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Chapter O

Introduction

0.1 Stochastic processes

Let ] = Z, = {0,1,2,...} (discrete time) o = R, = [0,00) (continuous time), and let
(Q, 2, P) be a probability space. (5, B) is a measurable space thestachastic process with
state spaceS is a collection( X} );c; of random variables

Xt:Q—>S.

More generally, we will consider processes with finite lifee. Here we add an extra poiatto
the state space and we endSw = SU{A} with theos-algebraB, = {B, BU{A} : B € B}.
A stochastic process with state space and life time ( is then defined as a process

X;:Q — Sx suchthat X;(w)=A ifandonlyif t> ((w).

Here( : Q — [0, o] is a random variable.

We will usually assume that the state spatés a polish space i.e., there exists a metric
d: S xS — R, suchthat S, d) is complete and separable. Note that for example open sets in
R"™ are polish spaces, although they are not complete w.r.tEtlteidean metric. Indeed, most
state spaces encountered in applications are polish. Mergmn polish spaces regular version of
conditional probability distributions exist. This will lucial for much of the theory developed
below. If S is polish then we will always endow it with its BoretalgebraZ = 5(.5).

A filtration on (£2,2(, P) is an increasing collectiofF; ), of o-algebrasF, C 2. A stochastic
process X, ).c; is adaptedw.r.t. a filtration (F;),c; iff X, is F;-measurable for any € I. In
particular, any procesk¥ = (X, ) is adapted to the filtrationsF,X) and(F;*") where

FX=0(X,:s€l,s<t), tel,

7



8 CHAPTER 0. INTRODUCTION

is thefiltration generated by X, andF;""* denotes theompletion of thes-algebraF; w.r.t. the
probability measurée’:

FP = {Ae: 34 e F¥ with PI[AAA] = 0}.

Finally, a stochastic process\;);c; on (2,2(, P) with state spacés, B) is called an(F;)
Markov processiff (X;) is adapted w.r.t. the filtratioF; )<, and

P[X, € B|F,] = P[X, € B|X,] P-as.foranyB € Bands,t € Twiths <t¢.  (0.1.1)

Any (F;) Markov process is also a Markov process w.r.t. the filtratiéit' ) generated by the
process. Hence aiF;X) Markov process will be called simplyMarkov process We will see
other equivalent forms of the Markov property below. Forthement we just note thdt (0.1.1)
implies
P[X; € B|F] =ps+(Xs,B) P-as. forB € Bands <t and (0.1.2)
E[f(Xy)|Fs] = (psif)(Xs) P-a.s. for any measurable functign S — R, ands < t.
(0.1.3)

wherep, ;(x, dy) is a regular version of the conditional probability distiiion of X, given X,
and

(peaf) () = / Paclt, dy) ().

Furthermore, by the tower property of conditional expectes, the kernel®,; (s,t € I with
s < t) satisfy the consistency condition

pS,U(XSv B) = /pS,t(XS> dy)pt,U(ya B) (0.1.4)
P-almost surely forany3 € Bands <t < u, i.e.,
Psuf = Dsubiuf P o X, '-almostsurely forany < s <t <u. (0.1.5)

Exercise. Show that the consistency conditions (0.1.4) and (D.1Iidrom the defining prop-
erty (0.1.2) of the kernels ;.

0.2 Transition functions and Markov processes

From now on we assume théitis a polish space anfl is the Borels-algebra onS. We denote
the collection of all non-negative respectively boundedasueable functiong’ : S — R by

Markov processes Andreas Eberle



0.2. TRANSITION FUNCTIONS AND MARKOV PROCESSES 9

F(9), Fu(S) respectively. The space of all probability measures regyitefsigned measures
are denoted byP(S) and M(S). Foru € M(S) and f € F(S), and forp € P(S) and
f € Fi(S) we set

u(h) = [ san

The following definition is natural by the consideration®ad

Definition (Sub-probability kernel, transition function). 1) A(sub) probability kernep on
(S,B) isamap(z, B) — p(z, B) from S x Bto [0, 1] such that

(i) foranyz € S, p(z,-) is a positive measure off, B) with total masg(z, S) = 1
(p(z, S) < 1 respectively, and

(i) forany B € B, p(-, B) is a measurable function ofb, B).

2) Atransition function is a collectionp, ; (s, t € I with s < t) of sub-probability kernels on
(S, B) satisfying

pei(x,-) =4, foranyx € Sandte I, and (0.2.1)
PstPtu = Psu  fOranys <t <w, (0.2.2)

where the composition of two sub-probability kernedsidq on (S, B) is the sub-probability
kernelpq defined by

(pg)(z, B) = /p(fc,dy)Q(y,B) foranyz € S, B € B.

The equations i (0.2.2) are called tBeapman-Kolmogorov equations They correspond to
the consistency conditions in(0.1..4). Note, however, #are now assuming that the consis-
tency conditions hold everywhere. This will allow us to tela family of Markov processes with
arbitrary starting points and starting times to a transifienction. The reason for considering
sub-probability instead of probability kernels is that siagay be lost during the evolution if the
process has a finite life-time.

Example (Discrete and absolutely continuous transition kernels A sub-probability kernel on
a countable sef takes the fornp(z, {y}) = p(x,y) wherep : S x S — [0, 1] is a non-negative

function satisfying) _ p(z,y) < 1. More generally, leA be a non-negative measure on a general
yes

polish state space (e.g. the counting measure on a dispaate sr Lebesgue measurel®h). If
p: S xS — R, isameasurable function satisfying

/p(x,y))\(dy) <1 foranyxz e S,

University of Bonn April 2015



10 CHAPTER 0. INTRODUCTION

thenp is the density of a sub-probability kernel given by

ple. B) = / pla, y)A(dy).

The collection of corresponding densities.(z, y) for the kernels of a transition function w.r.t.
a fixed measurae is called atransition density. Note however, that many interesting Markov
processes on general state spaces do not possess a tnamsitgty w.r.t. a natural reference
measure. A simple example is the Random Walk Metropolisritgn on R?. This Markov
chain moves in each time step with a positive probabilityoading to an absolutely continuous
transition density, whereas with the opposite probabilitstays at its current position, cK X X
below.

Definition (Markov process with transition function psy). Letps; (s,t € I withs < t) be a
transition function on(.S, B), and let(F;).c; be a filtration on a probability spacé?, 2, P).

1) A stochastic process(;)c; on (2,2, P) is called an(F;) Markov process with transition
function (ps,) iffitis (F;) adapted, and

(MP) P[X; € B|F,] = ps+(Xs, B) P-a.s.foranys <tandB € B.

2) Itis calledtime-homogeneousf the transition function is time-homogeneous, i.ethifire
exist sub-probability kernels; (¢ € I) such that

Dst =Di—s fOranys <t.

Notice that time-homogeneity does not mean that the la,0fs independent of; it is only
a property of the transition function. For the transitiomrieds (p;);c; of a time-homogeneous
Markov process, the Chapman-Kolmogorov equations taksithple form

Psit = pspy  foranys,t € I. (0.2.3)

A time-inhomogeneous Markov process;) with state spacé can be identified with the time-
homogeneous Markov proce@s X;) on the enlarged state spake x S :

Exercise (Reduction to time-homogeneous cagelet ((X;)c;, P) be a Markov process with
transition functionps ;). Show that for any € I the time-space proceéét =(s+tXsy)isa
time-homogeneous Markov process with state sffacex .S and transition function

ﬁt ((87 SC), ) = 5S+t ®ps,s+t(x7 )

Markov processes Andreas Eberle



0.2. TRANSITION FUNCTIONS AND MARKOV PROCESSES 11

Markov processesX,).cz, indiscrete time are calledarkov chains. The transition function of
a Markov chain is completely determined by its one-stepsitamm kernelsr,, = p,,—1, (n € N).
Indeed, by the Chapman-Kolmogorov equation,

Dst = Ms41Tsso - - T foranys,t € Z, with s <t.

In particular, in the time-homogeneous case, the tramsitinction takes the form

p, =" foranytc Z,,

wherer = p,_1, IS the one-step transition kernel that does not depend on
Examples.

1) Random dynamical systems:A stochastic process on a probability spael, P) de-
fined recursively by
Xn+1 = ®n+1(Xn7 Wn+1) forn € Z+ (024)

is a Markov chain iftX, : Q@ — S andWy, Wy, ---: Q — T are independent random vari-
ables taking values in measurable spg¢esd3) and(7',C), and®d,, ®,, ... are measurable
functions fromS' x T to S. The one-step transition kernels are

7n(z, B) = P[®,(z,W,) € B,
and the transition function is given by
pst(z, B) = P[Xi(s,x) € B,

where X (s, z) for t > s denotes the solution of the recurrence relation (0.2.4) initial
value X(s,z) = x at times. The Markov chain is time-homogeneous if the random
variableslV,, are identically distributed, and the functiofts coincide for anyn € N.

2) Continuous time Markov chains: If (Y,),cz, is atime-homogeneous Markov chain
on a polish spacé2, 2, P), and (N;);>o is a Poisson processvith intensity A\ > 0 on
(€2, P) that is independent ¥}, ),.cz, then the process

X, =Yy, tel0,o00),

is a time-homogeneous Markov process in continuous tineee ge [11]. Conditioning on
the value ofV; shows that the transition function is given by

> At)E
piwB) =3 ke gy = -0, ),
k=0 )

University of Bonn April 2015
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3)

The construction can be generalized to time-inhomogengoup processes with finite
jump intensities, but in this case the procesgés and (/N;) determining the positions
and the jump times are not necessarily Markov processesednaivn, and they are not
necessarily independent of each other, see Sdction 3.W.belo

Diffusion processes orR™: A Brownian motion ((B;):>o, P) taking values inR" is a
time-homogeneous Markov process with continuous samglespa— B;(w) and transi-
tion density

2
-n r—y
pe(z,y) = (2nt) 2 exp <—%>

with respect to the-dimensional Lebesgue measufe In general, Markov processes with
continuous sample paths are caltkffusion processesIt can be shown that a solution to
an 1t6 stochastic differential equation of the form

dXt = b(t, Xt)dt + O'(t, Xt)dBt, XQ = Xy, (025)

is a diffusion process if, for example, the coefficients aigsthitz continuous functions
b:R, xR" - R"ando : R, x R" — R™*¢ and(B;):>¢ is a Brownian motion irR?. In
this case, the transition function is usually not known extby.

Kolmogorov’s Theorem states that for any transition fumctand any given initial distribution

there is a unique canonical Markov process on the producespa

Qcan= S = {w: T — Sa}.

Indeed, letX; : Qcan — Sa, Xi(w) = w(t), denote the evaluation at timeand endowf).,, with

the product-algebra

Q[can:®BA :O'<Xtt€[)

tel

Theorem 0.1(Kolmogorov’s Theorem). Letp,, (s,t € I with s < t) be a transition function on

(S, B). Then for any probability measureon (S, B), there exists a unique probability measure

P, on (Qcan, Acan) such that( (X, )., P,) is a Markov process with transition functigp, ;) and

initial distribution P, o X;* = v.

Since the Markov property (MP) is equivalent to the fact tthet finite-dimensional marginal

laws of the process are given by

(Xtm Xt17 .- 7th) ~ M(dﬁo)po,tl (5607 dxl)ptl,tg (21717 diUz) c DPta_itn (ﬂfnfl, dﬂ?n)

Markov processes Andreas Eberle



0.3. GENERATORS AND MARTINGALES 13

forany0 = t, < t; < --- < t,, the proof of Theoreh 0.1 is a consequence of Kolmogorov’'s
extension theorem (which follows from Carathéodory’s egten theorem), cf. X X X. Thus
Theoreni QI is a purely measure-theoretic statement. lits disadvantage is that the spage

is too large and the produetalgebra is too small wheh = R, . Indeed, in this case important
events such as the event that the pro¢éss;~, has continuous trajectories are not measurable
w.r.t. Acan. Therefore, in continuous time we will usually replaeg, by the spac@ (R, Sa)

of all right-continuous functions : R, — S with left limits w(¢—) for anyt > 0. To realize a
Markov process with a given transition function 8n= D(RR,, Sa) requires modest additional
regularity conditions, cf. e.g. Rogers & Williams 1[35].

0.3 Generators and Martingales

Since the transition function of a Markov process is usuadiiyknown explicitly, one is looking
for other natural ways to describe the evolution. An obvidies: is to consider the rate of change
of the transition probabilities or expectations at a giveret:.

In discrete time this is straightforward: Fére F,(S) andt > 0,
E[f(Xe) = F(X)|F] = (Lof)(Xy)  P-as.
whereL, : F,(S) — Fp(S) is the linear operator defined by

(Lef) (@) = (mf) (x) = f(x) = /Wt(%dy) (f(y) = f(x)).

L, is called thegenerator at timet - in the time homogeneous case it does not depertd on

In continuous time, the situation is more involved. Here vagéehto consider the instantaneous
rate of change, i.e., the derivative of the transition fiorctWe would like to define

= lim (P f ><}f) /@) _ lim %E[f(xm — [(X)|X; = . (0.3.1)

(Lef)(x)

By an informal calculation based on the Chapman-Kolmog@&muwation, we could then hope
that the transition function satisfies the differential &ipns

d d
(FE) —psif = = (ps,tpt,t+hf) lh=o = Ds.tLif, and (0.3.2)
dt dh
d d
(BE) - %ps,tf =—7 (Ps,s+hPs+htf) |h=0 + Ds.sLsPsif = Lspsif- (0.3.3)

University of Bonn April 2015



14 CHAPTER 0. INTRODUCTION

These equations are call&@dImogorov’s forward and backward equation respectively, since
they describe the forward and backward in time evolutiornefttansition probabilities.
However, making these informal computations rigorous tsartaviality in general. The problem
is that the right-sided derivative ih (0.8.1) may not ex@tdll bounded functiong. Moreover,
different notions of convergence on function spaces leatifterent definitions ofZ, (or at least
of its domain). Indeed, we will see that in many cases, theeggar of a Markov process in
continuous time is an unbounded linear operator - for irgagenerators of diffusion processes
are (generalized) second order differential operatorse Way to circumvent these difficulties
partially is the martingale problem of Stroock and Varadidmch sets up a connection to the
generator only on a fixed class of nice functions:

Let 4 be a linear space of bounded measurable functionsSo), and letZ, : A — F(S),
t € I, be a collection of linear operators with domainhtaking values in the spacg(S) of
measurable (not necessarily bounded) function&His).

Definition (Martingale problem). A stochastic process X;).c;, P) that is adapted to a filtra-
tion (F;) is said to be asolution of the martingale problem fof (L)1, A) iff the real valued
processes

t—1

Mtf = f(Xt) - Z(‘Csf)(Xs) if I = Z-H resp.

s=0
t
M/ = 00 - [ =Ry,
0
are (F;) martingales for all functiong € A.

In the discrete time case, a procés¥,), P) is a solution to the martingale problem w.r.t. the
operatorl, = m; — I with domainA = F,(5) if and only if it is a Markov chain with one-
step transition kernels;. Again, in continuous time the situation is much more triskyce the
solution to the martingale problem may not be unique, an@lheblutions are Markov processes.
Indeed, the price to pay in the martingale formulation i th& usually not easy to establish
uniqueness. Nevertheless, if uniqueness holds, and evessgs where uniqueness does not
hold, the martingale problem turns out to be a powerful toolderiving properties of a Markov
process in an elegant and general way. This together wibthlistainder weak convergence turns
the martingale problem into a fundamental concept in a nmmodpproach to Markov processes.

Example. 1) Markov chains. As remarked above, a Markov chain solves the martingale
problem for the operator&;, 7,(S)) where(L.f)(z) = [(f(y) — f(z))m(z, dy).

Markov processes Andreas Eberle



0.4. STABILITY AND ASYMPTOTIC STATIONARITY 15

2) Continuous time Markov chains. A continuous time process; = Yy, constructed from
a time-homogeneous Markov chdiH, ),.cz, with transition kernetr and an independent
Poisson processV;),>( solves the martingale problem for the operdtorF,(S)) defined
by

(Cf)(x) = / (f(9) — f(@))q(e. dy)

whereq(z, dy) = Aw(x, dy) are the jump rates of the process;);~o. More generally, we
will construct in Sectio_3]1 Markov jump processes with gra finite time-dependent

jump intensitiesy (x, dy).

3) Diffusion processes.By Itd’s formula, a Brownian motion ifR" solves the martingale
problem for

Lf = %Af with domainA = C2(R™).

More generally, an I1td diffusion solving the stochastidetiéntial equation{0.2.5) solves
the martingale problem for

1 < 0% f o
[,tf—b(t,:p)-VeréZaij(t,x)axiaxj, A= CZ(RM),

i,5=1

wherea(t,z) = o(t,x)o(t,x)". This is again a consequence of Itd’s formula, cf. Stochas-
tic Analysis, e.g.[[3]/[10].

0.4 Stability and asymptotic stationarity

A question of fundamental importance in the theory of Markoocesses are the long-time sta-
bility properties of the process and its transition funetitn the time-homogeneous case that we
will mostly consider here, many Markov processes approactailibrium distribution in the
long-time limit, i.e.,

Law(X;) - p ast — oo (0.4.2)

w.r.t. an appropriate notion of convergence of probabitigasures. The limit is then necessarily
astationary distribution for the transition kernels, i.e.,

w(B) = (up)(B) = /,u(dx)pt(x, B) foranyt e I andB € B.

University of Bonn April 2015



16 CHAPTER 0. INTRODUCTION

More generally, the laws of the trajectoriés... = (Xs)s>: from timet onwards converge to
the law P, of the Markov process with initial distribution, and ergodic averages approach
expectations w.r.tP,, i.e.,

t—1

1

S Z% F(Xn, Xnt1,...) . FdP,, (0.4.2)
1/t .

—/ F(stoo)ds—>/ FdP, respectively (0.4.3)
tJo D(R4.S)

w.r.t. appropriate notions of convergence.

Statements as in (0.4.2) and (0]4.3) are cadgpbdic theorems They provide far-reaching gen-
eralizations of the classical law of large numbers. We vp#irsd a substantial amount of time on
proving convergence statements asin (0.4.1), (0.4.2)@Ad) w.r.t. different notions of conver-
gence, and on quantifying the approximation errors asytigaity and non-asymptotically w.r.t.
different metrics. This includes studying the existenag @mqueness of stationary distributions.
In particular, we will see inX X X that for Markov processes on infinite dimensional spaces (e.
interacting particle systems with an infinite number of jgéet), the non-uniqueness of station-
ary distributions is often related tophase transition On spaces with high finite dimension the
phase transition will sometimes correspond to a slowdovithegquilibration/mixing properties
of the process as the dimension (or some other system pangrestds to infinity.

We start in Sections 1.1[- 1.4 by applying martingale theorilarkov chains in discrete time.
A key idea in the theory of Markov processes is to relate lomgg properties of the process to
short-time properties described in terms of its generafaro important approaches for doing
this are the coupling/transportation approach considier&ectior 7.1l F 7J3 and 7.4 for discrete
time chains, and th&?/Dirichlet form approach considered in Chagier 6. Chdptfecses on
ergodic theorems and bounds for ergodic averages as i@ @dd [0.4.8), and in Chapter 3 we
introduce basic concepts and examples for Markov procéssestinuous time and the relation
to their generator. The concluding Chap®érstudies a few selected applications to interacting
particle systems. Other jump processes with infinite jumprisities (e.g. general Lévy pro-
cesses) as well as jump diffusions will be constructed aradyaad in the stochastic analysis
course.
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Chapter 1

Markov chains & stochastic stability

1.1 Transition probabilities and Markov chains

Let X, Y : Q — S be random variables on a probability sp&@e2!(, P) with polish state spacg.
A regular version of the conditional distribution of Y given X is a stochastic kernel(z, dy)
on S such that

PlY € B|X]=p(X,B) P —as.foranyB e B.

If pis aregular version of the conditional distributionYofgiven X then
PIX €AY € Bl = E[P[Y € BIX]: X € A] = / (2, B)ux(dx) foranyA, B € B,
A

whereu x denotes the law oK. For random variables with a polish state space, regul@ioms

of conditional distributions always exist, cf. [XXX] []. N@let ;» andp be a probability measure
and a transition kernel ofS, B). The first step towards analyzing a Markov chain with initial
distributiony and transition probability is to consider a single transitstep:

Lemma 1.1(Two-stage mode). Suppose thak andY are random variables on a probability
space(2, 2, P) such thatX ~ p andp(X, dy) is a regular version of the conditional law &f
givenX. Then

(X,Y)~p@p and Y ~ pup,

whereu ® p and up are the probability measures dh x S and S respectively defined by

o) = [ i) ( / p(x,dwu(:c,y)) for Ac BB,

(1p)(C) = / u(dz)p(x,C) forC € B.

17



18 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

Proof. Let A = B x C with B,C € B. Then

Pl(X,Y) € A] X e B,Y e(]=E[PX € BYY € C|X]]

= P[
= E[lxes PY € CIX]) = E[p(X,0): X € B

= Bu(dx)p(%C):(u@?p)(A), and

PlY € O] = P[(X,Y) € § x C] = (p)(C).

The assertion follows since the product sets form a gemgyaiistem for the produet-algebra
that is stable under intersections. O

1.1.1 Markov chains

Now suppose that we are given a probability meaguoa (S, B) and a sequencg, ps, ... of
stochastic kernels oS, B). Recall that a stochastic proce&s : @ — S (n € Z, ) defined
on a probability spacé&?, 2, P) is called an(F,,) Markov chain with initial distribution x and
transition kernely,, iff (X,,) is adapted to the filtratiodF,,), Xo ~ p, andp,1(X,, ) is a
version of the conditional distribution of,,, ; givenF, for anyn € Z . By iteratively applying
Lemmdl.l, we see that w.r.t. the measure

P=pu@pp®- - -Qp, onSiL-nt

the canonical process; (wp, wi, ..., w,) = wi (k= 0,1,...,n) is a Markov chain with initial
distributiony, and transition kernelg, . . ., p,, (e.g. w.r.t. the filtration generated by the process).
More generally, there exists a unique probability meagtiren

Qcan = SO12} — {(Wn)neZ+ Dy € S}

endowed with the produet-algebra2l.,, generated by the maps, (w) = w, (n € Z,) such
that w.r.t. P,, the canonical process\, ),cz, is a Markov chain with initial distributiop and
transition kernelg,,. The probability measurg,, can be viewed as the infinite product

P=p®@p@pepe... e,
P, (dzo.00) = p(dzo)p1 (o, dxy)pe(21, dug)ps(xe, dxs) . . ..

We denote byPé”) the canonical measure for the Markov chain with initial digttion §,, and
transition kernel®,, 1, pni2, Pnasz, - - - -
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1.1. TRANSITION PROBABILITIES AND MARKOV CHAINS 19

Theorem 1.2(Markov properties). Let(X,,),cz, be astochastic process with state spages)
defined on a probability spadé&?, 2, P). Then the following statements are equivalent:

(i) (X,, P)is a Markov chain with initial distribution: and transition kernelg,, p,, . . ..
(i) Xop ~pu®@p @pe® -+ @ p, W.LL. P foranyn > 0.
(i) Xo:00 ~ P,.
(iv) Foranyn € 7., P)(gl) is a version of the conditional distribution &f,,... givenXg.,, i.e.,
E[F(Xp, Xni1,- - )| Xom) = EQ[F]  P-as.
for any2l.a-measurable functiod” : Qcan — R,

In the time homogeneous case, the properties (i)-(iv) ase ahuivalent to thetrong Markov
property:

(v) For any(FX) stopping timel" : Q — Z, U {cc},
E[F(Xr, Xr41,... )|Fy] = Exp[F] P-as.on{T < oo}

for any2l.a-measurable functiod” : Qe — R,

The proofs can be found in the lectures notes of Stochasimegses [11], Sectiohs 2.2 2.3.

On a Polish state spacg any Markov chain can be represented as a random dynamigal sy
tem in the form

Xn+1 - (I)n+1(Xna Wn+1)

with independent random variabl&sg, W, W5, W3, ... and measurable functiods, ®,, @3, .. .,
see e.g. Kallenberg{ X X|. Often such representations arise naturally:

Example. 1) Random Walk on R4. A d-dimensional Random Walk is defined by a recur-
rence relationX,, ., = X,, + W, with i.i.d. random variable&V;, W,, W, ... : Q — R
and a independent initial valu§, : ) — R,
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20 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

2) Reflected Random Walk onS c R9. There are several possibilities for defining a re-
flected random walk on a measurable sulsset R?. The easiest is to set

Xnt1 = Xo + Whn x4 wip1e5)

with i.i.d. random variabledV; : O — R<. One application where reflected random walks
are of interest is the simulation dfard-core models Suppose there aré particles of
diameter in a box B C R3. The configuration space of the system is given by

SZ{(:El,...,xd)ERgd:xieBand|xi—xj|>T‘v’i7éj}.

Then the uniform distribution off is a stationary distribution of the reflected random walk
on S defined above.

3) State Space Models with additive noiseSeveral important models of Markov chains in
R? are defined by recurrence relations of the form

Xn+1 = q)(Xn) + Wn+1

with i.i.d. random variable$V; (i € N). Besides random walks these include digear
state space modelgvhere

Xpi1 = AX, + W, for some matrixd € R,
and stochastic volatility models defined e.g. by
Xo1 = X, + "2 W, 4,
Viei=m+a(V,—m)+ 02,44

with constantsy,c € R,,m € R, and i.i.d. random variabled’; and Z;. In the latter
class of modelsX,, stands for the logarithmic price of an asset afdor the logarithmic
volatility.

1.1.2 Markov chains with absorption

Given an arbitrary Markov chain and a possibly time-depahdbsorption rate on the state space
we can define another Markov chain that follows the same dysaontil it is eventually ab-
sorbed with the given rate. To this end we add an extra pbitd the state spacg where the
Markov chain stays after absorption. Lef,,),cz, be the original Markov chain with state space
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1.2. GENERATORS AND MARTINGALES 21

S and transition probabilitieg,,, and suppose that the absorption rates are given by meésurab
functionsw, : S x S — [0, q], i.e., the survival (non-absorption) probabilityds®(®¥) if the
Markov chain is jumping from to y in the n-th step. LeE,, (n € N) be independent exponential
random variables with parametethat are also independent of the Markov ch@if,). Then we

can define the absorbed chains with state spacé recursively byXY = X,

n+l —

w Xn if X;f 7£ A and En+1 Z wn<Xn7Xn+1)7
A otherwise.

Example (Absorption at the boundary). If D is a measurable subset®fand we set

(2,9) 0 fory € D,
Wp(T,Yy) =
Y oo  fory e S\D,

then the Markov chain is absorbed completely when exitiegdibmainD for the first time.

Lemma 1.3(Absorbed Markov chain). The proces$X ") is a Markov chain o5, w.r.t. the
filtration F,, = o(Xo, X1,..., X, E1, ..., E,). The transition probabilities are given by

P¥(z,dy) = e @Y (z, dy) + <1 - /e_w"(x’z)pn(x, dz)) oa(dy) forz e S.
P:LU(A7 ) = 5A
Proof. For any Borel subse® of .S,

P [X;LU.;_l S B|-/T_.n} - E [P [Xn—l—l € Ba En+1 Z wn(XnaXn+1)|U(XO:ooa El:n)] |fn]
=F [1B(Xn+1)€7w”(X”’X”+1)|Xo;n]
:/ew"(X”’y)pn(Xn,dy).
B
Here we have used the properties of conditional expectatod the Markov property fdrX,).

The assertion follows since thealgebra onS U {A} is generated by the sets By and B is
stable under intersections. O

1.2 Generators and martingales

Let (X, P,) be a time-homogeneous Markov chain with transition prdiighi and initial dis-
tribution Xy = = P,-almost surely for any: € S.
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1.2.1 Generator

The average change ¢t X,,) in one transition step of the Markov chain starting:és given by

(L)) = BLF(X1) — F(X0)) = / P dy) (f (9) — (). (1.2.1)

Definition (Generator of a time-homogeneous Markov chaih
The linear operatol : F,(S) — F,(S) defined by{1.2.1)is called thegeneratorof the Markov
chain(X,, P,).

Examples. 1) Simple random walk onZ. Herep(z, ) = 16,41 + 30,-1. Hence the gener-
ator is given by

(L)) =5 (fle+ 1)+ fle=1)=f(2) = S [(fz+1) = f(z)) = (f(x) = flz = 1))].

DO | =
DO | =

2) Random walk onR9. A random walk onR¢ with increment distribution: can be repre-
sented as

Xn:x+ZWk (neZy)
k=1

with independent random variabl&g, ~ i. The generator is given by
(L)) = [ fo+wn(du) - f) = [ (7la+w) - f@)n(du)

3) Markov chain with absorption. Suppose thaf is the generator of a time-homogeneous

Markov chain with state space Then the generator of the corresponding Markov chain

on SU{A} with absorption ratev(z, y) is given by

(L f)(@) = " f)z) = flz) =p (e f) = f(o)
=L (e f) (z) + (e — 1) f(x)

for any bounded functiorf : S U {A} — R with f(0) = 0, and for anyz € S.

1.2.2 Martingale problem

The generator can be used to identify martingales assddimgeMarkov chain. Indeed {fX,,, P)
is an(F,,) Markov chain with transition kernel then for f € F,(.5),

E[f(Xk1) = F(X)|F] = Ex, [f(X0) = f(Xo)] = (£f)(Xi) P-as.Vk > 0.
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Hence the proces®!/! defined by
MU = 1(X) - SCEN(X), neZ., (1.2.2)

is an(F,,) martingale. We even have:

Theorem 1.4(Martingale problem characterization of Markov chains). Let X,, : 2 — S be
an (F,,) adapted stochastic process defined on a probability spgcel, P). Then(X,, P) is
an (F,) Markov chain with transition kernel if and only if M/, defined by(1.2.2)is an (F,,)
martingale for any functiorf € F,(5).

The proof is left as an exercise.

The result in Theoreiin 1.4 can be extended to the time-inhemeaus case. Indeed,(iX,,, P)

is an inhomogeneous Markov chain with state spg@nd transition kernelg,,, n € N, then

the time-space process, := (n, X,) is a time-homogeneous Markov chains with state space
Z, x S. Let

A

(L5)02) = [ pralady) (0t Ly) = Fn,)
=Ly f(n+ 1))+ f(n+1z) - f(n,x)
denote the corresponditigne-space generator

Corollary 1.5 (Time-dependent martingale problen). Let X,, :  — S be an(F,,) adapted
stochastic process defined on a probability spé&ee(, P). Then(X,, P) is an (F,,) Markov

chain with transition kernelg,, po, . . . if and only if the processes
n—1
M= )= > LAk, X)) (n€y)
k=0

are (F,,) martingales for all bounded functionse F,(Z, x S).

Proof. By definition, the proces§X,,, P) is a Markov chain with transition kernejs, if and
only if the time-space proce$&, X,,), P) is a time-homogeneous Markov chain with transition
kernel

ﬁ((nv x)v ) = 5n+1 ®pn+1(3:, )

The assertion now follows from Theorém11.4. 0
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In applications it is often not possible to identify relevamartingales explicitly. Instead one
is frequently using supermartingales (or, equivalentifarsartingales) to derive upper or lower
bounds on expectation values one is interested in. It is ¢bemenient to drop the integrability
assumption in the martingale definition:

Definition (Non-negative supermartingald. A real-valued stochastic proce&s¥/,,, P) is called
anon-negative supermartingale.r.t. a filtration (F,,) if and only if for anyn € Z .,

(i) M, >0 P-almost surely,
(i) M, is F,,-measurable, and
(i) E[M,1|F,) < M, P-almostsurely.

The optional stopping theorem and the supermartingaleszgence theorem have versions for
non-negative supermartingales. Indeed by Fatou’s lemma,

E[Mp; T < oo] < liminf E[Mrp,| < E[My]

n—oo

holds for anarbitrary (F,,) stopping timel" : 2 — Z, U {occo}. Similarly, the limit

My = lim M,

n—o0

exists almost surely if0), o).

1.2.3 Potential theory for Markov chains

Let (X, P,) be a canonical time-homogeneous Markov chain with stateegpa3) and
generator

(Lf)(x) = (pf)(z) — f(2) = B [f(X1) — f(Xo)]
By Theoreni L},
MU= F(X,) = > (Lf)(X0)

<n
is a martingale w.r.t(7X) and P, for anyx € S and f € F,(S). Similarly, one easily verifies
that if the inequalityC f < —c holds for non-negative functions c € F,(.5), then the process

M = f(Xo) + ) e(X)
<n
is a non-negative supermartingale w.ritfF=X) and P, for anyz € S. By applying optional
stopping to these processes, we will derive upper boundsafiwus expectations of the Markov
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chain.
Let D € B be a measurable subset©fWe define thexterior boundary of D w.r.t. the Markov
chain as

oD = | J suppp(z,-) \ D

zeD
where the support supp) of a measure: on (S, 53) is defined as the smallest closed set A such
thatu vanishes omc. Thus, open sets contained in the complemem 0P D can not be reached
by the Markov chain in a single transition step frdm

Examples. (1). For the simple random walk df’, the exterior boundary of a subsetc Z?
is given by
0D ={x €7\ D : |z —y| =1forsomey € D}.

(2). For the ball walk orR? with transition kernel
p(z,-) = Unif (B(x,r)),
the exterior boundary of a Borel sbt € B is ther-neighbourhood
0D = {zx € R*\ D : dist(z, D) < r}.

Let
T =min{n >0: X, € D}

denote the first exit time fron. Then
Xr €0D P,-as.on{T < oo} foranyz € D.

Our aim is to compute or bound expectations of the form

S (X
uw(z) = E, |[e n=0 f(X7); T < o0

n—1

T—-1

— w(X;
+E, Y e & )c(Xn) (1.2.3)
n=0

for given non-negative measurable functiohs 0D — R,,c,w : D — R,. The general
expression(1.213) combines a number of important proti@siland expectations related to the
Markov chain:

Examples. (1). w =0,c¢ =0, f = 1: Exit probability from D:

u(z) = P[T < 0]

University of Bonn April 2015
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(2). w=0,c=0,f=15,B C 9D : Law of the exit point Xr:
u(z) = P[Xr € B;T < 0.

For instance iDD is the disjoint union of setd andB and f = 15 then
u(;z:) = Px[TB < TA]

(3). w=0, f=0,c= 1. Mean exit time from D:

(4). w=0, f =0,c= 1g: Average occupation time ofB before exiting D:

u(z) = Gp(x, B) where

Zl 1B(Xn)] = ipx[Xn € B,n < T).

GD(Jf, B) = Ex

Gp is called thepotential kernel or Green kernel of the domainD, it is a kernel of
positive measure.

(5). ¢=0, f =1,w = X for some constant > 0: Laplace transform of mean exit time:

u(z) = Eglexp (=AT)].

(6). c=0,f=1,w= Apgforsome) > 0, B C D: Laplace transform of occupation time:

exp< Ale )]

The next fundamental theorem shows that supersolutions &ssociated boundary value prob-

u(r) = E,

lem provide upper bounds for expectations of the fdrm (}.2T3is observation is crucial for
studying stability properties of Markov chains.

Theorem 1.6(Maximum principle ). Suppose € F, (S) is a non-negative function satisfying

| /\

(e —1)v—e€“c onD, (1.2.4)
f onobD.

| \/

Thenu < v.
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The proof is straightforward application of the optionalgting theorem for non-negative super-
martingales, and will be given below. The expectatidm) can be identified precisely as the
minimal non-negative solution of the corresponding boupdalue problem:

Theorem 1.7(Dirichlet problem, Poisson equation, Feynman-Kac formuld. The functionu
is theminimal non-negative solutiorof the boundary value problem

Lv=(e"—1v—e“c onD, (1.2.5)
v=f onaoD.

If c =0, fisbounded and’ < oo P,-almost surely for any: € S, then u is theinique bounded
solution of (1.2.5). We first prove both theorems in the case 0. The extension to the general
case will be discussed afterwards.

Proof of Theorern 116 fow = 0: Letwv € F, (S) such thatCv < —c on D. Then the process

is a non-negative supermartingale. In particulaf,,) converges almost surely to a limit
M, > 0, and thusM is defined and non-negative even{0h = oo}. If v > f ondD then

T-1

Mz > f(X7)lrese + D e(X)). (1.2.6)

1=0

Therefore, by optional stopping combined with Fatou’s lesmm
u(z) < B [My] < E.[My] = v(x) (1.2.7)
0]

Proof of Theorerh 117 fow = 0: By Theoreni 1.6, all non-negative solution®f (1.2.5) dom-
inate v from above. This proves minimality. Moreover,df= 0, f is bounded, and” < oo

P,-a.s. for anyz, then(M,,) is a bounded martingale, and hence all inequalities in@) &nd
(A.2.7) are equalities. Thus if a non-negative solutiorilo2.8) exists then it coincides with

I.e., uniqueness holds.

It remains to verify that: satisfies[(1.2]4). This can be done by conditioning on thedtep of
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the Markov chain: Fox € D, we havel' > 1 P,-almost surely. In particular, iff < oo thenXy
coincides with the exit point of the shifted Markov ch&iK,,1),>o, and7 — 1 is the exit time
of (X,+1). Therefore, the Markov property implies that

E,

F(Xr)lircooy + Z c(Xn)|X1]

n<T

= C(SU) + E:c f(XT>1{T<oo} + Z C(XnJrl)‘Xl]
n<T—1
= C(SU) =+ EXl f(XT)l{T<oo} + Z C<Xn>]

= c¢(z) +u(X;) P,-almostsurely,

and hence

u(r) = By [c(x) + u(X1)] = c(z) + (pu)(2),
e, Lu(x)=—c(z).

Moreover, forr € 0D, we havel' = 0 P,-almost surely and hence
u(z) = Eu[f(Xo)] = f(x).
O

We now extend the results to the casez 0. This can be done by representing the expectation
in (1.2.5) as a corresponding expectation witke 0 for an absorbed Markov chain:

Reduction of general case to= 0: We consider the Markov chaifX”) with absorption rate
w defined on the extended state spadcg A} by X}/ = X,

v o — Xn+1 if X;”LU 7é A andEn+1 Z w(Xn),
A otherwise,

with independent Ex ) distributed random variablds;(i € N) that are independent ¢X,,) as
well. Settingf(A) = ¢(A) = 0 one easily verifies that

~
=

u(r) = E,[f(X7); T < ool + B[} e(X;)].

3
Il
o

By applying Theorem 116 and 1.7 with = 0 to the Markov chain X”), we see that: is the
minimal non-negative solution of

L% =—c onD, wu=f ondD, (1.2.8)
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and any non-negative supersolutioof (1.2.8) dominates from above. Moreover, the boundary
value problem[(1.2]8) is equivalent fo (1]2.5) since

LYy=e"pu—u=e"Lu+ (e —1)u=—c
ifandonlyif Lu= (" —1)u—e"c.

This proves Theorein 1.6 and the main part of Thedremn 1.7 isabew # 0. The proof of the
last assertion of Theorem 1.7 is left as an exercise. O

Example (Random walks with bounded steps We consider a random walk dR with tran-
sition stepz — x + W where the incremenit’ : 2 — R is a bounded random variable, i.e.,
|W| < r for some constant € (0, c0). Our goal is to derive tail estimates for passage times.

T, =min{n >0: X, > a}.

Note that7, is the first exit time from the domai® = (—o0,a). Since the increments are
bounded by, 9D C [a, a+r]|. Moreover, the moment generating functisf\) = Elexp (A\IV)],
A € R, is bounded by*", and for\ < 0, the functionu(z) = ¢** satisfies

(Lu)(x) = E, [eA(xJFW)} —eM=(Z(\)—1)eM forze D,

u(z) > Mot forz € 0D.

By applying Theoreni 116 with the constant functionsand f satisfyinge*® = Z()\) and
f(x) = Mot we conclude that

B, [Z(A) M) T < o] <€ VaeR (1.2.9)
We now distinguish cases:

(i) E[W] > 0 : In this case, by the Law of large numbers, — oo P,-a.s., and hence
P,[T, < o] =1 foranyz € R. Moreover, for\ < 0 with || sufficiently small,

Z\) = EeM] =1+ AEW]+0(N\?) < 1.
Therefore,[(1.219) yields the exponential moment bound
Ta
E, [(ﬁ) } < g Matr—a) (1.2.10)

foranyx € R and\ < 0 as above. In particular, by Markov’s inequality, the passtime
T, has exponential tails:

P[T, > n] < Z(A)"E,[Z(A) ] < Z(A)re Mot
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(i) E[W] = 0 : In this case, we may hav&(\) > 1 for any A\ € R, and thus we can not
apply the argument above. Indeed, it is well known that fetance for the simple random
walk onZ even the first moment,. [T,] is infinite, cf. [Eberle:Stochastic processes] [11].
However, we may apply a similar approach as above to theimetly, (_, ) from a finite
interval. We assume that’ has a symmetric distribution, i.d} ~ —WW. By choosing
u(z) = cos(Ax) for someX > 0 with A\(a + r) < 7/2, we obtain

(Lu)(z) = Elcos(Ax + AW)] — cos(A\x)
= cos(Ax) E[cos(A\W)] + sin(Az) E[sin(AW)] — cos(\x)
= (C(N) — 1) cos(Ax)
whereC(\) := E[cos(AW)], andcos(Ax) > cos (A(a+ 1)) > 0 for x € (—a,a). Here
we have used thét(—a,a) C [-a — r,a + r] andA(a + r) < 7/2. If W does not vanish

almost surely theld'(\) < 1 for sufficiently small\. Hence we obtain similarly as above
the exponential tail estimate

P, [Tcae > n] < CN)"E [C(A) Tcaw] < CA)" cos(Az)

~ m f0r|x| < a.

1.3 Lyapunov functions and recurrence

The results in the last section already indicated that sigveronic functions can be used to con-
trol stability properties of Markov chains, i.e., they cam& as stochastic Lyapunov functions.
This idea will be developed systematically in this and thetsection. As before we consider a
time-homogeneous Markov chaiiX,,, P,) with generatol = p — I on a Polish state space
endowed with the Boret-algebraBB. We start with the following simple observation:

Lemma 1.8(Locally Superharmonic functions and supermartingale3. Let A € B and sup-
pose thal” € F,(9) is a non-negative function satisfying

LV < —c onS\A
for some constant > 0. Then the process
M, =V (Xpnr,) + ¢ (nATy) (1.3.1)
IS a non-negative supermartingale.

The elementary proof is left as an exercise.

Markov processes Andreas Eberle



1.3. LYAPUNOV FUNCTIONS AND RECURRENCE 31

1.3.1 Recurrence of sets
The first return time to a set is given by
Ty =inf{n>1:X, € A}.
Notice that
Ta=TyF  1ixoear,

I.e., the first hitting time and the first return time coincitiand only if the chain is not started in
A.

Definition (Harris recurrence and positive recurrence. A setA € B is calledHarris recur-
rent iff
P [T <oo]=1 foranyz € A.

It is called positive recurrentff

E.[T;] < oo foranyx e A.

The name “Harris recurrence” is used to be able to diffead@tbetween several possible notions
of recurrence that are all equivalent on a discrete statsedmat not necessarily on a general state
space, cf. [Meyn and Tweedie: Markov Chains and Stochasaigil®y] [25]. Harris recurrence

is the most widely used notion of recurrence on general siagéees. By the strong Markov
property, the following alternative characterisationflso

Exercise. Prove that a setl € B is Harris recurrent if and only if
P,[X, € Ainfinitely oftef =1 foranyz € A

We will now show that the existence of superharmonic fumgiwith certain properties provides
sufficient conditions for non-recurrence, Harris recuceeand positive recurrence respectively.
Below, we will see that for irreducible Markov chains on ctabie spaces these conditions are
essentially sharp. The conditions are:

(LT) There exists a functiol” € F,.(S) andy € S such that

LV <0onA°andV(y) < igfv.

(LR) There exists a functiol’ € I, (.S) such that

LV <0onA°andTysq < oo P,-a.s. forany: € S andc > 0.

University of Bonn April 2015



32 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

(LP) There exists a functiol € F.(S) such that

LV < —1onA°andpV < ocoonA.

Theorem 1.9. (Foster-Lyapunov conditions for non-recurrence, Harrisecurrence and
positive recurrence)

(1). If (LT) holds then
P,[Ty < 0] < V(y)/igfv <L

(2). If (LR) holds then
P,[Ty <oo]=1 foranyz e S.

In particular, the setA is Harris recurrent.

(3). If (LP) holds then

E.[Ta] <V(z) <o foranyz € A and
E[TH] < (pV)(x) < 0o foranyz € A.

In particular, the setA is positive recurrent.

Proof: (1). If LV < 0onA°then by Lemm&l1l8the proceds, = V (X, .7, ) IS @ non-negative
supermartingale w.r.t2, for any x. Hence by optional stopping and Fatou’s lemma,

V(y) = B,[My] > E,[Mr,; Ta < 00] > P,[Ta < oo] - inf V.
Assuming(LT'), we obtainP,[Tsy < co] < 1.
(2). Now assume thdt.R) holds. Then by applying optional stopping(td/,,), we obtain
V(z) = E;[Mo] > Ex[Mr,_ ] = E:[V(X1un1020)] 2 cPi[Ta = o0

foranyc > 0 andz € S. Here we have used thdyy .., < oo P,-almost surely and
henceV(XTAAT{V>C}) > ¢ P,-almost surely o7y = oo}. By letting c tend to infinity,
we conclude thaP, [Ty = oco] = 0 for anyz.

(3). Finally, suppose thatV < —1 on A¢. Then by Lemma]8,

M, =V (Xurry) +n ATy
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iS @ non-negative supermartingale w.it, for any z. In particular,(M,,) convergesP, -

almost surely to a finite limit, and hené& [Ty < oo] = 1. Thus by optional stopping and
sinceV > 0,

E,[T4) < E.[Mr,]| < E.[My] =V(z) foranyxze S. (1.3.2)

Moreover, we can also estimate the first return time by camitg on the first step. In-
deed, forr € A we obtain by[(1.3]2):

E,[T{] = E, [E[T{|X\]] = E. [Ex,[Ta]] < E.[V(X1)] = (V) (2)

Thus A is positive recurrent if LP) holds.

O

Example (State space model oiR%). We consider a simple state space model with one-step
transition

r—=x+bx)+ W

whereb : R? — R? is a measurable vector field afid : 2 — R? is a square-integrable random
vector with E[W] = 0 andCou(W*, W7) = §,;. As a Lyapunov function we try

V(z) = |z|*/e for some constant > 0.

A simple calculation shows that

S(LV)(2) = B [Ja + bla) + W] — |’
= Jo+ b(@)? + BIWP] |2 = 2 - b(a) + [b(@)] + d.

Therefore, the conditiodV (z) < —1 is satisfied if and only if
22 - b(z) + |b(z)* + d < —e.

By choosings small enough we see that positive recurrence holds for/®dll ) with r suffi-
ciently large provided

limsup (22 - b(z) + |b(z)]?) < —d. (1.3.3)

|z| =00

This condition is satisfied in particular if outside of a b#tle radial componerst (z) = i b(x)
of the drift satisfieg1 — 0)b,(z) < —ﬁ for somes > 0, and|b(z)|?/r < =0 - b.(z).
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Exercise. Derive a sufficient condition similar td (1.3.3) for poséivecurrence of state space
models with transition step

r =+ b(x) +o(x)W

whereb and W are chosen as in the example above ang a measurable function froi? to
Rdxd.

Example (Recurrence and transience for the simple random walk orZ<). The simple random
walk is the Markov chain ofZ? with transition probabilities(z,y) = 5 if |+ — y| = 1 and
p(z,y) = 0 otherwise. The generator is given by

d

(L)) = 5o (D)) = 53 Sl +e) = F(2) — (f(&) — flz — )]

=1

In order to find suitable Lyapunov functions, we approxintaediscrete Laplacian d&f by the
Laplacian oriR¢. By Taylor's theorem, foif € C*4(R%),

f(x+e) = fz) = 0if(x) + 32f( )+ Lo, fx) + o, J(E),

2 2 6 114 4 1291
Flo =) = Fa) = =0/ (@) + 5087 (2) — O%f () + o0 ().

where¢ andn are intermediate points on the line segments betweandz + ¢;, x andx — e;
respectively. Adding thesi equations, we see that

Agaf(z) = Af(x) + R(z), where (1.3.4)
R(@)| < 73 sup 0] (135)

B(z,1)

This suggests to choose Lyapunov functions that are cldsartoonic functions oiR? outside a
ball. However, since there is a perturbation involved, wiémdt be able to use exactly harmonic
functions, but we will have to choose functions that are#yrisuperharmonic instead. We try

V(z) = |z|P for somep € R.

By the expression for the Laplacian in polar coordinates,

> d—1d
AV(ZL‘) = (ﬁ + , dr) rP

=p-(p—1+d—1)r">
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wherer = |z|. In particular,V is superharmonic oR¢ if and only if p € [0,2—d] orp € [2—d, 0]
respectively. The perturbation term can be controlled dyngdhat there exists a finite constant
C' such that

104V (z)|| < C - |z|P~™* (Exercise).

This bound shows that the approximation of the discretedciah by the Laplacian oR? im-
proves if|x| is large. Indeed by (1.3.4) and (1.8.5) we obtain

LV () = AV (2)

2d

p —2 C —4
< £ — )P — P4,
_2d(p+d )r +2dr

ThusV is superharmonic fof outside a ball providegd € (0,2—d) orp € (2—d, 0) respectively.
We now distinguish cases:

d > 2 : Inthis case we can chooge< 0 such thatCV' < 0 outside some balB(0, ry). Sincer?
is decreasing, we have

V(z) < inf V' foranyz with |z| > 7,
B(0,r0)

and hence by Theorem 1.9,
Py[Tg0r) < ool <1 whenevetz| > ro.

Theoreni_1.10 below shows that this implies that any finitéssgansient, i.e., it is almost
surely visited only finitely many times by the random walkiwétn arbitrary starting point.

d < 2 : In this case we can chooges (0,2 — d) to obtainLV" < 0 outside some balB(0, ().
Now V' (x) — oo as|z| — co. Sincelimsup |X,,| = co almost surely, we see that

Tv>ey < oo P,-almost surely for any ¢ Z% andc € R,..

Therefore, by Theorem 1.9, the b&l0, r) is (Harris)recurrent. By irreducibility this
implies that any state € Z¢ is recurrent, cf. Theorem 110 below.

d =2 : This s the critical case and therefore more delicate. Trapluyov functions considered
above can not be used. Since a rotationally symmetric hamfwmction for the Laplacian
onR? is log ||, it is natural to try choosind (z) = (log |z|)® for somea € R, . Indeed,
one can show by choosing appropriately that the Lyapunowition for recurrence is
satisfied in this case as well:
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Exercise (Recurrence of the two-dimensional simple random walk Show by choosing an
appropriate Lyapunov function that the simple random wal.éis recurrent.

Exercise(Recurrence and transience of Brownian motioi). A continuous-time stochastic pro-
cess((By)iejo,0), P:) taking values irR? is called aBrownian motion starting at i the sample
pathst — B;(w) are continuousB, = x P,-a.s., and for every € CZ(RY), the process

i 1
MY = 1B~ 5 [ Af(B)as

0

is a martingale w.r.t. the filtratio#” = o(B, : s € [0,t]). LetT, = inf{t > 0: |B;| = a}.
a) ComputeP, [T, < Tp] fora < |z| < b.

b) Show that for/ < 2, a Brownian motion is recurrent in the sense tRgi}, < oc] = 1 for
anya < |x|.

c) Show that forl > 3, a Brownian motion is transient in the sense tRg, < co] — 0 as

You may assume the optional stopping theorem and the malgicgnvergence theorem in con-
tinuous time without proof. You may also assume that thedcsgh applied to a rotationally
symmetric functiog(z) = v(|x|) is given by

g d ., d d? d—14d
Ag(z) = r'=0— (rd 1%7) (r) = W*y('r’) + " %’y(r) wherer = |z|.

(How can you derive this expression rapidly if you do not retier it?)

1.3.2 Global recurrence

For irreducible Markov chains on countable state spacesrmence respectively transience of an
arbitrary finite set already implies that recurrence resgndience holds for any finite set. This
allows to show that the Lyapunov conditions for recurrencd ttansience are both necessary
and sufficient. On general state spaces this is not necgssas, and proving corresponding
statements under appropriate conditions is much moreadeli®Ve recall the results on countable
state spaces, and we state a result on general state spdoastwroof. For a thorough treatment
of recurrence properties for Markov chains on general spéees we refer to the monograph
“Markov chains and stochastic stability” by Meyn and Twexd25].
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a) Countable state space

Suppose thai(z, y) = p(z, {y}) are the transition probabilities of a homogeneous Markairch
(X,, P;) taking values in a countable s€tand let7;, andT," denote the first hitting resp. return
time to a sef{y } consisting of a single statec S.

Definition (Irreducibility on countable state space$. The transition matrix and the Markov
chain(X,, P,) are calledirreducibleif and only if

(1). Ve,y € S:3In € Z, : p"(x,y) > 0, or equivalently, if and only if
(2). Vz,y € S: P,[T, < o0] > 0.

If the transition matrix is irreducible then recurrence gquuditive recurrence of different states
are equivalent to each other, since between two visits taament state the Markov chain will
visit any other state with positive probability:

Theorem 1.10(Recurrence and positive recurrence of irreducible Markov dains). Suppose
that S is countable and the transition matrixis irreducible.

(1). The following statements are all equivalent:

() There exists a finite recurrent sdtC S.
(i) Foranyz € S, the set{x} is recurrent.
(i) Forany z,y € S,
P.[X,, = y infinitely often] = 1.

(2). The following statements are all equivalent:

() There exists a finite positive recurrent sétC S.
(i) Foranyz € S, the set{x} is positive recurrent.

(i) Forany z,y € S,
E.[T,] < oc.

The proof is left as an exercise, see also the lecture notéStonhastic Processes’, [11]. The
Markov chain is calledglobally) recurrent iff the equivalent conditions in (1) hold, and tran-
sient iff these conditions do not hold. Similarly, it is eal(globally) positive recurrent iff the
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38 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

conditions in (2) are satisfied. By the example abovegfar 2 the simple random walk oA¢ is
globally recurrent but not positive recurrent. FbPp 3 it is transient.

As a consequence of Theorém 1.10, we obtain Lyapunov condifor transience, recurrence
and positive recurrence on a countable state space thabtredcessary and sufficient:

Corollary 1.11 (Foster-Lyapunov conditions for recurrence on a countable t@te space.
Suppose that' is countable and the transition matrixis irreducible. Then:

1) The Markov chain is transient if and only if there existsratdi setA C S and a function
V € F.(S) such that LT) holds.

2) The Markov chain is recurrent if and only if there existsraté setA C S and a function
V € F.(S) such that

(LR") LV <0onA° and{V < ¢} isfinite for anyc € R,.

3) The Markov chain is positive recurrent if and only if thesasts a finite sel C S and a
functionV € F, (S) such that(LP) holds.

Proof: Sufficiency of the Lyapunov conditions follows directly byndorems 119 and 1.10: If
(LT) holds then by 1]9 there exisgs= S such thatP,[T4 < oo, and hence the Markov chain is
transient by 1.70. Similarly, ifZP) holds thenA is positive recurrent by 1.9, and hence global
positive recurrence holds loy 1]10. Finally(fR’) holds and the state space is not finite, then
foranyc € R,, the set{VV < ¢} is not empty. Therefore,L R) holds by irreducibility, and the
recurrence follows again from 1.9 ahd 1.10.5lis finite then any irreducible chain is globally
recurrent.

We now prove that the Lyapunov conditions are alsoessary:

1) If the Markov chain is transient then we can find a state S and a finite sefd C S such
that the functiorl/(z) = P,[T4 < o] satisfies

Viz)<1= i%fV.
By Theoreni 17} is harmonic on4A¢ and thug LT) is satisfied.

2) Now suppose that the Markov chain is recurreng i$ finite then(LR’) holds withA = S
for an arbitrary functiol” € F,(S). If S is not finite then we choose a finite sétC S
and an arbitrary decreasing sequence of 8gts” S such thatd C Dg, D¢ is finite for
anyn, and) D,, = ), and we set

Vn(ZC) = Pm[TDn < TA]

Markov processes Andreas Eberle



1.3. LYAPUNOV FUNCTIONS AND RECURRENCE 39

ThenV,, =1 onD,, and as» — oo,
V() \y Pe[T4 =00] =0 foranyz € S.

SinceS is countable, we can apply a diagonal argument to extradbvsesuence such that

o

V(z) = ZVnk(x) < oo foranyz e S.

k=0

By Theoreni 1]7, the functiorig, andV” are harmonic ot$' \ A. Moreover,V > konD,, .
Thus the sub-level sets of are finite, and LR') is satisfied.

3) Finally if the chain is positive recurrent then for an &y finite setd C .S, the function
V(z) = E.[T4] is finite and satisfie§V = —1 on A°. Since

for anyz, condition(L P) is satisfied.

b) Extension to locally compact state spaces

Extensions of Corollarly 1.11 to general state spaces artzimal. Suppose for example that

is locally compact i.e., there exists a sequence of compact &gts~ S such thatS = |J K.
neN
Let p be a transition kernel ofS5, B), and let\ be a positive measure @8, 5) with full support,

i.e., \(B) > 0 for any non-empty open sét C S. For instanceS = R? and ) the Lebesgue
measure.

Definition (A-irreducibility and Feller property ).

1) The transition kernep is called A-irreducible if and only if for anyxz € S and for any
Borel setd € B with A(A) > 0, there exists € Z, such thap™(z, A) > 0.

2) pis calledFeller iff
(F) pfeCy(S) foranyf e Cy(S)

One of the difficulties on general state spaces is that threrdifierent concepts of irreducibility.
In general \-irreducibility is a strictly stronger condition thaapological irreducibility which
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means that every non-empty open Bet S is accessible from any statec S.
The following equivalences are proven in Chapter 9 of [Meyd @weedie: Markov Chains and
Stochastic Stability] [25]:

Theorem 1.12(Necessary and sufficient conditions for Harris recurrence o a locally com-
pact state spackg Suppose that is a A-irreducible Feller transition kernel oS, B). Then the
following statements are all equivalent:

(i) There exists a compact skt C S and a functionl/ € F,(.S) such that

(LR") LV <0onK* and{V < c}is compact forany € R,.

(i) There exists a compact st C S such thatk is Harris recurrent.
(i) Every non-empty open BalB C S is Harris recurrent.

(iv) Foranyz € S and any setd € B with A\(A) > 0,

P,[X, € Ainfinitely often] = 1.

The idea of the proof is to show at first thapifs A-irreducible and Feller then for any compact
setK C S, there exist a probability mass functiés,) onZ. , a probability measure on (S, B),
and a constant > 0 such that the minorization condition

Z app"(z,:) > ev (1.3.6)
n=0

holds for anyx € K. In the theory of Markov chain on general state spaces, & ssith this
property is callepetite. Given a petite sef{’ and a Lyapunov condition oA one can then
find a strictly increasing sequence of regeneration tiffieén € N) such that the law o7,
dominates the measuse from above. By the strong Markov property, the Markov chaekes

a “fresh start” with probabilitye at each of the regeneration times, and during each excursion
between two fresh start it visits a given sésatisfying\(A) > 0 with a fixed strictly positive
probability.

Example (Recurrence of Markov chains onR).
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1.4 The space of probability measures

A central topic in Markov chain theory is the existence, uigigess and convergence of Markov
chains to stationary distributions. To this end we will ddies different topologies and metrics
on the spacé(.S) of probability measures on a Polish spacendowed with its Boret-algebra
B. In this section, we study weak convergence of probabiligasures, and applications to exis-
tence of stationary distributions. Convergence in Wassieraind total variation metrics will be
considered in Chaptér 7. A useful additional referencetfsrgection is the classical monograph
“Convergence of probability measures” by Billingsley [2].

Recall thatP(S) is a convex subset of the vector space

M(S) ={apy — Bp—: py, p— € P(S),a, 8 > 0}

consisting of all finite signed measures 1 5). By M., (S) we denote the set of all (not
necessarily finite) non-negative measureg.8/13). For a measurg and a measurable function
f we set

w(f) = /fdu whenever the integral exists.

Definition (Invariant measures, stationary distribution). A measureu € M. (S) is called
invariant w.r.t. a transition kernep on (S, B) iff up = p, i.e., iff

/u(dx)p(:c, B) =u(B) foranyB € B.

An invariant probability measure is also calledsgationary (initial) distribution or an equilib-
rium of p.

Exercise. Show that the set of invariant probability measures for @gitransition kerneb is a
convex subset gP(S).

1.4.1 Weak topology

Recall that a sequencg; )y Of probability measures off, 55) is said toconverge weaklyto
ameasurg, € P(S) if and only if

() pn(f) = u(f) foranyf e Cy(S).

ThePortemanteau Theoremstates that weak convergence is equivalent to each of tloeviah
properties:
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(i) wr(f) — p(f) forany uniformly continuoug € C(.5).
(iii) limsup pug(A) < u(A) for any closed setl C S.
(iv) liminf pux(O) > p(O) for any opensed C S.

(v) limsup ux(f) < p(f) forany upper semicontinuous functign S — R thatis bounded
from above.

(vi) liminf ug(f) > pu(f) for any lower semicontinuous functigh: S — R that is bounded
from below.

(vii) pr(f) — p(f) forany functionf € F,(S) that is continuous gt-almost everyr € S.

For the proof see e.g. [Stroock:Probability Theory: An Amial View] [37], Theorem 3.1.5, or
[Billingsley:Convergence of probability measures] [2]helfollowing observation is crucial for
studying weak convergence on polish spaces:

Remark (Polish spaces as measurable subset [of 1]). Suppose thats, o) is a separable
metric space, anflz,, : n € N} is a countable dense subset. Then the map

. S = 0, 1N 141
L L (e a1
1+o(z,zn) neN

is a homeomorphism frorfi to 1 (S) provided|0, 1] is endowed with the product topology (i.e.,
the topology corresponding to pointwise convergence).elmegal i (S) is a measurable subset
of the compact spade, 1] (endowed with the produet-algebra that is generated by the product
topology). If S is compact ther(.S) is compact as well. In general,

S=n(S)cScio1X

whereS := h(S) is compact since it is a closed subset of the compact gpat@. ThusS can
be viewed as a compactification &f

On compact spaces, any sequence of probability measurasteekly convergent subsequence.

Theorem 1.13.If S is compact thefP(S) is compact w.r.t. weak convergence.
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Proof: Suppose that is compact. Then it can be shown based on the remark abové’ {lat
is separable w.r.t. uniform convergence. Thus there eaisequence, € C(S) (n € N) such
that||g,||sup < 1 for anyn, and the linear span of the functiogsis dense irC'(.5).

Now consider an arbitrary sequeng@,)xen in P(S). We will show that(y) has a convergent
subsequence. Note first that (g, ) )xen iS @ bounded sequence of real numbers foranBy a
diagonal argument, we can extract a subsequenc¢®eny of (1) xen such thag, (g,) converges
asl — oo for everyn € N. Since the span of the functiopg is dense irC'(S), this implies that

ACf) = lim pug () (1.4.2)

exists for anyf € C(S). Itis easy to verify that\ is apositive (i.e., A(f) > 0 wheneverf > 0)
linear functional orC'(S) with A(1) = 1. Moreover, if(f,,)nen iS @ decreasing sequencelins)
such thatf,, ~\, 0 pointwise, thery,, — 0 uniformly by compactness ¢f, and hencé\(f,,) — 0.
Therefore, there exists a probability measur@n .S such that

Af) = ulf) foranyf e C(S).
By (1.4.2), the sequendgy,) converges weakly tp. O

Remark (A metric for weak convergence. Choosing the functiop,, as in the proof above, we
see that a sequenc¢g;, ),y Of probability measures i (.S) converges weakly tp if and only

if ui(9,) — w1(gn) foranyn € N. Thus weak convergence A(S) is equivalent to convergence
w.r.t. the metric

d(p,v) = 27"pu(gn) — v(gn)|-

1.4.2 Prokhorov’'s theorem

We now consider the case wheseis a non-compact polish space. By identifyiSgwith the
imageh(.S) under the map defined by[(1.4]1), we can still vie#as a measurable subset of the
compact spac§’

ScScioh.

HenceP(S) can be viewed as a subset of the compact spAc:

P(S) = {ueP(S): u(S\S) =0} cP(S).

University of Bonn April 2015



44 CHAPTER 1. MARKOV CHAINS & STOCHASTIC STABILITY

If ux (k € N) andp are probability measures ¢h(that trivially extend taS) then:

1, — 1 weakly inP(S) (1.4.3)
< uk(f) — wp(f) for any uniformly continuoug € Cy(5)
& u(f) = u(f) forany f € C(S)

~

< — pweakly inP(S).

~

ThusP(S) inherits the weak topology fror®(S). The problem is, however, that sinéeis
not necessarily a closed subset%fit can happen that a sequerge) in P(S) converges to a
probability measure: on S s.t. 1(S) < 1. To exclude this possibility, the following tightness
condition is required:

Definition (Tightness of collections of probability measures LetR C P(S) be a set consist-
ing of probability measures ofi. ThenR is calledtight iff for anye > 0 there exists a compact
setK C S such that

sup u(S\ K) < e.

HER
Thus tightness means that the measures in thR se€ concentrated uniformly on a compact set
up to an arbitrary small positive amount of mass. ARetC P(S) is calledrelatively compact
iff every sequence iR has a subsequence that converges weakB(ii).

Theorem 1.14(Prokhorov). Suppose tha$' is polish, and lefR C P(S). Then
R is relatively compacts R is tight.

In particular, every tight sequence fA(S) has a weakly convergent subsequence.

We only prove the implication<" that will be the more important one for our purposes. This
implication holds in arbitrary separable metric spaces.tke proof of the converse implication
cf. e.g. [Billingsley:Convergence of probability meas]i2].

Proof of “<": Let (u)ren be a sequence iR. We have to show thdu,) has a weakly con-
vergent subsequence®(S). SinceP(S‘) is compact by Theorein 1.113, there is a subsequence
(1, ) that converges weakly 'ﬂ?(é) to a probability measure on S. We claim that by tightness,

wu(S) =1andu,, — pweakly inP(S). Lete > 0 be given. Then there exists a compact subset
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K of S such thafu, (K) > 1 — e for any!l. SinceK is compact, it is also a compact and (hence)
closed subset of. Therefore, by the Portmanteau Theorem,

p(K) > limsup g, (K) > 1 —¢,

=00

and thus
u(S\S) < u(S\K) <e.

Letting s tend to0, we see that(S \ S) = 0. Henceu € P(S) andyy, — 1 weakly inP(S) by
(L.4.3). O

1.4.3 Existence of invariant probability measures

We now apply Prokhorov’s Theorem to derive sufficient caods for the existence of an invari-
ant probability measure for a given transition kerpil, dy) on (S, B).

Definition (Feller property). The stochastic kernelis called(weakly) Felleriff pf is continu-
ous for anyf € Cy(.5).

A kernelp is Feller if and only ifr — p(z, -) is a continuous map frorfi to P(S) w.r.t. the weak
topology onP(S). Indeed, by definitiony is Feller if and only if

Tn = & = (pf)(xn) = (pf)(x) V[ € Cy(S).

Atopological space is said to lbecompactiff it is the union of countably many compact subsets.
For exampleR? is o-compact whereas an infinite dimensional Hilbert space isrrmpmpact.

Theorem 1.15(Foguel, Krylov-Bogolionbov). Suppose thap is a Feller transition kernel on
n—1
the Polish spacé, and letp,, := % > p'. Then there exists an invariant probability measpure

=0
of p if one of the following conditions is satisfied for some S
(i) The sequencép, (z,-) : n € N} istight, or
(i) Siso-compact, and there exists a compact&et S such that

lim inf p,,(z, K) > 0.

n—oo
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Remark. If (X, P,) is a canonical Markov chain with transition kerpethen
n—1

1

— Z lK(Xi)]

n 1=0

Is the average proportion of time spent by the chain in thédsdtring the first, steps. Condi-
tions(z) and(i7) say that

(i) Ve > 03K C S compactp,(z, K) >1—¢ foralln €N,
(i) 3= >0, K C Scompacty, oo b, (v,K)>¢e forallkcN.
Clearly, the second condition is weaker than the first onevesl respects.

Proof of Theorerh 1.15: (i) Suppose that the sequengge:= 7, (z, -) is tight for somer € S.
Then by Prokhorov’s Theorem, there exists a subsequegncand a probability measure
won S such that,, — p weakly. We claim thafipp = p. Indeed for,f € C,(S) we have
pf € Cy(S) by the Feller property. Therefore,

(up)(f) = p(pf) = lim vy, (pf) = lim (v, p)(f)
= lim v, (f) = p(f) foranyf e Gy(S),

where the second last equality holds since

1= i+1 1 Lo
=0

(i) Now suppose that Conditiofii) holds. We may also assume tttats a Borel subset of a
compact spacé. SinceP(S) is compact andii) holds, there exists > 0, a compact set
K C S, asubsequende,, ) of (1,), and a probability measuyeon S such that

vn (K)>e foranyk €N, andv,, — i weaklyins.

Note that weak convergence $hdoes not imply weak convergenceS$n However
v, (f) — fu(f) for any compactly supported functighe C(.S), and

a(S) > p(K) > limsup v, (K) > e.

Therefore, it can be verified similarly as above that the @wmrked measure

_iBNs)
=)

is an invariant probability measure fpr

(B|S), B e B(S),

O
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In practice, the assumptions in Theorlem 1.15 can be verifeedppropriate Lyapunov functions:

Corollary 1.16 (Lyapunov condition for the existence of an invariant probahlity measure).
Suppose thap is a Feller transition kernel and' is o-compact. Then an invariant probability
measure fop exists if the following Lyapunov condition is satisfied:

(L) There exists a functioly € F,(S), a compact se C S, and constants,c € (0, c0)
such that
LV S ClK — E&.

Proof: By (LI),
clg >e+ LV =e+pV - V.

By integrating the inequality w.r.t. the probability meesg, (z, -), we obtain

n—1
1 . .
C]_?n('a K) = CZ_)an > e+ E Z(pH—lV - plv)
i=0

—_

1 1
=e+—pV-—=-V>e--V
n n

n
for anyn € N. Therefore,

liminfp,(z, K) > ¢ foranyxz € S.

n—oo

The assertion now follows by Theorém 1.15. O

Example. 1) Countable state spaceif S is countable ang is irreducible then an invariant
probability measure exists if and only if the Markov chaipdsitive recurrent. On the other
hand, by Corollary 1.11, positive recurrence is equivatlerit./). Hence for irreducible
Markov chains on countable state spaces, Conditiar) is both necessary and sufficient
for the existence of a stationary distribution.

2) S =R%: OnR¢, Condition(LI) is satisfied in particular i£V is continuous and

limsup LV (z) < 0.

|z| =00
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Chapter 2
Ergodic averages

Suppose thatX,, P,) is a canonical time-homogeneous Markov chain with tramsikernelp.
Recall that the processY,,, P,) with initial distributiony is stationary, i.e.,

Xnioo ~ Xo.eo foranyn >0,

if and only if
= pp-
A probability measureg: with this property is called atationary (initial) distribution or an

invariant probability measure for the transition kernel p. In this chapter we will prove law
of large number type theorems for ergodic averages of the for

n—1

1
—Zf(XZ) — /fdu asn — oo,
n
=0
and, more generally,
1 n—1
_ZF<X27XZ+17)_>/FCZP,LL asn — oo
n
=0

wherey is a stationary distribution for the transition kernel. Asfithese limit theorems are
derived almost surely or id? w.r.t. the lawP, of the Markov chain in stationarity. Indeed,
they turn out to be special cases of more general ergodicahefor stationary (not necessarily
Markovian) stochastic processes. After the derivatiomefliasic results we will consider exten-
sions to continuous time. Moreover, we will study the flutiuas of ergodic averages around
their limit. The validity of ergodic theorems for Markov dha that are not started in stationarity
is considered in Sectidn 7.4.

As usual,S will denote a polish space endowed with its Barehlgebral3.

48
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2.1 Ergodic theorems

Supplementary references for this section are the prabathi¢ory textbooks by Breiman{ X X7,
Durrett [X X X] and VaradhanX X X].We first introduce the more general setup of ergodic the-
ory that includes stationary Markov chains as a special:.case

Let (2,2, P) be a probability space, and let
0:0—-0Q
be a measure-preserving measurable mafioRl, P), i.e.,
PoO'=pP
The main example is the following: Let
Q=5%, X,(w)=w, A=0(X,:ncZ,),

be the canonical model for a stochastic process with staieesp Then the shift transformation
O = Xi.,, given by

O(wp, w1, ...) = (wy,wa,...) foranyw € Q

is measure-preserving @, 2, P) if and only if (X, P) is a stationary process.

2.1.1 Ergodicity
We denote by7 the sube-algebra of( consisting of all®-invariant events, i.e.,
J={AecA:07"(4) =A4}.

It is easy to verify that7 is indeed ar-algebra, and that a functiafi : @ — R is J-measurable
if and only if
F=Fo0O.

Definition (Ergodic probability measure). The probability measur® on (€2, 2l) is calleder-
godic(w.r.t. ©) if and only if any eventl € 7 has probability zero or one.

Exercise(Characterization of ergodicity). 1) Show thatP is not ergodic if and only if there
exists a non-trivial decomposition = A U A° of Q into disjoint setsA and A¢ with
P[A] > 0 andP[A¢] > 0 such that

O(A) C A and O(A°) C A
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50 CHAPTER 2. ERGODIC AVERAGES

2) Prove thatP is ergodic if and only if any measurable functiégn: 2 — R satisfying
F = F o © is P-almost surely constant.

Before considering general stationary Markov chains wé& ktdwo elementary examples:

Example (Deterministic rotations of the unit circle).

Let = R/Z or, equivalently( = [0, 1]/ ~ where “~” is the equivalence relation that identifies
the boundary point8 and1. We endowf? with the Borels-algebra2l = B(£2) and the uniform
distribution (Lebesgue measur)= Unif($2). Then for any fixed: € R, the rotation

O(w) =w+a (modulol)

is @ measure preserving transformatiorj©@fl, P). Moreover,P is ergodic w.r.t.© if and only
if a is irrational:

a € Q: If a =p/qwith p, q € Z relatively prime then

k
O"(w) € {w+—:k:O,1,...,q—1} foranyn € Z.
q

This shows that for instance the union

-y ()

is ©-invariant with P[A] ¢ {0, 1}, i.e., P is not ergodic.

a ¢ Q: Suppose: is irrational andF' is a bounded measurable function@mwith ' = F o ©.
Then F' has a Fourier representation

F(w)= Y c,e®™™ for P-aimost every € Q,

n=—oo

and© invariance ofF’ implies

o o0
Z ¢, e2mmwta) — Z cne?™™  for P-almost every € €,
n=—oo n=—oo
i.e., c,e?™me = ¢, foranyn € Z. Sincea is irrational this implies that all Fourier coeffi-
cientsc,, excepte, vanish, i.e. F'is P-almost surely a constant function. Thiss ergodic
in this case.
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Example (IID Sequence$. Let i be a probability measure qib, B). The canonical process

X,(w) = w, is an i.i.d. sequence w.r.t. the product measbire: ® p onQ = S%+. In par-
n=0
ticular, (X, P) is a stationary process, i.e., the sltftwy, wi,...) = (w1, ws,...) iS measure-

preserving. To see that is ergodic w.r.t.© we consider an arbitrary evedte 7. Then
A=0""A) ={(X,, Xns1,...) € A} foranyn > 0.

This shows that! is a tail event, and hende[A] € {0, 1} by Kolmogorov’s zero-one law.

2.1.2 Ergodicity of stationary Markov chains

Now suppose thatX,, P,) is a general stationary Markov chain with initial distritaut ;» and
transition kernep satisfyingu = pp. Note that by stationarity, the mgp— pf is a contraction
on £?(u). Indeed, by the Cauchy-Schwarz inequality,

Jorrdn< [oraus [ P = [ Pae vre s,

In particular,
Lf=pf—1f

is an element inC?(;) for any f € L£2(p).

Theorem 2.1(Characterizations of ergodicity for Markov chains). The following statements
are equivalent:

1) The measuré, is shift-ergodic.
2) Any functiom, € £2(u) satisfyingCh = 0 u-almost surely igi-almost surely constant.

3) Any Borel se3 € B satisfyingpl s = 15 p-almost surely has measuigB) € {0, 1}.

Proof. 1) = 2). Suppose thaP, is ergodic and lek € £?(u) with Lh = 0 p-a.e. Then the
process\/,, = h(X,) is a square-integrable martingale w.F,. Moreover, the martingale
is bounded inL?(P,) since by stationarity,

E,hX,)% = /thﬂ foranyn € Z.,.
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Hence by thel? martingale convergence theorem, the limit, = lim M, exists in
n—oo
L*(P,). We fix a version of\/,, by defining

My (w) = limsup h(X,(w)) foreveryw € Q.

n—oo

Note that)M is a7-measurable random variable, since

My, 0 © = limsup h(X,+1) = limsup h(X,,) = M.

n—oo n—o0

Therefore, by ergodicity of>,, M., is P,-almost surely constant. Furthermore, by the

martingale property,
h(Xo) = My = E,[My|F;] P,-a.s.

Henceh(X)) is P,-almost surely constant, and thiuss p-almost surely constant.

2) = 3). If Bis a Borel set withplz = 15 u-almost surely then the function = 15 satisfies

Lh = 0 p-almost surely. If 2) holds theh is pu-almost surely constant, i.q:(B) is equal
to zero or one.

3) = 1). For proving that 3) implies ergodicity d?, let A € 7. Thenl, = 1, 0 ©. We will

show that this property implies that
satisfiegph = h, andh is u-almost surely equal to an indicator functibp. Hence by 3),
eitherh = 0 or b = 1 holdsyu-almost surely, and thu,[A] = | hdp equals zero or one.

The fact that: is harmonic follows from the Markov property and the invada of A: For

anyr € S,
(ph)(z) = Ey [Ex,[14]] = Ex[la 0 O] = Eu[la] = h(x).

To see that is u-almost surely an indicator function observe that by theRdaproperty
invariance of4 and the martingale convergence theorem,

h(Xn) = Ex,[1a] = Eu[la 0 ©"|F] = E,[LalF] = 14
P,-almost surely as — oo. Hence
poh ™ =P,o(h(X,)) " = P,ol}"
Since the left-hand side does not depend:pn
poh™t =P, 01,

and soh takesu-almost surely values ifi0, 1}.
U
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The third condition in Theorein 2.1 is reminiscent of the d&én of irreducibility. However,
there is an important difference as the following examptash

Exercise(Invariant and almost invariant events). An eventA € 2l is calledalmost invariant
iff
PJAAOT(A)] =0.

Prove that the following statements are equivalentfar 2A:
(i) Ais almostinvariant.
(i) Ais contained in the completiafi”* of thes-algebra7 w.r.t. the measur®,.
(i) There exist a seB € B satisfyingplz = 15 p-almost surely such that

P,JAA{X, € Beventually] = 0.

Example (Ergodicity and irreducibility ). Consider the constant Markov chain 6n= {0, 1}
with transition probabilitie(0,0) = p(1,1) = 1. Obviously, any probability measure ¢h
is a stationary distribution fop. The matrixp is not irreducible, for instancgly;; = 1.
Nevertheless, condition 3) is satisfied afdis ergodic if (and only if) is a Dirac measure.

2.1.3 Birkhoff’s ergodic theorem

We return to the general setup whébds a measure-preserving transformation on a probability
space(Q2, 2, P), andJ denotes the-algebra ofo-invariant events ifl.

Theorem 2.2(Birkhoff ). Suppose thaP = P o ©~! and letp € [1,00). Then asi — oo,

n—1
% Z Fo®' — E[F|J] P-almostsurely and i?(€2,2l, P) (2.1.1)

=0
for any random variablg” € L?(Q,2(, P). In particular, if P is ergodic then

n—1
1 - .
- E Fo®©'— E[F] P-almostsurely and i? (2,2, P). (2.1.2)

1=0
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Example (Law of large numbers for stationary processes Suppose thatX,,, P) is a station-
ary stochastic process in the canonical model, 2e= S%+ and X,,(w) = w,. Then the shift
O = Xi.., is measure-preserving. By applying Birkhoff’s theorem ttuaction of the form
F(w) = f(wo), we see that as — oo,

%Zf(xi):%ZFO@i%E[f(Xo)\J] (2.1.3)
i=0 i=0

P-almost surely and id? (2,2, P) for any f : S — R such thatf(X,) € £? andp € [1, c0). If
ergodicity holds ther[f(X,)| 7| = E[f(Xo)] P-almost surely, wheré (2.1.3) is a law of large
numbers. In particular, we recover the classical law ofdaxgmbers for i.i.d. sequences. More
generally, Birkhoff's ergodic can be applied to arbitré@®/functionsF : SZ+ — R. In this case,

n—1 n—1
1 1 .
— F(X,, X.iq,...)=— F ! E\F 2.1.4
- ;O (X5, Xig1,--+) - ;0 00" — E[F|J] ( )

P-almost surely and iil? asn — oco. Even in the classical i.i.d. case whdigF'| 7] = E[F]
almost surely, this result is an important extension of #ve ¢f large numbers.

Before proving Birkhoff's Theorem, we give fanctional analytic interpretation for the LP
convergence.

Remark (Functional analytic interpretation ). If © is measure preserving ¢f2, 2(, P) then the
mapU defined by
UF=Fo0©

is a linear isometry oi£? (2, 2, P) for anyp € [1, co]. Indeed, ifp is finite then
/\UFV’dP = / |F' o O|PdP = / |F|PdP foranyF € L£P(Q,2, P).

Similarly, it can be verified thal/ is isometric onC> (2,2, P). Forp = 2, U induces a unitary
transformation on the Hilbert spaéé(Q, 2, P), i.e.,

(UF, UG)LZ(]:J) = /(FO@) (GO@)dP = (F, G)LQ(P) for anyF,G S CQ(Q,Q[, P)

The L? ergodic theorem states that for alye £7($2, 2, P),

n—1

1 - .
- E U'F —7nF inLP(Q,2 P)asn — oo, WherenF := E[F|J]. (2.1.5)
1=0

In the Hilbert space cage= 2, 7 F' is the orthogonal projection df onto the closed subspace

Hy = L*(Q,J,P) = {F € L*(Q,9,P) : UF = F} (2.1.6)
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of L*(2,2, P). Note thatH, is the kernel of the linear operatdr — I. SinceU is unitary, H,
coincides with the orthogonal complement of the rang& ef 1, i.e.,

L*(Q,2A,P) = Hy® (U — I)(L?). (2.1.7)
Indeed, every functiolr’ € H, is orthogonal to the range éf — I, since
(UG—G,F)LQ == (UG,F)LQ—(G,F)LQ == (UG,F)LQ—(UG,UF)LQ = (UG,F—UF)LZ == 0

for anyG € L?(Q,2, P). Conversely, every functio’ € RangélU — I)* is contained inf,
since

|UF — F|j3s = (UF,UF)p> — 2(F,UF) 2+ (F, F)2 = 2(F, F —UF) > = 0.

The L? convergence in(2.1.5) therefore reduces to a simple fomatianalytic statement that
will be the starting point for the proof in the general casesgibelow.

Exercise(L? ergodic theorem). Prove that[(Z.1]5) holds for= 2 and anyF € £2(2, 2, P).

Notation (Averaging operator). From now on we will use the notation

1n71 ' 1n71 '
AnF:E;Fo@Z:E;UZF

for ergodic averages of” random variables. Note that,, defines a linear operator. Moreover,
A, induces a contraction of? (2,2, P) for anyp € [1, oo] andn € N since

n—1
1 )
1AnFlle < — > WU F|lo = ||Fll»  foranyF € LP(Q, 2, P).
=0

Proof of Theorerh 212The proof of the ergodic theorem will be given in several stéjt first we
will show in Step 1 below that for a broad class of functions tlonvergence i (2.1.1) follows
in an elementary way. As in the remark above we denote by

Hy={F e L*Q,A,P):UF = F}
the kernel of the linear operatbr — I on the Hilbert spacé&?(2, 2, P). Moreover, let
H ={UG—-G:GeL>®QAP)}=(U-—1I)(L®),

and letr F' = E[F|J].
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Step 1: We show that for any” € Hy + Hq,
A F—7F — 0 in L>(Q,2, P). (2.1.8)

Indeed, suppose thdt = F, + UG — G with Fy; € Hy andG € L. By the remark
abover I is the orthogonal projection df onto H, in the Hilbert spacd.?((, 2L, P), and
UG — G is orthogonal taH,. Hencer F' = F, and

n—1 n—1
1 ; 1 ;
AnF—ﬂ'F:g ,_EOUFO_FO+E E_OU(UG—G)
1
=—(U"G - @G).
~( )

SinceG € L>*(,2, P) andU is an L*>-isometry, the right hand side converge9tm
L asn — oo.

Step 2: L2-convergence:By Step 1,
A F — 7F  in L*(Q,2, P) (2.1.9)

foranyF € Hy+ H,. As the linear operatord,, andr are all contractions oh?(Q, 2, P),
the convergence extends to all random variables the L? closure ofH, + H, by ans/3
argument. Therefore, in order to extefd (2.1.9) taFalt L? it only remains to verify that
Hy + H, is dense inL?(Q, 2, P). But indeed, sincd.> is dense inL? andU — I is a
bounded linear operator di¥, H, is dense in thd.?-range ofU — I, and hence by (2.1.7),

LQ(Q,Q[,P) :H0+<U—[)(L2) :HO_'_FI:HO_'_HI

Step 3:LP-convergence For F' € L>(Q,2, P), the sequencéA, F'),cy is bounded inL>.
Hence for any € [1, ),

A F = rF  inLP(Q,9, P) (2.1.10)

by (2.1.9) and the dominated convergence theorem. Sipcandr are contractions on
each L? space, the convergence [n_(2.1.10) extends td’akk LP(Q2, 2, P) by ane/3
argument.

Step 4: Almost sure convergenceBy Step 1,

A, F — nF P-almost surely (2.1.11)
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forany F € Hy + H;. Furthermore, we have already shown th&t+ H; is dense in
L*(2,2(, P) and hence also ii! (€, 2, P). Now fix an arbitraryF" € L'(Q, 2, P), and
let (F},)ren be a sequence iy + H,; such thatF, — F in L'. We want to show that
A, F converges almost surely as— oo, then the limit can be identified as by the !
convergence shown in Step 3. We already know thatimost surely,

limsup A, F}, = liminf A, F), foranyk € N,

n—00 n—00

and therefore, fok € N ands > 0,
P[limsup A, F — liminf A, F > ¢] < P[sup |A, F — A, Fy| > /2]
= Plsup |A,(F — Fy)| > ¢/2]. (2.1.12)

Hence we are done if we can show for any> 0 that the right hand side in(2.1]12)
converges td ask — oco. SinceE[|F — F;|] — 0, the proof is now completed by Lemma

[2.3 below.
]

Lemma 2.3 (Maximal ergodic theorem). Suppose thaP” = P o ©~!. Then the following
statements hold for ank € £'(Q, 2, P):

1) E[F; max A;F >0/ >0 foranyn €N,

2) Plsup|A,F| > c] <LiE[|F|] foranyce (0,00).

neN

Note the similarity to the maximal inequality for martingal The proof is not very intuitive but
not difficult either:

Proof.
1) LetM, = 1r£1_a<x(F+Fo@+- 4+ FoO!),and letB = {M,, > 0} = {1r£1_a<x A F > 0}.
ThenM, = F + M, 0 ©, and hence o
F:M:—Mrf_lo@ZM:—MJo@ onB.
Taking expectations we obtain
E[F;B] > E[Mn*,B] E[M 006;070(B))]
E[M,] — E[(M, le(p)) © ©]
E[M,] = E[M,7;6(B)] > 0

sinceB C ©71(0(B)).
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2) We may assume thétis non-negative - otherwise we can apply the corresponditigpate
for |F|. For ' > 0 andc € (0, c0),

E{F—c;maXAiFZC} >0

1<i<n
by 1). Therefore,
c- P {TS%LXAZ-F > c} <FE {F; I?Sa;LXAZ-F > c} < E[F]
for anyn € N. Asn — oo we can conclude that
c-P [sugAiF > c} < E[F).
1€

The assertion now follows by replacirdy ¢ — £ and lettings tend to zero.

2.1.4 Application to Markov chains

Suppose thab is the shift on2 = 5%+, and(X,,, P,) is a canonical time-homogeneous Markov
chain with state spac#, initial distribution ;. and transition kerneb. Then© is measure-
preserving w.r.t.B, if and only if 1 is a stationary distribution fgs. Furthermore, by Theorem
2.1, the measure), is ergodic if and only if any seB € B such thaplz = 15 p-almost surely
has measurg(B) € {0, 1}. In this case, Birkhoff's theorem has the following conseuges:

a) Law of large numbers: For any functionf € £(S, i),

n—1

X)) = /fd,u P,-almost surely as — oc. (2.1.13)

=0

1
n
The law of large numbers for Markov chains is exploited in kéar chain Monte Carlo

(MCMC) methods for the numerical estimation of integralstwa given probability mea-
sure.

b) Estimation of the transition kernel: For any Borel sets!, B € B,

n—1

! Z leB(XiaXi—i—l) — E[lAXB(XQ,Xl)] = / M(d[L‘)p(ZL‘,B) (2114)

n
1=0 A

P,-as. asn — oo. This is applied in statistics of Markov chains for estimgtithe
transition kernel of a Markov chain from observed values.
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Both applications lead to new questions:

e How can the deviation of the ergodic average from its limigbantified?

e What can be said if the initial distribution of the Markov @& not a stationary distribu-

tion?

We return to these important questions later - in partidal&ections 24 arld 4.4. For the moment
we conclude with some preliminary observations concerthiegsecond question:

Remark (Non-stationary initial distributions ).

1) If v is a probability measure ofi that is absolutely continuous w.r.t. a stationary distri-
bution ;. then the lawP, of the Markov chain with initial distributiow is absolutely con-
tinuous w.r.t. P,. Therefore, in this casg,-almost sure convergence holds in Birkhoff’s
Theorem. More generally?,-almost sure convergence holds wheneyet is absolutely
continuous w.r.t.u, for somek € N, since the limits of the ergodic averages coincide for
the original Markov chairiX,,),>o and the chai X, ),>o With initial distributionvp”.

2) SinceP, = f P, u(dz), P,-almost sure convergence also impliésalmost sure conver-
gence of the ergodic averages foalmost everyz.

3) NeverthelesspP,-almost sure convergence does not hold in general. In péaticthere
are many Markov chains that have several stationary digtabs. If v andy are different
stationary distributions for the transition kerpethen the limitsE, [F'| 7] and E,[F|J] of
the ergodic averages, F' w.r.t. P, and P, respectively daot coincide

Exercise(Ergodicity of stationary Markov chains). Suppose that is a stationary distribution
for the transition kernep of a canonical Markov chaifX,,, P,) with state spacés, B). Prove

that the following statements are equivalent:
(i) P, is ergodic.

(i) ForanyB € B,
1 n—1
- Zpi(l’, B) — u(B) asn — oo for y-a.e.x € S.
n
=0

(iii) Forany B € B, such thaj(B) > 0,

P.[Tg < o] >0 forpu-a.e.x € S.

(iv) Any B € B suchthaplp = 15 p-a.s. has measuyg B) € {0, 1}.
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2.2 Ergodic theory in continuous time

We now extend the results in Section]2.1 to the continuous tase. Indeed we will see that the
main results in continuous time can be deduced from thossanate time.

2.2.1 Ergodic theorem

Let (2,2, P) be a probability space. Furthermore, suppose that we aga giproduct-measurable
map

©:[0,00) x Q2 —Q
(t, w)— 6yw)
satisfying the semigroup property
Oyp=idy, and ©,00,=0,, foranyt,s>0. (2.2.1)

The analogue in discrete time are the m&pgw) = ©™(w). As in the discrete time case,
the main example for the mag3, are the time-shifts on the canonical probability space of a
stochastic process:

Example (Stationary processes in continuous time Supposé? = C([0, o), S) or

Q = D([0,00),5) is the space of continuous, right-continuous or cadlagtfans from|0, o)
to S, X;(w) = w(t) is the evolution of a function at time and2(l = o(X; : t € [0,00)). Then,
by right continuity oft — X;(w), the time-shift® : [0, c0) x Q2 — 2 defined by

Oi(w) =w(t+-) fortel0,00),weQ,

is product-measurable and satisfies the semigroup profgy). Suppose moreover thatis
a probability measure off2, 2(). Then the continuous-time stochastic procgss ):cjo,), P) is
stationary, i.e.,

(Xott)te0,00) ~ (Xt)iepp,0)  UNderP foranys € [0, 00),
if and only if P is shift-invariant , i.e., iff Po ©;' = P for anys € [0, ).
Theo-algebra of shift-invariant events is defined by

J={AecA: A=0."(A)foranys € [0,00)} .

Verify for yourself that the definition is consistent withetlone in discrete time, and that is
indeed ar-algebra.
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Theorem 2.4(Ergodic theorem in continuous timeg. Suppose thaP is a probability measure
on (2, 2) satisfyingP o ©;! = P for anys € [0, 00). Then for any € [1, oo] and any random
variable F' € LP(Q, 2, P),

1 [ :
lim — [ Fo®©,ds= E[F|J]| P-almostsurelyand iL?(,2, P). (2.2.2)

t—oo t 0
Similarly to the discrete time case, we use the notation

t
Athl/Fo@st
t Jo

for the ergodic averages. It is straightforward to verifgttd, is a contraction onC?(2, 2, P)
for anyp € [1, o] provided the map®, are measure-preserving.

Proof.
Step 1: Time discretization. Suppose thak’ is uniformly bounded, and let

1
13’::/ FoO,ds.
0

Since(s,w) — O,(w) is product-measurablé; is a well-defined uniformly bounded ran-
dom variable. Furthermore, by the semigroup propérty 12.2.

—_

n—

A, F = A, F foranyn € N, where A,F := Fo0O,

SRS
I

i

estimate

. 1 [t
|ALF — Ay F| = [AF — A F| < ‘;/ Fo®;ds
t]

denotes the discrete time ergodic averagé off ¢ € [0, c0) is not an integer then we can
1 1 t]
+ (— ——) - / Fo0Ods
1l t) o
< ! |F| + ! 1 |F|
—Ssu — — - su .

The right-hand side is independentwfand converges t0 ast — oo. Hence by the
ergodic theorem in discrete time,

lim A,F = lim A,F = E[F|J] P-as.andinl’foranyp € [1,00),  (2.2.3)
— 00 n—oo

where = {4 € 2 : ©7'(A) = A} is the collection 0B, -invariant events.

University of Bonn April 2015



62 CHAPTER 2. ERGODIC AVERAGES

Step 2: Identification of the limit. Next we show that the limit in[{2.2.3) coincides with the
conditional expectatio’[F'|7] P-almost surely. To this end note that the limit superior
of A, I’ ast — oo IS J-measurable, since

1 t 1 t 1 s+t
(AtF)o@s:¥/Fo@uo@sdu:—/Fo@qusdu:;/ Fo®©,du

0 t 0
has the same limit superior as F' for any s € [0, c0). SinceL! convergence holds,

t

tlim AF = Elim A F|J] = lim E[AF|J] = lim % E[F 0 ©4|J]ds

t—o00 0

P-almost surely. Sinc®, is measure-preserving, it can be easily verified #fdt o © | 7]
= E[F|J] P-almost surely for any € [0, ). Hence

tlim AF = E[F|J] P-almostsurely
—00

Step 3: Extension to generaF € LP. SinceF,((2) is a dense subset @ (2,2, P) and 4, is
a contraction w.r.t. thé?-norm, theL? convergence in(2.2.2) holds for aiy € £ by
ane/3-argument. In order to show that almost sure convergenakstiot anyF” € £ we
apply once more the maximal ergodic theofen 2.3.tFor1,

1 [+t t]+1 . . . .
|AF| < f/ |F o O;]ds = Ht Al |[F| < 2414 |F].
0
Hence for any: € (0, o0),

o 2 .9
P [sup|AtF| > c} <P [supAn\F| > 0/2} < —E[|F|] < -E||F]].
c c

t>1 neN

Thus we have deduced a maximal inequality in continuous fiom the discrete time
maximal ergodic theorem. The proof of almost sure convergef the ergodic averages
can now be completed similarly to the discrete time case pyegmatingF’ by uniformly
bounded functions, cf. the proof of Theoremi2.2 above.

The ergodic theorem implies the following alternative eudgerizations of ergodicity:

Corollary 2.5 (Ergodicity and decay of correlations. Suppose thaf’ o ©;! = P for any
s € [0, 00). Then the following statements are equivalent:

(i) Pisergodic W.r.t.(O;)s>0-
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(i) Forany F € £2(Q,2, P),

1 t
Var(;/ Fo@sds) — 0 ast— oo.
0

(iii) Forany F € £2(Q, %1, P),

1 t
;/ Cov(Fo®©, F)ds—0 ast— oc.
0

(iv) Forany A, B € 2,

t
%/ P[AN©;(B)] ds — P[A] P[B] ast— oc.
0
The proof is left as an exercise.

2.2.2 Applications

a) Flows of ordinary differential equations
Letd : RY — R be a smootiC*) vector field. The flow©;),cr of b is a dynamical system on
Q) = R? defined by

%@t(w) = b(04(w)), Op(w)=w foranyw e RY. (2.2.4)

For a smooth functiod” : R¢ — R andt € R let
(UiF)(w) = F(64(w)).

Then the flow equationn (2.2.4) implies tferward equation

d . _
SUF =6, (VF)o®,=(b-VF)o®, ie,
(F) %UtF =ULF where LF =b-VF

is theinfinitesimal generator of the time-evolution. There is also a corresponduagkward
equationthat follows from the identity/, U, , F' = U, F'. By differentiating w.r.t.h ath = 0 we
obtainLUF — 4U,F = 0, and thus

d

(B)  —UF =LUF=b-V(Fo®,).
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The backward equation can be used to identiyariant measuresfor the flow(©,),cr. Suppose
that P is a positive measure dR? with a smooth density w.r.t. Lebesgue measupe and let
F € C(RY). Then

%/UthP:/b-V(Fo@t)gdA:/Fo@tdiv(gb)dx

Hence we can conclude that if
div(eb) =0

then[ Fo©,dP = [UFdP = [ FdPforanyF € C5°(R%) andt > 0, i.e.,
PoO;'=P foranyteR.

Example (Hamiltonian systemg. In Hamiltonian mechanics, the state space of a system is
Q) = R* where a vectow = (¢q,p) € Q consists of the position variable € R¢ and the
momentum variable € R?. If we choose units such that the mass is equal to one theotdle t
energy is given by thelamiltonian

H(q,p) = %\pl2 +V(q)

whereé |p|? is the kinetic energy antd (¢) is the potential energy. Here we assuvhe C>(R?).
The dynamics is given by the equations of motion

dg OH

i a—p(q,p) =P,
dp  OH B

A simple example is the harmonic oscillator (pendulum) whér= 1 andV (q) = %qz. Let
(64)cr be the corresponding flow of the vector field

91 (¢, p) p
bg.p) = | o _ _
(-7 (—%—Z(qm)) (—VV(Q)>

The first important observation is that the system does nolbex the whole state space, since
the energy is conserved:

d OH dg OH dp

@H(q,p) = a_q(‘-”p) ot 6—p(q,p) = (b-VH)(q,p) =0 (2.2.5)

where the dot stands both for the Euclidean inner produ@fiand inR?¢. ThusH o ©, is
constant, i.e — ©,(w) remains on a fixed energy shell.
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ax
NPy

Figure 2.1: Trajectories of harmonic oscillator

As a consequence, there are infinitely many invariant measumdeed, suppose that
o(q,p) = g(H(q,p)) for a smooth non-negative functigmon R. Then the measure

P(dw) = g(H(w)) X*(dw)

is invariant w.r.t.(©,) because

div(ob) = b- Vo + odiv(b) = (¢’ o H) (b- VH) + o (aQH aQH) ~0

0qdp  Opdq

by (2.2.5). What about ergodicity? For any Borel $2C R, the even{ H € B} is invariant

w.r.t. (©;) by conservation of the energy. Therefore, ergodicity canhatd if g is a smooth

function. However, the example of the harmonic oscillatavgs that ergodicity may hold if we
replaceg by a Dirac measure, i.e., if we restrict to a fixed energy shell

Remark (Deterministic vs. stochastic dynamics The flow of an ordinary differential equation
can be seen as a very special Markov process - with a detstiidynamics. More generally,
the ordinary differential equation can be replaced by al&tstic differential equation to obtain
Itd type diffusion processes, cf. below. In this case it is pmssible any more to choo$kas
the state space of the system as we did above - in$td@as to be replaced by the space of all
trajectories with appropriate regularity properties.

b) Gaussian processes

Simple examples of non-Markovian stochastic processededound in the class of Gaussian
processes. We consider the canonical model @ith D([0, c0), R), X;(w) = w(t),
A=0(X;:t€R,), andO;(w) = w(t + -). In particular,

X;00,=X;,, foranyt,s>D0.
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Let P be a probability measure a2, ). The stochastic proce$X;, P) is called aGaussian
processif and only if (X;,, ..., X;,) has a multivariate normal distribution for anye N and
t1,...,t, € R, (Recall thatitis not enough to assume thats normally distributed for anyt).
The law P of a Gaussian process is uniquely determined by the avessgkesovariances

m(t) = E[Xy], c(s,t) = Cov(Xs, X3), s,t>0.

It can be shown (Exercise) that a Gaussian process is safidrand only if m(t) is constant,
and

c(s,t) = r([s — 1)
for some function : R, — R (auto-correlation function). To obtain a necessary condition for
ergodicity note that if X;, P) is stationary and ergodic th%nfot X, ds converges to the constant

averagen, and hence
1 t
Var <¥/ X, ds) — 0 ast— oco.
0

On the other hand, by Fubini’s theorem,

t
Va(i/de) Cov(/det/Xdu)
0
//Cov X5, Xy) duds = — // s —u) duds
212

1
2t2 i (t —v)r(v)dv = % /. (1 - ;) r(v) dv
I :
~ 5 r(v)dv asymptotically a$ — oc.
0

Hence ergodicity can only hold if

1 t
lim — [ r(v)dv=0.

t—oo t

It can be shown by Spectral analysis/Fourier transformrtiegles that this condition is also suf-
ficient for ergodicity, cf. e.g. Lindgren, “Lectures on $batary Stochastic Processes” [22].

c) Random Fields

We have stated the ergodic theorem for temporal, i.e., amestsional averages. There are
corresponding results in the multi-dimensional case, i.es Z? ort € R?, cf. e.g. Stroock,
“Probability Theory: An Analytic View” [37]. These apply fanstance to ergodic averages of

the form
1

A= T

/ FoOB,ds, teRy,
(7t7t)d
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where(0;),cra IS a group of measure-preserving transformations on a pilityaspace(2, 2, P).
Multi-dimensional ergodic theorems are important for ttuglg of stationary random fields. Here
we just mention briefly two typical examples:

Example (Massless Gaussian free field ofiY). Let() = R%" whered > 3, and letX,(w) = w,
for w = (ws) € Q. Themassless Gaussian free field the probability measur® on €2 given
informally by

“P(dw) = %exp <— % Z |lwy — w8|2> H dws". (2.2.6)

s,tezd sezd
|s—t|=1

The expression is not rigorous since the Gaussian free fiel?6 does not have a density
w.r.t. a product measure. Indeed, the density in (2.2.6)ldvbe infinite for almost everyw.
NeverthelessP can be defined rigorously as the law of a centered Gaussiargsdor random
field) (Xs),cz« With covariances

Cov(X,, X;) = G(s,t) foranys,t € 7%,

whereG(s,t) = > p"(s,t) is the Green’s function of the Random Walk @f. The connection

n=0
to the informal expression ib(2.2.6) is made by observirg the generator of the random walk
is the discrete Laplaciaf;«, and the informal density i (2.2.6) takes the form

1
Z_l exp (—5 ((,(}, Ade)lg(Zd)> .

Ford > 3, the random walk orZ¢ is transient. Hence the Green’s function is finite, and one
can show that there is a unique centered Gaussian me&sare(2 with covariance function
G(s,t). Since G(s,t) depends only o — ¢, the measure” is stationary w.r.t. the shift
O,(w) = w(s+-), s € Z4. Furthermore, decay of correlations holds dor 3 since

G(s,t) ~ |s—t|*"* as|s —t| = cc.

It can be shown that this implies ergodicity Bf i.e., theP-almost sure limits of spatial ergodic
averages are constant. In dimensidns 1,2 the Green’s function is infinite and the massless
Gaussian free field does not exist. However, in any dimengienN it is possible to define

in a similar way the Gaussian free field with mass> 0, whereG is replaced by the Green’s
function of the operatom? — A ..

Example (Markov chains in random environment). Suppose that®, ),z is stationary and
ergodic on a probability spad€, 2, P), and letg : Q x Z¢ — [0, 1] be a stochastic kernel from
Q) to Z¢. Then random transition probabilities @ can be defined by setting

p(w,z,y) = q(O.(w),y —x) foranyw € Qandz,y € Z°.
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For any fixedw € Q, p(w,-) is the transition matrix of a Markov chain d@if. The variablev

is called therandom environment - it determines which transition matrix is applied. One is
now considering a two-stage model where at first an environmeas chosen at random, and
then (givenw) a Markov chain is run in this environment. Typical quessidhat arise are the
following:

e Quenched asymptotics.How does the Markov chain with transition kernglo, -, -) be-
have asymptotically for a typical (i.e., for P-almost every € (2)?

e Annealed asymptoticsWhat can be said about the asymptotics if one is averaging.ove
w.rt. P?

For an introduction to these and other questions see e.ging&am “Ten lectures on Random
media” [3].

2.2.3 Ergodic theory for Markov processes

We now return to our main interest in these notes: The apmitaf ergodic theorems to
Markov processes in continuous time. Suppose (thalco.~) is a transition function of a time-
homogeneous Markov procegk;,, P,) on (€2,2). We assume thdtX} ),c(o,«) i the canonical
process o2 = D([0,0),5), A = o(X; : t € [0,00)), andy is the law of X, w.r.t. P,. The
measure. is a stationary distribution fofp,) iff

pupy = p foranyt € [0, 00).

The existence of stationary distributions can be shownlaityito the discrete time case:

Theorem 2.6(Krylov-Bogoliubov). Suppose that the family

t
y@z;/upsds, t >0,
0

of probability measures of is tight for some’ € P(.S). Then there exists a stationary distribu-
tion 12 of (pr)e>0-

The proof of this and of the next theorem are left as exercises
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Theorem 2.7(Characterizations of ergodicity in continuous timg. 1) The shift semi-

groupO,(w) = w(t + -), t > 0, preserves the measurg, if and only if u is a stationary
distribution for (p;):>o.

2) In this case, the following statements are all equivalent

(i) P, is ergodic.
(i) Forany f € £2(S, ),

¢
%/ f(Xs)ds — /fdu P,-a.s. ast — oo.
0
(iiiy Forany f € L£%(S, u),
1 t
Varp, (;/ f(XS)ds) —0 ast— oo.
0
(iv) Foranyf,g € L*(S, p),
1 t
?/ Covp, (9(Xo), f(X)) ds =+ 0 ast — oo.
0
(v) ForanyA, B € B,
t
%/ P,[Xo€ A X, € Bl ds — pu(A)pu(B) ast — oo.
0

(vi) ForanyB € B,

~ | =

/tps(x,B) ds — u(B) p-a.e.as — oo.
0
(vii) Forany B € B with u(B) > 0,

P,[Tp <o) >0 foru-ae.xeS.
(viil) Forany B € B such thap;15 = 15 p-a.e. for anyt > 0,
w(B) € {0,1}.

(ix) Any functionh € F,(S) satisfyingp;h = h u-a.e. for anyt > 0 is constant up to a
set ofu-measure zero.
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One way to verify ergodicity is the strong Feller property:

Definition (Strong Feller property). A transition kernel on (S, B) is calledstrong Feller iff
pf is continuous for any bounded measurable funcfiansS — R.

Corollary 2.8. Suppose that one of the transition kernglst > 0, is strong Feller. TherP, is
stationary and ergodic for any stationary distributiprof (p;):>o that has connected support.

Proof. Let B € B such that
pilg =1p p-a.e. forany > 0. (2.2.7)

By Theoren 2.7 it suffices to show(B) € {0,1}. If p, is strong Feller for somethenp;15
is a continuous function. Therefore, By (212.7) and sineesihpport ofu is connected, either
pilg =0o0rplg =1o0nsuppf). Hence

p(B) = p(1p) = w(pilp) € {0, 1},
U

Example (Brownian motion on R/Z). A Brownian motion(X;) on the circleR/Z can be
obtained by considering a Brownian motioh;) on R modulo the integers, i.e.,

X, =B, |B] €][0,1) CR/Z.
Since Brownian motion o has the smooth transition density
pi(w,y) = (2mt) "2 exp(—|z — y|?/(21)),

the transition density of Brownian motion @&yZ w.r.t. the uniform distribution is given by

1 le—y—n|?
pi(m,y) =Y pi(e,y+n)= e o foranyt > 0 andz,y € [0,1).
ol o

Sincep; is a smooth function with bounded derivatives of all ordéng, transition kernels are
strong Feller for any > 0. The uniform distribution ofR /Z is stationary fof(p;):>o. Therefore,
by Corollary[2.8, Brownian motion oR /Z with uniform initial distribution is a stationary and
ergodic Markov process.

A similar reasoning as in the last example can be carriedagdneral non-degenerate diffusion
processes oR?. These are Markov processes generated by a second oraeenliffl operator
of the form

1< 0 d 0

i,7=1
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By PDE theory it can be shown that if the coefficients are lgddblder continuous, the matrix
(a;;(x)) is non-degenerate for any and appropriate growth conditions hold at infinity therréhe
iS a unique transition semigroyp; ):>o With a smooth transition density correspondingCtccf.
e.g. [XX X]. Therefore, Corollary 2]8 can be applied to prove that &ve df a corresponding
Markov process with stationary initial distribution is steary and ergodic.

2.3 Structure of invariant measures

In this section we apply the ergodic theorem to study thectire of the set of all invariant
measures w.r.t. a given one-parameter family of transfooms(©;);~,, as well as the structure
of the set of all stationary distributions of a given traiegitsemigrougp: ):>o.

2.3.1 The convex set oB-invariant probability measures

Let® : R, xQ — Q, (t,w) — O;(w) be product-measurable ¢f?, 2() satisfying the semigroup

property
Oy =idg, ©;00,=0,., foranyt,s>0,

and let7 = {A€2A:0;'(A) = Aforanyt > 0}. Alternatively, the results will also hold in
the discrete time case, i.®,. may be replaced b¥, . We denote by

S(©)={PeP(Q): PoO;' = Pforanyt >0}
the set of all®,)-invariant (stationary) probability measures @h 21).

Lemma 2.9(Singularity of ergodic probability measures). Suppose?, ) € S(©) are distinct
ergodic probability measures. Théhand( are singular on ther-algebra7, i.e., there exist an
eventAd € 7 such thatP[A] = 1 andQ[A] = 0.

Proof. This is a direct consequence of the ergodic theorenP? ¥ (@ then there is a random
variableF' € F,(Q) such that/ F'dP # [ F dQ. The event

A= {limsupAtF = /FdP}
t—o0

is contained in7, and by the ergodic theorer?[A] = 1 andQ[A] = 0. O

Recall that an element in a convex setC is called an extreme point af' if x can not be
represented in a non-trivial way as a convex combinationahents inC'. The setC, of all
extreme points i is hence given by

Co={xeC:3dr,z9€ C\{z},a € (0,1): 2 =ar;+ (1 — a)zy}.
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Theorem 2.10(Structure and extremals ofS(®)). 1) The setS(O) is convex.
2) A (©,)-invariant probability measuré is extremal inS(©) if and only if P is ergodic.

3) If Q is a polish space andl is the Borelo-algebra then any©,)-invariant probability
measureP on (£2,2() can be represented as a convex combination of extremal dergo
elements ir5(0), i.e., there exists a probability measwr®n S(©). such that

P = Q 0(dQ).

S(0)e

Proof. 1) If P, and P, are(©,)-invariant probability measures then any convex combamati
aP + (1 —a)B, a € [0,1], is (6;)-invariant, too.

2) Suppose first tha? € S(O) is ergodic and® = P, + (1 — a) P, for somea € (0, 1) and
P, P, € §(©). ThenP, and P, are both absolutely continuous w.r®. HenceP; and
P, are ergodic, i.e., they only take the valueand1 on sets in7. Since distinct ergodic
measures are singular by Lemmal 2.9 we can concludeihat P = P, i.e., the convex
combination is trivial. This show® € S(O)..

Conversely, suppose th&te S(0) is not ergodic, and lett € 7 such thatP[A] € (0, 1).
Then P can be represented as a non-trivial combination by comitgpono (A):

P = P[-|A] P[A] + P[-|A] P[A°].

As Ais in J, the conditional distribution®[-|A] and P[-|A¢| are both(©,)-invariant
again. Hence® ¢ S(0)..

3) This part is a bit tricky, and we only sketch the main idear. fRore details see e.g. Varad-
han, “Probability Theory”[[39]. Sincé&2, 2l) is a polish space with Borel-algebra, there
is aregular versiop s (w, -) of the conditional distribution®] - | 7] (w) given thes-algebra
J. Furthermore, it can be shown tha}(w, -) is stationary and ergodic for P-almost
everyw € ) (The idea in the background is that we “divide out” the nawidi invariant
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events by conditioning og). Assuming the ergodicity gf 7 (w, -) for P-a.e.w, we obtain
the representation

P(dw) = / P, ) P(dw)

- / Q 0dQ)
S(O)e

where is the law ofw — ps(w,-) under P. Here we have used the definition of a

regular version of the conditional distribution and thexgf@rmation theorem for Lebesgue

integrals.

To prove ergodicity op 7 (w, -) for almost everyo one can use that a measure is ergodic if
and only if all limits of ergodic averages of indicator fuioets are almost surely constant.

For a fixed eventd € 4,
t

1
lim - [ 1400,ds= P[A|J] P-almostsurely, and thus

t—oo t 0
t

tlLIgl i la00O,ds =ps(w,A) ps(w,-)-almost surely forP-a.e.w.
The problem is that the exceptional set iR-almost every” depends ad, and there are
uncountably many evenit € 21 in general. To resolve this issue, one can use that the Borel
o-algebra on a Polish space is generated by countably masylsetThe convergence
above then holds simultaneously with the same excepti@tdbsall A,,. This is enough
to prove ergodicity op 7 (w, -) for P-almost everyo.

O

2.3.2 The set of stationary distributions of a transition senigroup

We now specialize again to Markov processes. pet (p;);>o be a transition semigroup on
(S, B), and let(X,, P,) be a corresponding canonical Markov processloa D(R,,S). We
now denote byS(p) the collection of all stationary distributions f@w; ):>o, i.e.,

S(p) = {n € P(S) : = pup, foranyt > 0} .

As usually in this setup is thec-algebra of events iRl = (X, : t > 0) that are invariant
under time-shift®; (w) = w(t + -).

Exercise(Shift-invariants events for Markov processe$. Show that for anyl € 7 there exists
a Borel setB € B such thap;15 = 15 p-almost surely for any > 0, and

A=) |J{Xm € B} ={X, € B} P-almostsurely

neNm>n
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The next result is an analogue to Theorfem .10 for Markovesses. It can be either deduced
from Theoreni 2.0 or proven independently.

Theorem 2.11(Structure and extremals ofS(p)). 1) The setS(p) is convex.

2) A stationary distribution of (p;) is extremal inS(p) if and only if any se3 € 3 such that
pelp = 1p p-a.s. for anyt > 0 has measurg(B) € {0, 1}.

3) Any stationary distribution: of (p;) can be represented as a convex combination of ex-
tremal elements i (p).

Remark (Phase transitiong. The existence of several stationary distributions carespond to
the occurrence of a phase transition. For instance we véllis&ectiori 52 below that for the
heat bath dynamics of the Ising model @fithere is only one stationary distribution above the
critical temperature but there are several stationaryidigtons in the phase transition regime
below the critical temperature.

2.4 Quantitative bounds & CLT for ergodic averages

Let (p;)¢>0 be the transition semigroup of a Markov procégk, )<z, , P,) in discrete time or a
right-continuous Markov proces$.X,).cr, , ;) in continuous time with state spa¢g, 5). In
discrete timep, = p' wherep is the one-step transition kernel. Suppose jha a stationary
distribution of (p;),>o. If ergodicity holds then by the ergodic theorem, the avesag

1 < 1 [ .
Af = p iz;f(Xi), Af = ;/0 f(X;)ds respectively

converge tqu(f) = [ fdu forany f € £'(p). In this section, we study the asymptotics of the
fluctuations ofA; f aroundu(f) ast — oo for f € £?(u).

2.4.1 Bias and variance of stationary ergodic averages

Theorem 2.12(Bias, variance and asymptotic variance of ergodic averaggsLet f € £2(u)
and letf, = f — u(f). The following statements hold:
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1) Foranyt > 0, A, f is an unbiased estimator foi( f) w.r.t. P, i.e.,
Ep,[Aif] = p(f).

2) The variance ofd, f in stationarity is given by

t

Varp, [Af] = %Var“(f) + % Z (1 - %) Cov,(f,p"f) indiscrete time,

k=1

2 (! : : : :
Varp, [A:f] = f/ (1 — %) Cov,(f,p-f)dr in continuous time, respectively.
0

3) Suppose that the seriésf, = i Pk fo or the integralG f, = fooo psfods (in discrete/
k=0

continuous time respectively) converge<iiu). Then the asymptotic variance ¢t A, f
is given by

lim ¢ - Varp,[A,f] = 07, Where

t—o00

o} = Var,(f) +2)_ Cov,(f,p*f) = 2(fo, Gfo)r2(wy — (for fo)z2(
k=1

in the discrete time case, and

012” - / Cov,(f,psf)ds = 2(fo, G fo)r2(n)
0

in the continuous time case, respectively.

Remark. 1) The asymptotic variance equals

o7 = Varp,[f(Xo) +2)  Covp,[f(Xo), f(X)],

afc:/ Covp,[f(Xo), f(X,)]ds respectively
0

If Gf, exists then the variance of the ergodic averages behavegpstycally asUJ% /t.

2) The statements hold under the assumption that the Markmeps is started in stationarity.
Bounds for ergodic averages of Markov processes with natmesiary initial distribution
are given in Section 7.4 below.

Proof of Theorerh 2.12:
We prove the results in the continuous time case. The aneldgcrete time case is left as
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76 CHAPTER 2. ERGODIC AVERAGES

an exercise. Note first that by right-continuity 0X}):>o, the procesgs,w) — f(Xs(w)) is
product-measurable and square integrabl®of x Q w.r.t. A\ ® P, for anyt € R,.

1) By Fubini’s theorem and stationarity,
l / FX ds} _ / Ep,[f(X,)]ds = u(f) foranyt > 0.

2) Similarly, by Fubini’'s theorem, stationarity and the Mav property,

Varp, [Af] = Covp, { / F(X,)ds, > / F(X }
/ / Covp, [f(Xy), f(X.)] dsdu
// Cov(f, pu—sf) dsdu

=2 [e=ncontrnnar

3) Note that by stationarity;(p,f) = u(f), and hence

Covu(l.pef) = [ fomnfod foranyr >

Therefore, by 2) and Fubini’s theorem,

t~Varpu[Atf]:2/Ot (1—%>/f0prf0dudr

—9 (fo, /0 (1= D) ndo dr) »

2<f0,/ prfod'r) ast — oo
0 L2 ()

provided the integral,* p, fo dr converges inL?(1.). Here the last conclusion holds since
L?(u)-convergence ofot prfo dr ast — oo implies that

t 1 t T 1 t t ]
/ iprfod'r’:—/ / prOdsd'r’:—/ /prfod'r’ds—>0|nL2(,u) ast — oo.
ot tJo Jo tJo Js

O

Remark (Potential operator, existence of asymptotic variance The theorem states that the
asymptotic variance of/t A, f exists if the series/integral f, converges in.?(;). Notice that
is a linear operator that is defined in the same way as the Griesction. However, the Markov
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2.4. QUANTITATIVE BOUNDS & CLT FOR ERGODIC AVERAGES 77

process is recurrent due to stationarity, and therefdng = oo p-a.s. onB for any Borel seBB C
S. Nevertheless(7 f; often exists becausg has mean(f,) = 0. Some sufficient conditions
for the existence of- f, (and hence of the asymptotic variance) are given in the esebelow.
If G f, exists for anyf € £2(u) thenG induces a linear operator on the Hilbert space

Li(pu) ={f € L*() : p(f) = 0},

i.e., on the orthogonal complement of the constant funstion’.?(). This linear operator is
called thepotential operator. It is the inverse of the negative generator restricted ecottthog-
onal complement of the constant functions. Indeed, in disedime,

—LGfo=(I=p)> p"fo=fo
n=0

whenevelG f, converges. Similarly, in continuous time (Gff, exists then

—LGfy = —lf%l phh /O pefodt = lﬁgﬁ (/O pefo dt—/o Dethfo dt)

h

1
215101% i pefodt = fo.

The last conclusion holds by strong continuitytefs p, f,, cf. Theoreni 42 below.

Exercise (Sufficient conditions for existence of the asymptotic variace). Prove that in the
continuous time casé; f, = fOOO p: fo converges in.%(u) if one of the following conditions is
satisfied:

(i) Decay of correlations: [ |Covp, [f(Xo), f(X¢)]| dt < oco.
(i) L2 bound: [ |[pefoll 2 dt < oo.

Deduce non-asymptoti¢ {inite) and asymptotici(— oo) bounds for the variances of ergodic
averages under the assumption that either the correlgtiomsp, [f(Xo), f(X;)]| or the L*(y)
norms||p; fol| 22, are bounded by an integrable functioft).

2.4.2 Central limit theorem for Markov chains

We now restrict ourselves to the discrete time case.fLetL?(u), and suppose that the asymp-
totic variance

o7 = lim nVarp,[4, f]

n—oo
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78 CHAPTER 2. ERGODIC AVERAGES

exists and is finite. Without loss of generality we assurfig) = 0, otherwise we may consider
fo instead off. Our goal is to prove a central limit theorem of the form

D Zf N(0,0%) (2.4.1)

where “5"” stands for convergence in distribution. The key idea isge the martingale problem
in order to reduce (2.4.1) to a central limit theorem for imaydles. Ifg is a function in£?(p)
theng(X,,) € £L*(P,) foranyn > 0, and hence

n—1

9(Xn) = 9(Xo) = My + > (Lg)(Xs) (2.4.2)

where(1M,) is a square-integrableF;’ ) martingale withA/, = 0 w.r.t. P,, andLg = pg — g.
Now suppose that there exists a functipg £2(u) such thatCg = —f p-a.e. Note that this is
always the case with= G f if Gf = > p"f converges inL?(u). Then by ([Z4.R),

n=0

L . % 9(Xo) — 9(Xn)
7 kz%f(Xk) = n + NG .

(2.4.3)

Asn — oo, the second summand converge$ ia L?(P,). Therefore,[(24]1) is equivalent to a
central limit theorem for the martingaléZ,, ). Explicitly,

M, = ZYi for anyn > 0,
i=1
where the martingale incremeritsare given by

Yi=M;— M;_, = Q(Xz‘) - g(Xi—l) - (‘Cg)(Xi—l)
= g(Xi) — (pg)(Xi-1).

These increments form a stationary sequence W,.tThus we can apply the following theorem:

Theorem 2.13(CLT for martingales with stationary increments). Let (F,,) be a filtration on
a probability spacé2, 2, P). Suppose that/,, = Z Y; is an(F,) martingale on(2, 2(, P) with

stationary increment¥; € £2(P), and leto € R+ If

1 :
— § Y2 —o® inL'(P)asn — oo (2.4.4)
n
then
1 D )
—M, = N(0, w.rt. P. 2.4.5
NG (0,07) (2.4.5)
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The proof of Theoreri 2.13 will be given at the end of this settiNote that by the ergodic
theorem, the condition (2.4.4) is satisfied with= E[Y}?] if the procesgY;, P) is ergodic. As a
consequence of Theorém 2.13 and the considerations abewa)tain:

Corollary 2.14 (CLT for stationary Markov chains ). Let (X, P,) be a stationary and ergodic

Markov chain with initial distributionu and one-step transition kerngl and letf € £2(u).
Suppose that there exists a functipg £2(u) such that

—Lg = f—u(f). (2.4.6)

Then asy — oo,

i
L

- (f(Xx) — u(f)) 2 N(0,02),  where

M=o
aj% = 2Cov,(f,g) — Var,(f).

Remark. Recall that[(2.416) is satisfied with= G(f — u(f)) if it exists.

=
Il

Proof. LetY; = ¢(X;) — (pg)(X,;—1). Then underP, (Y;) is a stationary sequence of square-
integrable martingale increments. By the ergodic theofenthe proces$X,,, P,),

%ZZ”;YZ? LBV inLMN(P,) asn — .
The limiting expectation can be identified as the asymptta'rdanceo—]% by an explicit computa-
tion:
E.[Y?] = E.[(9(X1) — (pg)(X0))?]
— [ ) B0 = 29(X0)(p9) (Xo) + (p9) (X0
— [0 = 2007 + 0P = [ g2~ [ v

=(9—-p9,9 +pg>L2(u) = 2(f07g>L2(M) — (fo, fO)LQ(u) = szr-

Here fo := f — u(f) = —Lg = g — pg by assumption. The martingale CLT 2113 now implies
that

I <. » )
—=> Yi= N(0,07),
Vg

and hence
1 < RS 9(Xo) —9(Xn) 1 2
%;(f(xi)_ﬂ<f))—%;}/;+ Jn — N(0,07%)
as well, becausg(X,) — g(X,,) is bounded in.(P,). O
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Some explicit bounds onJ% are given in Sectioh 71.4. We conclude this section with a foodo
the CLT for martingales with stationary increments:

2.4.3 Central limit theorem for martingales

Let M,, = > Y; where(Y;) is a stationary sequence of square-integrable randombl@sian a
=1
probability spac€(2, 2, P) satisfying
E[Y;|Fi-1] =0 P-as. foranyi € N (2.4.7)

w.r.t. a filtration(F,,). We now prove the central limit theordm 2,13, i.e.,

%Mn 2 N(0,0?). (2.4.8)

Proof of Theorerh 2.13Since the characteristic functian(p) = exp (—o?p?/2) of N(0,0?) is
continuous, it suffices to show that for any fixed R,

1 :
=3 Y2 »oinL!(P) =
n

=1

E [ez‘pMn/\/ﬁ] — ¢(p) asn — oo, or, equivalently,
E [eipMn/\/ma%z/? — 1} — 0 asn — co. (2.4.9)

Let 22
. g
Zn,k::exp(z\/iﬁMk—l— QPE)’ k=0,1,...,n.
Then the left-hand side i (2.4.9) is given by

n

EZun = Znol = > _ ElZu — Zni-1]
k=1

n

. 2,.2
= N"E|Zupr Elexsp Ly, + 22 ) —11F ] (2.4.10)
’ vn 2n
k=1

The random variable&,, ,_, are uniformly bounded independentlyofand%, and by a Taylor
approximation and(2.4.7),

. 2,.2 . 2
E [GXP <Z—\/]%Yk + %) — 1|Fk—1} =L lz_\/]%yk - g—n (Y2 —0?) |]:k—1} + R, i

2

= _g_nE[YkQ — 02|fk_1] + Rn,k

with a remainderR,, ;. of ordero(1/n). Hence by[(2.4.10),

2 n
ipMy, [r/nt-c2p2 /2 D 2 2
E|:€p /\/_+ p/ —1] ——%;E[Zn7kl'<yk —O'):|+TTL
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2.4. QUANTITATIVE BOUNDS & CLT FOR ERGODIC AVERAGES 81

wherer,, = Z E|Z, ;-1 Rnyx). It can be verified that, — 0 asn — oo, so we are only left

with the flrst term To control this term, we divide the postintegers into blocks of sizevhere
| — oo below, and we apply(2.4.4) after replaciag ,_, by Z, j; on thej-th block. We first

estimate
1 n
=2 BlZnia —#ﬂ
k=1
1 [n/1]
<SS E | Zow Y. W=+ sw  ElZuis— Zugl - |Y7 = o]
"% sk ~“§’2<<(~;'L+1”
<n
l
< ‘ ZYk —o)|[+2 +03 sup E [|Znp—1 — 1| -|Y7 = 0[] . (2.4.11)
Pt 1<k<l

Here we have used that the random varialilgs are uniformly bounded, the sequen@é) is
stationary, and

|Zn,k71 - Zn,jl‘ S |Zn,jl‘ 9 n

22k_~l
em( p(Me— My) + 22 j)‘q

where the exponential has the same lawZags_;; by stationarity. By the assumptidn (2.4.4), the
first term on the right-hand side ¢f (2.4111) can be maderaryismall by choosingsufficiently
large. Moreover, for any fixed € N, the two other summands convergelt@asn — oo by
dominated convergence. Hence the left-hand side in (2.4l1$& converges tb asn — oo, and

thus [2.4.4) holds. O
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Chapter 3

Constructions of Markov processes in
continuous time

In this chapter, we give constructions for solutions of sevemportant classes of martingale
problems. Sectioh 3.1 is devoted to an explicit constrmotibjump processes with finite jump
intensities from their jump rates (i.e. from their generg}fpand the derivation of forward and
backward equations and the martingale problem in this mamerete context. A very important
way to obtain solutions of martingale problems is by appr@tion. In Sectioh 312 the necessary
tools for weak convergence of stochastic processes aréogpeeand applied to obtain Brownian
motion as a universal scaling limit of random walks. In SatfB.3, the techniques are general-
ized and applied to prove an existence result for diffusimcesses ilR?. Finally, Sectiori 314
briefly discusses the application of Lyapunov function teghes in continuous time.

3.1 Jump processes with finite intensity

We will now construct a time-continuous Markov process viitfinitesimal generator at time
given by
@) = [ T = f) aledy) (3.11)

Hereq, : S x B — [0, 00) is a kernel of finite positive measures for any 0, i.e.,z — ¢(z, B)

is a measurable function for arfy € B and B — ¢,(x, B) is a finite positive measure for any
x € S. The process jumps from the current stat® a new state contained in the getwith
transition ratey (z, B), i.e., the transition probabilities satisfy

pt,tJrh(xu B) = Qt(xa B>h + O(h)

82



3.1. JUMP PROCESSES WITH FINITE INTENSITY 83

for any B € B such that: ¢ B.

Examples. 1) Non-homogeneous Poisson process with intensitiag. This is the process
with state spac& ., and transition rates

Qt<'r7 ) =\ Opt1

S
<
3
<
§
<

high intensity low intensity

2) Birth-death process This is a process oA, with transition rates given by

@ (z,-) = by(2)0p41 + di(2)0p 1

for functions(t, ) — b,(z), d;(x) on [0, 00) X Z,..

rated(x) rateb(z)

xl—l T r+1

3) Time-dependent branching process Suppose the particles in a population are indepen-
dently giving birth to a child with raté; and dying with ratei,. Then the total population
size at time can be described by a Markov processZonwith transition rates

Qt(f% ) = bt$5x+1 — dyx0,—1.
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84 CHAPTER 3. CONSTRUCTIONS OF MARKOV PROCESSES IN CONTINU®TIME

3.1.1 Construction

We now give an explicit construction of a procés§ ).cjo,.) With generatoiZ, given by [3.1.11)
and initial distribution at time, given by X,, ~ v. To this end we assume that

q(z, B) = \(x)m(z, B) foranyz € SandB € B, (3.1.2)

wherer, is a stochastic kernel aib, B) and)\; : S — [0, c0) is @ measurable function. Note that
the valuesy (z, {z}) are not relevant in(3.1.1), so we may indeed assumelthaflj&den holds
for setsB containingr. A\;(x) is an upper bound for the jump intensity framat timet since

q@(z, S\ {z}) < q(x, S) = M(x).

The subsequent jump timgg, and positiong’,, of a Markov process with jump intensitigsand
initial law v at timet, can be obtained by the following algorithm.

Algorithm (Construction of minimal jump process). 1) Set7, := t, and samplé&j ~ v.
2) Forn:=1,2,... do

(i) SampleE, ~ Exp(1) independently oty,...,Y, 1, Fo,..., Eyp_1.
(i) Set, :=inf {t >0: f}n_l As(Yo1)ds > En}
(i) SampleY,,|(Yo, ..., Yo 1, Eo, ..., En) ~ 77, (Yo 1,-).

Here we seinf @ = oco. It may happen (for instance when(Y,,_;) = 0 for anyt) that.7,, = oo
with positive probability, and in that case we use the cotivenr(z, -) = J,.. Note that actually
the value ofr,, is not relevant since the process gets stuck aainyway. It may also happen
that the process “explodes”, i.e., there are infinitely mpmgps in finite time. We define the
explosion time] as

¢ = sup J,.

The Markov proces§X;):>y, is then given by

X;=Y, on [T, Jn1) foranyneZ,,
Xi=A on [¢,00).

The process is minimal in the sense that we assign the distahee A after the explosion time
(. There may exist other Markov processes with the same tramsates that start again in a
different state at the explosion time, see the exercises.
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Let Py, ., denote the underlying probability measure for the randorakites defined by the
algorithm with initial lawv = 4, at timet,. Hence undef, .., Jo = to, andY, = z, almost
surely, the conditional law af7,, given(Jo, Yo, . . ., Jn_1, Yn_1) IS

A (Y1) Jonoy Mrnmndry syt (3.1.3)

and the conditional law of,, given(Jo, Yo, - . ., Jn-1, Yn_1, Jn) iS77,(Y,_1, ). The probability
measure oiR ; defined byl[(3.1]3) is calledsurvival distribution with time-dependent hazard
rate As(Y,_1). Notice that an exponential distribution is a special stahistribution with time-
independent hazard rake Furthermore, the survival distribution has a propertyagalizing the
memoryless property of the exponential distribution, iahitour case says that

P(to,mo) [jn >1+ h |\7n—17 Yn—la jn > t] =e ftt+h AS(Yn*l)ds.

In particular, the conditional probability that there isjomp in the time intervalt, ¢t + k| given
the next jump occurs after timas 1 — hA:(Y,,—1) + o(h) ash | 0.

Example (Time-homogeneous cage Suppose that the jump intensiti@$z, B) do not depend
ont. Then we may assume that alspand\; do not depend on In particular, in this case the
transition probabilities do not depend on the jump times, the sequenadg’,),cz, of positions
of the process is a Markov chain with transition kernelGiveno(Y,, : n € Z. ), the waiting
times for the next jumps are independent with

E,
jn - jnfl = )\(Yn—l) ~ EXp<)‘(Yn*1>>

Example (Time-homogeneous case with bounded jump intensitigsThings simplify further
if we assume that the intensities are time-independent suiphy(z, S '\ {z}) < X for a finite
z€eS

constant\. In this case we assume

q(z,dy) = Am(z,dy)

wherer is a transition kernel. The process constructed correspglydaccording to the algo-
rithm above has i.i.d. waiting times

TIn — Tn-1 ~ Exp(})

between jumps. Hence the number of jumps up to tinsea Poisson process with parameter
The processY,,) of positions is an independent Markov chain with transitkennelr, and the
continuous-time process is given by

X; =Yy, (3.1.4)
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The process$X;) is called thecontinuization of the Markov chainy,,). For example ifY,,) is
a Random Walk the(X;) is a compound Poisson process. By (3.1.4), it is easy to ctenipe
transition functions of the process in continuous time ek by independence @f,,) and(N;),

(Pf)(@) = Eox [f(X)] = Eox[f(Yi); Ny = K]

foranyt > 0,z € S andf € F,(S) wheree's = >~7° | L(t£)* denotes the exponential of the
bounded linear operator

(L) = A =D f)(z) = /Q(w,dy)(f(y) — f(x)).

Standard properties of the operator exponential now shatyilfi satisfies the Kolmogorov for-
ward and backward equation

d
%ptf =pLf =Lpf

where the derivative can be taken w.r.t. the supremum noomubounded jump intensities, the
derivation of Kolmogorov’s equations will be technicallyush more demanding.

3.1.2 Markov property

We now want to show that the process constructed above isdgralMarkov process with the right
generator. We first remark that in the general case, the seq(ig,) of positions isnot a Markov
chain since the transition kernels depend on the (randomp jumes. Similarly, the sequence
(J,.) of jump times is not a Markov chain in general. However, thecpssesY,, 1, J,)nen and
(I, Yn)nez, are both Markov chains w.r.t. the filtrations

gn = O-(}/(]V"aYnflaElv"'uEn% gn = U(}/E]u"'7yn7E17"'7En)7
respectively. The corresponding transition function avergby
t
P((z,5), dy dt) = (. dy)M(y) exp (— / Ar<y>dr) ey (D

P((s,z),dt dy) = \(z) exp (—/ )\r(x)dr) L(s,00) ()i (2, dy)dt.
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The continuous-time proces$<X;):>, iS obtained as a deterministic function from the Markov
chains:

Xt = ét(\%ayb7jlayvla .. )
where we set

X, forte[t,, t,.1)forsomen € Z,,

(3.1.5)
A fort > supt,

q)t(t07'r07tlax1, - ) = {

Let FX = o(X, : s € [0,1]).

Theorem 3.1(Markov property ). The proces$(X;)i>,, (Pi.2)) IS @n (F;*) Markov process,
i.e.,
E(to,mo) [F(Xs:oo>1{s<ﬁ}} ‘Féx] = E(S,Xs) [F<Xsoo)] P(to,xo)'a-s-

for any0 < ¢y, < s,z € S, and any bounded measurable functibn D(R,, S U {A}) — R.

For proving the theorem we will apply the Markov property bé tchain(Y,,_, 7). Here the
problem is that the relevant filtration {§,,),.cn but we are interested in the conditional expecta-
tion givenFX for somes € R, . To overcome this difficulty let

Ky =min{n € Z; : J, > s}

denote the index of the first jump after time
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Note thatK is a stopping time w.r.t.G,,), and
{Ks; < o0} = {s < (}.

Besides the Markov property of the chdivi,_;, 7,), the following fact will be crucial for the
proof of Theoreni 3]1:

Lemma 3.2(Memoryless property). Lets > ty,. Then for any > s,
Poao) [{Jk, >t} N {s < ¢} | FX] = e EMEdr pas on{s < ¢}, ie.,

Pioo) (I, >t} N {s < (3N A] = By a0) [e* Ja@adr s An{s< ()| YAeF

Note that the assertion is already a restricted form of thekbaproperty in continuous time: The
conditional distribution with respect t&;, ..,y of Jx, given F;* coincides with the distribution
of J; with respect toF x.).

Proof. Let A € FX. Then it can be verified that for amy€ N,
AN {Ks = n} co (J07 }/E]u ) Jnfh Yn71> = ,gvnfl-

Since

t t

PlJ,>t|Gua] =exp | — / Ar(Yno1)dr | =exp —/)\T(Yn_l)dr - P[Jy > s | Guil,
——

In—1 S =As

we obtain

P{Jg, >t} NAN{K,=n}|=F

PlJ, > 1] Goa]: AN{K, = n}]

— E e Mo s AN{K;=n}n{J, > s}}

— e ArXa)dre AN {K, = n}} .
Summing oven gives the assertion sinde < (} = UneN{Ks =n}. O
Proof of Theorerh 3l1Let s > t,. Then for anyt > 0,

Xert = q)t(&YKs*thmYststJrl? - ) on {KS < OO} = {S < C}
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where @, is defined by[(3.1]5). In other words, the procéss,, = (Xsit)i>o from time s
onwards is constructed in the same way frenvx, 1, Jx., ... as the original process is con-
structed fromty, Yy, Ji,.... Let F': D(R,, S U{A}) — R be bounded and measurable. Then
the Strong Markov property for the chail,_+, J,,),

Eto,0) [F(Xsioo)  L{s<cy | Gr.]
=FE(ty,20) [F o ®(s,Yr,—1, Jrys - -) * Lk <00} | gKS]
=B AN [F o O(s, (Yo, J1), (Y1, J2),..)]  as. on{K, < oo} = {s < (},
where® = (®,);>(. SinceF; C Gg,, we obtain by the projectivity of the conditional expeatati
Eltoz0) [F(Xsioo) - Lis<c | Fi' ] = Eto o) [E&rfflf?ai”[f? 0 (s, (Yo, 1), - )] - Lseey ‘IX] ’

where we haven taken into account that the conditional éafien givenGy,_ is0 on{s > (}
and thatYy, ; = X,. By the lemma above, the conditional distribution.Bf, given X is
k(Xs, ) where

k(z,dt) = A\ (x) - e @ g () dt.

Hence we obtain
E(to,xo) [F(Xsoo) ’ 1{S<C} | ‘FS)(} = E?A)?lsrt(l?el)?za)")] [F ° (I)(S, (Yb, J1)7 s )] a.s. On{S < C}
Sincek(Xs, -) is also the distribution of;, with respect toP; x,, we conclude that

E(to,xo) [F(Xsoo) : 1{S<C} | FSX} = E(S,XS) [F(@(S’ 1/07 Jlu .- ))] = E(s,XS) [F(Xsoo>] .

3.1.3 Generator and backward equation

Theorent 3.1 shows that the procégsk,):>,, P, «,)) cOnstructed as above is a time-inhomogeneous
Markov process w.r.t. the filtratiofiF;* ),-,, with transition function given by

Psi(®, B) = Py [ Xy € Bl forany0 <s <tz € SandB € B.
We will now link the process to the generator that is given by

»Ct(xv dy) = qt(xa dy) - )‘t(x)dar(dy)v i-e-,

(Lef)(@) = (quf)(x) = (@) f(2) = /qt(%dy) (f(y) = f(2))
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for any bounded and measurable functfonS — R.

If the state spacé is finite thenZ, can be identified with the matrix with entrie%(z,y) =
qi(x,y) — M\(z)0(x,y). This matrix is sometimes called the Q-matrix, see e.g. iIN¢26]. The
connection between the process and its generator is malgtestablished through a weak form
of the Kolmogorov backward equation.

Theorem 3.3(Integrated backward equation). (1). The transition probabilities satisfy the
Chapman-Kolmogorov equations

DstPiu = Psu  fOrany 0 <s <t <w.

(2). Theintegrated backward equation

t
psi(z, B) = e’fsf’\“(:”)d”éx(B) + /efsr’\“(x)d“(qrpm)(:c,B) dr (3.1.6)

S

holds foranyd < s <t¢, x € SandB € S. Equivalently, for anyf € F,(.5),

t
Pouf = e o dudug 4 / e~ JiAaudug p  f dr. (3.1.7)

S

(3). Ift — A\(z) is continuous for any: € S, then

(Ps.srnf)(@) = (1= As(2) - W) f(2) + I - (g5 f)() + o(h) (3.1.8)

holds foranys > 0, = € S and functionsf € F,(S) suchthat — (¢ f)(x) is continuous.

In particular, equation(3.1.8) shows th@X;) has jump intensities;(x) and transition rates

qi(z, dy).

Remark (Explosions and non-uniqueness of backward equatign It can be shown that for
f > 0,ps+f is the minimal non-negative solution ¢f (3.11.7).Cl= sup J,, is finite with strictly
positive probability, then there are other possible cargtions ofX; after the explosion time.
These correspond to other non-negative solutions of tlegiated backward equation. It is more
standard (and more intuitive) to write the backward equatiche differential form

0

- %ps,tf = ‘Csps,tf fors e [07 t]a pt,tf = f (319)
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Under additional regularity conditions, it can be shown Bal.9) is indeed equivalent o (3.1..7).
The details are left for an exercise. By (3]1.9) we see maarly that the backward equation
does indeed describe thmackward in time evolution of the expectation values, ;. f(xz) =
E»[f(X¢)], considered as a function of the initial time

Proof of Theorern 313. (1). By the Markov property,
Py [Xi € B|FS'] = Pox,) [ Xt € Bl = psi(Xs, B)  as.
Since this holds for any initial condition, the Chapman4kKoborov equations

(pS,tpt,uf> (:U) = (ps,uf)(x>
are satisfiedforany € S, 0 <s<t<wuandf: S — R.

(2). First step analysis The idea for deriving the integrated backward equatioo isondition
on time and position of the first jump, i.e., on thealgebra@ = o(Jo, Yo, J1,Y1). Since
X; = &,(Jo, Yo, J1, Y1, Jo, Yo, . ..), the Markov property ofJ,,, Y;,) implies

P(s,:c) [Xt € B | 51} (w) = P(J1(w),Y1(w)) [(I)t(s, Z, JQ, Yb, Jl, Yi, .. ) € B]
for almost every. Furthermore,

x if ¢t < Ji(w),
(I)t<S,.'L', Jo,}/o, J17Y17 .. ) =
(I)t(t]07}/b7 J17Y17 .. ) if t > J1<w),

and hence
Pis.2) [Xt € B| 9:1} (W) = 62(B) - Lip<sy (W) + P vi@)[Xe € Bl - iz iy (W)
P, »-almost surely. We conclude

p87t(l‘, B) = P(s,;c)[Xt c B]
- 51‘(B)P(8,:L‘)[J1 > t] + E(s,a:) [le,t(Yia B)a t Z Jl]

t

= 6,(B) e @Oy / A(w)e 2Dy (e, B dr

s
t

= 6,(B) - @i [ I g, )0, By dr.

S
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(3). This is a direct consequence lof (311.6). Fix a funciion F,(S), and note that

0 S (QTpr,tf)(x) - Ar(x)(ﬁrpr,tf)($) S )\T(ZE) Sup|f|

forany0 <r < tandx € S. Hence ifr — \,.(x) is continuous then

(pref)(x) — f(x) (3.1.10)

asr,t | sforanyz € S. Thus, by dominated convergence,

(@ea)@) ~ (0.0)(0)
— [ e ) prad @) = F6) + @)@ — (0.)x) — 0

asr,t | s providedr — (g¢.f)(z) is continuous. The assertion now follows frdm (311.7).
L

Exercise(A first non-explosion criterion). 1) Show that if\ := supsup \,(z) < oo, then
t>0 xS
¢ =00 Py, -almost surely for any, > 0 andz, € S.

2) In the time-homogeneous case, givé, : k € Z,),

n

In =

k=1

)‘(Ynfl)

is a sum of conditionally independent exponentially dmtted random variables. Con-
clude that the events

— 1
{¢ < oco}and {kz% A < oo}

coincide almost surely (apply Kolmogorov’s 3-series Tleaay.

3.1.4 Forward equation and martingale problem

Next, we are going to derive a forward equation from the iratgl backward equation. As
a consequence, we will see that the jump process solves adgBpendent martingale problem
w.r.t. the generatof,;. Establishing the connection between (integrated) baakaad forward
equation requires the introduction of an appropriate nonnfuactionsf : S — R w.r.t. which
the transition functions depend continuously on time. Weagsume that the jump intensities are
uniformly bounded on finite time-intervals since in thisease can use the supremum norm. The
case of only locally bounded jump intensities can then bealleahafterwards by a localization
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procedure. We denote Iy, ([0, 00) x S) the linear space of functions € C([0, c0), S) such
that(¢, z) — f(¢,z)is C" in thet-variable for anyr, and bothf and%—{ are bounded of), t] x S
for any finitet € R,.

Theorem 3.4(Kolmogorov’s forward equation and martingale problem). Suppose that

A = sup sup \s(z) < oo foranyt € R,, and (3.1.11)
s€[0,t] z€S
t — q.f is continuous w.r.t. the supremum norm for ghyg Cy(S). (3.1.12)

Then the following assertions hold:

1) Strong continuity: For any f € F(.5), the function(s, t) — ps.f is continuous w.r.t. the
supremum norm of;(S).

2) Forward equation:For any f € C,°(]0, 00) x S) andr € R,

%pr,sf(sa ) = Dr,s <g_£ + »Csf) (5, ) for s Z r (3113)

where derivative is a limit of difference quotients w.ihie supremum norm af(.S).

3) Time-dependent martingale problenfor any f € 0;70([0,00) x S)andr € R, the
process

M = [t X)) - /Tt (g—‘z + Esf) (s, Xs)ds, t >,

is an (F;*) martingale under? ., for anyz € S.

Remark. Assumption[(3.1]5) guarantees that the process is nom&xpl Moreover, by (3.115)
and [3.1.11), the function— (£, f)(t, z) is continuous for any € S andf € C,°(]0, 00) x S).

Proof of Theoreri 314. (1). Strong continuity: Letf € F,(S). Note that|q, f|lsup < M|l £l sup
for anyr > 0. Hence by the assumption and the integrated backward equ&iil.T),

psef = Fllsup < (t = $)Aell llswp + (& = $)|gupuefllsup < 20t = $)Mel| £,

and thus

Hpr,tf - pr,sstup = Hpr,S(ps,tf - f)”sup < HPS,tf - f”sup <2t - S)XtHfHSUP
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).

and, similarly,

Hpr,tf - ps,tf”Sup = Hpr,sps,tf _ps,tfHSup S 2<S — T)Xths,tfHSup S 2<S - T>XtHf”sup
forany0 <r < s <t.

Forward equation: We first assum¢g € C,(S). By 1.) and the assumption,

(r,u, 2) = (rpraf) (@)

is uniformly bounded fof < r < u < t, andz € S, and

GDruf = QT(pr,Uf - f) +ar f — af
—_—

—0 uniformly

uniformly asr, v | t. Hence by the integrated backward equation (8.1.7) andahiéniity
of t — A,

Pepint (J;L) —IE) M\ @) f(@) + 0 (@) = Lof ()

uniformly, and thus

Psrnf — Dsitf _ p87tpt’t+h}{ —f — psilef

h

pointwise ash | 0. A similar argument shows that also

ps,f_ps, —hf p—h,f_f
% = ps,tfh% — ps Lo f

pointwise. Now considef € C,"([0,00) x S). Then forr < s < t,

(U O O B GO [0 B YR B (2

0
— Prs (% + ‘Cs) f(S,l‘)

uniformly in x ast | s. Again, the convergence forf s can be shown in a similarly way.

3) Martingale problem. The forward equation states in integrated form that

t
0
pS,tft - fs _'_ /‘psﬂ‘ (a_ + ET‘) fr dT
T

S
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for any0 < s < t. Hence by the Markov property, fog < s < t,
E(to,a&o)[f(tv Xt) - f(S, Xs) ‘ ‘FSX]
:E(S,Xs)[f(taXt) - f(S, XS)] = (ps,tf(tv ))(XS) - f(S,XS)

- / (per (54 £.) 500 (i

s
t

0
:E(to,mo) / (E + ‘Cr) f(ra X?") dr er )

s

because all the integrands are uniformly bounded.

Notation:
<, fe=p(f) = /fdu
p€ My(S), s >0, py == ppsy = Ps,y0 X; - mass distribution at time

Corollary (Fokker-Planck equation). Under the assumptions in the theorem,

d
at < gy | >=< g, Lo f >

for all t > s and bounded functions: S — R such thatt — ¢, f andt — ); are pointwise
continuous. Abusing notation, one sometimes writes

d *
aﬂt = L

Proof.
<, [ >=< ppsy, [ >= /u(daf) /ps,t(x,dy)f(y) =< U, Pspf >

hence we get

< i, | > — <pu, [ >
h =< /’l‘ps,

ash | 0 by dominated convergence. O

mpm%f_f >—< g, Lo f >
Remark. (Important!)

P(S“u) [C < OO] >0

= <, 1 >=(S) <1 forlarget
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hence the Fokker-Planck equation daeshold for f = 1:

t

<, 1> < <,u,1>+/<,u5,£51> ds
N—— N——

<1 =1 0

whereL,1 = 0.

Example. Birth process ort = {0,1,2,...}

o b(i) ifj=1+1
q(i, j) =
0 else

W(l,]) = O0i+1,5,
Y, =n,
Sy = Jn — Ju_1 ~ Exp(b(n — 1)) independent,

(=supJ, = ZS" <00 = Zb(n)”_1 < 00
n=1 n=1

In this case, Fokker-Planck does not hold.

3.1.5 Localization

Definition. A Markov proces§ Xy, P, | 0 < s < ¢, € ) is called non-explosive(or
conservativgif and only if = co P, ,)-a.s. for alls, z.

Now we consider again the minimal jump process, P, ) constructed above. A function
f:]0,00) x S =R
(t,2) = filx)

is calledlocally boundedf and only if there exists an increasing sequence of opesetaB,, C
S such thats = | B, and

sup |fs(z)| < o0
ZEEBn
0<s<t

forallt > 0, n € N.
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Theorem 3.5(Time-dependent martingale problen). Suppose that — A.(z) is continuous
for all z. Then:

(1). The process

M/ = f,(X) —/(% +£r) (X)) dr, t>t

to
is a local (F;*)-martingale up ta; with respect taP, ,, for any locally bounded function
f:RT x S — Rsuchthat — f,(z)isC* forall z, (t,z) — 2 f,(z) is locally bounded,
andr — (¢, f:)(z) is continuous at = ¢ for all ¢, z.

(2). More generally, if the process is non-explosive théhis a global martingale provided

s (\fs(:c)| n ’%fs(x) ' I(ﬁsfs)(fc)\> <5 (3.1.14)

for all ¢ > .

Corollary. If the process is conservative then the forward equation

t
0
psife = fs + /pr,t <§ + £,n) frdr, th<s<t (3.1.15)

S

holds for functionsf satisfying [(3.1.74).

Proof of corollary. M7 being a martingale, we have

t

(pesf&) = Bl X)) = B | 1050+ [ (54 ) Rt

forallxz € S. O
Remark. The theorem yields the Doob-Meyer decompaosition

fi(X;) = local martingale+ bounded variation process
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Remark. (1). Time-homogeneous case:

If his an harmonic function, i.eCh = 0, thenh(X,) is a martingale

(2). In general:
If h; is space-time harmonjc.e. %htJrCtht = 0, thenh(X,) is a martingale. In particular,
(psef)(Xy), (t > s)is a martingale for all bounded functiorfs

(3). If hy is superharmonic (@xcessivgi.e. %hﬁﬁtht < 0, thenh,(X;) is a supermartingale.
In particular,E[h,(X;)] is decreasing
~» stochastic Lyapunov function, stability criteria
e.g.

hi(z) = e *“h(tc), Lih < ch
Proof of theorem. 1) Fork € N let

¢ (z, B) == (M(2) A k) - m(, B)

denote the jump rates for the proceﬁég) with the same transition probabilities &5 and
jump rates cut off at. By the construction above, the procéégf), k € N, andX, can be
realized on the same probability space in such a way that

xM =X, as. on{t < Tj}

where
Tk ;= inf {t Z 0 : )\t(Xt) Z k?, Xt é Bk;}

for an increasing sequencg, of open subsets of such thatf and %f are bounded on
[0,t] x By forall ¢,k andS = |J Bi. Sincet — \(X}) is piecewise continuous and the
jump rates do not accumulate befdrehe function is locally bounded df, ¢). Hence

T, /¢ as.a%k — oo
By the theorem above,

t
9
M = f(x) - / (E + ci’“)) fo(X)dr, t >t

to

is a martingale with respect tg,, ,,), which coincides a.s. withtf for t < Tj,. Hence
Mtf is a local martingale up t¢ = sup 7}.
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2) If ¢ = sup T, = oo a.s. andf satisfies[(3.1.14), thef//),~, is a bounded local martin-
gale, and hence, by dominated convergence, a martingale.
O

3.2 From Random Walks to Brownian motion

Limits of martingale problems occur frequently in theatatiand applied probability. Exam-
ples include the approximation of Brownian motion by randeaiks and, more generally, the
convergence of Markov chains to diffusion limits, the apgpm@ation of Feller processes by jump
processes, the approximation of solutions of stochadterdntial equations by solutions to more
elementary SDEs or by processes in discrete time, the catisin of processes on infinite-
dimensional or singular state spaces as limits of processéaite-dimensional or more regular
state spaces etc. A general and frequently applied apptoattiis type of problems can be
summarized in the following scheme:

1. Write down generators,, of the approximating processes and identify a limit gererét
(on an appropriate collection of test functions) such that— £ in an appropriate sense.

2. Prove tightness for the sequeriég ) of laws of the solutions to the approximating martin-
gale problems. Then extract a weakly convergent subsequenc

3. Prove that the limit solves the martingale problem forlimé generator.

4. ldentify the limit process.

The technically most demanding steps are usually 2 and 4céthtat Step 4 involves a unique-
ness statement. Since uniqueness for solutions of malgipgablems is often difficult to estab-
lish (and may not hold!), the last step can not always bee@wut. In this case, there may be
different subsequential limits of the sequeriég).

In this section, we introduce the necessary tools from weak&rgence that are required to make
the program outlined above rigorous. We then apply the fgcies in a simple but important
case: The approximation of Brownian motion by random walks.

3.2.1 Weak convergence of stochastic processes

An excellent reference on this subject is the book by Bilileg [2]. LetS be a polish space. We
fix a metricd on S such that S, d) is complete and separable. We consider the laws of stochasti
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processes either on the spate- C(]0, o), S) of continuous functions : [0,00) — S or on
the spaceD = D([0, o0), S) consisting of all cadlag functions : [0, c0) — S. The spac€ is
again a polish space w.r.t. the topology of uniform conviecgeon compact time intervals:

2w S e VT €R, : 2, — x uniformly on|[0, 7.

On cadlag functions, uniform convergence is too restréctor our purposes. For example, the
indicator functionsl ; ,,-1) do not converge uniformly td|, ;) asn — oc. Instead, we endow
the spacé with the Skorokhod topology:

Definition (Skorokhod topology). A sequence of functions, € D is said toconverge to a
limit x € D in the Skorokhod topologyf and only if for anyl” € R, there exist continuous and
strictly increasing maps,, : [0,7] — [0,7] (n € N) such that

Tp(An(t)) — z(t) and A, (t) —t uniformly on[0, 7.

It can be shown that the Skorokhod spdees again a polish space, cf.|[2]. Furthermore, the
Borel o-algebras on botfi andD are generated by the projectioNg(z) = z(t), t € R,.

Let (P,).en be a sequence of probability measures (laws of stochasizepses) od, D re-
spectively. By Prokhorov’s Theorem, every subsequen¢@gfhas a weakly convergent subse-
quence providedP, ) is tight. Here tightness means that for every 0 there exists a relatively
compact subsek’ C C, K C D respectively, such that

sup P,[K¢] < e.

neN
To verify tightness we need a characterization of the nethticompact subsets of the function
spaceg< andD. In the case of such a characterization is the content of the classicallarze
Ascoli Theorem. This result has been extended to the spabg Skorokhod. To state both
results we define the modulus of continuity of a functioa C on the interval0, 7'] by

wsr(x) = sup d(x(s),z(t)).

5,t€[0,T]
|s—t|<0

Forxz € D we define a modification af; - by

w(z) = inf max sup d(z(s),z(t)).
) 0=tg<t1 <<t 1<T<tn & 4 tE€ti—1,t:)
[ti—ti—1|>d ’ ’

Aso | 0, wsr(z) — 0foranyz € C andT > 0. For a discontinuous functian € D, ws ()
does not converge t. However, the modified quantity; ,-(x) again converges 0, since the
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partition in the infimum can be chosen in such a way that junipize greater than some constant
e occur only at partition points and are not taken into accauttie inner maximum.

Exercise(Modulus of continuity and Skorokhod modulus). Letx € D.

1) Show thaﬂgg wsr(z) = 0foranyT € R, if and only if z is continuous.

2) Prove thatgl%l wsr(r) =0foranyT € R,.

Theorem 3.6(Arzela-Ascoli, Skorokhod). 1) A subset C C is relatively compact if and
only if
(i) {=(0): 2z € K} is relatively compact irb, and

(i) supwsr(z) — 0asd | 0foranyl” > 0.

zeK
2) A subsefX C D is relatively compact if and only if
(i) {z(t): x € K} isrelatively compact for any€ Q., and

(i) supws(z) — 0asé | 0foranyT > 0.
zeK

The proofs can be found in Billingsley![2] or Ethier/KurtZ]L By combining Theorer 3.6 with
Prokhorov’s Theorem, one obtains:

Corollary 3.7 (Tightness of probability measures on function spacgs
1) Asubse{P, : n € N} of P(C) is relatively compact w.r.t. weak convergence if and only if
(i) Foranye > 0, there exists a compact skt C S such that

sup P,[Xo ¢ K] <e, and
neN
(i) Forany T € R,,

sup P,lwsr >¢] -0 asd 0.
neN

2) Asubse{P, : n € N} of P(D) is relatively compact w.r.t. weak convergence if and only if
(i) Foranye > 0 andt € R, there exists a compact skt C S such that

sup P,[X; ¢ K] <e, and

neN
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(i) ForanyT e R,

sup Pplwsr >¢€] =0 asd 0.
neN

In the sequel we restrict ourselves to convergence of sstichiarocesses with continuous paths.
We point out, however, that many of the arguments can beechonit (with additional difficulties)
for processes with jumps if the space of continuous funstismeplaced by the Skorokhod space.
A detailed study of convergence of martingale problems fecahtinuous Markov processes can
be found in Ethier/Kurtz [12].

To apply the tightness criterion we need upper bounds foptbeabilities P, [wsr > ¢|. To
this end we observe that , < ¢ if

sup d(Xgsye, Xis) <
t€[0,6]

foranyk € Z, such thatd < T.

Wl ™

Therefore, we can estimate

P, lwst > €] < Z P,
k=0

sup d(Xgsie, Xs) > €/3] - (3.2.1)

t<é

LT/4] [

Furthermore, orR” we can bound the distancdéXys.,, Xxs) by the sum of the differences
‘Xlié—l—t - Xlié
plying a semimartingale decomposition and the maximaluiadity to the component processes.

of the componentX?, i = 1,...,d. The suprema can then be controlled by ap-

3.2.2 Donsker’s invariance principle

As a first application of the tightness criterion we prove Bk®T’s invariance principle stating
that rescaled random walks with square integrable incrésn@mverge in law to a Brownian
motion. In particular, this is a way (although not the easie®) to prove that Brownian motion
exists. Let(Y;);eny be a sequence of i.i.d. square-integrable random variailes probability
space((2, 2, P) with E[Y;] = 0 andVar[Y;] = 1, and consider the random walk

Sn:anYi (n € N).

We rescale diffusively, i.e., by a factarin time and a factox/n in space, and define

1
XM= — fort € R, such thatit € Z.

\/ﬁ nt
In between the partition points= k/n, k € Z,, the procesth(”)) is defined by linear interpo-
lation so thatX (™ has continuous paths.
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S

N

Figure 3.1: Rescaling of a Random Walk.

The diffusive rescaling guarantees that the variancééf@f converge to a finite limitas — oo
for any fixedt € R,. Indeed, the central limit theorem even shows that for any N and
0<ty<t; <ty <---<ty,

k
n n n n n n D
(= x X - XX = xS QN — ). (3.2.2)
i=1

This shows that the marginals of the process&8 converge weakly to the marginals of a Brow-
nian motion. Using tightness of the laws of the rescaled sandalks onC, we can prove that
not only marginals but the whole processes converge inlligton to a Brownian motion:

Theorem 3.8(Invariance principle, functional central limit theorem ). Let P, denote the law
of the rescaled random walk™ on C = C([0,00),R). Then(P,),en converges weakly to
Wiener measure, i.e., to the law of a Brownian motion stgréit0.

Proof. Since by [(3.2.2), the marginals converge to the right limisuffices to prove tightness

of the sequencéP, ),y of probability measures ofi. Then by Prokhorov's Theorem, every

subsequence has a weakly convergent subsequence, anthsdbsantial limits are equal to

Wiener measure because the marginals coincide. TRysalso converges weakly to Wiener

measure.

For proving tightness note that by (3.2.1) and time-homedgn
Palwsr > ¢] < Q%J + 1) P lsup ’Xf”) —xm

t<d

£
S 2
>3
T €
< ({EJ + 1) - P Lfél%% |Sk| = g\/ﬁ}
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foranye,d > 0,7 € R, andn € N. By Corollary(3.7, tightness holds if the probability on the
right hand side is of order(&) uniformly inn, i.e., if

5 \/\;} = 0(5). (3.2.3)

For the simple random walk, this follows from the reflectiaimpiple and the central limit theo-
ev/m ev/m } miop { € }
P |max S, ——— | < P||S,| > = NO, 1 ||z| > —=],
Lémk 3\/5} D 230 O {l#1= 575

cf. e.g. [9]. For general random walks one can show with saidé&ianal arguments thdt (3.2.3)

lim sup P [max 1Sk > =

n—oo

remas

also holds, see e.qg. Billingsleyi[2]. O

In the proof of Donsker’s Theorem, convergence of the matgiwas a direct consequence of the
central limit theorem. In more general situations, othethrods are required to identify the limit
process. Therefore, we observe that instead of the cemiattheorem, we could have also used
the martingale problem to identify the limit as a Browniantian. Indeed, the rescaled random
walk ( k/)>keZ+ is a Markov chain (in discrete time) with generator

€@ = [ (o4 22) - 1) vtz

wherev is the distribution of the incremeni$ = S; — S;_;. It follows that w.r.t. P, the process
nt—1
1

FX) = YL ) (X) 1= Ewith ke 2,

n
=0
is a martingale for any functiofi € C;°(R). Asn — oo,

22

P+ 2=) = f@ = 1@ [ =+ 5@ [ 5t o)

1

= (@) +o(n)

by Taylor, and
(nL™ f)(z) — %f”(w) uniformly.

Therefore, one can conclude that the process

F(X,) - / LI (X.)ds

is a martingale undep,, for any weak limit point of the sequengé,). Uniqueness of the
martingale problem then implies tha&f, is the law of a Brownian motion.

Exercise (Martingale problem proof of Donsker’s Theorem). Carry out carefully the argu-
ments sketched above and give an alternative proof of DossKeeorem that avoids application
of the central limit theorem.
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3.3 Limits of martingale problems

A broad class of diffusion processes &% can be constructed by stochastic analysis meth-
ods. Suppose thdtB;);~o, P) is a Brownian motion with values iR" for somen € N, and
((Xt)i<c, P) is a solution to an 1té stochastic differential equationraf torm

dXt = b(t, Xt)dt + O'(t, Xt)dBt, XO = 2o, (331)

up to the explosion timé = sup T, whereT}, is the first exit time of X;) from the unit ball of
radiusk, cf. [8]. We assume that the coefficients are continuoustions b : R, x R" — R",
o: Ry x R" — R™% Then((X,),<¢, P) solves thdocal martingale problem for the operator
[,b(t)V+1i (t)82 T
= x) - Vg+ = a;it,x)——=—, a:=00",
¢ ’ 2 i1 J 8:618:6]

in the following sense: For any functighe C?(R, x R"),

7o
M} = f(t, X)) —/ (—f +£Sf) (s, X,) ds
o \ 0s
is a local martingale up t0. Indeed, by the It6-Doeblin formula/,ltf is a stochastic integral w.r.t.
Brownian motion: .

M = £(0, Xo) +/O (7Y f) (s, Xs) - dB,.

If the explosion time is almost surely infinite then// is even aglobal martingale provided
the functionos” V f is bounded.

In general, a solution of (3.3.1) is not necessarily a Manmcess. If, however, the coefficients
are Lipschitz continuous then by Itd’s existence and ume@ss result there is a unique strong
solution for any given initial value, and it can be shown ttie strong Markov property holds,
cf. [10].

By extending the methods developedinl 3.2, we are now goisgdtch another construction of
diffusion processes iR" that avoids stochastic analysis techniques to some exibetraeson
for our interest in this method is that the basic approacterg generally applicable — not only
for diffusions inR™.

3.3.1 Regularity and tightness for solutions of martingalgproblems

We will extend the martingale argument for proving Donskdihieorem that has been sketched
above to limits of general martingale problems on the sgaeeC(]0, o), S) whereS is a pol-
ish space. We first introduce a more general framework thawsalto include non-Markovian
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106 CHAPTER 3. CONSTRUCTIONS OF MARKOV PROCESSES IN CONTDUS TIME

processes. The reason is that it is sometimes conveniepiptoxamate Markov processes by
processes with a delay, see the proof of Thedrem 3.12 below.

Suppose thatl is a linear subspace df,(.S), and

f= (Lef )0
is a linear map defined ad such that
(t,x) = (L.f)(x) isafunctioninl?([0,T] x C,A ® P)
foranyT € R, andf € A. The main example is still the one of time-homogeneous Marko
processes with generatérwhere we set
Lof = (LF)(Xy).

We say that the canonical procesg(w) = w(t) solves the martingale problemMP (L, A)
w.r.t. a probability measurg on(C iff

M = F(X)) — F(Xo) - / C.fdr
0

Is a martingale undeP for any f € A. Note that for) < s < ¢,
t
F(X) — f(X) = M — M +/ L,.fdr. (3.3.2)

Therefore, martingale inequalities can be used to cortteotegularity of the proces§ X;). As a

first step in this direction we compute the angle-bracket@ss(M/), i.e., the martingale part in
the Doob-Meyer decomposition 6f//)2. Since we are considering processes with continuous
paths, the angle-bracket process coincides with the gtiadeaiation[)//]. The next theorem,
however, is also valid for processes with jumps whei€')  [M/]:

Theorem 3.9 (Angle-bracket process for solutions of martingale problems). Let f,g € A
such thatf - g € A. Then

t
M} - Mf = N +/ T,(f,g)dr foranyt >0,
0

whereN /9 is a martingale, and

Li(f,g9) = Li(f - 9) — fF(Xe)Lrg — g(Xi) Lo f.
Thus .
F M9y, = +(f,q)dr.
o, 3%). = [ T(f.0)
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Example (Time-homogeneous Markov processes, Carré du champ operafo
Herel,f = (Lf)(X:), and therefore

Ft(fa g) = F(fag)(Xt)a

wherel' : A x A — F(S) is theCarré du champ operator defined by

U(f,g9)=L(f-g9)— fLg—gL[

If S =R9, Ais asubset of>°(R?), and

2 d

—li )+Zb-(x)af(x) Vfe A
_2 et ax(?xj Oy

with measurable coefficients;, b; then

d
_ 89
f g B Z (’3202 axj (l’) Vf,gEA

In particular, fora;; = 6,5, T(f, f) = |V f]* which explains the name “carré du champ” (= square
field) operator. For general symmetric coefficiemtswith det(a;;) > 0, the carré du champ is
the square of the gradient w.r.t. the intrinsic metrig) = (a;;) "

L(f,f) = |l grad, fI5.

Proof of Theorerh 319We may assumg = g, the general case follows by polarization. We write
“X ~ Y'if E[X|F,] = E[Y|Fs] almost surely. To prove the claim we have to show that for
0<s<tandf e A,

t
(M = Otf)? ~. [ Tl ) ar
SinceM/ is a square-integrable martingale, we have
t 2
(M) = (MI)? ~g (M = M)? = (f(Xt) - f(X,) - / L.f dr)

= (100 = 1060 205000 500 [ £orar+ ([ 2 dr)2

=I+I1T+11T+1V
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108CHAPTER 3. CONSTRUCTIONS OF MARKOV PROCESSES IN CONTDUS TIME

where
Lzﬂ&f—ﬂxymgfﬁan
1= —2f(X,) (f(xl)—-f(X;)—-]Ctﬁrfdr)f~30,
1T = —2f(X,) /: L, fdr=—2 /:f(Xt)Erfdr, and

IV = (/:erdr)Q :2/:/:£Tf£ufdudr.

Noting thatf (X)L, f ~, (f(Xr) + f: L.f du) L, f, we see that fog < r < ¢ also the condi-
tional expectations give, of these terms agree, and therefore

t t t
II] ~, —2/ f(Xr)Lde'r’—Q/ / L.fL,[fdudr.

Hence in total we obtain

(M) — (M2 ~, /tcrﬁdr—Q/tf(Xr)crfdr:/trrfdr.

We can now derive a bound for the modulus of continuity X,) for a functionf € A. Let

wlip = wsr(foX),  Vii=suwp [f(X,) - f(X,)].

r€ls,t]

Lemma 3.10(Modulus of continuity of solutions to martingale problems). For p € [2, c0)
there exist universal constan@,ép € (0,00) such that the following bounds hold for any
solution (X;, P) of a martingale problem as above and for any functjore A such that the
processf(X;) has continuous paths:

1) Forany0 < s <'t,

1/2
IVEline) < Colt = )2 sup [Ty £ oy + (= 8) sup [1£0f|lior)

TE[S t} TE[S,t}
2) Foranyd, e, T € (0,00),

~ T
Platpze] <G (1| 5] ) (#2104 50 L)

r<T
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Proof. 1) By (3.3.2),
t
Vi< s (Mf =01+ [ 125 du

rée(s,t]

Since f(X;) is continuous M/ is a continuous martingale. Therefore, Byrkholder’s

inequality,
sup ‘Mf Mf} <C H Mf _ H1/22
relsi] Lr(P) Lr/2(P)
¢ 1/2
=C, / L.(f, f)dr
s Lr/2(P)
1/2 1/2
< Gyt —s) m{lpﬂ 1T CFs P vy
TE|S

Forp = 2, Burkholder’s inequality reduces to the usual maximal usdiy for martingales
- a proof forp > 2 can be found in many stochastic analysis textbooks, cf.[€0j.

2) We have already remarked above that the modulus of co'tytimQT can be controlled by
bounds forVSft on intervalgs, t] of lengthd. Here we obtain

Plufrze| <30 PV 2 2/3]

f p
Vké (k+1)3||

o (pP)

The estimate in 2) now follows from 1).
U

Remark. 1) The right-hand side in 2) convergest@sé | 0 if the suprema are finite and

p > 2.

2) If f(X;) is not continuous then the assertion still holds foe= 2 but not forp > 2.
The reason is that Burkholder’s inequality for discontinsionartingales/; is a bound in
terms of the quadratic variatidi/]; and not in terms of the angle bracket process);.
For continuous martingale&)/), = [M];.

Example (Stationary Markov process).
If (X;, P) is a stationary Markov process with generator extendifig4) and stationary distri-
butionX; ~ pthenl,f = (Lf)(Xy), Tu(f, f) = T(f, f)(X;), and therefore

1£ef leey = LS o WS Pllgorzpy = 1T Pl orzgey - foranyt > 0.
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3.3.2 Construction of diffusion processes

The results above can be applied to prove the existencefo$dih processes generated by second
order differential operators with continuous coefficiemt®?. The idea is to obtain the law of the
process as a weak limit of laws of processes with piecewisstaat coefficients. The latter can
be constructed from Brownian motion in an elementary waye Kéy step is again to establish
tightness of the approximating laws.

Theorem 3.11(Existence of diffusions inR9). For 1 <i,j < dleta;;, b; € Cy(R, x R?) such
thata;; = a;;. Then for anyr € R? there exists a probability measufe on C([0, co), R?) such
that the canonical processX,, P,) solves the martingale problem for the operator

1 d 82 ¢ 6
Luf =5 > ay(t, Xy) 5 é];« (Xy) + Z bi(t, X;) 85 (Xy)

1,j=1 =1

with domain
of
8x,~

A:{feC‘x’(Rd): eCfo(Rd)forz':l,...,d}

and initial conditionP,[X, = z] = 1.

Remark (Connections to SDE results 1) If the coefficients are locally Lipschitz continu-
ous then the existence of a diffusion process follows maoséyetaom the Itd existence and
uniqueness result for stochastic differential equatidie point is, however, that variants
of the general approach presented here can be applied in otiaeysituations as well.

2) The approximations used in the proof below corresponduierEdiscretizations of the
associated SDE.

Proof. 1) We first define the approximating generators and consprattesses solving the
corresponding martingale problems. Foe N let

o (t, X) = ag ([t Xpa)s 0P X) = bi( [y X (1))

where|t], == max {s € 1Z: s < t},ie., fort € [£ 1) we freeze the coefficients at

n

their value at timé;f. Then the martingale problem for

d 9 d
£ =23 a0 ) s + ) 2L

g 8% 8.’,13']‘ 8%

DO | =

1,j=1
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can be solved explicitly. Indeed 1éB;) be a Brownian motion ofk¢ defined on a prob-
ability space(Q2, 2, P), and lets : R, x R? — R9*4 be measurable such that’ =
Then the proceth(”) defined recursively by

XMW =g XM= X,i/w( X;/;)(B Bk/n)+b( X,i/’)— forte{O,g},

solves the martingale problem f@C,ﬁ”), A) with initial conditioné,. Hence the canonical
procesg X;) on C ([0, 00), RY) solves the same martingale problem w.r.t.

P™ = po(xm)™

2) Next we prove tightness of the sequedd®™ : n € N}. Fori = 1,...,d let fi(z) := ;.
Since|z — y| < >0, |fi(x) — fi(y)| for anyz, y € R?, we have

ws < Zw({fT foranyd, T € (0, c0).

Furthermore, the functions
L% =™, x) and T(f, f) =a™(t, X)

are uniformly bounded since the coefficienfsandb; are bounded functions. Therefore,
foranye, T € (0, 00),

P( W5T>€

HM&

[%T > 5/d} — 0

uniformly inn asé | 0 by Lemmd.3.1D.
Hence by Theorein 3.8, the sequefiéé™ : n € N} is relatively compact, i.e., there exists
a subsequential limiP* w.r.t. weak convergence.

3) It only remains to show thatX,, P*) solves the limiting martingale problem. We know that
(X, P™) solves the martingale problem f()&ﬁ"), A) with initial law é,.. In particular,

E™ Kf(Xt) — f(X,) — /St £§“>fdr) g(Xsl,...,Xsk)} =0

forany0 < s; < sy < --- < sp < s < tandg € C,(R*9). The assumptions imply that
Lﬁ”)f — L, f pointwise asn — oo, and[,,(n")f is uniformly bounded. This can be used
to show that X,, P*) solves the martingale problem fo€;, f) - the details are left as an
exercise.

0]
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Remark (Uniquenes$. The assumptions in Theorém 3.11 are too weak to guarantgeemess

of the solution. For example, the ordinary differential afjon dx = b(z)dt does not have a
unique solution withey, = 0 whenb(z) = /z. As a consequence, one can show that the trivial
solution to the martingale problem for the operaﬁ@r)% onR! is not the only solution with
initial law 9. A uniqueness theorem of Stroock and Varadhan states thatahtingale problem
has a unique solution for every initial law if the matrixr) is strictly positive definite for each

z, and the growth of the coefficients &8 — oo is at most of ordew;;(z) = O(|z|*) and
bi(z) = O(|z|), cf. (24.1) in Roger&Williams 11[[34] for a sketch of the prbo

3.3.3 The general case

We finally state a general result on limits of martingale peafs for processes with continuous
paths. Let P™), .y be a sequence of probability measuresHfo, co), S) wheres is a polish
space. Suppose that the canonical pro¢&ssP ™) solves the martingale problem f()tﬁt”), A)
whereA is a dense subspace©@f(S) such thatf* € A wheneverf € A.

Theorem 3.12.Suppose that the following conditions hold:

(i) Compact containmentForany7 € R, and~ > 0 there exists a compact skt C S such
that
PM[3te0,T): X, ¢ K] <~ foranyn € N.

(i) Uniform LP bound: There exist® > 2 such that for anyl’ € R, ,

(n)
Ly Lp(P(n))) =

T (f, f)

sup sup () Lo/2(pm) )

neN t<T
Then{P™ : n € N} is relatively compact. Furthermore, if

(iii) Convergence of initial law:There existg € P(S) such that

P™o X, S 1 asn — oo, and

(iv) Convergence of generators:

£Mf - £,f  uniformly for anyf € A,

then any subsequential limit 6P™),,cy is a solution of the martingale problem fo€,, A) with
initial distribution .
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The proof, including extensions to processes with disooatus paths, can be found in Ethier
and Kurtz [12].

3.4 Lyapunov functions and stability

In this section we explain briefly how Lyapunov function nmadl similar to those considered in
Sectior 1.B can be applied to Markov processes in contintimes An excellent reference is the
book by Khasminskii[[16] that focuses on diffusion processaR™. Most results in[[16] easily
carry over to more general Markov processes in continuooss. ti

We assume that we are given a right continuous progesg, P) with polish state spac$,
initial value X, = =, € S, and life time¢. Let A C C'°([0, 00) x S) be a linear subspace, and
let £ : A — F([0,00) x S) be a linear operator of the form

5 0
Lo = (5 +£r) @
where£; acts only on the x-variable. Fgre A andt < ¢ we define

Mtf = f(t7 Xt) - /Ot(ﬁf)(sv Xs) ds

where it is implicitly assumed that the integral exists adtnsurely and defines a measurable
function. We assume thafX,) is adapted to a filtratiofi.7;) and it solves the local martingale
problem for(£, A) up to the life-time( in the following sense:

Assumption (A): There exists an increasing sequefnbg).cn Of open sets irb such that
() S=UBxk
(i) The exittimesT}, := inf{t > 0: X; ¢ By} satisfy

Tr < ¢on{( < oo} foranyk € N, and¢ = sup 7T}.

(i) The stopped processe{thfATk) are(F;) martingales for any € Nandf € A.
t>0

Examples. 1) Minimal jump process: A minimal jump process as constructed in Section
[3.1 satisfies the assumption(iB;) is an increasing sequence exhausting the state space
such that the jump intensities(z) are uniformly bounded foft, z) € R, x By, and

A= {f e CWY. f,%—{ bounded on0, t] x B, for anyt > 0 ank € N}.
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114CHAPTER 3. CONSTRUCTIONS OF MARKOV PROCESSES IN CONTDUS TIME

2) Minimal diffusion process: A minimal Ito diffusion inR™ satisfies the assumption with
B, = B(0, k) and A = C"2([0, 00) x R™).

3.4.1 Non-explosion criteria

A first important application of Lyapunov functions in camiious time are conditions for non-
explosiveness of a Markov process:

Theorem 3.13(Khasminskii). Suppose that Assumption (A) is satisfied and there existsca fu
tionV e A such that

(i) V(t,x) > 0foranyt > 0andz € S,

(i) inf V(s,x) — oo ask — oo foranyt > 0,
xEBE
s€[0,t]

(i) & +L,V <o

ThenP[( = oo] = 1.

Proof. SinceV/ (¢, X,) = MY + [y (%% + L,V') (s, X,) ds, optional stopping and Conditions (iii)
and (i) imply
V(0,29) > E[V(t ATk, Xinr,)] > P[T), < t]- inf V(s,y)

P c
vEBS

s<t

for anyt > 0 andk € N. Therefore, for any > 0,
P[T, <t]—-0 ask— oo
by (ii), and henceP[( < oo] = tlim Pl <t]=0. O

Remark (Time-independent Lyapunov functiong. Suppose that is a continuous function on
S such that

()U=0, (i) liminfU =0, (i) LU < aU for somea > 0.

The Theoren 3.13 can be applied withi¢, ) = e~**U(z) provided this function is contained
in A.
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Example (Time-dependent branching. Suppose a population consists initialty= 0) of one
particle, and particles die with time-dependent raes 0 and divide into two with rateg, > 0
whered, b: R™ — R are continuous functions, aids bounded. Then the total numh&y of
particles at time is a birth-death process with rates
n-by f m=n-+1
@gn,m)=<n-d, if m=n—1, Ae(n) =n- (b + dy)
0 else

The generator is

0 0 0 0 0 0
dy —(dy +by) by 0 0 0
Lo=|0 2d,  —2(d,+b) 2b, 0 0
0 3d, —3(d, +b,) 3b 0

Since the rates are unbounded, we have to test for explostwwosey (n) = n as Lyapunov
function. Then

(Lep)(n)=n-b-(n+1—n)+n-di-(n—1—n)=n- (b —d;) <nsupb,

t>0
Since the individual birth ratefs, ¢ > 0, are bounded, the process is non-explosive. To study
long-time survival of the population, we consider the gatiag functions

Gy(s) = E [s™] = Zs"P[Xt =n], 0<s<1
n=0
of the population size. Fof;(n) = s™ we have
(Lifs) (n) = nbs™™ — n(by + dy)s™ 4+ ndys™ !

B
= (bu8” = (b di)s + i) - - fo(n)

Since the process is non-explosive afidand £, f, are bounded on finite time-intervals, the
forward equation holds. We obtain
0 0

5.C1(s) = 2 B [f:(X0)] = E (L) (X))
= (bs® = (b +di)s +di) - E {%S&}
= (s~ d)(s — 1) -G,

Go(s) = E [s¥°] =
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The solution of this first order partial differential equoatifor s < 1 is
t -1

ot
Gi(s) =1-— . /bneg“ du

1—s
0

where
t

o= /(du ) du
0
is the accumulated death rate. In particular, we obtain gticxformula for the extinction
probability:
‘ -1
P[X;=0] = l;%l Gi(s) = | e” + /bnegu du

0
-1

t
=1- 1+/du69“du
0

sinceb = d — ¢'. Thus we have shown:

Theorem 3.14.

[e.9]

P[X; = 0 eventually] = 1 < /dueg“ du = oo

0

Remark. Informally, the mean and the variance ®f can be computed by differentiatirigy at

s=1:
ki [s¥]| =E[X;s*' | =E[X]
ds s=1 ! s=1 !
d2
=3 (%] _—E (X (X — 1)) = Var(X)

3.4.2 Hitting times and recurrence

Next, we apply Lyapunov functions to prove upper bounds fonrants of hitting times. Let
Ty=inf{t >0: X, € A}

whereA is a closed subset of.
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Theorem 3.15(Lyapunov bound for hitting times). Suppose that Assumption A holds, and the
procesg X, P) is non-explosive. Furthermore, assume that there &xist.A and a measurable
functiona : R, — R, such that

(i) V(t,z) > 0foranyt > 0andz € S,
(i) (5 +LV) (t,2) < —a(t) foranyt > 0andz € S\ 4,
(iii) 5(t) := fot a(s)ds — oo ast — oc.

ThenP[T4 < oo] =1, and
E[B(T4)] < V(0, ). (3.4.1)

Proof. By Condition (ii),
t
Vi) < MY = [ ats)ds = MY — By
0
holds fort < T. For anyk € N, M},,, is a martingale. Hence by (i),
0<E[V({tANTANTy Xinroar,)] < V(0,20) — E[B(tATa ATyl
As k — oo, T, — oo almost surely, and we obtain
B)Plt <Ta] < E[B({tNTa)] < V(0,20)
for anyt > 0. The assertion follows as— oc. O

Example (Moments of hitting times).
If a(s) = cs™! for somec > 0 andn € N thenf(s) = £s™. In this case[(3.4]1) is the moment
bound

E[T}] < =V(0,z0).

3.4.3 Occupation times and existence of stationary distritions

Similarly to the discrete time case, Lyapunov conditions aso be used in continuous time to
show the existence of stationary distributions. The follmyvexercise covers the case of diffu-
sions inR™:
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Exercise (Explosion, occupation times and stationary distributionsfor diffusions on R™).
Consider a diffusion process(;, P.) onR" solving the local martingale problem for the gener-
ator

, f € CH R, xR,

EREN 0% f = of
Ltf = 5 Z CLZ'J(t, .T)axz al‘j -+ Zlbl(t,]?) axi

1,j=1 1=

We assume that the coefficients are continuous functionggid, = z] = 1.
a) Prove that the process is non-explosive if there exigefoonstants,, ¢, r such that

tra(t,z) < ci|zf* and z-b(t,z) < c|z)? for |z| > r.

b) Now suppose tha = oo almost surely, and that there exist € C'?(R, x R") and
g,c € Ry suchthat” > 0 and

1%
E‘Fﬁtv S €+CIB OnR+><R”,

whereB is a ball inR"™. Prove that

E E /Ot 1B(Xs)ds] > £_ V)

c ct

b) Conclude thatif X;, P,) is a time-homogeneous Markov process and the conditiongabo
hold then there exists a stationary distribution.

Again the results carry over with similar proofs to generalrkbv processes. Let

1

A(B) = ?/o 15(X,) ds

denote the relative amount of time spent by the process isetie during the time intervaD, ¢].
Lemma 3.16(Lyapunov bound for occupation timeg. Suppose Assumption A holds, the pro-

cess is almost surely non-explosive, and there exist cotsstac € R, and a non-negative
functionV € A such that

%—Z+£tv$—e+c13 onR, x S.
Then
e V(0,x0)
ElA,(B)] > - — .
By > = - 2
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Now assume thatX,, P) is atime-homogeneousMarkov process with transition semigroup
(pt)e>0, and, correspondingly;; does not depend an Then by Fubini’'s Theorem,

EA(B)] = 7 / pa(o, B) ds =: By(x0, B).

Theorem 3.17(Existence of stationary distributions). Suppose that the assumptions in Lemma
[3.16 hold, and moreover, assume tlfais o-compact,V (¢,z) = U(x) for some continuous
functionU : S — [0, c0), and there exist, c € R, and a compact sek’ C S such that

LU S —€+01K.

Then there exists a stationary distributiprof (p;);>o.

Proof. The assumptions imply
lim inf p, (2o, K) > 0.
t—o0

The assertion now follows similarly as in discrete time,Tdieoreni 1.15. O
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Chapter 4

Markov processes, generators and
martingales

This chapter focuses on the connection between contintimesMarkov processes and their
generators. Throughout we assume that the state speca Polish space with Borel-algebra
B. Recall that a right-continuous stochastic procgss ).cr. , P) that is adapted to a filtration
(Fi)icr, is called asolution of the martingale problem for a family (L, A),t € R, of linear
operators with domainA C F,(S) if and only if

= s - [ (Lf)(X,) ds (4.0.1)
0

is an(F;) martingale for any functiorf € A. Here functionsf : S — R are extended trivially
to S U{A} by settingf(A) := 0.

If ((X:), P) solves the martingale problem f6fL;), A) and the functior(¢, z) — (L.f)(z) is,
for example, continuous and bounded foe A, then

f(Xern) = f(X3)
h

(Lef)(Xe) = bim £

ft} (4.0.2)
is the expected rate of changefdf,) in the next instant of time given the previous information.

In general, solutions of a martingale problem are not nec#gdviarkov processes, but it can
be shown under appropriate assumptions, that the strongoMaroperty follows from unique-
ness of solutions of the martingale problem with a giveniahiaw, cf. Theoreni 4.13. Now
suppose that for any > 0 andz € S, ((Xs)s>¢, Pu,e)) IS an(F;) Markov process with initial
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4.1. SEMIGROUPS, GENERATORS AND RESOLVENTS 121

value X; = z Py, -almost surely and transition functidp, ;)o<.<; that solves the martingale
problem above. Then for anty> 0 andx € S,

f(Xen) — f(X3) — lim (prirnf)(x) — f()
h hl0 h

provided(t, z) — (L.f)(x) is continuous and bounded. This indicates that the infimnitaisgen-
erator of the Markov process at timés an extension of the operatof;, .A) - this fact will be
made precise in Secti¢n 4.2.

In this chapter we will mostly restrict ourselves to the tihm@mogeneous case. The time-
inhomogeneous case is nevertheless included implicitiyesive may apply most results to the
time space procesk; = (to + t, X4,4¢) that is always a time-homogeneous Markov process if
X is a Markov process w.r.t. some probability measure. IniSeek1 we show how to realize
transition functions of time-homogeneous Markov processestrongly continuous contraction
semigroups on appropriate Banach space of functions, andsteblish the relation between
such semigroups and their generators. The connection tingiae problems is made in Section
4.2, and Sectioh 4.3 indicates in a special situation howt®uis of martingale problems can be
constructed from their generators by exploiting stabititthe martingale problem under weak
convergence.

4.1 Semigroups, generators and resolvents

In the discrete time case, there is a one-to-one correspoad®etween generatofs= p — 1,
transition semigroups = p’, and time-homogeneous canonical Markov ch@iis, ),.cz, , (Py)zes)
solving the martingale problem fa on bounded measurable functions. Our goal in this section
is to establish a counterpart to the correspondence betyarerators and transition semigroups
in continuous time. Since the generator will usually be abaumded operator, this requires the
realization of the transition semigroup and the generatoar appropriate Banach space con-
sisting of measurable functions (or equivalence classdésnaftions) on the state spa¢g, B).
Unfortunately, there is no Banach space that is adequatIfpurposes - so the realization on
a Banach space also leads to a partially more restrictitmgetSupplementary references for
this section are Yosida: Functional Analysis|[42], Pazym&goups of Linear Operators [27],
Davies: One-parameter semigroup's [5] and Ethier/Kurtf [12

We assume that we are given a time-homogeneous transitictida (p;):>o on (S, B), i.e.,
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122 CHAPTER 4. MARKOV PROCESSES, GENERATORS AND MARTINGASE

() p:(z,dy) is a sub-probability kernel of5, B) for anyt > 0, and

(i) po(zx,-) =0, andp;ps = piys foranyt, s > 0 andx € S.

Remark (Inclusion of time-inhomogeneous cage Although we restrict ourselves to the time-
homogeneous case, the time-inhomogeneous case is inamipliédtly. Indeed, if((X¢):>s, Ps.2))

is a time-inhomogeneous Markov process with transitiorction p, ,(z, B) = P .)[X; € B]
then the time-space proce&s = (t + s, X;.s) is a time-homogeneous Markov process Ww.r.t.
P2 Withs state spacB, x S and transition function

A~

Py ((s, ), dudy) = dpys(du)ps +s(z, dy).

4.1.1 Sub-Markovian semigroups and resolvents

The transition kernelg; act as linear operators— p; f on bounded measurable functions®n
They also act or.? spaces w.r.t. a measuyudf p is sub-invariant for the transition kernels:

Definition. A positive measurg € M, (S) is calledsub-invariantw.r.t. the transition semigroup
(pe) Iff up, < pforanyt > 0in the sense that

/ptfdug/fdu forany f € F.(S)andt > 0.

For processes with finite life-time, non-trivial invarianeasures often do not exist, but in many
cases non-trivial sub-invariant measures do exist.

Lemma 4.1(Sub-Markov semigroup and contraction propertieg. 1) Any transition func-
tion (p:):>o induces asub-Markovian semigrouwn F,,(S) or F(S) respectively, i.e., for
anys,t >0

() Semigroup propertyp.p; = ps+,
(i) Positivity preserving:f > 0= p,f >0,
@ii) p1 < 1.
2) The semigroup is contractive w.r.t. the supremum norm:

1pef lsup < || fllsup  fOranyt > 0andf € F,(S5).

3) If u € M, (S) is a sub-invariant measure theip,) is also contractive w.r.t. thé?(u)
norm for everyp € [1, oo]:

[t [\rpan toranys e £2(s.p)

In particular, the mapf — p, f respects:-classes.
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4.1. SEMIGROUPS, GENERATORS AND RESOLVENTS 123

Proof. Most of the statements are straightforward to prove anéeéin exercise. We only prove
the last statement for € [1, co):

Fort > 0, the sub-Markov property implies f < p;|f| and—p,f < p;|f|forany f € LP(S, u).
Hence

P f1P < (pel £1)P < pel fIP

by Jensen’s inequality. Integration w.ityields

[ nsraus [oirpan< [ 15

by the sub-invariance ofi. Hencep;, is a contraction orC?(S, i1). In particular,p; respects
u-classes sincg = g p-a.e. = f—g = 0 p-ae. = p(f —g) = 0 p-a.e. = p.f = pg
p-a.e. U

The theorem shows th§t,) induces contraction semigroups of linear operatorsn the follow-
ing Banach spaces:

e F,(S) endowed with the supremum norm,
o Cy(S) if p; is Feller for anyt > 0,

e C(S) ={f €C(S): Ve > 03K C Scompact]|f| < ¢onS\K} if p, mapsC(S) to
C(S) (classical Feller property),

o LP(S,u),p € 1,00, if v is sub-invariant.

We will see below that for obtaining a densely defined geoerain additional property called
strong continuity is required for the semigroups. This wKtlude some of the Banach spaces
above. Before discussing strong continuity, we introduteti@er fundamental object that will
enable us to establish the connection between a semigralipsagenerator: the resolvent.

Definition (Resolvent kernel3. Theresolvent kernelsissociated to the transition functiop, );>o
are defined by

Ja(z,dy) :/ e_“tpt(:p,dy)dt for a € (0, 00),
0

e, forf e F.(S)or fe Fy(S),

(6o f) () = / " ety ) (@)t
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124 CHAPTER 4. MARKOV PROCESSES, GENERATORS AND MARTINGASE

Remark. For anya € (0, 0), g, is a kernel of positive measures 0f 13). Analytically, g, is
theLaplace transform of the transition semigrou@; ). Probabilistically, if( X, P,) is a Markov
process with transition functiofp;) then by Fubini’s Theorem,

(9af)(2) = E; l /0 "t f(Xt)dt} :

In particular,g,(z, B) is the average occupation time of a getor the absorbed Markov process
with start inz and constanabsorption rate a.

Lemma 4.2(Sub-Markovian resolvent and contraction propertieg. 1) The family(g,)a>o0
is asub-Markovian resolvenacting onF,(S) or 7, (S) respectively, i.e., forany, 5 > 0,

(i) Resolvent equationy, — g5 = (8 — a)gays
(il) Positivity preserving:f >0 = g,f >0

>ii) ag,1 <1
2) Contractivity w.r.t. the supremum normFor any« > 0,

lagafllsup < || fllsup  foranyf e Fy(S).

3) Contractivity w.r.t.LP norms: If u € M, (S) is sub-invariant w.r.t(p;) then
lgafll ey < 1fllres,y foranya > 0,p € [1,00], and f € LP(S, p).

Proof. 1) By Fubini’'s Theorem and the semigroup property,

G0gsf = / / ot fdsdt
0 0

/ / eB=tdqt e Bup, f du
o Jo
1

m(gaf - gﬁf)

foranya,f > 0 and f € F,(S). This proves (i). (ii) and (iii) follow easily from the

corresponding properties for the semigrdpp.

2),3) Let|| - || be either the supremum norm or &A norm. Then contractivity ofp;):>o W.r.t.
|| - || implies that alsdag,,) is contractive w.r.t]| - ||:

lagaf|l < / aep.fdt < / acdt|f]| = |f| foranya > o.
0

0
U

Markov processes Andreas Eberle



4.1. SEMIGROUPS, GENERATORS AND RESOLVENTS 125

The lemma shows thay,, ).~o induces contraction resolvents of linear operaf6fs).~, on the
Banach spaceg;(S), C,(S) if the semigroug(p;) is Feller,C'(S) if (p,) is Feller in the classical
sense, and? (S, i) if pis sub-invariant fo(p, ). Furthermore, the resolvent equation implies that
the range of the operatofs, is independent ofi:

(R) RangéG,) = RangéGy) foranyo, 8 € (0, c0).

This property will be important below.

4.1.2 Strong continuity and Generator

We now assume thatP;);>, is a semigroup of linear contractions on a Banach sgac®©ur
goal is to define the infinitesimal generatowof (P,) by Lf = lt%l HP,f — [) for a classD of
elementsf € F that forms a dense linear subspacd/fObviously, this can only be possible if
lt%l |\P.f — f|| = 0forany f € D, and hence, by contractivity of the operatétsfor any f € E.

A semigroup with this property is called strongly contingou

Definition (C° semigroup, Generato). 1) The semigroupP,);-, on the Banach spack is
calledstrongly continuous(C?) iff P, = I and

|\Pf — fl| =0 astlOforanyf € E.

2) Thegeneratorof (P;):>¢ is the linear operatof L, Dom(L)) given by
Ptf — f Ptf - f
t t

Lf =lim

exists} )
10

, Dor‘r(L):{feE:lt%l
Here the limits are taken w.r.t. the norm on the Banach space

Remark (Strong continuity). A contraction semigroupP,) is always strongly continuous on
the closure of the domain of its generator. IndeBd, — f ast | 0 for any f € Dom(L), and
hence for anyf € W(L) by ane/3 - argument. If the domain of the generator is dens&'in
then(P,) is strongly continuous oft. Conversely, Theorefm 4.6 below shows that the generator
of aC? contraction semigroup is densely defined.

Theorem 4.3(Forward and backward equation).
Suppose thatP,; )~ is aC? contraction semigroup with generatér Thent — P, f is continu-
ous for anyf € E. Moreover, iff € Dom(L) thenP,f € Dom(L) for anyt > 0, and

d
gitf = BLf = LEf,
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126 CHAPTER 4. MARKOV PROCESSES, GENERATORS AND MARTINGASE

where the derivative is a limit of difference quotients om Banach spacé .

The first statement explains why right continuitytof~ P,f att = 0 for any f € E is called
strong continuity: For contraction semigroups, this propes indeed equivalent to continuity of
t— P,f fort € [0, 00) w.r.t. the norm on¥.

Proof. 1) Continuity oft — P, f follows from the semigroup property, strong continuity and
contractivity: For any > 0,

[Pernf = Pofll = 1B(Pof = NI < |1Pof = fI =0 ash {0,

and, similarly, for any > 0,
| Pe-nf — PofN = 1Pen(f = PS)| < |If = Pofl| = 0 ash 0.

2) Similarly, the forward equatio%Ptf = P,Lf follows from the semigroup property, con-
tractivity, strong continuity and the definition of the geswer: For anyf € Dom(L) and
t >0,

Pof—f
h

1
> (Poonf = Bif) = B — PLf ashlO,

and, fort > 0,

L (Paf - ) = P LS

by strong continuity.

— PLf ash|0

3) Finally, the backward equatioﬁPtf = LP, f is a consequence of the forward equation:
For f € Dom(L) andt > 0,

BEIZPE _Lip i by pis ash b

HenceP, f is in the domain of the generator, an®, f = P,.Lf = %Ptf.

4.1.3 Strong continuity of transition semigroups of Markovprocesses

Let us now assume again that).>( is the transition function of aght-continuougime homo-
geneous Markov proces$gX;);>o, (P:).cs) defined for any initial value € S. We have shown
above thatp;) induces contraction semigroups on different Banach spemesisting of func-
tions (or equivalence classes of functions) fr6to R. The following example shows, however,
that these semigroups are not necessarily strongly canisiu
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4.1. SEMIGROUPS, GENERATORS AND RESOLVENTS 127

Example (Strong continuity of the heat semigroup). Let S = R!. The heat semigrouf;) is
the transition semigroup of Brownian motion Snlt is given explicitly by

(pef) (@) = (f x @u)(x /f y)er(z —y) dy,

whereyp,(z) = (27t)~/% exp (—2%/(2t)) is the density of the normal distributiak(0,¢). The
heat semigroup induces contraction semigroups on the BasgacesF;,(R), C,(R), C(R) and
LP(R,dzx) for p € [1,00]. However, the semigroups af,(R), C,(R) and L>(R, dz) are not
strongly continuous. Indeed, singgf is a continuous function for any € F,(R),

1
IP:l01) — Loy lleo > 5 foranyt>0.

This shows that strong continuity fails of,(R) and onL*>*(R, dx). To see thafp;) is not

strongly continuous o6, (R) either, we may consider the functigix) = >~ exp (—2"(z — n)?).
n=1

It can be verified thatimsup f(z) = 1 whereas for any > 0, lim (p;f)(x) = 0. Hence

T—00

lpef — fllsup > 1 for any¢ > 0. Theoreni4b below shows that the semigroups inducegy
on the Banach spacé4R) and L?(R, dz) with p € [1, c0) are strongly continuous.

Lemma 4.4.
If (p+)i>0 IS the transition function of a right-continuous Markov pess((X:):>o, (Py:)zcs) then

(pef)(x) — f(x)ast L 0 foranyf € Cy(S)andz € S. (4.1.1)

Moreover, if the linear operators induced byare contractions w.r.t. the supremum norm or an
L? norm then

lpef — f|l = 0ast L0 foranyf = g,h, (4.1.2)

wherea € (0, 00) andh is a function inF,(S) or in the corresponding?-space respectively.

Proof. For f € Cy(S),t — f(X,) is right continuous and bounded. Therefore, by dominated
convergence,

(pef)(@) = B, [f(X4)] = By [f(Xo)] = f(x) ast | 0.

Now suppose that = g,h = f0°° e~ **psh ds for somea > 0 and a functiorh in F,(S) or in the
L space wherép,) is contractive. Then fot > 0,

pef = / Ypsyihds = e / e “pyhdu
t

= e f — e / “Ypuhdu,
0
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128 CHAPTER 4. MARKOV PROCESSES, GENERATORS AND MARTINGASE

and hence

t
loef — fIl < (e — DIf] + e / Ipuhlldu.
0

Since||p.h|| < ||h|| by assumption, the right-hand side converges ast | 0. O

Theorem 4.5(Strong continuity of transition functions). Suppose thatp;) is the transition
function of a right-continuous time-homogeneous Mark@cess oS, BB).

1) If p € M,(S) is a sub-invariant measure f@p;) then(p;) induces a strongly continuous
contraction semigroup of linear operators @#i(S, 1) for everyp € [1, ).

2) If Sis locally compact ang, (C(S)) C C(S) for anyt > 0 then(p,) induces a strongly
continuous contraction semigroup of linear operators@(s).

Proof. 1) We have to show that for anfye £?(S, i),

Ipef = flloosy — 0 ast 0. (4.1.3)

(i) We first show that[{4.1]3) holds fof € C,(S) N £Y(S,u). To this end we may
assume w.l.o.g. that > 0. Thenp,f > 0 for all ¢, and hencép,f — f)~ < f. By
sub-invariance ofi:

[ = sidn= [0ir = naw+2 s = py-du<2 [or - pan
and hence by dominated convergence and (4.1.1),
lim SUP/ lpef — fldp < 0.
10
This proves[(4.1]3) fop = 1. Forp > 1, we now obtain

[ = svdn < [ s = ldn- s = Fli 0 ast Lo,

where we have used thatis a contraction w.r.t. the supremum norm. For an arbitrary
functionf € LP(S, ), (41.3) follows by arz /3 argument: Let f,,)..cn be a sequence
in Cy(S) N LY (u) such thatf,, — fin L?(S, ). Then, givere > 0,

\oef — fllee < pef — pefulle + |pefr — Fulloe + 1o — fllze
<20f = fallee + llpefn = fullr <€

if n is chosen sufficiently large and> ¢y(n).
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2) We have to show that for anye C(5),
Ipef — fllsup— 0 ast ] 0. (4.1.4)

By LemmaZ.4,[(Z.1]4) holds if = g,/ for somea > 0 andh € C(S). To complete the
proof we show by contradiction that, (C(S)) is dense inC'(S) for any fixeda > 0 -
then claim then follows once more by af3-argument. Hence suppose that the closure of
Ja (C(S)) does not agree with'(S). Then there exists a non-trivial finite signed measure
pon (S, B) such that

1(gah) =0 foranyh € C(9),

cf. [?]. By the resolvent equation, (C(S)) = g3 (C(S)) for any 5 € (0,00). Hence
we even have
1 (gsh) =0 foranys > 0andh € C(S).

Moreover, [4.1.11) implies thatgsh — h pointwise as? — co. Therefore, by dominated
convergence,

w(h) = p (ﬁlim Bgﬁh) = ﬁlim Bu(gsh) =0 foranyh e C(S).

This contradicts the fact thatis a non-trivial measure.

4.1.4 One-to-one correspondence

Our next goal is to establish a 1-1 correspondence bet@eenntraction semigroups, generators
and resolvents. Suppose thi&t);>( is a strongly continuous contraction semigroup on a Banach
spaceF with generatof L, Dom(L)). Sincet — P, f is a continuous function by Theorém 4.3, a
corresponding resolvent can be defined a¥aralued Riemann integral:

Gof = / e P, fdt foranya >0andf c E. (4.1.5)
0

Exercise(Strongly continuous contraction resolveny.
Prove that the linear operatofs,, « € (0, 00), defined by[(4.1]5) form atrongly continuous
contraction resolvent i.e.,

() Gof —Gaf = (B —a)G,Ggf foranyf e Eanda, >0,

(i) |laGofll < |If]l foranyf e Eanda > 0,
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(i) [[aGof — fl =0 asa— ocoforanyf € E.

Theorem 4.6 (Connection between resolvent and generatpr For any a« > 0, G, =
(aI —L)~". In particular, the domain of the generator coincides witte trange ofG,,, and
itis dense in.

Proof. Let f € F anda € (0,00). We first show thatz, f is contained in the domain df.
Indeed, ag | 0,

BOS G ([T empgas— [Temppas)
t t \Jo 0

et — 1

o] 1 t
= / e P, fds— e~ / e “Pyfds
t 0 tJo

—aGuf — f

by strong continuity of 7;),~0. HenceG,, f € Dom(L) and
LG.f =aG.f — f,

or, equivalently
(al — L)Gof = f.

In a similar way it can be shown that fgre Dom(L),
Golal —L)f = f.
The details are left as an exercise. Hefite= (o] — L)™', and, in particular,
Dom(L) = Dom(al — L) = RangéG,) foranya > 0.
By strong continuity of the resolvent,
aGof = f asa—oo foranyf e FE,
so the domain of. is dense ink. O

The theorem above establishes a 1-1 correspondence bejemerators and resolvents. We now
want to include the semigroup: We know how to obtain the geioefrom the semigroup but to
be able to go back we have to show that‘acontraction semigroup is uniquely determined by
its generator. This is one of the consequences of the faligtieorem:
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Theorem 4.7 (Duhamel’s perturbation formula). Suppose that?;):>, and (ﬁt)tzo are C°
contraction semigroups o with generatorsZ and L, and assume that Do) ¢ Dom(L).
Then

~ t ~ ~
Pf—Pf = / P(L—L)P,_sfds foranyt>0andf c Dom(L). (4.1.6)
0

In particular, (P;)¢o is the only C° contraction semigroup with a generator that extends

(L,Dom(L)).

Proof. For0 < s <tandf € Dom(L) we have

P, f € bom(L) C Dom(L)

by Theoreni 4.3. By combining the forward and backward equati Theoreni 4]3 we can then
show that

4 PPof = PIP.f ~ BLP.f = B(L~ L)Pif
where the derivative is as usual taken in the Banach spadde identity [4.1.6) now follows by
the fundamental theorem of calculus for Banach-space ddiuections, cf. e.g. Lang: Analysis
1[18].
In particular, if the generator af, is an extension of. then (4.1.6) implies thab, f = Ef for
anyt > 0andf € Dom(L). SinceP, andﬁt are contractions and the domainlofs dense in®

by Theoreni4J6, this implies that the semigrogfs and(F,) coincide. O

The last theorem shows that’® contraction semigroup is uniquely determined if the getoera
and the full domain of the generator are known. The semigoaupthen be reconstructed from
the generator by solving the Kolmogorov equations. We sunz@dhe correspondences in a
picture:

Laplace
transformation

(Ga>a>0
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Example (Bounded generatory. Suppose thak is a bounded linear operator dn In partic-
ular, this is the case if. is the generator of a jump process with bounded jump intiessiEor
bounded linear operators the semigroup can be obtainectlgliees an operator exponential

> (tL)" tL\"
P, =¢t = (tL) = lim <1+—> ,

n! n—o00 n

n=0

where the series and the limit converge w.r.t. the operaionnAlternatively,

AN n
P, = lim (1— t—) = lim (5G3) .

n—o0 n n—o0

The last expression makes sense for unbounded generateed asd tells us how to recover the
semigroup from the resolvent.

4.1.5 Hille-Yosida-Theorem

We conclude this section with an important theoretical ltegwowing which linear operators are
generators of>° contraction semigroups. The proof will be sketched, cf.. &thier & Kurtz
[12] for a detailed proof.

Theorem 4.8(Hille-Yosida). A linear operator(L, Dom(L)) on the Banach spacg is the gen-
erator of a strongly continuous contraction semigroup idamnly if the following conditions
hold:

(i) Dom(L) is dense in¥,
(i) Rangdal — L) = E for somen > 0 (or, equivalently, for anyx > 0),
(i) L isdissipativei.e.,

laf = Lfll = allf| foranya > 0, f € Dom(L).

Proof. “=": If L generates &° contraction semigroup then by Theorem4®] — L)™' = G,
where(G,,) is the corresponding® contraction resolvent. In particular, the domain/ois the
range ofGG,,, and the range af/ — L is the domain of7,. This shows that properties (i) and (ii)
hold. Furthermore, any € Dom(L) can be represented #s= G,g for someg € E. Hence

allfl = llaGagll < llgll = llef = Lf|
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by contractivity ofaG,,.
“<". We only sketch this part of the proof. The key idea is to ‘iegize” the possibly un-
bounded linear operatdr via the resolvent. By properties (ii) and (iii), the operadd — L is
invertible for anya > 0, and the inversé&/,, := (ol — L)™' is one-to-one froni’ onto the domain
of L. Furthermore, it can be shown th@t,).-o is aC® contraction resolvent. Therefore, for
any f € Dom(L),

Lf = lim aG,Lf = lim L@ f

a—00

whereL® is theboundedlinear operator defined by
LYW = aLG, = a*Gy —al  fora € (0,00).

Here we have used théatandG, commute andal — L)G, = I. The approximation by the
bounded linear operatods® is called theYosida approximation of L. One verifies now that
the operator exponentials
[e% > 1 n
B = =3 (1), te(0,00),

n!
n=0

form aC contraction semigroup with generattif”) for everya > 0. Moreover, sincé L) f) _

is a Cauchy sequence for afiye Dom(L), Duhamel’'s formuld(4.116) shows that al@Bf“’f)
[e1S
is a Cauchy sequence for ahy- 0 andf € Dom(L). We can hence define

N

P f = lim Pt(“)f foranyt > 0 andf € Dom(L). (4.2.7)

SincePt(“‘) IS a contraction for every and«, P; is a contraction, too. Since the domain/ofs
dense inE’ by Assumption (i), eacl’, can be extended to a linear contractionfonand (4.1.7)
extends tof € E. Now it can be verified that the limiting operataPs form aC? contraction
semigroup with generatar. O

Exercise(Semigroups generated by self-adjoint operators on Hilberspace$. Show that ifE
is a Hilbert space (for example drt space) with normi f|| = (f, f)*/2, andL is aself-adjoint
linear operator, i.e.,

(L,Dom(L)) = (L*,Dom(L")),

thenL is the generator of &° contraction semigroup of if and only if L is negative definite
le.,
(f,Lf) <0 foranyf e Dom(L).
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In this case, th€® semigroup generated lyis given by
P, =¢ foranyt >0,

where the exponential is defined by spectral theory, cf. Regd & Simon: Methods of modern
mathematical physics|[31], IL[29], 1L [32], IVL[30].

4.2 Martingale problems for Markov processes

In the last section we have seen that there is a one-to-omespondence between strongly
continuous contraction semigroups on Banach spaces aimcgdreerators. The connection to
Markov processes can be made via the martingale problem s¥varee at first that we are given
aright-continuous time-homogeneous Markov procss ).cjo,-), (Fx)zcs)) With state space
(S, B) andtransition semigrougp:):>o. Suppose moreover thét is either a closed linear sub-
space ofF,(.S) endowed with the supremum norm such that

(Al) py(E) C E foranyt >0, and
(A2) p,v € P(S)with [ fdu= [ fdNfeEE = u=v,

or E = LP(S, u) for somep € [1, 00) and a(p;)-sub-invariant measupe € M. (S).

4.2.1 From Martingale problem to Generator

In many situations it is known that for anye S, the proces$(X;):>o, P.) solves the martingale
problem for some linear operator defined on “nice” functionss. Hence letd C E be a dense
linear subspace of the Banach spatend let

L:ACFE—FE

be a linear operator.

Theorem 4.9(From the martingale problem to C, semigroups and generators Suppose
that for anyx € S and f € A, the random variableg(X;) and (Lf)(X;) are integrable w.r.t.
P, foranyt > 0, and the process

t
0

Mf = §(X,) - / (CF)(X,)ds
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is an (F;X) martingale w.r.t. P,. Then the transition functiofp;);>, induces a strongly contin-
uous contraction semigrou;);>o of linear operators or¥, and the generatofL, Dom(L)) of
(P,)¢>0 is an extension ofL, A).

Remark. In the case of Markov processes with finite life-time theestagnt is still valid if func-
tions f : S — R are extended trivially t& U {A} by settingf(A) := 0. This convention is
always tacitly assumed below.

Proof. The martingale property far// w.r.t. P, implies that the transition functiofp;) satisfies
the forward equation

() (@) — f(2) = BLlf(X0) — F(X0)] = E. { /0 (Lf)(ngs}

_ / B [(Lf)(X0)ds = / (peL)(x)ds (4.2.1)

foranyt > 0,2 € S andf € A. By the assumptions and Lemimal4pljs contractive w.r.t. the
norm onFE for anyt > 0. Therefore, by((4.2]1),

t
Ipef — flls < / IpLfllds < H|Lf|ls — 0 ast L0
0

for any f € A. Since A is a dense linear subspace Bf anc/3 argument shows that the

implies that

contraction semigroupP;) induced by(p;) on E is strongly continuous. Furthermorg, (412.1)
nf—f —Lf

1 t
‘ < —/ \|\psLf — Lf||gds — 0 ast |0 4.2.2)
t FE t 0

for any f € A. Here we have used thﬁ?olpsﬁf = Lf by the strong continuity. By (4.2.2),

the functions in4 are contained in the domain of the generdif (P,), andLf = Lf for any
feA. O

4.2.2 ldentification of the generator

We now assume thdt is the generator of a strongly continuous contraction semig(?;):>o

on E, and that L, Dom(L)) is an extension ofL, .A). We have seen above that this is what can
usually be deduced from knowing that the Markov processesdlve martingale problem for any
initial valuez € S. The next important question is whether the generatand (hence) the?®
semigroup P,) are already uniquely determined by the fact thaxtends L, .A). In general the
answer is negative - even thoughis a dense subspace bt
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Example (Brownian motion with reflection and Brownian motion with absorption).

Let S = [0,00) and E = L?*(S,dz). We consider the linear operatdr = %% with dense

domainA = C5°(0,00) C L?(S,dx). Suppose that(B;);>0, (P:).cr) iS @ canonical Brownian
motion onR. Then we can construct several Markov processeswhich induceC® contraction

semigroups otk with generators that extends, A). In particular:

e Brownian motion on R with reflection at O is defined by

X = | By foranyt > 0.

e Brownian motion on R, with absorption at O is defined by

~ B, fort < TP,
Xt: B
A fort > 17,

whereT,? = inf{t > 0 : B, = 0} is the first hitting time of) for (B;).

Exercise. Prove that both{ X,, F,) and()?t, P,) are right-continuous Markov processes that in-
duceC? contraction semigroups off = L?(R.,dz). Moreover, show that both generators

extend the operatoi%%, Cs°(0,00)). In which sense do the generators differ from each other?

The example above shows that it is not always enough to knevgéimerator on a dense sub-
space of the corresponding Banach spAcdnstead, what is really required for identifying the
generatot, is to know its values on a subspace that is dense in the davhainv.r.t. the graph

norm

1l = e + LS e

Definition (Closability and closure of linear operators, operator cors). 1) A linear oper-
ator (L, A) is calledclosableiff it has a closed extension.

2) In this case, the smallest closed extengiBnDom(£)) is called theclosureof (£, A). It
is given explicitly by

Dom(£) = completion of4 w.r.t. the graph nornj| - ||,
Lf = lim Lf, forany sequencéf,),cxy in A suchthatf, — fin E (4.2.3)

and (L f,)nen is a Cauchy sequence.

3) Suppose that is a linear operator on¥ with A C Dom(L). ThenA is called acore for
L iff Ais dense in DorfY.) w.r.t. the graph normj - || ...
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It is easy to verify that if an operator is closable then thiersion defined by (4.2.3) is indeed
the smallest closed extension. Since the graph norm isggrahan the norm o#’, the domain

of the closure is a linear subspacefof The graph of the closure is exactly the closure of the
graph of the original operator ik x . There are operators that are not closable, but in the
setup considered above we already know that there is a céogedsion of( £, .A) given by the
generator( L, Dom(L)). The subspacgl C Dom(L) is a core forL if and only if (L, Dom(L))

is the closure of L, A).

Theorem 4.10(Strong uniquenes$. Suppose that is a dense subspace of the domain of the
generatorL w.r.t. to the norm| - || . Then the following statements are equivalent:

(i) Aisacore forL.

(i) P.f is contained in the completion of w.r.t. the graph normi| - ||, for any f € Dom(L)
andt € (0, 00).

If () or (iz) hold then

(iii) (P:):>o is the only strongly continuous contraction semigroupfowith a generator that
extendg L, A).

Proof. (i) = (ii) holds since by Theoreimn 4.3}, f is contained in the domain df for anyt > 0
andf € Dom(L).

(i) = (i): Let f € Dom(L). We have to prove that can be approximated by functions in the
closureA” of A w.rt. the graph norm of.. If (ii) holds this can be done by regularizinfgvia
the semigroup: For any> 0, P, f is contained in the closure of w.r.t. the graph norm by (ii).
Moreover,P, f converges tg ast | 0 by strong continuity, and

LP,f=PLf—Lf astl0
by strong continuity and Theordm #.3. So
|P.f — fll —0 ast]o,

and thusf is also contained in the closure dfw.r.t. the graph norm.

(i) = (iii): If (i) holds and (?)tzo is aC? contraction semigroup with a generaﬁmextending

(L, A) thenL is also an extension df, because it is a closed operator by Theorem 4.6. Hence
the semigroupsP;) and(P,) agree by Theorefn4.7. O
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We now apply Theorein 4.10 to identify exactly the domain efglenerator of Brownian motion
onR™. The transition semigroup of Brownian motion is the heatigemup given by

@) = (Fr)@) = [ Fwede =)y foranyt =0,
wherep;(z) = (27t) 2 exp (—|z|?/(21)).

Corollary 4.11 (Generator of Brownian motion). The transition functiorip; )., of Brownian
motion induces strongly continuous contraction semigsoap C'(R") and on L?(R", dx) for
everyp € [1,00). The generators of these semigroups are given by

1 -
L=3A,  Dom(L)= Ce R

WherngO(IR")A stands for the completion @f;°(R™) w.r.t. the graph norm of the Laplacian
on the underlying Banach spaCfé(R”), LP(R", dx) respectively. In particular, the domain &f
contains allC functions with derivatives up to second ordel(itiR"), L?(R", dz) respectively.

Example (Generator of Brownian motion on R). In the one-dimensional case, the generators
are given explicitly by
1 - R
Lf =", Dom(L) = { feCR)NCAR) : [ € C(R)} , (4.2.4)
Lf = %f”, Dom(L) = {f € L*(R,dz) N C*(R) : f" absolutely continuous,” € L*(R, dz)}
(4.2.5)

respectively.

Remark (Domain in multi-dimensional case, Sobolev spacgsin dimensions: > 2, the do-
mains of the generators contain functions that are not tdiiferentiable in the classical sense.
The domain of thel.? generator is the Sobolev spaf€*(R", dz) consisting ofweaklytwice
differentiable functions with derivatives up to secondesrih L?(R", dz), cf. e.g. [X X X].

Proof. By It6’s formula, Brownian motiori B;, P,) solves the martingale problem for the opera-
tor 2 A with domainC§°(R"). Moreover, Lebesgue measure is invariant for the tramskésnels
p; Since by Fubini’s theorem,

/ pifda = / / oz — y)f(dyde = | f(y)dy foranyf € F.(R").
R~ n n Rn

Hence by Theoref4.9p;);-, inducesC? contraction semigroups afi(S) and onL?(R", dx)
for p € [1, ), and the generators are extensiongpf, C5°(R")). A standard approximation

Markov processes Andreas Eberle



4.2. MARTINGALE PROBLEMS FOR MARKOV PROCESSES 139

argument shows that the completiomA w.r.t. the graph norms contain all functions
in C2(R") with derivatives up to second order @i(R"), L?(R", dx) respectively. Therefore,
pef = f * 1 is contained iICo(R7)” for any f € C°(R™) andt > 0. Hence, by Theorem
410, the generators aii(S) and L?(R", dx) coincide with the closures dit A, C°(R™)). O

Exercise(Generators of Brownian motions with absorption and reflecton). 1) Show that
Brownian motion with absorption atinduces a strongly continuous contraction semigroup
(P:):>0 onthe Banach spade = {f € (0, 00) : lim, o f(z) = 0 = limy1 f(x)}. Prove
that

A= {flos)  f € C5°(R) with £(0) = 0}
is a core for the generatdrwhich is given byL f = %f” for f € A. Moreover, show that
C3°(0, 00) is not a corefor L.

2) Show that Brownian motion with reflection @induces a strongly continuous contraction
semigroup on the Banach spaEe= ([0, >)), and prove that a core for the generator is
given by

A= {flowe) | € CF(R) with f'(0) = 0}

4.2.3 Unigueness of martingale problems

From now on we assume thatis a closed linear subspace Bf§(.S) satisfying (A2). LetL be
the generator of a strongly continuous contraction serig(®;).>, on E, and letA be a linear
subspace of the domain éf The next theorem shows that a solution to the martingalel@no
for (L, .A) with given initial distribution is unique if4 is a core forL.

Theorem 4.12(Markov property and uniqueness for solutions of martingaleproblem). Sup-
pose thatA is a core forL. Then any solutioi(.X;):>o, P) of the martingale problem fafZ, .A)
is a Markov process with transition function determinedqurly by

pf =P f foranyt>0andf € E. (4.2.6)

In particular, all right-continuous solutions of the margale problem for(L, A) with given
initial distribution i« € P(.S) coincide in law.

Proof. We only sketch the main steps in the proof. For a detailedffge® Ethier/Kurtz, Chapter
4, Theorem 4.112].
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Step 1 If the procesq X, P) solves the martingale problem fof, .4) then an approximation
based on the assumption thdtis dense in Dorfl,) w.r.t. the graph norm shows that
(X;, P) also solves the martingale problem {dr, Dom(L)). Therefore, we may assume
w.l.0.g. thatd = Dom(L).

Step 2 (Extended martingale problem). The fact that(.X;, P) solves the martingale problem
for (L, A) implies that the process

M= et p(X) + / t e (af — Lf)(X,)ds
0

is a martingale for any > 0 and f € A. The proof can be carried out directly by Fubini's
Theorem or via the product rule from Stieltjes calculus. Ht&er shows that

t t
) = 1) = [ et (Lf —apXds + [ el
0 0
where [ e=sdM is an Itd integral w.r.t. the martingaley/ = f(X,) — [ (L) (X,)ds,
and hence a martingale, cf. [10].

Step 3 (Markov property in resolvent form). Applying the martingale property to the martin-
galesM /2l shows that for any > 0 andg € E,

E { /0 ) e *g(Xore)

Indeed, letf = G.g. Thenf is contained in the domain @f, andg = «f — L f. Therefore,
fors,t > 0,

]-“SX} = (Ga9)(X,) P-as. (4.2.7)

0= B | ML — ppe

FX ]

= B [ - e X+ B | [ g x| 2]
holds almost surely. The identity (4.2.7) followstasy co.
Step 4 (Markov property in semigroup form). One can now conclude that
Elg(Xe)|FX) = (Pg)(X,) P-as. (4.2.8)

holds for anys,t > 0 andg € E. The proof is based on the approximation

P,g = lim (QG%ng

n—oo \ 8

of the semigroup by the resolvent, see the exercise below.
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Step 5 (Conclusion).By Step 4 and Assumption (A2), the proc€¢X,), P) is a Markov pro-
cess with transition semigroup; );>o satisfying (4.2.6). In particular, the transition semi-
group and (hence) the law of the process with given initisirddution are uniquely deter-
mined.

O

Exercise(Approximation of semigroups by resolvent3. Suppose thatP; ), is a Feller semi-
group with resolventG,,),~o. Prove that for any > 0,n € Nandzx € S,

(QG%>ng(x) = F [Pwtg(fc)

where (Ey)ren IS @ sequence of independent exponentially distributedarnvariables with
parameteil. Hence conclude that

(%G%Yg — P,g uniformly asn — oo. (4.2.9)
How could you derive[(4.219) more directly when the statecepa finite?

Remark (Other unigueness results for martingale problems. It is often not easy to verify
the assumption thatl is a core forL in Theorem4.12. Further uniqueness results for mar-
tingale problems with assumptions that may be easier tdyvieriapplications can be found in
Stroock/Varadhar [38] and Ethier/Kuriz [12].

4.2.4 Strong Markov property

In Theoreni4.12 we have used the Markov property to estabhigjueness. The next theorem
shows conversely that under modest additional condititvesstrong Markov property for solu-
tions is a consequence of uniqueness of martingale problems

Let D(R,,S) denote the space of all cadlag (right continuous with leftits) functions
w: [0,00) = S. If Sisapolish space theR(R, , S) is again a polish space w.r.t. tB&orokhod
topology, see e.g. Billingsley [2]. Furthermore, the Boeehklgebra orD(R,, S) is generated
by the evaluation map&;(w) = w(t), t € [0, 00).

Theorem 4.13(Uniqueness of martingale problem=- Strong Markov property ). Suppose
that the following conditions are satisfied:
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(i) Ais a linear subspace af;,(S), andL : A — F,(S) is a linear operator such that is
separable w.r.t|| - || .

(i) For everyz € S there is a unique probability measufe, on D(R,, S) such that the
canonical proces§(X;):>o, ) solves the martingale problem fo€, .4) with initial value
Xy =z P,-a.s.

(i) The mapz — P,[A] is measurable for any Borel setC D(R., S).
Then((X:)e>o0, (Py)zes) IS astrong Markov process.e.,
E, [F(X74.)|Fy] = Exp[F] P-as.

foranyr € S, F € F(D(R,,S)), and any finitg ;X ) stopping timel".

Remark (Non-uniquenes$. If unigueness does not hold then one can not expect that &my so
tion of a martingale problem is a Markov process, becauserdiit solutions can be combined in
a non-Markovian way (e.g. by switching from one to the othbewa certain state is reached).

Sketch of proof of Theordm 4]1Bix = € S. SinceD(R,,.S) is again a polish space there is a
regular versiorfw, A) — Q. (A) of the conditional distributio®, [ - | Fr]. Suppose we can prove
the following statement:

Claim: For P,-almost every, the proces$Xr, ., (),,) solves the martingale problem fof, A)
w.r.t. the filtration(F55,, )i>o.

Then we are done, because of the martingale problem withlin@ndition X (w) now implies

(X714, Qu) ~ (X, Pxpw)) for P-ae.w,
which is the strong Markov property.

The reason why we can expect the claim to be true is that forgargn 0 < s < t,f € A
andA € 75X,

o[£~ 1060~ [ enar 4]

T+s
= B, (M, - MYL,) 14 7] (@)

f f
5, [ [, - 0,

Fis) 1| 7| @) = 0
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holds for P,-a.e. w by the optional sampling theorem and the tower property ofddmnal
expectations. However, this is not yet a proof since the gxaeal set depends ont, f and
A. To turn the sketch into a proof one has to use the sepayabdgumptions to show that
the exceptional set can be chosen independently of theseteprf. Stroock/Varadhan [38],
Roger/Williams [34]+[35] or Ethier/Kurz [12]. 0J

4.3 Feller processes and their generators

In this section we restrict ourselvesReller processesThese are cadlag Markov processes with
a locally compact separable state spdoghose transition semigroup preservf@@). We will
establish a one-to-one correspondence between sub-Mark6$¥ semigroups orC(S), their
generators, and Feller processes. Moreover, we will shatthie generatok. of a Feller process
with continuous paths oR™ acts as a second order differential operator on functioGgigR")

if this is a subspace of the domain bf We start with a definition:

Definition (Feller semigroup). A Feller semigroupis a sub-MarkoviarC® semigroup P;);>o of
linear operators orC(S), l.e., a Feller semigroup has the following properties thatd for any
fe(s):

(i) Strong continuity: | P, f — f||sup— 0 ast | 0,
(i) Sub-Markov: f >0= P, f>0, f<1= P f <1,
(i) Semigroup:Pyf = f, P.P,f = P,.,f foranys,t > 0.
Remark. Property (ii) implies thaf’, is a contraction w.r.t. the supremum norm for any 0.

Lemma 4.14(Feller processes, generators and martingal@sSuppose thafp; );>¢ is the tran-
sition function of a right-continuous time-homogeneousKkde process(X;):>o, (Px)zes) Such
that p,(C(S)) € C(S) for anyt > 0. Then(p)i>o induces a Feller semigroufi;);>o on

C'(S). If L denotes the generator then the procéss;), P,) solves the martingale problem for
(L,Dom(L)) foranyz € S.

Proof. Strong continuity holds by 4.2. Filling in the other missidetails is left as an exercise.
O
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4.3.1 Existence of Feller processes

In the framework of Feller semigroups, the one-to-one gpoedence between generators and
semigroups can be extended to a correspondence betweegatgesiesemigroups and canonical
Markov processes. Lefd = D(R, SU {A}), Xi(w) =w(t), and A =o(X;: t > 0).

Theorem 4.15(Existence and uniqueness of canonical Feller proces3eSuppose thatP;);>o

is a Feller semigroup o0’(.S) with generator. Then there exist unique probability measures
(x € S) on(€2,2) such that the canonical processX;);>o, P.) is a Markov process satisfying
P.[Xo=2]=1and

E,[f(X)|FS] = (P f)(X,) P,-almost surely (4.3.1)

foranyz € 5,0 < s < tandf e C(S), where we sef(A) := 0. Moreover,((X;);o, P,) is a
solution of the martingale problem fof., Dom(L)) for anyz € S.

Remark (Strong Markov property ). In a similar way as for Brownian motion it can be shown
that((X:):>o0, (P:)zes) IS a strong Markov process, cf. e.g. Liggettl[21].

Sketch of proof We only mention the main steps in the proof, details can badduar instance
in Rogers& Williams, [35]:

1) One can show that the sub-Markov property implies thatfort > 0 there exists a sub-
probability kernelp,(z, dy) on (.S, B) such that

(Pf)(x) = / p(e.dy)f(y) foranyf € C(S) andz € 5.

By the semigroup property dff;);>o, the kernelgp;):>o form a transition function on
(S,B).

2) Now theKolmogorov extension theoremshows that for any: € S there is a unique
probability measuré”? on the product spacﬁf’c’o) with marginals

PI © (Xt1 ) Xt27 s 7th)_1 =Py ('Tu dyl)ptzftl (y17 dy?) <Pty —tna (yn*h dyn)

foranyn € Nand0 < t; < t, < --- < t,. Note that consistency of the given marginal
laws follows from the semigroup property.
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3) Path regularisation: To obtain a modification of the process with cadlag samplagat
martingale theory can be applied. Suppose that GG, ¢ for some non-negative function
g€ C(S). Then

f—Lf=g92=0,
and hence the process'’ f(X;) is a supermartingale w.r.22Y for anyz. The supermartin-
gale convergence theorems now imply tirdtalmost surely, the limits

lime™* f(Xjs)
50

exist and define a cadlag functionin Applying this simultaneously for all functiong
in a countable dense subset of the non-negative functio$.$9), one can prove that the
process

X, =lmX, (teR,)

slt
s€Q

existsP?-almost surely and defines a cadlag modificatiof(af,), P?) for anyx € S. We
can then choosg, as the law of X;) underP?.

4) Uniqueness:Finally, the measureg, (x € S) are uniquely determined since the finite-
dimensional marginals are determined by (4.3.1) and thi@licondition.

O

We remark that alternatively it is possible to construct BefFgprocess as a limit of jump pro-
cesses, cf. Chaptel 6, Theorem 5.4. in Ethier&Kurtz [12fleked, the Yosida approximation

Lf = lim aGoLf = lim LWf, L9Wf .= a(aGaf — f),

a—00

Pf = lim ™ f,

a—0o0
is an approximation of the generator by bounded linear apexa ™ that can be represented in
the form

L@f = aq / (f(y) — F(z))aga(z, dy)

with sub-Markov kernelsvg,. For anya € (0,00), L@ is the generator of a canonical jump
process (X¢)i>o0, (Pm(a))xes) with bounded jump intensities. By using that for afi Dom(L),

L@f — Lf uniformly ase — oo,

one can prove that the familyP\® : o € N} of probability measures oB(R,, S U {A}) is
tight, i.e., there exists a weakly convergent subsequdderoting byP, the limit, ((X;), P,) is
a Markov process that solves the martingale problem for émeator( L, Dom(L)). We return
to this approximation approach for constructing solutiohsiartingale problems in Sectign B.2.
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4.3.2 Generators of Feller semigroups

It is possible to classify all generators of Feller procesiseR? that containCi°(R?) in the
domain of their generator. The key observation is that theMarkov property of the semigroup
implies a maximum principle for the generator. Indeed, til®iving variant of the Hille-Yosida
theorem holds:

Theorem 4.16(Characterization of Feller generatorg. A linear operator(L, Dom(L)) on

C(S) is the generator of a Feller semigroyp;).>, if and only if the following conditions hold:

(i) Dom(L) is a dense subspace 615).

(i) Range(al — L) = C(S) for somen > 0.
(i) L satisfies thgositive maximum principle:If f is a function in the domain of. and
f(zo) = sup f for somez, € S then(Lf)(z) < 0.

Proof. “="If L is the generator of a Feller semigroup then (i) and (ii) holdHz Hille-Yosida
Theoreni4.b. Furthermore, suppose tfiat f(z() for somef € Dom(L) andz, € S. Then
0 < % < 1, and hence by the sub-Markov propefty< Pt% < 1foranyt > 0. Thus
P f < Pf* < f(xo), and

(Pf)(x0) = f(o)

<0.
n =

(L) (o) = lim

“«<" Conversely, if (iii) holds thenl is dissipative. Indeed, for any functigh C(S) there
existszy € S such that| f||sup = | f(z0)|. Assuming w.l.0.g.f(z) > 0, we obtain

allfllsp < af(wo) = (Lf)(x0) < lof = Lfllsup ~ foranya >0

by (iii). The Hille-Yosida Theoreri 415 now shows thagenerates &° contraction semigroup
(P,)i=0 onC(S) provided (i), (ii) and (iii) are satisfied. It only remainsverify the sub-Markov
property. This is done in two steps:

a) aG, is sub-Markov foranyy > 0: 0 < f <1 = 0 < aG,f < 1. This follows
from the maximum principle by contradiction. Suppose fatamce thay := oG, f < 1,
and letzy, € S such thaty(zy) = maxg > 1. Then by (iii), (Lg)(zo) < 0, and hence

f(@o) = ;ag(zo) — (Lg)(xo)) > 1.
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b) P, is sub-Markov forany > 0: 0 < f <1 = 0 < Pf < 1. This follows from a)
by Yosida approximation: Let(® := LaG, = a’G, — ol. If 0 < f < 1 then the
sub-Markov property foa GG, implies

[e.e]

S f efatz % (aG,)" f €]0,1) foranyt > 0.
n=0 ’

Hence alsd?,f = lim ' f € [0, 1] for anyt > 0.
a—r00

O

For diffusion processes di?, the maximum principle combined with a Taylor expansiornveo

that the generatak is a second order differential operator provideft (R¢) is contained in the
domain ofL:

Theorem 4.17(Dynkin). Suppose thatP;);>, is a Feller semigroup ofR? such thatCg°(R¢)
is a subspace of the domain of the generator If (P;);>o is the transition semigroup of a
Markov process(X;):>o, (Pr).cre) With continuous paths then there exist functiansb;, c €
C(RY) (i,j = 1,...,d) such that for any, a;;(z) is non-negative definite(z) < 0, and
: *f o Of o (R
(Lf)(z) = Z 0i(0) g )+ D005 (@) @) () Vf € CRRY). (432)

=1

Furthermore, if the proces§ X;):>o, (P:)zes) iS non-explosive then= 0.

Proof. 1) Lis alocal operator: We show that
f,9 € Dom(L), f = g inaneighbourhood of = (Lf)(z) = (Lg)(z).

For the proof we apply optional stopping to the martingalé = f(Xy) — fOt(Lf)(Xs)ds.
For an arbitrary bounded stopping tirfleandz € R¢, we obtainDynkin’s formula

T
BT O] = 1)+ B | [ (0]
0
By applying the formula to the stopping times

T.=min{t >0: X; ¢ B(z,e)} N1, >0,
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we can conclude that

B[ (LHXs] B (x0)) — f(a)

(Lf)(z) = lim A = lim z BT . (4.3.3)

Here we have used thatf is bounded andzfél(Lf)(Xs) = (Lf)(z) P,-almost surely by
right-continuity. The expression on the right-hand sid€408.3) is known asDynkin’s
characteristic operator’. Assuming continuity of the paths, we obtalt, € B(z,e).
Hence if f,¢g € Dom(L) coincide in a neighbourhood aof then f(Xr.) = ¢g(X7.) for

e > 0 sufficiently small, and thu6L f)(z) = (Lg)(z) by (4.3.3).

2) Local maximum principle: Locality of L implies the following extension of the positive

maximum principle: Iff is a function inCg°(R?) that has docal maximum atr then
(Lf)(z) < 0. Indeed, in this case we can find a functipre C3°(R?) that has a global
maximum atz such thatf = f in a neighbourhood aof. Sincel is a local operator by
Step 1, we can conclude that

(Lf)(@) = (Lf)(z) <0

3) Taylor expansion: For proving thatl is a differential operator of the formh (4.8.2) we fix
r € R? and functionsp, ¥y, ..., 14 € C°(R?) such thatp(y) = 1, ¥i(y) = y; — z; ina
neighbourhood’ of z. Let f € C5°(RY). Then by Taylor's formula there exists a function
R € C§°(R?) such thatR(y) = o(|y — =|?) and

d
F6) = Fahol) + Y 5@y Z S0+ R @34

in a neighbourhood of. Sincel is a local linear operator, we obtain

(LO)@) = ) (@) + 3 bi(o) o %Z () g () (LR)z) (435)

with ¢(x) := (Lg)(z), bi(z) := (L) (z), anda;;(z) := L(v;)(x). Sincep has a local
maximum atz, ¢(z) < 0. Similarly, for any¢ € R¢, the function

2

Z €0 ()0 (y

i,j=1

Wiy

equalg¢ - (y — x)|? in a neighbourhood of, so it has a local minimum at Hence

d
> &gai(x) =L (Z &fﬂ/h‘%) >0,
0,

1,j=1
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e., the matrix(a;;(z)) is non-negative definite. By (4.3.5), it only remains to show
(LR)(z) = 0. To this end consider

d
R.(y) == R(y) —¢ Z biy)®

SinceR(y) = o(|y — x|?), the functionR. has a local maximum at for ¢ > 0. Hence
d
0> (LR.)(x) = (LR)(x) =€ Y au(z) Ve >0.

Lettinge tend to0, we obtain(LR)(z) < 0. On the other hand;. has a local minimum at
x for e < 0, and in this case the local maximum principle implies

d
0 < (LR)(x) = (LR)(x) == aa(w) V= <0,

and hencg LR)(x) > 0. Thus(LR)(x) = 0.

4) Vanishing of c: If the process is non-explosive thefl = 1 for anyt > 0. Informally this
should implyc = L1 = %pt1|t:0+ = 0. However, the constant functidnis not contained
in the Banach spacé(Rd). To make the argument rigorous, one can approxirdig
Cge functions that are equal tbon balls of increasing radius. The details are left as an
exercise.
O

Theoreni 4.1l7 has an extension to generators of generat Beitegroups including those corre-
sponding to processes with discontinuous paths. We statesult without proof:

Theorem (Courrége).
Suppose that is the generator of a Feller semigroup @&, and C5°(R?) € Dom(L). Then

there exist functions;;, b;, c € C(Rd) and a kernel of positive Radon measures such that
d

(L)) =) aij(x) axaxj Zb

i,j=1 =1

+c(x) f(x)

[0 = 5@ = yarenly — 1) V@) oo dy)
RN\ {z}

holds for anyr € R? and f € Ci°(R?). The associated Markov process has continuous paths if
and only ifv = 0.

For transition semigroups of Lévy processes (i.e., praesdth independent and stationary
increments), the coefficients;, b;, ¢, and the measure do not depend om. In this case, the
theorem is a consequence of the Lévy-Khinchin representatf. e.g.[[10].
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Chapter 5
Processes with unbounded jump intensities

In this chapter we consider two explicit constructions aftoauous-time Markov processes with
unbounded jump intensities. Since these processes mayirfantely many jumps in a finite
time interval, the construction can not be carried out agyeas for processes with finite jump
intensity. We will first consider interacting particle sgsts overZ?. Here ergodicity is closely
related to the absence of phase transitions. Afterwardsyiwapply Poisson random measures
to construct L'evy processes with infinite jump intensities

5.1 Interacting particle systems

5.1.1 Interacting particle systems - a first look

Let G = (V, FE) be an (undirected) graph wifli the set of vertices andél’ the set of edges. We
write z ~ y if and only if {z,y} € E. We call

S=T"={n:V =T}

the configuration space 7' can be the space of types, states, spins etc.
E.g.

1 particle atr

T =10,1}, n(z) = {

0 no particle atc

150
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no particle

particle—

Markovian dynamicsy(z) changes to statewith rate

ci(z,m) = gi (n(x), M(W))y~e)

0 otherwise

; , f — Tl
Mmg{cwn)lﬁ "

where

1" y) =
i fory=ux

{mw fory #

Example. (1). Contact process: (Spread of plant species, infection,..J" = {0,1}. Each
particle dies with rate > 0, produces descendent at any neighbor site withirate) (if
not occupied)

co(z,m) =d
ci(z,n) =b- Ni(x,n); Ni(z,n) =y ~x : n(y) =1}

Spatial branching process with exclusion rule (only onetige per site).
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152 CHAPTER 5. PROCESSES WITH UNBOUNDED JUMP INTENSITIES

(2). Voter model: n(z) opinion of voter atr,
ci(z,y) = Ni(z,y) .= Hy ~z = nly) =1}]
changes opinion towith rate equal to number of neighbors with opinion

(3). Ising model with Glauber (spin flip) dynamics: 7 = {—1,1}, 5 > 0 inverse tempera-
ture.

(a) Metropolis dynamics:

A(z,n) == n(y) = Ni(z,n) — N_i(z,n) total magnetization

y~x
c1(z,m) := min (GQB'A(L”), 1)

co(z,m) := min (efzﬁ'A(m’"), 1)

(b) Heath bath dynamics / Gibbs sampler:

eBA(zm)

Cq (.T, 77) = eﬂA(x,n) —+ e_BA($,77)
e—BAn)

colz,n) = eBA(@m) 1 e—BA(xm)

8 = 0: (infinite temperature) ¢; = ¢, = £, random walk o{0, 1}V (hypercube)

8 — oo: (zero temperature)

1 if A(z,y) >0 1 if A(z,y) <0
Cl(ZL’,T]) = % if A(IL’,y) =0, Co(l‘,’l']) = % if A(IL’,y) =0
0 if A(z,y) <0 0 if A(z,y)>0

Voter model with majority vote.

In the rest of this section we will assume that the verteX/5e finite. In this case, the config-
uration spaces = TV is finite-dimensional. If, moreover, the type spdcés also finite thers
itself is a finite graph with respect to thamming distance

d(n, &) = {z e V; n(x) # &(2)}]

Hence a continuous-time Markov chdin, P,) can be constructed as above from the jump rates
q:(n,€). The process is non-explosive, and the asymptotic resolts the last section apply. In
particular, if irreducibility holds the there exists a ungstationary probability distribution, and
the ergodic theorem applies.
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Example. (1). Ising Model: The Boltzman distribution

1 _ _
,%,(77) — Z_ﬂe BH(n)’ Zg = Ze BH(n)’
n

with Hamiltonian
Hn) =5 > (@) —nw)’ = Y n@ny) +E
{z,y}eE {z,y}€FE

is stationary, since it satisfies the detailed balance ¢iamdi

ps(man,§) = us(€)q(§,m) VEn€eS.

Moreover, irreducibility holds - so the stationary distrilon is unique, and the ergodic
theorem applies (Exercise).

(2). Voter model: The constant configurationgz) = i, i € T, areabsorbing statesi.e.
¢;j(z,i) = 0 for all j # i, z. Any other state is transient, so

P || J{m =ieventually | = 1.

€T
Moreover,
Ni(m) == {z € V'« ne(x) = i}
is a martingale (Exercise), so

t—o00

Ni(n) = Ey[Ni(n:)] — Ey[Ni(nse)] = N - Pn, = i eventually

Ni(n)
N

The stationary distributions are the Dirac measutes € 7', and their convex combina-

P[n, = i eventually =

tions.

(3). Contact process: The configuratiord is absorbing, all other states are transient. Hence
dp Is the unique invariant measure and ergodicity holds.

We see that on finite graphs the situation is rather simpl®rg &s we are only interested in
existence and uniqueness of invariant measures, and etyodBelow, we will show that on
infinite graphs the situation is completely different, afge transitions occur. On finite sub-
graphs on an infinite graph these phase transitions effectte of convergence to the stationary
distribution and the variances of ergodic averages butheétgodicity properties themselves.
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154 CHAPTER 5. PROCESSES WITH UNBOUNDED JUMP INTENSITIES

5.1.2 Mean field models

Suppose that? is the complete graph with vertices, i.e.

V=A{l,...,n} and E={{z,y} : z,yeV}

Let
1 n
r=1
denote theempirical distribution of a configuration;: {1,...,n} — T, themean field In a

mean-field modelthe rates

ci(z,n) = fi(Ln(n))
areindependent af, anddepend om only through the mean field, (7).

Example. Multinomial resampling (e.g. population genetics), mean field voter model.
With rate 1 replace each typgz), = € V, by a type that is randomly selected frdm(n):

i) = L)) = o € () = )]

As a special case we now consider mean-field models with tppeed” = {0,1} or T' =
{—1, 1}. In this case the empirical distribution is completely detied by the frequence of type
1 in a configuration:

Ln(n) <= Ni(n) = [{z : n(z) = 1}

cilw,y) = F(Ni(m))
If (m, P,) is the corresponding mean field particle system, then (B5&r&;, = Ni(n) is a
birth-death process ofv, 1, . .., n} with birth/death rates

b(k) = (n—k) - fi(k), d(k) =k - fo(k)
where(n — k) is the number of particles with state O aﬁcdk) is the birth rate per patrticle.
~ Explicit computation of hitting times, stationary distifons etc.!

Example. (1). Binomial resampling: For multinomial resampling witfi" = {0, 1} we ob-

tain
k-(n—k)
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(2). Mean-field Ising model: For the Ising model on the complete graph with inverse tem-

peratures and interaction strengtb the stationary distribution is

p(n) o< ¢t Lay (@) =10)? o oo Lo @)Xy 1) — o 3ym(n)?

where .
m(n) =Y _n(x) = Ni(n) — N_1(n) = 2Ny (n) — n

is thetotal magnetization. Note that each/(x) is interacting with the mean fiell >~ 7 (y),
which explains the choice of interacting strength of orﬁ—:leﬂ'he birth-death chaitv, (7;)
corresponding to the heat bath dynamics has birth and daisth r

pE pr=k
e n e n
T pE L _pnk dik) =k~
e’n 4+ e n e’n + el n

and stationary distribution

ek = Y uﬁ(n)m<2)2‘"625<’“3)2, 0<k<n

n: Ni(n)
The binomial distributiorBin(n, 1) has a maximum at its mean valge and standard
deviation@. Hence for large n, the measyrg has one sharp mode of standard deviation
O(y/n) if g is small, and two modes i is large:

5
PR g>1

The transition from uni- to multimodality occurs at an irsetemperaturg,, with

lim 3, =1 (Exercise)

n—oo
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The asymptotics of the stationary distributionvas> oo can be described more accurately
using large deviation results, cf. below.

Now consider the heat bath dynamics with an initial configarer, with N;(7,) < 5, m even,
and let

T := inf{tZO : Ni(me) > g}

By the formula for mean hitting times for a birth-and-deatbgess,
efz

> : >
@G )3

since
fis (ﬁ> = (Z) ce T i5(0) < 2% 7

2 2
Hence the average time needed to go from configurations \eglative magnetization to states
with positive magnetization is increasing exponentiafliyni for 5 > 2log2. Thus although
ergodicity holds, for large: the process gets stuck for a very large time in configuratvaitts
negative resp. positive magnetization.
~» Metastable behaviour

More precisely, one can show using large deviation teclesdbat metastability occurs for any
inverse temperaturg > 1, cf. below.

5.1.3 Particle systems oiZ¢

Reference:
e Durett [7]

e Liggett [19]

V=174 T finite
E={(z,y) : |z —y|p =1} S = T with product topology, compact
= o () = p(x) Vo € 22
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Assumptions:

(1) f:=supci(z,y) < oo
€T
z€Z?

(i1) cilz,y) =9 (n(x), (n(y))y~s) translation invariant and nearest neighbor

N independent Poisson process with rai@larm clock for transition at to 1)
T n-th. arrival time of N}’

U*" independent random variables uniformly distributed@n]

Recipe: Attime 7%, changey(z) toi provided

ci(z,y)

Ua:,i < ~
- A

n

<i.e. with probabnityc"(? y))
Problem: Infinitely many Poisson processes, hence transitions itranp small time, no first

transition.
How can we consistently define a process from the jump timesa finite subsetl ¢ Z? and

¢ € S, the restricted configuration space
Sea={n€S|n=¢onA}

is finite. Hence for alls > 0 there exists a unique Markov jump proce(sés’g’A)> on S¢ 4
t>s

with initial conditionn{*** = ¢ and transitions > s, n — ™ at timesT'* whenevel/=i <

«lw) 3 e A The idea is now to define a Markov procegs” on S for ¢ — s small by

3, s,6,A
ne = e
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where A is an appropriately chosen finite neighborhood: ofrhe neighborhood should be cho-
sen in such a way that during the considered time intenéétf,) (x) has only been effected by

previous values or of the configuration restricted td. That this is possible is guaranteed by
the following observation:

For0 < s < t we define a random subgragh?, F, ;(w)) of (V, E) by:

Eyi(w) = {{z.y} : T2 € (s,t] or T¥" € (s,t] for somen € Nandi € T'}
If = effectsy in the time interval s, ¢] or vice versa thedz, y} € Ej ;.

Lemmab.1.If

t < 1 )
-5 ——————— =
—8-d?-|T|- A
then

P [all connected components (@, E, ;) are finitd = 1.

Consequence: For small time intervalss, t] we can construct the configuration at timfrm
the configuration at time independently for each component by the standard constnufcir
jump processes with finite state space.

Proof. By translation invariance it suffices to show
PHC()‘ < OO] =1

whereC is the component dfZ¢, E, ;) containing). If z is in C, then there exists a self-avoiding
path in(Z¢, E, ;) starting at) with lengthd: (x, 0). Hence

PEx e Cy : dp(x,0) >2n — 1]

< P[H SEIf-aVOiding pathﬁ = O, 29, ...,y Zon_1 S.L. (ZZ', ZZ'+1> € Esﬂg VZ]
n—1

< (2d)>" - H Pl(22;, 29i+1) € Eq 4

=0
where(2d)?"~! is a bound for the number of self-avoiding paths starting ah@® independent

eventS{(z% 22i+1) S Es,t}-
Hence

PRz e Cy : dp(x,0) >2n—1] < <4d2 ) (1 _ 6—2\Tl?\(t_s)>>n
< (8d*-|TIX-(t—s))" — 0

asn — oo, wheree=2ITIM(t=5) s the probability for no arrival ifs, ] in a2|T’| Poisson()) process
andl — e 2TRE=5) < IT|X - (t — s). O
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By the lemma,P-almost sure for alk > 0 and¢ € T2, there is an unique functioh —
nf’g), t > s, such that

i) n =¢

i) For s < t, h < 5, and each connected componéht)f Zd,Ett )y (5:6) is obtained
— — -+ 77t+h
C

from nf’g)) by subsequently taking into account the finite number ofditaans in C'
C

during[t,t + h).
We set
0 =
By construction,
13
nf=n"" Yo<s<t (5.1.1)

Corollary 5.2. (i) Time-homogeneity:

(s@)) - ( 5)
(773+t 10 Tt 10

(i) (nt, P)is a Markov process with transition semigroup

(pef)(€) = ELf ()]
(i) Feller property:
feCS) = pfeCy(S)Vt>0

Or, equivalently,p; f is continuous whenevef is continuous with respect to the product
topology. Sinc&' is compact, any continuous function is automatically beahd

(iv) Translation invariance: Let¢: Q@ — S be a random variable, independent of aq”‘
and translation invariant, i.e¢(z + o) ~ ¢ for all 2 € Z?. Theny; is translation invariant
forall t > 0 P-a.s.

Sketch of proof: (i) by the time homogeneity of the Poisson arrivals.
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(i
pr () 17) @B |1 (5 1] @

taking into account thé~,-measurability of; andnt(s’g) being independent of; for fixed

&, we conclude with(7)

511 () 17 =1 (1]
-elr )
= (p—sf) (N (w))
(i)
bn =€ = &i(2) = () Ve e Z?

Hence¢, = ¢ eventually on each finite sét c Z¢, and hence on each component of
(24, Ey ). By the componentwise construction,

nt=ng V<6
eventually on each component. Hence
" =t (pointwise)vt < &
and forf € Cy(9),

f (nf") - f (?7?)

forall ¢t < §. With Lebesgue we conclude

pf(E) =B |f ()| — pf(©ve <o

Hence OK fort < §. General case by semigroup property:
=D g5Ps : Col(S) = Cy(S)
(iv) Thec;(x,y) are translation invariant by assumption,

(e, Ur),,)

are identically distributed. This gives the claim.
O
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Theorem 5.3(Forward equation) For any cylinder function

fm)=em(®),...,n(xn)), neNE:T" >R

the forward equation
d

o (pef) (§) = (p:LS) (£)

holds for all§ € S where

(L) = 3 aila,€) - (JE) = £(9))

z€Z4
€T

Remark. Sincef is a cylinder function, the sum in the formula for the genarags only finitely
many non-zero summands.

Proof.

Z NPt 1] < const.. 2

where{N/*" > 1} means that there is more than one transition in the timeviakér, ] among
{z1,...,x,} and const. is a global constant.

PN/ =1] =Xt +O()
and hence

(p/)(€) = Blf ()]
=f&)-P[N*"=0 V1<k<n,i€eT|

Y s p [ =1 o < 0

i,k

+ O(?)

= () + Y- 2 (g - (6)) + 08

= (&) +t- (L)) +O(t)
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where the constant3(¢?) do not depend of. Hence

peinf = pipnf = pef + hp Lf + O(h?)

5.2 Phase transitions

An additional reference for this section is Liggétt[19].

5.2.1 Attractive particle systems

From now on we assumE = {0,1}. We define gartial order on configurations),n € S =
{0,1}"" by
n <7 e () <) Ve ez’

A function f: S — R is calledincreasingif and only if

f(n) < f(n) wheneven) < 7).

Definition (Stochastic dominance)For probability measureg, v € M;(S) we set

nv & /fdu < /fdy for any increasing bounded functigh S — R

Example. Foru, v € M;(R),

p=v & F(c)=p((—o00,c)>F,(c) YVeceR

Now consider again the stochastic dynamics constructegdeabo

c1(x,m) birth rates

co(z,m) death rates
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Definition. The Markov procesénf : P) is calledattractiveif and only if for allz ¢ Z<,

~ 01(37777) < Cl(xaﬁ) and
co(w,n) = co(x, 1)

Example. Contact process, voter model, as well as the Metropolis &at-Hath dynamics for
the (ferromagnetic) Ising model are attractive

Theorem 5.4.If the dynamics is attractive then:
(1). If € < € thenyf < 7 forall ¢ > 0 P-a.s.
(2). If f: S — Risincreasing them,f is increasing for allt > 0.

(3). If u < vthenup; < vp; for all t > 0 (Monotonicity).

Proof. (1). The dynamics is attractive agd< E hence every single transition preserves order.
Hence

< €A V0<s<t Acz"finite

<
= e < gt Vs> 0,t€ s, s+ 0]

and by induction

(s,€)

sincen™® = nt<s+5’n"'” ) .

(If, for example, before a possible transition at tiffig!, » < 7 andn(z) = 7(z) = 0,
then after the transitiomy(z) = 1 if U»' < &2 put in this case als§(z) = 1 since
c1(z,n) < c1(x, ) by attractiveness. The other cases are checked similarly.)

(2). Sincef is increasing and < &,

)€ = B [105)] < B [16H)] = 0@
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(3). If fisincreasingp;f is increasing as well and hence by Fubini

[ = s [msav= [ gawp)

O

Let 0,1 € S denote the constant configurations afydy; the minimal respectively maximal
element inM, (5).

Theorem 5.5. For an attractive particle system oft), 1}%" we have

(). The functionst +— dop; and t +— &;p, are decreasing respectively increasing

with respect tox.

(2). The limitsy := lim;_,o, dop; and i := lim,_, d1p; €Xist with respect to weak convergence
in M, (S)

(3). p andp are stationary distributions fop,

(4). Any stationary distributiom satisfies

LT[

Proof. (1).
0<s<t = 50'4501%—5
and hence by monotonicity

doPs =< OoPi—sDs = OoPt

(2). By monotonicity and compactness, sirite- {0, 1}Zd Is compact with respect to the prod-
uct topology, M/, (S) is compact with respect to weak convergence. Thus it sufficgisow
that any two subsequential limits and ., of dyp; coincide. Now by 1),

[+
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is increasing int, and hence

/f@fﬂg/fﬂMMZ/fWQ

for any continuous increasing functighn S — R, which impliesu; = ps.
(3). Sincep; is Feller,
[t = [ dn= i [t i@p) = im [ fdtn.p
~ i [ fdw) = [ 7
forall f € Cy(9).
(4). Sincer is stationary,
dopr S TPy =T < 01y

for all t > 0 and hence fot — oo,

=
N
3
N
=

Corollary 5.6. For an attractive particle system, the following statenseare equivalent:
(1). p = fi.
(2). There is an unique stationary distribution.
(3). Ergodicity holds:
Jpue M(S): vpp—pu YveM(S).

Proof. 1. < 2.: by the theorem.
1. = 3.: Sincedy <X v < 4y,

dopr S VDL < 01y

and sincep; — p andd;p; — fifort — oo,
Vpy = Jh= [

3. = 1.: obvious.
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5.2.2 Contact process otz4

For the contact processy(x,n) = 6 andey(x,n) = b+ Ni(z,n) where the birth raté and the
death rate) are positive constants. Since theonfiguration is an absorbing state= J, is the
minimal stationary distribution. The question now is if thes another (non-trivial) stationary
distribution, i.e. ifu # p.

Theorem 5.7.1f 2db < § theny, is the only stationary distribution, and ergodicity holds.

Proof. By the forward equation and translation invariance,

Pl =1 =P =1+ Y b Pli)=0 n)=1]
y: lo—yl=1

< (=0 +2db) - P [ () = 1]
for all x € Z%. Hence if2db < § then
p{n () =13) = lim () ({7 = n(z) = 1})
= lim P [/ (2) = 1]
=0
for all x € Z* and thusii = &. O
Conversely, one can show that fosufficiently small (or§ sufficiently large), there is nontrivial

stationary distribution. The proof is more involved, cfggett [19]. Thus a phase transition from
ergodicity to non-ergodicity occurs asncreases.

5.2.3 Ising model onzd

We consider the heat bath or Metropolis dynamics with irveéesnperaturgg > 0 on S =
{—1,+1}%
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a) Finite volume: Let A C Z? be finite,

Sia={neS|n=+1onA} (finite!)

S_a:={neS|n=-1onA%}.
ﬁ,A I (0757‘4) 1 1 1
Foré € Sparesp. &€ S_a " =, , the dynamics taking into account only
transitions inA.

(nf’A, P) is a Markov chain orb. 4 resp.S_ 4 with generator

LHm = > cl@n) - (f0") - fm)

T€A
ie{—1,+1}
Let
1
Him =7 >, () =)’
x,yeZd
|z—y|=1

denote thdsing Hamiltonian. Note that forn € S, 4 orn € S_ 4 only finitely many
summands do not vanish, $0(n) is finite. The probability measure

1 —suwm)

+,A
ZB

M;’Am) = , NESia

where
Zit = % e

nESt A

onsSy 4 andug’A on S_ 4 defined correspondingly satisfy the detailed balance ¢iomdi

pa N OLEm) = py (ML E) YENE S A

respectively

s (LEm) =y (ML, §) VEmES_a.

SinceS, 4 andS_ 4 are finite and irreducible this implies thag”“ respectivelw;’A is the

unique stationary distribution c@f’A, P) for & € S, 4, S_ 4 respectively. Thus in finite
volume there are several processes corresponding toetiffeoundary conditions (which
effect the Hamiltonian) but each of them has a unique statiodistribution. Conversely,
in infinite volume there is only one process, but it may havess stationary distributions:
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b) Infinite volume: To identify the stationary distributions for the procesZynwe use an
approximation by the dynamics in finite volume. Foe N let

A, = [—n,n]* N7,
&(x) forx e A,
£n<x) =
+1  forx e Z4\ A,

+,An

The sequences; andug’A", n € N, are decreasing respectively increasing

with respect to stochastic dominance. Hence my compactiigssl, +1}% there exist
,u;g = lim ,LL;’An and uy := lim ug’A"

ntoo ntoo

Remark (Gibbs measuresA probability measure on S is calledGibbs measurefor the Ising
Hamiltonian onZ< and inverse temperature> 0 if and only if for all finite A C Z¢ and¢ € S,

1 - c
M%A(n) = —0e BH(W)’ n€S£7A:{7’]€S|T/:§OﬂA}’

is a version of the conditional distribution pf; givenn(z) = ¢(z) for all x € A°. One can show
that,u;r andy; are the extremal Gibbs measures for the Ising model withex@dp stochastic
dominance, cf. e.g. [Minlos] XXX.

Definition. We say that gohase transitionoccurs forg > 0 if and only ifug # g

For{ € S defineg, € Sy 4, by

&(x) forz e A,
+1  forz e Z4\ A,

Enlx) ==
Lemmab5.8.Forall x € Z¢and f € [0, d],
P [nf(x) # 1" (x) for somet € S| — 0 (5.2.1)

asn — oo.
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Proof. Let C, denote the component containimgn the random grapl@Zd, Eo,(;). If C, C A,
then the modifications in the initial condition and the titinea mechanism outsidd,, do not
effect the value at before timej. Hence the probability in_(5.2.1) can be estimated by

P[C, N A + o)

which goes td) asn — oo by Lemmal[(5.11) above. O

Let p, denote the transition semigroup ¢n 1, 1}Zd. Since the dynamics is attractive,
o= Jim bupe and i, = Jim ap

are extremal stationary distributions with respect tolséstic dominance. The following theo-
rem identifies: andy as the extremal Gibbs measures for the Ising Hamiltoniai‘on

Theorem 5.9. The upper and lower invariant measures are
fig = pu; and =1y
Hs = Mg Py = Hg-

In particular, ergodicity holds if and only if there is no pbatransition (i.e. iffu;g = Hg)-

Proof. We show:

D). fig < s

(2). ME is a stationary distribution with respectjip

This impliesfiz = ME, since by 2. and the corollary abov%’? < g, and thuspg = fig by 1.
Hg = g follows similarly.

(). It can be shown similarly as above that, the attractgsrof the dynamics implies

1,An
Mtl < iy
P-a.s. foralln € Nandt > 0. Ast — oo,

1 9 - LAn 2 +,An
py = g and Tt = g,

University of Bonn April 2015



170

CHAPTER 5. PROCESSES WITH UNBOUNDED JUMP INTENSITIES

2).

hence

for all n € N. The assertion follows as — oco.

It is enough to show
pspe = pg fort <4, (5.2.2)

then the assertion follows by the semigroup propertypof.~o. Let
CRIGEANCE]

denote the transition semigroup 6p, . We know:

pg"op = g (5.2.3)

To pass to the limitt — oo let f(n) = ¢ (n(x1),...,n(zx)) be a cylinder function ors.
Then

[otam= [orsansm+ [ @i - aut” (5.2.4)
and by [5.ZB) this is equal to
[ [ - dug”
But by the lemma above, far< 4,
NE = WO < B |7 (nF) = 1 (4)]

<2-sup|f|-P [nfn’A"(:ci) + 1t (x;) for somei| — 0

uniformly in &.

Sinceug’” to ME, andf andp; f are continuous by the Feller property, taking the limit in
(G.2.4) as» — o yields

[ ratin) = [wsaus = [ 5au3
for all cylinder functionsf, which implies[(5.2.R).

O
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The gquestion now is: when does a phase transition occur?
For 5 = 0, there is no interaction betweeir) andn(y) for x # y. Hencen;“" andn, " are the
uniform distributions ort;. 4, andS_ 4,, and

fy =g = ® v, Wherev (f1)=—

zc74

On the other hand, phase transition occurdor 2 and large values of:

Theorem 5.10(PeIERL). For d = 2 there exists’. € (0, o) such that fors > 5.,

(< 0(0) = —13) < 5 < 5 (00 = 0(0) = -1}),

and thus.; # 15

Proof. Let Cy(n) denote the connected componentooin {z € Z? | n(x) = —1}, and set
Co(n) = @ if n(0) = +1. Let A C Z? be finite and non-empty. For € S with Cy = A letn
denote the configuration obtained by reversing all spiné.ifhen

H(n) = H(n) - 2[04],

and hence
pit(Co=A)= > pui"(n)
0+ Co(n)=A
< o 28104 Z M;n(m < e~ 26104
1\7 : Co(n)=A B
21
Thus
pit (n s m(0) =—1}) = > pb
Aczd
A+

<N e¥r{acz . |94 = L}

L=1

< Z —28L 4. gL-1 2
L=4
1

< 5 for 5 > 3,
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wheredA is a self-avoiding path iZ* by lengthL, starting in(—%, %)2 Hence fom — oo,

N | —

my ({n = n(0) = —1}) <

and by symmetry

s (0 2 0(0) = =13) = g ({n = n(0) = 1}) >

DO | —

for g > §.. 0

5.3 Poisson point processes
Let S be a polish space (e.®%) andv ao-finite measure on the Boretalgebras.
Definition. A collection of random variable¥d' (B), B € S, on a probability spacé(, A, P) is

called aPoisson random measure (Poisson random field, spatial Pamnsprocess) of intensity
v, if and only if

(i) B+— N(B)(w) is a positive measure for al} € €.

(i) If By,...,B, € S are disjoint, then the random variable§(5,), ..., N(B,) are inde-
pendent.

(iii) N(B) is Poisson(v(B))-distributed for allB € S with v(B) < oc.

Example. If N, is a standard Poisson process with intensity 0 the number
N(B):=|{te B| Ni_ # N;}|, B e BR")
of arrivals in a time seB is a Poisson random measurel®h of intensityr = A dx, and

Ny — Ny = N([s,t]), V0O<s<t
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Construction of Poisson random measures:

a) v(S) < oco: Definel :=v(9). Let X, Xs, ... beindependent and identically distributed
random variables) ~!'v-distributed. LetK be aPoisson()) distributed random variable,
independent ofX;. Then

K
N = Z 5Xi
k=1

is a Poisson random measure of intensity

b) v o-finite:  LetS = [,
measures with intensitls, - v. Then

S; with v(S;) < co. Let N; be independent Poisson random

N = ilNZ

is a Poisson random measure with intensity > ° Ig, - v.

Definition. A collectionV,(B), t > 0, B € S, of random variables on a probability space
(Q, A, P) is called aPoisson point process of intensityif and only if

(i) B — Ny(B)(w) is a positive measure for all> 0, w € Q.
(i) If By,..., B, € S aredisjoint, then(N:(B1)):>0, - - - » (N:(By))e>0 are independent.

(iii) (N:(B))+>0 is a Poisson process of intensityB) for all B € S withv(B) < oc.

Remark. A Poisson random measure (respectively a Poisson poinépsdes a random variable
(respectively a stochastic process) with values in theespac

M*H(S) = {Z 6. | A C S countable subs%tg M*(S)

TEA

of all counting measures di The distribution of a Poisson random measure and a Poisson p
process of given intensity is determined uniquely by thentkesin.
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Theorem 5.11(Construction of Poisson point processeq)l). If NV is a Poisson random mea-
sure onR™ x S of intensitydt ® v then

Ni(B):= N((0,t] x B), t>0, BeS,
is a Poisson point process on intensity
(2). Suppose := v(S) < co. Then B
=,
=1

is a Poisson point process of intensitprovided the random variables; are independent
with distribution\~'v, and (K)o is an independent Poisson process of intenksity

Proof. Exercise.

+ . low intensity

I&} oN(3) o® high intensity

Corollary 5.12. If v(S) < oo then a Poisson point process of intensitys a Markov jump
process onV/}(.S) with finite jump measure

o(m,0) = [(n8)vldy), 7€ M)
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and generator
(LF)(m) = / (F(m+9,) — F(m)) v(dy), (5.3.2)

F: MI(S) — Rbounded. Ii/(S) = oo, (5.3.1) is not defined for all bounded functiafis

5.4 Lévy processes
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Chapter 6
Convergence to equilibrium

Useful additional references for this chapter are the bdmk&oyer [36] and Bakry, Gentil,
Ledoux [1], and the lecture notes by Malrieu [23]. Our goatha following sections is to relate
the long time asymptotic& 1 oo) of a time-homogeneous Markov process (respectively its
transition semigroup) to its infinitesimal characteristiehich describe the short-time behavior

(t)0):
Asymptotic properties < Infinitesimal behavior, generator

tT oo tl0

Although this is usually limited to the time-homogeneouss;aome of the results can be applied
to time-inhomogeneous Markov processes by consideringghee-time process, X;), which

is always time-homogeneous.

Let .S be a Polish space endowed with its BaredlgebraS. By F,(S5) we denote the linear space
of all bounded measurable functiofis S — R. Suppose thatl is a linear subspace of,(.5)
such thatA4 is separating in the following sense:

(AO) If i is a signed measure ¢ghwith finite variation and
/f dp=0 VfeA,
theny =0

Let

be a linear operator.
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From now on we assume that we are given a right continuoushioneogeneous Markov process
((Xt)t>0, (Ft)i>0, (Pr)zes) With transition semigrougp; );>o such that for any: € S, (X;):>o IS
underP, a solution of the martingale problem fo£, A) with P, [ X, = z] = 1.

Let A denote the closure oft with respect to the supremum norm. For most results derived
below, we will impose two additional assumptions:

Assumptions:
(A1) If f € A, thenlf € A.

(A2) There exists a linear subspadg C A such that iff € A, thenp,f € Aforall¢t > 0, and
Ay is dense ind with respect to the supremum norm.

Example. (1). For a diffusion process iR? with continuous non-degenerate coefficients satis-
fying an appropriate growth constraint at infinity, (A1) a@®) hold with A, = C5°(RY),
A =S8R andB = A = C,(R?).

(2). In general, it can be difficult to determine explicithspaceA, such that (A2) holds. In
this case, a common procedure is to approximate the Markoseps and its transition
semigroup by more regular processes (e.g. non-degendfatahs inR?), and to derive
asymptotic properties from corresponding properties efapproximands.

(3). For an interacting particle system @#" with bounded transition rates(z,n) as studied
in Chaptet b, the conditions (A1) and (A2) hold with

Ag=A={f: T% SR : |If] < oo}
where

171l =" As(a), Ay(xz) = sup | f(n™") — f(n)

zezd €T

)

cf. Liggett [20].

Theorem (From the martingale problem to the Kolmogorov equationg.

Suppose (A1) and (A2) hold. Thém).>, induces aC|, contraction semigroup?;);>o on the
Banach spaceB = A = A,, and the generator is an extension (@, .A). In particular, the
forward and backward equations

d
%ptf:ptﬁf VieA
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and
d
Eptfzﬁptf VfeA

hold.

Proof. SinceMtf is a bounded martingale with respectRg, we obtain the integrated forward

/t(ﬁf)(Xs) dS]

equation by Fubini:

(pef)(x) = f(2) = EL[f(Xy) — f(Xo)] = En

t (6.0.1)
- / (nL1)(x) ds

forall f € Aandx € S. In particular,

t
10ef = Fllowy < / 1oL f e 5 < £+ £ llsup — 0
0

ast | 0 for any f € A. This implies strong continuity o = 4 since eacly, is a contraction
with respect to the sup-norm. Hence by (A1) and (6.0.1),

t

/(psﬁf—ﬁf) ds — 0

0

pef — f _1
B

uniformly for all f € A, i.e. A is contained in the domain of the generator L of the semigroup
(P;)i>0 induced onB, andLf = Lf for all f € A. Now the forward and the backward equations
follow from the corresponding equations f@¥;),~, and Assumption (A2). O

6.1 Stationary distributions and reversibility

6.1.1 Stationary distributions

Theorem 6.1(Infinitesimal characterization of stationary distributio ns). Suppose (Al) and
(A2) hold. Then foy. € M;(S) the following assertions are equivalent:
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() The proces$X;, P,) is stationary, i.e.

(Xott)z0 ~ (Xi)iz0
with respect taP, for all s > 0.
(i) pis a stationary distribution fofp; ):>o

(i) [Lfdu=0 VfeA (i.e. p is infinitesimally invariantL* i = 0).

Proof. (i)=-(ii) If (i) holds then in particular
pps = Pyo X' =P o0 Xg" =p
forall s > 0, i.e. p is a stationary initial distribution.
(i)=-(i) By the Markov property, for any measurable subBet D(R*, S),
P, (Xs4t)i=0 € B | F] = Px,[(Xi)i>0 € B] P,-a.s., and thus
Pul(Xs4t)iz0 € B] = Ey[Px, ((Xt)iz0 € B)] = P [(Xt)iz0 € B] = Pu[X € B]

(il)=(iii) By the theorem above, fof € A,

pef = f
t

— Lf uniformly ast | 0,

SO

S =Ndp [ Fdpp) = [ fdp_
t t

t10

/Cfduzllgg 0

providedy is stationary with respect @ ):>o.

(iii) = (i) By the backward equation and (iii),
d
& [otan= [ enfan=o

sincep; f € Afor f € Ay and hence

[ o= [psdu= [ i (6.1.1)
forall f € Ay andt > 0. SinceA, is dense ind with respect to the supremum norm,

(6.1.1) extends to alf € .A. Henceup, = p for all t > 0 by (A0).
[
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Applicaton to It6 diffusions:

Suppose that we are given non-explosive weak solutionsP,),z € R¢, of the stochastic
differential equation

dXt = O'(Xt) dBt + b(Xt) dt, XO = ng-a.S,

where(B;);>¢ is a Brownian motion ifR?, and the functions: R* — R"*? andb: R* — R"
are locally Lipschitz continuous. Then by Ité’s formyld,, P,) solves the martingale problem

for the operator
n 2

1 0 T
L= §i§:1aij(x)m +b(z)-V, a=o0",
with domainA = C§°(R™). Moreover, the local Lipschitz condition implies uniqussef strong
solutions, and hence, by the Theorem of Yamade-Watanaimemess in distribution of weak
solutions and uniqueness of the martingale problen{fot4), cf. e.g. Rogers/Williams [35].

Therefore by the remark abovey,, P, ) is a Markov process.

Theorem 6.2. Suppose: is a stationary distribution of X;, P, ) that has a smooth densitywith
respect to the Lebesgue measure. Then

Proof. Sincey is a stationary distribution,

Oz/ﬁfdu:/ﬁfgdx:/f[,*gdx YV f € C(RM) (6.1.2)
Rn

R

Here the last equation follows by integration by parts, heegd has compact support. O
Remark. In generaly is a distributional solution of* . = 0.
Example (One-dimensional diffusiong. In the one-dimensional case,
a " /!
Lf = 3" +bf"
and

1 124 /
Lo = 5(@9) — (bo)

wherea(x) = o(x)%. Assumen(x) > 0 for all z € R.
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a) Harmonic functions and recurrence:

[ 2b
ﬁf:%f”+bf’:0 & f':C’leXp—/de, CieR
0

& f=04C-s, (1,05 €eR

where

L
[y 2b(x)
s::/e 0 a(@) dmdy
0

is a strictly increasing harmonic function that is called shale functionor natural scale of the
diffusion. In particular,s(X;) is a martingale with respect #8,. The stopping theorem implies

s(b) — s(x)

P[Ty <Th] = 5(0) — s(a)

Ya<zxz<b

As a consequence,

(i) If s(oc0) < o0 0r s(—o0) > —oo thenP,[|X;| — o] = 1forall z € R, i.e., (X, P,) is
transient

(i) If s(R) = RthenP,[T, < oo = 1forall z,a € R, i.e., (X;, P,) is irreducible and
recurrent

b) Stationary distributions:

(i) s(R) # R: In this case, by the transience 0f;, P,), a stationary distribution does not
exist. In fact, ifi; is a finite stationary measure, then foribt > 0,

n{z « fo] <0} = (e« Jol < 7}) = RlIX,| < 7).
SinceX, is transient, the right hand side converges &st 1 co. Hence
p({z « Jz[ <1} =0

forallr > 0,i.e.,u=0.
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(i) s(R) =R: We can solve the ordinary differential equati6hy = 0 explicitly:

1, '
Lo = <§(a9) —bg) =0

& %(ag)' — gag = with C; € R

N % (67 s %”dwag)’ SR X

& sap=Cy+2C, - s with C1,Cy € R
& o(y) = C: _ & eld T de with Cy > 0

a(y)s'(y)  aly)

Here the last equivalence holds sincep > 0 ands(R) = R imply C, = 0. Hence a
stationary distribution, can only exist if the measure

is finite, and in this casg = EAR The measuren is called thespeed measuref the
diffusion.

Concrete examples:

(1). Brownian motion: « =1,b= 0, s(y) = y. Thereis no stationary distribution. Lebesgue
measure is an infinite stationary measure.

(2). Ornstein-Uhlenbeck process:

dXt = dBt — ’YXt dt, Y > 0,
_le 4 _
- 2dx? i “=5
Y Y
b(x) = —yz, s(y) = /ejby ede gy — /er dy recurrent
0 0
2 2\ . : : .
m(dy) = e " dy, = MmN (0, —) is the unique stationary distribution
m(R) v
(3).
1
dX, = dB, + b(X,) dt, beC? b(x) = — for |z| > 1
X

transient, two independent non-negative solution§*ef = 0 with [ o dz = .

(Exercise: stationary distributions fod X; = dB; — dt)

0
1+]X¢|
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Example (Deterministic diffusions).

dX, = b(X,)dt, be C*R")
Lf=b-Vf
L0 = —div(gb) = —pdivb—b- Vo, oeC!
Lemma 6.3.
Lo=0 & div(ob) =0
& (L, Cg°(R™)) anti-symmetric orl.?(u)

Proof. First equivalence: cf. above

Second equivalence:

/fﬁgdu:/fb-Vde:c: —/div(fbg)gda:
— [ £rgdu- [ an(ansgds VfgeCy

HencelL is anti-symmetric if and only ifliv(ob) = 0

6.1.2 Reversibility

Theorem 6.4. Suppose (A1) and (A2) hold. Then forc M;(S) the following assertions are
equivalent:

() The processX;, P,) is invariant with respect to time reversai.e.,
(Xs)o<s<t ~ (Xi—s)o<s<t  With respect taP, V¢ > 0
(ii)
p(dx)pe(x, dy) = p(dy)pi(y, dz) Vi =0
(i) p; is u-symmetric, i.e.,
/fptg dp = /ptfg dp V' f.g € Fp(S)
(iv) (L, .A)is pu-symmetric, i.e.,

[ teadu= [ crgan ¥rge
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Remark. (1). Areversible processX;, P,) is stationary, since for all, u > 0,

(XS-H)OSITSU ~ (Xu—t)OStgu ~ (Xt)OStgu with reSpeCt t(PM

(2). Similarly (ii) implies thatu is a stationary distribution:

[ ntdope.dy) = [ by, do)ntas) = )
Proof of the Theorem(i)=-(ii):
p(dz)p(z,dy) = P, o (X, X;) ™' = P, o (X4, Xo) ™' = p(dy)p(y, dz)
(i)=-(i): By induction, (ii) implies
p(dxo)pey —to(To, dx1)pry—ty (X1, dxo) -+ - Dy, 4, (Tp1, dxy,)
=p(dxn )Pty —to (Tn, dTp—1) - * * Pt —t,— (21, dTo)
forne Nand0 =+¢, <t <---<t, =t, and thus
Ef(Xo, Xuy, Xigs oo, Xy 1, Xo)] = Eu[f( Xy, ..o, X4y, Xo)]

for all measurable functiong > 0. Hence the time-reversed distribution coincides with
the original one on cylinder sets, and thus everywhere.

(ii) < (iii): By Fubini,
/ fregdp = // f(@)g(y)p(dz)pi(, dy)

is symmetric for allf, g € F,,(S) if and only if 4 ® p, is a symmetric measure ¢hx S.

(i) < (iv): Exercise.

6.1.3 Application to diffusions inRR"”

1 < 02 ~m
E—§Zaij(x)axiaxj+b-v, A= C(RY)

ij=1

1 probability measure oR™ (more generally locally finite positive measure)

Question For which process ig stationary?
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Theorem 6.5. Suppose: = o dz with g;a;; € C*,b € C,p > 0. Then

(1). We have
Lg=Lsg+ Lag

forall g € C5°(R™) where
1120 dg
Lg=52. Jom (Q%)

Lg=B-Vg, Bi=b—)>

a

2Q 0:61 0t

(2). The operatofL,, C§°) is symmetric with respect fo.
(3). The following assertions are equivalent:

(i) L'u=0 (i.e. [ Lfdu=0forall f e C).
(i) Lop=0
(iii) div(ep) =0

(iv) (L, C5) is anti-symmetric with respect o

Proof. Let

E(f.g) = — / fLgdp  (f.9€CF)

denote the bilinear form of the operatal, C;°(R")) on the Hilbert spacé?(R", 11). We decom-
posef into a symmetric part and a remainder. An explicit compotabased on the integration
by parts formula irR™ shows that foy € C5°(R™) andf € C*(R"):

2

1 0
E(f,g):—/f(§ZaijT89m+b-Vg) odt
0%
1 0 dg

1 of 0
:/§Zai,ja—ja—jgdaz—/w-wgdaz VfgeCr
i, v
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and set

Ef.9) /Zauaf e~ [ 1Ly

eulfg) = [ 19-Vgeds =~ [ fLagd

This proves 1) and, sincg, is a symmetric bilinear form, also 2). Moreover, the aseesi(i)
and (ii) of 3) are equivalent, since

—/Egdu —E(1,9) = £,(L g)+ Ea(l,g) = —/ﬁagdu

for all ¢ € C5°(R") since& (1, g) = 0. Finally, the equivalence of (ii),(iii) and (iv) has been
shown in the example above. O

Example. L£=1A+b-V,be CR",R"),

(L,C5°) p-symmetric < [f=0b— Q—IQVQ =0

Vo 1
& b=—=-VI
2 — 2V 8o

wherelog p = —H if = e du.

L symmetrizable < bis a gradient

1
L'n=0 < b= §V10g9+5
whendiv(of) = 0.

Remark. Probabilistic proof of reversibility fob := —%VH, H e O

t
. 1
Xi=xz+ B, + /b(XS) ds, non-explosive, b = —§Vh

0

HenceP, o X, ; < PEM with density

exp ( ;H(BO) - —H (Br) — /T( IVH|? — —AH) (B, )ds)

0

which shows thatX;, P,) is reversible.
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6.2 Poincaré inequalities and convergence to equilibrium

Suppose now that is a stationary distribution fofp;):>o. Thenp, is a contraction or.”(S, )
forall p € [1, oo] since

[nsvans [pisran=[1opan w5 e 7is)

by Jensen’s inequality and the stationarity:0fAs before, we assume that we are given a Markov
process with transition semigroip ), solving the martingale problem for the operatgr A).
The assumptions ad, and.A can be relaxed in the following way:

(AO) as above
(A1) f, Lf € £P(S,p)foralll <p <

(A2) A, is dense ind with respect to the ?(S, 1) norms,1 < p < oo, andp,f € A for all
feA

In addition, we assume for simplicity
(A3) 1A

Remark. Condition (AO) implies that4, and henced,, is dense in.?(S, ) for all p € [1, c0).
Infact, if g € £9(S, u), ¢ + 5 = 1, with [ fgdu = 0 forall f € A, thengdu = 0 by (A0) and
henceg = 0 u-a.e. Similarly as above, the conditions (A0), (A1’) and (ARply that (p;):>o
induces aCy, semigroup onL?(S, ;1) for all p € [1,00), and the generatqL®, Dom(L®)))
extends L, A), i.e.,

ACDom(L®) and LPf=rf p-ae. forallf e A
In particular, the Kolmogorov forward equation
d
aptf:ptﬁf VieA

and the backward equation
d
%ptf =Lpf VfeA

hold with the derivative taken in the Banach spa€és, ).
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6.2.1 Decay of variances and correlations

We first restrict ourselves to the cgse- 2. For f,g € £%(S, ) let

(f,g)u:/fgdu

denote thel.? inner product.

Definition. The bilinear form

d
8(f7 g) = _(f7 [g)u = _£<f7ptg)u t—(]’

f,g € A, is called theDirichlet form associated t4.£, .A) on L?(u).

1
is thesymmetrized Dirichlet form

Remark. More generally£(f, g) is defined for allf € L?(S, 1) andg € Dom(L®) by

d
g(fa g) = _(f7 L(Q)g)u = _E(fvptg)ﬂ

t=0

Theorem 6.6.For all f € Ay, andt > 0

d

d
— Varﬂ(ptf) = E

dt /(ptf)2 dp = =2E(pif,pef) = =2 (pef, pi f)

Remark. (1). In particular,

£.0) = = [ ol du= 5 5 Van o)

infinitesimal change of variance
(2). The assertion extends to #lic Dom(L?)) if the Dirichlet form is defined with respect to
the L? generator. In the symmetric case the assertion even halddl {6 € L?(S, u).

Proof. By the backward equation,

d

t (ptf)2 dp =2 /pt[ptf dp = =2E(puf,pef) = —2E(pef, pef)
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Moreover, since

/ptfduz/fd(upt):/fdu

d d
at Var,(p.f) = i /(ptf)2 dp

iS constant,

Remark. (1). In particular,

d d
EU )=~y [ G| =~ & Nan (o)
E.(1,0) = T (EAT +0.F +0) +ET — 9. —9) = —5 o Cov,pef, pg)

Dirichlet form = infinitesimal change of (co)variance.
(2). Sincep; is a contraction o£?(11), the operatofL, A) is negative-definite, and the bilinear

form (£, .A) is positive definite:

2 tl0

1.
(~F L) = E(1.F) = —3lim ( Jepran- [ du) >0
Corollary 6.7 (Decay of variancg. For A > 0 the following assertions are equivalent:

(i) Poincaré inequality

Var,(f) < €9 (f. f) VfeA

> =

(i) Exponential decay of variance

Var, (pif) < e M Var,(f) VY f e L*S,u) (6.2.1)

span{l}i)

Remark. Optimizing over\, the corollary says that(6.2.1) holds with

(i) Spectral gap
Rea >\ Va € spec <—L(2)

N ing D e =L
- fea Var,(f) fea (f, D
fLlin L2 (p)
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Proof. (i) = (i7)
E(f, )z A-Var,(f) VieA

By the theorem above,

d
i Varu(ptf) = _QS(ptfa ptf) < -2 Varu(ptf)
forallt >0, f € Ay. Hence

Var,(p:f) < e M Var,(pof) = e M Var,(f)

forall f € A,. Since the right hand side is continuous with respect td fifg) norm, and
Ay is dense inL? (1) by (AO) and (A2), the inequality extends to dllc L?(u).

(ii) = (i3i) For f € Dom(L®),
N, )] =285, p)

Hence if [(6.2]1) holds then

Var,(pef) < ¢ Var,(f) V20
which is equivalent to

Var,(f) — 26E(f, ) + o{t) < Var,(f) — 20 Var,(f) + o(t) ¥t >0
Hence
E(f, f) = AVar(f)

and thus

~LOf )z [ P torpa
which is equivalent to (iii).

(7ii) = (i) Follows by the equivalence above.
U

Remark. Since(L, A) is negative definite) > 0. In order to obtain exponential decay, however,
we need\ > 0, which is not always the case.
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Example. (1). Finite state space: Suppose:(z) > 0forallxz € S.

Generator:
_ ; L(z,y)f(y) = ; Lx,y)(fy) = f(x))
Adjoint :
LM (y,z) = Mgiﬁ(fc Y)
Proof.

Symmetric part:

ﬁs(x, y) =
() Lo(z,y) =

Dirichlet form :

Ef.9) = —(Lsf,9) Zu fly) = f(x) g(=)

Hence

where
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(2). Diffusions in R™: Let

ﬁ—lz id +b-V
- ”8 ;01 ’

i,

andA = C°, u = odx, g,a;; € C*, be C >0,
”6:1328:6]
I ..
g(fvg)zé.s(fag)_(faﬁv.g)a sz_Q_gdlv(Qa'ij)

6.2.2 Divergences

Definition ("Distances" of probability measures). pu, v probability measures o, u — v
signed measure.

(i) Total variation distance
lv = pllrv = sup [v(A) — u(A)]
AeS

(i) x2-divergence:

2 S 1) da= [ (%) du—1 ity <
X (plv) =
+00 else

(i) Relative entropy (Kullback-Leibler divergence):

v 6e v g log % dl/ if v <«
O e '
400 else

(whereOlog 0 := 0).
Remark. By Jensen’s inequality,

dv dv
H > —dul —du =
) = [ dnos [ =0

Lemma 6.8(Variational characterizations).

()
| o= pll =5 su (/fdv—/fdu)

\f|<1
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(ii)

X (v|n) = S (/fdv—/fdu)

f2 du<l

and by replacingf by f — [ f dp,

X (v|p) = fesgis) ( / f dV)

[ f?du<i
J fdu=0

(iii)

H(v|p) = sup /fdl/— sup /fdl/—log/ el du
fEfb(S fG]'—b

[ef du<i
Remark. [e/du <1, hencef fdu < 0by Jensen and we also have
sup (/fdl/—/fd,u) < H(v|p)
Jef du<i
Proof. (i) 7 <7

() = () = 0A) = )+ 11) = o4 = 5 ([ v [ 7

N | —

and settingf := I, — I4c leads to

v = pllry = sup (v(A) — p(4) —5}‘13 (/fdv—/fdu)

7 >70f |f| < 1then

[taw-w=[raw-p+ [ siw-p)

< (v —=w)(Sy) — (v —p)(S-)
=2(v —p)(Sy) (since(v — p)(Sy) + (v — pu)(S-) = (v — p)(S) = 0)
<2[lv — plfrv

whereS = S+US_, v—pu>0o0onS,, v—pu < 0onS_ isthe Hahn-Jordan
decomposition of the measure- .
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(i) If v < p with densityp then

1
(w2 =lo—1lr2q) = sup /f(@—l)duz sup </fdv—/fdu)
FeL?(u) FEFL(S)
”f”LZ(H)Sl ”f”Lz(#)Sl

by the Cauchy-Schwarz inequality and a density argument.

If v £« pthen there existal € S with u(A) = 0 andv(A) # 0. Choosingf = A - 14 with

A T oo we see that
2
sup (/fdv— /fdu) = 00 = x*(v|p).
FEF(S)

17112 <1

This proves the first equation. The second equation follopueplacingf by f — [ f dpu.
(i) First equation:

7 >7 By Young's inequality,

uv < ulogu —u+ e’

foralluw > 0 andv € R, and hence for < u with densityp,

/deZ/f@du
S/Qloggdu—/gdu+/efdu

:H(l/|,u)—1+/efdu VfeFS)
< H(v|p) if /efd,ugl

7 <7 v < puwith densityp:

a) e < p < 1 for somes > 0: Choosingf = log ¢ we have

H(y|u):/loggdy:/fdy

/efd,u:/gd,uzl

b) General case by an approximation argument.

and

Second equation: cf. Deuschel, Stroadck [6].
O
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Remark. If v < u with densityp then

1
HV—uHTv—§sup flo=1)d =§HQ—1HL1<u>
IfI<1

ity is finite even whew « .

6.2.3 Decay ofy? divergence
Corollary 6.9. The assertion§:) — (iii) in the corollary above are also equivalent to

(iv) Exponential decay ofy? divergence w.r.t. equilibrium measure:

XC(vpp) < e (vlp) Vv e My(S)

Proof. We show(ii) < (iv).

7 =7 Letf e L*(p) with [ fdp=0.Then

[ rawm - [ rau= [ o) = [t

1

< pefllr2ge - x> (v]w)?
_ 1
< e M| flleqw - X2 ()2

where we have used thiitp, f du = [ f du = 0. By taking the supremum over aflwith

[ f*du <1 we obtain

% 7)\t 2(

Clopin)? < ME

"oy Forf c LQ(M) with f fdlu =0, (IV) |mpIIeS

/ pefgdu =" / Fdwpe) < 1f szl

B 1
< e M Fllzgox’ (Vw2
= ef’\tHfHLQ(u)Hg”L?(u)

forall g € L?(uu),g > 0. Hence

Ipef Iz < €1 f [l z2qn

Example:d = 1!
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Example (Gradient type diffusions in R™).
dX, = dB, + b(X,) dt, b e C(R",R")
Generator:
Lf= %Aerbe, f e CE (R

symmetric with respect tp = pdz, o€ C' < b= 1Vlogo.
Corresponding Dirichlet form oh?(o dx):

1

e(.9) =~ [ £rgode =5 [ ViVgods

Poincaré inequality:
1
Varyar(f) < 5 - [ I94Peds
2\
The one-dimensional case: n = 1,b = 3(log o)’ and hence
o(z) = const.elo 2)dv
e.g.b(z) = —azx, o(z) = const.e ;i = Gauss measure.

Bounds on the variation norm:

Lemma 6.10. (i)
1
lv = pllry < X (vlw)

(i) Pinsker’s inequality:
1
lv = pliv < SH@IR) ¥ p,v e Mi(S)

Proof. If v « u, thenH (v|u) = x*(v|u) = .
Now letr < p:

(i)

=

1 1 1,
I = plirv = Slle = Uy < 5lle = llrag) = 5x7(vln)
(i) We have the inequality

3(z—1)?<(@+2z)(vlogr —x+1) Yz >0
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and hence

=

V3lz —1] < (4+2x)%(a:log:c—x+ 1)

and with the Cauchy Schwarz inequality

\/g/la—l\duﬁ </(4+2@)du)% (/(Qlog9—9+1)du)2

= V6 H(v|p)>
U
Remark. If S'is finite andu(z) > 0 for all x € S then conversely
1 5 (2 i < )
X \V = —_— — ) S N
: =\ () : mingcg ()
Al — iy
min g
Corollary 6.11. (i) If the Poincaré inequality
1
Var,(f) < SE(ff) VfeA
holds then
1 _ 1
lvpe = pllv < 57X (V)2 (6.2.2)
(ii) In particular, if S is finite then
1

lvpe — pllrv < e My — pllrv

N

mianS K (.T)

where||v — uljtv < 1. This leads to a bound for thHeobrushin coefficient(contraction

coefficient with respect th- ||1v).

Proof.
1 11 12 1 _
lvpr = pllvv < 5X*(pil)? < Se X (vin)? < S———e ™|l — iy
min f42
if Sis finite. H
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Consequence: Total variation mixing timee € (0, 1),
Thix(e) = inf{t > 0 : [[vp; — pllrv < eforallv € M (S)}

<=1 ! + ! 1 L
=28 TN gmin,u(:c)

where the first summand is tHe* relaxation time and the second is an upper bound for the
burn-in time, i.e. the time needed to make up for a bad initial distributio

Remark. On high or infinite-dimensional state spaces the bolundZ)pi&.often problematic
sincex?(v|u) can be very large (whereds — ||ty < 1). For example for product measures,

i [ (&) e ([ (&) )

2
where [ (j—;) dp > 1 grows exponentially in n.
Are there improved estimates?
[otdv= [ ran= [ psae - < loufllon I~ v
Analysis: The Sobolev inequality implies

e fllsup < ¢~ 11 2v

However, Sobolev constants are dimension dependent! Tolisaites a replacement by the log
Sobolev inequality, see Sectibnl6.4 below.

6.3 Central Limit Theorem for Markov processes

When are stationary Markov processes in continuous timaoéc
Let (L, Dom(L)) denote the generator @f;);>o on L? ().

Theorem 6.12.The following assertions are equivalent:
(i) P, isergodic
(i) ker L = span{l},i.e.

h € £?(p)harmonic = h = const.u-a.s.
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(i) p; is p-irreducible, i.e.

B e Ssuchthap;lp =15 p-asvVi>0 = u(B)e{0,1}

If reversibility holds then (i)-(iii) are also equivalernt:t

(iv) p;is L?(u)-ergodic, i.e.

=0 Vfe L2(,u)
L2 ()

pf = [ £

6.3.1 CLT for continuous-time martingales

Let (M;):>o be a continuous square-integralplg;) martingale wherg.F;) is a filtration satis-
fying the usual conditions. Theh/? is a submartingale and there exists a unique natural (e.g.
continuous) increasing proce&¥ ), such that

M? = martingale+ (M),
(Doob-Meyer decomposition, cf. e.g. Karatzas, Shreve)[15]
Example. If NV, is a Poisson process then
M, = Ny — Mt

is a martingale and
(M), = M

almost sure.

Note: For discontinuous martingale§\/), is not the quadratic variation of the paths!

X,, P,) stationary Markov procesd,\”, L) generator on.2(u), L'(y), f € Dom(L®) D
[0 L H H
Dom(L®). Hence

t

f(X) =M + / (LW f)(X,)ds P,-as.
0
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and M/ is a martingale. Fof € Dom(L®) with f? € Dom(L(1),
t

(Mf)t:/l“(f, f)(X,)ds P,as.
0
where

L(f.g) =LY(f-g) — fLPg— gL® f € L' (1)
is theCarré du champ (square field) operator

Example. Diffusion in R,

1 0?

Z?J

Hence

(7)) = (@) 5@ 52 @) = [o" @)V @),

irj
forall f,¢g € C°(R"). Results for gradient diffusions d&f* (e.g. criteria for log Sobolev) extend

to general state spaceg Y f|? is replaced by'(f, g)!
Connection to Dirichlet form:

el == [ 119 aus (5 [192a) =5 1040

v~

=0

Theorem 6.13(Central limit theorem for martingales). (M,) square-integrable martingale on
(Q, F, P) with stationary increments (i.e\/; s — M, ~ M, — M;), o > 0. If

1 :
;<M>t — o in LY(P)
then Iy
t D 2
~— 5 N(0,
7 = V0,0

6.3.2 CLT for Markov processes

Corollary 6.14 (Central limit theorem for Markov processes (elementary vesion)). Let
(X:, P,) be a stationary ergodic Markov process. Then fof Range(L), f = Lg:

| D ,
%O/f(XS) ds 2 N(0,0%)
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where
o2 = 2/9(—L)g dp = 2E(g,9)

Remark. (1). If 4 is stationary then

/fd,u:/Lgd,uzo

i.e. the random variable§ X ) are centered.

(2). ker(L) = span{1} by ergodicity

wert) = { e o) s [ an=0} =10

If L: L3(pn) — L*(u) is bijective withG = (—L)~! then the Central limit theorem holds
forall f € L?(u) with

ot =2(Gf,(=L)G )2 = 2(f. Gf) 2
(H~! norm if symmetric).
Example. (X;, P,) reversible, spectral gaj i.e.,
spec(—L) C {0} U [\, o0)

hence thereis& = (—L ( ))*1, spec(G) C [0, 1] and hence
L(Q) o

2
0'120 < X”fH%Q(“)
is a bound for asymptotic variance.

Proof of corollary.

Sl
S — .
=
s
B
Il
S
S

t
(M), :/F(g,g)(Xs) ds P,-as.
0
and hence by the ergodic theorem

1 tToo
;(Mg% — /F(g,g) dp = o3
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The central limit theorem for martingales gives
g D 2
M = N(0,0%)

Moreover
2 (630 = 9(X)) > 0
in L?(P,), hence in distribution. This gives the claim since
X, 2u v, 30 = X, +v, 3y
L

Extension: Range(L) # L?, replace—L by o — L (bijective), themy | 0. Cf. Landim [17].

6.4 Entropy Bounds

We consider the setup from section 4.3. In addition, we n@au@e that £, .4) is symmetric on
L*(S, ).

6.4.1 Logarithmic Sobolev inequalities and hypercontraavity

Theorem 6.15.With assumptions (A0)-(A3) arad> 0, the following statements are equivalent:

() Logarithmic Sobolev inequality (LSI)

[ Frog—du < 206 (5.4) Ve A
7 T ey

(i) Hypercontractivity For1 <p < g < oo,

q—1
p—1

(0%
Ipefllzegn < If sy Y € L7(), ¢ 3 log

(iif) Assertion (ii) holds forp = 2.

Remark. Hypercontractivity and Spectral gap implies

[pef |l Lagu) = ||pt0pt—tof||LQ(u) < ||pt—t0f||L2(M) < G_A(t_tO)HfHB(M)

forallt > ty(q) := $ log(q — 1).
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Proof. (i)=-(ii) Idea: WLOG f € Ay, f > > 0 (which implies thap, f > § V¢ > 0).
Compute

d
a”ptfHL‘Z(t)(M)a q¢: RT — (1, 00) smooth:

(1). Kolmogorov:

d I .
—pf = Lpf derivation with respect to sup-norm

dt
implies that
d /
o (pef)™™ dp = q(2) / (e )T Ly f dpp+ ¢/ (t) / (pe )" log p, f dp
where

/ (0 ) O Lpef dp = —€ ((pf) O, pof)

(2). Stroock estimate:

e (pp) = M Ve (51, 41)

Proof. '
EUTL ) = = (1 LS), = im s (7S — ),
—tim o [ (770) = 7 @) () — 7)) il dy) )
> M Dy ] (5400 - £40) o)
- 4(qq; Ve (f%,f%)

where we have used that
2

(af =0) < T (@~ 1) (a—8) Yab>0 g>1
T Ag-1) T

Remark.
— The estimate justifies the use of functional inequalitigbwespect t& to bound

L? norms.
— For generators of diffusions, equality holds, e.g.:

/qu‘1Vfdu: 4(qq; 1)/’Vf%

by the chain rule.

2
dp
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(3). Combining the estimates:

1 d d
o®) I I Gl = 55 [ ) di = ) [ ) 108 1y i

where
/mﬁszwm%§

This leads to the estimate

d
t)—1
a(t) - Ipef Uy~ = e f e

_ M) -1 a0 a(t) q(t) o M
a(t) £ o) + q(t) /(ptf) 8 T ey dpp

(4). Applying the logarithmic Sobolev inequality: Fixe (1, co). Choose(t) such that

aq'(t) =2(q(t) = 1), q(0)=p

q(t) = 1+ (p— D)=

Then by the logarithmic Sobolev inequality, the right hartkk sn the estimate above
is negative, and hendf, f ||, is decreasing. Thus

||ptf||q(t) < ||f||q(0) = ||f||p Vi > 0.

Other implication: Exercise. (Hint: consid§t{ﬂptf|]mt)(u)). O

Theorem 6.16(Rothaus). A logarithmic Sobolev inequality with constanimplies a Poincaré
inequality with constant = 2.

Proof. Apply the logarithmic Sobolev-inequality tb= 1+ cg where [ gdu = 0. Then consider
the limite — 0 and use thatlogz = = — 1 + 3(z — 1)? + O(|z — 1/*). ]

6.4.2 Decay of relative entropy

Theorem 6.17(Exponential decay of relative entropy. (1). H (vp:|pn) < H(v|p) forall ¢ >
0 andv € M;(S).
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(2). If a logarithmic Sobolev inequality with constant> 0 holds then

—2
«

H(vplp) < e a"H(v|p)

Proof for gradient diffusions£ = 1A + bV, b = ;Vlego € C(R"),u = odx probability
measureA, = span{C§°(R"), 1}
. The Logarithmic Sobolev Inequality implies that

[ sz dn < [ 19 dn=ae (s

() Supposer = g-pu, 0 < e < g < éfor somees > 0. Hencevp, < pu with density

g, € <pg < L(sincef fd(vp) = [pf dv = [pfgdp = [ fpugdp by symmetry).
This implies that

d d
7 H(vpe|p) = 7 / peglogprg dpn = / Lpig(1+logp.g) dp

by Kolmogorov and sincér log )’ = 1 + log . We get

d 1
@H(thlu) = —E&(pg,logprg) = —§/th9 -V log prg dp

whereV log p,g = Vp%;g. Hence

d
S mle) =2 [ 19 Al du (6.4.1)

Q). =2 [|V/mg| dup<0

(2). The Logarithmic Sobolev Inequality yields that

4
-2 \/ duy < —— 1 dp
/|th| RS /ptgogftd/i

where [ p,gdu = [ gdp =1 and hence

4
—Q/IV\/ptg|2 dp < —EH(thlu)

(i) Now foragenerab. If v <« u, H(v|u) = oo and we have the assertion. et g-u, g €
L'(p) and

Gap :=(gVa)Ab, 0<a<b,

Vajb = YGab * K-
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206 CHAPTER 6. CONVERGENCE TO EQUILIBRIUM

Then by (i),
H(vapplp) < e H(vap|p)

The claim now follows for | 0 andb 1 co by dominated and monotone convergence.

O

Remark. (1). The proof in the general case is analogous, just reff@adel) by inequality
4EWF V) < E(f,log f)

(2). An advantage of the entropy over th&distance is the good behavior in high dimensions.
E.g. for product measures,

H("|u") = d- H(vp)

grows only linearly in dimension.

Corollary 6.18 (Total variation bound). Forall t > 0 andv € M;(S),

1 ¢
|vpe — plltv < —=e = H(v|p)

1
min p(x)

1
2

-5

( < log ew ifSis finite)

>

Proof.

1 L
2

1
v < —H(v < —¢ @ v
lvpe — pllv 7 (vpelp) =7 H(v|u)

1
2

where we use Pinsker’s Theorem for the first inequality anebféni 6. 117 for the second inequal-
ity. SincesS is finite,

1
H(,|p) = log < log Ve elsS
pu()
which leads to
) < H(5:|p) <1 v
H < S vl < log —— v
sincer = > v(x)d, is a convex combination. O

Consequence for mixing time:(S finite)

Tmix(e) =inf{t >0 : |jup; — p|lrv < ceforallv € M;(5)}

1
< «a-log—— + loglog

V2¢e

Hence we havéog log instead oflog !

Minges /(1)
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6.4.3 LSI on product spaces

Example. Two-point space. S = {0, 1}. Consider a Markov chain with generator

c=("1 1), p.ge(0,1), p+q=1
p —D

which is symmetric with respect to the Bernoulli measure,

w(0) =p, pu(l)=q

Dirichlet form:

E(F.£) = 5 30 (Fly) — F@))? ()Ll v)

m7y

=pq-|f(1) = fO)* = Var,(f)

Spectral gap:

Ap) = nf )

prm— i '
fnot const.Varu(f) 1 independent op!

Optimal Log Sobolev constant:

(p) J f*log f*dp 1 if p=3

(6% = Su — T =

P o 28 0) llogg-logp qlge
[ f2dp=1 2 gp

goes to infinityas® L 0 orp 1 oo!
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Spectral gap and Logarithmic Sobolev Inequality for produd measures:

Ent,(f) ::/flogfdu, f>0

Theorem 6.19(Factorization property). (.S;, S;, i;) probability spacesy = ®!,u;. Then

(2). n
Var,(f) < Z E, [varg?( f)}

where on the right hand side the variance is taken with resjpeithie i-th variable.

).
Ent,(f) < Z 1By, [Entﬁf(f)}

Proof. (1). Exercise.

).

Ent,(f)= sup E,[fg], cf. above

g : Euled]=1
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Fix g: S™ — R such thatt, [¢9] = 1. Decompose:

g(xh---,xn) :logeg(xl ----- J:n)

(91 sn) J etz py (dy,)

—1 +1 T
08 f@g(yhm ~~~~~ Tn) Nl(dyl) 08 ff e9(Y1,Y2,3,....Tn) Nl(dyl)NQ(dy2)

=: Zgi(:cl, Cey Tp)

i=1

and hence

= E[fgl= _Z E,[fg) = Z B, [EY [fg:] < Ent()(f)

> Butlfl= sw Elfg) < E [But()

Eples]=1 i=1

Corollary 6.20. (1). If the Poincaré inequalities

Var,, (f) < %&(f, f) VfeA

hold for eachu; then

Var, () < e ) VS € @A
where a
£ 1) = Y0 B[00 1)
and a

A= min )\
1<i<n

(2). The corresponding assertion holds for Logarithmic &eb Inequalities withv = max «;

Proof. )
Var, (1) < Y B [Verl)()] < —£(7.)
since .
Var) () < L& (. 0)

O
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Example. S = {0,1}", u™ product ofBernoulli(p),
Ent, (f?)

S 2a(p>pQZ/ |f(.CC1, ey L1, 17xi+17 <o 73:11) - f(xlv oo 7xi71707xi+17 oo 7xn)‘2 ,un(dx)
=1

independent of.

Example. Standard normal distribution= N (0, 1),

Pn {0, 1}” — R, Qpn(x) = L"w

4

The Central Limit Theorem yields that= Bernoulli(5) and hence

>
prop,t =y

Hence for allf € C5°(R),
Ent,(f*) = lim Ent,(f* o gn)

1 n

S---SQ-/If’Ide

6.4.4 LSl for log-concave probability measures

Stochastic gradient flow iR":
dX,=dB, — (VH)(X,)dt, H € C*R")
Generator:
1
p(dz) = e 1@ dy satisfiesC* = 0
Assumption: There exists & > 0 such that

PH(r)>k-I VYreR"
ie. 8§£HZ/€-|§|2 vV¢EeR"
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Remark. The assumption implies the inequalities
r-VH(z) > k- |2]* —c, (6.4.2)

H(z) > g|g;|2 -z (6.4.3)

with constantg, ¢ € R. By (6.4.2) and a Lyapunov argument it can be shown ihatoes not ex-
plode in finite time and tha; (A,) C A where A, = span (C(R"), 1), A = span (S(R"), 1).
By (6.4.3), the measurg is finite, hence by our results above, the normalized measuae
stationary distribution fop;.

Lemma 6.21.If Hess H > kI then
IVouf| < e p|Vf|  feChRY
Remark. (1). Actually, both statements are equivalent.

(2). If we replaceR™ by an arbitrary Riemannian manifold the same assertionshatder the
assumption
Ric+HessH > k-1

(Bochner-Lichnerowicz-Weitzenbdck).

Informal analytic proof:

VLf=V(A-VH-V)f
= (A—VH -V - ®PH)Vf

:Z operator on one-forms (vector fields)

This yields the evolution equation f&fp; f:

0

) .
Ethf = vaptf =VLpf =L Vpif

and hence

%thf) Vi f

0 0 1
a‘thﬂ = a(thf'thf)Q = (

|thf‘
_ (C thf) Ve < LNpf - Vpf k. |thf|2
|thf| N |thf| |thf|

< S L|Vpfl = K |Vpef|
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We get that(t) := e"ps_; |V, f| with 0 < ¢ < s satisfies

V' (t) < Ku(t) = pst LV f| + ps o L |V f| — kips— [V f| = 0
and hence
" [Vpsf| = v(s) < v(0) = p, |V f]
]

e The proof can be made rigorous by approximating by a smooth function, and using
regularity results fop;, cf. e.g. Deuschel, Stroock|[6].

e The assertion extends to general diffusion operators.

Probabilistic proof: p; f(z) = E[f(X})] whereX] is the solution flow of the stochastic differ-
ential equation

dX, =V2dB, — (VH)(X,)dt, i.e.,
t
X! =2+ V2B, — / (VH)(X")ds
0
By the assumption o/ one can show that — X[ is smooth and the derivative floW® =

V. X; satisfies the differentiated stochastic differential eigua
A = —(OPH)(XP)YE dt,
Yy =1
which is an ordinary differential equation. Hencé&#H > I then forv € R”,

o <26 Y0l

Do = 2 (v, @PH)X)Y-0)
whereY; - v is the derivative of the flow in direction. Hence
|V; o < eyl
= [Yi-v] < el
This implies that forf € C(R"), p.f is differentiable and
v Vpf(2) = E[(VA(XY) - Y- v)]
SEVAXO-e™ o] YveR"

[Vpuf ()] < e il V f|(2)
O
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Theorem 6.22(Bakry-Emery). Suppose that
PH>rk-T withk >0

Then

2 2
[ Pros i —du< 2 [[9sPdn vsecrm)
Hf”y(“) i

Remark. The inequality extends tp € H?(u) whereH (1) is the closure of5° with respect

1Flls = ( [ise+ \Vf\Qdu)Q

Proof. g € span(C§°, 1), g > 0 > 0.
Aim:

to the norm

1
/gloggduﬁ E/IV\/§|2 du+/gdulog/gdu

Theng = f? and we get the assertion.
Idea: Consider

u(t) = / peglogprg dp

Claim:
() u(0) = [gloggdu

(i) limeroo u(t) = [ gdpulog [ gdu

(i) —u'(t) < 4e72 [|V/g]" du

By (i), (ii) and (iii) we then obtain:

/gloggdu—/gdulog/gdu:tlgglo (u(0) — u(t))

t

= lim [ —/(t)ds
t—o00
0
2 2
< - IVl dp

since2 [ e " ds = .

Proof of claim:
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(i) Obvious.

(i) Ergodicity yields to
ptg(x)%/gdu Va
for ¢ 1 oo.

In fact:
Vgl < e "'pi|Vg| < e | Vy]
and hence

Ipeg(z) — peg(y)| < e sup Vgl - |z — y

which leads to

peg(x) gdu’ ’/ (peg(z) — peg(y)) u(dy)'

< e " sup|Vy| ~/Ix—y\u(dy) —0

Sincep;g > § > 0, dominated convergence implies that

/ptglogpt5du—> /gdulog/gdu

(i) Key Step! By the computation above (decay of entropy) and the lemma,

v 2
)= [ Vng-Viegngdn = [ %d
t

2 2
6—25t/(pt‘Vg‘) duge—th/pt‘Vg‘ du
ptg g
2
262Ht/|v;| dluz4€2nt/|v\/§|2 d'LL

IN

Example. An Ising model with real spin: (Reference: Royer [36])
S = RA = {(xi)iEA | x; € R}, AC 72 finite.

u(dz) =+ exp(—H(x)) dx

A
val Zﬁ J) iy — E (i — j)zizj,
ZEA potential ¢ JEA interactions i€N,FEZNA
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whereV: R — R is a non-constant polynomial, bounded from below, andZ — R is a
function such that)(0) = 0, ¥(i) = J(—i) Vi, (Symmetric interactions)}(i) = 0V |i| > R
(finite range) = € RZ"\* fixed boundary condition.
Glauber-Langevin dynamics:

OH

dX] = — 3 —(Xy)dt+dB;, i€A (6.4.4)
€T

_1 af dg
22/8@6:@

Dirichlet form:

Corollary 6.23. If
//
V(@) > 2100

€L
then€& satisfies a log Sobolev inequality with constant indepenoiieh.

Proof.
) = V(2 8, i =)
= *H> (ian” - Zw(m) 1
in the sense of forms. Z O

Consequence: There is a unique Gibbs measureZhcorresponding td?, cf. Royer [36].
What can be said iV is not convex?

6.4.5 Stability under bounded perturbations

Theorem 6.24(Bounded perturbations). u, v € M;(R™) absolut continuous,
d 1
W) = Ze-Uw)

2
/leog f2 du§2a-/\vf\2du VfeCy
£ 1172

then

/f2log e dv < 20 - W) . /|Vf|2du Vel
L2(v)

where
osc(U) :=supU — inf U
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Proof.

/ fileg ||f|| s / (12108 12 = 2108 1/ I3 = 12 + 1 f 320 ) dv  (6.45)
L2V

since

/f210g e yg/leogfz—leoth—f2+t2du Vt>0
L2(v)

Note that in[(6.4.5) the integrand on the right hand side is=megative. Hence

2
[ o ' e [ (P1og = Plog 1 — 12+ 1) d

1f1172
fU 2 f?
e flog du
/ ||f||m

-emea/|Vf|2du
supU—infUa/|vf|2dV

& NI NIH NI

IN

<

Example. We consider the Gibbs measuygefrom the example above

(1). No interactions:

2
H(z)=> (% + V(azi)) , V:R — R bounded

SN
Hence

M:®MV

€A
where
piv(da) o< eV Py (dx)

and~(dz) is the standard normal distribution. Hengesatisfies the logarithmic Sobolev
inequality with constant

a(p) = aluy) <e = o)

by the factorization property. Hence we have independehdarension!
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(2). Weak interactions:

H(@:Z(Q +Vxl) 0 wmap =9 Y miz,

1EA 1,jEA 1EA
li—j|=1 JEA
li—jl=1

¥ € R. One can show:

Theorem 6.25.1f V' is bounded then there exists > 0 such that ford € [—f,] a
logarithmic Sobolev inequality with constant independsrnit holds.

The proof is based on the exponential decay of correlationg,(z;, z;) for Gibbs mea-
sures.

(3). Discrete Ising model: One can show that fof < (. a logarithmic Sobolev inequality
holds o{ —N, ..., N}¢ with constant of Orde©(N?) independent of the boundary con-
ditions, whereas fof > (. and periodic boundary conditions the spectral gap, andehenc
the log Sobolev constant, grows exponentialiyNincf. [??7.

6.5 Concentration of measure

(9, A, P) probability spaceX;: Q2 — R? independent identically distributed, ..
Law of large numbers:

Cramér:

%ZU(X»—/Udu

= sup (tr — log eV d,u) LD rate function
teR

Z T] S 2. eiNI(T)u

Hence we have

e Exponential concentration around mean value provided > 0 Vr # 0
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2

P >r| < e "¢ providedI(r) >

ol %

¥ ou - [Ud

Gaussian concentration

When does this hold? Extension to non independent idehtidesitributed case? This leads to:
Bounds forlog [ €'V dy!

Theorem 6.26(Herbst). If 1 satisfies a logarithmic Sobolev inequality with constarnhen for
any function/ € C}(R?) with ||U]|Lip < 1

(i)
1 U o
glog e du < §t+ Udp Yt>0 (6.5.1)

where% log [ €'V du can be seen as tHeee energy at inverse temperatutes as abound
for entropyand [ U dp as theaverage energy

u(UE/UdpmH‘) ge_%

Gaussian concentration inequality

(ii)

In particular,

(iii)

1
/e””""2 du<oo Vy< —
2c

Remark. Statistical mechanics:

whereF, is thefree energy, ¢ theinverse temperature S theentropy and(U) the potential.

Proof. WLOG,0<e<U < g Logarithmic Sobolev inequality applied fo= e

2
/tUetUd,ug 2a/ (%) |VU|26tUdu+/etUdulog/etUdu
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ForA(t) := log [ €'V dy this implies

_ftUetUd,u<
 [etUdp T 2 [ etV du

since|VU| < 1. Hence

t2 U2 tUd t2
off JIVUPT dp oy < @8y

0 ;

dA(t) tN({t)—Alt)  «
_ — < =
dt t t2 - 2 vi=>0
Since
A(t) = A(0) +t-N(0)+O) =t / Udp+ O(t?),
we obtain
A(t) a
N < =
S /Udqu 2t,
i.e. (i).

(ii) follows from (i) by the Markov inequality, and (iii) fébws from (i) with U (z) = |x|. O
Corollary 6.27 (Concentration of empirical measure$. X; independentidentically distributed,

~ u. If p satisfies a logarithmic Sobolev inequality with constarien

Nr?2

P 2r]§2-e2a

+ UK - B)

for any function/ € C} (R) with ||U]||Lp < 1, N € Nandr > 0.

Proof. By the factorization property;" satisfies a logarithmic Sobolev inequality with constant
« as well. Now apply the theorem to

noting that

hence sincé/ is Lipschitz,

)vﬁ(x)) - % (iWU(@)P)Q <1

i=1

O
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Chapter 7

Couplings and contraction rates

7.1 Couplings and transportation metrics

Additional reference: [Villani:Optional transport-old and new(] [40].

Let S be a Polish space endowed with its Barehlgebra53. An invariant probability measure
is a fixed point of the map — up acting on an appropriate subspacefgfs). Therefore, one
approach for studying convergence to equilibrium of Markbains is to apply the Banach fixed
point theorem and variants thereof. To obtain useful resalthis way we need adequate metrics
on probability measures.

7.1.1 Wasserstein distances

We fix a metricd : S x S — [0,00) on the state spacg. Forp € [1,00), the space of all
probability measures ofi with finite p-th moment is defined by

P(5) = {ue P(s): [t pyutdy) <},

wherez, is an arbitrary given point irt. Note that by the triangle inequality, the definition is
indeed independent af,. A natural distance o®?(.S) can be defined via couplings:

Definition (Coupling of probability measures). A coupling of measures,,v € PP(S) is a
probability measurey € P(S x S) with marginals;, and v. The couplingy is realized by
random variablesX,Y : Q@ — S defined on a common probability spage, .4, P) such that
(X, Y) ~ .

We denote the set of all couplings of given probability measu andv by I1(x, v).

220
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Definition (Wasserstein distance, Kantorovich distance For p € [1, o), theLP Wasserstein
distanceof probability measures, v € P(.S) is defined by

W)= nt ([ daraanan) = nf By, @)
yell(p,v Xr~p
Y~v

where the second infimum is over all random variables” defined on a common probability
space with lawsg, andv. TheKantorovich distanceof ;» and v is the L' Wasserstein distance
W (u,v).

Remark (Optimal transport). The Minimization in [Z.1.11) is a particular case of an optima
transport problem. Given a cost function S x S — [0, c0], one is either looking for a map
T : S — S minimizing the average cost

[ e Tia)utan)

under the constraint = p o 7-' (Monge problem, 8" century), or, less restrictively, for a
coupling~y € II(u, v) minimizing

/ c(r,y)y(dvdy)

(Kantorovich problem, around 1940).

Note that the definition of th&/? distance depends in an essential way on the distéacoasid-
ered onS. In particular, we can create different distances on pripameasures by modifying
the underlying metric. For example, ff : [0,00) — [0,00) is increasing ana@oncavewith
f(0) = 0andf(r) > 0 foranyr > 0 then f o d is again a metric, and we can consider the
corresponding Kantorovich distance

Wi, v) = inf E[f(d(X,Y))].

Xeop
Y~v

The distancedV; obtained in this way are in some sense convers@todistances fop > 1
which are obtained by applying the convex functiors r? to d(z, y).

Example (Couplings and Wasserstein distances for probability meases onR?).
Let i, v € P(R) with distribution functionsF, and F,,, and let

FY(u)=inf{c e R: F,(c) >u}, uel(0,1),

denote thdeft-continuous generalized inverseof the distribution function. IV ~ Unif(0, 1)
thenF;l(U) is a random variable with law. This can be used to determine optimal couplings
of u andv for Wasserstein distances based on the Euclidean naétrig) = |« — y| explicitly:
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() Coupling by monotone rearrangement

(ii)

A straightforward coupling of: andv is given by

X =F;'(U)andY = F,'(U), whereU ~ Unif(0, 1).

m

This coupling is a monotone rearrangement, i.e., it coupletower lying parts of the mass
of 1 with the lower lying parts of the mass of If £, and F, are both one-to-one then it
mapsu-quantiles ofy, to u-quantiles ofv. It can be shown that the coupling eptimal
w.r.t. the WP distancefor anyp > 1, i.e.,

Wo(p,v) = E[|X =Y lr = ||F, " = F |,

cf. e.g. [Rachev&Rueschendorf] [28]. On the other hand,dbepling by monotone
rearrangement isot optimal w.rt. Wk if f is strictly concave Indeed, consider for
exampley = (6, + 61) andv = (& + 6_1). Then the coupling above satisfi&s ~ 4
andY = X — 1, hence

Ef(1X =Y = f(1).

On the other hand, we may couple by antimonotone rearrangecheosingX ~ p and
Y = —X. In this case the average distance is smaller since by Jemsequality,

E[f(1X = Y])] = E[f(2X)] < f(E[2X]) = f(1).

Maximal coupling with antimonotone rearrangement

We now give a coupling that is optimal w.ntV; for any concave provided an additional
condition is satisfied. The idea is to keep the common magsad v in place and to
apply an antimonotone rearrangement to the remaining mass:

14

Suppose that = STUS~ andu—v = (u—v)" —(u—v)~ is a Hahn-Jordan decomposition
of the finite signed measufe— v into a difference of positive measures such that
(u—v)t(AnS7)=0and(u—v) (ANSt) =0foranyA € B, cf. also Sectioh 712. Let

Jr

pAv=p—(p—v)T =v—(n—v)".
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If p= (uAv)(S)is the total shared mass of the measyresndr then we can writg: and
v as mixtures

p=(uAv)+(p—v)" =pa+(l-p)p,
v=(uAv)+(p—v) =pa+(1-—p)
of probability measures, 5 andy. Hence a couplingX, Y') of 4 andv as described above
is given by setting
F Y U),F;Y(U if B=1
x| ESOLERE) ifB=1
(F;'(U), ' 1-U)) i B=0,

with independent random variablés~Bernoulli(p) andU ~Unif(0, 1). It can be shown
thatif S+ andS— are intervals the(lX, Y') is an optimal coupling w.r.oV; for any concave
f, cf. [McCann:Exact solution to the transportation problemthe line] [24].

In contrast to the one-dimensional case it is not easy toritbesoptimal couplings oiR? for
d > 1 explicitly. On the other hand, the existence of optimal dogs holds on an arbitrary
polish space by Prokhorov’s Theorem:

Theorem 7.1(Existence of optimal coupling3. For anyp, v € P(S) and anyp € [1, co) there
exists a coupling' € I1(yu, ) such that

WP (p, v)P = / d(z,y)Py(dzdy).

Proof: Let I(y) := [d(z,y)Py(dzdy). By definition of WP(u, v) there exists a minimizing
sequencé-,,) in I1(x, v) such that

I(vn) = WP(u,v)? asn — oo.

Moreover, such a sequence is automatically tigl® {5 x S). Indeed, let > 0 be given. Then,
sinceS is a polish space, there exists a compactset S such that

WS\EK) <<, v(S\K)<

3
27

N ™M

and hence for any € N,

T ((@,y) ¢ K x K) <z ¢ K) + 7y ¢ K)
=u(S\K)+v(S\K) <e.
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Prokhorov’s Theorem now implies that there is a subsequenge that converges weakly to a
limit v € P(S x ). Itis straightforward to verify that is again a coupling of. andv, and,
sinced(z, y)? is (lower semi-)continuous,

I(y) = / d(z, y)’(drdy) < lim inf / d(z, y)Fyn, (dedy) = WP (p, v)?
by the portemanteau Theorem. O
Lemma 7.2(Triangle inequality). WP is a metric onP?(S).
Proof: Let i, v, 0o € PP(S). We prove the triangle inequality
WP(u, 0) < WP(u,v) +WP(v, 0). (7.1.2)

The other properties of a metric can be verified easily. To@{@.1.2) lety and~y be couplings
of 4 andv, v andp respectively. We show

We(u, 0) < ( / d(x,y)pv(dxdy))% ¥ ( | i z)%’(dydz)) T @1y

The claim then follows by taking the infimum over alke T1(x, v) andy € I1(v, o). SinceS'is a
polish space we can disintegrate

v(dzdy) = p(dz)p(z, dy) and 7(dydz) = v(dy)p(y, dz)

wherep andp are regular versions of conditional distributions of thetfcomponent w.r.tzy, v
given the second component. The disintegration enables ‘iggue” the couplingsy and~ to a
joint coupling

Y(dwdydz) == p(dz)p(x, dy)p(y, dz)

of the measureg, v andp such that undet,
(z,y) ~~ and (y,z)~7.

Therefore, by the triangle inequality for tli& norm, we obtain

We(s, ) < ( [ it z)p?y(dxdydz))%

< ( / d(z,y)y(dzdydz) ) + ( / d(y dxdydz));

:</d( y)Py dg;dy) </d dydz))p
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Exercise(Couplings in R9). Let W : Q — R< be a random variable aif2, A, P) with
W ~ —W , and letu, denote the law of + W'

a) (Synchronous coupling) Léf = a + W andY = b + W for a, b € R?. Show that
W2(jtay ip) = la—b] = E(X = Y[})2,
i.e.,(X,Y) is an optimal coupling w.r.842.

b) (Reflection coupling) LeY = W +bwhereW = W —2¢- W e with e = “;—:2‘ Prove that
(X,Y) is also a coupling ofi, andys, and if W] < 1 a.s. then

E(f1X=Y1) < fla=bl) = B(f(IX=Y])

for any concave, increasing functign R, — R, such thatf(0) = 0.

7.1.2 Kantorovich-Rubinstein duality
TheLipschitz norm of a functiong : S — R is defined by
N g
19lLip = sup
zAy

Bounds in Wasserstein distances can be used to estimateedifes of integrals of Lipschitz
continuous functions w.r.t. different probability meassirindeed, one even has:

Theorem 7.3(Kantorovich-Rubinstein duality ). For anyu, v € P(S5),

W, v) = ||gsi|lfi,i1 (/gd,u—/gdy). (7.1.4)

Remark. There is a corresponding dual description/of for p > 1 but it takes a more compli-
cated form, cf. [Villani:OT-old&new][[40].

Proof: We only prove the easy>” part. For different proofs of the converse inequality see
Rachev and Rueschendarf [28], Villanj#1], Villani2 [40] and Mufa Chen [4]. For instance one
can approximate andv by finite convex combinations of Dirac measures for whicl. @).is a
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consequence of the standard duality principle of lineagmming, cf. Cheri]4].
To prove >"let u, v € P(S) andg € C(S). If v is a coupling ofu andv then

/ gdp — / gdv = / )7y (dzdy)
< gl / d(z,y)(dady).
Hence, by taking the infimum overc II(u, ), we obtain
[ gdu= [ gdv < lglloW'(u.0)
L]

As a consequence of the" part of (7.1.4), we see that {fiu,,),cn iS @ sequence of probability
measures such thav* (u,, 1) — 0 then [ gdu, — [ gdu for any Lipschitz continuous func-
tiong : S — R, and henceg:, — p weakly. The following more general statement connects
convergence in Wasserstein distances and weak convergence

Theorem 7.4(WWP convergence and weak convergenelLetp € [1, c0).
1) The metric spacéP?(S),WP) is complete and separable.

2) A sequencéu,) in PP(S) converges to a limit w.r.t. theW? distance if and only if

/gd/,cn — /gdu foranyg € C(5) satisfyingg(z) < C' - (1 + d(x, z,)?)

for a finite constant” and somex, € S.

Among other things, the proof relies on Prokhorov’s Theoreve refer to [Villani:OT-old&new]
[4Q].

7.1.3 Contraction coefficients

Let p(z, dy) be a transition kernel oS, B) and fixq € [1, c0). We will be mainly interested in
the case = 1.

Definition (Wasserstein contraction coefficient of a transition kernél. The globakontraction
coefficientof p w.r.t. the distancé@\V? is defined as

ay(p) = sup {% D, v € PUS)s.t.pu # 1/} :
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In other words,«,(p) is the Lipschitz norm of the map — up w.r.t. the)V? distance. By
applying the Banach fixed point theorem, we obtain:

Theorem 7.5(Geometric ergodicity for Wasserstein contraction$. If o, (p) < 1 then there ex-
ists a unique invariant probability measuueof p in P%(.S). Moreover, for any initial distribution
v € PS), vp™ converges tq. with a geometric rate:

WH(wp"®, 1) < ag(p)" Wi (v, p).

Proof: The Banach fixed point theorem can be applied by Theérem 7.4. O

The assumption, (p) < 1 seems restrictive. However, one should bear in mind thatitioker-
lying metric onS can be chosen adequately. In particular, in applicatiorssatten possible to
find a concave functiorf such thai: — up is a contraction w.r.t. th#/! distance based on the
modified metricf o d.

The next lemma is crucial for bounding(p) in applications:

Lemma 7.6(Bounds for contraction coefficients, Path couplin} 1) Suppose thatthe tran-
sition kernelp(zx, dy) is Feller. Then

ay(p) = sup W (plx .>’§)(y’ )) (7.1.5)

T#y d(ﬂ?, Yy

2) Moreover, suppose thét is a geodesic graplwith edge sef in the sense that for any
x,y € S there exists a pathry = z,x,29,...,2,_1,2, = y from x to y such that
{SCl',l, .CCZ} c Efori= 1, o, n andd(l‘, y) = Z d(lCifl, SCZ> Then

=1

ay(p) = sup W (p(, ')’f(y’ )) (7.1.6)

{xvy}eE d(l” y

The application of the second assertion of the lemma to pupper bounds fot,(p) is known
as thepath coupling method of Bubley and Dyer.

Proof: 1) Lets := sup W We have to show that
xFy ’

Wi(up,vp) < BW(p, v) (7.1.7)
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holds for arbitrary probability measurgsy € P(S). By definition of 5 and since
Wi(6,,9,) = d(z,y), (Z.1.7) is satisfied if. andv are Dirac measures.
Next suppose that

= Z,u(:c)éx and v = Z v(x)o,

zeC zeC

are convex combinations of Dirac measures, whiére S is a countable subset. Then for
anyz,y € C, we can choose a coupling, of J,p andé,p such that

([ srmtasan)) = Wi dm < sates). (718

Let £(dxdy) be an arbitrary coupling gf andv. Then a couplingy(dx'dy’) of up andvp
is given by

y = / eyf(ddy),

and therefore, by (7.1.8),

Wilup.vp) < ( / d(a, y/)q’Y(dx’dy’));

B ( |/ d(x',y')%Adaz'dy’)&(dxdy))‘11 <8 ( / d(w)qs(dmy));

By taking the infimum over all couplingse T1(u, v), we see that andv satisfy [Z.1.V).

Finally, to show that[(7.1]7) holds for arbitrapy v € P(S), note that sinces is sepa-
rable, there is a countable dense suldgeind the convex combinations of Dirac measures
based inC are dense iW?. Hencen andr areWW? limits of corresponding convex com-
binationsy,, andv,, (n € N). By the Feller property, the sequenegp andv,p converge
weakly toup, vp respectively. Hence

W (up, vp) < liminf W9 (p1,p, v,p)
< Bliminf W (i, v,) = BW (1, v).

2) LetB := sup 2ie@)r@2) \we show that

(.9)EF d(z,y)

WA(p(x,-), p(y,-)) < Bd(x,y)
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holds for arbitraryr,y € S. Indeed, letey = z, 1, 29, ..., 2, = y be a geodesic from
to y such thatx; ,,z;) € E fori = 1,...,n. Then by the triangle inequality for thé"
distance,

n

Wq(p(x, ')7p(y7 )) < Z Wq(p(xiflv ')7p(xi7 ))

i—1
< EZ d(zi—1,2;) = Ed(x, ),
i—1

where we have used in the last equality that . . , z,, is a geodesic.
O

Exercise.Letp be a transition kernel ofix .S such thap((z, y), d2'dy’) is a coupling of(x, dx’)
andp(y,dy’) foranyz,y € S. Prove that if there exists a distance functibnS x S — [0, 00)
and a constant € (0, 1) such that

pd < ad,

then there is a unique invariant probability measui p, and

Wivp", 1) < a"Wj(v,u) foranyv € PH(S).

7.1.4 Glauber dynamics, Gibbs sampler
Let 1 be a probability measure on a product space
S=T"={n:V =T}

We assume that is a finite set (for example a finite graph) afids a polish space (e.d! = RY).
Depending on the model considered the elemenisame called types, states, spins, colors etc.,
whereas we call the elements ®fconfigurations. There is a natural transition mechanismy on
that leads to a Markov chain which is reversible wyu_tThe transition step from a configuration
¢ € S to the next configuratiog' is given in the following way:

e Choose an elemente V uniformly at random
e Seté'(y) = &(y) for anyy # x, and sample’(x) from the conditional distribution w.r.t.
p(dy) of n(z) given thaty(y) = &(y) for anyy # =.

To make this precise, we fix a regular versjafn|n = £ onV \ {z}) of the conditional proba-
bility given (n(y))yev\ (2}, @and we define the transition kerneby

1
P="1 > p..  where

zeV
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Pe(&,dE’) = p(de'|€" = EonV A\ {z}).

Definition. A time-homogeneous Markov chain with transition kerqméd called Glauber dy-
namicsor random scan Gibbs samplevith stationary distribution..

Thaty is indeed invariant w.r.p is shown in the next lemma:
Lemma 7.7. The transition kernelg,. (x € V') andp satisfy the detailed balance conditions

w(d€p, (€, dE),
p(dg)p(E', dE).

1(d€)p, (€, d€")
u(dé)p(€, de’)

In particular, 1 is a stationary distribution fop.

Proof: Letz € V, and letrj(z) := (n(y)),x denote the configuration restricted ¥o\ {x}.
Disintegration of the measupe into the lawyi, of 7(x) and the conditional lav, (-|7(x)) of
n(z) givenn(z) yields

0 (4€) pa (€, 4€) = o () e (@) E(2)) O,y (0€@) ) o (€ (@) E() )
= iz (€' (2)) 1z (@)1 @) ) G,y (dEa)) px (€ @) ()
= p(d€) pe (€, ).

Hence the detailed balance condition is satisfied wy.for anyz € V, and, by averaging over
x, also w.r.t.p. O

Examples. In the following examples we assume thats the vertex set of a finite graph with
edge sef.

1) Random colourings. HereT is a finite set (the set of possible colours of a vertex), and
w1 is the uniform distribution on all admissible colouringstbé vertices i/ such that no
two neighbouring vertices have the same colour:

p=Unif ({n € TV : n(z) # n(y) ¥(z,y) € E}) .

The Gibbs sampler selects in each step a vertex at randonhandes its colour randomly
to one of the colours that are different from all colours afjhouring vertices.

2) Hard core model. HereT' = {0, 1} wheren(x) = 1 stands for the presence of a particle
at the vertexe. The hard core model with fugacity € R, is the probability measure,
on {0, 1}V satisfying

S o)
() = oA if n(x)n(y) = 0forany(z,y) € E,
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3)

4)

andyu,(n) = 0 otherwise, wheré”, is a finite normalization constant. The Gibbs sampler
updates in each stepz) for a randomly chosen vertexaccording to

& (x) =0if £(y) = 1 for somey ~ z,

A :
¢'(x) ~ Bernoulli (H—A) otherwise

Ising model. HereT = {—1,+1} where—1 and+1 stand for Spin directions. The
ferromagnetic Ising model at inverse temperatéire 0 is given by

pp(n) = ;e foranyn e {~1,+1}",

whereZ; is again a normalizing constant, and the Ising Hamiltorfiais given by

1
Hin) =5 > @) =@l =~ > ) +E.
{z,y}el {z,y}€E
Thus 14 favours configurations where neighbouring spins coincedel this preference

gets stronger as the temperat%rdecreases. The heat bath dynamics updates a randomly

chosen spirg(z) to ¢'(z) with probability proportional toexp (ﬁn(x) > n(y)). The

y~z

meanfield Ising modelis the Ising model on the complete graph withvertices, i.e.,
every spin is interacting with every other spin. In this cése update probability only
depends om(z) and the “meanfield 3~ n(y).

yeVv
Continuous spin systemsHereT = R, and
1 1 )
po(dy) = Z-exp | =3 S @) —n@)P+ 8> Um(x) | I] dn(z).
(z,y)el zeV zeV

The functionU : R — [0, 00) is a given potential, and; is a normalizing constant. For
U = 0, the measure is called the mas<Beussian free field over \V If U is a double-well
potential thenu is a continuous version of the Ising model.
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5) Bayesian posterior distributions. Gibbs samplers are applied frequently to sample from

posterior distributions in Bayesian statistical modelsr fstance in a typical hierarchi-
cal Bayes model one assumes that the data are realizatiamnditionally independent
random variable¥;; (i =1,...,k,j = 1,...,m;) with conditional laws

Y;j|(017 s 70k7 )\e) ~ N(ei, )\_1).

e

The parameterg,, ..., 0, and ). are again assumed to be conditionally independent ran-
dom variables with

0i|(:uv )‘9) ~ N(M? /\0_1) and/\€|(:uv )‘9) ~ F(a’Qa 62)
Finally, » and )\, are independent with
p~ N(m,v)andXg ~ I'(ay, by)

whereaq, by, as, by, v € R, andm € R are given constants, cf. [Jones][14]. The posterior
distributiony of (61, . .., 6k, i, Ae, Ag) ONRFF3 given observations;; = y;; is then given

by Bayes’ formula. Although the density is explicitly up tmarmalizing constant involv-
ing a possibly high-dimensional integral, it is not cleawtto generate exact samples from
1 and how to compute expectation values wir.t.

On the other hand, it is not difficult to see that all the condial distributions w.r.t... of
one of the parametersy, . .., 0;, i1, \e, \g given all the other parameters are either normal
or Gamma distributions with parameters depending on therabd data. Therefore, it is
easy to run a Gibbs sampler w.rit.on a computer. If this Markov chain converges suffi-
ciently rapidly to its stationary distribution then its uak after a sufficiently large number
of steps can be used as approximate samples/rand longtime averages of the values of
a function applied to the Markov chain provide estimatorsiie integral of this function.

It is then an obvious question for how many steps the Gibbgkarhas to be run to ob-
tain sufficiently good approximations, cf. [Roberts&Rosgeh:Markov chains and MCMC
algorithms] [33].

Returning to the general setup on the product spdcewe fix a metrico on 7', and we denote

by d the correspondingf metric on the configuration spa@?’, i.e.,

d&m =7 ol&x).n(x)), &neT".

zeV

A frequent choice i®(s, t) = 1,4. In this case,

d(&,n) = {x €V : &(x) # n(@)}|

is called theHamming distanceof ¢ andr.
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Lemma 7.8. Letn = |V|. Then for the Gibbs sampler,

1 1
W) ptn ) < (1= 3 ) dl€on) + 2 S Wh (a1, )
zeV
foranyé,neTV.
Proof: Let~, for z € V be optimal couplings w.r.8V, of the conditional measures(-|¢) and
1z (+|n). Then we can construct a couplingigt, d¢') andp(n, dn’) in the following way:

e Draw U ~ Unif(V).
e GivenU, choose(¢'(U),n' (U)) ~ ~u, and sett’(x) = &£(x) andrn/(x) = n(x) for any
x #U.

For this coupling we obtain:

E[d(, )] =) Blo(¢(x),7(2))]

zeV

= d(&n) + Eo(&'(U),n'(U)) — o(§(U),n(U))]

= e+ 3 ([ ofsstnatasin) - o). nte))

zeV

_ <1 _ %) AE )+ S W (1), ).

zeV

Here we have used in the last step the optimality of the cogpli. The claim follows since

The lemma shows that we obtain contractivity w, if the conditional distributions at € V/
do not depend too strongly on the values of the configuratiatheer vertices:

Theorem 7.9(Geometric ergodicity of the Gibbs sampler for weak interactons).

1) Suppose that there exists a constast (0, 1) such that

zeV
Then
Wi (vp', ) < a(p)Wi(v,p) foranyv € P(TV) andt € Z, (7.1.10)

wherea(p) < exp (—1¢).
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2) If T is a graph andv is geodesic then it suffices to ver{1.9)for neighbouring configu-
rations&,n € TV such thatt = nonV \ {z} for somex € V andé(z) ~ n(z).

Proof: 1) If (Z.1.9) holds then by Lemma7.8,
1—c

wd<p<s,->,p<n,->>s(1— )d<g,n> foranyé.n e TV

Hence [Z.1.10) holds with(p) = 1 — =¢ < exp (—1¢).

2) If (T, o) is a geodesic graph antlis the!* distance based onthen(T",d) is again a
geodesic graph. Indeed, a geodesic path between two catfansé andn w.r.t. thel!
distance is given by changing one component after the otbega geodesic path dfi.
Therefore, the claim follows from the path coupling lenim@. 7.

]

The results in Theorem 7.9 can be applied to many basic mougigling random colourings,
hardcore models and meanfield Ising models at low tempexatur

Example (Random colouringg. Suppose thalt’ is a regular graph of degrek. ThenTV is
geodesic w.r.t. the Hamming distanéeSuppose that andn are admissible random colourings
such that/(¢,n) = 1, and lety € V' be the unique vertex such th@ty) # n(y). Then

1. (1€) = pa(-In)  for @ = y and for anys .

Moreover, forz ~ y ando(s, t) = 1, we have

Wi (a9, cl) < g

since there are at lealdf| — A possible colours available, and the possible coloursgiven ¢
respectivelyn on V' \ {z} differ only in one colour. Hence

S (s CIE) o) < 7= lEon)

zeV

and therefore[(7.1.10) holds with

A 1
< — — -
a(p) < exp < (1 - A) n), and hence

a(p)’ < exp _Ti=2A e
- IT|—A n)
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Thus for|T'| > 2A we have an exponential decay of theé} distance to equilibrium with a rate
of orderO(n~!). On the other hand, it is obvious that mixing can break downgetely if there
are too few colours - consider for example two colours on edirgraph:

Oan oGy onOuy on®

7.2 Geometric and subgeometric convergence to equilibrium

In this section, we derive different bounds for converganauilibrium w.r.t. the total variation
distance. In particular, we prove a version of Harris’ tlemwvhich states that geometric ergod-
icity follows from a local minorization combined with a glabLyapunov condition. Moreover,
bounds on the rate of convergence to equilibrium are detwecbupling methods. We assume
again thatS is a polish space with Borel-algebral3.

7.2.1 Total variation norm

The variation|n|(B) of an additive set-function : B — R on a setB € B is defined by

MMBy:am{E:MQM|mmﬂ%Ah”wAnequmMWMWJA“:B}.
=1

=1
Thetotal variation norm of n is
1
Inllrv = 5Inl(S).

Note that this definition differs from the usual conventiaranalysis by a factok. The reason
for introducing the facto% will become clear by Lemmnia 7.0 below. Now let us assumertligat

a finite signed measure &) and suppose thatis absolutely continuous with densitywith re-
spect to some positive reference measur€hen there is an explicit Hahn-Jordan decomposition
of the state spac€ and the measuregiven by

S =STUS™ with S* = {0 >0},5 = {0 < 0},
n=nt—n withdn® = o"d\,dnp~ = o~ d)\.

The measureg™ andr~ are finite positive measures with
nt(BNS™)=0 and 7 (BNS")=0 foranyB € B.
Hence the variation of is the measurg;| given by

nl=n"+n", e, dn =o-d\
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In particular, the total variation norm gfis the L' norm of o:

Il = / loldz = ez, (7.2.1)

Lemma 7.10 (Equivalent descriptions of the total variation norm). Let u,v € P(S) and
A € M, (S) such thaty and v are both absolutely continuous w.r.t\. Then the following
identities hold:

I = vllrv = (1= )"(S) = (n=v)"(5) = 1 = (pAV)(S)

e

X M|
= s () (D) FEFS) st flap <1} (722)
=inf{PX#AY]: X ~u,Y ~v} (7.2.3)

In particular, || — v||tv € [0,1].

Remarks. 1) The last identity shows that the total variation distaotg andv is the Kan-
torovich distancéV; (u, v) based on the trivial metrié(z, y) = 1,4, onS.

2) The assumptiom, v << X\ can always be satisfied by choosingappropriately. For
example, we may choose= y + v.

Proof: Sincey andv are both probability measures,
(b= v)(S) = pu(S) —v(S) = 0.
Hence(y: — v)*(S) = (u— v)~(S), and
= vl = %Iu —v[(S) = (p—v)"(S) = u(S) = (uAv)(S) = (n—v)"(9).

The identity||u — v|rv = || % — Z—KHLI(A) holds by [Z.Z11). Moreover, fof € F,(S) with
[ fllsup < 1,

1(f) = v(NOI < (=) (D + (=)~ ()]
S (p=v)"(S)+ (p—v)(5) =2p—vlw

with identity for f = 1¢+ — 15-. This proves the representation (712.2)|pf— v||1v.
Finally, to prove[(7.2.3) note that {fX, Y') is a coupling ofu andv, then

() = v(H)l = [Elf(X) = FY)]| <2P[X #Y]
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holds for any bounded measuralflevith || f||s., < 1. Hence by[(7.2]2),

12— Vil < inf PLX £ V],

Y~v

To show the converse inequality we choose a cougliigy”) that maximizes the probability that
X andY agree. The maximal coupling can be constructed by notirtg tha

p=pAv)+p-—v)" =pa+(l-p)s, (7.2.4)
v=(uAv)+(p—v) =pat(l-p)y (7.2.5)

with p = (1 A v)(S) and probability measures 5,y € P(S). We choose independent random
variablesU ~ o,V ~ g, W ~ v andZ ~ Bernoullip), and we define

(X.Y) = { (U,U) on{Z =1},
(VW) on{Z=0}.
Then by [7.2.4) and(7.2.5)X,Y") € II(p, v) and
PIX £Y] < PZ=0]=1—p=1—(uAv)(S) = llu— vlw.
U

Remark. The last equation can also be seen as a special case of therétach-Rubinstein
duality formula.

7.2.2 Geometric ergodicity

Let p be a transition kernel oS, B). We define thdocal contraction coefficienta(p, K) of p
on a setk’ C S w.r.t. the total variation distance by

0zp — Oyp|lTv
a(p, K) = sup [p(z, ) — p(y, ) lrv = sup 1022 =Pl
z,yeK x,y;}( ”(51- — 5yHTV
a£y

(7.2.6)

Note that in contrast to more general Wasserstein contractefficients, we always have
alp, K) < 1.

Moreover,a(p, K) < 1 — ¢ holds fore > 0 if p satisfies the followindocal minorization
condition: There exists a probability measure®n S such that

p(z,B) > ev(B) foranyzr € K andB € B. (7.2.7)
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Doeblin’s classical theorem states that{p", S) < 1 for somen € N then there exists a unique
stationary distribution of p, and uniform ergodicity holds in the following sense:

sup |p'(z, ) — pllrv = 0 ast — oo. (7.2.8)
zeS

Exercise(Doeblin’s Theorem). Prove that[(7.218) holds i(p", S) < 1 for somen € N.

If the state space is infinite, a global contraction conditar.t. the total variation norm as
assumed in Doeblin’s Theorem can not be expected to hold:

Example (Autoregressive process AR1)). Suppose that
Xn+1 =aX, + Wn—i—h Xo=u

with o € (—1,1),2 € R, and i.i.d. random variabléd’,, : & — R. By induction, one easily
verifies that

n—1 1 — a2n
Xp=a" Wi ~ N | "z, — |,
ozx+iz;oz (ozx 1—a2)
i.e., then-step transition kernel is given by
. . 1 — a2n
p(.fC,):N<Oé$C,1_7a2),.TES

Asn — oo, p"(z,-) — p in total variation, where

1
=N (0,——

is the unique stationary distribution. However, the cogeerce is not uniform im, since
sup ||p"(z,) — pllrv =1 foranyn € N.
TSI

The example demonstrates the need of a weaker notion of igemaee to equilibrium than uni-
form ergodicity, and of a weaker assumption than the globabnzation condition.

Definition (Geometric ergodicity). A time-homogeneous Markov chaik,,, P, ) with transition
kernelp is calledgeometrically ergodic with stationary distributiop iff there existy € (0, 1)
and a non-negative functial/ : S — R such that

Ip"(x, ) — pl|rv < M(x)y"™  for u-almost every: € S.

Harris’ Theorem states that geometric ergodicity is a cqueace of docal minorization con-
dition and a globalLyapunov condition of the following form:
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(LG) There exist a functio € F,(.S) and constants > 0 andC' < oo such that
LV(x) <C—AV(z) foranyx € S. (7.2.9)
In terms of the transition kernel the condition (LG) statest t
pV(z) < C+~V(x) (7.2.10)
wherey=1- X< 1.

Below, we follow the approach of M. Hairer and J. Mattinglygive a simple proof of a quan-
titative version of the Harris Theorem, cf. [Hairer:Corgence of Markov processes,Webpage
M.Hairer] [13]. The key idea is to replace the total variataistance by the Kantorovich distance

Wﬁ(ﬂ? v) = inf E[dﬂ(ua V)]

X~p
Y~v

based on a distance function Srof the form

dg(w,y) = (1 + BV (2) + BV (y)) Lazy

with 5 > 0. Note that||x — v|+v < Ws(u, v) with equality fors = 0.

Theorem 7.11(Quantitative Harris Theorem). Suppose that there exists a functiore . (5)
such that the condition in (LG) is satisfied with constatits € (0, ), and

a(p,{V<r}) <1 forsomer >2C/\. (7.2.11)

Then there exists a constafit ¢ R, such thataz(p) < 1. In particular, there is a unique
stationary distributiory of p satisfying[ Vdu < oo, and geometric ergodicity holds:

1572, ) — allrv < Ws (0" (), 0) < (1 V() +8 [ Vdu) as(p)"

foranyn € Nandx € S.

Remark. There are explicit expressions for the constahédas(p).

Proof: Fix z,y € S with x # y, and let(X,Y’) be amaximal coupling ofp(x,-) andp(y, -)
w.r.t. the total variation distance, i.e.,

PIX #Y] = llp(z,-) = p(y, )llrv-
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Then fors > 0,
We(p(z,-),p(y,-)) < Elds(X,Y)]
< PIX #Y]+ BE[V(X)] + SE[V(Y)]
= |lp(x,-) — p(y, )llv + BEV) (@) + B(pV)(y)
< llp(z,) = p(y, v +208+ (1 =)B(V(z) +V(y),  (7.2.12)
where we have usef (7.2]110) in the last step. We now &g in [7.2.1l1), and distinguish cases:

(i) If V(2)+V(y) > r, thenthe Lyapunov condition ensures contractivity. ey (7.2.1D),
Ws(p(x,-),p(y, ) < dg(x,y) +2C08 = A3 - (V(x) + V(y)). (7.2.13)

Sinceds(z,y) = 1 + BV (z) + BV (y), the expression on the right hand side[in (7.P.13)
is bounded from above byt — §)ds(z,y) for some constant > 0 provided2Cg + 6 <
(A — d)5r. This condition is satisfied if we choose
A-% w20
TIr LT 1tpr

ﬁ?

which is positive since > 2C'/\.

(i) If V(z)+ V(y) < r then contractivity follows from{7.2.11). Indeed, (7.2) I®plies that
for € := min (M, A),

Ws(p(z,-),p(y,-)) < alp AV <r}) +208+ (1= N)B(V(2) + V(y))
< (1 —e)ds(z,y)
provideds < 1=@AV<ri),
Choosingy, ¢, 5 > 0 as in (i) and (ii), we obtain
Ws(p(z,-),p(y,-)) < (1 —min(,¢))dg(z,y) foranyz,y e S,

i.e., theglobal contraction coefficientvs(p) w.r.t. W; is strictly smaller than one. Hence there

exists a unique stationary distribution

iePYS) = {MemS):/wﬂ@o}, and

Wﬁ(pn(xv ')7 M) = Wﬁ (5mpn7 Mpn) < Ozg(p)nt((sm’ /~L)

= ag(p)" (1 + BV (z) + B/Vdu> :
O
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Remark (Doeblin’s Theorem). If a(p, S) < 1 then by choosing” = 0, we recover Doeblin’s
Theorem:
1p"(z,-) — plltv < a(p, S)™ — 0 uniformlyinz € S.

Example (State space model irR4). Consider the Markov chain with state sp&&and tran-
sition step
x4 b(x) +o(x)W,

whereb : R? — R? ando : R — R%*? gre measurable functions, aid : ) — R is a random
vector with E[W] = 0 andCov(W;, W) = d,;. Choosingl/ (z) = |x|?, we obtain

LV (z) =2z - b(x) + [b(x)]* + tr(cT o) (x) < C — AV ()

for someC, A € (0, co) provided
x-b(x) + |b(2)|* +tr(cTo)(z)

lim sup e < 0.
|z| =00 T
Since
a(p AV <71}) = sup_sup ||N (z+b(x), (00")(2)) = N (y+b(y), (06")®))||ry < 1
[z <V [yl <V

for anyr € (0, c0), the conditions in Harris’ Theorem are satisfied in this case

Example (Gibbs Sampler in Bayesian Statistics For several concrete Bayesian posterior dis-
tributions on moderately high dimensional spaces, The@tdrh can be applied to show that the
total variation distance between the law of the Gibbs sangflern steps and the stationary target
distribution is small after a feasible number of iteratiocls e.g. [Roberts&Rosenthal:Markov
chains & MCMC algorithms] [33].

7.2.3 Couplings of Markov chains and convergence rates

On infinite state spaces, convergence to equilibrium may boly at asubgeometric (i.e.,

slower than exponential) rate. Roughly, subgeometricem@nce occurs if the drift is not strong
enough to push the Markov chain rapidly back towards theetaftthe state space. There are
two possible approaches for proving convergence to equilibat subgeometric rates:

a) The Harris’ Theorem can be extended to the subgeomes&mavided a Lyapunov con-
dition of the form
LV <C—poV

holds with a concave increasing functipn R, — R, satisfyingy(0) = 0, cf. [Hairer]
[13] and [Meyn&Tweedie][25].
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b) Alternatively, couplings of Markov chains can be appliactly to prove both geometric
and subgeometric convergence bounds.

Both approaches eventually lead to similar conditions. ¥éai$ now on the second approach.
Definition (Couplings of stochastic processés

1) A coupling of two stochastic processéX,,, P) and (Y,,, Q) with state spac& andT is
given by a procesé()?, )7), 13) with state spacé x T such that

(Xn)nz(] ~ (Xn)nz(] and (Yn)nzo ~ (Yn)nzo-

2) The coupling is called/arkovian iff the process(f(n, }7,1)”20 is a Markov chain on the
product spaces x T.

Example (Construction of Markovian couplings). A Markovian coupling of two time homo-
geneous Markov chains can be constructed from a couplingeairansition functions. Suppose
thatp andq are transition kernels on measurable spaée#) and (7', C), andp is a transition
kernel on(S x T, B ® C) such thap ((z, y), d2’dy’) is a coupling of the measureéz, dz’) and
p(y,dy’) foranyx € S andy € T. Then for anyr € S andy € T, the canonical Markov chain
((X,,Yn), P.y) with transition kernep and initial distributions, ,, is a Markovian coupling of
Markov chains with transition kernetsandq and initial distributionsg, andd,. More generally,
(X, Y,), P,) is a coupling of Markov chains with transition kernels; and initial distributions
i, v providedry is a coupling ofu andw.

Theorem 7.12(Coupling lemma). Suppose that(X,, Y,.).>o, P) is @ Markovian coupling of
Markov chains with transition kerneland initial distributionsy andr. Then

[p™ — vp"|[1v < |[lLaW(Xp:00) — LAWY 00) [[7v < P[T' > 1,
whereT is thecoupling timedefined by

T =min{n >0: X, =Y,}.

In particular, if7" < oo almost surely then

lim [|Law(X,.0) — Law(Y},.00) |1y = O.

n—oo
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Proof: 1) We first show that we may assume without loss of generdlay.X,, = Y,, for any
n > T. Indeed, if this is not the case then we can define a modifieplimy( X,,, Y,,) with
the same coupling timeby setting

S Y, forn < T,
X, forn>T.

The fact that(X,,, 57”) is again a coupling of the same Markov chains follows from the
strong Markov propertyT is a stopping time w.r.t. the filtratio%,,) generated by the
process X, Y, ), and hence 0T < oo} and under the conditional law givef, Xr.
is a Markov chain with transition kerngland initial valueYr. Therefore, the conditional
law of

Yoo = (Y1, .., Yooy, X, Xp1, ... )

given Fr coincides with the conditional law of

Yooo = (Y1, Yrog, Yy, Yy, . 0)

given Fr, and hence the unconditioned law(af,) and(Y,,) coincides as well.

2) Now suppose thaX,, = Y, forn > T. Then alsaX,,..c = Y,... for n > T, and thus we
obtain
[ILaw (X:00) — LaW (Voo [l7y < P [Xnioo # Yool < P[T > n).

O

If 1 is a stationary distribution fgy thenup™ = p and Law(X,,...) = P, for anyn > 0. Hence
the coupling lemma provides upper bounds for the total tianalistance to stationarity. As an
immediate consequence we note:

Corollary 7.13 (Convergence rates by coupliny) LetT be the coupling time for a Markovian
coupling of time-homogeneous Markov chains with transikiernelp and initial distributionsy
andv. Suppose that

E[(T)] < o0
for some increasing functiop : Z, — R, with lim ¢(n) = co. Then
1
|pup™ — vp"||rv = O (—) , and even (7.2.14)
¥(n)
(¥(n + 1) = () |up" — vp"|lrv < oc. (7.2.15)
n=0
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Proof: By the coupling lemma and Markov'’s inequality,

lap" — v vy < PIT > n] < @EW)J foranyn € N.

Furthermore, by Fubini’s Theorem,

> Wn+1) =) |up" _Vp||Tv<Z Y(n+ 1) = ¢(n)) P[T > n]

- Z P[T = 1] ((n) — 1(0)) < E[(T)).

The corollary shows that convergence to equilibrium happeith a polynomial rate of order
O(n~*) if there is a coupling with the stationary Markov chain sugéttthe coupling time has a
finite k-th moment. If an exponential moment exists then the comrerg is geometric.

Example (Markov chains on Z ).

Ty
e ()b
&I) T I— 1 :JIC T —Ii— 1
We consider a Markov chain dh, with transition probabilitieg(x, x+1) = p,, p(z,2—1) = ¢,
andp(z,x) = r,. We assume that, + ¢, +r. = 1,q0 = 0, andp,,q, > 0forz > 1. For
simplicity we also assume. = 1/2 for anyz (i.e., the Markov chain islazy”). For f € F,(Z.),
the generator is given by

(Lf)(@) =pa (f(x+1) = f2) + ¢ (f(x = 1) = f(x)) Vel

By solving the system of equationsC = p — up = 0 explicitly, one shows that there is a

two-parameter family of invariant measures given by

b. PoP1 - - Pz—1
Q1492 -+ Gz

In particular, a stationary distribution exists if and oifly

Z Pop1 - < oo,

—o 12

u(xr) =a+ (a,b € R).

For example, this is the case if there existgan 0 such that
1+e¢
pe < | 1— q.4+1 forlargez.
Xz
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Now suppose that a stationary distributiprexists. To obtain an upper bound on the rate of
convergence t@, we consider the straightforward Markovian couplit&,,, Y,,), P.,) of two
chains with transition kernel determined by the transition step

(x+1,y)  with probabilityp,,

(2,9) — (x—1,y)  with probabilityq,,
’ (z,y+1)  with probabilityp,,
(z,y—1)  with probabilityg,.

Since at each transition step only one of the chdikis) and (Y;,) is moving one unite, the
processes$X,,) and(Y,,) meet before the trajectories cross each other. In partjdbla, > Y,
then the coupling timé&’ is bounded from above by the first hitting time

T;* = min{n >0: X, = 0}.

XoT

m
}/0 _Www

5

Since a stationary distribution exists and the chain iglirogble, all states are positive recurrent.
Hence
E[T) < E[Ty] < c0.

Therefore by Corollarly 7.13, the total variation distan@af equilibrium isalwaysdecaying at
least of ordeO(n~1):

Ip" (2, ) = Fillv = O(n7™"), Y [Ip"(,-) = Fllv < oo.
n=1

To prove a stronger decay, one can construct appropriatgungay functions for bounding higher
moments off". For instance suppose that

P — (e ~ —ax’ @S T — 00

for somea > 0 and~y € (—1,0].
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(i) If v € (—1,0) then ast — oo, the functionV/'(x) = 2" (n € N) satisfies

LV(z)=pe (x+1)" —2") + ¢u (. = 1)" = 2") ~ n(py — ¢u)2"

~ —naz™ " < —paV(z) .

It can now be shown in a similar way as in the proofs of Thedre@rot Theoreni 119 that

E[T"] < E[(T;*)*] < 00 foranyk < IL

Sincen can be chosen arbitrarily large, we see that the convergateés faster than any
polynomial rate:
Ip"(x,) = Filrv = O(n™*)  foranyk € N.

Indeed, by choosing faster growing Lyapunov functions areshow that the convergence
rate isO(exp (—nf3)) for someg € (0, 1) depending ony.

(i) If v = 0 then even geometric convergence holds. Indeed, in this éaséargezx, the
functionV (z) = e satisfies

LV(z) = (pz(e*=1) + g (e =1)) V(z) < —c- V()

for some constant > 0 provided\ > 0 is chosen sufficiently small. Hence geometric
ergodicity follows either by Harris’ Theorem, or, alterivaty, by applying Corollary 7.13
with ¢(n) = e

7.3 Mixing times for Markov chains

Let p be a transition kernel of, B) with stationary distribution. For K" € B andt > 0 let
dTV(t7 K) = Sup Hpt(x7 ) - MHTV
zeK

denote the maximal total variation distance from equilibriaftert steps of the Markov chain
with transition kernep and initial distribution concentrated dx.

Definition (Mixing time). For ¢ > 0, thes-mixing time of the chain with initial value ik is
defined by
tmix(e, K) =min{t > 0: d(t, K) < &}.

Moreover, we denote by,(c) the global mixing timé (e, S).
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Exercise(Decay of TV-distance to equilibrium).
Prove that for any initial distributiorr € P(S), the total variation distanckvp’ — ultv is a
decreasing function ih Hence conclude that

dry(t, K) <e foranyt > tmix(e, K).

An important problem is the dependence of mixing times ommaters such as the dimension
of the underlying state space. In particular, the distorchetween Slow” and “rapid” mixing,
I.e., exponential vs. polynomial increase of the mixingdias a parameter goes to infinity, is
often related to phase transitions.

7.3.1 Upper bounds in terms of contraction coefficients

To quantify mixing times note that by the triangle inequafdr the TV-distances,
drv(t,S) < a(p') < 2drv(t, S),

wherea denotes the global TV-contraction coefficient.

Example (Random colouringg. For the random colouring chain with state spdte we have
shown in the example below Theoréml7.9 that|fof > 2A, the contraction coefficient, w.r.t.
the Hamming distancé&(¢, n) = [{x € V : £(z) # n(x)}| satisfies
T|—2A t
) < t< _ri=24 't . 7.3.1
aq(p’) < aa(p)” < exp ( T-A n) (7.3.1)

Here A denotes the degree of the regular gr&phndn = |V'|. Since
legn < d(&,n) <n-ley, foranyé,neTV,

we also have
lv — pllv < Wiy, ) < nllv — pllry  foranyw € P(S).

Therefore, by[(7.3]1), we obtain

IT|—2A ¢

(&, ) — pllrv < nag(p') < nexp ( RN 5)

for any¢ € TV andt > 0. The right-hand side is smaller tharor ¢ > |§|:2AAnlog(n/€). Thus

we have shown that
tmix(e) = O (n logn 4+ nlog 5’1) for |T'| > 2A.

This is a typical example afapid mixing with a total variationcast-off. After a time of order
nlog n, the total variation distance to equilibrium decays to dnteary small values > 0 in a
time window of ordeiO(n).
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Example (Harris Theorem). In the situation of Theoref 7.111, the global distargg(t, S) to
equilibrium does not go t0 in general. However, on the level sets of the Lyapunov famcti,

dry(t,{V <r}) < (1 + Br + ﬁ/VdM) as(p)’

for anyt,r > 0 where/3 is chosen as in the theorem, amglis the contraction coefficient w.r.t.
the corresponding distandg. Hence

log (1+ Br+ B [ Vdu) +log(e™)
log(as(p)~1) '

tmix(f’:’ {V < T}) <

7.3.2 Upper bounds by coupling

We can also apply the coupling lemma to derive upper boundsiking times in the following
way:

Corollary 7.14 (Coupling times and mixing times. Suppose that(X,,Y,), P, ,) is a Marko-
vian coupling of the Markov chains with initial valuey € S and transition kernep for any
z,y € S,andletl’ = inf{n € Z, : X,, =Y, }. Then:

1) [[p"(x, ) —p™(y,)||ltv < Ppy[T >n] foranyz,y € Sandn € N.

2) a(p”, K) < sup P,,[T > n).

z,yeK

Example (Lazy Random Walks). A lazy random walk on a graph is a random walk that stays
in its current position during each step with probabili§2. Lazy random walks are considered

to exclude periodicity effects that may occur due to the tihiseretization. By a simple coupling
argument we obtain bounds for total variation distancesnaiéhg times on different graphs:

1) S = Z: Here the transition probabilities of the lazy simple randeatk arep(z,x + 1) =
plr,z — 1) = 1/4,p(x,x) = 1/2, andp(z,y) = 0 otherwise. A Markovian coupling
(X,, Y,) is given by moving from(z, y) to (x + 1, y), (x — 1,y), (z,y+ 1), (x,y — 1) with
probability 1/2 each. Hence only one of two copies is moving during each sigpat
the two random walksX,, andY,, can not cross each other without meeting at the same
position. The coupling timé&’ is the hitting time of0 for the processY,, — Y,, which is a
simple random walk of.. Hencel' < oo P, ,-almost surely, and

lim Hpn(x’ ) _pn(y’ ')HTV =0 for anyz,y € S.

n—oo

Nevertheless, a stationary distribution does not exist.
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2) S =7/(mZ): On a discrete circle withn points we can use the analogue coupling for the
lazy random walk. AgainX,, —Y,, is a simple random walk ofi, and7" is the hitting time
of 0. Hence by the Poisson equation,

1
RW(Z
EualT) = ERY) Tam e = o =yl (m — o = y) < ~i®

Corollary[7.14 and Markov’s inequality now implies that the-distance to the uniform
distribution aftem steps is bounded from above by

[\

drv(n,S) < a(p") <sup P, ,[T > n] < Zl—
z,y n

Hencetmix(1/4) < m? which is a rather sharp upper bound.

3) S = {0, 1}% The lazy random walk on the hypercufig 1}¢ coincides with the Gibbs sam-
pler for the uniform distribution. Constructing a couplisignilarly as before, the coupling
time 7" is bounded from above by the first time where each coordinasebleen updated
once, i.e., by the number of draws required to collect eachamfupons by sampling with
replacement. Therefore, for> 0,

drv(dlogd + cd) < P[T > dlogd + cd]

d [dlog d+cd)]
< (1 - l) < demTE < e
k=1

— —_ )

and hence
tmix(€) < dlogd + log(e™!)d.

Conversely the coupon collecting problem also shows thatibper bound is again almost
sharp.

7.3.3 Conductance lower bounds

A simple and powerful way to derive lower bounds for mixingés due to constraints by bottle-
necks is the conductance.

Exercise (Conductance and lower bounds for mixing time$. Let p be a transition kernel on
(S, B) with stationary distribution:. For setsA, B € B with x(A) > 0, theequilibrium flow
Q(A, B) from A to B is defined by

QUAB) = (u@p)(Ax B) = / u(de) pl, B),
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and theconductanceof A is given by

Q(A, A%)
1(A)
Thebottleneck ratio (isoperimetric constant) ®, is defined as

B(A) =

$,= min D(A).

A:p(A)<1/2

Let ua(B) = u(B|A) denote the conditioned measure 4n
a) Show that for anyl € B with p(A) > 0,
lnap = pallrv = (nap)(A°) = @(A).
Hint: Prove first that

() (nap)(B) — pa(B) <0 forany measurablé? C A, and
(i) (pap)(B) — pa(B) = (nap)(B) > 0 for any measurablés C A°.

b) Conclude that

la = pllry < t@(A) + lpap’ — pllry - foranyt € Z,.

1 1
tmim - Z .
(4) 4D,

7.4 Asymptotic stationarity & MCMC integral estimation

c) Hence prove the lower bound

Let 1« be a probability measure di%, B). In Markov chain Monte Carlo methods one is approx-
imating integralg.(f) = | f du by ergodic averages of the form

b+n—1

Apf == 37 fX0),
1=b

where(X,,, P) is atime-homogeneous Markov chain with a transition keprsaltisfyingu = up,
andb, n € N are sufficiently large integers. The constaig called theburn-in time - it should
be chosen in such a way that the law of the Markov chain afs¢eps is sufficiently close to the
stationary distribution:. A typical example of a Markov chain used in MCMC methods is th
Gibbs sampler that has been introduced in Se¢tion]7.1.4eabbive second important class of
Markov chains applied in MCMC are Metropolis-Hastings cisai
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Example (Metropolis-Hastings method. Let \ be a positive reference measure(éh53), e.qg.
Lebesgue measure @t or the counting measure on a countable space. Suppose ihaib-
solutely continuous w.r.tA, and denote the density hyx) as well. Then a Markov transition
kernelp with stationary distribution: can be constructed by proposing moves according to an
absolutely continuous proposal kernel

q(z, dy) = q(z,y) Mdy)
with strictly positive density(z, y), and accepting a proposed move frerto y with probability

u(y)q(y,:c)) _

p(z)q(z,y)
If a proposed move is not accepted then the Markov chain stiis current positiorr. The

a(z,y) = min (1,

transition kernel is hence given by

p(x,dy) = oz, y)q(r, dy) + r(x)d.(dy)

wherer(z) = 1— [ a(z, y)q(z, dy) is the rejection probability for the next move fram Typical
examples of Metropolis-Hastings methods are Random Wallkkdyelis algorithms where is
the transition kernel of a random walk. Note that i§ symmetric then the acceptance probability
simplifies to

a(z,y) = min (1, u(y)/pu(z)) .-

Lemma 7.15(Detailed balancg. The transition kerneb of a Metropolis-Hastings chain satisfies
the detailed balance condition

p(dx)p(z, dy) = p(dy)p(y, dz). (7.4.1)
In particular, 1 is a stationary distribution fop.

Proof. On{(z,y) € S x S : x # y}, the measure(dz)p(z, dy) is absolutely continuous w.r.t.
A ® A\ with density

p(dx) ez, y)q(z, y) = min (u(x)q(z, y), py)q(y, ).

The detailed balance conditidn (7.4.1) follows, since éxigression is a symmetric function.of
andy. O

A central problem in the mathematical study of MCMC methaatstiie estimation of integrals
w.r.t. i is the derivation of bounds for the approximation error

Apnf — p(f) = Apnfo,
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wheref, = f — u(f). Typically, the initial distribution of the chain is not tis¢ationary distribu-
tion, and the number of steps is large but finite. Thus one is interested in botimasgtic and
non-asymptotic bounds for ergodic averages of non-statjolMlarkov chains.

7.4.1 Asymptotic bounds for ergodic averages

As above, we assume th@X,,, P) is a time-homogeneous Markov chain with transition kernel
p, stationary distributiom, and initial distributiorv.

Theorem 7.16(Ergodic theorem and CLT for non-stationary Markov chains). Letb,n € N.

1) The bias of the estimatof; ,, f is bounded by

| B[Apnf] = u(H)] < llvp” = pllrvll follsup

2) If |lvp™ — plltv — 0 @asn — oo then
Apnf — pu(f) P-as. foranyf € £'(u), and

Vn (Apnf — p(f)) B N(0, 0']20) forany f € £%(u) s.t.Gfy = anfo converges in.”(u),

n=0

wherech% = 2(fo, G fo)r2(w) — (fo, fo)r2(u) is the asymptotic variance for the ergodic aver-
ages from the stationary case.

b+n—1

Proof. 1) SinceE[A,,f] =2 > (vp')(f), the bias is bounded by
i=b

|E[Abn f] = ()] = [E[Abnfo] — u(fo)]

b+n—1 b+n—1

1 ; 1 ;
< - Z [(vp")(fo) — n(fo)l < - Z [vp" — pllrv - | follsup
i=b i=b
The assertion follows since the total variation distaftieg’ — u||tv from the stationary
distributiony is a decreasing function of

2) If |[vp™ — plltv — 0 then one can show that there is a couplig,, Y,,) of the Markov
chains with transition kernel and initial distributions, andyx such that the coupling time

T=inf{n>0:X,=Y,forn>T}
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is almost surely finite (Exercise). We can then approximgtgf by ergodic averages for
the stationary Markov chaift, ):

b+n 1 b+n—1

Ayl =+ > i D4 D () — S Ly

i=b

The second sum is constant fo#-n > T, so% times the sum converges almost surely to
zero, whereas the ergodic theorem and the central limiréme@pply to the first term on
the right hand side. This proves the assertion.

O

To apply the theorem in practice, bounds for the asymptati@nce are required. One possibility
for deriving such bounds is to estimate the contractionfaoent of the transition kernels on the
orthogonal complement

Li(n) = {f € L*(u) = p(f) = 0}
of the constants in the Hilbert spaté(y). Indeed, let

2
()= Lg(p) — f 1 ”fHL2

denote the operator norm pfon L3(u). If

= ny(p”) < 00 (742)

n=0

v(p) = llpllzz p 127l

thenG f, = Z p" fo converges for any € £?(u), i.e., the asymptotic variances$ exist, and
n=0

‘712” = 2(fo, Gfo)r2gy — (fo, fo)z2(uy (7.4.3)
< (2 = V)| foll72(u = (2¢ = 1) Var,(f).

A sufficient condition for[(7.4]2) to hold is(p) < 1; in that case

o n 1 -
c< ;Ov(p) =10 © (7.4.4)

by multiplicativity of the operator norm.

Remark (Relation to spectral gap. By definition,

) = (0f.20) o s (£, 0'PF) ot ol
VDG R D o
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i.e., 7(p) is the spectral radius of the linear operatop*p restricted toL%(;:). Now suppose
thatp satisfies the detailed balance condition w.nt. As remarked above, this is the case for
Metropolis-Hastings chains and random scan Gibbs samplEnenyp is a self-adjoint linear
operator on the Hilbert spade (..). Therefore,

* (fv pf)L2
1(p) = o(p"plizn)"’* = o(plrgg) = sup ~———*, and

fl1 (f7 f)LQ(,u) ’
. . (f)f_pf)LQ(u) .

where thespectral gapGap £) of the generatof = p — [ is defined by

Gap L) = inf =L = inf spe¢—L|z())-

fi1 (f7 f)LQ(,u)

Gap £) is the gap in the spectrum efL between the eigenval@ecorresponding to the constant
functions and the infimum of the spectrum on the complemettetonstants. By (7.4.2) and
(7.4.3),2Gap £) — 1 provides upper bound for the asymptotic variances in thensgtric case.

7.4.2 Non-asymptotic bounds for ergodic averages

For deriving non-asymptotic error bounds for estimatesrgpdic averages we assume contrac-
tivity in an appropriate Kantorovich distance. Supposé thare exists a distanckéon S, and
constantsy € (0,1) anda € R, such that

(A1) Wi(vp,vp) < aWi(v,v) foranyv,v € P(S), and
(A2) Var,, . (f) < E2||f||ﬁip(d) for anyz € S and any Lipschitz continuous functigin: S — R.
Suppose thatX,,, P,) is a Markov chain with transition kerngl

Lemma 7.17(Decay of correlationg. If (A1) and (A2) hold, then the following non-asymptotic
bounds hold for any,, £ € N and any Lipschitz continuous functigh .S — R:

n—1
Varp, [f(X,)] <Y ™| fllfpw. and (7.4.5)
k=0
k
[Cove, [F(X0), FXna)ll < 7571 e (7.4.6)
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Proof. The inequality[(7.4]5) follows by induction on It holds true forn = 0, and if (Z.4.5)
holds for some: > 0 then

Varp, [f(Xn41)] = By [ Varp, [f(Xn1)|FY]] + Varp, [Ex[f(Xni1)] o]
= B, | Varyx, ) (f)] + Varp, [(pf)(X,)]

n—1

< fIEipa) + Z o™ |pf i)
=0

n
< ZO‘%EQHf”Eip(d)
o

by the Markov property and the assumptions (A1) and (A2).imdpthat

n—1
1
Z o < foranyn € N,
prd 1—a?

the bound[(7.416) for the correlations follows from (7l 4sbjce

| Covp, [f(Xn), f(Xusw)] | = | Covp, [f(Xa), (0" F)(Xa)] |

< Varp, [f(X.)]"* Varp, [(p*£)(X.)] "

1

< 1- 27 1/ lipay 12" f [ipca)

ak

WEQHfHEip(d)

by Assumption (Al). O

IA

As a consequence of Lemrha 7.17 we obtain a non-asymptotier ppund for variances of
ergodic averages.

Theorem 7.18(Quantitative bounds for bias and variance of ergodic averags of non sta-
tionary Markov chains). Suppose that (A1) and (A2) hold. Then the following uppemnbsu
hold for anyb, n € N, any initial distributionv € P(S), and any Lipschitz continuous function
f:5—=R:

ab

1 aWé(y’ )| £ Lipca) (7.4.7)

S|

| B, [Avnf] = n(f)] <
1

1 . OéQb
Varp, [Apnf] < ||f||ﬁip(d) T=ar (02 I — Val"(V)) (7.4.8)
wherey is a stationary distribution for the transition kerngl and

Var(v) = % / / d(z, y) v (dz)v(dy).
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Proof. 1) By definition of the averaging operator,

b+n—1

EfAuf] =~ 3 wp)(f),  andthus
= 1 b+n—1 '
B[ Apnf] = p(f)] < — A [(vp")(f) — p(f)]
b+n—1 = +n—1

b
1 1
-~ Z 2 (' 1) || fllupa) < — Z (v 1) 1 f llipa-

3

2) By the correlation bound in Lemrba 7117,

b+n—1 bn—-1  1ij

1 ali=il
Varp, [Apn f] = Z Covp, [f(Xi), f(X;)] < ) Z T — o2 7’ Hf”ﬁip(d)

i,j=b i,j=b

—2

_1_ 7@ . 2°° L , 1 o? )
_ﬁ(l—oﬂ) + ;04 ”fHLip(d)—ﬁm”f”up(d)-

Therefore, for an arbitrary initial distributiane P(.5),

Varp, [Aynf] = E, [Varp, [y f|Xo]] + Varp, [E, [Apn f]Xo]]

1bJrnfl A
n Z pi]

i=b

= /Varpw [Ap flv(dx) + Var,

1 &2 b4+n—1 2
T N9 2 1/2
< n(l— a)? HfHLip(d) + < g Var, (p' f) ) )

The assertion now follows since

Var, (1) < 519 i [ dlwvPvidoptay

< o™ || fIltip(a) Var(v).

7.5 Couplings of diffusions
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Appendix

Let (2, A, P) be a probability space, we denote£Y(2, A, P) (L'(P)) the space of measurable
random variables( : Q — R with E[X ] < co andL!'(P) := £!(P)/ ~ where two random
variables a in relation to each other, if they are equal alrosrywhere.

A.1 Conditional expectation

For more details and proofs of the following statements Ebefle:Stochastic processes]|[11].

Definition (Conditional expectationg. Let X € £'(Q, A, P) (or non-negative) andF C A a
o-algebra. A random variable € £1(Q, F, P) is calledconditional expectatiorof X givenF
(written Z = E[X|F]), if

e / is F-measurable, and

e forall B € F,

/ZdP:/XdP.
B B

The random variablé’[ X | F] is P-a.s. unique. For a measurable Spg¢eS) and an abritatry
random variableY” : Q — S we definel[ X |Y] := E[X|o(Y)] and there exists &-a.s. unique
measurable functiog : S — R such thatE[X|o(Y)] = g(Y). One also sometimes defines
E[X|Y =y] := g(y) py-a.e. @y law of Y).

Theorem A.1. Let X, Y and X,,(n € N) be non-negative or integrable random variables on
(Q,A, P)andF,G C Atwoo-algebras. The following statements hold:

257
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(1). Linearity: E[AX + puY|F| = AE[X|F| + pE[Y|F] P-almost surely for all\, 1z € R.
(2). Monotonicity: X > 0 P-almost surely implies that[ X |F] > 0 P-almost surely.
(3). X =Y P-almost surely implies thaf [ X |F]| = E[Y|F] P-almost surely.

(4). Monotone convergence: (IX,,) is growing monotone witlkx; > 0, then

Elsup X,,|F] = sup E[X,|F] P-almost surely.

(5). Projectivity / Tower property: 1§ C F, then
E[E[X|F]|G] = E[X|G] P-almost surely.

In particular:
E[E[X|Y, Z]|Y] = E[X|Y] P-almost surely.

(6). LetY be F-measurable witl - X € £! or > 0. This implies that

ElY - X|F] =Y - E[X|F] P-almost surely.

(7). Independence: IX is independent of, thenE[X|F] = E[X] P-almost surely.

(8). Let(S,S) and (7, T) be two measurable spacesYif: 2 — S is F-measurable,
X : Q — T independentaf and f : S x T'— [0, 00) a product measurable map, then it
holds that
E[f(X,Y)|Fl(w) = E[f(X,Y(w))] for P-almost allw

Definition (Conditional probability ). Let(£2, A, P) be a probability spaceF a os-algebra. The
conditional probabilityis defined as

PA|F)(w) := E[14|F](w) VA € F,w € Q.

A.2 Martingales

Classical analysis starts with studying convergence ofieieces of real numbers. Similarly,
stochastic analysis relies on basic statements about seegief real-valued random variables.
Any such sequence can be decomposed uniquely into a maetjnga, a real.valued stochastic
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process that is “constant on average”, and a predictabte pherefore, estimates and conver-
gence theorems for martingales are crucial in stochasalysis.

A.2.1 Filtrations

We fix a probability space(2, A, P). Moreover, we assume that we are given an increasing
sequenceF,, (n = 0,1,2,...) of subo-algebras ofA. Intuitively, we often think ofF,, as
describing the information available to us at timeFormally, we define:

Definition (Filtration, adapted procesy. (1). Afiltrationon((2,.4) is an increasing sequence
Fo C FL € F C ...
of o-algebras?, C A.
(2). Astochastic process(,,),>o is adapted to afiltration.F,, ),.>o iff each.X,, is F,,-measurable.

Example. (1). Thecanonical filtration(F-X) generated by a stochastic procéss,) is given
by
FX = o0(Xo, X1,.... X,).

n

If the filtration is not specified explicitly, we will usuallgonsider the canonical filtration.

(2). Alternatively, filtrations containing additional mimation are of interest, for example the
filtration

Fn:O'(Z,X(],Xh...,Xn)
generated by the procegX,,) and an additional random variable or the filtration
‘Fn = U(X07%7X17Y17"'7Xnayn)

generated by the proce$X,,) and a further procesg’,). Clearly, the proces&X,,) is
adapted to any of these filtrations. In gene(&,,) is adapted to a filtratio.F,,) if and
only if 7X C F, for anyn > 0.

A.2.2 Martingales and supermartingales

We can now formalize the notion of a real-valued stochasticgss that is constant (respectively
decreasing or increasing) on average:

Definition (Martingale, supermartingale, submartingale).
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(1). A sequence of real-valued random variahlds : 2 — R (n = 0,1,...) on the proba-
bility space((2, A, P) is called a martingale w.r.t. the filtratio(F,,) if and only if
(@) (M,) is adapted w.r.t(F,),
(b) M, is integrable for any. > 0, and
(c) E[M,, | Fn-a] = M,,—, foranyn € N.
(2). Similarly,(M,) is called a supermartingale (resp. a submartingale) W, ), if and only

if (@) holds, the positive pat/;" (resp. the negative pait/ ) is integrable for any: > 0,
and (c) holds with =" replaced by “<”, “ >" respectively.

Condition (c) in the martingale definition can equivalert&/written as
(¢) E[Mpy1 — M, | F,] =0 foranyn € Z.,
and correspondingly with=" replaced by <” or “ >" for super- or submartingales.

Intuitively, a martingale is a "fair game%ﬁ&%, i.e., M, is the best prediction (w.r.t. the mean
square error) for the next valud,, given the information up to time — 1. A supermartingale
is “decreasingon average”, a submartingale‘isicreasingon average”, and a martingale is both

“decreasing” and “increasing”, i.€'¢constanton average”. In particular, by induction on a

martingale satisfies
E[M,] = E[M,] foranyn > 0.

Similarly, for a supermartingale, the expectation valégs/,| are decreasing. More generally,
we have:

Lemma A.2. If (M,,) is a martingale (respectively a supermartingale) w.r.t. ladtion (F,,)
then
E[M, x| Fol = M, P-almost surely for any, & > 0.

A.2.3 Doob Decomposition

We will show now that any adapted sequence of real-valuaedbrarvariables can be decomposed
into a martingale and a predictable process. In partictharyariance process of a martingale
(M,,) is the predictable part in the corresponding Doob decontipasif the proces$i/?). The
Doob decomposition for functions of Markov chains implies Martingale Problem characteri-
zation of Markov chains.

Let (€2, A, P) be a probability space andF,,),>o a filtration on(, A).
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Definition (Predictable proces$. A stochastic processi,,),>o is called predictable w.r.t{F,)
if and only if Aj is constant and4,, is measurable w.r.t7,_; for anyn € N.

Intuitively, the valueA,, (w) of a predictable process can be predicted by the informatraitable
attimen — 1.

Theorem A.3(Doob decomposition. Every(F, ) adapted sequence of integrable random vari-
ablesY,, (n > 0) has a uniqgue decomposition (up to modification on null sets)

Y, = M, + A4, (A.2.1)

into an (F,,) martingale(M,,) and a predictable procegsi,,) such thatd, = 0. Explicitly, the
decomposition is given by

An = Y EYi—Yio|Fel, and M, =Y, —A,. (A.2.2)

k=1

Remark. (1). Theincrement&[Y; — Y, | Fi_1] of the proces$A,,) are the predicted incre-
ments of(Y,,) given the previous information.

(2). The proces$y,,) is a supermartingale (resp. a submartingale) if and onheifaredictable
part(A, ) is decreasing (resp. increasing).

Proof of Theorerh Al3. Uniquenedor any decomposition as in_(A.2.1) we have
Yi—-Yi1 = M,—M,_1+ A, — Ap_4 foranyk € N.
If (M,,) is a martingale an@4,,) is predictable then
ElY, =Y, 1| Fr1] = E[Ax— A 1| Fr1] = Ar— A P-a.s.

This implies that[(A.2.2) holds almost surelyAf, = 0.

Existence:Conversely, if(A,,) and (M,,) are defined byl (A.2]2) thef4,,) is predictable with
Ay = 0 and(MM,) is a martingale, since

EMy — My_1|Fra] =0 P-a.s. for anyk € N.

O
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A.3 Stopping times

Throughout this section, we fix a filtratiddF,, ).~ on a probability spac&?, A, P).

A.3.1 Martingale transforms

Suppose that)/,),>o is @ martingale w.r.t(F,,), and(C,, ).y is a predictable sequence of real-
valued random variables. For example, we may think’gfas the stake in the-th round of

a fair game, and of the martingale increméi{ — M,,_; as the net gain (resp. loss) per unit
stake. In this case, the capitial of a player with gambling stratedy”,,) aftern rounds is given
recursively by

I, = I,.1+C, - (M,— M, ) foranyn € N,
ie.,
L, = Ip+> Ci-(My— M)
k=1

Definition (Martingale transform). The stochastic proce$s, M defined by

(CM), == > Ci- (My— My_y)  foranyn >0,

k=1

is called the martingale transform of the martingdl&/,,),>o w.r.t. the predictable sequence
(Ck)r>1, Or the discrete stochastic integral of',) w.r.t. (M,,).

t
The proces$’, M is a time-discrete version of the stochastic integfré]s dM, for continuous-

0
time processe§' and M, cf. [Introduction to Stochastic Analysis].

Example (Martingale strategy). One origin of the word “martingale” is the name of a well-
known gambling strategy: In a standard coin-tossing gaheestake is doubled each time a loss
occurs, and the player stops the game after the first time & Withe net gain im rounds with
unit stake is given by a standard Random Walk

M, = m+...+n,, n; Li.d. with Plp; = 1] = P[n; = —1] = 1/2,
then the stake in the-th round is

C, = 2! ifm=...=n,1=—1,and C, = 0 otherwise.

Markov processes Andreas Eberle



A.3. STOPPING TIMES 263

Clearly, with probability one, the game terminates in firtitee, and at that time the player has
always won one unit, i.e.,

P[(C.M), =1 eventually = 1.

At first glance this looks like a safe winning strategy, butofirse this would only be the case,
if the player had unlimited capital and time available.

Theorem A.4(You can't beat the system). (1). If (M,).>o is an (F,) martingale, and
(Ch)n>1 is predictable withC,, - (M,, — M,,_,) € L}(Q, A, P) foranyn > 1, thenC, M is
again an(F,) martingale.

(2). If (M,,) is an (F,,) supermartingale andC,,),>; iS non-negative and predictable with
C, - (M, — M,_,) € L for anyn, thenC, M is again a supermartingale.

University of Bonn April 2015



264 CHAPTER A. APPENDIX

Proof. Forn > 1 we have

E[(C.M)n - (COM)n—l | ‘Fn—l] = E[Cn ) (Mn - Mn—l) | ‘Fn—l]
= Cn . E[Mn — M, | -Fn—l] = 0 P-a.s.
This proves the first part of the claim. The proof of the secoad is similar. O

The theorem shows that a fair game (a martingale) can notheformed by choice of a clever
gambling strategy into an unfair (or “superfair’) game. lnahels of financial markets this fact is
crucial to exclude the existence of arbitrage possibdifreskless profit).

Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain
E[(CeM),] = E[(CeM)o] = 0 foranyn > 0
by the martingale property, although

lim (CoM), =1 P-a.s.

n—oo

This is a classical example showing that the assertion afdh&nated convergence theorem may
not hold if the assumptions are violated.

Remark. The integrability assumption in Theorém A.4 is always $ietisif the random variables
C,, are bounded, or if both, and )M, are square-integrable for any

A.3.2 Stopped Martingales

One possible strategy for controlling a fair game is to teate the game at a time depending on
the previous development. Recall that a random variablé2 — {0,1,2,...} U{occ} is called
astopping timew.r.t. the filtration(F,,) if and only if the even{T" = n} is contained inF,, for
anyn > 0, or equivalently, iff{T" < n} € F, foranyn > 0.

We consider arf.F,,)-adapted stochastic proces¥.,,),>o, and an(F,,)-stopping timel” on the
probability spaces?, A, P). The process stopped at tirids defined ag M7 a,)n>0 Where

M, (w) forn < T(w),
MT/\n(w> = MT(w)/\n(w> =
Mrpey(w)  forn > T(w).

For example, the process stopped at a hitting timeets stuck at the first time it enters the set
A.
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Theorem A.5(Optional Stopping Theorem,Version 3. If (M,,),.>o iS @ martingale (resp. a su-
permartingale) w.r.t(F,,), andT is an(F,)-stopping time, then the stopped procet&-,,,).>o
is again an(.F,,)-martingale (resp. supermartingale). In particular, weviea

E[Mrp) = E[My] for anyn > 0.

Proof. Consider the following strategy:
Cn = [{Tzn} = 1_[{T§n71}7

i.e., we put a unit stake in each round before timand quit playing at timg". SinceT is a
stopping time, the sequen¢€, ) is predictable. Moreover,

Mppn — My = (CeM),, foranyn > 0. (A.3.1)

In fact, for the increments of the stopped process we have

= Cn ' (Mn - Mn—l)a

Mn — Mn,1 if T Z n
Mrpan — MT/\(nfl) =

0 ifT <n-—1

and [A.3.1) follows by summing over. Since the sequend€’,) is predictable, bounded and
non-negative, the proces§§ M is a martingale, supermartingale respectively, provithedsame
holds forM. O

Remark (IMPORTANT ). (1). In general, it i;jNOT TRUE under the assumptions in Theorem
[A.5 that

E[Myr] = E[M,], E[Mr] < E[M,] respectively (A.3.2)

Suppose for example that/,, ) is the classical Random Walk startingleand?” = Ty is
the first hitting time of the point. Then, by recurrence of the Random Walk< oo and
My = 1 hold alImost surely although/, = 0.

(2). If, on the other hand]" is abounded stopping timehen there existea € N such that
T(w) < nforanyw. In this case, the optional stopping theorem implies

E[MT] = E[MT/\n] (é) E[Mo]-
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Example (Classical Ruin Problem). Leta, b, x € Z with a < < b. We consider the classical
Random Walk

n . . - 1
X, =x+» m  npiid owith Ply = £1] = 3
i=1

with initial value X, = z. We now show how to apply the optional stopping theorem topmaen
the distributions of the exit time

T(w) = min{n >0 : Xn(w) g (a’a b)}v

and the exit pointX;. These distributions can also be computed by more traditiorethods
(first step analysis, reflection principle), but martingajesld an elegant and general approach.

(1). Ruin probabilityr(x) = P[X = a].
The process X, ) is a martingale w.r.t. the filtratiotF,, = o(m,...,n,), andT < oo
almost surely holds by elementary arguments. As the stoppmbssX ., is bounded
(a < Xrpn << b), we obtain

t = E[Xy] = E[Xra] "=° E[X7] = a-r(x)+b-(1—r(z))

by the Optional Stopping Theorem and the Dominated Connesgy&@heorem. Hence

r(z) = (A.3.3)

(2). Mean exit time fronta, b).
To compute the expectation valdgT], we apply the Optional Stopping Theorem to the
(F,) martingale
M, = X?—n.

By monotone and dominated convergence, we obtain

e? = E[My] = E[Mpn] = E[X2,,] - E[T An]

Therefore, by[(A.3.3),

E[T] = E[X2]—2* = ad® r(x)+ b (1 —r(x)) —2°
= (b—2) (z—a). (A.3.4)
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3).

(4).

Mean passage time ofis infinite.
The first passage ting, = min{n > 0 : X, = b} is greater or equal than the exit time
from the interval(a, b) for anya < x. Thus by [(A.3.4), we have

E[T,) > lim (b—2x)-(x —a) = oo,

a——0o0

i.e., T, is not integrablé These and some other related passage times are important ex
ples of random variables with a heavy-tailed distributiad afinite first moment.

Distribution of passage times.
We now compute the distribution of the first passage tifpexplicitly in the caser = 0
andb = 1. Hence letl’ = T;. As shown above, the process

M) = e /(cosh \)", n >0,

n

is a martingale for each € R. Now suppose > 0. By the Optional Stopping Theorem,
1 = E[My] = E[M3,,] = E[e**™ /(cosh \)""] (A.3.5)

for anyn € N. Asn — oo, the integrands on the right hand side converge teosh \)~7-
Itr<o0y- Moreover, they are uniformly bounded by, sinceX;,, < 1 for anyn. Hence

by the Dominated Convergence Theorem, the expectationeorght hand side of (A.315)
converges td’[e* /(cosh \)T'; T' < oo], and we obtain the identity

El(cosh\)™; T < o0] = e for any A > 0. (A.3.6)

Taking the limit as\ \, 0, we see tha’|[T" < oo] = 1. Taking this into account, and
substitutings = 1/ cosh A in (A.3.6), we can now compute the generating functior of
explicitly:

Es" ] =e* = (1-V1-52)/s  foranysc (0,1). (A.3.7)

Developing both sides into a power series finally yields
- - +1 1/2 2m—1
s P[T=n] => (-1)" §2mL,
n=0 m=1 m

Therefore, the distribution of the first passage time of given by P[T' = 2m] = 0 and

P[T=2m—1] = (—=1)™*"! (1/2) = (—1)™*tt. % : (—%) (% —m+ 1) /m!

m

foranym > 1.
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A.3.3 Optional Stopping Theorems

Stopping times occurring in applications are typically hounded, see the example above.
Therefore, we need more general conditions guaranteeatg{#h3.2) holds nevertheless. A
first general criterion is obtained by applying the Domida@®nvergence Theorem:

Theorem A.6 (Optional Stopping Theorem, Version 3. Suppose that),,) is a martingale
w.r.t. (F,), T is an (F,)-stopping time withP[T" < oo] = 1, and there exists a random variable
Y € LY, A, P) such that

|Mrpn| < Y P-almost surely for any, € N.

Then
E[Mr] = E[Mo].

Proof. SinceP[T < o] = 1, we have

Mp = lim Mqpp, P-almost surely.

n—oo

By Theoreni A.bE[M,] = E[Mrn,], and by the Dominated Convergence Theorem,
E[MT/\n] — E[MT] asn — o00. ]

Remark (Weakening the assumptiong Instead of the existence of an integrable random vari-
ableY dominating the random variablég,,,,, n € N, it is enough to assume that these random
variables arainiformly integrablei.e.,

sup E[|Mrpn|; [Mrpn| >¢]  — 0 asc — oo.
neN

For non-negative supermartingales, we can apply Fatoursha instead of the Dominated Con-
vergence Theorem to pass to the limitras— oo in the Stopping Theorem. The advantage is
that no integrability assumption is required. Of course,fhce to pay is that we only obtain an
inequality:

Theorem A.7 (Optional Stopping Theorem, Version 3. If (M,,) is a non-negative supermartin-
gale w.r.t.(F,), then

holds for any(.F,,) stopping timer".
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Proof. SinceMr = lim Mr,, on{T < oo}, andM7 > 0, Theoreni A.b combined with Fatou’s
n—oo
Lemma implies

E[Mo] > liminf E[Mpn,] > E [liminf MTM] > E[My; T < .

n—o0 n—oo

A.4 Almost sure convergence of supermartingales

The strength of martingale theory is partially due to powkgeneral convergence theorems that
hold for martingales, sub- and supermartingales. (L%f),>, be a discrete-parameter super-
martingale w.r.t. a filtratio{F,,),,~o on a probability spac&?, A, P). The following theorem
yields a stochastic counterpart to the fact that any lowemnbed decreasing sequence of reals
converges to a finite limit:

Theorem A.8 (Supermartingale Convergence Theorem, Dodb If sup,~, E[Z,] < oo then
(Z,) converges almost surely to an integrable random varighlee £(9, A, P). In particular,
supermartingales that are uniformly bounded from abovereqge almost surely to an integrable
random variable.

Remark (L' boundedness and.! convergencg.
(1). Although the limit is integrable,! convergence doasot hold in general.

(2). The conditiorsup E[Z,] < oc holds if and only if(Z,) is bounded inL'. Indeed, as
E[Z] < oo by our definition of a supermartingale, we have

E[|Z,|] = E[Z,)) +2E[Z]] < E[Z) +2E[Z]] for anyn > 0.

For proving the Supermartingale Convergence Theorem, tseduce the numbel/ () (w) of
upcrossings over an interval, b) by the sequencg,, (w), cf. below for the exact definition.
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b A
a'//\/\. / \/\/

N / \ )
Y .
1st upcrossing 2nd upcrossing
Note that ifU(**) (w) is finite for any non-empty bounded interval b) thenlim sup Z,(w) and
liminf Z,(w) coincide, i.e., the sequen¢&,,(w)) converges. Therefore, to show almost sure

convergence ofZ,,), we derive an upper bound féf(?). We first prove this key estimate and
then complete the proof of the theorem.

A.4.1 Doob’s upcrossing inequality

Forn € N anda,b € R with a < b we define the numbér,\™” of upcrossings over the interval
(a,b) before timen by

Ur(za’b) — max{kZO: J0<s1 <ty <s9<ty...<sp <ty <n:Z, <a,l, Zb}.
Lemma A.9 (Doob). If (Z,,) is a supermartingale then

(b—a)- E[UY] < E[(Z, —a)7] for anya < bandn > 0.

n

Proof. We may assumé&[Z, ] < oo since otherwise there is nothing to prove. The key idea is
to set up a predictable gambling strategy that increasesampital by(b — «) for each completed
upcrossing. Since the net gain with this strategy shoulthdgma supermartingale this yields an
upper bound for the average number of upcrossings. Here sttategy:

e Wait until 7, < a.

e Then play unit stakes unt, > b.

T

The stake, in roundk is

1 ifZQSCL,
C, =

0 otherwise,
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and

c 1 if (Ck‘fl =1 ande,l < b) or (Ck,1 =0 ande,1 < a),

=
0 otherwise.

Clearly, (Cy) is a predictable, bounded and non-negative sequence dfmawmdriables. More-

over,Cy, - (Zy, — Zy_1) is integrable for any: < n, becausé&’, is bounded and

E[|Z|] = 2E[Z]) - E[2)) < 2E|Z{] - E|Z,) < 2E(Z}] - E[Z;]

for k < n. Therefore, by Theorem A.4 and the remark below, the process

k
(Co2)y = ZCz'(Zi—Zz;l), 0<k<n,

=1
Is again a supermartingale.

Clearly, the value of the proceg§ Z increases by at leagk — a) units during each completed
upcrossing. Between upcrossing periods, the valugf ), is constant. Finally, if the final
time n is contained in an upcrossing period, then the process caeake by at mostZ,, — a)~

units during that last period (sincé. might decrease before the next upcrossing is completed).
Therefore, we have

(CoZ)n > (b—a)-UY —(Z,—a)", ie.,

A /\\Y/\ [\
DV N

Zy,
Gain>b—a Gain>b—-a  Loss< (Z,—a)”
Since(C, 7 is a supermartingale with initial valug we obtain the upper bound
(b—a) B < B[(CuZ)a] + El(Zy —a)7] < E[(Z,—a)7].
U
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A.4.2 Proof of Doob’s Convergence Theorem
We can now complete the proof of TheoreEmIA.8.

Proof. Let

U(a,b) = sup Uéa,b)
neN

denote the total number of upcrossings of the supermatériga) over an intervala, b) with
—o00 < a < b < co. By the upcrossing inequality and monotone convergence,

~sup E[(Z, —a)7]. (A.4.1)

n—o0 — Qa neN

Assumingsup E|[Z, ] < oo, the right hand side of (A.4.1) is finite sin¢&,, — a)~ < |a| + Z,, .
Therefore,
U < o  P-almost surely,

and hence the event

{liminf Z,, # limsup Z,} = U (U@ = 0}

a,beQ
a<b

has probability zero. This proves almost sure convergence.

It remains to show that the almost sure lindit, = lim 7, is an integrable random variable
(in particular, it is finite almost surely). This holds trug, &y the remark below Theordm A.8,
sup E[Z,] < oo implies that(Z,) is bounded in’!, and therefore

E[|Zs|] = Ellim |Z,]] < liminf E[|Z,]|] < o

by Fatou’s lemma. O

A.4.3 Examples and first applications
We now consider a few prototypic applications of the almasé £onvergence theorem:

Example (Sums of i.i.d. random variableg. Consider a Random Walk

Sn = Z i
=1

on R with centered and bounded increments:
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Suppose thaP[n; # 0] > 0. Then there exists > 0 such thatP[|n;| > ¢] > 0. As the
increments are i.i.d., the evefit);] > <} occurs infinitely often with probability one. Therefore,
almost surely the martingalé,,) does not converge as— oc.

Now leta € R. We consider the first hitting time
T, = min{n >0 : S, > a}

of the intervala, co). By the Optional Stopping Theorem, the stopped Random \\&k. . ),.>0
is again a martingale. Moreover, &8s < a for anyk < T, and the increments are boundeddy
we obtain the upper bound

Stoan < a+c foranyn € N.

Therefore, the stopped Random Walk converges almost shyellye Supermartingale Conver-
gence Theorem. A&S,,) does not converge, we can conclude tRgE, < oo] = 1 for anya > 0,
Le.,

limsup S,, = oo almost surely.

Since(S,,) is also a submartingale, we obtain
liminf S,, = —oco  almost surely

by an analogue argument.

Remark (Almost sure vs. LP convergence. In the last example, the stopped process does not
converge inL? for anyp € [1,00). In fact,
lim E[St,an] = E[S1,] > a whereas E[Sy] = 0.

n—oo

Example (Products of non-negative i.i.d. random variable} Consider a growth process

=1

with i.i.d. factorsY; > 0 with finite expectatiornx € (0, c0). Then
M, = Z,/a"

Is a martingale. By the almost sure convergence theoremitalimit 1/, exists almost surely,
becausé,, > 0 for all n. For the almost sure asymptotics(df, ), we distinguish three different

cases.
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(1). o < 1 (subcritical): In this case,

converges t® exponentially fast with probability one.

(2). a =1 (critical): Here(Z,,) is a martingale and converges almost surely to a finite lithit.
P[Y; # 1] > 0 then there exists > 0 such thafy; > 1 + ¢ infinitely often with probability
one. This is consistent with convergencd &f,) only if the limit is zero. Hence, ifZ,,) is
not almost surely constant, then also in the critical cgse» 0 almost surely.

(3). a > 1 (supercritical): In this case, on the s¢f\/, > 0},
Ly = M, -a" ~ My-a",

i.e., (Z,) grows exponentially fast. The asymptotics on the{sgt, = 0} is not evident
and requires separate considerations depending on thd.mode

Although most of the conclusions in the last example coultehzeen obtained without martin-
gale methods (e.g. by taking logarithms), the martingapg@gch has the advantage of carrying
over to far more general model classes. These include fangbesbranching processes or expo-
nentials of continuous time processes.

Example (Boundary behaviour of harmonic functions). Let D C R? be a bounded open
domain, and lek : D — R be a harmonic function oP that is bounded from below:

Ah(z) = 0 foranyz € D, inf h(z) > —oc. (A.4.2)

zeD

To study the asymptotic behavior éfx) asx approaches the boundatyD, we construct a
Markov chain(X,,) such thath(X,) is a martingale: Let : D — (0,00) be a continuous
function such that

0 < r(z) < dist(z,0D) foranyz € D, (A.4.3)

and let(X,,) w.r.t P, denote the canonical time-homogeneous Markov chain wéte s{paceD,
initial value z, and transition probabilities

p(z,dy) = Uniform distribution on the sphergy € R? : |y — x| = r(z)}.
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By (A.4.3), the functiom is integrable w.r.tp(x, dy), and, by the mean value property,
(ph)(x) = h(z) foranyx € D.

Therefore, the proceds(.X,,) is a martingale w.r.t. P, for eachx € D. As h(X,) is lower
bounded by[(A.4]2), the limit as — oo exists P,-almost surely by the Supermartingale Con-
vergence Theorem. In particular, since the coordinatetiomex — x; are also harmonic and
lower bounded oD, the limit X, = lim X,, exists P,-almost surely. MoreoverX, is in 9D,
because is bounded from below by a strictly positive constant on amypact subset ab.

Summarizing we have shown:

(1). Boundary regularity: If h is harmonic and bounded from below dn then the limit
lim h(X,) exists along almost every trajectal, to the boundaryD.

n—oo

(2). Representation of in terms of boundary valuesf 4 is continuous oD, thenh(X,,) —
h(X) P.-almost surely and hence

W) = lim E[h(X5)] = Elh(X)],

n—oo

i.e., the distribution ofX ., w.r.t. P, is the harmonic measure oD.

Note that, in contrast to classical results from analydis, first statement holds without any
smoothness condition on the boundardy. Thus, although boundary values/omay not exist
in the classical sense, they still do exist along almostyetrajectory of the Markov chain!

A.5 Brownian Motion

Definition (Brownian motion)

University of Bonn April 2015



276 CHAPTER A. APPENDIX

(1). Leta € R. A continous-time stochastic process : (2 — R,t > 0, definend on a
probability spacg2, A, P), is called aBrownian motion (starting in a)if and only if

a) By(w) =a foreachw € Q.

b) Forany partition0 <t, <t; < --- < t,, the incrementd3,  , — B, are indepedent
random variables with distribution

Bti+1 - Bti ~ N(O, tz‘+1 - tl)

c) P-almost every sample path— B;(w) is continous.

d) AnR<-valued stochastic procegs (w) = (Bt(l)(w), ...,BY (w)) is called a multi-dimensional
Brownian motion if and only if the component proces(siﬂ(é)), e (Bt(d)) are independent
one-dimensional Brownian motions.

Thus the increments of é&dimensional Brownian motion are independent over disjome
intervals and have a multivariate normal distribution:

B, —Bs; ~ N(0,(t—s)-1;) forany0 <s <t.
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