lp + ‖ptfn − fn‖Lp + ‖fn − f‖Lp

≤ 2‖f − fn‖Lp + ‖ptfn − fn‖Lp < ε

if n is chosen sufficiently large andt ≥ t0(n).
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2) We have to show that for anyf ∈ Ĉ(S),

‖ptf − f‖sup→ 0 ast ↓ 0. (4.1.4)

By Lemma 4.4, (4.1.4) holds iff = gαh for someα > 0 andh ∈ Ĉ(S). To complete the

proof we show by contradiction thatgα
(
Ĉ(S)

)
is dense inĈ(S) for any fixedα > 0 -

then claim then follows once more by anε/3-argument. Hence suppose that the closure of

gα

(
Ĉ(S)

)
does not agree witĥC(S). Then there exists a non-trivial finite signed measure

µ on (S,B) such that

µ(gαh) = 0 for anyh ∈ Ĉ(S),

cf. [?]. By the resolvent equation,gα
(
Ĉ(S)

)
= gβ

(
Ĉ(S)

)
for anyβ ∈ (0,∞). Hence

we even have

µ (gβh) = 0 for anyβ > 0 andh ∈ Ĉ(S).

Moreover, (4.1.1) implies thatβgβh → h pointwise asβ → ∞. Therefore, by dominated

convergence,

µ(h) = µ

(
lim
β→∞

βgβh

)
= lim

β→∞
βµ (gβh) = 0 for anyh ∈ Ĉ(S).

This contradicts the fact thatµ is a non-trivial measure.

4.1.4 One-to-one correspondence

Our next goal is to establish a 1-1 correspondence betweenC0 contraction semigroups, generators

and resolvents. Suppose that(Pt)t≥0 is a strongly continuous contraction semigroup on a Banach

spaceE with generator(L,Dom(L)). Sincet 7→ Ptf is a continuous function by Theorem 4.3, a

corresponding resolvent can be defined as anE-valued Riemann integral:

Gαf =

ˆ ∞

0

e−αtPtf dt for anyα > 0 andf ∈ E. (4.1.5)

Exercise(Strongly continuous contraction resolvent).

Prove that the linear operatorsGα, α ∈ (0,∞), defined by (4.1.5) form astrongly continuous

contraction resolvent, i.e.,

(i) Gαf −Gβf = (β − α)GαGβf for anyf ∈ E andα, β > 0,

(ii) ‖αGαf‖ ≤ ‖f‖ for anyf ∈ E andα > 0,
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(iii) ‖αGαf − f‖ → 0 asα→∞ for anyf ∈ E.

Theorem 4.6 (Connection between resolvent and generator). For any α > 0, Gα =

(αI − L)−1. In particular, the domain of the generator coincides with the range ofGα, and

it is dense inE.

Proof. Let f ∈ E andα ∈ (0,∞). We first show thatGαf is contained in the domain ofL.

Indeed, ast ↓ 0,

PtGαf −Gαf

t
=

1

t

(
ˆ ∞

0

e−αsPt+sf ds−
ˆ ∞

0

e−αsPsf ds

)

=
eαt − 1

t

ˆ ∞

0

e−αsPsf ds− eαt
1

t

ˆ t

0

e−αsP0f ds

→ αGαf − f

by strong continuity of(Pt)t≥0. HenceGαf ∈ Dom(L) and

LGαf = αGαf − f,

or, equivalently

(αI − L)Gαf = f.

In a similar way it can be shown that forf ∈ Dom(L),

Gα(αI − L)f = f.

The details are left as an exercise. HenceGα = (αI − L)−1, and, in particular,

Dom(L) = Dom(αI − L) = Range(Gα) for anyα > 0.

By strong continuity of the resolvent,

αGαf → f asα→∞ for anyf ∈ E,

so the domain ofL is dense inE.

The theorem above establishes a 1-1 correspondence betweengenerators and resolvents. We now

want to include the semigroup: We know how to obtain the generator from the semigroup but to

be able to go back we have to show that aC0 contraction semigroup is uniquely determined by

its generator. This is one of the consequences of the following theorem:
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Theorem 4.7 (Duhamel’s perturbation formula ). Suppose that(Pt)t≥0 and (P̃t)t≥0 are C0

contraction semigroups onE with generatorsL and L̃, and assume that Dom(L) ⊂ Dom(L̃).

Then

P̃tf − Ptf =

ˆ t

0

P̃s(L̃− L)Pt−sf ds for anyt ≥ 0 andf ∈ Dom(L). (4.1.6)

In particular, (Pt)t≥0 is the onlyC0 contraction semigroup with a generator that extends

(L,Dom(L)).

Proof. For0 ≤ s ≤ t andf ∈ Dom(L) we have

Pt−sf ∈ Dom(L) ⊂ Dom(L̃)

by Theorem 4.3. By combining the forward and backward equation in Theorem 4.3 we can then

show that
d

ds
P̃sPt−sf = P̃sL̃Pt−sf − P̃sLPt−sf = P̃s(L̃− L)Pt−sf

where the derivative is as usual taken in the Banach spaceE. The identity (4.1.6) now follows by

the fundamental theorem of calculus for Banach-space valued functions, cf. e.g. Lang: Analysis

1 [18].

In particular, if the generator of̃Pt is an extension ofL then (4.1.6) implies thatPtf = P̃tf for

anyt ≥ 0 andf ∈ Dom(L). SincePt andP̃t are contractions and the domain ofL is dense inE

by Theorem 4.6, this implies that the semigroups(Pt) and(P̃t) coincide.

The last theorem shows that aC0 contraction semigroup is uniquely determined if the generator

and the full domain of the generator are known. The semigroupcan then be reconstructed from

the generator by solving the Kolmogorov equations. We summarize the correspondences in a

picture:

(Gα)α>0

(Pt)t≥0

(L,Dom(L))

Laplace

transformation

Gα = (αI − L)−1

Lf = d
dt
Ptf |t=0+Kolmogorov

equations
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Example (Bounded generators). Suppose thatL is a bounded linear operator onE. In partic-

ular, this is the case ifL is the generator of a jump process with bounded jump intensities. For

bounded linear operators the semigroup can be obtained directly as an operator exponential

Pt = etL =

∞∑

n=0

(tL)n

n!
= lim

n→∞

(
1 +

tL

n

)n

,

where the series and the limit converge w.r.t. the operator norm. Alternatively,

Pt = lim
n→∞

(
1− tL

n

)−n

= lim
n→∞

(n
t
Gn

t

)n
.

The last expression makes sense for unbounded generators aswell and tells us how to recover the

semigroup from the resolvent.

4.1.5 Hille-Yosida-Theorem

We conclude this section with an important theoretical result showing which linear operators are

generators ofC0 contraction semigroups. The proof will be sketched, cf. e.g. Ethier & Kurtz

[12] for a detailed proof.

Theorem 4.8(Hille-Yosida). A linear operator(L,Dom(L)) on the Banach spaceE is the gen-

erator of a strongly continuous contraction semigroup if and only if the following conditions

hold:

(i) Dom(L) is dense inE,

(ii) Range(αI − L) = E for someα > 0 (or, equivalently, for anyα > 0),

(iii) L is dissipative, i.e.,

‖αf − Lf‖ ≥ α‖f‖ for anyα > 0, f ∈ Dom(L).

Proof. “⇒”: If L generates aC0 contraction semigroup then by Theorem 4.6,(αI −L)−1 = Gα

where(Gα) is the correspondingC0 contraction resolvent. In particular, the domain ofL is the

range ofGα, and the range ofαI −L is the domain ofGα. This shows that properties (i) and (ii)

hold. Furthermore, anyf ∈ Dom(L) can be represented asf = Gαg for someg ∈ E. Hence

α‖f‖ = ‖αGαg‖ ≤ ‖g‖ = ‖αf − Lf‖
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by contractivity ofαGα.

“⇐”: We only sketch this part of the proof. The key idea is to “regularize” the possibly un-

bounded linear operatorL via the resolvent. By properties (ii) and (iii), the operator αI − L is

invertible for anyα > 0, and the inverseGα := (αI−L)−1 is one-to-one fromE onto the domain

of L. Furthermore, it can be shown that(Gα)α>0 is aC0 contraction resolvent. Therefore, for

anyf ∈ Dom(L),

Lf = lim
α→∞

αGαLf = lim
α→∞

L(α)f

whereL(α) is thebounded linear operator defined by

L(α) = αLGα = α2Gα − αI for α ∈ (0,∞).

Here we have used thatL andGα commute and(αI − L)Gα = I. The approximation by the

bounded linear operatorsL(α) is called theYosida approximation of L. One verifies now that

the operator exponentials

P
(α)
t = etL

(α)

=

∞∑

n=0

1

n!

(
tL(α)

)n
, t ∈ [0,∞),

form aC0 contraction semigroup with generatorL(α) for everyα > 0. Moreover, since
(
L(α)f

)
α∈N

is a Cauchy sequence for anyf ∈Dom(L), Duhamel’s formula (4.1.6) shows that also
(
P

(α)
t f

)
α∈N

is a Cauchy sequence for anyt ≥ 0 andf ∈ Dom(L). We can hence define

Ptf = lim
α→∞

P
(α)
t f for anyt ≥ 0 andf ∈ Dom(L). (4.1.7)

SinceP (α)
t is a contraction for everyt andα, Pt is a contraction, too. Since the domain ofL is

dense inE by Assumption (i), eachPt can be extended to a linear contraction onE, and (4.1.7)

extends tof ∈ E. Now it can be verified that the limiting operatorsPt form aC0 contraction

semigroup with generatorL.

Exercise(Semigroups generated by self-adjoint operators on Hilbertspaces). Show that ifE

is a Hilbert space (for example anL2 space) with norm‖f‖ = (f, f)1/2, andL is aself-adjoint

linear operator, i.e.,

(L,Dom(L)) = (L∗,Dom(L∗)),

thenL is the generator of aC0 contraction semigroup onE if and only ifL is negative definite,

i.e.,

(f, Lf) ≤ 0 for anyf ∈ Dom(L).
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In this case, theC0 semigroup generated byL is given by

Pt = etL for anyt ≥ 0,

where the exponential is defined by spectral theory, cf. e.g.Reed & Simon: Methods of modern

mathematical physics I [31], II [29], III [32], IV [30].

4.2 Martingale problems for Markov processes

In the last section we have seen that there is a one-to-one correspondence between strongly

continuous contraction semigroups on Banach spaces and their generators. The connection to

Markov processes can be made via the martingale problem. We assume at first that we are given

a right-continuous time-homogeneous Markov process((Xt)t∈[0,∞), (Px)x∈S)) with state space

(S,B) andtransition semigroup(pt)t≥0. Suppose moreover thatE is either a closed linear sub-

space ofFb(S) endowed with the supremum norm such that

(A1) pt(E) ⊆ E for anyt ≥ 0, and

(A2) µ, ν ∈ P(S) with
´

fdµ =
´

fdν∀f ∈ E ⇒ µ = ν,

orE = Lp(S, µ) for somep ∈ [1,∞) and a(pt)-sub-invariant measureµ ∈M+(S).

4.2.1 From Martingale problem to Generator

In many situations it is known that for anyx ∈ S, the process((Xt)t≥0, Px) solves the martingale

problem for some linear operator defined on “nice” functionsonS. Hence letA ⊂ E be a dense

linear subspace of the Banach spaceE, and let

L : A ⊂ E → E

be a linear operator.

Theorem 4.9(From the martingale problem to C0 semigroups and generators). Suppose

that for anyx ∈ S andf ∈ A, the random variablesf(Xt) and (Lf)(Xt) are integrable w.r.t.

Px for anyt ≥ 0, and the process

Mf
t = f(Xt)−

ˆ t

0

(Lf)(Xs)ds
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is an (FX
t ) martingale w.r.t.Px. Then the transition function(pt)t≥0 induces a strongly contin-

uous contraction semigroup(Pt)t≥0 of linear operators onE, and the generator(L,Dom(L)) of

(Pt)t≥0 is an extension of(L,A).

Remark. In the case of Markov processes with finite life-time the statement is still valid if func-

tions f : S → R are extended trivially toS ∪ {∆} by settingf(∆) := 0. This convention is

always tacitly assumed below.

Proof. The martingale property forMf w.r.t. Px implies that the transition function(pt) satisfies

the forward equation

(ptf)(x)− f(x) = Ex[f(Xt)− f(X0)] = Ex

[
ˆ t

0

(Lf)(Xs)ds

]

=

ˆ t

0

Ex[(Lf)(Xs)]ds =

ˆ t

0

(psLf)(x)ds (4.2.1)

for anyt ≥ 0, x ∈ S andf ∈ A. By the assumptions and Lemma 4.1,pt is contractive w.r.t. the

norm onE for anyt ≥ 0. Therefore, by (4.2.1),

‖ptf − f‖E ≤
ˆ t

0

‖psLf‖Eds ≤ t‖Lf‖E → 0 ast ↓ 0

for any f ∈ A. SinceA is a dense linear subspace ofE, an ε/3 argument shows that the

contraction semigroup(Pt) induced by(pt) onE is strongly continuous. Furthermore, (4.2.1)

implies that ∥∥∥∥
ptf − f

t
− Lf

∥∥∥∥
E

≤ 1

t

ˆ t

0

‖psLf − Lf‖Eds→ 0 ast ↓ 0 (4.2.2)

for anyf ∈ A. Here we have used thatlim
s↓0

psLf = Lf by the strong continuity. By (4.2.2),

the functions inA are contained in the domain of the generatorL of (Pt), andLf = Lf for any

f ∈ A.

4.2.2 Identification of the generator

We now assume thatL is the generator of a strongly continuous contraction semigroup (Pt)t≥0

onE, and that(L,Dom(L)) is an extension of(L,A). We have seen above that this is what can

usually be deduced from knowing that the Markov process solves the martingale problem for any

initial valuex ∈ S. The next important question is whether the generatorL and (hence) theC0

semigroup(Pt) are already uniquely determined by the fact thatL extends(L,A). In general the

answer is negative - even thoughA is a dense subspace ofE!
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Example (Brownian motion with reflection and Brownian motion with absorption ).

Let S = [0,∞) andE = L2(S, dx). We consider the linear operatorL = 1
2

d2

dx2 with dense

domainA = C∞
0 (0,∞) ⊂ L2(S, dx). Suppose that((Bt)t≥0, (Px)x∈R) is a canonical Brownian

motion onR. Then we can construct several Markov processes onS which induceC0 contraction

semigroups onE with generators that extends(L,A). In particular:

• Brownian motion on R+ with reflection at 0 is defined by

Xt = |Bt| for anyt ≥ 0.

• Brownian motion on R+ with absorption at 0 is defined by

X̃t =

{
Bt for t < TB

0 ,

∆ for t ≥ TB
0 ,

whereTB
0 = inf{t ≥ 0 : Bt = 0} is the first hitting time of0 for (Bt).

Exercise. Prove that both(Xt, Px) and(X̃t, Px) are right-continuous Markov processes that in-

duceC0 contraction semigroups onE = L2(R+, dx). Moreover, show that both generators

extend the operator(1
2

d2

dx2 , C
∞
0 (0,∞)). In which sense do the generators differ from each other?

The example above shows that it is not always enough to know the generator on a dense sub-

space of the corresponding Banach spaceE. Instead, what is really required for identifying the

generatorL, is to know its values on a subspace that is dense in the domainof L w.r.t. the graph

norm

‖f‖L := ‖f‖E + ‖Lf‖E.

Definition (Closability and closure of linear operators, operator cores). 1) A linear oper-

ator (L,A) is calledclosableiff it has a closed extension.

2) In this case, the smallest closed extension(L,Dom(L)) is called theclosureof (L,A). It

is given explicitly by

Dom(L) = completion ofA w.r.t. the graph norm‖ · ‖L,
Lf = lim

n→∞
Lfn for any sequence(fn)n∈N in A such thatfn → f in E (4.2.3)

and(Lfn)n∈N is a Cauchy sequence.

3) Suppose thatL is a linear operator onE withA ⊆ Dom(L). ThenA is called acore for

L iff A is dense in Dom(L) w.r.t. the graph norm‖ · ‖L.
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It is easy to verify that if an operator is closable then the extension defined by (4.2.3) is indeed

the smallest closed extension. Since the graph norm is stronger than the norm onE, the domain

of the closure is a linear subspace ofE. The graph of the closure is exactly the closure of the

graph of the original operator inE × E. There are operators that are not closable, but in the

setup considered above we already know that there is a closedextension of(L,A) given by the

generator(L,Dom(L)). The subspaceA ⊆ Dom(L) is a core forL if and only if (L,Dom(L))

is the closure of(L,A).

Theorem 4.10(Strong uniqueness). Suppose thatA is a dense subspace of the domain of the

generatorL w.r.t. to the norm‖ · ‖E . Then the following statements are equivalent:

(i) A is a core forL.

(ii) Ptf is contained in the completion ofA w.r.t. the graph norm‖ · ‖L for anyf ∈ Dom(L)

andt ∈ (0,∞).

If (i) or (ii) hold then

(iii) (Pt)t≥0 is the only strongly continuous contraction semigroup onE with a generator that

extends(L,A).

Proof. (i) ⇒ (ii) holds since by Theorem 4.3,Ptf is contained in the domain ofL for anyt > 0

andf ∈ Dom(L).

(ii) ⇒ (i): Let f ∈ Dom(L). We have to prove thatf can be approximated by functions in the

closureAL
of A w.r.t. the graph norm ofL. If (ii) holds this can be done by regularizingf via

the semigroup: For anyt > 0, Ptf is contained in the closure ofA w.r.t. the graph norm by (ii).

Moreover,Ptf converges tof ast ↓ 0 by strong continuity, and

LPtf = PtLf → Lf ast ↓ 0

by strong continuity and Theorem 4.3. So

‖Ptf − f‖L → 0 ast ↓ 0,

and thusf is also contained in the closure ofA w.r.t. the graph norm.

(i) ⇒ (iii): If (i) holds and (P̃ )t≥0 is aC0 contraction semigroup with a generatorL̃ extending

(L,A) thenL̃ is also an extension ofL, because it is a closed operator by Theorem 4.6. Hence

the semigroups(P̃t) and(Pt) agree by Theorem 4.7.
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We now apply Theorem 4.10 to identify exactly the domain of the generator of Brownian motion

onRn. The transition semigroup of Brownian motion is the heat semigroup given by

(ptf)(x) = (f ∗ ϕt)(x) =

ˆ

Rn

f(y)ϕt(x− y)dy for anyt ≥ 0,

whereϕt(x) = (2πt)−n/2 exp (−|x|2/(2t)).

Corollary 4.11 (Generator of Brownian motion). The transition function(pt)t≥0 of Brownian

motion induces strongly continuous contraction semigroups on Ĉ(Rn) and onLp(Rn, dx) for

everyp ∈ [1,∞). The generators of these semigroups are given by

L =
1

2
∆, Dom(L) = C∞

0 (Rn)
∆
,

whereC∞
0 (Rn)

∆
stands for the completion ofC∞

0 (Rn) w.r.t. the graph norm of the Laplacian

on the underlying Banach spacêC(Rn), Lp(Rn, dx) respectively. In particular, the domain ofL

contains allC2 functions with derivatives up to second order inĈ(Rn), Lp(Rn, dx) respectively.

Example (Generator of Brownian motion on R). In the one-dimensional case, the generators

are given explicitly by

Lf =
1

2
f ′′, Dom(L) =

{
f ∈ Ĉ(R) ∩ C2(R) : f ′′ ∈ Ĉ(R)

}
, (4.2.4)

Lf =
1

2
f ′′, Dom(L) =

{
f ∈ Lp(R, dx) ∩ C1(R) : f ′ absolutely continuous,f ′′ ∈ Lp(R, dx)

}
,

(4.2.5)

respectively.

Remark (Domain in multi-dimensional case, Sobolev spaces). In dimensionsn ≥ 2, the do-

mains of the generators contain functions that are not twicedifferentiable in the classical sense.

The domain of theLp generator is the Sobolev spaceH2,p(Rn, dx) consisting ofweaklytwice

differentiable functions with derivatives up to second order inLp(Rn, dx), cf. e.g. [XXX].

Proof. By Itô’s formula, Brownian motion(Bt, Px) solves the martingale problem for the opera-

tor 1
2
∆ with domainC∞

0 (Rn). Moreover, Lebesgue measure is invariant for the transition kernels

pt since by Fubini’s theorem,
ˆ

Rn

ptfdx =

ˆ

Rn

ˆ

Rn

ϕt(x− y)f(y)dydx =

ˆ

Rn

f(y)dy for anyf ∈ F+(R
n).

Hence by Theorem 4.9,(pt)t≥0 inducesC0 contraction semigroups on̂C(S) and onLp(Rn, dx)

for p ∈ [1,∞), and the generators are extensions of
(
1
2
∆, C∞

0 (Rn)
)
. A standard approximation
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argument shows that the completionsC∞
0 (Rn)

∆
w.r.t. the graph norms contain all functions

in C2(Rn) with derivatives up to second order in̂C(Rn), Lp(Rn, dx) respectively. Therefore,

ptf = f ∗ ϕt is contained inC∞
0 (Rn)

∆
for anyf ∈ C∞

0 (Rn) andt ≥ 0. Hence, by Theorem

4.10, the generators on̂C(S) andLp(Rn, dx) coincide with the closures of
(
1
2
∆, C∞

0 (Rn)
)
.

Exercise(Generators of Brownian motions with absorption and reflection). 1) Show that

Brownian motion with absorption at0 induces a strongly continuous contraction semigroup

(Pt)t≥0 on the Banach spaceE = {f ∈ C(0,∞) : limx↓0 f(x) = 0 = limx↑∞ f(x)}. Prove

that

A = {f |(0,∞) : f ∈ C∞
0 (R) with f(0) = 0}

is a core for the generatorL which is given byLf = 1
2
f ′′ for f ∈ A. Moreover, show that

C∞
0 (0,∞) is not a core for L.

2) Show that Brownian motion with reflection at0 induces a strongly continuous contraction

semigroup on the Banach spaceE = Ĉ([0,∞)), and prove that a core for the generator is

given by

A = {f |[0,∞) : f ∈ C∞
0 (R) with f ′(0) = 0}.

4.2.3 Uniqueness of martingale problems

From now on we assume thatE is a closed linear subspace ofFb(S) satisfying (A2). LetL be

the generator of a strongly continuous contraction semigroup (Pt)t≥0 onE, and letA be a linear

subspace of the domain ofL. The next theorem shows that a solution to the martingale problem

for (L,A) with given initial distribution is unique ifA is a core forL.

Theorem 4.12(Markov property and uniqueness for solutions of martingaleproblem). Sup-

pose thatA is a core forL. Then any solution((Xt)t≥0, P ) of the martingale problem for(L,A)
is a Markov process with transition function determined uniquely by

ptf = Ptf for anyt ≥ 0 andf ∈ E. (4.2.6)

In particular, all right-continuous solutions of the martingale problem for(L,A) with given

initial distributionµ ∈ P(S) coincide in law.

Proof. We only sketch the main steps in the proof. For a detailed proof see Ethier/Kurtz, Chapter

4, Theorem 4.1 [12].
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Step 1 If the process(Xt, P ) solves the martingale problem for(L,A) then an approximation

based on the assumption thatA is dense in Dom(L) w.r.t. the graph norm shows that

(Xt, P ) also solves the martingale problem for(L,Dom(L)). Therefore, we may assume

w.l.o.g. thatA = Dom(L).

Step 2 (Extended martingale problem).The fact that(Xt, P ) solves the martingale problem

for (L,A) implies that the process

M
[f,α]
t := e−αtf(Xt) +

ˆ t

0

e−αs(αf − Lf)(Xs)ds

is a martingale for anyα ≥ 0 andf ∈ A. The proof can be carried out directly by Fubini’s

Theorem or via the product rule from Stieltjes calculus. Thelatter shows that

e−αtf(Xt)− f(X0) =

ˆ t

0

e−αs(Lf − αf)(Xs)ds+

ˆ t

0

e−αsdM [f ]
s

where
´ t

0
e−αsdM

[f ]
s is an Itô integral w.r.t. the martingaleMf

t = f(Xt)−
´ t

0
(Lf)(Xs)ds,

and hence a martingale, cf. [10].

Step 3 (Markov property in resolvent form). Applying the martingale property to the martin-

galesM [f,α] shows that for anys ≥ 0 andg ∈ E,

E

[
ˆ ∞

0

e−αtg(Xs+t)

∣∣∣∣FX
s

]
= (Gαg)(Xs) P -a.s. (4.2.7)

Indeed, letf = Gαg. Thenf is contained in the domain ofL, andg = αf−Lf . Therefore,

for s, t ≥ 0,

0 = E
[
M

[f,α]
s+t −M [f,α]

s

∣∣∣FX
s

]

= e−α(s+t)E
[
f(Xs+t)|FX

s

]
− e−αsf(Xs) + E

[
ˆ t

0

e−α(s+r)g(Xs+r)dr

∣∣∣∣FX
s

]

holds almost surely. The identity (4.2.7) follows ast→∞.

Step 4 (Markov property in semigroup form). One can now conclude that

E[g(Xs+t)|FX
s ] = (Psg)(Xs) P -a.s. (4.2.8)

holds for anys, t ≥ 0 andg ∈ E. The proof is based on the approximation

Psg = lim
n→∞

(n
s
Gn

s

)n
g

of the semigroup by the resolvent, see the exercise below.
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Step 5 (Conclusion).By Step 4 and Assumption (A2), the process((Xt), P ) is a Markov pro-

cess with transition semigroup(pt)t≥0 satisfying (4.2.6). In particular, the transition semi-

group and (hence) the law of the process with given initial distribution are uniquely deter-

mined.

Exercise(Approximation of semigroups by resolvents). Suppose that(Pt)t≥0 is a Feller semi-

group with resolvent(Gα)α>0. Prove that for anyt > 0, n ∈ N andx ∈ S,

(n
t
Gn

t

)n
g(x) = E

[
PE1+···+En

n
t
g(x)

]

where(Ek)k∈N is a sequence of independent exponentially distributed random variables with

parameter1. Hence conclude that

(n
t
Gn

t

)n
g → Ptg uniformly asn→∞. (4.2.9)

How could you derive (4.2.9) more directly when the state space is finite?

Remark (Other uniqueness results for martingale problems). It is often not easy to verify

the assumption thatA is a core forL in Theorem 4.12. Further uniqueness results for mar-

tingale problems with assumptions that may be easier to verify in applications can be found in

Stroock/Varadhan [38] and Ethier/Kurtz [12].

4.2.4 Strong Markov property

In Theorem 4.12 we have used the Markov property to establishuniqueness. The next theorem

shows conversely that under modest additional conditions,the strong Markov property for solu-

tions is a consequence of uniqueness of martingale problems.

Let D(R+, S) denote the space of all càdlàg (right continuous with left limits) functions

ω : [0,∞)→ S. If S is a polish space thenD(R+, S) is again a polish space w.r.t. theSkorokhod

topology, see e.g. Billingsley [2]. Furthermore, the Borelσ-algebra onD(R+, S) is generated

by the evaluation mapsXt(ω) = ω(t), t ∈ [0,∞).

Theorem 4.13(Uniqueness of martingale problem⇒ Strong Markov property ). Suppose

that the following conditions are satisfied:
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(i) A is a linear subspace ofCb(S), andL : A → Fb(S) is a linear operator such thatA is

separable w.r.t.‖ · ‖L.

(ii) For every x ∈ S there is a unique probability measurePx on D(R+, S) such that the

canonical process((Xt)t≥0, Px) solves the martingale problem for(L,A) with initial value

X0 = x Px-a.s.

(iii) The mapx 7→ Px[A] is measurable for any Borel setA ⊆ D(R+, S).

Then((Xt)t≥0, (Px)x∈S) is a strong Markov process, i.e.,

Ex

[
F (XT+ ·)|FX

T

]
= EXT

[F ] Px-a.s.

for anyx ∈ S, F ∈ Fb(D(R+, S)), and any finite(FX
t ) stopping timeT .

Remark (Non-uniqueness). If uniqueness does not hold then one can not expect that any solu-

tion of a martingale problem is a Markov process, because different solutions can be combined in

a non-Markovian way (e.g. by switching from one to the other when a certain state is reached).

Sketch of proof of Theorem 4.13.Fix x ∈ S. SinceD(R+, S) is again a polish space there is a

regular version(ω,A) 7→ Qω(A) of the conditional distributionPx[ · |FT ]. Suppose we can prove

the following statement:

Claim: ForPx-almost everyω, the process(XT+ ·, Qω) solves the martingale problem for(L,A)
w.r.t. the filtration(FX

T+t)t≥0.

Then we are done, because of the martingale problem with initial conditionXT (ω) now implies

(XT+ ·, Qω) ∼ (X,PXT (ω)) for Px-a.e.ω,

which is the strong Markov property.

The reason why we can expect the claim to be true is that for anygiven 0 ≤ s < t, f ∈ A
andA ∈ FX

T+s,

EQω

[
f(XT+t)− f(XT+s)−

ˆ T+t

T+s

(Lf)(Xr)dr;A

]

= Ex

[(
M

[f ]
T+t −M

[f ]
T+s

)
1A

∣∣∣FX
T

]
(ω)

= Ex

[
Ex

[
M

[f ]
T+t −M

[f ]
T+s

∣∣∣FX
T+s

]
1A

∣∣∣FX
T

]
(ω) = 0
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holds forPx-a.e. ω by the optional sampling theorem and the tower property of conditional

expectations. However, this is not yet a proof since the exceptional set depends ons, t, f and

A. To turn the sketch into a proof one has to use the separability assumptions to show that

the exceptional set can be chosen independently of these objects, cf. Stroock/Varadhan [38],

Roger/Williams [34]+[35] or Ethier/Kurz [12].

4.3 Feller processes and their generators

In this section we restrict ourselves toFeller processes. These are càdlàg Markov processes with

a locally compact separable state spaceS whose transition semigroup preservesĈ(S). We will

establish a one-to-one correspondence between sub-Markovian C0 semigroups on̂C(S), their

generators, and Feller processes. Moreover, we will show that the generatorL of a Feller process

with continuous paths onRn acts as a second order differential operator on functions inC∞
0 (Rn)

if this is a subspace of the domain ofL. We start with a definition:

Definition (Feller semigroup). A Feller semigroupis a sub-MarkovianC0 semigroup(Pt)t≥0 of

linear operators onĈ(S), i.e., a Feller semigroup has the following properties thathold for any

f ∈ Ĉ(S):

(i) Strong continuity:‖Ptf − f‖sup→ 0 ast ↓ 0,

(ii) Sub-Markov:f ≥ 0⇒ Ptf ≥ 0, f ≤ 1⇒ Ptf ≤ 1,

(iii) Semigroup:P0f = f, PtPsf = Pt+sf for anys, t ≥ 0.

Remark. Property (ii) implies thatPt is a contraction w.r.t. the supremum norm for anyt ≥ 0.

Lemma 4.14(Feller processes, generators and martingales). Suppose that(pt)t≥0 is the tran-

sition function of a right-continuous time-homogeneous Markov process((Xt)t≥0, (Px)x∈S) such

that pt
(
Ĉ(S)

)
⊆ Ĉ(S) for any t ≥ 0. Then(pt)t≥0 induces a Feller semigroup(Pt)t≥0 on

Ĉ(S). If L denotes the generator then the process((Xt), Px) solves the martingale problem for

(L,Dom(L)) for anyx ∈ S.

Proof. Strong continuity holds by 4.2. Filling in the other missingdetails is left as an exercise.
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4.3.1 Existence of Feller processes

In the framework of Feller semigroups, the one-to-one correspondence between generators and

semigroups can be extended to a correspondence between generators, semigroups and canonical

Markov processes. LetΩ = D(R+, S ∪ {∆}), Xt(ω) = ω(t), and A = σ(Xt : t ≥ 0).

Theorem 4.15(Existence and uniqueness of canonical Feller processes). Suppose that(Pt)t≥0

is a Feller semigroup on̂C(S) with generatorL. Then there exist unique probability measuresPx

(x ∈ S) on (Ω,A) such that the canonical process((Xt)t≥0, Px) is a Markov process satisfying

Px[X0 = x] = 1 and

Ex[f(Xt)|FX
s ] = (Pt−sf)(Xs) Px-almost surely (4.3.1)

for anyx ∈ S, 0 ≤ s ≤ t andf ∈ Ĉ(S), where we setf(∆) := 0. Moreover,((Xt)t≥0, Px) is a

solution of the martingale problem for(L,Dom(L)) for anyx ∈ S.

Remark (Strong Markov property ). In a similar way as for Brownian motion it can be shown

that((Xt)t≥0, (Px)x∈S) is a strong Markov process, cf. e.g. Liggett [21].

Sketch of proof.We only mention the main steps in the proof, details can be found for instance

in Rogers& Williams, [35]:

1) One can show that the sub-Markov property implies that forany t ≥ 0 there exists a sub-

probability kernelpt(x, dy) on (S,B) such that

(Ptf)(x) =

ˆ

pt(x, dy)f(y) for anyf ∈ Ĉ(S) andx ∈ S.

By the semigroup property of(Pt)t≥0, the kernels(pt)t≥0 form a transition function on

(S,B).

2) Now theKolmogorov extension theoremshows that for anyx ∈ S there is a unique

probability measureP 0
x on the product spaceS [0,∞)

∆ with marginals

Px ◦ (Xt1 , Xt2 , . . . , Xtn)
−1 = pt1(x, dy1)pt2−t1(y1, dy2) . . . ptn−tn−1(yn−1, dyn)

for anyn ∈ N and0 ≤ t1 < t2 < · · · < tn. Note that consistency of the given marginal

laws follows from the semigroup property.
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3) Path regularisation: To obtain a modification of the process with càdlàg sample paths,

martingale theory can be applied. Suppose thatf = G1g for some non-negative function

g ∈ Ĉ(S). Then

f − Lf = g ≥ 0,

and hence the processe−tf(Xt) is a supermartingale w.r.t.P 0
x for anyx. The supermartin-

gale convergence theorems now imply thatP 0
x -almost surely, the limits

lim
s↓t

s∈Q
e−sf(Xs)

exist and define a càdlàg function int. Applying this simultaneously for all functionsg

in a countable dense subset of the non-negative functions inĈ(S), one can prove that the

process

X̃t = lim
s↓t

s∈Q
Xs (t ∈ R+)

existsP 0
x -almost surely and defines a càdlàg modification of((Xt), P

0
x ) for anyx ∈ S. We

can then choosePx as the law of(X̃t) underP 0
x .

4) Uniqueness:Finally, the measuresPx (x ∈ S) are uniquely determined since the finite-

dimensional marginals are determined by (4.3.1) and the initial condition.

We remark that alternatively it is possible to construct a Feller process as a limit of jump pro-

cesses, cf. Chapter 6, Theorem 5.4. in Ethier&Kurtz [12]. Indeed, the Yosida approximation

Lf = lim
α→∞

αGαLf = lim
α→∞

L(α)f, L(α)f := α(αGαf − f),

Ptf = lim
α→∞

etL
(α)

f,

is an approximation of the generator by bounded linear operatorsL(α) that can be represented in

the form

L(α)f = α

ˆ

(f(y)− f(x))αgα(x, dy)

with sub-Markov kernelsαgα. For anyα ∈ (0,∞), L(α) is the generator of a canonical jump

process((Xt)t≥0, (P
(α)
x )x∈S) with bounded jump intensities. By using that for anyf ∈ Dom(L),

L(α)f → Lf uniformly asα→∞,

one can prove that the family{P (α)
x : α ∈ N} of probability measures onD(R+, S ∪ {∆}) is

tight, i.e., there exists a weakly convergent subsequence.Denoting byPx the limit, ((Xt), Px) is

a Markov process that solves the martingale problem for the generator(L,Dom(L)). We return

to this approximation approach for constructing solutionsof martingale problems in Section 3.2.
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4.3.2 Generators of Feller semigroups

It is possible to classify all generators of Feller processes in Rd that containC∞
0 (Rd) in the

domain of their generator. The key observation is that the sub-Markov property of the semigroup

implies a maximum principle for the generator. Indeed, the following variant of the Hille-Yosida

theorem holds:

Theorem 4.16(Characterization of Feller generators). A linear operator(L,Dom(L)) on

Ĉ(S) is the generator of a Feller semigroup(Pt)t≥0 if and only if the following conditions hold:

(i) Dom(L) is a dense subspace ofĈ(S).

(ii) Range(αI − L) = Ĉ(S) for someα > 0.

(iii) L satisfies thepositive maximum principle: If f is a function in the domain ofL and

f(x0) = sup f for somex0 ∈ S then(Lf)(x0) ≤ 0.

Proof. “⇒” If L is the generator of a Feller semigroup then (i) and (ii) hold by the Hille-Yosida

Theorem 4.5. Furthermore, suppose thatf ≤ f(x0) for somef ∈ Dom(L) andx0 ∈ S. Then

0 ≤ f+

f(x0)
≤ 1, and hence by the sub-Markov property,0 ≤ Pt

f+

f(x0)
≤ 1 for any t ≥ 0. Thus

Ptf ≤ Ptf
+ ≤ f(x0), and

(Lf)(x0) = lim
t↓0

(Ptf)(x0)− f(x0)
t

≤ 0.

“⇐” Conversely, if (iii) holds thenL is dissipative. Indeed, for any functionf ∈ Ĉ(S) there

existsx0 ∈ S such that‖f‖sup = |f(x0)|. Assuming w.l.o.g.f(x0) ≥ 0, we obtain

α‖f‖sup ≤ αf(x0)− (Lf)(x0) ≤ ‖αf − Lf‖sup for anyα > 0

by (iii). The Hille-Yosida Theorem 4.5 now shows thatL generates aC0 contraction semigroup

(Pt)t≥0 on Ĉ(S) provided (i),(ii) and (iii) are satisfied. It only remains toverify the sub-Markov

property. This is done in two steps:

a) αGα is sub-Markov for anyα > 0: 0 ≤ f ≤ 1 ⇒ 0 ≤ αGαf ≤ 1. This follows

from the maximum principle by contradiction. Suppose for instance thatg := αGαf ≤ 1,

and letx0 ∈ S such thatg(x0) = max g > 1. Then by (iii), (Lg)(x0) ≤ 0, and hence

f(x0) =
1
α
(αg(x0)− (Lg)(x0)) > 1.
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b) Pt is sub-Markov for anyt ≥ 0 : 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1. This follows from a)

by Yosida approximation: LetL(α) := LαGα = α2Gα − αI. If 0 ≤ f ≤ 1 then the

sub-Markov property forαGα implies

etL
(α)

f = e−αt

∞∑

n=0

(αt)n

n!
(αGα)

n f ∈ [0, 1) for anyt ≥ 0.

Hence alsoPtf = lim
α→∞

etL
(α)
f ∈ [0, 1] for anyt ≥ 0.

For diffusion processes onRd, the maximum principle combined with a Taylor expansion shows

that the generatorL is a second order differential operator providedC∞
0 (Rd) is contained in the

domain ofL:

Theorem 4.17(Dynkin ). Suppose that(Pt)t≥0 is a Feller semigroup onRd such thatC∞
0 (Rd)

is a subspace of the domain of the generatorL. If (Pt)t≥0 is the transition semigroup of a

Markov process((Xt)t≥0, (Px)x∈Rd) with continuous paths then there exist functionsaij , bi, c ∈
C(Rd) (i, j = 1, . . . , d) such that for anyx, aij(x) is non-negative definite,c(x) ≤ 0, and

(Lf)(x) =

d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂f

∂xi
(x) + c(x)f(x) ∀f ∈ C∞

0 (Rd). (4.3.2)

Furthermore, if the process((Xt)t≥0, (Px)x∈S) is non-explosive thenc ≡ 0.

Proof. 1) L is a local operator: We show that

f, g ∈ Dom(L), f = g in a neighbourhood ofx⇒ (Lf)(x) = (Lg)(x).

For the proof we apply optional stopping to the martingaleMf
t = f(Xt)−

´ t

0
(Lf)(Xs)ds.

For an arbitrary bounded stopping timeT andx ∈ Rd, we obtainDynkin’s formula

Ex[f(XT )] = f(x) + Ex

[
ˆ T

0

(Lf)(Xs)ds

]
.

By applying the formula to the stopping times

Tε = min{t ≥ 0 : Xt /∈ B(x, ε)} ∧ 1, ε > 0,
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we can conclude that

(Lf)(x) = lim
ε↓0

Ex

[
´ Tε

0
(Lf)(Xs)ds

]

Ex[Tε]
= lim

ε↓0

Ex[f(XTε)]− f(x)
Ex[Tε]

. (4.3.3)

Here we have used thatLf is bounded andlim
s↓0

(Lf)(Xs) = (Lf)(x) Px-almost surely by

right-continuity. The expression on the right-hand side of(4.3.3) is known as “Dynkin’s

characteristic operator”. Assuming continuity of the paths, we obtainXTε ∈ B(x, ε).

Hence iff, g ∈ Dom(L) coincide in a neighbourhood ofx thenf(XTε) ≡ g(XTε) for

ε > 0 sufficiently small, and thus(Lf)(x) = (Lg)(x) by (4.3.3).

2) Local maximum principle: Locality of L implies the following extension of the positive

maximum principle: Iff is a function inC∞
0 (Rd) that has alocal maximum atx then

(Lf)(x) ≤ 0. Indeed, in this case we can find a functionf̃ ∈ C∞
0 (Rd) that has a global

maximum atx such thatf̃ = f in a neighbourhood ofx. SinceL is a local operator by

Step 1, we can conclude that

(Lf)(x) = (Lf̃)(x) ≤ 0.

3) Taylor expansion: For proving thatL is a differential operator of the form (4.3.2) we fix

x ∈ Rd and functionsϕ, ψ1, . . . , ψd ∈ C∞
0 (Rd) such thatϕ(y) = 1, ψi(y) = yi − xi in a

neighbourhoodU of x. Let f ∈ C∞
0 (Rd). Then by Taylor’s formula there exists a function

R ∈ C∞
0 (Rd) such thatR(y) = o(|y − x|2) and

f(y) = f(x)ϕ(y) +

d∑

i=1

∂f

∂xi
(x)ψi(y) +

1

2

d∑

i,j=1

∂2f

∂xi∂xj
(x)ψi(y)ψj(y) +R(y) (4.3.4)

in a neighbourhood ofx. SinceL is a local linear operator, we obtain

(Lf)(x) = c(x)f(x) +

d∑

i=1

bi(x)
∂f

∂xi
(x) +

1

2

d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) + (LR)(x) (4.3.5)

with c(x) := (Lϕ)(x), bi(x) := (Lψi)(x), andaij(x) := L(ψiψj)(x). Sinceϕ has a local

maximum atx, c(x) ≤ 0. Similarly, for anyξ ∈ Rd, the function

d∑

i,j=1

ξiξjψi(y)ψj(y) =

∣∣∣∣∣

d∑

i=1

ξiψi(y)

∣∣∣∣∣

2

equals|ξ · (y − x)|2 in a neighbourhood ofx, so it has a local minimum atx. Hence

d∑

i,j=1

ξiξjaij(x) = L

(
∑

i,j

ξiξjψiψj

)
≥ 0,
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i.e., the matrix(aij(x)) is non-negative definite. By (4.3.5), it only remains to show

(LR)(x) = 0. To this end consider

Rε(y) := R(y)− ε
d∑

i=1

ψi(y)
2.

SinceR(y) = o(|y − x|2), the functionRε has a local maximum atx for ε > 0. Hence

0 ≥ (LRε)(x) = (LR)(x)− ε
d∑

i=1

aii(x) ∀ε > 0.

Lettingε tend to0, we obtain(LR)(x) ≤ 0. On the other hand,Rε has a local minimum at

x for ε < 0, and in this case the local maximum principle implies

0 ≤ (LRε)(x) = (LR)(x)− ε
d∑

i=1

aii(x) ∀ε < 0,

and hence(LR)(x) ≥ 0. Thus(LR)(x) = 0.

4) Vanishing of c: If the process is non-explosive thenpt1 = 1 for anyt ≥ 0. Informally this

should implyc = L1 = d
dt
pt1|t=0+ = 0. However, the constant function1 is not contained

in the Banach spacêC(Rd). To make the argument rigorous, one can approximate1 by

C∞
0 functions that are equal to1 on balls of increasing radius. The details are left as an

exercise.

Theorem 4.17 has an extension to generators of general Feller semigroups including those corre-

sponding to processes with discontinuous paths. We state the result without proof:

Theorem (Courrège).

Suppose thatL is the generator of a Feller semigroup onRd, andC∞
0 (Rd) ⊆ Dom(L). Then

there exist functionsaij , bi, c ∈ C(Rd) and a kernelν of positive Radon measures such that

(Lf)(x) =

d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂f

∂xi
(x) + c(x)f(x)

+

ˆ

Rd\{x}

(
f(y)− f(x)− 1{|y−x|<1}(y − x) · ∇f(x)

)
ν(x, dy)

holds for anyx ∈ Rd andf ∈ C∞
0 (Rd). The associated Markov process has continuous paths if

and only ifν ≡ 0.

For transition semigroups of Lévy processes (i.e., processes with independent and stationary

increments), the coefficientsaij , bi, c, and the measureν do not depend onx. In this case, the

theorem is a consequence of the Lévy-Khinchin representation, cf. e.g. [10].
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Chapter 5

Processes with unbounded jump intensities

In this chapter we consider two explicit constructions of continuous-time Markov processes with

unbounded jump intensities. Since these processes may haveinfinitely many jumps in a finite

time interval, the construction can not be carried out as easily as for processes with finite jump

intensity. We will first consider interacting particle systems overZd. Here ergodicity is closely

related to the absence of phase transitions. Afterwards, wewill apply Poisson random measures

to construct L’evy processes with infinite jump intensities.

5.1 Interacting particle systems

5.1.1 Interacting particle systems - a first look

LetG = (V,E) be an (undirected) graph withV the set of vertices andE the set of edges. We

write x ∼ y if and only if {x, y} ∈ E. We call

S = T V = {η : V → T}

theconfiguration space. T can be the space of types, states, spins etc.

E.g.

T = {0, 1}, η(x) =




1 particle atx

0 no particle atx

150
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particle

no particle

Markovian dynamics:η(x) changes to statei with rate

ci(x, η) = gi ((η(x), (η(y))y∼x)

i.e.

q(η, ξ) =




ci(x, η) if ξ = ηx,i

0 otherwise

where

ηx,i(y) =




η(y) for y 6= x

i for y = x

Example. (1). Contact process: (Spread of plant species, infection,...)T = {0, 1}. Each

particle dies with rated > 0, produces descendent at any neighbor site with rateb > 0 (if

not occupied)

c0(x, η) = d

c1(x, η) = b ·N1(x, η); N1(x, η) := |{y ∼ x : η(y) = 1}|

Spatial branching process with exclusion rule (only one particle per site).
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(2). Voter model: η(x) opinion of voter atx,

ci(x, y) = Ni(x, y) := |{y ∼ x : η(y) = i}|

changes opinion toi with rate equal to number of neighbors with opinioni.

(3). Ising model with Glauber (spin flip) dynamics: T = {−1, 1}, β > 0 inverse tempera-

ture.

(a) Metropolis dynamics:

∆(x, η) :=
∑

y∼x

η(y) = N1(x, η)−N−1(x, η) total magnetization

c1(x, η) := min
(
e2β·∆(x,η), 1

)

c0(x, η) := min
(
e−2β·∆(x,η), 1

)

(b) Heath bath dynamics / Gibbs sampler:

c1(x, η) =
eβ∆(x,η)

eβ∆(x,η) + e−β∆(x,η)

c0(x, η) =
e−β∆(x,η)

eβ∆(x,η) + e−β∆(x,η)

β = 0: (infinite temperature) c1 ≡ c0 ≡ 1
2
, random walk on{0, 1}V (hypercube)

β →∞: (zero temperature)

c1(x, η) =





1 if ∆(x, y) > 0

1
2

if ∆(x, y) = 0

0 if ∆(x, y) < 0

, c0(x, η) =





1 if ∆(x, y) < 0

1
2

if ∆(x, y) = 0

0 if ∆(x, y) > 0

Voter model with majority vote.

In the rest of this section we will assume that the vertex setV is finite. In this case, the config-

uration spaceS = T V is finite-dimensional. If, moreover, the type spaceT is also finite thenS

itself is a finite graph with respect to theHamming distance

d(η, ξ) = |{x ∈ V ; η(x) 6= ξ(x)}|

Hence a continuous-time Markov chain(ηt, Px) can be constructed as above from the jump rates

qt(η, ξ). The process is non-explosive, and the asymptotic results from the last section apply. In

particular, if irreducibility holds the there exists a unique stationary probability distribution, and

the ergodic theorem applies.
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Example. (1). Ising Model: The Boltzman distribution

µβ(η) =
1

Zβ
e−βH(η), Zβ =

∑

η

e−βH(η),

with Hamiltonian

H(η) =
1

2

∑

{x,y}∈E
(η(x)− η(y))2 =

∑

{x,y}∈E
η(x)η(y) + |E|

is stationary, since it satisfies the detailed balance condition

µβ(η)q(η, ξ) = µβ(ξ)q(ξ, η) ∀ ξ, η ∈ S.

Moreover, irreducibility holds - so the stationary distribution is unique, and the ergodic

theorem applies (Exercise).

(2). Voter model: The constant configurationsi(x) ≡ i, i ∈ T , areabsorbing states, i.e.

cj(x, i) = 0 for all j 6= i, x. Any other state is transient, so

P

[
⋃

i∈T
{ηt = i eventually}

]
= 1.

Moreover,

Ni(ηt) := |{x ∈ V : ηt(x) = i}|

is a martingale (Exercise), so

Ni(η) = Eη[Ni(ηt)]
t→∞−→ Eη[Ni(η∞)] = N · P [ηt = i eventually]

i.e.

P [ηt = i eventually] =
Ni(η)

N

The stationary distributions are the Dirac measuresδi, i ∈ T , and their convex combina-

tions.

(3). Contact process: The configuration0 is absorbing, all other states are transient. Hence

δ0 is the unique invariant measure and ergodicity holds.

We see that on finite graphs the situation is rather simple as long as we are only interested in

existence and uniqueness of invariant measures, and ergodicity. Below, we will show that on

infinite graphs the situation is completely different, and phase transitions occur. On finite sub-

graphs on an infinite graph these phase transitions effect the rate of convergence to the stationary

distribution and the variances of ergodic averages but not the ergodicity properties themselves.
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5.1.2 Mean field models

Suppose thatG is the complete graph withn vertices, i.e.

V = {1, . . . , n} and E = {{x, y} : x, y ∈ V }

Let

Ln(η) =
1

n

n∑

x=1

δη(x)

denote theempirical distribution of a configurationη : {1, . . . , n} → T , themean field. In a

mean-field modelthe rates

ci(x, η) = fi(Ln(η))

areindependent ofx, anddepend onη only through the mean fieldLn(η).

Example. Multinomial resampling (e.g. population genetics), mean field voter model.

With rate 1 replace each typeη(x), x ∈ V , by a type that is randomly selected fromLn(η):

ci(x, η) = Ln(η)(i) =
1

n
|{x ∈ η : η(x) = i}|

As a special case we now consider mean-field models with type spaceT = {0, 1} or T =

{−1, 1}. In this case the empirical distribution is completely determined by the frequence of type

1 in a configuration:

Ln(η)←→ N1(η) = |{x : η(x) = 1}|
ci(x, y) = f̃(N1(η))

If (ηt, Px) is the corresponding mean field particle system, then (Exercise)Xt = N1(η) is a

birth-death process on{0, 1, . . . , n} with birth/death rates

b(k) = (n− k) · f̃1(k), d(k) = k · f̃0(k)

where(n− k) is the number of particles with state 0 andf̃1(k) is the birth rate per particle.

 Explicit computation of hitting times, stationary distributions etc.!

Example. (1). Binomial resampling: For multinomial resampling withT = {0, 1} we ob-

tain

b(k) = d(k) =
k · (n− k)

n
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(2). Mean-field Ising model: For the Ising model on the complete graph with inverse tem-

peratureβ and interaction strength1
n

the stationary distribution is

µβ(η) ∝ e−
β
4n

∑
x,y(η(x)−η(y))2 ∝ e

β
2n

∑
x η(x)·

∑
y η(y) = e

β
2n

m(η)2

where

m(η) =
n∑

x=1

η(x) = N1(η)−N−1(η) = 2N1(η)− n

is thetotal magnetization. Note that eachη(x) is interacting with the mean field1
n

∑
η(y),

which explains the choice of interacting strength of order1
n
. The birth-death chainN1(ηt)

corresponding to the heat bath dynamics has birth and death rates

b(k) = (n− k) · eβ
k
n

eβ
k
n + eβ

n−k
n

, d(k) = k · eβ
n−k
n

eβ
k
n + eβ

n−k
n

and stationary distribution

µ̄β(k) =
∑

η : N1(η)=k

µβ(η) ∝
(
n

k

)
2−ne

2β
n (k−

n
2 )

2

, 0 ≤ k ≤ n

The binomial distributionBin(n, 1
2
) has a maximum at its mean valuen

2
, and standard

deviation
√
n
2

. Hence for large n, the measureµ̄β has one sharp mode of standard deviation

O(
√
n) if β is small, and two modes ifβ is large:

| | |

0 n
2

n

β ≪ 1

| |

0 n

β ≫ 1

The transition from uni- to multimodality occurs at an inverse temperatureβn with

lim
n→∞

βn = 1 (Exercise)
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The asymptotics of the stationary distribution asn→∞ can be described more accurately

using large deviation results, cf. below.

Now consider the heat bath dynamics with an initial configuration η0 with N1(η0) ≤ n
2
, n even,

and let

T := inf
{
t ≥ 0 : N1(ηt) >

n

2

}
.

By the formula for mean hitting times for a birth-and-death process,

E[T ] ≥ µ̄β

({
0, 1, . . . , n

2

})

µ̄β

(
n
2

)
· b
(
n
2

) ≥
1
2

µ̄β

(
n
2

)
· n
2

≥ eβ
n
2

n2n

since

µ̄β

(n
2

)
=

(
n
n
2

)
· e−βn

2 µ̄β(0) ≤ 2ne−
βn
2 .

Hence the average time needed to go from configurations with negative magnetization to states

with positive magnetization is increasing exponentially in n for β > 2 log 2. Thus although

ergodicity holds, for largen the process gets stuck for a very large time in configurationswith

negative resp. positive magnetization.

 Metastable behaviour.

More precisely, one can show using large deviation techniques that metastability occurs for any

inverse temperatureβ > 1, cf. below.

5.1.3 Particle systems onZd

Reference:

• Durett [7]

• Liggett [19]

V = Zd, T finite

E = {(x, y) : |x− y|l1 = 1} S = T Zd

with product topology, compact

µn → µ ⇔ µn(x)→ µ(x) ∀ x ∈ Zd
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Assumptions:

(i) µ̄ := sup
i∈T
x∈Zd

ci(x, y) <∞

(ii) ci(x, y) = gi (η(x), (η(y))y∼x) translation invariant and nearest neighbor

Nx,i
t independent Poisson process with rateλ̄ (alarm clock for transition atx to i)

T x,i
n n-th. arrival time ofNx,i

t

Ux,i
n independent random variables uniformly distributed on[0, 1]

Recipe: At time T x,i
n , changeη(x) to i provided

Ux,i
n ≤

ci(x, y)

λ̄

(
i.e. with probability

ci(x, y)

λ̄

)

Problem: Infinitely many Poisson processes, hence transitions in arbitrary small time, no first

transition.

How can we consistently define a process from the jump times? For a finite subsetA ⊂ Zd and

ξ ∈ S, the restricted configuration space

Sξ,A := {η ∈ S | η = ξ onAc}

is finite. Hence for alls ≥ 0 there exists a unique Markov jump process
(
η
(s,ξ,A)
t

)
t≥s

on Sξ,A

with initial conditionη(s,ξ,A)
s = ξ and transitionst ≥ s, η → ηx,i at timesT x,i

n wheneverUx,i
n ≤

ci(x,y)

λ̄
, x ∈ A. The idea is now to define a Markov processη

(s,ξ)
t onS for t− s small by

η
(s,ξ)
t := η

(s,ξ,A)
t
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whereA is an appropriately chosen finite neighborhood ofx. The neighborhood should be cho-

sen in such a way that during the considered time interval,η
(s,ξ)
t (x) has only been effected by

previous values onA of the configuration restricted toA. That this is possible is guaranteed by

the following observation:

For0 ≤ s ≤ t we define a random subgraph(Zd, Es,t(ω)) of (V,E) by:

Es,t(ω) =
{
{x, y} : T x,i

n ∈ (s, t] or T y,i
n ∈ (s, t] for somen ∈ N andi ∈ T

}

If x effectsy in the time interval(s, t] or vice versa then{x, y} ∈ Es,t.

Lemma 5.1. If

t− s ≤ 1

8 · d2 · |T | · λ̄ =: δ

then

P
[
all connected components of(Zd, Es,t) are finite

]
= 1.

Consequence: For small time intervals[s, t] we can construct the configuration at timet form

the configuration at times independently for each component by the standard construction for

jump processes with finite state space.

Proof. By translation invariance it suffices to show

P [|C0| <∞] = 1

whereC0 is the component of(Zd, Es,t) containing0. If x is inC0 then there exists a self-avoiding

path in(Zd, Es,t) starting at0 with lengthdl1(x, 0). Hence

P [∃ x ∈ C0 : dl1(x, 0) ≥ 2n− 1]

≤ P [∃ self-avoiding pathz1 = 0, z2, . . . , z2n−1 s.t.(zi, zi+1) ∈ Es,t ∀ i]

≤ (2d)2n−1 ·
n−1∏

i=0

P [(z2i, z2i+1) ∈ Es,t]

where(2d)2n−1 is a bound for the number of self-avoiding paths starting at 0and independent

events{(z2i, z2i+1) ∈ Es,t}.
Hence

P [∃ x ∈ C0 : dl1(x, 0) ≥ 2n− 1] ≤
(
4d2 ·

(
1− e−2|T |λ̄(t−s)

))n

≤ (8d2 · |T |λ̄ · (t− s))n −→ 0

asn→∞, wheree−2|T |λ̄(t−s) is the probability for no arrival in[s, t] in a2|T | Poisson(λ̄) process

and1− e−2|T |λ̄(t−s) ≤ 2|T |λ̄ · (t− s).
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By the lemma,P -almost sure for alls > 0 and ξ ∈ T Zd
, there is an unique functiont 7→

η
(s,ξ)
t , t ≥ s, such that

(i) η
(s,ξ)
s = ξ

(ii) For s ≤ t, h ≤ δ, and each connected componentC of (Zd, Et,t+h), η
(s,ξ)
t+h

∣∣∣
C

is obtained

from η
(s,ξ)
t

∣∣∣
C

by subsequently taking into account the finite number of transitions inC

during[t, t + h].

We set

ηξt := η0,ξt .

By construction,

ηξt = η
(s,ηξs)
t ∀ 0 ≤ s ≤ t (5.1.1)

Corollary 5.2. (i) Time-homogeneity:

(
η
(s,ξ)
s+t

)
t≥0
∼
(
ηξt

)
t≥0

(ii) (ηξt , P ) is a Markov process with transition semigroup

(ptf)(ξ) = E[f(ηξt )]

(iii) Feller property:

f ∈ Cb(S) =⇒ ptf ∈ Cb(S) ∀ t ≥ 0

Or, equivalently,ptf is continuous wheneverf is continuous with respect to the product

topology. SinceS is compact, any continuous function is automatically bounded.

(iv) Translation invariance: Let ξ : Ω → S be a random variable, independent of allNx,i
t

and translation invariant, i.e.ξ(x+ •) ∼ ξ for all x ∈ Zd. Thenηξt is translation invariant

for all t ≥ 0 P -a.s.

Sketch of proof: (i) by the time homogeneity of the Poisson arrivals.
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(ii)

E
[
f
(
ηξt

)
| Fs

]
(ω)

5.1.1
= E

[
f

(
η
(s,ηξs)
t

)
| Fs

]
(ω)

taking into account theFs-measurability ofηξs andη(s,ξ)t being independent ofFs for fixed

ξ, we conclude with(i)

E
[
f
(
ηξt

)
| Fs

]
(ω) = E

[
f

(
η
(s,ηξs(ω))
t

)]

= E
[
f
(
η
ηξs(ω)
t−s

)]

= (pt−sf)
(
ηξs(ω)

)

(iii)

ξn → ξ ⇒ ξn(x)→ ξ(x) ∀ x ∈ Zd

Henceξn = ξ eventually on each finite setC ⊂ Zd, and hence on each component of
(
Zd, E0,δ

)
. By the componentwise construction,

ηξnt = ηξt ∀ t ≤ δ

eventually on each component. Hence

ηξnt → ηξt (pointwise)∀ t ≤ δ

and forf ∈ Cb(S),

f
(
ηξnt

)
→ f

(
ηξt

)

for all t ≤ δ. With Lebesgue we conclude

ptf(ξn) = E
[
f
(
ηξnt

)]
−→ ptf(ξ) ∀t ≤ δ

Hence OK fort ≤ δ. General case by semigroup property:

pt = pt−⌊ t
δ
⌋·δ p

⌊ t
δ
⌋

δ : Cb(S)→ Cb(S)

(iv) The ci(x, y) are translation invariant by assumption,
((
Nx,i

n

)
t,i
,
(
Ux,i
n

)
n,i

)

are identically distributed. This gives the claim.
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Theorem 5.3(Forward equation). For any cylinder function

f(η) = ϕ (η(x1), . . . , η(xn)) , n ∈ N ϕ : T n → R

the forward equation
d

dt
(ptf) (ξ) = (ptLf) (ξ)

holds for allξ ∈ S where

(Lf)(ξ) =
∑

x∈Zd

i∈T

ci(x, ξ) ·
(
f(ξξ,i)− f(ξ)

)

Remark. Sincef is a cylinder function, the sum in the formula for the generator has only finitely

many non-zero summands.

Proof.

P

[
∑

k=1,...,ni∈T
Nxk,i

t > 1

]
≤ const.· t2

where{Nxk ,i
t > 1} means that there is more than one transition in the time interval [0, t] among

{x1, . . . , xn} and const. is a global constant.

P
[
Nxk,i

t = 1
]
= λ̄ · t +O(t2)

and hence

(ptf)(ξ) = E[f(ηξt )]

= f(ξ) · P
[
Nxk ,i

t = 0 ∀ 1 ≤ k ≤ n, i ∈ T
]

+
∑

i,k

f(ξxk,i) · P
[
Nxk,i

t = 1, Uxk ,i
1 ≤ ci(x, ξ)

λ̄

]
+O(t2)

= f(ξ) +
∑

i,k

t · λ̄ci(xk, ξ)
λ̄

·
(
f(ξxk,i)− f(ξ)

)
+O(t2)

= f(ξ) + t · (Lf)(ξ) +O(t2)
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where the constantsO(t2) do not depend onξ. Hence

pt+hf = ptphf = ptf + hptLf +O(h2)

5.2 Phase transitions

An additional reference for this section is Liggett [19].

5.2.1 Attractive particle systems

From now on we assumeT = {0, 1}. We define apartial order on configurationsη, η̃ ∈ S =

{0, 1}Zd
by

η ≤ η̃ :⇔ η(x) ≤ η̃(x) ∀ x ∈ Zd

A functionf : S → R is calledincreasing if and only if

f(η) ≤ f(η̃) wheneverη ≤ η̃.

Definition (Stochastic dominance). For probability measuresµ, ν ∈M1(S) we set

µ 4 ν :⇔
ˆ

f dµ ≤
ˆ

f dν for any increasing bounded functionf : S → R

Example. Forµ, ν ∈M1(R),

µ 4 ν ⇔ Fµ(c) = µ ((−∞, c]) ≥ Fν(c) ∀ c ∈ R

Now consider again the stochastic dynamics constructed above.

c1(x, η) birth rates

c0(x, η) death rates
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Definition. The Markov process
(
ηξt , P

)
is calledattractiveif and only if for allx ∈ Zd,

η ≤ η̃, η(x) = η̃(x) ⇒




c1(x, η) ≤ c1(x, η̃) and

c0(x, η) ≥ c0(x, η̃)

Example. Contact process, voter model, as well as the Metropolis and heat-bath dynamics for

the (ferromagnetic) Ising model are attractive

Theorem 5.4. If the dynamics is attractive then:

(1). If ξ ≤ ξ̃ thenηξt ≤ ηξ̃t for all t ≥ 0 P -a.s.

(2). If f : S → R is increasing thenptf is increasing for allt ≥ 0.

(3). If µ 4 ν thenµpt 4 νpt for all t ≥ 0 (Monotonicity).

Proof. (1). The dynamics is attractive andξ ≤ ξ̃, hence every single transition preserves order.

Hence

η
(s,ξ,A)
t ≤ η

(s,ξ̃,A)
t ∀ 0 ≤ s ≤ t, A ⊂ Zd finite

⇒ η
(s,ξ)
t ≤ η

(s,ξ̃)
t ∀ s ≥ 0, t ∈ [s, s+ δ]

and by induction

η
(s,ξ)
t ≤ η

(s,ξ̃)
t ∀ t ≥ s ≥ 0

sinceη(s,ξ)t = η

(
s+δ,η

(s,ξ)
s+δ

)

t .

(If, for example, before a possible transition at timeT x,1
n , η ≤ η̃ andη(x) = η̃(x) = 0,

then after the transition,η(x) = 1 if Ux,1
n ≤ c1(x,η)

λ̄
, but in this case alsõη(x) = 1 since

c1(x, η) ≤ c1(x, η̃) by attractiveness. The other cases are checked similarly.)

(2). Sincef is increasing andξ ≤ ξ̃,

(ptf)(ξ) = E
[
f(ηξt )

]
≤ E

[
f(ηξ̃t )

]
= (ptf)(ξ̃)
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(3). If f is increasing,ptf is increasing as well and hence by Fubini
ˆ

f d(µpt) =

ˆ

ptf dµ
µ4ν

≤
ˆ

ptf dν =

ˆ

f d(νpt)

Let 0, 1 ∈ S denote the constant configurations andδ0, δ1 the minimal respectively maximal

element inM1(S).

Theorem 5.5.For an attractive particle system on{0, 1}Zd
we have

(1). The functionst 7→ δ0pt and t 7→ δ1pt are decreasing respectively increasing

with respect to4.

(2). The limitsµ := limt→∞ δ0pt andµ̄ := limt→∞ δ1pt exist with respect to weak convergence

in M1(S)

(3). µ andµ̄ are stationary distributions forpt

(4). Any stationary distributionπ satisfies

µ 4 π 4 µ̄.

Proof. (1).

0 ≤ s ≤ t ⇒ δ0 4 δ0pt−s

and hence by monotonicity

δ0ps 4 δ0pt−sps = δ0pt

(2). By monotonicity and compactness, sinceS = {0, 1}Zd
is compact with respect to the prod-

uct topology,M1(S) is compact with respect to weak convergence. Thus it sufficesto show

that any two subsequential limitsµ1 andµ2 of δ0pt coincide. Now by 1),
ˆ

f d(δ0pt)
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is increasing int, and hence
ˆ

f dµ1 = lim
t↑∞

ˆ

f d(δ0pt) =

ˆ

f dµ2

for any continuous increasing functionf : S → R, which impliesµ1 = µ2.

(3). Sincept is Feller,
ˆ

f d(µpt) =

ˆ

ptf dµ = lim
s→∞

ˆ

ptf d(δ0ps) = lim
s→∞

ˆ

f d(δ0pspt)

= lim
s→∞

ˆ

f d(δ0ps) =

ˆ

f dµ

for all f ∈ Cb(S).

(4). Sinceπ is stationary,

δ0pt 4 πpt = π 4 δ1pt

for all t ≥ 0 and hence fort→∞,

µ 4 π 4 µ̄.

Corollary 5.6. For an attractive particle system, the following statements are equivalent:

(1). µ = µ̄.

(2). There is an unique stationary distribution.

(3). Ergodicityholds:

∃ µ ∈M1(S) : νpt −→ µ ∀ ν ∈M1(S).

Proof. 1. ⇔ 2. : by the theorem.

1. ⇒ 3. : Sinceδ0 4 ν 4 δ1,

δ0pt 4 νpt 4 δ1pt

and sinceδ0pt → µ andδ1pt → µ̄ for t→∞,

νpt → µ = µ̄

3. ⇒ 1.: obvious.
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5.2.2 Contact process onZd

For the contact process,c0(x, η) = δ andc1(x, η) = b · N1(x, η) where the birth rateb and the

death rateδ are positive constants. Since the0 configuration is an absorbing state,µ = δ0 is the

minimal stationary distribution. The question now is if there is another (non-trivial) stationary

distribution, i.e. ifµ̄ 6= µ.

Theorem 5.7. If 2db < δ thenδ0 is the only stationary distribution, and ergodicity holds.

Proof. By the forward equation and translation invariance,

d

dt
P
[
η1t (x) = 1

]
= −δP

[
η1t (x) = 1

]
+

∑

y : |x−y|=1

b · P
[
η1t (x) = 0, η1t (y) = 1

]

≤ (−δ + 2db) · P
[
η1t (x) = 1

]

for all x ∈ Zd. Hence if2db < δ then

µ̄ ({η : η(x) = 1}) = lim
t→∞

(δ1pt)({η : η(x) = 1})

= lim
t→∞

P
[
η1t (x) = 1

]

= 0

for all x ∈ Zd and thus̄µ = δ0.

Conversely, one can show that forb sufficiently small (orδ sufficiently large), there is nontrivial

stationary distribution. The proof is more involved, cf. Liggett [19]. Thus a phase transition from

ergodicity to non-ergodicity occurs asb increases.

5.2.3 Ising model onZd

We consider the heat bath or Metropolis dynamics with inverse temperatureβ > 0 on S =

{−1,+1}Zd
.
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a) Finite volume: LetA ⊆ Zd be finite,

S+,A := {η ∈ S | η = +1 onAc} (finite!)

S−,A := {η ∈ S | η = −1 onAc} .

For ξ ∈ S+,A resp. ξ ∈ S−,A, ηξ,At = η
(0,ξ,A)
t , the dynamics taking into account only

transitions inA.
(
ηξ,At , P

)
is a Markov chain onS+,A resp.S−,A with generator

(Lf)(η) =
∑

x∈A
i∈{−1,+1}

ci(x, η) ·
(
f(ηx,i)− f(η)

)

Let

H(η) =
1

4

∑

x,y∈Zd

|x−y|=1

(η(x)− η(y))2

denote theIsing Hamiltonian . Note that forη ∈ S+,A or η ∈ S−,A only finitely many

summands do not vanish, soH(η) is finite. The probability measure

µ+,A
β (η) =

1

Z+,A
β

e−βH(η), η ∈ S+,A

where

Z+,A
β =

∑

η∈S+,A

e−βH(η)

onS+,A andµ−,A
β onS−,A defined correspondingly satisfy the detailed balance conditions

µ+,A
β (ξ)L(ξ, η) = µ+,A

β (η)L(η, ξ) ∀ ξ, η ∈ S+,A

respectively

µ−,A
β (ξ)L(ξ, η) = µ−,A

β (η)L(η, ξ) ∀ ξ, η ∈ S−,A.

SinceS+,A andS−,A are finite and irreducible this implies thatµ+,A
β respectivelyµ−,A

β is the

unique stationary distribution of
(
µξ,A
t , P

)
for ξ ∈ S+,A, S−,A respectively. Thus in finite

volume there are several processes corresponding to different boundary conditions (which

effect the Hamiltonian) but each of them has a unique stationary distribution. Conversely,

in infinite volume there is only one process, but it may have several stationary distributions:
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b) Infinite volume: To identify the stationary distributions for the process onZd, we use an

approximation by the dynamics in finite volume. Forn ∈ N let

An := [−n, n]d ∩ Zd,

ξn(x) :=




ξ(x) for x ∈ An

+1 for x ∈ Zd \ An

The sequencesµ+,An

β andµ−,An

β , n ∈ N, are decreasing respectively increasing

with respect to stochastic dominance. Hence my compactnessof {−1,+1}Zd
there exist

µ+
β := lim

n↑∞
µ+,An

β and µ−
β := lim

n↑∞
µ−,An

β

Remark (Gibbs measures). A probability measureµ onS is calledGibbs measurefor the Ising

Hamiltonian onZd and inverse temperatureβ > 0 if and only if for all finiteA ⊆ Zd andξ ∈ S,

µξ,A
β (η) :=

1

Zξ,A
β

e−βH(η), η ∈ Sξ,A := {η ∈ S | η = ξ onAc} ,

is a version of the conditional distribution ofµβ givenη(x) = ξ(x) for all x ∈ Ac. One can show

thatµ+
β andµ−

β are the extremal Gibbs measures for the Ising model with respect to stochastic

dominance, cf. e.g. [Minlos] XXX.

Definition. We say that aphase transitionoccurs forβ > 0 if and only ifµ+
β 6= µ−

β

For ξ ∈ S defineξn ∈ S+,An by

ξn(x) :=




ξ(x) for x ∈ An

+1 for x ∈ Zd \An

Lemma 5.8. For all x ∈ Zd andf ∈ [0, δ],

P
[
ηξt (x) 6= ηξn,An

t (x) for someξ ∈ S
]
−→ 0 (5.2.1)

asn→∞.
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Proof. Let Cx denote the component containingx in the random graph
(
Zd, E0,δ

)
. If Cx ⊆ An

then the modifications in the initial condition and the transition mechanism outsideAn do not

effect the value atx before timeδ. Hence the probability in (5.2.1) can be estimated by

P [Cx ∩Ac
n 6= ∅]

which goes to0 asn→∞ by Lemma (5.1) above.

Let pt denote the transition semigroup on{−1, 1}Zd
. Since the dynamics is attractive,

µ̄β = lim
t→∞

δ+1pt and µ
β
= lim

t→∞
δ−1pt

are extremal stationary distributions with respect to stochastic dominance. The following theo-

rem identifies̄µ andµ as the extremal Gibbs measures for the Ising Hamiltonian onZd:

Theorem 5.9.The upper and lower invariant measures are

µ̄β = µ+
β and µ

β
= µ−

β .

In particular, ergodicity holds if and only if there is no phase transition (i.e. iffµ+
β = µ−

β ).

Proof. We show:

(1). µ̄β 4 µ+
β

(2). µ+
β is a stationary distribution with respect topt.

This impliesµ̄β = µ+
β , since by 2. and the corollary above,µ+

β 4 µ̄β, and thusµ+
β = µ̄β by 1.

µ−
β = µ

β
follows similarly.

(1). It can be shown similarly as above that, the attractiveness of the dynamics implies

µ1
t ≤ µ1,An

t

P -a.s. for alln ∈ N andt ≥ 0. As t→∞,

µ1
t

D→ µ̄β and η1,An
t

D→ µ+,An

β ,
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hence

µ̄β 4 µ+,An

β

for all n ∈ N. The assertion follows asn→∞.

(2). It is enough to show

µ+
β pt = µ+

β for t ≤ δ, (5.2.2)

then the assertion follows by the semigroup property of(pt)t≥0. Let

(pnt f) (ξ) := E
[
f(ηξn,An

t )
]

denote the transition semigroup onSξn,An . We know:

µ+,n
β pnt = µ+,n

β (5.2.3)

To pass to the limitn → ∞ let f(η) = ϕ (η(x1), . . . , η(xk)) be a cylinder function onS.

Then
ˆ

ptf dµ
+,n
β =

ˆ

pnt f dµ
+,n
β +

ˆ

(pnt f − ptf) dµ+,n
β (5.2.4)

and by (5.2.3) this is equal to

ˆ

f dµ+,n
β +

ˆ

(pnt f − ptf) dµ+,n
β

But by the lemma above, fort ≤ δ,

|(pnt f)(ξ)− (ptf)(ξ)| ≤ E
[∣∣∣f
(
ηξn,An
t

)
− f

(
ηξt

)∣∣∣
]

≤ 2 · sup |f | · P
[
ηξn,An
t (xi) 6= ηξt (xi) for somei

]
−→ 0

uniformly in ξ.

Sinceµ+,n
β

w
to µ+

β , andf andptf are continuous by the Feller property, taking the limit in

(5.2.4) asn→∞ yields

ˆ

f d
(
µ+
β pt
)
=

ˆ

ptf dµ
+
β =

ˆ

f dµ+
β

for all cylinder functionsf , which implies (5.2.2).
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The question now is: when does a phase transition occur?

Forβ = 0, there is no interaction betweenη(x) andη(y) for x 6= y. Henceη+,n
β andη−,n

β are the

uniform distributions onS+,An andS−,An, and

µ+
β = µ−

β =
⊗

z∈Zd

ν, whereν (+−1) =
1

2

On the other hand, phase transition occur ford ≥ 2 and large values ofβ:

Theorem 5.10(PEIERL). For d = 2 there existsβc ∈ (0,∞) such that forβ > βc,

µ+
β ({η : η(0) = −1}) < 1

2
< µ−

β ({η : η(0) = −1}) ,

and thusµ+
β 6= µ−

β .

Proof. Let C0(η) denote the connected component of0 in {x ∈ Zd | η(x) = −1}, and set

C0(η) = ∅ if η(0) = +1. LetA ⊆ Zd be finite and non-empty. Forη ∈ S with C0 = A let η̃

denote the configuration obtained by reversing all spins inA. Then

H(η̃) = H(η)− 2|∂A|,

and hence

µ+,n
β (C0 = A) =

∑

η : C0(η)=A

µ+,n
β (η)

≤ e−2β|∂A|
∑

η : C0(η)=A

µ+,n
β (η̃)

︸ ︷︷ ︸
≤1

≤ e−2β|∂A|

Thus

µ+,n
β ({η : η(0) = −1}) =

∑

A⊂Zd

A 6=∅

µ+,n
β (C0 = A)

≤
∞∑

L=1

e−2βL
∣∣{A ⊂ Zd : |∂A| = L}

∣∣

≤
∞∑

L=4

e−2βL · 4 · 3L−1 · L2

≤ 1

2
for β > βc
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where∂A is a self-avoiding path inZ2 by lengthL, starting in
(
−L

2
, L
2

)2
. Hence forn→∞,

µ+
β ({η : η(0) = −1}) < 1

2

and by symmetry

µ−
β ({η : η(0) = −1}) = µ+

β ({η : η(0) = 1}) > 1

2

for β > βc.

5.3 Poisson point processes

Let S be a polish space (e.g.Rd) andν aσ-finite measure on the Borelσ-algebraS.

Definition. A collection of random variablesN(B), B ∈ S, on a probability space(Ω,A, P ) is

called aPoisson random measure (Poisson random field, spatial Poisson process) of intensity

ν, if and only if

(i) B 7→ N(B)(ω) is a positive measure for allω ∈ Ω.

(ii) If B1, . . . , Bn ∈ S are disjoint, then the random variablesN(B1), . . . , N(Bn) are inde-

pendent.

(iii) N(B) isPoisson(ν(B))-distributed for allB ∈ S with ν(B) <∞.

Example. If Nt is a standard Poisson process with intensityλ > 0 the number

N(B) := |{t ∈ B | Nt− 6= Nt}| , B ∈ B(R+)

of arrivals in a time setB is a Poisson random measure onR+ of intensityν = λ dx, and

Nt −Ns = N([s, t]), ∀ 0 ≤ s ≤ t
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Construction of Poisson random measures:

a) ν(S) <∞ : Defineλ := ν(S). LetX1, X2, . . . be independent and identically distributed

random variables,λ−1ν-distributed. LetK be aPoisson(λ) distributed random variable,

independent ofXi. Then

N :=
K∑

k=1

δXi

is a Poisson random measure of intensityν.

b) ν σ-finite: Let S =
⋃̇

i∈N Si with ν(Si) < ∞. Let Ni be independent Poisson random

measures with intensityISi
· ν. Then

N :=

∞∑

i=1

Ni

is a Poisson random measure with intensityν =
∑∞

i=1 ISi
· ν.

Definition. A collectionNt(B), t ≥ 0, B ∈ S, of random variables on a probability space

(Ω,A, P ) is called aPoisson point process of intensityν if and only if

(i) B 7→ Nt(B)(ω) is a positive measure for allt ≥ 0, ω ∈ Ω.

(ii) If B1, . . . , Bn ∈ S are disjoint, then(Nt(B1))t≥0, . . . , (Nt(Bn))t≥0 are independent.

(iii) (Nt(B))t≥0 is a Poisson process of intensityν(B) for all B ∈ S with ν(B) <∞.

Remark. A Poisson random measure (respectively a Poisson point process) is a random variable

(respectively a stochastic process) with values in the space

M+
c (S) =

{
∑

x∈A
δx | A ⊆ S countable subset

}
⊆ M+(S)

of all counting measures onS. The distribution of a Poisson random measure and a Poisson point

process of given intensity is determined uniquely by the definition.
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Theorem 5.11(Construction of Poisson point processes). (1). If N is a Poisson random mea-

sure onR+ × S of intensitydt⊗ ν then

Nt(B) := N((0, t]× B), t ≥ 0, B ∈ S,

is a Poisson point process on intensityν.

(2). Supposeλ := ν(S) <∞. Then

Nt =

Kt∑

i=1

δZi

is a Poisson point process of intensityν provided the random variablesZi are independent

with distributionλ−1ν, and(Kt)t≥0 is an independent Poisson process of intensityλ.

Proof. Exercise.

t

β N(β)
b

b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b

b

high intensity

low intensity

Corollary 5.12. If ν(S) < ∞ then a Poisson point process of intensityν is a Markov jump

process onM+
c (S) with finite jump measure

q(π, •) =
ˆ

(π + δy) ν(dy), π ∈M+
c (S)
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and generator

(LF )(π) =
ˆ

(F (π + δy)− F (π)) ν(dy), (5.3.1)

F : M+
c (S)→ R bounded. Ifν(S) =∞, (5.3.1) is not defined for all bounded functionsF .

5.4 Lévy processes
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Chapter 6

Convergence to equilibrium

Useful additional references for this chapter are the booksby Royer [36] and Bakry, Gentil,

Ledoux [1], and the lecture notes by Malrieu [23]. Our goal inthe following sections is to relate

the long time asymptotics(t ↑ ∞) of a time-homogeneous Markov process (respectively its

transition semigroup) to its infinitesimal characteristics which describe the short-time behavior

(t ↓ 0):

Asymptotic properties ↔ Infinitesimal behavior, generator

t ↑ ∞ t ↓ 0

Although this is usually limited to the time-homogeneous case, some of the results can be applied

to time-inhomogeneous Markov processes by considering thespace-time process(t, Xt), which

is always time-homogeneous.

LetS be a Polish space endowed with its Borelσ-algebraS. ByFb(S) we denote the linear space

of all bounded measurable functionsf : S → R. Suppose thatA is a linear subspace ofFb(S)

such thatA is separating in the following sense:

(A0) If µ is a signed measure onS with finite variation and
ˆ

f dµ = 0 ∀ f ∈ A,

thenµ = 0

Let

L : A ⊆ Fb(S)→ Fb(S)

be a linear operator.
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From now on we assume that we are given a right continuous time-homogeneous Markov process

((Xt)t≥0, (Ft)t≥0, (Px)x∈S) with transition semigroup(pt)t≥0 such that for anyx ∈ S, (Xt)t≥0 is

underPx a solution of the martingale problem for(L,A) with Px [X0 = x] = 1.

Let Ā denote the closure ofA with respect to the supremum norm. For most results derived

below, we will impose two additional assumptions:

Assumptions:

(A1) If f ∈ A, thenLf ∈ Ā.

(A2) There exists a linear subspaceA0 ⊆ A such that iff ∈ A0, thenptf ∈ A for all t ≥ 0, and

A0 is dense inA with respect to the supremum norm.

Example. (1). For a diffusion process inRd with continuous non-degenerate coefficients satis-

fying an appropriate growth constraint at infinity, (A1) and(A2) hold withA0 = C∞
0 (Rd),

A = S(Rd) andB = Ā = C∞(Rd).

(2). In general, it can be difficult to determine explicitly aspaceA0 such that (A2) holds. In

this case, a common procedure is to approximate the Markov process and its transition

semigroup by more regular processes (e.g. non-degenerate diffusions inRd), and to derive

asymptotic properties from corresponding properties of the approximands.

(3). For an interacting particle system onT Zd
with bounded transition ratesci(x, η) as studied

in Chapter 5, the conditions (A1) and (A2) hold with

A0 = A =
{
f : T Zd → R : |||f ||| <∞

}

where

|||f ||| =
∑

x∈Zd

∆f (x), ∆f (x) = sup
i∈T

∣∣f(ηx,i)− f(η)
∣∣ ,

cf. Liggett [20].

Theorem (From the martingale problem to the Kolmogorov equations).

Suppose (A1) and (A2) hold. Then(pt)t≥0 induces aC0 contraction semigroup(Pt)t≥0 on the

Banach spaceB = Ā = Ā0, and the generator is an extension of(L,A). In particular, the

forward and backward equations

d

dt
ptf = ptLf ∀ f ∈ A
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and
d

dt
ptf = Lptf ∀ f ∈ A0

hold.

Proof. SinceMf
t is a bounded martingale with respect toPx, we obtain the integrated forward

equation by Fubini:

(ptf)(x)− f(x) = Ex[f(Xt)− f(X0)] = Ex




t
ˆ

0

(Lf)(Xs) ds




=

t
ˆ

0

(psLf)(x) ds

(6.0.1)

for all f ∈ A andx ∈ S. In particular,

‖ptf − f‖sup ≤
t
ˆ

0

‖psLf‖sup ds ≤ t · ‖Lf‖sup → 0

ast ↓ 0 for anyf ∈ A. This implies strong continuity onB = Ā since eachpt is a contraction

with respect to the sup-norm. Hence by (A1) and (6.0.1),

ptf − f
t

− Lf =
1

t

t
ˆ

0

(psLf − Lf) ds→ 0

uniformly for all f ∈ A, i.e. A is contained in the domain of the generator L of the semigroup

(Pt)t≥0 induced onB, andLf = Lf for all f ∈ A. Now the forward and the backward equations

follow from the corresponding equations for(Pt)t≥0 and Assumption (A2).

6.1 Stationary distributions and reversibility

6.1.1 Stationary distributions

Theorem 6.1(Infinitesimal characterization of stationary distributio ns). Suppose (A1) and

(A2) hold. Then forµ ∈M1(S) the following assertions are equivalent:
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(i) The process(Xt, Pµ) is stationary, i.e.

(Xs+t)t≥0 ∼ (Xt)t≥0

with respect toPµ for all s ≥ 0.

(ii) µ is a stationary distribution for(pt)t≥0

(iii)
´

Lf dµ = 0 ∀ f ∈ A (i.e. µ is infinitesimally invariant,L∗µ = 0).

Proof. (i)⇒(ii) If (i) holds then in particular

µps = Pµ ◦X−1
s = Pµ ◦X−1

0 = µ

for all s ≥ 0, i.e.µ is a stationary initial distribution.

(ii)⇒(i) By the Markov property, for any measurable subsetB ⊆ D(R+, S),

Pµ[(Xs+t)t≥0 ∈ B | Fs] = PXs[(Xt)t≥0 ∈ B] Pµ-a.s., and thus

Pµ[(Xs+t)t≥0 ∈ B] = Eµ[PXs((Xt)t≥0 ∈ B)] = Pµps[(Xt)t≥0 ∈ B] = Pµ[X ∈ B]

(ii)⇒(iii) By the theorem above, forf ∈ A,

ptf − f
t

→ Lf uniformly ast ↓ 0,

so
ˆ

Lf dµ = lim
t↓0

´

(ptf − f) dµ
t

= lim
t↓0

´

f d(µpt)−
´

f dµ

t
= 0

providedµ is stationary with respect to(pt)t≥0.

(iii)⇒(ii) By the backward equation and (iii),

d

dt

ˆ

ptf dµ =

ˆ

Lptf dµ = 0

sinceptf ∈ A for f ∈ A0 and hence
ˆ

f d(µpt) =

ˆ

ptf dµ =

ˆ

f dµ (6.1.1)

for all f ∈ A0 andt ≥ 0. SinceA0 is dense inA with respect to the supremum norm,

(6.1.1) extends to allf ∈ A. Henceµpt = µ for all t ≥ 0 by (A0).

Remark. Assumption (A2) is required only for the implication (iii)⇒(ii).
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Applicaton to Itô diffusions:

Suppose that we are given non-explosive weak solutions(Xt, Px), x ∈ Rd, of the stochastic

differential equation

dXt = σ(Xt) dBt + b(Xt) dt, X0 = x Px-a.s.,

where(Bt)t≥0 is a Brownian motion inRd, and the functionsσ : Rn → Rn×d andb : Rn → Rn

are locally Lipschitz continuous. Then by Itô’s formula(Xt, Px) solves the martingale problem

for the operator

L =
1

2

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+ b(x) · ∇, a = σσT ,

with domainA = C∞
0 (Rn). Moreover, the local Lipschitz condition implies uniqueness of strong

solutions, and hence, by the Theorem of Yamade-Watanabe, uniqueness in distribution of weak

solutions and uniqueness of the martingale problem for(L,A), cf. e.g. Rogers/Williams [35].

Therefore by the remark above,(Xt, Px) is a Markov process.

Theorem 6.2.Supposeµ is a stationary distribution of(Xt, Px) that has a smooth density̺with

respect to the Lebesgue measure. Then

L∗̺ :=
1

2

n∑

i,j=1

∂2

∂xi∂xj
(aij̺)− div(b̺) = 0

Proof. Sinceµ is a stationary distribution,

0 =

ˆ

Lf dµ =

ˆ

Rn

Lf̺ dx =

ˆ

Rn

fL∗̺ dx ∀ f ∈ C∞
0 (Rn) (6.1.2)

Here the last equation follows by integration by parts, becausef has compact support.

Remark. In general,µ is a distributional solution ofL∗µ = 0.

Example (One-dimensional diffusions). In the one-dimensional case,

Lf =
a

2
f ′′ + bf ′,

and

L∗̺ =
1

2
(a̺)′′ − (b̺)′

wherea(x) = σ(x)2. Assumea(x) > 0 for all x ∈ R.
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a) Harmonic functions and recurrence:

Lf =
a

2
f ′′ + bf ′ = 0 ⇔ f ′ = C1 exp−

•
ˆ

0

2b

a
dx, C1 ∈ R

⇔ f = C2 + C1 · s, C1, C2 ∈ R

where

s :=

•
ˆ

0

e
−
´ y
0

2b(x)
a(x)

dx
dy

is a strictly increasing harmonic function that is called thescale functionor natural scale of the

diffusion. In particular,s(Xt) is a martingale with respect toPx. The stopping theorem implies

Px[Ta < Tb] =
s(b)− s(x)
s(b)− s(a) ∀ a < x < b

As a consequence,

(i) If s(∞) < ∞ or s(−∞) > −∞ thenPx[|Xt| → ∞] = 1 for all x ∈ R, i.e., (Xt, Px) is

transient.

(ii) If s(R) = R thenPx[Ta < ∞] = 1 for all x, a ∈ R, i.e., (Xt, Px) is irreducible and

recurrent.

b) Stationary distributions:

(i) s(R) 6= R: In this case, by the transience of(Xt, Px), a stationary distribution does not

exist. In fact, ifµ is a finite stationary measure, then for allt, r > 0,

µ({x : |x| ≤ r}) = (µpt)({x : |x| ≤ r}) = Pµ[|Xt| ≤ r].

SinceXt is transient, the right hand side converges to0 ast ↑ ∞. Hence

µ({x : |x| ≤ r}) = 0

for all r > 0, i.e.,µ ≡ 0.
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(ii) s(R) = R: We can solve the ordinary differential equationL∗̺ = 0 explicitly:

L∗̺ =

(
1

2
(a̺)′ − b̺

)′
= 0

⇔ 1

2
(a̺)′ − b

a
a̺ = C1 with C1 ∈ R

⇔ 1

2

(
e−
´ •
0

2b
a

dxa̺
)′

= C1 · e−
´ •
0

2b
a

dx

⇔ s′a̺ = C2 + 2C1 · s with C1, C2 ∈ R

⇔ ̺(y) =
C2

a(y)s′(y)
=

C2

a(y)
e
´ y
0

2b
a

dx with C2 ≥ 0

Here the last equivalence holds sinces′a̺ ≥ 0 ands(R) = R imply C2 = 0. Hence a

stationary distributionµ can only exist if the measure

m(dy) :=
1

a(y)
e
´ y
0

2b
a

dx dy

is finite, and in this caseµ = m
m(R)

. The measurem is called thespeed measureof the

diffusion.

Concrete examples:

(1). Brownian motion: a ≡ 1, b ≡ 0, s(y) = y. There is no stationary distribution. Lebesgue

measure is an infinite stationary measure.

(2). Ornstein-Uhlenbeck process:

dXt = dBt − γXt dt, γ > 0,

L =
1

2

d2

dx2
− γx d

dx
, a ≡ 1,

b(x) = −γx, s(y) =

y
ˆ

0

e
´ y
0 2γx dx dy =

y
ˆ

0

eγy
2

dy recurrent,

m(dy) = e−γy2 dy, µ =
m

m(R)
= N

(
0,

2

γ

)
is the unique stationary distribution

(3).

dXt = dBt + b(Xt) dt, b ∈ C2, b(x) =
1

x
for |x| ≥ 1

transient, two independent non-negative solutions ofL∗̺ = 0 with
´

̺ dx =∞.

(Exercise: stationary distributions fordXt = dBt − γ
1+|Xt| dt)
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Example (Deterministic diffusions).

dXt = b(Xt) dt, b ∈ C2(Rn)

Lf = b · ∇f
L∗̺ = − div(̺b) = −̺ div b− b · ∇̺, ̺ ∈ C1

Lemma 6.3.

L∗̺ = 0 ⇔ div(̺b) = 0

⇔ (L, C∞
0 (Rn)) anti-symmetric onL2(µ)

Proof. First equivalence: cf. above

Second equivalence:
ˆ

fLg dµ =

ˆ

fb · ∇g̺ dx = −
ˆ

div(fb̺)g dx

= −
ˆ

Lfg dµ−
ˆ

div(̺b)fg dx ∀ f, g ∈ C∞
0

HenceL is anti-symmetric if and only ifdiv(̺b) = 0

6.1.2 Reversibility

Theorem 6.4. Suppose (A1) and (A2) hold. Then forµ ∈ M1(S) the following assertions are

equivalent:

(i) The process(Xt, Pµ) is invariant with respect to time reversal, i.e.,

(Xs)0≤s≤t ∼ (Xt−s)0≤s≤t with respect toPµ ∀ t ≥ 0

(ii)

µ(dx)pt(x, dy) = µ(dy)pt(y, dx) ∀ t ≥ 0

(iii) pt is µ-symmetric, i.e.,
ˆ

fptg dµ =

ˆ

ptfg dµ ∀ f, g ∈ Fb(S)

(iv) (L,A) is µ-symmetric, i.e.,
ˆ

fLg dµ =

ˆ

Lfg dµ ∀ f, g ∈ A
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Remark. (1). A reversible process(Xt, Pµ) is stationary, since for alls, u ≥ 0,

(Xs+t)0≤t≤u ∼ (Xu−t)0≤t≤u ∼ (Xt)0≤t≤u with respect toPµ

(2). Similarly (ii) implies thatµ is a stationary distribution:
ˆ

µ(dx)pt(x, dy) =

ˆ

pt(y, dx)µ(dy) = µ(dy)

Proof of the Theorem.(i)⇒(ii):

µ(dx)pt(x, dy) = Pµ ◦ (X0, Xt)
−1 = Pµ ◦ (Xt, X0)

−1 = µ(dy)pt(y, dx)

(ii)⇒(i): By induction, (ii) implies

µ(dx0)pt1−t0(x0, dx1)pt2−t1(x1, dx2) · · · ptn−tn−1(xn−1, dxn)

=µ(dxn)pt1−t0(xn, dxn−1) · · ·ptn−tn−1(x1, dx0)

for n ∈ N and0 = t0 ≤ t1 ≤ · · · ≤ tn = t, and thus

Eµ[f(X0, Xt1 , Xt2 , . . . , Xtn−1 , Xt)] = Eµ[f(Xt, . . . , Xt1 , X0)]

for all measurable functionsf ≥ 0. Hence the time-reversed distribution coincides with

the original one on cylinder sets, and thus everywhere.

(ii)⇔(iii): By Fubini,
ˆ

fptg dµ =

¨

f(x)g(y)µ(dx)pt(x, dy)

is symmetric for allf, g ∈ Fb(S) if and only if µ⊗ pt is a symmetric measure onS × S.

(iii)⇔(iv): Exercise.

6.1.3 Application to diffusions inRn

L =
1

2

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+ b · ∇, A = C∞

0 (Rn)

µ probability measure onRn (more generally locally finite positive measure)

Question: For which process isµ stationary?
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Theorem 6.5.Supposeµ = ̺ dx with ̺iaij ∈ C1, b ∈ C, ̺ > 0. Then

(1). We have

Lg = Lsg + Lag

for all g ∈ C∞
0 (Rn) where

Lsg =
1

2

n∑

i,j=1

1

̺

∂

∂xi

(
̺aij

∂g

∂xi

)

Lag = β · ∇g, βj = bj −
∑

i

1

2̺

∂

∂xi
(̺aij)

(2). The operator(Ls, C
∞
0 ) is symmetric with respect toµ.

(3). The following assertions are equivalent:

(i) L∗µ = 0 (i.e.
´

Lf dµ = 0 for all f ∈ C∞
0 ).

(ii) L∗
aµ = 0

(iii) div(̺β) = 0

(iv) (La, C
∞
0 ) is anti-symmetric with respect toµ

Proof. Let

E(f, g) := −
ˆ

fLg dµ (f, g ∈ C∞
0 )

denote the bilinear form of the operator(L, C∞
0 (Rn)) on the Hilbert spaceL2(Rn, µ). We decom-

poseE into a symmetric part and a remainder. An explicit computation based on the integration

by parts formula inRn shows that forg ∈ C∞
0 (Rn) andf ∈ C∞(Rn):

E(f, g) = −
ˆ

f

(
1

2

∑
aij

∂2g

∂xi∂xj
+ b · ∇g

)
̺ dt

=

ˆ

1

2

∑

i,j

∂

∂xi
(̺aijf)

∂g

∂xj
dx−

ˆ

fb · ∇g̺ dx

=

ˆ

1

2

∑

i,j

ai,j
∂f

∂xi

∂g

∂xj
̺ dx−

ˆ

fβ · ∇g̺ dx ∀ f, g ∈ C∞
0
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and set

Es(f, g) :=
ˆ

1

2

∑

i,j

ai,j
∂f

∂xi

∂g

∂xj
̺ dx = −

ˆ

fLsg dµ

Ea(f, g) :=
ˆ

fβ · ∇g̺ dx = −
ˆ

fLag dµ

This proves 1) and, sinceEs is a symmetric bilinear form, also 2). Moreover, the assertions (i)

and (ii) of 3) are equivalent, since

−
ˆ

Lg dµ = E(1, g) = Es(1, g) + Ea(1, g) = −
ˆ

Lag dµ

for all g ∈ C∞
0 (Rn) sinceEs(1, g) = 0. Finally, the equivalence of (ii),(iii) and (iv) has been

shown in the example above.

Example. L = 1
2
∆+ b · ∇, b ∈ C(Rn,Rn),

(L, C∞
0 ) µ-symmetric ⇔ β = b− 1

2̺
∇̺ = 0

⇔ b =
∇̺
2̺

=
1

2
∇ log ̺

wherelog ̺ = −H if µ = e−H dx.

L symmetrizable ⇔ b is a gradient

L∗µ = 0 ⇔ b =
1

2
∇ log ̺+ β

whendiv(̺β) = 0.

Remark. Probabilistic proof of reversibility forb := −1
2
∇H, H ∈ C1:

Xt = x+Bt +

t
ˆ

0

b(Xs) ds, non-explosive, b = −1
2
∇h

HencePµ ◦X−1
0:T ≪ P BM

λ with density

exp


−1

2
H(B0)−

1

2
H(BT )−

T̂

0

(
1

8
|∇H|2 − 1

4
∆H

)
(Bs) ds




which shows that(Xt, Pµ) is reversible.
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6.2 Poincaré inequalities and convergence to equilibrium

Suppose now thatµ is a stationary distribution for(pt)t≥0. Thenpt is a contraction onLp(S, µ)

for all p ∈ [1,∞] since

ˆ

|ptf |p dµ ≤
ˆ

pt|f |p dµ =

ˆ

|f |p dµ ∀ f ∈ Fb(S)

by Jensen’s inequality and the stationarity ofµ. As before, we assume that we are given a Markov

process with transition semigroup(pt)t≥0 solving the martingale problem for the operator(L,A).
The assumptions onA0 andA can be relaxed in the following way:

(A0) as above

(A1’) f, Lf ∈ Lp(S, µ) for all 1 ≤ p <∞

(A2’) A0 is dense inA with respect to theLp(S, µ) norms,1 ≤ p < ∞, andptf ∈ A for all

f ∈ A0

In addition, we assume for simplicity

(A3) 1 ∈ A

Remark. Condition (A0) implies thatA, and henceA0, is dense inLp(S, µ) for all p ∈ [1,∞).

In fact, if g ∈ Lq(S, µ), 1
q
+ 1

p
= 1, with

´

fg dµ = 0 for all f ∈ A, theng dµ = 0 by (A0) and

henceg = 0 µ-a.e. Similarly as above, the conditions (A0), (A1’) and (A2’) imply that (pt)t≥0

induces aC0 semigroup onLp(S, µ) for all p ∈ [1,∞), and the generator(L(p),Dom(L(p)))

extends(L,A), i.e.,

A ⊆ Dom(L(p)) and L(p)f = Lf µ-a.e. for allf ∈ A

In particular, the Kolmogorov forward equation

d

dt
ptf = ptLf ∀ f ∈ A

and the backward equation
d

dt
ptf = Lptf ∀ f ∈ A0

hold with the derivative taken in the Banach spaceLp(S, µ).
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6.2.1 Decay of variances and correlations

We first restrict ourselves to the casep = 2. Forf, g ∈ L2(S, µ) let

(f, g)µ =

ˆ

fg dµ

denote theL2 inner product.

Definition. The bilinear form

E(f, g) := −(f,Lg)µ = − d

dt
(f, ptg)µ

∣∣∣
t=0
,

f, g ∈ A, is called theDirichlet form associated to(L,A) onL2(µ).

Es(f, g) :=
1

2
(E(f, g) + E(g, f))

is thesymmetrized Dirichlet form.

Remark. More generally,E(f, g) is defined for allf ∈ L2(S, µ) andg ∈ Dom(L(2)) by

E(f, g) = −(f, L(2)g)µ = − d

dt
(f, ptg)µ

∣∣∣
t=0

Theorem 6.6.For all f ∈ A0 andt ≥ 0

d

dt
Varµ(ptf) =

d

dt

ˆ

(ptf)
2 dµ = −2E(ptf, ptf) = −2Es(ptf, ptf)

Remark. (1). In particular,

E(f, f) = −1
2

ˆ

(ptf)
2 dµ = −1

2

d

dt
Varµ(ptf)

∣∣∣
t=0
,

infinitesimal change of variance

(2). The assertion extends to allf ∈ Dom(L(2)) if the Dirichlet form is defined with respect to

theL2 generator. In the symmetric case the assertion even holds for all f ∈ L2(S, µ).

Proof. By the backward equation,

d

dt

ˆ

(ptf)
2 dµ = 2

ˆ

ptLptf dµ = −2E(ptf, ptf) = −2Es(ptf, ptf)
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Moreover, since
ˆ

ptf dµ =

ˆ

f d(µpt) =

ˆ

f dµ

is constant,

d

dt
Varµ(ptf) =

d

dt

ˆ

(ptf)
2 dµ

Remark. (1). In particular,

E(f, f) = −1
2

d

dt

ˆ

(ptf)
2 dµ

∣∣∣
t=0

= −1
2

d

dt
Varµ(ptf)

Es(f, g) =
1

4
(Es(f + g, f + g) + Es(f − g, f − g)) = −

1

2

d

dt
Covµ(ptf, ptg)

Dirichlet form = infinitesimal change of (co)variance.

(2). Sincept is a contraction onL2(µ), the operator(L,A) is negative-definite, and the bilinear

form (E ,A) is positive definite:

(−f,Lf)µ = E(f, f) = −1
2
lim
t↓0

(
ˆ

(ptf)
2 dµ−

ˆ

f 2 dµ

)
≥ 0

Corollary 6.7 (Decay of variance). For λ > 0 the following assertions are equivalent:

(i) Poincaré inequality:

Varµ(f) ≤
1

λ
E(s)(f, f) ∀ f ∈ A

(ii) Exponential decay of variance:

Varµ(ptf) ≤ e−2λt Varµ(f) ∀ f ∈ L2(S, µ) (6.2.1)

(iii) Spectral gap:

Reα ≥ λ ∀α ∈ spec

(
−L(2)

∣∣∣
span{1}⊥

)

Remark. Optimizing overλ, the corollary says that (6.2.1) holds with

λ := inf
f∈A

E(f, f)
Varµ(f)

= inf
f∈A

f⊥1 in L2(µ)

(f,−Lf)µ
(f, f)µ
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Proof. (i)⇒ (ii)

E(f, f) ≥ λ · Varµ(f) ∀ f ∈ A

By the theorem above,

d

dt
Varµ(ptf) = −2E(ptf, ptf) ≤ −2λVarµ(ptf)

for all t ≥ 0, f ∈ A0. Hence

Varµ(ptf) ≤ e−2λt Varµ(p0f) = e−2λt Varµ(f)

for all f ∈ A0. Since the right hand side is continuous with respect to theL2(µ) norm, and

A0 is dense inL2(µ) by (A0) and (A2), the inequality extends to allf ∈ L2(µ).

(ii)⇒ (iii) Forf ∈ Dom(L(2)),

d

dt
Varµ(ptf)

∣∣∣
t=0

= −2E(f, f).

Hence if (6.2.1) holds then

Varµ(ptf) ≤ e−2λt Varµ(f) ∀ t ≥ 0

which is equivalent to

Varµ(f)− 2tE(f, f) + o(t) ≤ Varµ(f)− 2λtVarµ(f) + o(t) ∀ t ≥ 0

Hence

E(f, f) ≥ λVarµ(f)

and thus

−(L(2)f, f)µ ≥ λ

ˆ

f 2 dµ for f⊥1

which is equivalent to (iii).

(iii)⇒ (i) Follows by the equivalence above.

Remark. Since(L,A) is negative definite,λ ≥ 0. In order to obtain exponential decay, however,

we needλ > 0, which is not always the case.
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Example. (1). Finite state space: Supposeµ(x) > 0 for all x ∈ S.

Generator:

(Lf)(x) =
∑

y

L(x, y)f(y) =
∑

y

L(x, y)(f(y)− f(x))

Adjoint :

L∗µ(y, x) =
µ(x)

µ(y)
L(x, y)

Proof.

(Lf, g)µ =
∑

x,y

µ(x)L(x, y)f(y)g(x)

=
∑

µ(y)f(y)
µ(x)

µ(y)
L(x, y)g(x)

= (f,L∗µg)µ

Symmetric part:

Ls(x, y) =
1

2
(L(x, y) + L∗µ(x, y)) =

1

2

(
L(x, y) + µ(y)

µ(x)
L(y, x)

)

µ(x)Ls(x, y) =
1

2
(µ(x)L(x, y) + µ(y)L(y, x))

Dirichlet form :

Es(f, g) = −(Lsf, g) = −
∑

x,y

µ(x)Ls(x, y) (f(y)− f(x)) g(x)

= −
∑

x,y

µ(y)Ls(y, x) (f(x)− f(y)) g(y)

= −1
2

∑
µ(x)Ls(x, y) (f(y)− f(x)) (g(y)− g(x))

Hence

E(f, f) = Es(f, f) =
1

2

∑

x,y

Q(x, y) (f(y)− f(x))2

where

Q(x, y) = µ(x)Ls(x, y) =
1

2
(µ(x)L(x, y) + µ(y)L(y, x))
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(2). Diffusions in Rn: Let

L =
1

2

∑

i,j

aij
∂2

∂xi∂xj
+ b · ∇,

andA = C∞
0 , µ = ̺ dx, ̺, aij ∈ C1, b ∈ C ̺ ≥ 0,

Es(f, g) =
1

2

ˆ n∑

i,j=1

aij
∂f

∂xi

∂g

∂xj
dµ

E(f, g) = Es(f, g)− (f, β · ∇g), β = b− 1

2̺
div (̺aij)

6.2.2 Divergences

Definition ("Distances" of probability measures). µ, ν probability measures onS, µ − ν

signed measure.

(i) Total variation distance:

‖ν − µ‖TV = sup
A∈S
|ν(A)− µ(A)|

(ii) χ2-divergence:

χ2(µ|ν) =





´ (
dµ
dν
− 1
)2
dµ =

´

(
dν
dµ

)2
dµ− 1 if ν ≪ µ

+∞ else

(iii) Relative entropy (Kullback-Leibler divergence):

H(ν|µ) =





´

dν
dµ

log dν
dµ
dµ =

´

log dν
dµ
dν if ν ≪ µ

+∞ else

(where0 log 0 := 0).

Remark. By Jensen’s inequality,

H(ν|µ) ≥
ˆ

dν

dµ
dµ log

ˆ

dν

dµ
dµ = 0

Lemma 6.8(Variational characterizations).

(i)

‖ν − µ‖ = 1

2
sup

f∈Fb(S)
|f |≤1

(
ˆ

f dν −
ˆ

f dµ

)
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(ii)

χ2(ν|µ) = sup
f∈Fb(S)
´

f2 dµ≤1

(
ˆ

f dν −
ˆ

f dµ

)2

and by replacingf byf −
´

f dµ,

χ2(ν|µ) = sup
f∈Fb(S)
´

f2 dµ≤1
´

f dµ=0

(
ˆ

f dν

)2

(iii)

H(ν|µ) = sup
f∈Fb(S)
´

ef dµ≤1

ˆ

f dν = sup
f∈Fb(S)

ˆ

f dν − log

ˆ

ef dµ

Remark.
´

ef dµ ≤ 1, hence
´

f dµ ≤ 0 by Jensen and we also have

sup
´

ef dµ≤1

(
ˆ

f dν −
ˆ

f dµ

)
≤ H(ν|µ)

Proof. (i) ” ≤ ”

ν(A)− µ(A) = 1

2
(ν(A)− µ(A) + µ(Ac)− ν(Ac)) =

1

2

(
ˆ

f dν −
ˆ

f dµ

)

and settingf := IA − IAc leads to

‖ν − µ‖TV = sup
A

(ν(A)− µ(A)) ≤ 1

2
sup
|f |≤1

(
ˆ

f dν −
ˆ

f dµ

)

” ≥ ” If |f | ≤ 1 then
ˆ

f d(ν − µ) =
ˆ

S+

f d(ν − µ) +
ˆ

S−

f d(ν − µ)

≤ (ν − µ)(S+)− (ν − µ)(S−)

= 2(ν − µ)(S+) (since(ν − µ)(S+) + (ν − µ)(S−) = (ν − µ)(S) = 0)

≤ 2‖ν − µ‖TV

whereS = S+

⋃̇
S−, ν − µ ≥ 0 on S+, ν − µ ≤ 0 on S− is the Hahn-Jordan

decomposition of the measureν − µ.
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(ii) If ν ≪ µ with density̺ then

χ2(ν|µ) 1
2 = ‖̺− 1‖L2(µ) = sup

f∈L2(µ)
‖f‖L2(µ)≤1

ˆ

f(̺− 1) dµ = sup
f∈Fb(S)

‖f‖L2(µ)≤1

(
ˆ

f dν −
ˆ

f dµ

)

by the Cauchy-Schwarz inequality and a density argument.

If ν 6≪ µ then there existsA ∈ S with µ(A) = 0 andν(A) 6= 0. Choosingf = λ · IA with

λ ↑ ∞ we see that

sup
f∈Fb(S)

‖f‖L2(µ)≤1

(
ˆ

f dν −
ˆ

f dµ

)2

=∞ = χ2(ν|µ).

This proves the first equation. The second equation follows by replacingf by f −
´

f dµ.

(iii) First equation:

” ≥ ” By Young’s inequality,

uv ≤ u logu− u+ ev

for all u ≥ 0 andv ∈ R, and hence forν ≪ µ with density̺,
ˆ

f dν =

ˆ

f̺ dµ

≤
ˆ

̺ log ̺ dµ−
ˆ

̺ dµ+

ˆ

ef dµ

= H(ν|µ)− 1 +

ˆ

ef dµ ∀ f ∈ Fb(S)

≤ H(ν|µ) if
ˆ

ef dµ ≤ 1

” ≤ ” ν ≪ µ with density̺:

a) ε ≤ ̺ ≤ 1
ε

for someε > 0: Choosingf = log ̺ we have

H(ν|µ) =
ˆ

log ̺ dν =

ˆ

f dν

and
ˆ

ef dµ =

ˆ

̺ dµ = 1

b) General case by an approximation argument.

Second equation: cf. Deuschel, Stroock [6].
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Remark. If ν ≪ µ with density̺ then

‖ν − µ‖TV =
1

2
sup
|f |≤1

ˆ

f(̺− 1) dµ =
1

2
‖̺− 1‖L1(µ)

However,‖ν − µ‖TV is finite even whenν 6≪ µ.

6.2.3 Decay ofχ2 divergence

Corollary 6.9. The assertions(i)− (iii) in the corollary above are also equivalent to

(iv) Exponential decay ofχ2 divergence w.r.t. equilibrium measure:

χ2(νpt|µ) ≤ e−2λtχ2(ν|µ) ∀ ν ∈M1(S)

Proof. We show(ii)⇔ (iv).

”⇒ ” Let f ∈ L2(µ) with
´

f dµ = 0. Then
ˆ

f d(νpt)−
ˆ

f dµ =

ˆ

f d(νpt) =

ˆ

ptf dν

≤ ‖ptf‖L2(µ) · χ2(ν|µ) 1
2

≤ e−λt‖f‖L2(µ) · χ2(ν|µ) 1
2

where we have used that
´

ptf dµ =
´

f dµ = 0. By taking the supremum over allf with
´

f 2 dµ ≤ 1 we obtain

χ2(νpt|µ)
1
2 ≤ e−λtχ2(ν|µ) 1

2

”⇐ ” Forf ∈ L2(µ) with
´

f dµ = 0, (iv) implies
ˆ

ptfg dµ
ν:=gµ
=

ˆ

f d(νpt) ≤ ‖f‖L2(µ)χ
2(νpt|µ)

1
2

≤ e−λt‖f‖L2(µ)χ
2(ν|µ) 1

2

= e−λt‖f‖L2(µ)‖g‖L2(µ)

for all g ∈ L2(µ), g ≥ 0. Hence

‖ptf‖L2(µ) ≤ e−λt‖f‖L2(µ)

Example:d = 1!
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Example (Gradient type diffusions in Rn).

dXt = dBt + b(Xt) dt, b ∈ C(Rn,Rn)

Generator:

Lf =
1

2
∆f + b∇f, f ∈ C∞

0 (Rn)

symmetric with respect toµ = ̺ dx, ̺ ∈ C1 ⇔ b = 1
2
∇ log ̺.

Corresponding Dirichlet form onL2(̺ dx):

E(f, g) = −
ˆ

Lfg̺ dx =
1

2

ˆ

∇f∇g̺ dx

Poincaré inequality:

Var̺ dx(f) ≤
1

2λ
·
ˆ

|∇f |2̺ dx

The one-dimensional case: n = 1, b = 1
2
(log ̺)′ and hence

̺(x) = const.e
´ x
0 2b(y) dy

e.g.b(x) = −αx, ̺(x) = const.e−αx2
, µ = Gauss measure.

Bounds on the variation norm:

Lemma 6.10. (i)

‖ν − µ‖2TV ≤
1

4
χ2(ν|µ)

(ii) Pinsker’s inequality:

‖ν − µ‖2TV ≤
1

2
H(ν|µ) ∀µ, ν ∈M1(S)

Proof. If ν 6≪ µ, thenH(ν|µ) = χ2(ν|µ) =∞.

Now letν ≪ µ:

(i)

‖ν − µ‖TV =
1

2
‖̺− 1‖L1(µ) ≤

1

2
‖̺− 1‖L2(µ) =

1

2
χ2(ν|µ) 1

2

(ii) We have the inequality

3(x− 1)2 ≤ (4 + 2x)(x log x− x+ 1) ∀ x ≥ 0
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and hence

√
3|x− 1| ≤ (4 + 2x)

1
2 (x log x− x+ 1)

1
2

and with the Cauchy Schwarz inequality

√
3

ˆ

|̺− 1| dµ ≤
(
ˆ

(4 + 2̺) dµ

)1
2
(
ˆ

(̺ log ̺− ̺+ 1) dµ

)1
2

=
√
6 ·H(ν|µ) 1

2

Remark. If S is finite andµ(x) > 0 for all x ∈ S then conversely

χ2(ν|µ) =
∑

x∈S

(
ν(x)

µ(x)
− 1

)2

µ(x) ≤

(∑
x∈S

∣∣∣ ν(x)µ(x)
− 1
∣∣∣µ(x)

)2

minx∈S µ(x)

=
4‖ν − µ‖2TV

minµ

Corollary 6.11. (i) If the Poincaré inequality

Varµ(f) ≤
1

λ
E(f, f) ∀ f ∈ A

holds then

‖νpt − µ‖TV ≤
1

2
e−λtχ2(ν|µ) 1

2 (6.2.2)

(ii) In particular, if S is finite then

‖νpt − µ‖TV ≤
1

minx∈S µ(x)
1
2

e−λt‖ν − µ‖TV

where‖ν − µ‖TV ≤ 1. This leads to a bound for theDobrushin coefficient(contraction

coefficient with respect to‖ · ‖TV).

Proof.

‖νpt − µ‖TV ≤
1

2
χ2(νpt|µ)

1
2 ≤ 1

2
e−λtχ2(ν|µ) 1

2 ≤ 2

2

1

minµ
1
2

e−λt‖ν − µ‖TV

if S is finite.
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Consequence: Total variation mixing time:ε ∈ (0, 1),

Tmix(ε) = inf {t ≥ 0 : ‖νpt − µ‖TV ≤ ε for all ν ∈M1(S)}

≤ 1

λ
log

1

ε
+

1

2λ
log

1

minµ(x)

where the first summand is theL2 relaxation time and the second is an upper bound for the

burn-in time , i.e. the time needed to make up for a bad initial distribution.

Remark. On high or infinite-dimensional state spaces the bound (6.2.2) is often problematic

sinceχ2(ν|µ) can be very large (whereas‖ν − µ‖TV ≤ 1). For example for product measures,

χ2 (νn|µn) =

ˆ
(
dνn

dµn

)2

dµn − 1 =

(
ˆ
(
dν

dµ

)2

dµ

)n

− 1

where
´

(
dν
dµ

)2
dµ > 1 grows exponentially in n.

Are there improved estimates?
ˆ

ptf dν −
ˆ

f dµ =

ˆ

ptf d(ν − µ) ≤ ‖ptf‖sup · ‖ν − µ‖TV

Analysis: The Sobolev inequality implies

‖ptf‖sup ≤ c · ‖f‖Lp

However, Sobolev constants are dimension dependent! This motivates a replacement by the log

Sobolev inequality, see Section 6.4 below.

6.3 Central Limit Theorem for Markov processes

When are stationary Markov processes in continuous time ergodic?

Let (L,Dom(L)) denote the generator of(pt)t≥0 onL2(µ).

Theorem 6.12.The following assertions are equivalent:

(i) Pµ is ergodic

(ii) kerL = span{1}, i.e.

h ∈ L2(µ)harmonic ⇒ h = const.µ-a.s.
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(iii) pt is µ-irreducible, i.e.

B ∈ S such thatpt1B = 1B µ-a.s.∀ t ≥ 0 ⇒ µ(B) ∈ {0, 1}

If reversibility holds then (i)-(iii) are also equivalent to:

(iv) pt isL2(µ)-ergodic, i.e.
∥∥∥∥ptf −

ˆ

f dµ

∥∥∥∥
L2(µ)

→ 0 ∀ f ∈ L2(µ)

6.3.1 CLT for continuous-time martingales

Let (Mt)t≥0 be a continuous square-integrable(Ft) martingale where(Ft) is a filtration satis-

fying the usual conditions. ThenM2
t is a submartingale and there exists a unique natural (e.g.

continuous) increasing process〈M〉t such that

M2
t = martingale+ 〈M〉t

(Doob-Meyer decomposition, cf. e.g. Karatzas, Shreve [15]).

Example. If Nt is a Poisson process then

Mt = Nt − λt

is a martingale and

〈M〉t = λt

almost sure.

Note: For discontinuous martingales,〈M〉t is not the quadratic variation of the paths!

(Xt, Pµ) stationary Markov process,L(2)
L , L(1) generator onL2(µ), L1(µ), f ∈ Dom(L(1)) ⊇

Dom(L(2)). Hence

f(Xt) =Mf
t +

t
ˆ

0

(L(1)f)(Xs) ds Pµ-a.s.
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andMf is a martingale. Forf ∈ Dom(L(2)) with f 2 ∈ Dom(L(1)),

〈Mf 〉t =
t
ˆ

0

Γ(f, f)(Xs) ds Pµ-a.s.

where

Γ(f, g) = L(1)(f · g)− fL2g − gL(2)f ∈ L1(µ)

is theCarré du champ (square field) operator.

Example. Diffusion inRn,

L =
1

2

∑

i,j

aij(x)
∂2

∂xi∂xj
+ b(x) · ∇

Hence

Γ(f, g)(x) =
∑

i,j

aij(x)
∂f

∂xi
(x)

∂g

∂xj
(x) =

∣∣σT (x)∇f(x)
∣∣2
Rn

for all f, g ∈ C∞
0 (Rn). Results for gradient diffusions onRn (e.g. criteria for log Sobolev) extend

to general state spaces if|∇f |2 is replaced byΓ(f, g)!

Connection to Dirichlet form:

E(f, f) = −
ˆ

fL(2)f dµ+

(
1

2

ˆ

L(1)f 2 dµ

)

︸ ︷︷ ︸
=0

=
1

2

ˆ

Γ(f, f) dµ

Theorem 6.13(Central limit theorem for martingales ). (Mt) square-integrable martingale on

(Ω,F , P ) with stationary increments (i.e.Mt+s −Ms ∼ Mt −M0), σ > 0. If

1

t
〈M〉t → σ2 in L1(P )

then
Mt√
t

D→ N(0, σ2)

6.3.2 CLT for Markov processes

Corollary 6.14 (Central limit theorem for Markov processes (elementary version)). Let

(Xt, Pµ) be a stationary ergodic Markov process. Then forf ∈ Range(L), f = Lg:

1√
t

t
ˆ

0

f(Xs) ds
D→ N(0, σ2

f )
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where

σ2
f = 2

ˆ

g(−L)g dµ = 2E(g, g)

Remark. (1). If µ is stationary then
ˆ

f dµ =

ˆ

Lg dµ = 0

i.e. the random variablesf(Xs) are centered.

(2). ker(L) = span{1} by ergodicity

(kerL)⊥ =

{
f ∈ L2(µ) :

ˆ

f dµ = 0

}
=: L2

0(µ)

If L : L2
0(µ) → L2(µ) is bijective withG = (−L)−1 then the Central limit theorem holds

for all f ∈ L2(µ) with

σ2
f = 2(Gf, (−L)Gf)L2(µ) = 2(f,Gf)L2(µ)

(H−1 norm if symmetric).

Example. (Xt, Pµ) reversible, spectral gapλ, i.e.,

spec(−L) ⊂ {0} ∪ [λ,∞)

hence there is aG = (−L
∣∣∣
L2
0(µ)

)−1, spec(G) ⊆ [0, 1
λ
] and hence

σ2
f ≤

2

λ
‖f‖2L2(µ)

is a bound for asymptotic variance.

Proof of corollary.

1√
t

t
ˆ

0

f(Xs) ds =
g(Xt)− g(X0)√

t
+
Mg

t√
t

〈Mg〉t =
t
ˆ

0

Γ(g, g)(Xs) ds Pµ-a.s.

and hence by the ergodic theorem

1

t
〈Mg〉t t↑∞→

ˆ

Γ(g, g) dµ = σ2
f
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The central limit theorem for martingales gives

Mg
t

D→ N(0, σ2
f )

Moreover
1√
t
(g(Xt)− g(X0))→ 0

in L2(Pµ), hence in distribution. This gives the claim since

Xt
D→ µ, Yt

D→ 0 ⇒ Xt + Yt
D→ µ

Extension: Range(L) 6= L2, replace−L by α− L (bijective), thenα ↓ 0. Cf. Landim [17].

6.4 Entropy Bounds

We consider the setup from section 4.3. In addition, we now assume that(L,A) is symmetric on

L2(S, µ).

6.4.1 Logarithmic Sobolev inequalities and hypercontractivity

Theorem 6.15.With assumptions (A0)-(A3) andα > 0, the following statements are equivalent:

(i) Logarithmic Sobolev inequality (LSI)
ˆ

S

f 2 log
f 2

‖f‖2L2(µ)

dµ ≤ 2αE(f, f) ∀ f ∈ A

(ii) Hypercontractivity For 1 ≤ p < q <∞,

‖ptf‖Lq(µ) ≤ ‖f‖Lp(µ) ∀ f ∈ Lp(µ), t ≥ α

2
log

q − 1

p− 1

(iii) Assertion (ii) holds forp = 2.

Remark. Hypercontractivity and Spectral gap implies

‖ptf‖Lq(µ) = ‖pt0pt−t0f‖Lq(µ) ≤ ‖pt−t0f‖L2(µ) ≤ e−λ(t−t0)‖f‖L2(µ)

for all t ≥ t0(q) :=
α
4
log(q − 1).
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Proof. (i)⇒(ii) Idea: WLOG f ∈ A0, f ≥ δ > 0 (which implies thatptf ≥ δ ∀ t ≥ 0).

Compute

d

dt
‖ptf‖Lq(t)(µ), q : R+ → (1,∞) smooth:

(1). Kolmogorov:

d

dt
ptf = Lptf derivation with respect to sup-norm

implies that

d

dt

ˆ

(ptf)
q(t) dµ = q(t)

ˆ

(ptf)
q(t)−1Lptf dµ+ q′(t)

ˆ

(ptf)
q(t) log ptf dµ

where
ˆ

(ptf)
q(t)−1Lptf dµ = −E

(
(ptf)

q(t)−1, ptf
)

(2). Stroock estimate:

E
(
f q−1, f

)
≥ 4(q − 1)

q2
E
(
f

q
2 , f

q
2

)

Proof.

E(f q−1, f) = −
(
f q−1,Lf

)
µ
= lim

t↓0

1

t

(
f q−1, f − ptf

)
µ

= lim
t↓0

1

2t

¨ (
f q−1(y)− f q−1(x)

)
(f(y)− f(x)) pt(x, dy)µ(dx)

≥ 4(q − 1)

q2
lim
t↓0

1

2t

¨ (
f

q
2 (y)− f q

2
(x)
)2
pt(x, dy)µ(dx)

=
4(q − 1)

q2
E
(
f

q
2 , f

q
2

)

where we have used that
(
a

q
2 − bq

2

)2
≤ q2

4(q − 1)

(
aq−1 − bq−1

)
(a− b) ∀ a, b > 0, q ≥ 1

Remark.

– The estimate justifies the use of functional inequalities with respect toE to bound

Lp norms.

– For generators of diffusions, equality holds, e.g.:
ˆ

∇f q−1∇f dµ =
4(q − 1)

q2

ˆ ∣∣∣∇f q
2

∣∣∣
2

dµ

by the chain rule.
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(3). Combining the estimates:

q(t) · ‖ptf‖q(t)−1
q(t)

d

dt
‖ptf‖q(t) =

d

dt

ˆ

(ptf)
q(t) dµ− q′(t)

ˆ

(ptf)
q(t) log ‖ptf‖q(t) dµ

where
ˆ

(ptf)
q(t) dµ = ‖ptf‖q(t)q(t)

This leads to the estimate

q(t) · ‖ptf‖q(t)−1
q(t)

d

dt
‖ptf‖q(t)

≤− 4(q(t)− 1)

q(t)
E
(
(ptf)

q(t)
2 , (ptf)

q(t)
2

)
+
q′(t)

q(t)
·
ˆ

(ptf)
q(t) log

(ptf)
q(t)

´

(ptf)q(t) dµ
dµ

(4). Applying the logarithmic Sobolev inequality: Fixp ∈ (1,∞). Chooseq(t) such that

αq′(t) = 2(q(t)− 1), q(0) = p

i.e.

q(t) = 1 + (p− 1)e
2t
α

Then by the logarithmic Sobolev inequality, the right hand side in the estimate above

is negative, and hence‖ptf‖q(t) is decreasing. Thus

‖ptf‖q(t) ≤ ‖f‖q(0) = ‖f‖p ∀ t ≥ 0.

Other implication: Exercise. (Hint: considerd
dt
‖ptf‖Lq(t)(µ)).

Theorem 6.16(Rothaus). A logarithmic Sobolev inequality with constantα implies a Poincaré

inequality with constantλ = 2
α
.

Proof. Apply the logarithmic Sobolev-inequality tof = 1+εg where
´

gdµ = 0. Then consider

the limit ε→ 0 and use thatx log x = x− 1 + 1
2
(x− 1)2 + O(|x− 1|3).

6.4.2 Decay of relative entropy

Theorem 6.17(Exponential decay of relative entropy). (1). H(νpt|µ) ≤ H(ν|µ) for all t ≥
0 andν ∈M1(S).
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(2). If a logarithmic Sobolev inequality with constantα > 0 holds then

H(νpt|µ) ≤ e−
2
α
tH(ν|µ)

Proof for gradient diffusions.L = 1
2
∆ + b∇, b = 1

2
∇ log ̺ ∈ C(Rn), µ = ̺ dx probability

measure,A0 = span{C∞
0 (Rn), 1}

. The Logarithmic Sobolev Inequality implies that
ˆ

f 2 log
f 2

‖f‖2L2(µ)

dµ ≤ α

2

ˆ

|∇f |2 dµ = αE(f, f)

(i) Supposeν = g · µ, 0 < ε ≤ g ≤ 1
ε

for someε > 0. Henceνpt ≪ µ with density

ptg, ε ≤ ptg ≤ 1
ε

(since
´

f d(νpt) =
´

ptf dν =
´

ptfgdµ =
´

fptg dµ by symmetry).

This implies that

d

dt
H(νpt|µ) =

d

dt

ˆ

ptg log ptg dµ =

ˆ

Lptg(1 + log ptg) dµ

by Kolmogorov and since(x log x)′ = 1 + log x. We get

d

dt
H(νpt|µ) = −E(ptg, log ptg) = −

1

2

ˆ

∇ptg · ∇ log ptg dµ

where∇ log ptg =
∇ptg
ptg

. Hence

d

dt
H(νpt|µ) = −2

ˆ

|∇√ptg|2 dµ (6.4.1)

(1). −2
´
∣∣∇√ptg

∣∣2 dµ ≤ 0

(2). The Logarithmic Sobolev Inequality yields that

−2
ˆ

|∇√ptg|2 dµ ≤ −
4

α

ˆ

ptg log
ptg

´

ptg dµ
dµ

where
´

ptg dµ =
´

g dµ = 1 and hence

−2
ˆ

|∇√ptg|2 dµ ≤ −
4

α
H(νpt|µ)

(ii) Now for a generalν. If ν 6≪ µ, H(ν|µ) =∞ and we have the assertion. Letν = g ·µ, g ∈
L1(µ) and

ga,b := (g ∨ a) ∧ b, 0 < a < b,

νa,b := ga,b · µ.
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Then by (i),

H(νa,bpt|µ) ≤ e−
2t
αH(νa,b|µ)

The claim now follows fora ↓ 0 andb ↑ ∞ by dominated and monotone convergence.

Remark. (1). The proof in the general case is analogous, just replace(6.4.1) by inequality

4E(
√
f,
√
f) ≤ E(f, log f)

(2). An advantage of the entropy over theχ2 distance is the good behavior in high dimensions.

E.g. for product measures,

H(νd|µd) = d ·H(ν|µ)

grows only linearly in dimension.

Corollary 6.18 (Total variation bound ). For all t ≥ 0 andν ∈M1(S),

‖νpt − µ‖TV ≤
1√
2
e−

t
αH(ν|µ) 1

2

(
≤ 1√

2
log

1

minµ(x)
e−

t
α if S is finite

)

Proof.

‖νpt − µ‖TV ≤
1√
2
H(νpt|µ)

1
2 ≤ 1√

2
e−

t
αH(ν|µ) 1

2

where we use Pinsker’s Theorem for the first inequality and Theorem 6.17 for the second inequal-

ity. SinceS is finite,

H(δx|µ) = log
1

µ(x)
≤ log

1

minµ
∀ x ∈ S

which leads to

H(ν|µ) ≤
∑

ν(x)H(δx|µ) ≤ log
1

minµ
∀ ν

sinceν =
∑
ν(x)δx is a convex combination.

Consequence for mixing time:(S finite)

Tmix(ε) = inf {t ≥ 0 : ‖νpt − µ‖TV ≤ ε for all ν ∈M1(S)}

≤ α · log 1√
2ε

+ log log
1

minx∈S µ(x)

Hence we havelog log instead oflog !
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6.4.3 LSI on product spaces

Example. Two-point space. S = {0, 1}. Consider a Markov chain with generator

L =

(
−q q

p −p

)
, p, q ∈ (0, 1), p+ q = 1

which is symmetric with respect to the Bernoulli measure,

µ(0) = p, µ(1) = q

0 1

q = 1− p

p

Dirichlet form:

E(f, f) = 1

2

∑

x,y

(f(y)− f(x))2 µ(x)L(x, y)

= pq · |f(1)− f(0)|2 = Varµ(f)

Spectral gap:

λ(p) = inf
fnot const.

E(f, f)
Varµ(f)

= 1 independent ofp !

Optimal Log Sobolev constant:

α(p) = sup
f⊥1

´

f2 dµ=1

´

f 2 log f 2 dµ

2E(f, f) =




1 if p = 1

2

1
2
log q−log p

q−p
else

goes to infinity asp ↓ 0 or p ↑ ∞ !
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| |

0 1p

b

1

Spectral gap and Logarithmic Sobolev Inequality for product measures:

Entµ(f) :=

ˆ

f log f dµ, f > 0

Theorem 6.19(Factorization property ). (Si,Si, µi) probability spaces,µ = ⊗n
i=1µi. Then

(1).

Varµ(f) ≤
n∑

i=1

Eµ

[
Var(i)µi

(f)
]

where on the right hand side the variance is taken with respect to the i-th variable.

(2).

Entµ(f) ≤
n∑

i=1

Eµ

[
Ent(i)µi

(f)
]

Proof. (1). Exercise.

(2).

Entµ(f) = sup
g : Eµ[eg]=1

Eµ[fg], cf. above
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Fix g : Sn → R such thatEµ [e
g] = 1. Decompose:

g(x1, . . . , xn) = log eg(x1,...,xn)

= log
eg(x1,...,xn)

´

eg(y1,x2,...,xn) µ1(dy1)
+ log

´

eg(y1,x2,...,xn) µ1(dy1)
˜

eg(y1,y2,x3,...,xn) µ1(dy1)µ2(dy2)
+ · · ·

=:
n∑

i=1

gi(x1, . . . , xn)

and hence

Ei
µi
[egi] = 1 ∀, 1 ≤ i ≤ n

⇒ Eµ[fg] =
n∑

i=1

Eµ [fgi] =
n∑

i=1

Eµ

[
E(i)

µi
[fgi]

]
≤ Ent(i)µi

(f)

⇒ Entµ[f ] = sup
Eµ[eg]=1

Eµ[fg] ≤
n∑

i=1

Eµ

[
Ent(i)µi

(f)
]

Corollary 6.20. (1). If the Poincaré inequalities

Varµi
(f) ≤ 1

λi
Ei(f, f) ∀ f ∈ Ai

hold for eachµi then

Varµ(f) ≤
1

λ
E(f, f) ∀ f ∈

n⊗

i=1

Ai

where

E(f, f) =
n∑

i=1

Eµ

[
E (i)i (f, f)

]

and

λ = min
1≤i≤n

λi

(2). The corresponding assertion holds for Logarithmic Sobolev Inequalities withα = maxαi

Proof.

Varµ(f) ≤
n∑

i=1

Eµ

[
Var(i)µi

(f)
]
≤ 1

minλi
E(f, f)

since

Var(i)µi
(f) ≤ 1

λi
Ei(f, f)
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Example. S = {0, 1}n, µn product ofBernoulli(p),

Entµn(f 2)

≤ 2α(p)·p·q ·
n∑

i=1

ˆ

|f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn)|2 µn(dx)

independent ofn.

Example. Standard normal distributionγ = N(0, 1),

ϕn : {0, 1}n →R, ϕn(x) =

∑n
i=1

(
xi − 1

2

)
√

n
4

The Central Limit Theorem yields thatµ = Bernoulli(1
2
) and hence

µn ◦ ϕ−1
n

w→ γ

Hence for allf ∈ C∞
0 (R),

Entγ(f
2) = lim

n→∞
Entµn(f 2 ◦ ϕn)

≤ lim inf
1

2

n∑

i=1

ˆ

|∆if ◦ ϕn|2 dµn

≤ · · · ≤ 2 ·
ˆ

|f ′|2 dγ

6.4.4 LSI for log-concave probability measures

Stochastic gradient flow inRn:

dXt = dBt − (∇H)(Xt) dt, H ∈ C2(Rn)

Generator:

L =
1

2
∆−∇H · ∇

µ(dx) = e−H(x) dx satisfiesL∗µ = 0

Assumption: There exists aκ > 0 such that

∂2H(x) ≥ κ · I ∀ x ∈ Rn

i.e. ∂2ξξH ≥ κ · |ξ|2 ∀ ξ ∈ Rn
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Remark. The assumption implies the inequalities

x · ∇H(x) ≥ κ · |x|2 − c, (6.4.2)

H(x) ≥ κ

2
|x|2 − c̃ (6.4.3)

with constantsc, c̃ ∈ R. By (6.4.2) and a Lyapunov argument it can be shown thatXt does not ex-

plode in finite time and thatpt(A0) ⊆ A whereA0 = span (C∞
0 (Rn), 1), A = span (S(Rn), 1).

By (6.4.3), the measureµ is finite, hence by our results above, the normalized measureis a

stationary distribution forpt.

Lemma 6.21. If HessH ≥ κI then

|∇ptf | ≤ e−κtpt |∇f | f ∈ C1
b (R

n)

Remark. (1). Actually, both statements are equivalent.

(2). If we replaceRn by an arbitrary Riemannian manifold the same assertion holds under the

assumption

Ric+HessH ≥ κ · I

(Bochner-Lichnerowicz-Weitzenböck).

Informal analytic proof:

∇Lf = ∇ (∆−∇H · ∇) f
=
(
∆−∇H · ∇ − ∂2H

)
∇f

=:
⇀

L operator on one-forms (vector fields)

This yields the evolution equation for∇ptf :

∂

∂t
∇ptf = ∇ ∂

∂t
ptf = ∇Lptf =

⇀

L ∇ptf

and hence

∂

∂t
|∇ptf | =

∂

∂t
(∇ptf · ∇ptf)

1
2 =

(
∂
∂t
∇ptf

)
· ∇ptf

|∇ptf |

=

(⇀
L ∇ptf

)
· ∇ptf

|∇ptf |
≤ L∇ptf · ∇ptf|∇ptf |

− κ · |∇ptf |
2

|∇ptf |
≤ · · · ≤ L |∇ptf | − κ |∇ptf |
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We get thatv(t) := eκtps−t |∇ptf | with 0 ≤ t ≤ s satisfies

v′(t) ≤ κv(t)− ps−tL |∇ptf |+ ps−tL |∇ptf | − κps−t |∇ptf | = 0

and hence

eκs |∇psf | = v(s) ≤ v(0) = ps |∇f |

• The proof can be made rigorous by approximating| · | by a smooth function, and using

regularity results forpt, cf. e.g. Deuschel, Stroock[6].

• The assertion extends to general diffusion operators.

Probabilistic proof: ptf(x) = E[f(Xx
t )] whereXx

t is the solution flow of the stochastic differ-

ential equation

dXt =
√
2dBt − (∇H)(Xt) dt, i.e.,

Xx
t = x+

√
2Bt −

t
ˆ

0

(∇H)(Xx
s ) ds

By the assumption onH one can show thatx → Xx
t is smooth and the derivative flowY x

t =

∇xXt satisfies the differentiated stochastic differential equation

dY x
t = −(∂2H)(Xx

t )Y
x
t dt,

Y x
0 = I

which is an ordinary differential equation. Hence if∂2H ≥ κI then forv ∈ Rn,

d

dt
|Yt · v|2 = −2

(
Yt · v, (∂2H)(Xt)Yt · v

)
Rn ≤ 2κ · |Yt · v|2

whereYt · v is the derivative of the flow in directionv. Hence

|Yt · v|2 ≤ e−2κt|v|
⇒ |Yt · v| ≤ e−κt|v|

This implies that forf ∈ C1
b (R

n), ptf is differentiable and

v · ∇ptf(x) = E [(∇f(Xx
t ) · Y x

t · v)]
≤ E [|∇f(Xx

t )|] · e−κt · |v| ∀ v ∈ Rn

i.e.

|∇ptf(x)| ≤ e−κtpt|∇f |(x)
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Theorem 6.22(Bakry-Emery ). Suppose that

∂2H ≥ κ · I with κ > 0

Then
ˆ

f 2 log
f 2

‖f‖2L2(µ)

dµ ≤ 2

κ

ˆ

|∇f |2 dµ ∀ f ∈ C∞
0 (Rn)

Remark. The inequality extends tof ∈ H1,2(µ) whereH1,2(µ) is the closure ofC∞
0 with respect

to the norm

‖f‖1,2 :=
(
ˆ

|f |2 + |∇f |2 dµ
) 1

2

Proof. g ∈ span(C∞
0 , 1), g ≥ δ ≥ 0.

Aim:
ˆ

g log g dµ ≤ 1

κ

ˆ

|∇√g|2 dµ+

ˆ

g dµ log

ˆ

g dµ

Theng = f 2 and we get the assertion.

Idea: Consider

u(t) =

ˆ

ptg log ptg dµ

Claim:

(i) u(0) =
´

g log g dµ

(ii) limt↑∞ u(t) =
´

g dµ log
´

g dµ

(iii) −u′(t) ≤ 4e−2κt
´
∣∣∇√g

∣∣2 dµ

By (i), (ii) and (iii) we then obtain:
ˆ

g log g dµ−
ˆ

g dµ log

ˆ

g dµ = lim
t→∞

(u(0)− u(t))

= lim
t→∞

t
ˆ

0

−u′(t) ds

≤ 2

κ

ˆ

|∇√g|2 dµ

since2
´∞
0
e−2κs ds = 1

κ
.

Proof of claim:
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(i) Obvious.

(ii) Ergodicity yields to

ptg(x)→
ˆ

g dµ ∀ x

for t ↑ ∞.

In fact:

|∇ptg| ≤ e−κtpt|∇g| ≤ e−κt|∇g|

and hence

|ptg(x)− ptg(y)| ≤ e−κt sup |∇g| · |x− y|

which leads to
∣∣∣∣ptg(x)−

ˆ

g dµ

∣∣∣∣ =
∣∣∣∣
ˆ

(ptg(x)− ptg(y)) µ(dy)
∣∣∣∣

≤ e−κt sup |∇g| ·
ˆ

|x− y|µ(dy)→ 0

Sinceptg ≥ δ ≥ 0, dominated convergence implies that
ˆ

ptg log ptδ dµ→
ˆ

g dµ log

ˆ

g dµ

(iii) Key Step! By the computation above (decay of entropy) and the lemma,

−u′(t) =
ˆ

∇ptg · ∇ log ptg dµ =

ˆ |∇ptg|2
ptg

dµ

≤ e−2κt

ˆ

(pt|∇g|)2
ptg

dµ ≤ e−2κt

ˆ

pt
|∇g|2
g

dµ

= e−2κt

ˆ |∇g|2
g

dµ = 4e−2κt

ˆ

|∇√g|2 dµ

Example. An Ising model with real spin: (Reference: Royer [36])

S = RΛ = {(xi)i∈Λ | xi ∈ R}, Λ ⊂ Zd finite.

µ(dx) =
1

Z
exp(−H(x)) dx

H(x) =
∑

i∈Λ
V (xi)︸ ︷︷ ︸
potential

−1
2

∑

i,j∈Λ
ϑ(i− j)︸ ︷︷ ︸
interactions

xixj −
∑

i∈Λ,j∈Zd\Λ

ϑ(i− j)xizj ,
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whereV : R → R is a non-constant polynomial, bounded from below, andϑ : Z → R is a

function such thatϑ(0) = 0, ϑ(i) = ϑ(−i) ∀ i, (symmetric interactions),ϑ(i) = 0 ∀ |i| ≥ R

(finite range),z ∈ RZd\Λ fixed boundary condition.

Glauber-Langevin dynamics:

dX i
t = −

∂H

∂xi
(Xt) dt+ dBi

t, i ∈ Λ (6.4.4)

Dirichlet form:

E(f, g) = 1

2

∑

i∈Λ

ˆ

∂f

∂xi

∂g

∂xi
dµ

Corollary 6.23. If

inf
x∈R

V ′′(x) >
∑

i∈Z
|ϑ(i)|

thenE satisfies a log Sobolev inequality with constant independent ofΛ.

Proof.

∂2H

∂xi∂xj
(x) = V ′′(xi) · δij − ϑ(i− j)

⇒ ∂2H ≥
(
inf V ′′ −

∑

i

|ϑ(i)|
)
· I

in the sense of forms.

Consequence: There is a unique Gibbs measure onZd corresponding toH, cf. Royer [36].

What can be said ifV is not convex?

6.4.5 Stability under bounded perturbations

Theorem 6.24(Bounded perturbations). µ, ν ∈M1(R
n) absolut continuous,

dν

dµ
(x) =

1

Z
e−U(x).

If
ˆ

f 2 log
f 2

‖f‖2L2(µ)

dµ ≤ 2α ·
ˆ

|∇f |2 dµ ∀ f ∈ C∞
0

then
ˆ

f 2 log
f 2

‖f‖2L2(ν)

dν ≤ 2α · eosc(U) ·
ˆ

|∇f |2 dν ∀ f ∈ C∞
0

where

osc(U) := supU − inf U
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Proof.

ˆ

f 2 log
|f |2
‖f‖2L2(ν)

dν ≤
ˆ (

f 2 log f 2 − f 2 log ‖f‖2L2(µ) − f 2 + ‖f‖2L2(µ)

)
dν (6.4.5)

since
ˆ

f 2 log
|f |2
‖f‖2L2(ν)

dν ≤
ˆ

f 2 log f 2 − f 2 log t2 − f 2 + t2 dν ∀ t > 0

Note that in (6.4.5) the integrand on the right hand side is non-negative. Hence

ˆ

f 2 log
|f |2
‖f‖2L2(ν)

dν ≤ 1

Z
· e− inf U

ˆ (
f 2 log f 2 − f 2 log ‖f‖2L2(µ) − f 2 + ‖f‖2L2(µ)

)
dµ

=
1

Z
e− inf U ·

ˆ

f 2 log
f 2

‖f‖2L2(µ)

dµ

≤ 2

Z
· e− inf Uα

ˆ

|∇f |2 dµ

≤ 2esupU−inf Uα

ˆ

|∇f |2 dν

Example. We consider the Gibbs measuresµ from the example above

(1). No interactions:

H(x) =
∑

i∈Λ

(
x2i
2

+ V (xi)

)
, V : R → R bounded

Hence

µ =
⊗

i∈Λ
µV

where

µV (dx) ∝ e−V (x)γ(dx)

andγ(dx) is the standard normal distribution. Henceµ satisfies the logarithmic Sobolev

inequality with constant

α(µ) = α(µV ) ≤ eosc(V )α(γ) = eosc(V )

by the factorization property. Hence we have independence of dimension!
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(2). Weak interactions:

H(x) =
∑

i∈Λ

(
x2i
2

+ V (xi)

)
− ϑ

∑

i,j∈Λ
|i−j|=1

xixj − ϑ
∑

i∈Λ
j /∈Λ

|i−j|=1

xizj,

ϑ ∈ R. One can show:

Theorem 6.25. If V is bounded then there existsβ > 0 such that forϑ ∈ [−β, β] a

logarithmic Sobolev inequality with constant independentof λ holds.

The proof is based on the exponential decay of correlationsCovµ(xi, xj) for Gibbs mea-

sures.

(3). Discrete Ising model: One can show that forβ < βc a logarithmic Sobolev inequality

holds on{−N, . . . , N}d with constant of OrderO(N2) independent of the boundary con-

ditions, whereas forβ > βc and periodic boundary conditions the spectral gap, and hence

the log Sobolev constant, grows exponentially inN , cf. [???].

6.5 Concentration of measure

(Ω,A, P ) probability space,Xi : Ω→ Rd independent identically distributed,∼ µ.

Law of large numbers:

1

N

N∑

i=1

U(Xi)→
ˆ

U dµ U ∈ L1(µ)

Cramér:

P

[∣∣∣∣∣
1

N

N∑

i=1

U(Xi)−
ˆ

U dµ

∣∣∣∣∣ ≥ r

]
≤ 2 · e−NI(r),

I(r) = sup
t∈R

(
tr − log

ˆ

etU dµ

)
LD rate function.

Hence we have

• Exponential concentration around mean value providedI(r) > 0 ∀ r 6= 0
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•

P

[∣∣∣∣∣
1

N

N∑

i=1

U(Xi)−
ˆ

U dµ

∣∣∣∣∣ ≥ r

]
≤ e−

Nr2

c providedI(r) ≥ r2

c

Gaussian concentration.

When does this hold? Extension to non independent identically distributed case? This leads to:

Bounds forlog
´

etU dµ !

Theorem 6.26(Herbst). If µ satisfies a logarithmic Sobolev inequality with constantα then for

any functionU ∈ C1
b (R

d) with ‖U‖Lip ≤ 1:

(i)

1

t
log

ˆ

etU dµ ≤ α

2
t+

ˆ

U dµ ∀ t > 0 (6.5.1)

where1
t
log
´

etU dµ can be seen as thefree energy at inverse temperaturet, α
2

as abound

for entropyand
´

U dµ as theaverage energy.

(ii)

µ

(
U ≥

ˆ

U dµ+ r

)
≤ e−

r2

2α

Gaussian concentration inequality

In particular,

(iii)
ˆ

eγ|x|
2

dµ <∞ ∀ γ < 1

2α

Remark. Statistical mechanics:

Ft = t · S − 〈U〉

whereFt is thefree energy, t the inverse temperature, S theentropy and〈U〉 thepotential.

Proof. WLOG, 0 ≤ ε ≤ U ≤ 1
ε
. Logarithmic Sobolev inequality applied tof = e

tU
2 :

ˆ

tUetU dµ ≤ 2α

ˆ
(
t

2

)2

|∇U |2 etU dµ+

ˆ

etU dµ log

ˆ

etU dµ
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ForΛ(t) := log
´

etU dµ this implies

tΛ′(t) =

´

tUetU dµ
´

etU dµ
≤ αt2

2

´

|∇U |2etU dµ
´

etU dµ
+ Λ(t) ≤ αt2

2
+ Λ(t)

since|∇U | ≤ 1. Hence

d

dt

Λ(t)

t
=
tΛ′(t)− Λ(t)

t2
≤ α

2
∀ t > 0

Since

Λ(t) = Λ(0) + t · Λ′(0) +O(t2) = t

ˆ

U dµ+O(t2),

we obtain

Λ(t)

t
≤
ˆ

U dµ+
α

2
t,

i.e. (i).

(ii) follows from (i) by the Markov inequality, and (iii) follows from (ii) withU(x) = |x|.

Corollary 6.27 (Concentration of empirical measures). Xi independent identically distributed,

∼ µ. If µ satisfies a logarithmic Sobolev inequality with constantα then

P

[∣∣∣∣∣
1

N

N∑

i=1

U(Xi)− Eµ[U ]

∣∣∣∣∣ ≥ r

]
≤ 2 · e−Nr2

2α

for any functionU ∈ C1
b (R

d) with ‖U‖Lip ≤ 1,N ∈ N andr > 0.

Proof. By the factorization property,µN satisfies a logarithmic Sobolev inequality with constant

α as well. Now apply the theorem to

Ũ(x) :=
1√
N

N∑

i=1

U(xi)

noting that

∇Ũ(x1, . . . , xn) =
1√
N




∇U(x1)
...

∇U(xN )




hence sinceU is Lipschitz,

∣∣∣∇Ũ(x)
∣∣∣ = 1√

N

(
N∑

i=1

|∇U(xi)|2
) 1

2

≤ 1
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Chapter 7

Couplings and contraction rates

7.1 Couplings and transportation metrics

Additional reference: [Villani:Optional transport-old and new] [40].

Let S be a Polish space endowed with its Borelσ-algebraB. An invariant probability measure

is a fixed point of the mapµ 7→ µp acting on an appropriate subspace ofP(S). Therefore, one

approach for studying convergence to equilibrium of Markovchains is to apply the Banach fixed

point theorem and variants thereof. To obtain useful results in this way we need adequate metrics

on probability measures.

7.1.1 Wasserstein distances

We fix a metricd : S × S → [0,∞) on the state spaceS. For p ∈ [1,∞), the space of all

probability measures onS with finite p-th moment is defined by

Pp(S) =

{
µ ∈ P(S) :

ˆ

d(x0, y)
pµ(dy) <∞

}
,

wherex0 is an arbitrary given point inS. Note that by the triangle inequality, the definition is

indeed independent ofx0. A natural distance onPp(S) can be defined via couplings:

Definition (Coupling of probability measures). A coupling of measuresµ, ν ∈ Pp(S) is a

probability measureγ ∈ P(S × S) with marginalsµ and ν. The couplingγ is realizedby

random variablesX, Y : Ω → S defined on a common probability space(Ω,A, P ) such that

(X, Y ) ∼ γ.

We denote the set of all couplings of given probability measuresµ andν by Π(µ, ν).
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Definition (Wasserstein distance, Kantorovich distance). For p ∈ [1,∞), theLp Wasserstein

distanceof probability measuresµ, ν ∈ P(S) is defined by

Wp(µ, ν) = inf
γ∈Π(µ,ν)

(
ˆ

d(x, y)pγ(dxdy)

) 1
p

= inf
X∼µ
Y∼ν

E [d(X, Y )p]
1
p , (7.1.1)

where the second infimum is over all random variablesX, Y defined on a common probability

space with lawsµ andν. TheKantorovich distanceof µ andν is theL1 Wasserstein distance

W1(µ, ν).

Remark (Optimal transport ). The Minimization in (7.1.1) is a particular case of an optimal

transport problem. Given a cost functionc : S × S → [0,∞], one is either looking for a map

T : S → S minimizing the average cost
ˆ

c(x, T (x))µ(dx)

under the constraintν = µ ◦ T−1 (Monge problem, 8th century), or, less restrictively, for a

couplingγ ∈ Π(µ, ν) minimizing
ˆ

c(x, y)γ(dxdy)

(Kantorovich problem , around 1940).

Note that the definition of theWp distance depends in an essential way on the distanced consid-

ered onS. In particular, we can create different distances on probability measures by modifying

the underlying metric. For example, iff : [0,∞) → [0,∞) is increasing andconcavewith

f(0) = 0 andf(r) > 0 for any r > 0 thenf ◦ d is again a metric, and we can consider the

corresponding Kantorovich distance

Wf (µ, ν) = inf
X∼µ

Y∼ν

E [f(d(X, Y ))] .

The distancesWf obtained in this way are in some sense converse toWp distances forp > 1

which are obtained by applying the convex functionr 7→ rp to d(x, y).

Example (Couplings and Wasserstein distances for probability measures onR1).

Let µ, ν ∈ P(R) with distribution functionsFµ andFν , and let

F−1
µ (u) = inf{c ∈ R : Fµ(c) ≥ u}, u ∈ (0, 1),

denote theleft-continuous generalized inverseof the distribution function. IfU ∼ Unif(0, 1)

thenF−1
µ (U) is a random variable with lawµ. This can be used to determine optimal couplings

of µ andν for Wasserstein distances based on the Euclidean metricd(x, y) = |x− y| explicitly:
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(i) Coupling by monotone rearrangement

A straightforward coupling ofµ andν is given by

X = F−1
µ (U) andY = F−1

ν (U), whereU ∼ Unif(0, 1).

This coupling is a monotone rearrangement, i.e., it couplesthe lower lying parts of the mass

of µ with the lower lying parts of the mass ofν. If Fµ andFν are both one-to-one then it

mapsu-quantiles ofµ to u-quantiles ofν. It can be shown that the coupling isoptimal

w.r.t. theWp distancefor anyp ≥ 1, i.e.,

Wp(µ, ν) = E [|X − Y |p] 1p = ‖F−1
µ − F−1

ν ‖Lp(0,1),

cf. e.g. [Rachev&Rueschendorf] [28]. On the other hand, thecoupling by monotone

rearrangement isnot optimal w.r.t. Wf if f is strictly concave. Indeed, consider for

exampleµ = 1
2
(δ0 + δ1) andν = 1

2
(δ0 + δ−1). Then the coupling above satisfiesX ∼ µ

andY = X − 1, hence

E[f(|X − Y |)] = f(1).

On the other hand, we may couple by antimonotone rearrangement choosingX ∼ µ and

Ỹ = −X. In this case the average distance is smaller since by Jensen’s inequality,

E[f(|X − Ỹ |)] = E[f(2X)] < f(E[2X ]) = f(1).

(ii) Maximal coupling with antimonotone rearrangement

We now give a coupling that is optimal w.r.t.Wf for any concavef provided an additional

condition is satisfied. The idea is to keep the common mass ofµ andν in place and to

apply an antimonotone rearrangement to the remaining mass:

µ

Suppose thatS = S+∪̇S− andµ−ν = (µ−ν)+−(µ−ν)− is a Hahn-Jordan decomposition

of the finite signed measureµ− ν into a difference of positive measures such that

(µ− ν)+(A∩S−) = 0 and(µ− ν)−(A∩S+) = 0 for anyA ∈ B, cf. also Section 7.2. Let

µ ∧ ν = µ− (µ− ν)+ = ν − (µ− ν)−.
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If p = (µ∧ ν)(S) is the total shared mass of the measuresµ andν then we can writeµ and

ν as mixtures

µ = (µ ∧ ν) + (µ− ν)+ = pα + (1− p)β,
ν = (µ ∧ ν) + (µ− ν)− = pα + (1− p)γ

of probability measuresα, β andγ. Hence a coupling(X, Y ) of µ andν as described above

is given by setting

(X, Y ) =

{
(F−1

α (U), F−1
α (U)) if B = 1,

(
F−1
β (U), F−1

γ (1− U)
)

if B = 0,

with independent random variablesB ∼Bernoulli(p) andU ∼Unif(0, 1). It can be shown

that ifS+ andS− are intervals then(X, Y ) is an optimal coupling w.r.t.Wf for any concave

f , cf. [McCann:Exact solution to the transportation problemon the line] [24].

In contrast to the one-dimensional case it is not easy to describe optimal couplings onRd for

d > 1 explicitly. On the other hand, the existence of optimal couplings holds on an arbitrary

polish spaceS by Prokhorov’s Theorem:

Theorem 7.1(Existence of optimal couplings). For anyµ, ν ∈ P(S) and anyp ∈ [1,∞) there

exists a couplingγ ∈ Π(µ, ν) such that

Wp(µ, ν)p =

ˆ

d(x, y)pγ(dxdy).

Proof: Let I(γ) :=
´

d(x, y)pγ(dxdy). By definition ofWp(µ, ν) there exists a minimizing

sequence(γn) in Π(µ, ν) such that

I(γn)→Wp(µ, ν)p asn→∞.

Moreover, such a sequence is automatically tight inP(S × S). Indeed, letε > 0 be given. Then,

sinceS is a polish space, there exists a compact setK ⊂ S such that

µ(S \K) <
ε

2
, ν(S \K) <

ε

2
,

and hence for anyn ∈ N,

γn ((x, y) /∈ K ×K) ≤ γn(x /∈ K) + γn(y /∈ K)

= µ(S \K) + ν(S \K) < ε.
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Prokhorov’s Theorem now implies that there is a subsequence(γnk
) that converges weakly to a

limit γ ∈ P(S × S). It is straightforward to verify thatγ is again a coupling ofµ andν, and,

sinced(x, y)p is (lower semi-)continuous,

I(γ) =

ˆ

d(x, y)pγ(dxdy) ≤ lim inf
k→∞

ˆ

d(x, y)pγnk
(dxdy) =Wp(µ, ν)p

by the portemanteau Theorem.

Lemma 7.2(Triangle inequality ). Wp is a metric onPp(S).

Proof: Let µ, ν, ̺ ∈ Pp(S). We prove the triangle inequality

Wp(µ, ̺) ≤ Wp(µ, ν) +Wp(ν, ̺). (7.1.2)

The other properties of a metric can be verified easily. To prove (7.1.2) letγ andγ̃ be couplings

of µ andν, ν and̺ respectively. We show

Wp(µ, ̺) ≤
(
ˆ

d(x, y)pγ(dxdy)

) 1
p

+

(
ˆ

d(y, z)pγ̃(dydz)

) 1
p

. (7.1.3)

The claim then follows by taking the infimum over allγ ∈ Π(µ, ν) andγ̃ ∈ Π(ν, ̺). SinceS is a

polish space we can disintegrate

γ(dxdy) = µ(dx)p(x, dy) and γ̃(dydz) = ν(dy)p(y, dz)

wherep andp are regular versions of conditional distributions of the first component w.r.t.γ, γ̃

given the second component. The disintegration enables us to “glue” the couplingsγ andγ̃ to a

joint coupling

γ̂(dxdydz) := µ(dx)p(x, dy)p(y, dz)

of the measuresµ, ν and̺ such that under̂γ,

(x, y) ∼ γ and (y, z) ∼ γ̃.

Therefore, by the triangle inequality for theLp norm, we obtain

Wp(µ, ̺) ≤
(
ˆ

d(x, z)pγ̂(dxdydz)

) 1
p

≤
(
ˆ

d(x, y)pγ̂(dxdydz)

) 1
p

+

(
ˆ

d(y, z)pγ̂(dxdydz)

) 1
p

=

(
ˆ

d(x, y)pγ(dxdy)

) 1
p

+

(
ˆ

d(y, z)pγ̃(dydz)

) 1
p

.
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Exercise(Couplings inRd). LetW : Ω→ Rd be a random variable on(Ω,A, P ) with

W ∼ −W , and letµa denote the law ofa+W .

a) (Synchronous coupling) LetX = a +W andY = b+W for a, b ∈ Rd. Show that

W2(µa, µb) = |a− b| = E(|X − Y |2)1/2,

i.e.,(X, Y ) is an optimal coupling w.r.t.W2.

b) (Reflection coupling) Let̃Y = W̃ + b whereW̃ ≡W − 2e ·W e with e = a−b
|a−b| . Prove that

(X, Ỹ ) is also a coupling ofµa andµb, and if |W | ≤ |a−b|
2

a.s. then

E
(
f(|X − Ỹ |

)
≤ f(|a− b|) = E (f(|X − Y |))

for any concave, increasing functionf : R+ → R+ such thatf(0) = 0.

7.1.2 Kantorovich-Rubinstein duality

TheLipschitz norm of a functiong : S → R is defined by

‖g‖Lip = sup
x 6=y

|g(x)− g(y)|
d(x, y)

.

Bounds in Wasserstein distances can be used to estimate differences of integrals of Lipschitz

continuous functions w.r.t. different probability measures. Indeed, one even has:

Theorem 7.3(Kantorovich-Rubinstein duality ). For anyµ, ν ∈ P(S),

W1(µ, ν) = sup
‖g‖Lip≤1

(
ˆ

gdµ−
ˆ

gdν

)
. (7.1.4)

Remark. There is a corresponding dual description ofWp for p > 1 but it takes a more compli-

cated form, cf. [Villani:OT-old&new] [40].

Proof: We only prove the easy “≥” part. For different proofs of the converse inequality see

Rachev and Rueschendorf [28], Villani1 [41], Villani2 [40] and Mufa Chen [4]. For instance one

can approximateµ andν by finite convex combinations of Dirac measures for which (7.1.4) is a
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consequence of the standard duality principle of linear programming, cf. Chen [4].

To prove “≥” let µ, ν ∈ P(S) andg ∈ C(S). If γ is a coupling ofµ andν then
ˆ

gdµ−
ˆ

gdν =

ˆ

(g(x)− g(y))γ(dxdy)

≤ ‖g‖Lip

ˆ

d(x, y)γ(dxdy).

Hence, by taking the infimum overγ ∈ Π(µ, ν), we obtain
ˆ

gdµ−
ˆ

gdν ≤ ‖g‖LipW1(µ, ν).

As a consequence of the “≥” part of (7.1.4), we see that if(µn)n∈N is a sequence of probability

measures such thatW1(µn, µ) → 0 then
´

gdµn →
´

gdµ for any Lipschitz continuous func-

tion g : S → R, and henceµn → µ weakly. The following more general statement connects

convergence in Wasserstein distances and weak convergence:

Theorem 7.4(Wp convergence and weak convergence). Letp ∈ [1,∞).

1) The metric space(Pp(S),Wp) is complete and separable.

2) A sequence(µn) in Pp(S) converges to a limitµ w.r.t. theWp distance if and only if
ˆ

gdµn →
ˆ

gdµ for anyg ∈ C(S) satisfyingg(x) ≤ C · (1 + d(x, xo)
p)

for a finite constantC and somex0 ∈ S.

Among other things, the proof relies on Prokhorov’s Theorem- we refer to [Villani:OT-old&new]

[40].

7.1.3 Contraction coefficients

Let p(x, dy) be a transition kernel on(S,B) and fixq ∈ [1,∞). We will be mainly interested in

the caseq = 1.

Definition (Wasserstein contraction coefficient of a transition kernel). The globalcontraction

coefficientof p w.r.t. the distanceWq is defined as

αq(p) = sup

{Wq(µp, νp)

Wq(µ, ν)
: µ, ν ∈ Pq(S)s.t.µ 6= ν

}
.
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In other words,αq(p) is the Lipschitz norm of the mapµ 7→ µp w.r.t. theWq distance. By

applying the Banach fixed point theorem, we obtain:

Theorem 7.5(Geometric ergodicity for Wasserstein contractions). If αq(p) < 1 then there ex-

ists a unique invariant probability measureµ of p in Pq(S). Moreover, for any initial distribution

ν ∈ Pq(S), νpn converges toµ with a geometric rate:

Wq(νpn, µ) ≤ αq(p)
nW q(ν, µ).

Proof: The Banach fixed point theorem can be applied by Theorem 7.4.

The assumptionαq(p) < 1 seems restrictive. However, one should bear in mind that theunder-

lying metric onS can be chosen adequately. In particular, in applications itis often possible to

find a concave functionf such thatµ 7→ µp is a contraction w.r.t. theW1 distance based on the

modified metricf ◦ d.

The next lemma is crucial for boundingαq(p) in applications:

Lemma 7.6(Bounds for contraction coefficients, Path coupling). 1) Suppose that the tran-

sition kernelp(x, dy) is Feller. Then

αq(p) = sup
x 6=y

Wq (p(x, ·), p(y, ·))
d(x, y)

. (7.1.5)

2) Moreover, suppose thatS is a geodesic graphwith edge setE in the sense that for any

x, y ∈ S there exists a pathx0 = x, x1, x2, . . . , xn−1, xn = y from x to y such that

{xi−1, xi} ∈ E for i = 1, . . . , n andd(x, y) =
n∑

i=1

d(xi−1, xi). Then

αq(p) = sup
{x,y}∈E

Wq (p(x, ·), p(y, ·))
d(x, y)

. (7.1.6)

The application of the second assertion of the lemma to proveupper bounds forαq(p) is known

as thepath coupling methodof Bubley and Dyer.

Proof: 1) Letβ := sup
x 6=y

Wq(p(x,·),p(y,·))
d(x,y)

. We have to show that

Wq(µp, νp) ≤ βWq(µ, ν) (7.1.7)
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holds for arbitrary probability measuresµ, ν ∈ P(S). By definition ofβ and since

Wq(δx, δy) = d(x, y), (7.1.7) is satisfied ifµ andν are Dirac measures.

Next suppose that

µ =
∑

x∈C
µ(x)δx and ν =

∑

x∈C
ν(x)δy

are convex combinations of Dirac measures, whereC ⊂ S is a countable subset. Then for

anyx, y ∈ C, we can choose a couplingγxy of δxp andδyp such that

(
ˆ

d(x′, y′)qγxy(dx
′dy′)

) 1
q

=Wq(δxp, δyp) ≤ βd(x, y). (7.1.8)

Let ξ(dxdy) be an arbitrary coupling ofµ andν. Then a couplingγ(dx′dy′) of µp andνp

is given by

γ :=

ˆ

γxyξ(dxdy),

and therefore, by (7.1.8),

Wq(µp, νp) ≤
(
ˆ

d(x′, y′)qγ(dx′dy′)

) 1
q

=

(
ˆ ˆ

d(x′, y′)qγxy(dx
′dy′)ξ(dxdy)

)1
q

≤ β

(
ˆ

d(x, y)qξ(dxdy)

)1
q

.

By taking the infimum over all couplingsξ ∈ Π(µ, ν), we see thatµ andν satisfy (7.1.7).

Finally, to show that (7.1.7) holds for arbitraryµ, ν ∈ P(S), note that sinceS is sepa-

rable, there is a countable dense subsetC, and the convex combinations of Dirac measures

based inC are dense inWq. Henceµ andν areWq limits of corresponding convex com-

binationsµn andνn (n ∈ N). By the Feller property, the sequenceµnp andνnp converge

weakly toµp, νp respectively. Hence

Wq(µp, νp) ≤ lim infWq(µnp, νnp)

≤ β lim infWq(µn, νn) = βWq(µ, ν).

2) Let β̃ := sup
(x,y)∈E

Wq(p(x,·),p(y,·))
d(x,y)

. We show that

Wq(p(x, ·), p(y, ·)) ≤ β̃d(x, y)
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holds for arbitraryx, y ∈ S. Indeed, letx0 = x, x1, x2, . . . , xn = y be a geodesic fromx

to y such that(xi−1, xi) ∈ E for i = 1, . . . , n. Then by the triangle inequality for theWq

distance,

Wq(p(x, ·), p(y, ·)) ≤
n∑

i=1

Wq(p(xi−1, ·), p(xi, ·))

≤ β̃
n∑

i=1

d(xi−1, xi) = β̃d(x, y),

where we have used in the last equality thatx0, . . . , xn is a geodesic.

Exercise.Letp be a transition kernel onS×S such thatp((x, y), dx′dy′) is a coupling ofp(x, dx′)

andp(y, dy′) for anyx, y ∈ S. Prove that if there exists a distance functiond : S × S → [0,∞)

and a constantα ∈ (0, 1) such that

pd ≤ αd,

then there is a unique invariant probability measureµ of p, and

W1
d (νp

n, µ) ≤ αnW1
d (ν, µ) for anyν ∈ P1(S).

7.1.4 Glauber dynamics, Gibbs sampler

Let µ be a probability measure on a product space

S = T V = {η : V → T}.

We assume thatV is a finite set (for example a finite graph) andT is a polish space (e.g.T = Rd).

Depending on the model considered the elements inT are called types, states, spins, colors etc.,

whereas we call the elements ofS configurations. There is a natural transition mechanism onS

that leads to a Markov chain which is reversible w.r.t.µ. The transition step from a configuration

ξ ∈ S to the next configurationξ′ is given in the following way:

• Choose an elementx ∈ V uniformly at random

• Setξ′(y) = ξ(y) for anyy 6= x, and sampleξ′(x) from the conditional distribution w.r.t.

µ(dy) of η(x) given thatη(y) = ξ(y) for anyy 6= x.

To make this precise, we fix a regular versionµ(dη|η = ξ onV \ {x}) of the conditional proba-

bility given (η(y))y∈V \{x}, and we define the transition kernelp by

p =
1

|V |
∑

x∈V
px, where
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px(ξ, dξ
′) = µ (dξ′|ξ′ = ξ onV \ {x}) .

Definition. A time-homogeneous Markov chain with transition kernelp is calledGlauber dy-

namicsor random scan Gibbs samplerwith stationary distributionµ.

Thatµ is indeed invariant w.r.t.p is shown in the next lemma:

Lemma 7.7. The transition kernelspx (x ∈ V ) andp satisfy the detailed balance conditions

µ(dξ)px(ξ, dξ
′) = µ(dξ′)px(ξ

′, dξ),

µ(dξ)p(ξ, dξ′) = µ(dξ′)p(ξ′, dξ).

In particular,µ is a stationary distribution forp.

Proof: Let x ∈ V , and letη̂(x) := (η(y))y 6=x denote the configuration restricted toV \ {x}.
Disintegration of the measureµ into the lawµ̂x of η̂(x) and the conditional lawµx(·|η̂(x)) of

η(x) given η̂(x) yields

µ (dξ) px (ξ, dξ
′) = µ̂x

(
dξ̂(x)

)
µx

(
dξ(x)|ξ̂(x)

)
δξ̂(x)

(
dξ̂′(x)

)
µx

(
dξ′(x)|ξ̂(x)

)

= µ̂x

(
dξ̂′(x)

)
µx

(
dξ(x)|ξ̂′(x)

)
δξ̂′(x)

(
dξ̂(x)

)
µx

(
dξ′(x)|ξ̂′(x)

)

= µ (dξ′) px (ξ
′, dξ) .

Hence the detailed balance condition is satisfied w.r.t.px for anyx ∈ V , and, by averaging over

x, also w.r.t.p.

Examples. In the following examples we assume thatV is the vertex set of a finite graph with

edge setE.

1) Random colourings. HereT is a finite set (the set of possible colours of a vertex), and

µ is the uniform distribution on all admissible colourings ofthe vertices inV such that no

two neighbouring vertices have the same colour:

µ = Unif
(
{η ∈ T V : η(x) 6= η(y) ∀(x, y) ∈ E}

)
.

The Gibbs sampler selects in each step a vertex at random and changes its colour randomly

to one of the colours that are different from all colours of neighbouring vertices.

2) Hard core model. HereT = {0, 1} whereη(x) = 1 stands for the presence of a particle

at the vertexx. The hard core model with fugacityλ ∈ R+ is the probability measureµλ

on{0, 1}V satisfying

µλ(η) =
1
Zλ
λ

∑
x∈V

η(v)

if η(x)η(y) = 0 for any(x, y) ∈ E,
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andµλ(η) = 0 otherwise, whereZλ is a finite normalization constant. The Gibbs sampler

updates in each stepξ(x) for a randomly chosen vertexx according to

ξ′(x) = 0 if ξ(y) = 1 for somey ∼ x,

ξ′(x) ∼ Bernoulli

(
λ

1 + λ

)
otherwise.

3) Ising model. Here T = {−1,+1} where−1 and+1 stand for Spin directions. The

ferromagnetic Ising model at inverse temperatureβ > 0 is given by

µβ(η) =
1
Zβ
e−βH(η) for anyη ∈ {−1,+1}V ,

whereZβ is again a normalizing constant, and the Ising HamiltonianH is given by

H(η) =
1

2

∑

{x,y}∈E
|η(x)− η(y)|2 = −

∑

{x,y}∈E
η(x)η(y) + |E|.

Thusµβ favours configurations where neighbouring spins coincide,and this preference

gets stronger as the temperature1
β

decreases. The heat bath dynamics updates a randomly

chosen spinξ(x) to ξ′(x) with probability proportional toexp

(
βη(x)

∑
y∼x

η(y)

)
. The

meanfield Ising model is the Ising model on the complete graph withn vertices, i.e.,

every spin is interacting with every other spin. In this casethe update probability only

depends onη(x) and the “meanfield”1
n

∑
y∈V

η(y).

4) Continuous spin systems.HereT = R, and

µβ(dy) =
1

Zβ
exp


−1

2

∑

(x,y)∈E
|η(x)− η(y)|2 + β

∑

x∈V
U(η(x))


∏

x∈V
dη(x).

The functionU : R → [0,∞) is a given potential, andZβ is a normalizing constant. For

U ≡ 0, the measure is called the masslesGaussian free field over V. If U is a double-well

potential thenµβ is a continuous version of the Ising model.

U
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5) Bayesian posterior distributions. Gibbs samplers are applied frequently to sample from

posterior distributions in Bayesian statistical models. For instance in a typical hierarchi-

cal Bayes model one assumes that the data are realizations ofconditionally independent

random variablesYij (i = 1, . . . , k, j = 1, . . . , mi) with conditional laws

Yij|(θ1, . . . , θk, λe) ∼ N (θi, λ
−1
e ).

The parametersθ1, . . . , θk andλe are again assumed to be conditionally independent ran-

dom variables with

θi|(µ, λθ) ∼ N (µ, λ−1
θ ) andλe|(µ, λθ) ∼ Γ(a2, b2).

Finally,µ andλθ are independent with

µ ∼ N (m, v) andλθ ∼ Γ(a1, b1)

wherea1, b1, a2, b2, v ∈ R+ andm ∈ R are given constants, cf. [Jones] [14]. The posterior

distributionµ of (θ1, . . . , θk, µ, λe, λθ) onRk+3 given observationsYij = yij is then given

by Bayes’ formula. Although the density is explicitly up to anormalizing constant involv-

ing a possibly high-dimensional integral, it is not clear how to generate exact samples from

µ and how to compute expectation values w.r.t.µ.

On the other hand, it is not difficult to see that all the conditional distributions w.r.t.µ of

one of the parametersθ1, . . . , θk, µ, λe, λθ given all the other parameters are either normal

or Gamma distributions with parameters depending on the observed data. Therefore, it is

easy to run a Gibbs sampler w.r.t.µ on a computer. If this Markov chain converges suffi-

ciently rapidly to its stationary distribution then its values after a sufficiently large number

of steps can be used as approximate samples fromµ, and longtime averages of the values of

a function applied to the Markov chain provide estimators for the integral of this function.

It is then an obvious question for how many steps the Gibbs sampler has to be run to ob-

tain sufficiently good approximations, cf. [Roberts&Rosenthal:Markov chains and MCMC

algorithms] [33].

Returning to the general setup on the product spaceT V , we fix a metric̺ onT , and we denote

by d the correspondingl1 metric on the configuration spaceT V , i.e.,

d(ξ, η) =
∑

x∈V
̺ (ξ(x), η(x)) , ξ, η ∈ T V .

A frequent choice is̺ (s, t) = 1s 6=t. In this case,

d(ξ, η) = |{x ∈ V : ξ(x) 6= η(x)}|

is called theHamming distanceof ξ andη.
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Lemma 7.8. Letn = |V |. Then for the Gibbs sampler,

W1
d (p(ξ, ·), p(η, ·)) ≤

(
1− 1

n

)
d(ξ, η) +

1

n

∑

x∈V
W1

̺ (µx(·|ξ), µx(·|η))

for anyξ, η ∈ T V .

Proof: Let γx for x ∈ V be optimal couplings w.r.t.W1
̺ of the conditional measuresµx(·|ξ) and

µx(·|η). Then we can construct a coupling ofp(ξ, dξ′) andp(η, dη′) in the following way:

• DrawU ∼ Unif(V ).

• GivenU , choose(ξ′(U), η′(U)) ∼ γU , and setξ′(x) = ξ(x) andη′(x) = η(x) for any

x 6= U .

For this coupling we obtain:

E[d(ξ′, η′)] =
∑

x∈V
E[̺(ξ′(x), η′(x))]

= d(ξ, η) + E [̺(ξ′(U), η′(U))− ̺(ξ(U), η(U))]

= d(ξ, η) +
1

n

∑

x∈V

(
ˆ

̺(s, t)γx(dsdt)− ̺(ξ(x), η(x))
)

=

(
1− 1

n

)
d(ξ, η) +

1

n

∑

x∈V
W1

̺ (µx(·|ξ), µx(·|η)) .

Here we have used in the last step the optimality of the coupling γx. The claim follows since

W1
d (p(x, ·), p(y, ·)) ≤ E[d(ξ′, η′)].

The lemma shows that we obtain contractivity w.r.t.W1
d if the conditional distributions atx ∈ V

do not depend too strongly on the values of the configuration at other vertices:

Theorem 7.9(Geometric ergodicity of the Gibbs sampler for weak interactions).

1) Suppose that there exists a constantc ∈ (0, 1) such that

∑

x∈V
W1

̺ (µx(·|ξ), µx(·|η)) ≤ cd(ξ, η) for anyξ, η ∈ T V . (7.1.9)

Then

W1
d (νp

t, µ) ≤ α(p)tW1
d (ν, µ) for anyν ∈ P(T V ) andt ∈ Z+, (7.1.10)

whereα(p) ≤ exp
(
−1−c

n

)
.

University of Bonn April 2015



234 CHAPTER 7. COUPLINGS AND CONTRACTION RATES

2) If T is a graph and̺ is geodesic then it suffices to verify(7.1.9)for neighbouring configu-

rationsξ, η ∈ T V such thatξ = η onV \ {x} for somex ∈ V andξ(x) ∼ η(x).

Proof: 1) If (7.1.9) holds then by Lemma 7.8,

Wd (p(ξ, ·), p(η, ·)) ≤
(
1− 1− c

n

)
d(ξ, η) for anyξ, η ∈ T V .

Hence (7.1.10) holds withα(p) = 1− 1−c
n
≤ exp

(
−1−c

n

)
.

2) If (T, ̺) is a geodesic graph andd is the l1 distance based on̺ then(T V , d) is again a

geodesic graph. Indeed, a geodesic path between two configurationsξ andη w.r.t. thel1

distance is given by changing one component after the other along a geodesic path onT .

Therefore, the claim follows from the path coupling lemma 7.6.

The results in Theorem 7.9 can be applied to many basic modelsincluding random colourings,

hardcore models and meanfield Ising models at low temperature.

Example (Random colourings). Suppose thatV is a regular graph of degree∆. ThenT V is

geodesic w.r.t. the Hamming distanced. Suppose thatξ andη are admissible random colourings

such thatd(ξ, η) = 1, and lety ∈ V be the unique vertex such thatξ(y) 6= η(y). Then

µx(·|ξ) = µx(·|η) for x = y and for anyx 6∼ y.

Moreover, forx ∼ y and̺(s, t) = 1s 6=t we have

W1
̺ (µx(·|ξ), µx(·|η)) ≤

1

|T | −∆

since there are at least|T | −∆ possible colours available, and the possible colours atx givenξ

respectivelyη onV \ {x} differ only in one colour. Hence

∑

x∈V
W1

̺ (µx(·|ξ), µx(·|η)) ≤
∆

|T | −∆
d(ξ, η),

and therefore, (7.1.10) holds with

α(p) ≤ exp

(
−
(
1− ∆

|T | −∆

)
· 1
n

)
, and hence

α(p)t ≤ exp

(
−|T | − 2∆

|T | −∆
· t
n

)
.

Markov processes Andreas Eberle



7.2. GEOMETRIC AND SUBGEOMETRIC CONVERGENCE TO EQUILIBRIUM 235

Thus for|T | > 2∆ we have an exponential decay of theW1
d distance to equilibrium with a rate

of orderO(n−1). On the other hand, it is obvious that mixing can break down completely if there

are too few colours - consider for example two colours on a linear graph:

bC b bC b bC b bC

7.2 Geometric and subgeometric convergence to equilibrium

In this section, we derive different bounds for convergenceto equilibrium w.r.t. the total variation

distance. In particular, we prove a version of Harris’ theorem which states that geometric ergod-

icity follows from a local minorization combined with a global Lyapunov condition. Moreover,

bounds on the rate of convergence to equilibrium are derivedby coupling methods. We assume

again thatS is a polish space with Borelσ-algebraB.

7.2.1 Total variation norm

The variation|η|(B) of an additive set-functionη : B → R on a setB ∈ B is defined by

|η|(B) := sup

{
n∑

i=1

|η(Ai)| : n ∈ N, A1, . . . , An ∈ B disjoint with
n⋃

i=1

Ai ⊂ B

}
.

Thetotal variation norm of η is

‖η‖TV =
1

2
|η|(S).

Note that this definition differs from the usual convention in analysis by a factor1
2
. The reason

for introducing the factor1
2

will become clear by Lemma 7.10 below. Now let us assume thatη is

a finite signed measure onS, and suppose thatη is absolutely continuous with density̺ with re-

spect to some positive reference measureλ. Then there is an explicit Hahn-Jordan decomposition

of the state spaceS and the measureη given by

S = S+∪̇S− with S+ = {̺ ≥ 0}, S− = {̺ < 0},
η = η+ − η− with dη+ = ̺+dλ, dη− = ̺−dλ.

The measuresη+ andη− are finite positive measures with

η+(B ∩ S−) = 0 and η−(B ∩ S+) = 0 for anyB ∈ B.

Hence the variation ofη is the measure|η| given by

|η| = η+ + η−, i.e., d|η| = ̺ · dλ.

University of Bonn April 2015



236 CHAPTER 7. COUPLINGS AND CONTRACTION RATES

In particular, the total variation norm ofη is theL1 norm of̺:

‖η‖TV =

ˆ

|̺|dx = ‖̺‖L1(λ). (7.2.1)

Lemma 7.10 (Equivalent descriptions of the total variation norm). Let µ, ν ∈ P(S) and

λ ∈ M+(S) such thatµ and ν are both absolutely continuous w.r.t.λ. Then the following

identities hold:

‖µ− ν‖TV = (µ− ν)+(S) = (µ− ν)−(S) = 1− (µ ∧ ν)(S)

=

∥∥∥∥
dµ

dλ
− dν

dλ

∥∥∥∥
L1(λ)

=
1

2
sup {|µ(f)− ν(f)| : f ∈ Fb(S) s.t.‖f‖sup ≤ 1} (7.2.2)

= inf {P [X 6= Y ] : X ∼ µ, Y ∼ ν} (7.2.3)

In particular,‖µ− ν‖TV ∈ [0, 1].

Remarks. 1) The last identity shows that the total variation distanceof µ andν is the Kan-

torovich distanceW1
d (µ, ν) based on the trivial metricd(x, y) = 1x 6=y onS.

2) The assumptionµ, ν << λ can always be satisfied by choosingλ appropriately. For

example, we may chooseλ = µ+ ν.

Proof: Sinceµ andν are both probability measures,

(µ− ν)(S) = µ(S)− ν(S) = 0.

Hence(µ− ν)+(S) = (µ− ν)−(S), and

‖µ− ν‖TV =
1

2
|µ− ν|(S) = (µ− ν)+(S) = µ(S)− (µ ∧ ν)(S) = (µ− ν)−(S).

The identity‖µ − ν‖TV =
∥∥dµ

dλ
− dν

dλ

∥∥
L1(λ)

holds by (7.2.1). Moreover, forf ∈ Fb(S) with

‖f‖sup ≤ 1,

|µ(f)− ν(f)| ≤ |(µ− ν)+(f)|+ |(µ− ν)−(f)|
≤ (µ− ν)+(S) + (µ− ν)−(S) = 2‖µ− ν‖TV

with identity forf = 1S+ − 1S−. This proves the representation (7.2.2) of‖µ− ν‖TV.

Finally, to prove (7.2.3) note that if(X, Y ) is a coupling ofµ andν, then

|µ(f)− ν(f)| = |E[f(X)− f(Y )]| ≤ 2P [X 6= Y ]
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holds for any bounded measurablef with ‖f‖sup ≤ 1. Hence by (7.2.2),

‖µ− ν‖TV ≤ inf
X∼µ

Y∼ν

P [X 6= Y ].

To show the converse inequality we choose a coupling(X, Y ) that maximizes the probability that

X andY agree. The maximal coupling can be constructed by noting that

µ = (µ ∧ ν) + (µ− ν)+ = pα + (1− p)β, (7.2.4)

ν = (µ ∧ ν) + (µ− ν)− = pα+ (1− p)γ (7.2.5)

with p = (µ ∧ ν)(S) and probability measuresα, β, γ ∈ P(S). We choose independent random

variablesU ∼ α, V ∼ β,W ∼ γ andZ ∼ Bernoulli(p), and we define

(X, Y ) =

{
(U, U) on{Z = 1},
(V,W ) on{Z = 0}.

Then by (7.2.4) and (7.2.5),(X, Y ) ∈ Π(µ, ν) and

P [X 6= Y ] ≤ P [Z = 0] = 1− p = 1− (µ ∧ ν)(S) = ‖µ− ν‖TV.

Remark. The last equation can also be seen as a special case of the Kantorovich-Rubinstein

duality formula.

7.2.2 Geometric ergodicity

Let p be a transition kernel on(S,B). We define thelocal contraction coefficientα(p,K) of p

on a setK ⊂ S w.r.t. the total variation distance by

α(p,K) = sup
x,y∈K

‖p(x, ·)− p(y, ·)‖TV = sup
x,y∈K

x 6=y

‖δxp− δyp‖TV

‖δx − δy‖TV
. (7.2.6)

Note that in contrast to more general Wasserstein contraction coefficients, we always have

α(p,K) ≤ 1.

Moreover,α(p,K) ≤ 1 − ε holds for ε > 0 if p satisfies the followinglocal minorization

condition: There exists a probability measureν onS such that

p(x,B) ≥ εν(B) for anyx ∈ K andB ∈ B. (7.2.7)
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Doeblin’s classical theorem states that ifα(pn, S) < 1 for somen ∈ N then there exists a unique

stationary distributionµ of p, and uniform ergodicity holds in the following sense:

sup
x∈S
‖pt(x, ·)− µ‖TV → 0 ast→∞. (7.2.8)

Exercise(Doeblin’s Theorem). Prove that (7.2.8) holds ifα(pn, S) < 1 for somen ∈ N.

If the state space is infinite, a global contraction condition w.r.t. the total variation norm as

assumed in Doeblin’s Theorem can not be expected to hold:

Example (Autoregressive process AR(1)). Suppose that

Xn+1 = αXn +Wn+1, X0 = x

with α ∈ (−1, 1), x ∈ R, and i.i.d. random variablesWn : Ω → R. By induction, one easily

verifies that

Xn = αnx+

n−1∑

i=0

αiWn−i ∼ N

(
αnx,

1− α2n

1− α2

)
,

i.e., then-step transition kernel is given by

pn(x, ·) = N

(
αnx,

1− α2n

1− α2

)
, x ∈ S.

As n→∞, pn(x, ·)→ µ in total variation, where

µ = N

(
0,

1

1− α2

)

is the unique stationary distribution. However, the convergence is not uniform inx, since

sup
x∈R
‖pn(x, ·)− µ‖TV = 1 for anyn ∈ N.

The example demonstrates the need of a weaker notion of convergence to equilibrium than uni-

form ergodicity, and of a weaker assumption than the global minorization condition.

Definition (Geometric ergodicity). A time-homogeneous Markov chain(Xn, Px) with transition

kernelp is calledgeometrically ergodic with stationary distributionµ iff there existγ ∈ (0, 1)

and a non-negative functionM : S → R such that

‖pn(x, ·)− µ‖TV ≤M(x)γn for µ-almost everyx ∈ S.

Harris’ Theorem states that geometric ergodicity is a consequence of alocal minorization con-

dition and a globalLyapunov condition of the following form:
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(LG) There exist a functionV ∈ F+(S) and constantsλ > 0 andC <∞ such that

LV (x) ≤ C − λV (x) for anyx ∈ S. (7.2.9)

In terms of the transition kernel the condition (LG) states that

pV (x) ≤ C + γV (x) (7.2.10)

whereγ = 1− λ < 1.

Below, we follow the approach of M. Hairer and J. Mattingly togive a simple proof of a quan-

titative version of the Harris Theorem, cf. [Hairer:Convergence of Markov processes,Webpage

M.Hairer] [13]. The key idea is to replace the total variation distance by the Kantorovich distance

Wβ(µ, ν) = inf
X∼µ
Y∼ν

E[dβ(µ, ν)]

based on a distance function onS of the form

dβ(x, y) = (1 + βV (x) + βV (y)) 1x 6=y

with β > 0. Note that‖µ− ν‖TV ≤ Wβ(µ, ν) with equality forβ = 0.

Theorem 7.11(Quantitative Harris Theorem ). Suppose that there exists a functionV ∈ F+(S)

such that the condition in (LG) is satisfied with constantsC, λ ∈ (0,∞), and

α(p, {V ≤ r}) < 1 for somer > 2C/λ. (7.2.11)

Then there exists a constantβ ∈ R+ such thatαβ(p) < 1. In particular, there is a unique

stationary distributionµ of p satisfying
´

V dµ <∞, and geometric ergodicity holds:

‖pn(x, ·)− µ‖TV ≤ Wβ (p
n(x, ·), µ) ≤

(
1 + βV (x) + β

ˆ

V dµ

)
αβ(p)

n

for anyn ∈ N andx ∈ S.

Remark. There are explicit expressions for the constantsβ andαβ(p).

Proof: Fix x, y ∈ S with x 6= y, and let(X, Y ) be amaximal coupling ofp(x, ·) andp(y, ·)
w.r.t. the total variation distance, i.e.,

P [X 6= Y ] = ‖p(x, ·)− p(y, ·)‖TV.
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Then forβ ≥ 0,

Wβ(p(x, ·), p(y, ·)) ≤ E[dβ(X, Y )]

≤ P [X 6= Y ] + βE[V (X)] + βE[V (Y )]

= ‖p(x, ·)− p(y, ·)‖TV + β(pV )(x) + β(pV )(y)

≤ ‖p(x, ·)− p(y, ·)‖TV + 2Cβ + (1− λ)β(V (x) + V (y)), (7.2.12)

where we have used (7.2.10) in the last step. We now fixr as in (7.2.11), and distinguish cases:

(i) If V (x)+V (y) ≥ r, then the Lyapunov condition ensures contractivity. Indeed, by (7.2.12),

Wβ(p(x, ·), p(y, ·)) ≤ dβ(x, y) + 2Cβ − λβ · (V (x) + V (y)). (7.2.13)

Sincedβ(x, y) = 1 + βV (x) + βV (y), the expression on the right hand side in (7.2.13)

is bounded from above by(1 − δ)dβ(x, y) for some constantδ > 0 provided2Cβ + δ ≤
(λ− δ)βr. This condition is satisfied if we choose

δ :=
λ− 2C

r

1 + 1
βr

=
λr − 2C

1 + βr
β,

which is positive sincer > 2C/λ.

(ii) If V (x) + V (y) < r then contractivity follows from (7.2.11). Indeed, (7.2.12) implies that

for ε := min
(

1−α(p,{V≤r})
2

, λ
)

,

Wβ(p(x, ·), p(y, ·)) ≤ α(p, {V ≤ r}) + 2Cβ + (1− λ)β(V (x) + V (y))

≤ (1− ε)dβ(x, y)

providedβ ≤ 1−α(p,{V ≤r})
4C

.

Choosingδ, ε, β > 0 as in (i) and (ii), we obtain

Wβ(p(x, ·), p(y, ·)) ≤ (1−min(δ, ε))dβ(x, y) for anyx, y ∈ S,

i.e., theglobal contraction coefficientαβ(p) w.r.t. Wβ is strictly smaller than one. Hence there

exists a unique stationary distribution

µ ∈ P1
β(S) =

{
µ ∈ P(S) :

ˆ

V dµ <∞
}
, and

Wβ(p
n(x, ·), µ) =Wβ (δxp

n, µpn) ≤ αβ(p)
nWβ(δx, µ)

= αβ(p)
n

(
1 + βV (x) + β

ˆ

V dµ

)
.
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Remark (Doeblin’s Theorem). If α(p, S) < 1 then by choosingV ≡ 0, we recover Doeblin’s

Theorem:

‖pn(x, ·)− µ‖TV ≤ α(p, S)n → 0 uniformly in x ∈ S.

Example (State space model inRd). Consider the Markov chain with state spaceRd and tran-

sition step

x 7→ x+ b(x) + σ(x)W,

whereb : Rd → Rd andσ : Rd → Rd×d are measurable functions, andW : Ω→ Rd is a random

vector withE[W ] = 0 andCov(Wi,Wj) = δij. ChoosingV (x) = |x|2, we obtain

LV (x) = 2x · b(x) + |b(x)|2 + tr(σTσ)(x) ≤ C − λV (x)

for someC, λ ∈ (0,∞) provided

lim sup
|x|→∞

x · b(x) + |b(x)|2 + tr(σTσ)(x)

|x|2 < 0.

Since

α(p, {V ≤ r}) = sup
|x|≤√

r

sup
|y|≤√

r

∥∥N
(
x+ b(x), (σσT )(x)

)
−N

(
y + b(y), (σσT )(y)

)∥∥
TV
< 1

for anyr ∈ (0,∞), the conditions in Harris’ Theorem are satisfied in this case.

Example (Gibbs Sampler in Bayesian Statistics). For several concrete Bayesian posterior dis-

tributions on moderately high dimensional spaces, Theorem7.11 can be applied to show that the

total variation distance between the law of the Gibbs sampler aftern steps and the stationary target

distribution is small after a feasible number of iterations, cf. e.g. [Roberts&Rosenthal:Markov

chains & MCMC algorithms] [33].

7.2.3 Couplings of Markov chains and convergence rates

On infinite state spaces, convergence to equilibrium may hold only at asubgeometric (i.e.,

slower than exponential) rate. Roughly, subgeometric convergence occurs if the drift is not strong

enough to push the Markov chain rapidly back towards the center of the state space. There are

two possible approaches for proving convergence to equilibrium at subgeometric rates:

a) The Harris’ Theorem can be extended to the subgeometric case provided a Lyapunov con-

dition of the form

LV ≤ C − ϕ ◦ V
holds with a concave increasing functionϕ : R+ → R+ satisfyingϕ(0) = 0, cf. [Hairer]

[13] and [Meyn&Tweedie] [25].
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b) Alternatively, couplings of Markov chains can be applieddirectly to prove both geometric

and subgeometric convergence bounds.

Both approaches eventually lead to similar conditions. We focus now on the second approach.

Definition (Couplings of stochastic processes).

1) A coupling of two stochastic processes(Xn, P ) and (Yn, Q) with state spaceS andT is

given by a process
(
(X̃, Ỹ ), P̃

)
with state spaceS × T such that

(X̃n)n≥0 ∼ (Xn)n≥0 and (Ỹn)n≥0 ∼ (Yn)n≥0.

2) The coupling is calledMarkovian iff the process(X̃n, Ỹn)n≥0 is a Markov chain on the

product spaceS × T .

Example (Construction of Markovian couplings). A Markovian coupling of two time homo-

geneous Markov chains can be constructed from a coupling of the transition functions. Suppose

thatp andq are transition kernels on measurable spaces(S,B) and(T, C), andp is a transition

kernel on(S × T,B ⊗ C) such thatp ((x, y), dx′dy′) is a coupling of the measuresp(x, dx′) and

p(y, dy′) for anyx ∈ S andy ∈ T . Then for anyx ∈ S andy ∈ T , the canonical Markov chain

((Xn, Yn), Pxy) with transition kernelp and initial distributionδx,y is a Markovian coupling of

Markov chains with transition kernelsp andq and initial distributionsδx andδy. More generally,

((Xn, Yn), Pγ) is a coupling of Markov chains with transition kernelsp, q and initial distributions

µ, ν providedγ is a coupling ofµ andν.

Theorem 7.12(Coupling lemma). Suppose that((Xn, Yn)n≥0, P ) is a Markovian coupling of

Markov chains with transition kernelp and initial distributionsµ andν. Then

‖µpn − νpn‖TV ≤ ‖Law(Xn:∞)− Law(Yn:∞)‖TV ≤ P [T > n],

whereT is thecoupling timedefined by

T = min{n ≥ 0 : Xn = Yn}.

In particular, ifT <∞ almost surely then

lim
n→∞

‖Law(Xn:∞)− Law(Yn:∞)‖TV = 0.
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Proof: 1) We first show that we may assume without loss of generality thatXn = Yn for any

n ≥ T . Indeed, if this is not the case then we can define a modified coupling (Xn, Ỹn) with

the same coupling timeby setting

Ỹn :=

{
Yn for n < T,

Xn for n ≥ T.

The fact that(Xn, Ỹn) is again a coupling of the same Markov chains follows from the

strong Markov property:T is a stopping time w.r.t. the filtration(Fn) generated by the

process(Xn, Yn), and hence on{T < ∞} and under the conditional law givenFT , XT :∞

is a Markov chain with transition kernelp and initial valueYT . Therefore, the conditional

law of

Ỹ0:∞ = (Y1, . . . , YT−1, XT , XT+1, . . . )

givenFT coincides with the conditional law of

Y0:∞ = (Y1, . . . , YT−1, YT , YT+1, . . . )

givenFT , and hence the unconditioned law of(Ỹn) and(Yn) coincides as well.

2) Now suppose thatXn = Yn for n ≥ T . Then alsoXn:∞ = Yn:∞ for n ≥ T , and thus we

obtain

‖Law(Xn:∞)− Law(Yn:∞)‖TV ≤ P [Xn:∞ 6= Yn:∞] ≤ P [T > n].

If µ is a stationary distribution forp thenµpn = µ and Law(Xn:∞) = Pµ for anyn ≥ 0. Hence

the coupling lemma provides upper bounds for the total variation distance to stationarity. As an

immediate consequence we note:

Corollary 7.13 (Convergence rates by coupling). Let T be the coupling time for a Markovian

coupling of time-homogeneous Markov chains with transition kernelp and initial distributionsµ

andν. Suppose that

E[ψ(T )] <∞

for some increasing functionψ : Z+ → R+ with lim
n→∞

ψ(n) =∞. Then

‖µpn − νpn‖TV = O

(
1

ψ(n)

)
, and even (7.2.14)

∞∑

n=0

(ψ(n + 1)− ψ(n)) ‖µpn − νpn‖TV <∞. (7.2.15)
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Proof: By the coupling lemma and Markov’s inequality,

‖µpn − νpn‖TV ≤ P [T > n] ≤ 1

ψ(n)
E[ψ(T )] for anyn ∈ N.

Furthermore, by Fubini’s Theorem,

∞∑

n=0

(ψ(n+ 1)− ψ(n)) ‖µpn − νpn‖TV ≤
∞∑

n=0

(ψ(n + 1)− ψ(n))P [T > n]

=
∞∑

i=1

P [T = i] (ψ(n)− ψ(0)) ≤ E[ψ(T )].

The corollary shows that convergence to equilibrium happens with a polynomial rate of order

O(n−k) if there is a coupling with the stationary Markov chain such that the coupling time has a

finite k-th moment. If an exponential moment exists then the convergence is geometric.

Example (Markov chains onZ+).

0 x− 1 x x+ 1

qx

rx
px

We consider a Markov chain onZ+ with transition probabilitiesp(x, x+1) = px, p(x, x−1) = qx

andp(x, x) = rx. We assume thatpx + qx + rx = 1, q0 = 0, andpx, qx > 0 for x ≥ 1. For

simplicity we also assumerx = 1/2 for anyx (i.e., the Markov chain is “lazy”). For f ∈ Fb(Z+),

the generator is given by

(Lf)(x) = px (f(x+ 1)− f(x)) + qx (f(x− 1)− f(x)) ∀x ∈ Z+.

By solving the system of equationsµL = µ − µp = 0 explicitly, one shows that there is a

two-parameter family of invariant measures given by

µ(x) = a+ b · p0p1 · · · px−1

q1q2 · · · qx
(a, b ∈ R).

In particular, a stationary distribution exists if and onlyif

Z :=
∞∑

x=0

p0p1 · · · px−1

q1q2 · · · qx
<∞.

For example, this is the case if there exists anε > 0 such that

px ≤
(
1− 1 + ε

x

)
qx+1 for largex.
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Now suppose that a stationary distributionµ exists. To obtain an upper bound on the rate of

convergence toµ, we consider the straightforward Markovian coupling((Xn, Yn), Pxy) of two

chains with transition kernelp determined by the transition step

(x, y)→





(x+ 1, y) with probabilitypx,

(x− 1, y) with probabilityqx,

(x, y + 1) with probabilitypx,

(x, y − 1) with probabilityqx.

Since at each transition step only one of the chains(Xn) and (Yn) is moving one unite, the

processes(Xn) and(Yn) meet before the trajectories cross each other. In particular, if X0 ≥ Y0

then the coupling timeT is bounded from above by the first hitting time

TX
0 = min{n ≥ 0 : Xn = 0}.

TX
0

X0

Y0

Since a stationary distribution exists and the chain is irreducible, all states are positive recurrent.

Hence

E[T ] ≤ E[TX
0 ] <∞.

Therefore by Corollary 7.13, the total variation distance from equilibrium isalwaysdecaying at

least of orderO(n−1):

‖pn(x, ·)− µ‖TV = O(n−1),
∞∑

n=1

‖pn(x, ·)− µ‖TV <∞.

To prove a stronger decay, one can construct appropriate Lyapunov functions for bounding higher

moments ofT . For instance suppose that

px − qx ∼ −axγ as x→∞

for somea > 0 andγ ∈ (−1, 0].
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(i) If γ ∈ (−1, 0) then asx→∞, the functionV (x) = xn (n ∈ N) satisfies

LV (x) = px ((x+ 1)n − xn) + qx ((x− 1)n − xn) ∼ n(px − qx)xn−1

∼ −naxn−1+γ ≤ −naV (x)1−
1−γ
n .

It can now be shown in a similar way as in the proofs of Theorem 1.6 or Theorem 1.9 that

E[T k] ≤ E[(TX
0 )k] <∞ for anyk <

n

1− γ .

Sincen can be chosen arbitrarily large, we see that the convergencerate is faster than any

polynomial rate:

‖pn(x, ·)− µ‖TV = O(n−k) for anyk ∈ N.

Indeed, by choosing faster growing Lyapunov functions one can show that the convergence

rate isO(exp (−nβ)) for someβ ∈ (0, 1) depending onγ.

(ii) If γ = 0 then even geometric convergence holds. Indeed, in this case, for largex, the

functionV (x) = eλx satisfies

LV (x) =
(
px
(
eλ − 1

)
+ qx

(
e−λ − 1

))
V (x) ≤ −c · V (x)

for some constantc > 0 providedλ > 0 is chosen sufficiently small. Hence geometric

ergodicity follows either by Harris’ Theorem, or, alternatively, by applying Corollary 7.13

with ψ(n) = ecn.

7.3 Mixing times for Markov chains

Let p be a transition kernel on(S,B) with stationary distributionµ. ForK ∈ B andt ≥ 0 let

dTV(t,K) = sup
x∈K
‖pt(x, ·)− µ‖TV

denote the maximal total variation distance from equilibrium aftert steps of the Markov chain

with transition kernelp and initial distribution concentrated onK.

Definition (Mixing time ). For ε > 0, theε-mixing time of the chain with initial value inK is

defined by

tmix(ε,K) = min{t ≥ 0 : d(t,K) ≤ ε}.

Moreover, we denote bytmix(ε) the global mixing timetmix(ε, S).
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Exercise(Decay of TV-distance to equilibrium).

Prove that for any initial distributionν ∈ P(S), the total variation distance‖νpt − µ‖TV is a

decreasing function int. Hence conclude that

dTV(t,K) ≤ ε for anyt ≥ tmix(ε,K).

An important problem is the dependence of mixing times on parameters such as the dimension

of the underlying state space. In particular, the distinction between “slow” and “rapid ” mixing,

i.e., exponential vs. polynomial increase of the mixing time as a parameter goes to infinity, is

often related to phase transitions.

7.3.1 Upper bounds in terms of contraction coefficients

To quantify mixing times note that by the triangle inequality for the TV-distances,

dTV(t, S) ≤ α(pt) ≤ 2dTV(t, S),

whereα denotes the global TV-contraction coefficient.

Example (Random colourings). For the random colouring chain with state spaceT V , we have

shown in the example below Theorem 7.9 that for|T | > 2∆, the contraction coefficientαd w.r.t.

the Hamming distanced(ξ, η) = |{x ∈ V : ξ(x) 6= η(x)}| satisfies

αd(p
t) ≤ αd(p)

t ≤ exp

(
−|T | − 2∆

|T | −∆
· t
n

)
. (7.3.1)

Here∆ denotes the degree of the regular graphV andn = |V |. Since

1ξ 6=η ≤ d(ξ, η) ≤ n · 1ξ 6=η for anyξ, η ∈ T V ,

we also have

‖ν − µ‖TV ≤ W1
d (ν, µ) ≤ n‖ν − µ‖TV for anyν ∈ P(S).

Therefore, by (7.3.1), we obtain

‖pt(ξ, ·)− µ‖TV ≤ nαd(p
t) ≤ n exp

(
−|T | − 2∆

|T | −∆
· t
n

)

for anyξ ∈ T V andt ≥ 0. The right-hand side is smaller thanε for t ≥ |T |−∆
|T |−2∆

n log(n/ε). Thus

we have shown that

tmix(ε) = O
(
n logn+ n log ε−1

)
for |T | > 2∆.

This is a typical example ofrapid mixing with a total variationcast-off: After a time of order

n log n, the total variation distance to equilibrium decays to an arbitrary small valueε > 0 in a

time window of orderO(n).
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Example (Harris Theorem). In the situation of Theorem 7.11, the global distancedTV(t, S) to

equilibrium does not go to0 in general. However, on the level sets of the Lyapunov functionV ,

dTV(t, {V ≤ r}) ≤
(
1 + βr + β

ˆ

V dµ

)
αβ(p)

t

for anyt, r ≥ 0 whereβ is chosen as in the theorem, andαβ is the contraction coefficient w.r.t.

the corresponding distancedβ. Hence

tmix(ε, {V ≤ r}) ≤ log
(
1 + βr + β

´

V dµ
)
+ log(ε−1)

log(αβ(p)−1)
.

7.3.2 Upper bounds by coupling

We can also apply the coupling lemma to derive upper bounds for mixing times in the following

way:

Corollary 7.14 (Coupling times and mixing times). Suppose that((Xn, Yn), Px,y) is a Marko-

vian coupling of the Markov chains with initial valuex, y ∈ S and transition kernelp for any

x, y ∈ S, and letT = inf{n ∈ Z+ : Xn = Yn}. Then:

1) ‖pn(x, ·)− pn(y, ·)‖TV≤ Px,y[T > n] for anyx, y ∈ S andn ∈ N.

2) α(pn, K) ≤ sup
x,y∈K

Px,y[T > n].

Example (Lazy Random Walks). A lazy random walk on a graph is a random walk that stays

in its current position during each step with probability1/2. Lazy random walks are considered

to exclude periodicity effects that may occur due to the timediscretization. By a simple coupling

argument we obtain bounds for total variation distances andmixing times on different graphs:

1) S = Z: Here the transition probabilities of the lazy simple randomwalk arep(x, x+ 1) =

p(x, x − 1) = 1/4, p(x, x) = 1/2, andp(x, y) = 0 otherwise. A Markovian coupling

(Xn, Yn) is given by moving from(x, y) to (x+1, y), (x− 1, y), (x, y+1), (x, y− 1) with

probability 1/2 each. Hence only one of two copies is moving during each step so that

the two random walksXn andYn can not cross each other without meeting at the same

position. The coupling timeT is the hitting time of0 for the processXn − Yn which is a

simple random walk onZ. HenceT <∞ Px,y-almost surely, and

lim
n→∞

‖pn(x, ·)− pn(y, ·)‖TV = 0 for anyx, y ∈ S.

Nevertheless, a stationary distribution does not exist.
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2) S = Z/(mZ): On a discrete circle withm points we can use the analogue coupling for the

lazy random walk. Again,Xn−Yn is a simple random walk onS, andT is the hitting time

of 0. Hence by the Poisson equation,

Ex,y[T ] = E
RW(Z)
|x−y| [T{1,2,...,m−1}c ] = |x− y| · (m− |x− y|) ≤

1

n
m2.

Corollary 7.14 and Markov’s inequality now implies that theTV-distance to the uniform

distribution aftern steps is bounded from above by

dTV(n, S) ≤ α(pn) ≤ sup
x,y

Px,y[T > n] ≤ m2

4n
.

Hencetmix(1/4) ≤ m2 which is a rather sharp upper bound.

3) S = {0, 1}d: The lazy random walk on the hypercube{0, 1}d coincides with the Gibbs sam-

pler for the uniform distribution. Constructing a couplingsimilarly as before, the coupling

time T is bounded from above by the first time where each coordinate has been updated

once, i.e., by the number of draws required to collect each ofd coupons by sampling with

replacement. Therefore, forc ≥ 0,

dTV(d log d+ cd) ≤ P [T > d log d+ cd]

≤
d∑

k=1

(
1− 1

d

)⌈d log d+cd⌉
≤ de−

d log d+cd
d ≤ e−c,

and hence

tmix(ε) ≤ d log d+ log(ε−1)d.

Conversely the coupon collecting problem also shows that this upper bound is again almost

sharp.

7.3.3 Conductance lower bounds

A simple and powerful way to derive lower bounds for mixing times due to constraints by bottle-

necks is the conductance.

Exercise(Conductance and lower bounds for mixing times). Let p be a transition kernel on

(S,B) with stationary distributionµ. For setsA,B ∈ B with µ(A) > 0, theequilibrium flow

Q(A,B) fromA toB is defined by

Q(A,B) = (µ⊗ p)(A× B) =

ˆ

A

µ(dx) p(x,B),
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and theconductanceof A is given by

Φ(A) =
Q(A,AC)

µ(A)
.

Thebottleneck ratio (isoperimetric constant)Φ∗ is defined as

Φ∗ = min
A:µ(A)≤1/2

Φ(A).

Let µA(B) = µ(B|A) denote the conditioned measure onA.

a) Show that for anyA ∈ B with µ(A) > 0,

‖µAp− µA‖TV = (µAp)(A
C) = Φ(A).

Hint: Prove first that

(i) (µAp)(B)− µA(B) ≤ 0 for any measurableB ⊆ A, and

(ii) (µAp)(B)− µA(B) = (µAp)(B) ≥ 0 for any measurableB ⊆ AC .

b) Conclude that

‖µA − µ‖TV ≤ tΦ(A) + ‖µAp
t − µ‖TV for anyt ∈ Z+.

c) Hence prove the lower bound

tmix

(
1

4

)
≥ 1

4Φ∗
.

7.4 Asymptotic stationarity & MCMC integral estimation

Let µ be a probability measure on(S,B). In Markov chain Monte Carlo methods one is approx-

imating integralsµ(f) =
´

f dµ by ergodic averages of the form

Ab,nf =
1

n

b+n−1∑

i=b

f(Xi),

where(Xn, P ) is a time-homogeneous Markov chain with a transition kernelp satisfyingµ = µp,

andb, n ∈ N are sufficiently large integers. The constantb is called theburn-in time - it should

be chosen in such a way that the law of the Markov chain afterb steps is sufficiently close to the

stationary distributionµ. A typical example of a Markov chain used in MCMC methods is the

Gibbs sampler that has been introduced in Section 7.1.4 above. The second important class of

Markov chains applied in MCMC are Metropolis-Hastings chains.
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Example (Metropolis-Hastings method). Let λ be a positive reference measure on(S,B), e.g.

Lebesgue measure onRd or the counting measure on a countable space. Suppose thatµ is ab-

solutely continuous w.r.t.λ, and denote the density byµ(x) as well. Then a Markov transition

kernelp with stationary distributionµ can be constructed by proposing moves according to an

absolutely continuous proposal kernel

q(x, dy) = q(x, y) λ(dy)

with strictly positive densityq(x, y), and accepting a proposed move fromx to y with probability

α(x, y) = min

(
1,
µ(y)q(y, x)

µ(x)q(x, y)

)
.

If a proposed move is not accepted then the Markov chain staysat its current positionx. The

transition kernel is hence given by

p(x, dy) = α(x, y)q(x, dy) + r(x)δx(dy)

wherer(x) = 1−
´

α(x, y)q(x, dy) is the rejection probability for the next move fromx. Typical

examples of Metropolis-Hastings methods are Random Walk Metropolis algorithms whereq is

the transition kernel of a random walk. Note that ifq is symmetric then the acceptance probability

simplifies to

α(x, y) = min (1, µ(y)/µ(x)) .

Lemma 7.15(Detailed balance). The transition kernelp of a Metropolis-Hastings chain satisfies

the detailed balance condition

µ(dx)p(x, dy) = µ(dy)p(y, dx). (7.4.1)

In particular,µ is a stationary distribution forp.

Proof. On {(x, y) ∈ S × S : x 6= y}, the measureµ(dx)p(x, dy) is absolutely continuous w.r.t.

λ⊗ λ with density

µ(dx)α(x, y)q(x, y) = min
(
µ(x)q(x, y), µ(y)q(y, x)

)
.

The detailed balance condition (7.4.1) follows, since thisexpression is a symmetric function ofx

andy.

A central problem in the mathematical study of MCMC methods for the estimation of integrals

w.r.t. µ is the derivation of bounds for the approximation error

Ab,nf − µ(f) = Ab,nf0,
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wheref0 = f − µ(f). Typically, the initial distribution of the chain is not thestationary distribu-

tion, and the numbern of steps is large but finite. Thus one is interested in both asymptotic and

non-asymptotic bounds for ergodic averages of non-stationary Markov chains.

7.4.1 Asymptotic bounds for ergodic averages

As above, we assume that(Xn, P ) is a time-homogeneous Markov chain with transition kernel

p, stationary distributionµ, and initial distributionν.

Theorem 7.16(Ergodic theorem and CLT for non-stationary Markov chains). Let b, n ∈ N.

1) The bias of the estimatorAb,nf is bounded by

|E[Ab,nf ]− µ(f)| ≤ ‖νpb − µ‖TV‖f0‖sup.

2) If ‖νpn − µ‖TV→ 0 asn→∞ then

Ab,nf → µ(f) P -a.s. for anyf ∈ L1(µ), and

√
n (Ab,nf − µ(f)) D→ N(0, σ2

f ) for anyf ∈ L2(µ) s.t.Gf0 =
∞∑

n=0

pnf0 converges inL2(µ),

whereσ2
f = 2(f0, Gf0)L2(µ)− (f0, f0)L2(µ) is the asymptotic variance for the ergodic aver-

ages from the stationary case.

Proof. 1) SinceE[Ab,nf ] =
1
n

b+n−1∑
i=b

(νpi)(f), the bias is bounded by

|E[Ab,nf ]− µ(f)| = |E[Ab,nf0]− µ(f0)|

≤ 1

n

b+n−1∑

i=b

|(νpi)(f0)− µ(f0)| ≤
1

n

b+n−1∑

i=b

‖νpi − µ‖TV · ‖f0‖sup.

The assertion follows since the total variation distance‖νpi − µ‖TV from the stationary

distributionµ is a decreasing function ofi.

2) If ‖νpn − µ‖TV → 0 then one can show that there is a coupling(Xn, Yn) of the Markov

chains with transition kernelp and initial distributionsν andµ such that the coupling time

T = inf{n ≥ 0 : Xn = Yn for n ≥ T}
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is almost surely finite (Exercise). We can then approximateAb,nf by ergodic averages for

the stationary Markov chain(Yn):

Ab,nf =
1

n

b+n−1∑

i=b

f(Yi) +
1

n

b+n−1∑

i=b

(f(Xi)− f(Yi))1{i<T}.

The second sum is constant forb+ n ≥ T , so 1
n

times the sum converges almost surely to

zero, whereas the ergodic theorem and the central limit theorem apply to the first term on

the right hand side. This proves the assertion.

To apply the theorem in practice, bounds for the asymptotic variance are required. One possibility

for deriving such bounds is to estimate the contraction coefficient of the transition kernels on the

orthogonal complement

L2
0(µ) = {f ∈ L2(µ) : µ(f) = 0}

of the constants in the Hilbert spaceL2(µ). Indeed, let

γ(p) = ‖p‖L2
0(µ)→L2

0(µ)
= sup

f⊥1

‖pf‖L2(µ)

‖f‖L2(µ)

denote the operator norm ofp onL2
0(µ). If

c :=
∞∑

n=0

γ(pn) <∞ (7.4.2)

thenGf0 =
∞∑
n=0

pnf0 converges for anyf ∈ L2(µ), i.e., the asymptotic variancesσ2
f exist, and

σ2
f = 2(f0, Gf0)L2(µ) − (f0, f0)L2(µ) (7.4.3)

≤ (2c− 1)‖f0‖2L2(µ) = (2c− 1)Varµ(f).

A sufficient condition for (7.4.2) to hold isγ(p) < 1; in that case

c ≤
∞∑

n=0

γ(p)n =
1

1− γ(p) <∞ (7.4.4)

by multiplicativity of the operator norm.

Remark (Relation to spectral gap). By definition,

γ(p) = sup
f⊥1

(pf, pf)
1/2

L2(µ)

(f, f)
1/2

L2(µ)

= sup
f⊥1

(f, p∗pf)
1/2

L2(µ)

(f, f)
1/2

L2(µ)

= ̺(p∗p|L2
0(µ)

)1/2,
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i.e., γ(p) is the spectral radius of the linear operatorp∗p restricted toL2
0(µ). Now suppose

thatp satisfies the detailed balance condition w.r.t.µ. As remarked above, this is the case for

Metropolis-Hastings chains and random scan Gibbs samplers. Thenp is a self-adjoint linear

operator on the Hilbert spaceL2
0(µ). Therefore,

γ(p) = ̺(p∗p|L2
0(µ)

)1/2 = ̺(p|L2
0(µ)

) = sup
f⊥1

(f, pf)L2(µ)

(f, f)L2(µ)

, and

1− γ(p) = inf
f⊥1

(f, f − pf)L2(µ)

(f, f)L2(µ)

= Gap(L),

where thespectral gapGap(L) of the generatorL = p− I is defined by

Gap(L) = inf
f⊥1

(f,−Lf)L2(µ)

(f, f)L2(µ)

= inf spec(−L|L2
0(µ)

).

Gap(L) is the gap in the spectrum of−L between the eigenvalue0 corresponding to the constant

functions and the infimum of the spectrum on the complement ofthe constants. By (7.4.2) and

(7.4.3),2Gap(L)− 1 provides upper bound for the asymptotic variances in the symmetric case.

7.4.2 Non-asymptotic bounds for ergodic averages

For deriving non-asymptotic error bounds for estimates by ergodic averages we assume contrac-

tivity in an appropriate Kantorovich distance. Suppose that there exists a distanced on S, and

constantsα ∈ (0, 1) andσ ∈ R+ such that

(A1) W1
d (νp, ν̃p) ≤ αW1

d(ν, ν̃) for anyν, ν̃ ∈ P(S), and

(A2) Varp(x,·)(f) ≤ σ2‖f‖2Lip(d) for anyx ∈ S and any Lipschitz continuous functionf : S → R.

Suppose that(Xn, Px) is a Markov chain with transition kernelp.

Lemma 7.17(Decay of correlations). If (A1) and (A2) hold, then the following non-asymptotic

bounds hold for anyn, k ∈ N and any Lipschitz continuous functionf : S → R:

VarPx [f(Xn)] ≤
n−1∑

k=0

α2kσ2‖f‖2Lip(d), and (7.4.5)

|CovPx [f(Xn), f(Xn+k)]| ≤
αk

1− α2
σ2‖f‖2Lip(d). (7.4.6)
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Proof. The inequality (7.4.5) follows by induction onn. It holds true forn = 0, and if (7.4.5)

holds for somen ≥ 0 then

VarPx [f(Xn+1)] = Ex

[
VarPx [f(Xn+1)|FX

n ]
]
+VarPx

[
Ex[f(Xn+1)|FX

n ]
]

= Ex

[
Varp(Xn,·)(f)

]
+VarPx

[
(pf)(Xn)

]

≤ σ2‖f‖2Lip(d) +

n−1∑

k=0

α2kσ2‖pf‖2Lip(d)

≤
n∑

k=0

α2kσ2‖f‖2Lip(d)

by the Markov property and the assumptions (A1) and (A2). Noting that
n−1∑

k=0

α2k ≤ 1

1− α2
for anyn ∈ N,

the bound (7.4.6) for the correlations follows from (7.4.5)since
∣∣CovPx [f(Xn), f(Xn+k)]

∣∣ =
∣∣CovPx

[
f(Xn), (p

kf)(Xn)
] ∣∣

≤ VarPx [f(Xn)]
1/2 VarPx

[
(pkf)(Xn)

]1/2

≤ 1

1− α2
σ2‖f‖Lip(d)‖pkf‖Lip(d)

≤ αk

1− α2
σ2‖f‖2Lip(d)

by Assumption (A1).

As a consequence of Lemma 7.17 we obtain a non-asymptotic upper bound for variances of

ergodic averages.

Theorem 7.18(Quantitative bounds for bias and variance of ergodic averages of non sta-

tionary Markov chains ). Suppose that (A1) and (A2) hold. Then the following upper bounds

hold for anyb, n ∈ N, any initial distributionν ∈ P(S), and any Lipschitz continuous function

f : S → R:

∣∣Eν [Ab,nf ]− µ(f)
∣∣ ≤ 1

n

αb

1− αW
1
d (ν, µ)‖f‖Lip(d), (7.4.7)

VarPν [Ab,nf ] ≤
1

n
‖f‖2Lip(d) ·

1

(1− α)2
(
σ2 +

α2b

n
Var(ν)

)
(7.4.8)

whereµ is a stationary distribution for the transition kernelp, and

Var(ν) :=
1

2

ˆ ˆ

d(x, y)2ν(dx)ν(dy).
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Proof. 1) By definition of the averaging operator,

Eν [Ab,nf ] =
1

n

b+n−1∑

i=b

(νpi)(f), and thus

|Eν [Ab,nf ]− µ(f)| ≤
1

n

b+n−1∑

i=b

|(νpi)(f)− µ(f)|

≤ 1

n

b+n−1∑

i=b

W1
d (νp

i, µ) ‖f‖Lip(d) ≤
1

n

b+n−1∑

i=b

αiW1
d (ν, µ) ‖f‖Lip(d).

2) By the correlation bound in Lemma 7.17,

VarPx [Ab,nf ] =
1

n2

b+n−1∑

i,j=b

CovPx [f(Xi), f(Xj)] ≤
1

n2

b+n−1∑

i,j=b

α|i−j|

1− α2
σ2 ‖f‖2Lip(d)

≤ 1

n

σ2

(1− α2)

(
1 + 2

∞∑

k=1

αk

)
‖f‖2Lip(d) =

1

n

σ2

(1− α)2 ‖f‖
2
Lip(d).

Therefore, for an arbitrary initial distributionν ∈ P(S),

VarPν [Ab,nf ] = Eν [VarPν [Ab,nf |X0]] + VarPν [Eν [Ab,nf |X0]]

=

ˆ

VarPx [Ab,nf ] ν(dx) + Varν

[
1

n

b+n−1∑

i=b

pif

]

≤ 1

n

σ2

(1− α)2‖f‖
2
Lip(d) +

(
1

n

b+n−1∑

i=b

Varν(p
if)1/2

)2

.

The assertion now follows since

Varν(p
if) ≤ 1

2
‖pif‖2Lip(d)

¨

d(x, y)2ν(dx)ν(dy)

≤ α2i ‖f‖2Lip(d) Var(ν).

7.5 Couplings of diffusions
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Appendix

Let (Ω,A, P ) be a probability space, we denote byL1(Ω,A, P ) (L1(P )) the space of measurable

random variablesX : Ω → R with E[X−] < ∞ andL1(P ) := L1(P )/ ∼ where two random

variables a in relation to each other, if they are equal almost everywhere.

A.1 Conditional expectation

For more details and proofs of the following statements see [Eberle:Stochastic processes] [11].

Definition (Conditional expectations). LetX ∈ L1(Ω,A, P ) (or non-negative) andF ⊂ A a

σ-algebra. A random variableZ ∈ L1(Ω,F , P ) is calledconditional expectationofX givenF
(writtenZ = E[X|F ]), if

• Z isF -measurable, and

• for all B ∈ F ,
ˆ

B

ZdP =

ˆ

B

XdP.

The random variableE[X|F ] is P -a.s. unique. For a measurable Space(S,S) and an abritatry

random variableY : Ω → S we defineE[X|Y ] := E[X|σ(Y )] and there exists aP -a.s. unique

measurable functiong : S → R such thatE[X|σ(Y )] = g(Y ). One also sometimes defines

E[X|Y = y] := g(y) µY -a.e. (µY law ofY ).

Theorem A.1. Let X, Y andXn(n ∈ N) be non-negative or integrable random variables on

(Ω,A, P ) andF ,G ⊂ A twoσ-algebras. The following statements hold:
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(1). Linearity:E[λX + µY |F ] = λE[X|F ] + µE[Y |F ] P -almost surely for allλ, µ ∈ R.

(2). Monotonicity:X ≥ 0 P -almost surely implies thatE[X|F ] ≥ 0 P -almost surely.

(3). X = Y P -almost surely implies thatE[X|F ] = E[Y |F ] P -almost surely.

(4). Monotone convergence: If(Xn) is growing monotone withX1 ≥ 0, then

E[supXn|F ] = supE[Xn|F ] P -almost surely.

(5). Projectivity / Tower property: IfG ⊂ F , then

E[E[X|F ]|G] = E[X|G] P -almost surely.

In particular:

E[E[X|Y, Z]|Y ] = E[X|Y ] P -almost surely.

(6). LetY beF -measurable withY ·X ∈ L1 or ≥ 0. This implies that

E[Y ·X|F ] = Y ·E[X|F ] P -almost surely.

(7). Independence: IfX is independent ofF , thenE[X|F ] = E[X ] P -almost surely.

(8). Let(S,S) and(T, T ) be two measurable spaces. IfY : Ω→ S isF -measurable,

X : Ω→ T independent ofF andf : S × T → [0,∞) a product measurable map, then it

holds that

E[f(X, Y )|F ](ω) = E[f(X, Y (ω))] for P -almost allω

Definition (Conditional probability ). Let(Ω,A, P ) be a probability space,F aσ-algebra. The

conditional probabilityis defined as

P [A|F ](ω) := E[1A|F ](ω) ∀A ∈ F , ω ∈ Ω.

A.2 Martingales

Classical analysis starts with studying convergence of sequences of real numbers. Similarly,

stochastic analysis relies on basic statements about sequences of real-valued random variables.

Any such sequence can be decomposed uniquely into a martingale, i.e., a real.valued stochastic
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process that is “constant on average”, and a predictable part. Therefore, estimates and conver-

gence theorems for martingales are crucial in stochastic analysis.

A.2.1 Filtrations

We fix a probability space(Ω,A, P ). Moreover, we assume that we are given an increasing

sequenceFn (n = 0, 1, 2, . . .) of sub-σ-algebras ofA. Intuitively, we often think ofFn as

describing the information available to us at timen. Formally, we define:

Definition (Filtration, adapted process). (1). A filtration on(Ω,A) is an increasing sequence

F0 ⊆ F1 ⊆ F2 ⊆ . . .

of σ-algebrasFn ⊆ A.

(2). A stochastic process(Xn)n≥0 is adapted to a filtration(Fn)n≥0 iff eachXn isFn-measurable.

Example. (1). Thecanonical filtration(FX
n ) generated by a stochastic process(Xn) is given

by

FX
n = σ(X0, X1, . . . , Xn).

If the filtration is not specified explicitly, we will usuallyconsider the canonical filtration.

(2). Alternatively, filtrations containing additional information are of interest, for example the

filtration

Fn = σ(Z,X0, X1, . . . , Xn)

generated by the process(Xn) and an additional random variableZ, or the filtration

Fn = σ(X0, Y0, X1, Y1, . . . , Xn, Yn)

generated by the process(Xn) and a further process(Yn). Clearly, the process(Xn) is

adapted to any of these filtrations. In general,(Xn) is adapted to a filtration(Fn) if and

only if FX
n ⊆ Fn for anyn ≥ 0.

A.2.2 Martingales and supermartingales

We can now formalize the notion of a real-valued stochastic process that is constant (respectively

decreasing or increasing) on average:

Definition (Martingale, supermartingale, submartingale).
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(1). A sequence of real-valued random variablesMn : Ω → R (n = 0, 1, . . .) on the proba-

bility space(Ω,A, P ) is called a martingale w.r.t. the filtration(Fn) if and only if

(a) (Mn) is adapted w.r.t.(Fn),

(b) Mn is integrable for anyn ≥ 0, and

(c) E[Mn | Fn−1] = Mn−1 for anyn ∈ N.

(2). Similarly,(Mn) is called a supermartingale (resp. a submartingale) w.r.t.(Fn), if and only

if (a) holds, the positive partM+
n (resp. the negative partM−

n ) is integrable for anyn ≥ 0,

and (c) holds with “=” replaced by “≤”, “ ≥” respectively.

Condition (c) in the martingale definition can equivalentlybe written as

(c’) E[Mn+1 −Mn | Fn] = 0 for anyn ∈ Z+,

and correspondingly with “=” replaced by “≤” or “≥” for super- or submartingales.

Intuitively, a martingale is a ”fair gameÅ1
2
Å 1

2
, i.e.,Mn−1 is the best prediction (w.r.t. the mean

square error) for the next valueMn given the information up to timen − 1. A supermartingale

is “decreasingon average”, a submartingale is“increasingon average”, and a martingale is both

“decreasing” and “increasing”, i.e.,“constanton average”. In particular, by induction onn, a

martingale satisfies

E[Mn] = E[M0] for anyn ≥ 0.

Similarly, for a supermartingale, the expectation valuesE[Mn] are decreasing. More generally,

we have:

Lemma A.2. If (Mn) is a martingale (respectively a supermartingale) w.r.t. a filtration (Fn)

then

E[Mn+k | Fn]
(≤)
= Mn P -almost surely for anyn, k ≥ 0.

A.2.3 Doob Decomposition

We will show now that any adapted sequence of real-valued random variables can be decomposed

into a martingale and a predictable process. In particular,the variance process of a martingale

(Mn) is the predictable part in the corresponding Doob decomposition of the process(M2
n). The

Doob decomposition for functions of Markov chains implies the Martingale Problem characteri-

zation of Markov chains.

Let (Ω,A, P ) be a probability space and(Fn)n≥0 a filtration on(Ω,A).
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Definition (Predictable process). A stochastic process(An)n≥0 is called predictable w.r.t.(Fn)

if and only ifA0 is constant andAn is measurable w.r.t.Fn−1 for anyn ∈ N.

Intuitively, the valueAn(ω) of a predictable process can be predicted by the informationavailable

at timen− 1.

Theorem A.3(Doob decomposition). Every(Fn) adapted sequence of integrable random vari-

ablesYn (n ≥ 0) has a unique decomposition (up to modification on null sets)

Yn = Mn + An (A.2.1)

into an (Fn) martingale(Mn) and a predictable process(An) such thatA0 = 0. Explicitly, the

decomposition is given by

An =
n∑

k=1

E[Yk − Yk−1 | Fk−1], and Mn = Yn −An. (A.2.2)

Remark. (1). The incrementsE[Yk − Yk−1 | Fk−1] of the process(An) are the predicted incre-

ments of(Yn) given the previous information.

(2). The process(Yn) is a supermartingale (resp. a submartingale) if and only if the predictable

part(An) is decreasing (resp. increasing).

Proof of Theorem A.3. Uniqueness:For any decomposition as in (A.2.1) we have

Yk − Yk−1 = Mk −Mk−1 + Ak −Ak−1 for anyk ∈ N.

If (Mn) is a martingale and(An) is predictable then

E[Yk − Yk−1 | Fk−1] = E[Ak − Ak−1 | Fk−1] = Ak −Ak−1 P -a.s.

This implies that (A.2.2) holds almost surely ifA0 = 0.

Existence:Conversely, if(An) and(Mn) are defined by (A.2.2) then(An) is predictable with

A0 = 0 and(Mn) is a martingale, since

E[Mk −Mk−1 | Fk−1] = 0 P -a.s. for anyk ∈ N.
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A.3 Stopping times

Throughout this section, we fix a filtration(Fn)n≥0 on a probability space(Ω,A, P ).

A.3.1 Martingale transforms

Suppose that(Mn)n≥0 is a martingale w.r.t.(Fn), and(Cn)n∈N is a predictable sequence of real-

valued random variables. For example, we may think ofCn as the stake in then-th round of

a fair game, and of the martingale incrementMn − Mn−1 as the net gain (resp. loss) per unit

stake. In this case, the capitalIn of a player with gambling strategy(Cn) aftern rounds is given

recursively by

In = In−1 + Cn · (Mn −Mn−1) for anyn ∈ N,

i.e.,

In = I0 +
n∑

k=1

Ck · (Mk −Mk−1).

Definition (Martingale transform ). The stochastic processC•M defined by

(C•M)n :=
n∑

k=1

Ck · (Mk −Mk−1) for anyn ≥ 0,

is called the martingale transform of the martingale(Mn)n≥0 w.r.t. the predictable sequence

(Ck)k≥1, or the discrete stochastic integral of(Cn) w.r.t. (Mn).

The processC•M is a time-discrete version of the stochastic integral
t́

0

Cs dMs for continuous-

time processesC andM , cf. [Introduction to Stochastic Analysis].

Example (Martingale strategy). One origin of the word “martingale” is the name of a well-

known gambling strategy: In a standard coin-tossing game, the stake is doubled each time a loss

occurs, and the player stops the game after the first time he wins. If the net gain inn rounds with

unit stake is given by a standard Random Walk

Mn = η1 + . . .+ ηn, ηi i.i.d. with P [ηi = 1] = P [ηi = −1] = 1/2,

then the stake in then-th round is

Cn = 2n−1 if η1 = . . . = ηn−1 = −1, and Cn = 0 otherwise.
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Clearly, with probability one, the game terminates in finitetime, and at that time the player has

always won one unit, i.e.,

P [(C•M)n = 1 eventually] = 1.

1

2

−1

−2

−3

−4

−5

−6

−7

n

(C•M)n

At first glance this looks like a safe winning strategy, but ofcourse this would only be the case,

if the player had unlimited capital and time available.

Theorem A.4 (You can’t beat the system!). (1). If (Mn)n≥0 is an (Fn) martingale, and

(Cn)n≥1 is predictable withCn · (Mn−Mn−1) ∈ L1(Ω,A, P ) for anyn ≥ 1, thenC•M is

again an(Fn) martingale.

(2). If (Mn) is an (Fn) supermartingale and(Cn)n≥1 is non-negative and predictable with

Cn · (Mn −Mn−1) ∈ L1 for anyn, thenC•M is again a supermartingale.
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Proof. Forn ≥ 1 we have

E[(C•M)n − (C•M)n−1 | Fn−1] = E[Cn · (Mn −Mn−1) | Fn−1]

= Cn · E[Mn −Mn−1 | Fn−1] = 0 P -a.s.

This proves the first part of the claim. The proof of the secondpart is similar.

The theorem shows that a fair game (a martingale) can not be transformed by choice of a clever

gambling strategy into an unfair (or “superfair”) game. In models of financial markets this fact is

crucial to exclude the existence of arbitrage possibilities (riskless profit).

Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain

E[(C•M)n] = E[(C•M)0] = 0 for anyn ≥ 0

by the martingale property, although

lim
n→∞

(C•M)n = 1 P -a.s.

This is a classical example showing that the assertion of thedominated convergence theorem may

not hold if the assumptions are violated.

Remark. The integrability assumption in Theorem A.4 is always satisfied if the random variables

Cn are bounded, or if bothCn andMn are square-integrable for anyn.

A.3.2 Stopped Martingales

One possible strategy for controlling a fair game is to terminate the game at a time depending on

the previous development. Recall that a random variableT : Ω→ {0, 1, 2, . . .} ∪ {∞} is called

a stopping timew.r.t. the filtration(Fn) if and only if the event{T = n} is contained inFn for

anyn ≥ 0, or equivalently, iff{T ≤ n} ∈ Fn for anyn ≥ 0.

We consider an(Fn)-adapted stochastic process(Mn)n≥0, and an(Fn)-stopping timeT on the

probability space(Ω,A, P ). The process stopped at timeT is defined as(MT∧n)n≥0 where

MT∧n(ω) = MT (ω)∧n(ω) =




Mn(ω) for n ≤ T (ω),

MT (ω)(ω) for n ≥ T (ω).

For example, the process stopped at a hitting timeTA gets stuck at the first time it enters the set

A.
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Theorem A.5(Optional Stopping Theorem,Version 1). If (Mn)n≥0 is a martingale (resp. a su-

permartingale) w.r.t.(Fn), andT is an(Fn)-stopping time, then the stopped process(MT∧n)n≥0

is again an(Fn)-martingale (resp. supermartingale). In particular, we have

E[MT∧n]
(≤)
= E[M0] for anyn ≥ 0.

Proof. Consider the following strategy:

Cn = I{T≥n} = 1− I{T≤n−1},

i.e., we put a unit stake in each round before timeT and quit playing at timeT . SinceT is a

stopping time, the sequence(Cn) is predictable. Moreover,

MT∧n −M0 = (C•M)n for anyn ≥ 0. (A.3.1)

In fact, for the increments of the stopped process we have

MT∧n −MT∧(n−1) =

{
Mn −Mn−1 if T ≥ n

0 if T ≤ n− 1

}
= Cn · (Mn −Mn−1),

and (A.3.1) follows by summing overn. Since the sequence(Cn) is predictable, bounded and

non-negative, the processC•M is a martingale, supermartingale respectively, provided the same

holds forM .

Remark (IMPORTANT ). (1). In general, it isNOT TRUE under the assumptions in Theorem

A.5 that

E[MT ] = E[M0], E[MT ] ≤ E[M0] respectively. (A.3.2)

Suppose for example that(Mn) is the classical Random Walk starting at0 andT = T{1} is

the first hitting time of the point1. Then, by recurrence of the Random Walk,T < ∞ and

MT = 1 hold almost surely althoughM0 = 0.

(2). If, on the other hand,T is a bounded stopping time, then there existsn ∈ N such that

T (ω) ≤ n for anyω. In this case, the optional stopping theorem implies

E[MT ] = E[MT∧n]
(≤)
= E[M0].
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Example (Classical Ruin Problem). Let a, b, x ∈ Z with a < x < b. We consider the classical

Random Walk

Xn = x+
n∑

i=1

ηi, ηi i.i.d. with P [ηi = ±1] =
1

2
,

with initial valueX0 = x. We now show how to apply the optional stopping theorem to compute

the distributions of the exit time

T (ω) = min{n ≥ 0 : Xn(ω) 6∈ (a, b)},

and the exit pointXT . These distributions can also be computed by more traditional methods

(first step analysis, reflection principle), but martingales yield an elegant and general approach.

(1). Ruin probabilityr(x) = P [XT = a].

The process(Xn) is a martingale w.r.t. the filtrationFn = σ(η1, . . . , ηn), andT < ∞
almost surely holds by elementary arguments. As the stoppedprocessXT∧n is bounded

(a ≤ XT∧n <≤ b), we obtain

x = E[X0] = E[XT∧n]
n→∞→ E[XT ] = a · r(x) + b · (1− r(x))

by the Optional Stopping Theorem and the Dominated Convergence Theorem. Hence

r(x) =
b− x
a− x. (A.3.3)

(2). Mean exit time from(a, b).

To compute the expectation valueE[T ], we apply the Optional Stopping Theorem to the

(Fn) martingale

Mn := X2
n − n.

By monotone and dominated convergence, we obtain

x2 = E[M0] = E[MT∧n] = E[X2
T∧n]−E[T ∧ n]

n→∞−→ E[X2
T ]− E[T ].

Therefore, by (A.3.3),

E[T ] = E[X2
T ]− x2 = a2 · r(x) + b2 · (1− r(x))− x2

= (b− x) · (x− a). (A.3.4)
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(3). Mean passage time ofb is infinite.

The first passage timeTb = min{n ≥ 0 : Xn = b} is greater or equal than the exit time

from the interval(a, b) for anya < x. Thus by (A.3.4), we have

E[Tb] ≥ lim
a→−∞

(b− x) · (x− a) = ∞,

i.e.,Tb is not integrable! These and some other related passage times are important exam-

ples of random variables with a heavy-tailed distribution and infinite first moment.

(4). Distribution of passage times.

We now compute the distribution of the first passage timeTb explicitly in the casex = 0

andb = 1. Hence letT = T1. As shown above, the process

Mλ
n := eλXn/(coshλ)n, n ≥ 0,

is a martingale for eachλ ∈ R. Now supposeλ > 0. By the Optional Stopping Theorem,

1 = E[Mλ
0 ] = E[Mλ

T∧n] = E[eλXT∧n/(coshλ)T∧n] (A.3.5)

for anyn ∈ N. Asn→∞, the integrands on the right hand side converge toeλ(coshλ)−T ·
I{T<∞}. Moreover, they are uniformly bounded byeλ, sinceXT∧n ≤ 1 for anyn. Hence

by the Dominated Convergence Theorem, the expectation on the right hand side of (A.3.5)

converges toE[eλ/(coshλ)T ; T <∞], and we obtain the identity

E[(cosh λ)−T ; T <∞] = e−λ for anyλ > 0. (A.3.6)

Taking the limit asλ ց 0, we see thatP [T < ∞] = 1. Taking this into account, and

substitutings = 1/ coshλ in (A.3.6), we can now compute the generating function ofT

explicitly:

E[sT ] = e−λ = (1−
√
1− s2)/s for anys ∈ (0, 1). (A.3.7)

Developing both sides into a power series finally yields

∞∑

n=0

sn · P [T = n] =
∞∑

m=1

(−1)m+1

(
1/2

m

)
s2m−1.

Therefore, the distribution of the first passage time of1 is given byP [T = 2m] = 0 and

P [T = 2m− 1] = (−1)m+1

(
1/2

m

)
= (−1)m+1 · 1

2
·
(
−1
2

)
· · ·
(
1

2
−m+ 1

)
/m!

for anym ≥ 1.
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A.3.3 Optional Stopping Theorems

Stopping times occurring in applications are typically notbounded, see the example above.

Therefore, we need more general conditions guaranteeing that (A.3.2) holds nevertheless. A

first general criterion is obtained by applying the Dominated Convergence Theorem:

Theorem A.6 (Optional Stopping Theorem, Version 2). Suppose that(Mn) is a martingale

w.r.t. (Fn), T is an(Fn)-stopping time withP [T < ∞] = 1, and there exists a random variable

Y ∈ L1(Ω,A, P ) such that

|MT∧n| ≤ Y P -almost surely for anyn ∈ N.

Then

E[MT ] = E[M0].

Proof. SinceP [T <∞] = 1, we have

MT = lim
n→∞

MT∧n P -almost surely.

By Theorem A.5,E[M0] = E[MT∧n], and by the Dominated Convergence Theorem,

E[MT∧n] −→ E[MT ] asn→∞.

Remark (Weakening the assumptions). Instead of the existence of an integrable random vari-

ableY dominating the random variablesMT∧n, n ∈ N, it is enough to assume that these random

variables areuniformly integrable, i.e.,

sup
n∈N

E
[
|MT∧n| ; |MT∧n| ≥ c

]
→ 0 asc→∞.

For non-negative supermartingales, we can apply Fatou’s Lemma instead of the Dominated Con-

vergence Theorem to pass to the limit asn → ∞ in the Stopping Theorem. The advantage is

that no integrability assumption is required. Of course, the price to pay is that we only obtain an

inequality:

Theorem A.7(Optional Stopping Theorem, Version 3). If (Mn) is a non-negative supermartin-

gale w.r.t.(Fn), then

E[M0] ≥ E[MT ; T <∞]

holds for any(Fn) stopping timeT .
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Proof. SinceMT = lim
n→∞

MT∧n on{T <∞}, andMT ≥ 0, Theorem A.5 combined with Fatou’s

Lemma implies

E[M0] ≥ lim inf
n→∞

E[MT∧n] ≥ E
[
lim inf
n→∞

MT∧n

]
≥ E[MT ; T <∞].

A.4 Almost sure convergence of supermartingales

The strength of martingale theory is partially due to powerful general convergence theorems that

hold for martingales, sub- and supermartingales. Let(Zn)n≥0 be a discrete-parameter super-

martingale w.r.t. a filtration(Fn)n≥0 on a probability space(Ω,A, P ). The following theorem

yields a stochastic counterpart to the fact that any lower bounded decreasing sequence of reals

converges to a finite limit:

Theorem A.8 (Supermartingale Convergence Theorem, Doob). If supn≥0E[Z
−
n ] < ∞ then

(Zn) converges almost surely to an integrable random variableZ∞ ∈ L1(Ω,A, P ). In particular,

supermartingales that are uniformly bounded from above converge almost surely to an integrable

random variable.

Remark (L1 boundedness andL1 convergence).

(1). Although the limit is integrable,L1 convergence doesnot hold in general.

(2). The conditionsupE[Z−
n ] < ∞ holds if and only if(Zn) is bounded inL1. Indeed, as

E[Z+
n ] <∞ by our definition of a supermartingale, we have

E[ |Zn| ] = E[Zn] + 2E[Z−
n ] ≤ E[Z0] + 2E[Z−

n ] for anyn ≥ 0.

For proving the Supermartingale Convergence Theorem, we introduce the numberU (a,b)(ω) of

upcrossings over an interval(a, b) by the sequenceZn(ω), cf. below for the exact definition.
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b

a

1st upcrossing 2nd upcrossing

Note that ifU (a,b)(ω) is finite for any non-empty bounded interval(a, b) thenlim supZn(ω) and

lim inf Zn(ω) coincide, i.e., the sequence(Zn(ω)) converges. Therefore, to show almost sure

convergence of(Zn), we derive an upper bound forU (a,b). We first prove this key estimate and

then complete the proof of the theorem.

A.4.1 Doob’s upcrossing inequality

Forn ∈ N anda, b ∈ R with a < b we define the numberU (a,b)
n of upcrossings over the interval

(a, b) before timen by

U (a,b)
n = max

{
k ≥ 0 : ∃ 0 ≤ s1 < t1 < s2 < t2 . . . < sk < tk ≤ n : Zsi ≤ a, Zti ≥ b

}
.

Lemma A.9 (Doob). If (Zn) is a supermartingale then

(b− a) · E[U (a,b)
n ] ≤ E[(Zn − a)−] for anya < b andn ≥ 0.

Proof. We may assumeE[Z−
n ] < ∞ since otherwise there is nothing to prove. The key idea is

to set up a predictable gambling strategy that increases ourcapital by(b− a) for each completed

upcrossing. Since the net gain with this strategy should again be a supermartingale this yields an

upper bound for the average number of upcrossings. Here is the strategy:

• Wait untilZk ≤ a.

• Then play unit stakes untilZk ≥ b.

•

re
p

ea
t

The stakeCk in roundk is

C1 =




1 if Z0 ≤ a,

0 otherwise,
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and

Ck =




1 if (Ck−1 = 1 andZk−1 ≤ b) or (Ck−1 = 0 andZk−1 ≤ a),

0 otherwise.

Clearly, (Ck) is a predictable, bounded and non-negative sequence of random variables. More-

over,Ck · (Zk − Zk−1) is integrable for anyk ≤ n, becauseCk is bounded and

E
[
|Zk|

]
= 2E[Z+

k ]−E[Zk] ≤ 2E[Z+
k ]− E[Zn] ≤ 2E[Z+

k ]−E[Z−
n ]

for k ≤ n. Therefore, by Theorem A.4 and the remark below, the process

(C•Z)k =

k∑

i=1

Ci · (Zi − Zi−1), 0 ≤ k ≤ n,

is again a supermartingale.

Clearly, the value of the processC•Z increases by at least(b − a) units during each completed

upcrossing. Between upcrossing periods, the value of(C•Z)k is constant. Finally, if the final

timen is contained in an upcrossing period, then the process can decrease by at most(Zn − a)−
units during that last period (sinceZk might decrease before the next upcrossing is completed).

Therefore, we have

(C•Z)n ≥ (b− a) · U (a,b)
n − (Zn − a)−, i.e.,

(b− a) · U (a,b)
n ≤ (C•Z)n + (Zn − a)−.

Gain≥ b− a Gain≥ b− a Loss≤ (Zn − a)−

Zn

SinceC•Z is a supermartingale with initial value0, we obtain the upper bound

(b− a)E[U (a,b)
n ] ≤ E[(C•Z)n] + E[(Zn − a)−] ≤ E[(Zn − a)−].
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A.4.2 Proof of Doob’s Convergence Theorem

We can now complete the proof of Theorem A.8.

Proof. Let

U (a,b) = sup
n∈N

U (a,b)
n

denote the total number of upcrossings of the supermartingale (Zn) over an interval(a, b) with

−∞ < a < b <∞. By the upcrossing inequality and monotone convergence,

E[U (a,b)] = lim
n→∞

E[U (a,b)
n ] ≤ 1

b− a · supn∈N
E[(Zn − a)−]. (A.4.1)

AssumingsupE[Z−
n ] < ∞, the right hand side of (A.4.1) is finite since(Zn − a)− ≤ |a|+ Z−

n .

Therefore,

U (a,b) < ∞ P -almost surely,

and hence the event

{lim inf Zn 6= lim supZn} =
⋃

a,b∈Q
a<b

{U (a,b) =∞}

has probability zero. This proves almost sure convergence.

It remains to show that the almost sure limitZ∞ = limZn is an integrable random variable

(in particular, it is finite almost surely). This holds true as, by the remark below Theorem A.8,

supE[Z−
n ] <∞ implies that(Zn) is bounded inL1, and therefore

E[ |Z∞| ] = E[lim |Zn| ] ≤ lim inf E[ |Zn| ] < ∞

by Fatou’s lemma.

A.4.3 Examples and first applications

We now consider a few prototypic applications of the almost sure convergence theorem:

Example (Sums of i.i.d. random variables). Consider a Random Walk

Sn =

n∑

i=1

ηi

onR with centered and bounded increments:

ηi i.i.d. with |ηi| ≤ c andE[ηi] = 0, c ∈ R.
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Suppose thatP [ηi 6= 0] > 0. Then there existsε > 0 such thatP [|ηi| ≥ ε] > 0. As the

increments are i.i.d., the event{|ηi| ≥ ε} occurs infinitely often with probability one. Therefore,

almost surely the martingale(Sn) does not converge asn→∞.

Now leta ∈ R. We consider the first hitting time

Ta = min{n ≥ 0 : Sn ≥ a}

of the interval[a,∞). By the Optional Stopping Theorem, the stopped Random Walk(STa∧n)n≥0

is again a martingale. Moreover, asSk < a for anyk < Ta and the increments are bounded byc,

we obtain the upper bound

STa∧n < a+ c for anyn ∈ N.

Therefore, the stopped Random Walk converges almost surelyby the Supermartingale Conver-

gence Theorem. As(Sn) does not converge, we can conclude thatP [Ta <∞] = 1 for anya > 0,

i.e.,

lim supSn = ∞ almost surely.

Since(Sn) is also a submartingale, we obtain

lim inf Sn = −∞ almost surely

by an analogue argument.

Remark (Almost sure vs.Lp convergence). In the last example, the stopped process does not

converge inLp for anyp ∈ [1,∞). In fact,

lim
n→∞

E[STa∧n] = E[STa ] ≥ a whereas E[S0] = 0.

Example (Products of non-negative i.i.d. random variables). Consider a growth process

Zn =

n∏

i=1

Yi

with i.i.d. factorsYi ≥ 0 with finite expectationα ∈ (0,∞). Then

Mn = Zn/α
n

is a martingale. By the almost sure convergence theorem, a finite limit M∞ exists almost surely,

becauseMn ≥ 0 for all n. For the almost sure asymptotics of(Zn), we distinguish three different

cases:

University of Bonn April 2015



274 CHAPTER A. APPENDIX

(1). α < 1 (subcritical): In this case,

Zn = Mn · αn

converges to0 exponentially fast with probability one.

(2). α = 1 (critical): Here(Zn) is a martingale and converges almost surely to a finite limit.If

P [Yi 6= 1] > 0 then there existsε > 0 such thatYi ≥ 1+ ε infinitely often with probability

one. This is consistent with convergence of(Zn) only if the limit is zero. Hence, if(Zn) is

not almost surely constant, then also in the critical caseZn → 0 almost surely.

(3). α > 1 (supercritical): In this case, on the set{M∞ > 0},

Zn = Mn · αn ∼ M∞ · αn,

i.e., (Zn) grows exponentially fast. The asymptotics on the set{M∞ = 0} is not evident

and requires separate considerations depending on the model.

Although most of the conclusions in the last example could have been obtained without martin-

gale methods (e.g. by taking logarithms), the martingale approach has the advantage of carrying

over to far more general model classes. These include for example branching processes or expo-

nentials of continuous time processes.

Example (Boundary behaviour of harmonic functions). Let D ⊆ Rd be a bounded open

domain, and leth : D → R be a harmonic function onD that is bounded from below:

∆h(x) = 0 for anyx ∈ D, inf
x∈D

h(x) > −∞. (A.4.2)

To study the asymptotic behavior ofh(x) asx approaches the boundary∂D, we construct a

Markov chain(Xn) such thath(Xn) is a martingale: Letr : D → (0,∞) be a continuous

function such that

0 < r(x) < dist(x, ∂D) for anyx ∈ D, (A.4.3)

and let(Xn) w.r.tPx denote the canonical time-homogeneous Markov chain with state spaceD,

initial valuex, and transition probabilities

p(x, dy) = Uniform distribution on the sphere{y ∈ Rd : |y − x| = r(x)}.
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x
r(x)

D

By (A.4.3), the functionh is integrable w.r.t.p(x, dy), and, by the mean value property,

(ph)(x) = h(x) for anyx ∈ D.

Therefore, the processh(Xn) is a martingale w.r.t.Px for eachx ∈ D. As h(Xn) is lower

bounded by (A.4.2), the limit asn → ∞ existsPx-almost surely by the Supermartingale Con-

vergence Theorem. In particular, since the coordinate functionsx 7→ xi are also harmonic and

lower bounded onD, the limitX∞ = limXn existsPx-almost surely. Moreover,X∞ is in ∂D,

becauser is bounded from below by a strictly positive constant on any compact subset ofD.

Summarizing we have shown:

(1). Boundary regularity: If h is harmonic and bounded from below onD then the limit

lim
n→∞

h(Xn) exists along almost every trajectoryXn to the boundary∂D.

(2). Representation ofh in terms of boundary values:If h is continuous onD, thenh(Xn) →
h(X∞) Px-almost surely and hence

h(x) = lim
n→∞

Ex[h(Xn)] = E[h(X∞)],

i.e., the distribution ofX∞ w.r.t. Px is the harmonic measure on∂D.

Note that, in contrast to classical results from analysis, the first statement holds without any

smoothness condition on the boundary∂D. Thus, although boundary values ofh may not exist

in the classical sense, they still do exist along almost every trajectory of the Markov chain!

A.5 Brownian Motion

Definition (Brownian motion).
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(1). Let a ∈ R. A continous-time stochastic processBt : Ω → R, t ≥ 0, definend on a

probability space(Ω,A, P ), is called aBrownian motion (starting in a)if and only if

a) B0(ω) = a for eachω ∈ Ω.

b) For any partition0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the incrementsBti+1
− Bti are indepedent

random variables with distribution

Bti+1
− Bti ∼ N(0, ti+1 − ti).

c) P -almost every sample patht 7→ Bt(ω) is continous.

d) AnRd-valued stochastic processBt(ω) = (B
(1)
t (ω), . . . , B

(d)
t (ω)) is called a multi-dimensional

Brownian motion if and only if the component processes(B
(1)
t ), . . . , (B

(d)
t ) are independent

one-dimensional Brownian motions.

Thus the increments of ad-dimensional Brownian motion are independent over disjoint time

intervals and have a multivariate normal distribution:

Bt −Bs ∼ N(0, (t− s) · Id) for any0 ≤ s ≤ t.
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