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Chapter 1

Continuous-time Markov chains

Additional reference for this chapter:
e Asmussen [4]
e Stroock [20]
e Norris [16]
e Kipnis, Landim [13]

1.1 Markov properties in discrete and continuous time

Let (S, .7) be a measurable space, p,(z, dy) transition probabilities (Markov kernels) on (.5, .%),
(2, A, P) a probability space and F,,(n = 0,1, 2, ...) a filtration on (2, A).

Definition 1.1. A stochastic process (X, )n=012.. on (Q, A, P) is called (F,,)-Markov chain
with transition probabilities p,, if and only if

(i) X, is F,,-measurable Y n > 0

(ii) P[X,11 € B|F,] = pny1(Xp, B) P-a.s. Y/n > 0,B € .¥.

Example (Non-linear state space model). Consider

Xn+1 - Fn—l—l(Xn; Un+1)7
U,: Q— Sn independent random variable, noise
F,: S x S, — S measurable, rule for dynamics

(X0 )n>0 is a Markov chain with respect to F,, = (X, Uy, Ua, ..., Uy,) with transition probabil-
ities p,(x, -) = distribution of F,,(x,U,).
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Remark . [. Longer transitions:

P[X, € B|F,] = (?n e 'pm+2pm+1/)(Xnv B)

-~

=Pm,n

where

(pg)(x, B) = /p(x,dy)q(y,B)

S

n—m

Time-homogeneous case: p, = pn, Ppmn =D

. Reduction to time-homogeneous case:
X, time-inhomogeneous Markov chain, X,, := (n, X,,) space-time process is time-homogeneous
Markov chain on S = {0,1,2,...} x S with transition probabilities

ﬁ((n,x), {m} x B) = Omnt1 'pn+1(x>B)'

. Canonical model for space-time chain with start in (n, ):

There is an unique probability measure P,y on Q = SOV2-} 5o that under Py, ),
Xi(w) = w(k) is a Markov chain with respect to F,, = o(Xo, ... X,,) and with transition
kernels ppy1, Pny2, - . . and initial condition Xo = x P, 1)-a.s.
- [ ]
- [ ]
e .
|
|
1 I °
|
|
1 i } } t 1 1 } }

Pnia Pn+2

LetT: Q — {0,1,...} U{oo} be a (F,)-stopping time, i.e.

{T' =n} € F,¥n >0,
Fr={Ac A|An{T =n} € F,V¥n >0} events observable up to time T.
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Theorem 1.2 (Strong Markov property).
E[F(XT, XT+17 .. ) . [{T<oo}|fT] = E(T,XT)[F(XlL X1> .. )] P-as. on {T < OO}

Proof. Exercise (Consider first 7' = n). ]

1.2 From discrete to continuous time:

Let ¢ € R*, S Polish space (complete, separable metric space), . = B(S) Borel o-algebra,
ps.+(2, dy) transition probabilities on (5, .7), 0 < s <t < 0o, (F;)i>o filtration on (€2, A4, P).

Definition 1.3. A stochastic process (X;)i>o on (Q, A, P) is called a (F+)-Markov process with
transition functions p . if and only if

(i) X;is Fy-measurable Nt >0
(ii) P[X; € B|F,]| = ps+(X;,B) P-as. Y0<s<t, Be.”

Lemma 1.4. The transition functions of a Markov process satisfy

L pssf = f
2. psiPint = psuf Chapman-Kolmogorov equation

PoX las. forevery f: S - Rand (0 < s <t <.

Proof. 1. (poof)(X,) = E[f(X)|F] = f(X,) P-as.

(Puf)(Xe)
2' (ps,uf)<Xs> = E[f(Xu)l:Fs] = ]E[E[f(Xn)‘E] ’fs] = (ps,tpt,uf)<XS> P—a.s.

Remark . 1. Time-homogeneous case: ps; = pi_s
Chapman-Kolmogorov: pspif = psi+f (semigroup property).

2. Kolmogorov existence theorem: Let ps; be transition probabilities on (S, .”) such that
(i) pra(z,) =06, YreS, t>0
(”) PstPtu = Psu Vo <s<t<u
Then there is an unique canonical Markov process (X, P(S@)) on S0 with transition
Sfunctions ps ;.
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Problems:

e regularity of paths ¢ — X;. One can show: If S is locally compact and p,, Feller, then X,
has cadlag modification (cf. Revuz, Yor [17]).

e in applications, p,; is usually not known explicitly.

We take a more constructive approach instead.

Let (X, P) be an (F;)-Markov process with transition functions pj ;.

Definition 1.5. (X, P) has the strong Markov property w.r.t. a stopping time T: 2 — [0, o0] if
and only if

E [f(Xris) <oy | Fr| = (proesf)(X7)

P-a.s. on {T < oo} for all measurable f: S — RT.
In the time-homogeneous case, we have

E [f(XT+s>I{T<oo} | fT} = (psf)(XT)
Lemma 1.6. If the strong Markov property holds then
E [F(Xr+)r<o) | Fr] = B xg [F(Xry)]

P-a.s. on {T < oo} for all measurable functions F: SI0>°) — R*.
In the time-homogeneous case, the right term is equal to

]EXT [F<X)]

Proof. Exercise. ]

Definition 1.7.

PC(R*,S) := {x: [0,00) — S|Vt > 03e > 0: x constant on [t,t + ¢)}

Definition 1.8. A Markov process (X;)i>o on (2, A, P) is called a pure jump process or contin-
uous time Markov chain if and only if

(t — X,) € PC(R*, S)

P-a.s.
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Let ¢;: S x . — [0, 0] be a kernel of positive measure, i.e. v — ¢z, A) is measurable and
A q(z, A) is a positive measure.

Aim: Construct a pure jump process with instantaneous jump rates ¢,(z, dy), i.e.

Piin(x,B) =q(x,B)-h+o(h) Yt>0,zeS, BCS)\{r} measurable

(Xt)ts0 < (Yo, Jn)nso < (Y, Sn) with J,, holding times, S,, jumping times of X,.

J, = >.S; € (0,00] with jump time {.J,, : n € N} point process on R*, ( = supJ,
i=1

explosion time.

Construction of a process with initial distribution p € M;(S):
M () == qi(x, S\ {x}) intensity, total rate of jumping away from x.
Assumption: M\ (z) < oo Vr €S , no instantaneous jumps.

m(x, A) = % transition probability , where jumps from x at time t go to.

a) Time-homogeneous case: q;(x,dy) = q(x,dy) independent of t, \;(z) = A(x), m(z, dy) =
7(x, dy).

Y, (n=0,1,2,...) Markov chain with transition kernel 7(x, dy) and initial distribution x
= Vo) E, ~ Exp(1) independent and identically distributed random variables,
n—1
independent of Y,,, i.e.

Sn|(YE)7 e Yn—la El, e En—l) ~ EXp(/\(Yn_l)),
=1

P Y, for telJ,,Jui1), n>0
T 1A for t>(=supd,

where A is an extra point, called the cemetery.
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Example. /)  Poisson process with intensity A > 0

S={0,1,2,...}, q(z,y) =A-6p114, Az)=AVz, n(r,z+1)=1

S; ~ Exp(\) independent and identically distributed random variables, Y,, = n
Nyo=n & J, <t< Jo,

Ny=#{i>1 : J; <t} counting process of point process {.J,, | n € N}.

Distribution at time t:

Jn_ilSiNF()\,n) )\ n-l ifferentiate r.h.s. > t)\ k
P[N; >n|=P[J, <t] "~ = /&?wmwﬁwﬂgieﬂgfﬁ,
' k=n ’

N; ~ Poisson(At)

2)  Continuization of discrete time chain

Let (Y,,)n>0 be a time-homogeneous Markov chain on S with transition functions p(z, dy),

Xy =Yy,, N, Poisson(1)-process independent of (Y,,),
q(z,dy) = n(z,dy), A z)=1

e.g. compound Poisson process (continuous time random walk):

Ny
X =Y 7,
=1

Z;i: Q0 — R? independent and identically distributed random variables, independent of
(V).

3)  Birth and death chains
S={0,1,2,...}.

b(x) ify=x+1 Tbirthrate”
q(z,y) =qd(z) ify=x—1 ’deathrate”
0 ifly—a[=2

rated(z) rateb(x)

xl—l T r+1
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b) Time-inhomogeneous case:

Remark (Survival times). Suppose an event occurs in time interval [t,t + h] with probability
At - h + o(h) provided it has not occurred before:

PI[T <t+h|T >t]=M-h+o(h)
P[T > t+ h]

PIT >t
~————

survival rate

log P[T' >t + h| — log P[T > {]
h

= P[T>t+hT >t =1-Nh+o(h)

=—\ +o(h)

d
& ElogP[T >t =—N

t
& P[T >t]=exp —/)\sdst
0

where the integral is the accumulated hazard rate up to time ¢,
t

fr(t) = Nexp | — / Asds | - Io,)(t) the survival distribution with hazard rate A,

0

Simulation of T': .
E ~Exp(l), T:=if{t >0 : [Ads> E}
0

t
= PT>t=P /Asds<E =e

0

t
— [ Asds
0

Construction of time-inhomogeneous jump process:

Fix ty > 0 and o € M;(S) (the initial distribution at time t).
Suppose that with respect to Py,

JO = tO; Y ~ L
and
tVitg
— [ Xs(Yo)ds
P(toyu)[Jl > 1 ‘ YE)] —e to

for all t > to, and (Y,,_1, J)nen i8 a time-homogeneous Markov chain on S X [0, c0) with
transition law
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tVJn
— [ Xs(y)ds
PuowYn € dy, Joy1 >t Yo, J1, ..., Y1, Jn] = 15, (Yaor,dy) -e n

i.e.

= ) ds
P(to,,u)[yn c A, ']n—H >t ’YE), Jl, R 7Yn—17 Jn] = / WJn(Yn—lydy) e JIn
A

P-as. forallAe ¥, t>0

Explicit (algorithmic) construction:
o Jo:=to, Yo~ pu
Forn=1,2,...do
e [, ~ Exp(1) independent of Yy, ..., Y, 1, Ey,..., E, 1
. t
o J, :=inf {t >0 : f-]nfl As(Yno1)ds > En}

o V,|(Yo,....Y 1, FEo,...,E,) ~ m; (Yn_1,) where mo(x,-) = d, (or other arbitrary
definition)

Example (Non-homogeneous Poisson process on R™1).

S={0,1,2,...}, @(z,y) = M- Opi1y,
Y, = n, Jn+1|<]n ~ A eif}” A ds dt,
Ny:=#{n>1: J, <t} theassociated counting process

-

<

-
b
3
]

high intensity low intensity

Claim:
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n—1 .
]. fJn(t> = ﬁ <f0t )\s ds) )\te_fo )\sds

2. N, ~ Poisson <fg s ds)

Proof. 1. By induction:

Frn(t) = / Lo () o ()
0

t ]_ r
= /)\te_fr Asds—)' /)\s ds e Jorsds g —

0 0

2. PN, >n] = P[J, <]

Lemma 1.9. (Exercise)

1. (Y,_1,Jy) is a Markov chain with respect to G,, = 0(Yy, ..., Y 1, Er, ..., E,) with tran-
sition functions

p((x,5), dydt) = m(w, dy)\(y) - e~ DL (1) dt

2. (Jn,Y,) is a Markov chain with respect to G = o(Yy, ..., Yy, By, ..., E,) with transition
functions
B ((x,5), dtdy) = M(x) - e MO (#)m(x, dy)

Remark. 1. J, strictly increasing.
2. J, = 0o Vn,mis possible ~~ X, absorbed in state Y,, 1.
3. sup J, < oo ~- explosion in finite time

4. {s < (} ={Xs # A} € Fs ~> no explosion before time s.

K, :=min{n : J, > s} first jump after time s. Stopping time with respect to
gn :U(Ely"'aE’rL?}/Ow"aYn—l)’

{Ks < oo} ={s < (}
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Lemma 1.10 (Memoryless property). Let s > to. Then for allt > s,
Pitoy {Ik. >t} N {s <} [ F] =e” JimXa)dr pg g on {s < (}
Le.

Plaoyy [{ ke, >t} N {s < (} N A] = Eggq [6_"5 ME)I AN s < )| vAe R

Remark . The assertion is a restricted form of the Markov property in continuous time: The
conditional distribution with respect to Py, ,,, of Ji, given F coincides with the distribution of
J1 with respect to P x.,).

Proof.
AceF, B An{K, =nY €o (o, Yo, ., I, Yer) = Cns
= PlJg >tINAN{K,=n}]=E [pun >t 6ol ANI{K, :n}]
where

t t

Py > t|Got] = oxp —/)\T(Yn_l)dr — oxp —/)\T(Yn_l)dr P> 5| G,
N

Jn—1 S =X

hence we get

PlJ,>1t|G, 1] =E [e—f%(xs)df CAN{K,=nYn{J, > s}} VneN

where AN{K, =n}N{J, >s} =AN{K;=n}.
Summing over n gives the assertion since

fs < ¢t = LK, =n}.

neN

For y,, € S, t,, € [0, o] strictly increasing define

z =@ ((tn, Yn)n=012..) € PC([to,00), SU{A})
by
o Y, for t,<t<t,y1,n>0
T A for t>supt,
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Let

(Xt)izto := @ ((Jn, Ya)nz0)
FXi=0(X,|s€[to,t]), t>t

Theorem 1.11 (Markov property). Let s > to, Xs.00o := (Xi)i>s. Then
Etoy) [F(Xsioo) - Iis<cy | F¥] (W) = Egs xy () [F(Xsio0)]  P-as. {s < (}

for all
F: PC([s,00), SU{A}) - R*

measurable with respect to o (x — x; | t > s).

Proof.: Xs.co = O(s, Y, -1, Jkos Yo Jrog1, .- .) on {s < (} = { K, < o0}

- [ ]

- 0 [ *J

O 0

to § JK,
i.e. the process after time s is constructed in the same way from s, Yx_ 1, Jx_, ... as the orig-
inal process is constructed from tg, Yy, J1,.... By the Strong Markov property for the chain

(Yn—lu Jn)»

Eto) [F(Xaoo) - Isecy | G,
:E(tow) [F © (I)(S’ Ysth JKsa .- ) : [{Ks<oo} ’ ng}
=B B [F o (s, (Yo, J1), (Y1, J2), . )] as. on {K, < oo} = {s < (}.

Since F; C Gk,, we obtain by the projectivity of the conditional expectation,

E(to,u) [F(Xs:oo) : I{s<c} ’ }—s}
) BN [F 0 (s, (Yo, 1), ) Lacgy | 5]
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taking into account that the conditional distribution given G, is 0 on {s > (} and that Yy, _; =
X.
Here the conditional distribution of Jx_ ist k(Xj, -), by Lemma 1.10
K, dt) = M) - e @I T () d
hence
Eto) [F(Xaino) - Isccy | Fs] = BRSNS [F o ®(...)]  as.on{s < (}
Here k( X, -) is the distribution of .J; with respect to P; x,, hence we obtain
E(to,#) [F(XS:OO) ’ [{S<C} | -7:5} = IE(s,Xs) [F(@(s, Yo, J1, - ))}
= E(S,XS) [F(Xsoo)]

Corollary 1.12. A non-homogeneous Poisson process (Ny);>o with intensity A\, has independent
increments with distribution

t
N; — N, ~ Poisson /)\r dr

S

Proof.
PN, =Ny > k| FN] = Py [N — Ny > k] = Py [ < 1]
t
2 Poisson /)\r dr | ({k,k+1,...}).
Hence N, — N, independent of .7-"8N and Poisson ( f; Ar dr) distributed. O]

Recall that the fotal variation norm of a signed measure . on (S,.%) is given by

llley = 1 (S) + o (S) = sup / fr

lf1<1

Theorem 1.13. 1. Under Py, ), (X;)i>t, is a Markov jump process with initial distribution
X, ~  and transition probabilities

ps,t<x7B):P(s,x)[Xt€B] (OSSSt,.TGS,BGy)

satisfying the Chapman-Kolmogorov equations ps pi,, = psu V0 < s <t <.
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2. The integrated backward equation

¢
psi(z, B) =€~ J3 Ar(@) dT(Sm(B) + /e_fsr Au () d“(qrpr,t)(x, B)dr (1.1)

s

holds forall0 < s <t, z € Sand B € .7.

3. Ift — M\(x) is continuous for all x € S, then

(Pssnf)(@) = (1= As(2) - h) f(x) + b - (g5 f)(x) + oh) (1.2)

holds for all s > 0, x € S and bounded functions f: — R such thatt — (q:f)(x) is
continuous.

Remark. 1. (1.2)shows that (X;) is the continuous time Markov chain with intensities \y(x)
and transition rates q;(x, dy).

2. If ( = sup J, is finite with strictly positive probability, then there are other possible con-
tinuations of X, after the explosion time (.

~~ NON-UNniqueness.

The constructed process is called the minimal chain for the given jump rates, since its
transition probabilities p,(x, B) , B € . are minimal for all continuations, cf. below.

3. The integrated backward equation extends to bounded functions f: S — R

t

(parf) () = e s M@ dr p () 4 / e I M@ du (g ) () dr (1.3)

s

Proof. 1. By the Markov property,
P [Xi € BIFX] = Pix,) [Xi € Bl = ps1(Xs, B)  as.

since {X; € B} C{t<(} C{s<(}forall Be ¥ and0 < s <t.

Thus ((Xt)tzto , P(tw)) is a Markov jump process with transition kernels p; ;. Since this
holds for any initial condition, the Chapman-Kolmogorov equations

(ps,tpt,uf) (37) = (ps,uf)(x)

are satisfied forallz € S, 0 < s<t<wand f: S — R.
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2. First step analysis: Condition on G, = o(Jo, Yo, J1, Y1):

Since X; = ®,(Jo, Yo, J1, Y1, Jo, Ys, . . .), the Markov property of (.J,,, Y;,) implies
Pls o) [Xt € B|G~1} (W) = Py [Pe(s, 2, Jo, Yo, J1,Y1,...) € B]
On the right side, we see that

x ift < Ji(w)

@ ) 7J;Ya‘]7y7"' = i
i(s, @, Jo, Yo, J1, Y1, .. ) {@t(J07}67J1,}q,...) ift > Ji(w)

and hence
Hsa) [Xt € Blél] (W) = 02(B) - Lir<y(w) + P vi@nXe € Bl - Iz iy (W)
Ps 2)-a.s. We conclude

ps,t(x, B) = P(s,w)[Xt € B]
= 0u(B) Py [ 1 > 1] + E(s ) [ (Y2, B)st > Ji]

= 550(3) . e_fst /\T(x)dr +

M(z)e 3 Au(z) du /ZTT(J% dy)pr.i(y, BZ dr

t
s :(W?“pr,t)(sz)
/t

= 6,(B) - e—./;-t Ar(@ydr [ o= [T (@) du(qrpr,t)@, B)dr

. This is a direct consequence of (1.1).

Fix a bounded function f: S — R. Note that

O S (%’pr,tf)(x) - Ar(w)(ﬂrpr,tf)(x> S )\r(x) sup ‘f’

forall 0 < r < tand z € S. Hence if r — \,.(x) is continuous (and locally bounded) for
all z € S, then

(Pref)(x) — f(z) (1.4)
asr,t | sforallx € S.

Thus by dominated convergence,

(qrpr,tf) (.CE) - (QSf) (17)
_ / 4o (2, dy) (prs F () — F0)) + (0 F) (@) — (0uf) (@) — 0

asr,t | s provided r — (¢.f)(z) is continuous. The assertion now follows from (1.3).
O
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Theorem 1.14 (A first non-explosion criterion). If A := sup \(z) < oo, then
>0
z€S

(=00 Pyyuw-a.s Vig, pu

Proof.
<
t <
Jp,=inf{t>0 : / As(Yy1) ds > E,
Jn—l

Z Jn—l + 5\_1En

— C:supJnZS\_IZEn:oo a.s.
n—1

Remark . In the time-homogeneous case,

3

Ey
AY,—1)

Ip =

k=1

is a sum of conditionally independent exponentially distributed random variables given {Y}, | k >

0.

From this one can conclude that the events

— B — 1
{( <0} = {kz:; NV < oo} and { NV < oo}

k=0

coincide almost sure (apply Kolmogorov’s 3-series Theorem).

1.3 Forward and Backward Equations

Definition 1.15. The infinitesimal generator (or intensity matrix, kernel) of a Markov jump pro-
cess at time t is defined by

Lz, dy) = qi(z,dy) — M(2)d.(dy)
(L) (@) = (auf) (&) — M(2) f(2)
_ / g, dy) - (f(y) — F(2))

for all bounded and measurable f: S — R.
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Remark. 1. % is a linear operator on functions f: S — R.

2. If S is discrete, £, is a matrix, £,(x,y) = q(v,y) — M(x)0(z,y). This matrix is called
O-Matrix.

Example . Random walk on 7.%:

then

1)) = 34 D (Flo e + S = ) = 21 (0) = 3 (3 (0

Theorem 1.16 (Kolmogorov’s backward equation). Ift — q;(x, -) is continuous in total variation
norm for all x € S, then the transition kernels p; of the Markov jump process constructed above
are the minimal solutions of the backward equation (BWE)

—% (psif) () = = (Lipspaf) (x)  forall bounded f: S — R, 0 <s<t (1.5)

with terminal condition (p;+f)(x) = f(z).

Proof. 1. ps+f solves (1.5):

Informally, the assertion follows by differentiating the integrated backward equation (1.3)
with respect to s. To make this rigorous, we proceed similarly as in the proof of (1.2). First,
one shows similarly to the derivation of (1.4) that

(praf)(x) — (pstf)(x) asr—s

forall0 < s < t, x € S, and bounded functions f: S — R. This combined with the
assumption implies that also

((@rpre f) () — (gspsef) ()]
< () = gula Yy - S0P [pae ] + / 02, dy) (e f(4) — Porf (1)

— 0 asr — sforallz € S

by dominated convergence, because sup |p,+f| < sup|f|. Hence the integrand in (1.3) is
continuous in r at s, and so there exists

L o) () = N Paa )+ (00 F)0) = (Lopac) ()
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2. Minimality:
Let (z, B) — ps+(x, B) be an arbitrary non-negative solution of (1.5). Then

a ot ~ ~
o Epr,t(x? B) = (Q’f‘p’r,t)(x7 B) - Ar(x)pr,t(a; B)
a ; D -7 x)du ~
= =5 (el 2@ (, B)) = e @ 8 5, 1)z, B)

t
inte rateﬁ&t(x’ B) . e—f: Au () duax(B) _ /e—fs’“ Au () du(qrﬁnt)(gj, B) dr

s

integrated backward-equation.

Claim:
]557t($,B> > p57t<x7B) = P(s,m)[Xt S B] Ve S, Be ¥
This is OK if
P Xe € Bt < J,] < psy(x,B) VYn €N
n=0: V

n — n + 1: by First step analysis:
Plso)[Xi € Byt < Jpga | 1, V4]
Y5.(B) - Iieny + Pyl Xe € Bt < o] - Tps iy
where by induction
Py Xi € Bt < Jy] <P, (Y1, B)
Hence we conclude with the integrated backward equation

Piaw)[Xi € Bt < Jup] < Bl -]
t
=G (Ble Ny [ IO ) o, B dr

s

S ﬁs,t(B)

21

Remark . 1. (1.5) describes the backward evolution of the expectation values B, ;) [f (X))

respectively the probabilities P(; ;)| X; € B] when varying the starting times s.

2. In a discrete state space, (1.5) reduces to

0
- %ps,t(‘ra Z) = Z%(x)y)ps,t(y7 Z)) pt,t(xa Z) = 5xz

yeS
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a system of ordinary differential equations.

For S being finite,

t t n
=1

is the unique solution.
If S is infinite, the solution is not necessarily unique (hence the process is not unique).

3. Time-homogeneous case: p,; = pi_s, Ls = Z. The backward-equation (1.5) then be-
comes

d

a(ptf)(l“) = (L f)(x), pof=f

If S is infite, p, = e'%. In particular, if Lis diagonalizable with left/right eigenvectors
u;, v 8.1 ul v; = 0;; and eigenvalues \;, then

n

Z = 2": \iv @ uy Pt = Z vy @ u)

=1 =1

Example. [. General birth-and-death process

d(x) b(z)
6 1 2 -1 T g +1
d
(@, 2) = > alzy) (0ely, 2) — pelw, 2))
lz—yl|=1
=b(z) (pe(x + 1, 2) — pu(, 2)) + d(2) (pe(x — 1, 2) = pe(, 2))
pO(xa Z) = 5xz

2. Continuous-time branching process

The particles in a population die with rate d > 0 and divide into two particles with rate
b > 0, independently from each other.

X; = total number of particles at time t
is a birth-death process on S = {0, 1,2, ...} with total birth/death rates

b(n) =q(n,n+1)=mn-b, din) =q(n,n—1)=n-dAX(n)=n-(b+d)
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Let
n(t) := P [X; = 0] = p(1,0)
the extinction probability. Equation (1.5) gives
n'(t) = dp(0,0) — (b+ d)p:(1,0) + b:(2,0)
=d— (b+d)n(t) + bn(t)?,
1n(0) =0
Hence we get
o it b=d
PXe #0]=1-n(t)=q " .
iy if b#d
ie.
e exponentially decay if d > b
e polynomial decay if d = b (critical case)

e strictly positive survival probability if d < b

Theorem 1.17 (Kolmogorov’s forward equation). Suppose that

At = sup sup A, (r) < oo
0<s<t zeS

forallt > 0. Then the forward equation

d

a(ps,tf)(x) = (psu&f) (), (ps,sf)(z) = f(z) (1.6)

holds for all 0 < s < t, x € S and all bounded functions f: S — R such that t — (q.f)(x) and
t — \(x) are continuous for all x.

Proof. 1. Strong continuity: Fix ty > 0. Note that ||¢.g||sup < A|| f]lsup forall 0 < r < t,.
Hence by the assumption and the integrated backward equation (1.3),

||ps,tf - ps,rf”sup = ||ps,r(pr,tf - f)”sup
<lpraf = fllswp < €@ —=7) - 1 llsup

forall 0 < s <r <t <tyand some function ¢: R — R with limy o (k) = 0.
2. Differentiability: By 1.) and the assumption,
(ryu,2) = (@praf ) ()
is uniformly bounded for 0 <r < u <{yand z € S, and

QTpr,uf = QT(pnuf - f) +QTf — Qtf
——

—0 uniformly



24 CHAPTER 1. CONTINUOUS-TIME MARKOV CHAINS

pointwise as 7, u — t. Hence by the integrated backward equation (1.3) and the continuity
of t — M\(x),

Print (52) —S@) My ) (@) + el (@) = Sf(a)

for all x € S, and the difference quotients are uniformly bounded.

Dominated convergence now implies

ps,t-i—hf_ps,tf —p pt,t+hf —f
h SR

pointwise as i | 0. A similar argument shows that also

ps,tf _ps,t—hf —p pt—h,tf - f

h s,t—h h B ps,tﬂf
pointwise.
[
Remark. [. The assumption implies that the operators £;,0 < s < to, are uniformly
bounded with respect to the supremum norm:
1L fllsup < Ae-[[fllsup VO <5 <.
2. Integrating (1.5) yields
t
b =1+ [ D afar (1.7)
In particular, the difference quotients IM converge uniformly for f as in the asser-
tion.
Notation:

<p, f>=pu(f)= /fdu
e M(S), s>0, p = pupss = Prsp) © X' mass distribution at time t

Corollary 1.18 (Fokker-Planck equation). Under the assumptions in the theorem,

d

I < s [=<pu, Lof >

for all t > s and bounded functions f: S — R such thatt — q,f and t — )\; are pointwise
continuous. Abusing notation, one sometimes writes

d *
aﬂt =
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Proof.

< iy [ >=< pupsy, [ >= /u(dfﬂ) /ps,t(af,dy)f(y) =< 1, psif >
hence we get

< fpgns [ > — < g, [ >
* - =< [psy

,p—t’”h}{ Lot >

as h | 0 by dominated convergence. [

Remark . (Important!)

P(SM)K < OO} >0
= <, 1 >=(S) <1 forlarget
hence the Fokker-Planck equation does not hold for f = 1:

t
<, 1> < <u,1>+/<us,,§fsl> ds
—— ———

<1 =1 0

where £,1 = 0.

Example . Birth process on S = {0,1,2,...}

q(i,j):{b(i) if j=i+1

0 else

ﬂ-(iu j) = 5i+1,j7

Y, = n,

Sy = Jy — Ju1 ~Exp(b(n— 1)) independent,

(=supJ, = ZS” <00 = Zb(n)"‘l < 00
n=1 n=1

In this case, Fokker-Planck does not hold.

The question whether one can extend the forward equation to unbounded jump rates leads to the
martingale problem.
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1.4 The martingale problem

Definition 1.19. A Markov process (X;, Pis2) | 0 < s < t,x € S) is called non-explosive (or
conservative) if and only if ( = 0o P, y-a.s. forall s, x.

Now we consider again the minimal jump process (X, P, ) constructed above. A function
f:]0,00) x S =R
(t,x) = fi(x)

is called locally bounded if and only if there exists an increasing sequence of open subsets B,, C
S such that S = | J B,,, and

forallt > 0, n € N.
The following theorem gives a probabilistic form of Kolmogorov’s forward equation:

Theorem 1.20 (Time-dependent martingale problem). Suppose that t — \(x) is continuous for
all x. Then:

1. The process

fo_ [(0
wf = x| (guﬂr) LX) dr, >t

to

is a local (F;X)-martingale up to  with respect to Py u) for any locally bounded function
f:RY xS — Rsuch that t — fy(x) is C* for all z, (t,x) — 2 fi(x) is locally bounded,
and r +— (g1 fi)(x) is continuous at r =t for all t, x.

2. If \y < oo and f and % f are bounded functions, then M/ is a global martingale.

3. More generally, if the process is non-explosive then MY is a global martingale provided

n !(fsfs)(x)l) <00 (1.8)

zeS
to<s<t

sup (116001 + | (0

forallt > t,.

Corollary 1.21. If the process is conservative then the forward equation

t
0
ps,tft:fs+/pr,t (E+$T) frdrv tOSSSt (19)

S

holds for functions f satisfying (1.8).
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Proof of corollary. M/ being a martingale, we have

t

(ps,tfr)(x) = IE(s,ac) [ft(Xt)} = IE:(s,yc) fs(Xs) +/ <% + gr) fr(Xr) dr

s

— 1)+ [ (54 ) S0 0

forall z € S. O

Remark . The theorem yields the Doob-Meyer decomposition

fi(Xy) = local martingale + bounded variation process

Remark . [. Time-homogeneous case:
If h is an harmonic function, i.e. Zh = 0, then h(X;) is a martingale

2. In general:

If hy is space-time harmonic, i.e. %ht—i—ﬁ hy = 0, then h(X,) is a martingale. In particular,
(pstf)(Xy), (t > s) is a martingale for all bounded functions f.

3. If hy is superharmonic (or excessive), i.e. %ht + Zihy <0, then hy(X,) is a supermartin-
gale. In particular, Elhy(X;)] is decreasing

~~ stochastic Lyapunov function, stability criteria

e.g.

hi(z) = e *h(tc), Zh < ch

Proof of theorem. 2. Similarly to the derivation of the forward equation, one shows that the
assumption implies

50D = s B @)+ (P ) @) Vo e,

or, in a integrated form,

t

0
ps,tft = fs + /ps,r <a_ +$~> fr dr
T

s
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for all 0 < s < t. Hence by the Markov property, for ¢y < s < ¢,

E(tow)[ft(Xt) - fs(Xs) | st]
=Es x,)[fe(Xe) = fs(Xs)] = 0, ) (Xs) — [(Xs)

- / (p (% ' .zr) fr) (X,) dr

S

t
0
:E(to,,u) / (E + Z’) fT(X'r) dr | frx ’

S

because all the integrands are uniformly bounded.

1. For k € N let

qgk)(x, B) := (M(x) AN k) - m(z, B)
denote the jump rates for the process X t(k) with the same transition probabilities as X; and

jump rates cut off at k. By the construction above, the process Xt(k), k € N, and X, can be
realized on the same probability space in such a way that

Xx* =X, as.on {t < Ty}

where
Tk = inf {t Z 0 : >\t<Xt) Z ]{?, Xt ¢ Bk}

for an increasing sequence Bj, of open subsets of S such that f and % f are bounded on
[0,t] x By for all t,k and S = |J By. Since t — A\(X}) is piecewise continuous and the
jump rates do not accumulate before ¢, the function is locally bounded on [0, ¢). Hence

T, /¢ as.ask — o0

By the theorem above,

t
0
M = ) - [ (a%f’“) LX®)dr, 124,

to

is a martingale with respect to Py, ), which coincides a.s. with Mtf fort < T}. Hence Mtf
is a local martingale up to ( = sup 7.

3. If ( =supT) = oo a.s. and f satisfies (1.8), then (Mtf)tzo is a bounded local martingale,
and hence, by dominated convergence, a martingale.
[
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Theorem 1.22 (Lyapunov condition for non-explosion). Let B,,, n € N be an increasing se-
quence of open subsets of S such that S = | B,, and the intensities (s, x) — A\s(x) are bounded
on [0,t] x By, for all t > 0 and n € N. Suppose that there exists a function p: R™ x S — R
satisfying the assumption in Part 1) of the theorem above such that for allt > 0 and x € S,

(1) wi(x) >0 non-negative
(17) 0i<nf<’ . ws(x) — 0 asn — oo tends to infinity
e Be
.0 .
) aapt(x) + ZLipi(x) <0 superharmonic

Then the minimal Markov jump process constructed above is non-explosive.

Proof. Claim: P[( > t] = 1 for all ¢ > 0 and any initial condition.
First note that since the sets B are closed, the hitting times

Th::inf{tgz 0|.X¥ EJBE}

are (F;*)-stopping times and X7, € B¢ whenever T),, < oo. As the intensities are uniformly
bounded on [0,t] x B, for all t,n, the process can not explode before time ¢ without hitting
B¢ (Exercise),i.e. ¢ > T, almost sure for all n € N. By (iii), the process ¢;(X;) is a local
supermartingale up to {. Since p; > 0, the stopped process

it (Xint,)
is a supermartingale by Fatou. Therefore, for 0 < s <tandz € S,
iPs(fE) > IE(s,x) [%ATn (Xt/\Tn)}
> Es ) [or,(X7,) 5 T < ]
2 Pow [Tn < t] - inf ¢r(2)
zeDBY,

Hence by (ii), we obtain

Plom [¢ < 1] <liminf Py [T, <t =0

n—oo

forall ¢t > 0. [

Remark. 1. Ifthere exists a function ). S — R and o > 0 such that

(@) ¢=0
(71) ieanc Y(x) — 00 asn — oo

(111) L <ay Vt>0

then the theorem applies with p,(x) = e~ (x):

0
Ena + Lo < —apr +ap <0

This is a standard criterion in the time-homogeneous case!



30 CHAPTER 1. CONTINUOUS-TIME MARKOV CHAINS

2. If S is a locally compact connected metric space and the intensities \(x) depend continu-
ously on s and x, then we can choose the sets

B, ={z € S| d(xp,x) <n}
as the balls around a fixed point xo € S, and condition (ii) above then means that
lim  ¢(z) = o0

d(z,x0)—00

Example . Time-dependent branching

Suppose a population consists initially (t = 0) of one particle, and particles die with time-
dependent rates d; > 0 and divide into two with rates b; > 0 where d,b: Rt — R are continu-
ous functions, and b is bounded. Then the total number X, of particles at time t is a birth-death
process with rates

n-b if m=n+1
@n,m)=<n-d if m=n—1, Ae(n) =n- (b +dy)

0 else

The generator is

0 0 0 0 0 0
dy —(d; + by) by 0 0 0

7 2d,  —2(d, +by) 2b, 0 0
0

Since the rates are unbounded, we have to test for explosion. choose 1\)(n) = n as Lyapunov
function. Then

(Z)(n)y=n-by-(n+1—n)+n-d-(n—1—-n)=n-(by —d;) <nsupby

>0
Since the individual birth rates by, t > 0, are bounded, the process is non-explosive. To study
long-time survival of the population, we consider the generating functions

Gi(s) =E [sxt} = is"P[Xt =n|], 0<s<l1

n=0
of the population size. For fi(n) = s" we have

(L fs) (n) = nbys"t — n(by + dy)s™ + ndys™ !

= (bt52 — (bt + dt)S + dt) : %f8<n>
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Since the process is non-explosive and f, and £, fs are bounded on finite time-intervals, the
forward equation holds. We obtain

o 0
2 Guls) = SBIL(X)] = E[(LL)(X)]

= (bt82 — (bt + dt)S + dt) -E |:§5Xt1
S

= (s —dy)(s—1)- th(s),

ds
Go(s) =E[s*] =
The solution of this first order partial differential equation for s < 1 is
¢ ~1

Gils) =1 — [ - —|—/b o du
1—s "

0

where
t

0= /(du b,) du
0
is the accumulated death rate. In particular, we obtain an explicit formula for the extinction
probability:

¢ -1

PLX, = 0] =1im G (s) = w+/mme
0
-1

t
=1- 1—|—/dueg“du
0

since b =d — ¢'. Thus we have shown:

Theorem 1.23.

o0

P[X; = 0 eventually] = 1 < /duegu du = oo

0

Remark . Informally, the mean and the variance of X, can be computed by differentiating G, at
s=1:

=E [X;s™ ]

s=1

= E[Xt]

s=1

=E [X;(X; — 1)s%77]

s=1
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Explosion in time-homogeneous case

Distribution of explosion time: By Kolmogorov’s backward equation,
F(t,x) := P,[¢ <t] = P,[X; = A] =1 —-E,[I,(X})]

where E, [I;(X;)] is the minimal non-negative solution of

0

81; = Zu, u(0,z) =1,
hence F(t, z) is the maximal solution < 1 of

0

8?: = Zu, u(0,2) =0

Laplace transformation: o« > 0,

o0

1
Fo(z) :=E, [e™*] = —/e_o‘tF(t z)d
o
0
since
- 1 [e'e) - 1 fe'e)
€ g_a/ tdtza/e [{t>g}dt
0 0
Informally by integrating by parts,
1 [e.e] oo
(LF) () = © / e L (b / Pt ) dt = (aFL)(z)
«
0 v 0

ot

Theorem 1.24. (Necessary and sufficient condition for non-explosion, Reuter’s criterion)

1. F, is the maximal solution of

ZLg=ag (1.10)
satisfying 0 <y < 1.

2. The minimal Markov jump process is non-explosive if and only if (1.10) has only the trivial
solution satisfying 0 <y < 1.

Proof. 1. by first step analysis (Exercise)
2. (=00 Py-as. if and only if F,(x) = 0.
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1.5 Asymptotics of Time-homogeneous jump processes

Let (X, P,) be a minimal Markov jump process with jump rates ¢(x, dy). The generator is given
by

(Z @) = (af)(@) = AMa) f(z) = A=) - (7 f)(2) — f(2))
ie.
L=\-(n—1) (1.11)
where 7 — I is the generator of the jump chain (V,,). Let

T:=inf{t>0]|X; € D%, D C S open

Theorem 1.25 (Dirichlet and Poisson problem). For any measurable functions ¢: D — R and
f: D¢ — RT,
T

u(w)i= B | [ (X0 dt+ 1) Tirecy
0
is the minimal non-negative solution of the Poisson equation

—Yu=c on D

u=f on D¢ (1.12)

Proof. 1. For ¢ = 0 this follows from the corresponding result in discrete time. In fact, the
exit points from D of X; and Y; coincide, and hence

f(Xr) - Iir<gy = f(Y2) - Ir<ooy
where 7 = inf{n > 0| Y,, ¢ D}. Therefore u is the minimal non-negative solution of

U = U onD

u=f on D¢
which is equivalent to (1.12) by (1.11).

2. In the general case the assertion can be proven by first step analysis (Exercise).

Example. [. Hitting probability of D¢:
u(z) = P.[T < (] solves Lvu=0on D, u=1on D"
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2. Distribution of X:

u(x) =E.[f(Xr); T < (] solves £u=0o0n D, u= fon D"
3. Mean exit time:

u(x) = E,[T] solves —ZLu = 1o0n D, u=0on D"

4. Mean occupation time of A before exit from D:

A C D measurable

T 00
u(z) = E, /]A(Xt)dt :/Pm[XteA,t<T]dt
0 0

solves —Lu = 14 on D, w = 0 on D u(x) = Gp(x, A) is called Green function of a
Markov process in a domain D.

Assumption (from now on): .S is countable.

Definition 1.26. 1. A state x € S is called recurrent if and only if
P, {t >0 : X; =z} is unbounded| = 1,

and transient if and only if

P.{t >0 : X; =z} is unbounded| = 0
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2. A statey € S is called accessible from x (v ~ y) if and only if
P.[X: =y for some t > 0] > 0.

x and y communicate (x «~ y) ifand only if v ~~ y and y ~» x. The Markov chain
(Xy, P,) is called irreducible if and only if all states communicate. It is called recurrent
respectively transient if and only if all states are recurrent respectively transient.

Lemma 1.27. Suppose that \(z) > 0 for all v € S. Then:

1. Forx,y € S the following assertions are equivalent:
(i) x~~y
(ii) x ~~ y for the jump chain (Y,)
(iii) Thereisa k € Nand xy,...,x, € S such that

Q(xv 901)q($1, 902) - 'Q(xk—la xk)Q(xk; y) >0

(iv) pi(z,y) >0 forallt >0
(v) pe(z,y) > 0 for some t > 0.

2. A state x € S is recurrent (respectively transient) if and only if it is recurrent (respectively
transient) for the jump chain.

Proof. 1. (i) < (ii) since Y,, visits the same states as X,
(i1) = 3xq,...z such that w(z, z1)7w (21, 22) - - - 7(2k, y) > 0 = (i4i) since A > 0.
(¢4i) = (1) : q(a,b) > 0 and hence

pt<a7b) ZPQ[JI §t< J27 5/1 :b] >0
for all ¢ > 0. Hence with (¢i¢) and the independence of the states,

pile,y) 2 poe (@, 20)p o (21, 29) - p e (r,y) > 0
(iv) = (v) = (7) is obvious.
2. If x is recurrent for Y,, then
P.[A(Y,)) = A(z) infinitely often] = 1,
and hence

¢= Z('Jz —Ji_1) =00 P,-as.
1
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since (J; — J;_1) are conditional independent given (Y7,), Exp(A(z)) distributed infinitely
often.

Since A > 0, the process (X;);>o does not get stuck, and hence visits the same states as the
jump chain (Y},),>0. Thus X; is recurrent. Similarly, the converse implication holds.

If x is transient for (X}) then it is transient for (V) since otherwise it would be recurrent
by the dichotomy in discrete time. Finally, if z is transient for (Y;,) then it is transient for
X, since the process spends only finite time in each state.

O
Let
T,:=inf{t > J; : X; =z}
denote the first passage time of x.
Theorem 1.28 (Recurrence and transience). 1. Every x € S is either recurrent or transient.

2. If x is recurrent and x ~ vy, then y is recurrent.

3. wrecurrent & Nz) =0or P[T, < ool =1 G(z,z) = [; p(z,x)dt = o

Proof. Under the assumption A > 0, the first two assertions follow from the corresponding result
in discrete time. If A(z) = 0 for some x, we can apply the same arguments if we construct the
process (X;) form a jump chain which is absorbed at x € S with A(z) = 0.

3.If A(z) > 0 then by the discrete time result z is recurrent if and only if

P,[Y, = x forsomen > 1] =1,

1.e., if and only if
P,[T, < ]

Moreover, the Green function of (X;) can be computed from the Green function of the jump
chain (Y},):

0 LO

= Ex Z(Jn—H - Jn)I{x}<Yn)

L n=0
= ElJuy1 — Ju | Yo = 2] - B[V, = 1]
=0 CExp(A(x))
1 o0
=— " (z, )
RS
N———

discrete-time Green function
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Hence
G(z,z) = 00 < A(x) = 0or x recurrent for Y,, < =z recurrent for X;

Remark (Strong Markov property).
E, [F(Xﬂ-) iragy | fT} = Ex, [F(X)]

P,-a.s. on {T < (} for any F;* stopping time T, and any measurable function I : SET _, R,

and any initial distribution v € M;(95).

Proof. Either directly from the strong Markov property for the jump chain (Exercise). A more
general proof that applies to other continuous time Markov processes as well will be given in the
next chapter. 0

Definition 1.29. A positive measure 11 on S is called stationary (or invariant) with respect to (p;)i>o

if and only if
Hpy = p
forallt > 0.

Theorem 1.30 (Existence and uniqueness of stationary measure). Suppose that x € S is re-
current. Then:

1.

Ty

w(B) :=E, /IB(Xt) dt| , B CS,
0

is a stationary measure. If x is positive recurrent (i.e. B, [T,] < co) then

1B
AB) = L5)

is a stationary probability distribution.

2. If (X4, P,) is irreducible then any stationary measure is a multiple of .

Remark. 1. p(B) = expected time spent in B before returning to .
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2. Relation to stationary measure of the jump chain:
T, :=inf{n >1 : Y, =z}
-7

nly) = E, /f{y}(Xt)dt

[7.—1
=E, Z(Jn—l-l — Jo) Iy (Ya)
L n=0
—ZE E.lJni1 — ‘ Yk I{n<7’;} I{y}<Y>
~Exp(A(y
1 Te—1
_ L I (Y,
o) ; {v}

TV
=:w(y) stationary measure for jump chain

Proof of theorem. 1. Fix B C Sand s > 0.

s Ty
w(B) =E, /IB(Xt)dt +E, /IB(Xt)dt
| O S
[ T, +s T Ty
=K, / I5(X,)dt| +E, /]B(Xt)dt
| T a s
_Tz—i-s 7] T’z
= ]EZ‘ / IB(Xt) dt - Ew /IB(Xs+t) dt
L s i 0
:/Ex[ (Xowi € B FJ T, >t
0 —ps(Xt B)
T,
=Sk | [0 | 900 B) = G)(B)
yeSs 0
=;?y)

Here we have used in the second step that

Te+s

E, / I5(X,)dt | Fr. | = E. / In(X,) dt
0

Ty

by the strong Markov property for (X,).
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We have shown that y is a stationary measure. If z is positive recurrent then (S is finite,
and hence j can be normalized to a stationary probability distribution.

2. If (X;) is irreducible then the skeleton chain (X,,),—0 12, is a discrete-time Markov chain
with transition kernel

pl(‘ray)>0 Vfﬂyyes

Hence (X,,) is irreducible. If we can show that (X,,) is recurrent, than by the discrete-time
theory, (X,,) has at most one invariant measure (up to a multiplicative factor), and thus the
same holds for (X;). Since x is recurrent for (X}), the jump chain (Y;,) visits = infinitely
often with probability 1. Let Ky < K3 < --- denote the successive visit times. Then

XJKi =Yg, =7 (1.13)
for all . We claim that also
XUKJ =z infinitely often (1.14)

In fact, the holding times Jg,,, — Jg,, ¢ € N, are conditionally independent given (Y,)
with distribution Exp(A(z)). Hence

P,[Jk,

i+1

— Jg, > 1 infinitely often] = 1,
which implies (1.14) by (1.13). The recurrence of (X,,) follows from (1.14) by irreducibil-

1ty.
[

If S is finite, by the Kolmogorov backward equation

ppr =pV¥t>0 << pZ=0
In the general case this infinitesimal characterization of stationary measures does not always hold,
cf. the example below. However, as a consequence of the theorem we obtain:
Corollary 1.31 (Infinitesimal characterization of stationary distribution). Suppose that (X, P,)
is irreducible, and 11 € M,(S). Then:

1. If w is a stationary distribution of (p;)>o then all states are positive recurrent, and

(nZL)(y) =0 Vyes (1.15)

2. Conversely, if (1.15) holds then y is stationary provided (X, P,) is recurrent. This is for

example the case if Y o Mx)p(z) < oo.
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Remark . Condition on (1.15) means that
<puL,f>=<u,Lf>=0

for all finitely supported functions f: S — R. Note that if Y A\(z)pu(x) = oo then p.& = pq—Ap
is not a signed measure with finite variation. In particular, < u.£,1 > is not defined!

Proof. A stationary distribution y of (X;) is also stationary for the skeleton chain (X,,),—012..,
which is irreducible as noted above. Therefore, the skeleton chain and thus (X;) are positive
recurrent. Now the theorem and the remark above imply that in the recurrent case, a measure x
is stationary if and only if A - 1 is stationary for the jump chain (Y},), i.e.

(1) (y) = > Ma)p(x)w (2, y) = My)p(y) (1.16)
z€eS

which is equivalent to (1.Z)(y) = 0.
In particular, if Y A(z)u(zr) < oo and . = 0 then Ay is a stationary distribution for (Y;,),
where (Y;,) and thus (X;) are positive recurrent. O

Example . We consider the minimal Markov jump process with jump chain Y,, = Yy + n and
intensities \(z) = 1 + x2. Since v(y) = 1 is a stationary measure for (Y,,), i.e. v = v, we see

that ) .
2y
is a finite measure with (u.Z)(y) = 0 for all y. However, X is not recurrent (since Y, is

transient), and hence |1 is not stationary for X;!
Actually, in the example above, X, is explosive. In fact, one can show:

Theorem 1.32. If (X,) is irreducible and non-explosive, and . € M, (S) satisfies (1.16), then p
is a stationary distribution.

Proof. Omitted, cf. Asmussen [4], Theorem 4.3 in chapter II. ]

Remark . Detailed balance:

Condition (1.16) is satisfied provided the detailed balance condition
pu(x)q(z,y) = uy)qy, ©) (1.17)
holds for all x,y € S. In fact, (1.17) implies

(L) (y) = w@)a(z,y) = py) Y aly, z) = My)u(y)

€S €S

forally € S.
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Example . Stationary distributions and mean hitting times of birth-death process:

For a birth-death process on {0, 1,2, ...} with strictly positive birth rates b(x) and death rates
d(x) the detailed balance condition is

p(x)b(z) = p(x + 1)d(x + 1) (1.18)

for all x > 0. Hence detailed balance holds if and only id v is a multiple of

-
Suppose that
> v(n) < oo (1.19)
n=0
Then
v(x)

)= 2o (Y)

is a probability distribution satisfying (1.17), and hence (1.16). By irreducibility, |1 is the unique
stationary probability distribution provided the process is non-explosive. The example above
shows that explosion may occur even when (1.19) holds.

Theorem 1.33. Suppose (1.19) holds and

i bi = 00. (1.20)

n=0
Then:

1. The minimal birth-death process in non explosive, and i is the unique stationary probabil-
ity distribution.

2. The mean hitting times are given by

(a)
y—1
B n({0,1,...,n})
E.[T,] = ; ORD forall0 < z < yand
(D)

Z u{nn+1 -}

forall 0 <y < x respectively.

In particular, the mean commute time between x and vy is given by
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(c)

BT, + Ey[T,] = ) forall0 <z <y.

Proof. 1. Reuter’s criterion implies that the process is non-explosive of and only if

= v({0,...,n}) e
Z b(n) B

n=0
(Exercise, cf. Brémaud [7], Chapter 8, Theorem 4.5).
If (1.19) holds then this condition is equivalent to (1.20).
2. Fix y € N. The function
Ty

u(z) = E,[T,] = E, /1dt, 0<z<y

0
is the minimal non-negative solution of the Poisson equation
—Zu=10n{0,1,...,y — 1}, u(y) =0
Hence u/(n) := u(n + 1) — u(n) solves the ordinary difference equation
b(0)u'(0) =1,
b(n)u'(n) + d(n)u'(n —1) =1

for all 1 < n < y. By the detailed balance condition (1.18) the unique solution of this
equation is given by

RN S I = A O NCEU NI () .
v =25 1L 5@ = - 2 YOSy

Assertion (a) now follows by summing over n and taking into account the boundary con-
dition u(y) = 0. The proof of (b) is similar and (c) follows from (a) and (b) since

p(n)d(n) = p(n —1)b(n — 1)
by (1.18).

Remark . Since p(n) - b(n) is the flow through the edge {n,n + 1}, the right hand side of (c)
can be interpreted as the effective resistance between x and y of the corresponding electrical
network. With this interpretation, the formula carries over to Markov chains on general graphs
and the corresponding electrical networks, cf. Aldous, Fill [1].
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Theorem 1.34 (Ergodic Theorem). Suppose that (X;, P,) is irreducible and has stationary prob-

ability distribution ji. Then
t
1
¢ [ fexyds— [ ran
0

P,-a.s. ast — oo for any non-negative function f: S — R and any initial distribution v €

My(S).

Remark. [. Inparticular,

stationary probability = mean occupation time.

2. More generally: If (X, P,) is irreducible and recurrent then
t
1
ﬁ/f(Xs) ds — /fduq; P,-a.s. forallx € S
t
0

where L7 = f(f I1:1(X,) ds is the occupation time of x, and

Ty

is a stationary measure.

Proof. Similar to the discrete time case. Fix # € S and define recursively the successive leaving
and visit times of the state x:

T =inf{t>0: X, #x}
T" = inf {t >T7m X, = x} visit times of x

T" =inf{t >T" : X; # x} leaving times of =

We have
T’VL n 1
/f(Xs) ds =Y Y
) k=1
where
Tk+1 Tk_‘—l*Tk



44 CHAPTER 1. CONTINUOUS-TIME MARKOV CHAINS

Note that T (X) = T*(X) + T*(Xpx,,). Hence by the strong Markov property the random
variables are independent and identically distributed with expectation

E,[Yi] = E,[E,[V; | Fr]] = E, / (X)) ds| = / fdu

The law of large numbers now implies

Tn

%/f(Xs)d$—>/fd,ux P,-as.asn — 00 (1.21)

0

In particular,

T
— — u,(S) P,as.
n

By irreducibility, the stationary measure is unique up to a multiplicative factor. Hence p,(S) <

oo and i = ;ﬂ% Thus we obtain

Tn t
/f@:ffm:hm “ 1/fagmgh£y%/ng%
0 0

1(S) = LIntl n
t Th
i 1 . n 1 _
< hrnsup—/f(XS)ds < lim sup — - —/f(Xs) ds = /fdus
t—o00 t n—oo Tn n
0 0

i.e.

%/jugw—e/f@ P-as.
0



Chapter 2

Interacting particle systems

2.1 Interacting particle systems - a first look

Let G = (V, E) be an (undirected) graph with V' the set of vertices and F the set of edges. We
write z ~ y if and only if {z,y} € E. We call
S=T"={n:V =T}

the configuration space. T' can be the space of types, states, spins etc.

E.g.
1 particle at x
T = {01} () = .
0 no particle at z
no particle
particle

Markovian dynamics: 7(z) changes to state ¢ with rate

ci(z,m) = gi (n(x), ((Y))y~a)

45
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i.e.

0 otherwise

q(n, &) = {Ci(l‘an) if ¢ = g

where

i fory ==

nx,i<y) — {77(9) fOI‘y#ZE

Example. 1. Contact process: (Spread of plant species, infection,...) T = {0,1}. Each
particle dies with rate d > 0, produces descendent at any neighbor site with rate b > 0 (if
not occupied)

Co (.CE', 77) =d
ci(z,n) = b Ni(z,n); Ni(z,n) =Ky ~x : n(y) = 1}
Spatial branching process with exclusion rule (only one particle per site).

2. Voter model: 1 (x) opinion of voter at r,

ci(z,y) = Ni(z,y) == {y ~x : n(y) =i}

changes opinion to i with rate equal to number of neighbors with opinion 1.

3. Ising model with Glauber (spin flip) dynamics: T = {—1,1}, § > 0 inverse tempera-
ture.

(a) Metropolis dynamics:

Az, n) = Z n(y) = Ni(x,n) — N_1(x,n) total magnetization

Yy~
€1 (xa 77) ‘= min (eQﬁ'A(”Cﬂ?)’ 1)

co(x,n) := min (e‘Qﬁ'A(a:’”), 1)

(b) Heath bath dynamics / Gibbs sampler:
ePA(n)
cu(#,m) = eBA@n) 1 oA
e—BA(xn)

zn) 4+ e—BAm)

Co@ﬂ?) = eBA(

B = 0: (infinite temperature) ¢, = cy = %, random walk on {0, l}V (hypercube)
B — oo: (zero temperature)

1 ifA(z,y) >0 1 ifA(z,y) <0
alr,n) =93 fA(x,y) =0, colr,n) =93 fA(z,y)=0
0 ifA(z,y) <0 0 ifA(z,y)>0

Voter model with majority vote.
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In the rest of this section we will assume that the vertex set V' is finite. In this case, the config-
uration space S = T is finite-dimensional. If, moreover, the type space T is also finite then S
itself is a finite graph with respect to the Hamming distance

d(n,§) = {x € V5 n(x) # &(2)}

Hence a continuous-time Markov chain (7, P,) can be constructed as above from the jump rates
q:(n, €). The process is non-explosive, and the asymptotic results from the last section apply. In
particular, if irreducibility holds the there exists a unique stationary probability distribution, and
the ergodic theorem applies.

Example. 1. Ising Model: The Boltzman distribution

1 _ _
Mﬁ(ﬁ) _ Z_ﬁe BH(n)) Zy = Ze BH(n)’
7

with Hamiltonian

H(n) =5 Y @) —=nw)= > n@@ny)+E|

{zy}ek {z,y}eE

is stationary, since it satisfies the detailed balance condition

rs(maq(n, &) = ps(§)q(&,n) VEneS.

Moreover; irreducibility holds - so the stationary distribution is unique, and the ergodic
theorem applies (Exercise).

2. Voter model: The constant configurations i(x) = i, i € T, are absorbing states, i.e.
¢j(z,1) = 0 forall j # i,x. Any other state is transient, so

P

U{m = g'eventually}] =1.

i€T
Moreover,
Ni(m) = {z €V : n(x) = i}|

is a martingale (Exercise), so
Ni(n) = Eg[Ny(ne)] = Ey[Ni(no)] = N - Pl = i eventually)

Le.
Ni(n)
N
The stationary distributions are the Dirac measures 6;, i € T, and their convex combina-
tions.

P[n, = i eventually] =
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3. Contact process: The configuration O is absorbing, all other states are transient. Hence
o is the unique invariant measure and ergodicity holds.

We see that on finite graphs the situation is rather simple as long as we are only interested in
existence and uniqueness of invariant measures, and ergodicity. Below, we will show that on
infinite graphs the situation is completely different, and phase transitions occur. On finite sub-
graphs on an infinite graph these phase transitions effect the rate of convergence to the stationary
distribution and the variances of ergodic averages but not the ergodicity properties themselves.

Mean field models:
Suppose that GG is the complete graph with n vertices, i.e.

V={1,....n} ad E={{z,y}: z,yeV}

Let
1 n
r=1
denote the empirical distribution of a configuration n: {1,...,n} — T, the mean field. In a

mean-field model the rates

ci(z,n) = fi(Ln(n))
are independent of =, and depend on 1 only through the mean field L, (n).

Example . Multinomial resampling (e.g. population genetics), mean field voter model.
With rate 1 replace each type n(z), x € V, by a type that is randomly selected from L, (n):

i) = La()i) = o € () =}

As a special case we now consider mean-field models with type space T = {0,1} or T" =
{—1, 1}. In this case the empirical distribution is completely determined by the frequence of type
1 in a configuration:

Ln(n) «— Ni(n) = {z - n(z) = 1}

ci(z,y) = f(Ni(n))

If (1, P;) is the corresponding mean field particle system, then (Exercise) X; = Nj(n) is a
birth-death process on {0, 1, ..., n} with birth/death rates

b(k) = (n— k) - fi(k), d(k) = k- fo(k)

where (n — k) is the number of particles with state 0 and fi (k) is the birth rate per particle.
~+ Bxplicit computation of hitting times, stationary distributions etc.!
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Example. [. Binomial resampling: For multinomial resampling with T = {0, 1} we ob-
tain

k-(n—k)

2. Mean-field Ising model: For the Ising model on the complete graph with inverse temper-
ature [3 and interaction strength % the stationary distribution is

ps(n) o ot Loy @ =1W))?  pgn Xon(@) X, nW) — panm)?

where

m(n) =Y _n(z) = Ni(n) — N_1(n) = 2Ny (n) — n

is the total magnetization. Note that each n(x) is interacting with the mean field £ 3 n(y),
which explains the choice of interacting strength of order % The birth-death chain Ni(n;)
corresponding to the heat bath dynamics has birth and death rates

e P
b(k) = (n — k) — = d(k) =k —y——x
en + el n ePn + e n

and stationary distribution

n 28 n\2
Da(k) = o (k-3) o<k <
wh = 3wl (1)reF L o<k
n: Ni(n)=k
The binomial distribution Bin(n, %) has a maximum at its mean value 3, and standard
deviation \/TH Hence for large n, the measure [ig has one sharp mode of standard deviation
O(\/n) if B is small, and two modes if (3 is large:

3
B<1 B> 1



50 CHAPTER 2. INTERACTING PARTICLE SYSTEMS
The transition from uni- to multimodality occurs at an inverse temperature (3, with
lim G, =1 (Exercise)

The asymptotics of the stationary distribution as n — oo can be described more accurately
using large deviation results, cf. below.

Now consider the heat bath dynamics with an initial configuration 7y with Ny () < 5, neven,
and let

T .= inf{tZO : Ny(ne) > ﬁ}

2
By the formula for mean hitting times for a birth-and-death process,
i n 1 B%
E[T] > ”ﬁ({o;l"”’n?}) > 2>
s (5)-0(5)  ~ As(3)-5  n2
since

[ig (g) = (Z) Lo Fg(0) < 267

2

Hence the average time needed to go from configurations with negative magnetization to states
with positive magnetization is increasing exponentially in n for 5 > 2log2. Thus although
ergodicity holds, for large n the process gets stuck for a very large time in configurations with
negative resp. positive magnetization.

~+ Metastable behaviour.

More precisely, one can show using large deviation techniques that metastability occurs for any
inverse temperature 3 > 1, cf. below.

2.2 Particle systems on Z“
Reference:
e Durett [9]

o Liggett [15]

V=127 T finite
E={(z,y) : |z —y|lp =1} S =T with product topology, compact
fn = 1t pin(w) — p(z) Vo € 2
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Assumptions:

(1) f:=supci(z,y) < oo
€T
x€Z4

(i1) ci(z,y) = ¢; (n(z), (n(y))y~z) translation invariant and nearest neighbor

Graphical construction of associated particle systems:

Hier fehlt ein Bild!

Ny . independent Poisson process with rate A (alarm clock for transition at x to 7)
T n-th. arrival time of N}’

U*" independent random variables uniformly distributed on [0, 1]

Recipe: At time 7%, change 7(z) to i provided

Ui < Cl(i’ v) (i.e. with probability CZ(“”;’ y>>
Problem: Infinitely many Poisson processes, hence transitions in arbitrary small time, no first
transition.

How can we consistently define a process from the jump times? For a finite subset A C Z< and
¢ € 9, the restricted configuration space

Sea:={ne€S|n=_E,on A%}

is finite. Hence for all s > 0 there exists a unique Markov jump process (77,5(5’5”4)> on Se 4
t>s

S7§7A

with initial condition n{***) = ¢ and transitions ¢ > s, 1 — 7" at times 7" whenever U%' <
(

ﬂ?\i), x € A. The idea is now to define a Markov process ms,g) on S for t — s small by

s, s,6,A
e = e
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where A is an appropriately chosen finite neighborhood of z. The neighborhood should be cho-
sen in such a way that during the considered time interval, 77,5(5’5) (x) has only been effected by
previous values on A of the configuration restricted to A. That this is possible is guaranteed by
the following observation:

For 0 < s < t we define a random subgraph (Z%, E, ;(w)) of (V, E) by:
Ey(w) = {{z,y} : T2" € (s,t] or T?" € (s,t] for somen € Nandi € T'}

If x effects y in the time interval (s, t] or vice versa then {z,y} € E;.

Lemma 2.1. If
1
t—s< ————— =10
8-d?-|T|-\
then
P [all connected components of (Zd, E.) are ﬁnite] =1.

Consequence: For small time intervals [s, ¢] we can construct the configuration at time ¢ form
the configuration at time s independently for each component by the standard construction for
jump processes with finite state space.

Proof. By translation invariance it suffices to show

where Cj is the component of (Zd, E,+) containing 0. If = is in Cj then there exists a self-avoiding
path in (Z%, E, ;) starting at 0 with length d;: (z,0). Hence

PE3z e Cy : dp(z,0)>2n —1]
< P[d self-avoiding path z; = 0, 29, . .., 29,1 S.t. (24, 2i41) € Eg V1

n—1

< (2d)* 1. H P[(#2i, 22i41) € Esy]

=0

where (2d)**~1 is a bound for the number of self-avoiding paths starting at 0 and independent
events {(Zgi, 22i+1) S Es,t}-
Hence

P[Axz € Cy : dp(x,0) > 2n — 1]

< <4d2 ‘ (1 B €—2|T|5\(t—s)>>n
< (8- |TIA-(t—s5))" — 0
2|T| A (t—s)

asn — 0o, where e~ *) is the probability for no arrival in [s, t] in a 2|T'| Poisson(\) process
and 1 — e 2TAE=9) < 2IT |\ (t — 5). O

By the lemma, P-almost sure for all s > 0 and & € TZd, there is an unique function ¢ —
n*%) t > s, such that
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G) ni™ =¢

(i) For s < t, h < 4, and each connected component C' of (Zd, Eiiin), 77&2) o 1s obtained

from 77?’5) o by subsequently taking into account the finite number of transitions in C
during [t,t + h].

We set
0=
By construction,
nE =" Vo <s <t @.1)

Corollary 2.2. (i) Time-homogeneity:

<s,s>> N ( 5)
<775+t 150 Ur 10

(ii) (nf , P) is a Markov process with transition semigroup
(pef)(€) = ELf ()]

(iii) Feller property:
feCS) = mfeC(S)Vt>0

Or, equivalently, p,f is continuous whenever f is continuous with respect to the product
topology. Since S is compact, any continuous function is automatically bounded.

(iv) Translation invariance: Let £: Q) — S be a random variable, independent of all N}

and translation invariant, i.e. £(x + ) ~ & for all x € 7. Then nf is translation invariant
forallt > 0 P-a.s.

Sketch of proof: (i) by the time homogeneity of the Poisson arrivals.
(i1)
¢ 2.1 (sm5)
E|f(n) 17| @ZE|f(n™™) 1] @)

taking into account the J,-measurability of 75 and ngs’f) being independent of F; for fixed
¢, we conclude with ()

B[7 (1) 1] @ =& |7 (o))
s

= (pi—sf) (UE(W))
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(iif)
En— & = &) = &(n) V€ 7

Hence &, = £ eventually on each finite set C C Z?, and hence on each component of
(Z4, Ey ). By the componentwise construction,

n =1 Vt<o
eventually on each component. Hence
nf“ — nf (pointwise) V¢ < o
and for f € Cy(9),
£ () = £ (nf)
for all ¢ < §. With Lebesgue we conclude
pif (@) =E|f (nF")| — pr@we <o

Hence OK for ¢ < §. General case by semigroup property:
L5]
Pe=pi (11505 Co(S) = Ci(S)
(iv) The ¢;(x,y) are translation invariant by assumption,

(V)0 (U),,)

are identically distributed. This gives the claim.

Theorem 2.3 (Forward equation). For any cylinder function

fm) =em(x),...,n(x,)), neNp:T" =R
the forward equation
&) O = 1) (©)
holds for all € € S where

(L) = alx,&) - (f(E) = £(9)

z€Z4
€T
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Remark . Since f is a cylinder function, the sum in the formula for the generator has only finitely
many non-zero summands.

Proof.

Z Nt > 1] < const. - t?

where { N;** > 1} means that there is more than one transition in the time interval [0, ¢] among
{x1,...,x,} and const. is a global constant.

PN/ =1] = X-t+O(t?)

and hence

(pef)(&) = E[f (n7)]
f PN =0 V1<k<n,ieT]

) . o Ci(l’f) 2
E: TeA) L PN =1, U< 2222 4 Ot
+ik f(E™) { t R A (+)

= 1O+ Y- 29 ey pie)) + o)
i,k
=[O+t (ZNEO+0)

where the constants O(#?) do not depend on £. Hence

pesnf = pipnf = pof + hpe L f + O(h?)

2.3 Stationary distributions and phase transitions

The reference for this chapter is Liggett [15].

From now on we assume 7' = {0,1}. We define a partial order on configurations ,17 € S =
{0, 13" by
n <7 e () <ilz) Ve e

A function f: S — R is called increasing if and only if

f(n) < (1) whenever 1) < 1.
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Definition 2.4 (Stochastic dominance). For probability measures ji,v € M;(S) we set

nv & /f dp < /f dv for any increasing bounded function f: S — R

Example . For ji,v € M;(R),

p=sv e F,(c)=p((—o0,c) > F,(c) VceR

Now consider again the stochastic dynamics constructed above.

c1(x,n) Dbirth rates
co(x,n) death rates

Definition 2.5. The Markov process (nf, P) is called attractive if and only if for all x € 7,

Example . Contact process, voter model, as well as the Metropolis and heat-bath dynamics for
the (ferromagnetic) Ising model are attractive

Theorem 2.6. If the dynamics is attractive then:
1. If¢ < éthen nf < nfforallt >0 P-a.s.
2. If f: S — Ris increasing then p, f is increasing for all t > 0.

3. If p X v then upy <X vpy for all t > 0 (Monotonicity).

Proof. 1. The dynamics is attractive and £ < é , hence every single transition preserves order.
Hence

6N < psE4) V0 <s<t ACZ"finite
N 0 < (e Vs >0, t€[s s+
and by induction

0o <t Wi>s>0
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(5,8)
- (s6) _ (s+on3d)

(If, for example, before a possible transition at time 7%, < 7 and n(z) = 7j(z) = 0,

then after the transition, n(z) = 1if U»! < @, but in this case also 7j(z) = 1 since
c1(z,m) < c1(x, ) by attractiveness. The other cases are checked similarly.)

2. Since f is increasing and £ < é ,
()€ =B [£0r5)| <E[10)] = o))

3. If f is increasing, p, f is increasing as well and hence by Fubini

/fd(upt) = /ptf i’ /ptf dv = /fd(vpt)

]

Let 0,1 € S denote the constant configurations and dy, d; the minimal respectively maximal
element in M, (S).

. . d
Theorem 2.7. For an attractive particle system on {0, 1}2" we have

1. The functionst — Ogp; andt — 01p; are decreasing respectively increasing with respect to <.

2. The limits p := lim;_o, Oopr and [i = limy_, . 01p; exist with respect to weak convergence

3. pand i are stationary distributions for p;

4. Any stationary distribution T satisfies

=
N
N
A
=

Proof. 1.
0<s<t = 0o =< 0opis
and hence by monotonicity

0ps = OoPe—sPs = Oopy
2. By monotonicity and compactness, since S = {0, 1}Zd is compact with respect to the prod-

uct topology, M; (.S) is compact with respect to weak convergence. Thus it suffices to show
that any two subsequential limits z; and p9 of dgp; coincide. Now by 1),

/fd(5opt)
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is increasing in ¢, and hence

[ =t [ gaton) = [ 1

for any continuous increasing function f: S — R, which implies p; = po.

3. Since py is Feller,
[ it = [ dn= i [ s i) = im [ 1o
—tim [ S d(Gop.) = / fdu

forall f € Cy(S5).
4. Since 7 is stationary,
dopt < TPy =T < 01y

for all ¢ > 0 and hence for t — oo,

=
N
3
N
=

Corollary 2.8. For an attractive particle system, the following statements are equivalent:
I p=p
2. There is an unique stationary distribution.
3. Ergodicity holds:
Jp e M(S): vpp— p Yve M(S).

Proof. 1. < 2.: by the theorem.
1. = 3.: Since §p <X v < 0y,

dopt <X VD <X 01y

and since dgp; — p and 01p; — fi fort — oo,
Upy — = [

3. = 1.: obvious.
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Example 1: Contact process on Z¢

For the contact process, c¢o(z,n) = d and ¢1(x,n) = b - Ny(z,n) where the birth rate b and the
death rate 9 are positive constants. Since the 0 configuration is an absorbing state, ;1 = dy is the
minimal stationary distribution. The question now is if there is another (non-trivial) stationary
distribution, i.e. if i # pu.

Theorem 2.9. If 2db < 0 then ¢y is the only stationary distribution, and ergodicity holds.

Proof. By the forward equation and translation invariance,

%P () =1] = =6P [nj(x) = 1]+ > b-P[ni(z) =0, n(y) =1]
y: fo—yl=1

< (=6 +2db) - P [n)(z) = 1]
for all z € Z%. Hence if 2db < ¢ then

p{n :n(e) =1}) = lm (6p)({n = n(z) =1})
= lim P [77,51 (x) = 1}

t—oo

=0
for all x € Z? and thus fi = 6. ]
Conversely, one can show that for b sufficiently small (or ¢ sufficiently large), there is nontrivial

stationary distribution. The proof is more involved, cf. Liggett [15]. Thus a phase transition from
ergodicity to non-ergodicity occurs as b increases.

Example 2: Ising model on Z¢
We consider the heat bath or Metropolis dynamics with inverse temperature 5 > 0 on S =
{—1,+1}%",

a) Finite volume: Let A C 7% be finite,

Sya={neS|n=+1on A%} (finite!)
S_a:={neS|n=-1lonA%}.

For £ € Sisresp. £ € S_ 4, nf’A = nt(o’g’A), the dynamics taking into account only

transitions in A.
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<nf’A, P) is a Markov chain on S, 4 resp. S_ 4 with generator

LhHm) = clzn)-(f0"™) = f)
ie{m—elﬁrl}

Let
Hip) =7 >, (@) =)’

x,ycZ?
lz—yl=1

denote the Ising Hamiltonian. Note that for n € S 4 orn € S_ 4 only finitely many
summands do not vanish, so H () is finite. The probability measure

1
A
/’L; (TI) = Z+’A6 BH(U)7 ne S+,A
B
where
Zg’A: Z )
NESL A

on S 4 and ,ug’A on S_ 4 defined correspondingly satisfy the detailed balance conditions

uytO)L(Em) = it ()L (n,€) VENE Sia

respectively
py OL(Em) =y (L (n,€) VEne S a

Since Sy 4 and S_ 4 are finite and irreducible this implies that M;’A respectively ug’A is the

unique stationary distribution of (uf’{ P) for & € Si 4, S_ 4 respectively. Thus in finite

volume there are several processes corresponding to different boundary conditions (which
effect the Hamiltonian) but each of them has a unique stationary distribution. Conversely,
in infinite volume there is only one process, but it may have several stationary distributions:

b) Infinite volume: To identify the stationary distributions for the process on Z%, we use an

approximation by the dynamics in finite volume. For n € N let
A, = [-n,n]* N7,

_ J&(x) forxe A,
Enl) = {+1 forz € Z\ A,

n

The sequences MB’A” and ug’A , n € N, are decreasing respectively increasing

with respect to stochastic dominance. Hence my compactness of {—1, —i—l}Zd there exist

+ PR 1 +:An T e M _1An
g = }llTlglo K and  py = }fﬁrlo s
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Remark (Gibbs measures). A probability measure . on S is called Gibbs measure for the Ising
Hamiltonian on Z¢ and inverse temperature 3 > 0 if and only if for all finite A C Z% and £ € S,

1

Z&,Ae_ﬂH(”), neSea={neS|n==Eon A},
B

7A Cp—
15 (n) =

is a version of the conditional distribution of j1g given n(x) = &(x) for all v € A°. One can show
that u; and [u5 are the extremal Gibbs measures for the Ising model with respect to stochastic
dominance, cf. e.g. [Milos] ???.

Definition 2.10. We say that a phase transition occurs for 3 > 0 if and only if u; # U

For ¢ € S define §,, € S, 4, by

 J&(x) forxze A,
nl®) = {—i—l forx € Z4\ A,

Lemma 2.11. Forall z € Z% and f € [0, ),

P [nf(x) £ 5 (z)  for some & € S} —0 (2.2)

as n — oQ.

Proof. Let C,, denote the component containing x in the random graph (Z%, Ey,). If C, C A,
then the modifications in the initial condition and the transition mechanism outside A4,, do not
effect the value at « before time . Hence the probability in (2.2) can be estimated by

P[C, N AS + 2]

which goes to 0 as n — oo by Lemma (2.1) above. 0

Let p; denote the transition semigroup on {—1, I}Zd. Since the dynamics is attractive,
fig = lim 041p, and . = lim 0_qp,
t—00 —B t—00
are extremal stationary distributions with respect to stochastic dominance. The following theo-
rem identifies iz and p as the extremal Gibbs measures for the Ising Hamiltonian on 74
Theorem 2.12. The upper and lower invariant measures are
Hp = Hg and  [t; = [lg-

In particular, ergodicity holds if and only if there is no phase transition (i.e. iff ,u;g = fi5)-
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Proof. We show:
L fig < pf
2. ,uzg is a stationary distribution with respect to p;.

This implies fig = 15, since by 2. and the corollary above, 5 < fig, and thus j; = fig by 1.
Pg = 1 4 follows similarly.

1. It can be shown similarly as above that, the attractiveness of the dynamics implies

1 1,An
My < fhy

P-as. forallm € Nand ¢ > 0. Ast — oo,

1 2 - LA, 2 +,A,
pe = pg o and - m = g,
hence
et +7A7L
Hp = g

for all n € N. The assertion follows as n — 0.

2. It is enough to show
phpe = py fort <6, (2.3)

then the assertion follows by the semigroup property of (p;);>0. Let

W) (€) =B [ Frm )]

denote the transition semigroup on S¢, 4,,. We know:

wypr = " 24)

To pass to the limit n — oo let f(n) = ¢ (n(z1),...,n(zx)) be a cylinder function on S.
Then

/ pef duf™ = / pifduy" + / P} f —pof) dpg™ (2.5)
and by (2.4) this is equal to
[ [ —mp g
But by the lemma above, for ¢t < 9,

W ©) = O <E[|f (n) = 1 (4]
<2-suplf|-P [nf"’A”(xi) + 1% (x;) for some i| — 0

uniformly in €.
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Since ,u;’" to u;,‘ and f and p; [ are continuous by the Feller property, taking the limit in
(2.5) as n — oo yields

[ fatuse) = [nsans = [ rau

for all cylinder functions f, which implies (2.3).

The question now is: when does a phase transition occur?
For 3 = 0, there is no interaction between 1 (x) and n(y) for  # y. Hence 77;’" and 7, are the
uniform distributions on S, 4, and S_ 4., and

1
iy =g = ® v, wherev (*1) = 3
2€74

On the other hand, phase transition occur for d > 2 and large values of [3:

Theorem 2.13 (PEIERL). For d = 2 there exists 3. € (0,00) such that for 3 > (.,

i ({n = n(0) = —1) < 5 < 5 (0 = n(0) = —1}).

and thus (1 # pig.

Proof. Let Cy(n) denote the connected component of 0 in {x € Z¢ | n(x) = —1}, and set
Co(n) = @ if n(0) = +1. Let A C Z be finite and non-empty. For € S with Cy = A let 7
denote the configuration obtained by reversing all spins in A. Then

H(7) = H(n) — 2[04],
and hence

pit(Co=Ay= > ui"(m)

n: Co(n)=A

—28]0A s —26]0A
<A N b () < e
j:Co(n):A

~~

<1
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Thus

pi (n = m(0) = =1}) = > pi™(

Acz
A£S

<> e {Aczt : |0A| = L}

S 26725[/ _4.3[/71 . L2

L=4
1
S 5 fOI‘ﬁ > ﬁc

where A is a self-avoiding path in Z? by length L, starting in (—%, %) ? Hence for n — o0,

1

us ({n = n(0) = —1}) < 3

and by symmetry

N —

ng ({n = n(0) = =1}) = us ({n : n(0) =1}) >

for 5 > (.. ]

2.4 Poisson point process

Let S be a polish space (e.g. R?) and v a o-finite measure on the Borel o-algebra S.

Definition 2.14. A collection of random variables N(B), B € S, on a probability space (2, A, P)
is called a Poisson random measure (Poisson random field, spatial Poisson process) of intensity v,
if and only if

(i) B +— N(B)(w) is a positive measure for all w € €.

(ii) If By, ..., B, € S are disjoint, then the random variables N (B;), ..., N(B,) are inde-
pendent.

(iii) N(B) is Poisson(v(B))-distributed for all B € S with v(B) < oc.

Example . If N, is a standard Poisson process with intensity \ > 0 the number
N(B):=|{t e B| N;,_ # N;}|, B e B(R")
of arrivals in a time set B is a Poisson random measure on R™ of intensity v = \dzx, and

Ny — Ny = N([s,t]), V0<s<t
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Construction of Poisson random measures:

a) (S) < oo : Define A := v(S5). Let Xy, Xy, ... be independent and identically dis-
tributed random variables, A\~'v-distributed. Let K be a Poisson(\) distributed random
variable, independent of X;. Then

N = 5)(.

k3

I

is a Poisson random measure of intensity v.

b) v o-finite: Let S = UZ.GN S; with v(.S;) < oco. Let N; be independent Poisson random
measures with intensity /g, - v. Then

is a Poisson random measure with intensity v =y .-, Ig, - v.

Definition 2.15. A collection Ny(B), t > 0, B € S, of random variables on a probability space
(Q, A, P) is called a Poisson point process of intensity v if and only if

(i) B+ Ny(B)(w) is a positive measure for allt > 0, w € .
(ii) If By, ..., B, € S are disjoint, then (N;(B1))t>0, - - -, (N:(By) )10 are independent.

(iii) (Ny(B))t>0 is a Poisson process of intensity v(B) for all B € S with v(B) < oc.

Remark . A Poisson random measure (respectively a Poisson point process) is a random variable
(respectively a stochastic process) with values in the space

MI(S) = {Z 0. | A C S countable subset} C M*(9)

z€EA

of all counting measures on S. The distribution of a Poisson random measure and a Poisson
point process of given intensity is determined uniquely by the definition.

Theorem 2.16 (Construction of Poisson point processes). 1. If N is a Poisson random mea-
sure on R™ x S of intensity dt @ v then

Ny(B):=N((0,] x B), t>0, BES,

is a Poisson point process on intensity v.
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2. Suppose \ := v(S) < oc. Then
Ky
Nt - Z (SZZ.
i=1

is a Poisson point process of intensity v provided the random variables Z; are independent
with distribution \™'v, and (K,)>o is an independent Poisson process of intensity \.

Proof. Exercise.

+ . low intensity

6] oN(f3) o high intensity

Corollary 2.17. If v(S) < oo then a Poisson point process of intensity v is a Markov jump
process on M (S) with finite jump measure

a(r,®) = / (r46,) v(dy). we MHS)

and generator

(ZF)(m) = [ (F(x+6,) - Flx) vldy) 2.6)

F: MF(S) — R bounded. If v(S) = o0, (2.6) is not defined for all bounded functions F.



Chapter 3

Markov semigroups and Lévy processes

3.1 Semigroups and generators

Suppose that p;, ¢ > 0, are the transition kernels of a time-homogeneous Markov process on a
Polish space S with Borel o-algebra S.

Properties:

1. Semigroup:
Pspt =DPs+t Vs,02>0

2. (sub-)Markov:
(1) f>0 = pf=>0 positivity preserving
(17) pil =1 (respectively p,1 < 1if { # o0)

3. Contraction with respect to sup-norm:
[pef 1< M1 llsup
4. LP-Contraction: If u is a stationary distribution, then

[pefNl.2e(s) < N fll.2e(510)

forall 1 < p < <.

Proof of 4. If p = oo, the claim follows by 3. If 1 < p < oo, we conclude with the Jensen
inequality

e 1P < (pel )7 < el fIP

and since p is a stationary distribution,

[wsrdu< [wispan= [ 150w = [ 157 d

67
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Consequence:
(pt)i>0 induces a semigroup of linear contractions (F;);>o on the following Banach spaces:

1. F4(S) which is the space of all bounded measurable functions f: .S — R endowed with
the sup-norm.

2. Cy(S) provided p; is Feller.

3. LP(S, p) provided p is a stationary distribution.

Now let (P;);>0 be a general semigroup of linear contractions on a Banach space B.

Definition 3.1. 1. The linear operator

Lf :=1lim hf=1
tl0 t

with limit in B an domain

Pf—
Dom(L) = {f € B | the limit ltilr(r)l tft / exists}

is called the generator of (P;);>o.
2. (P)i>o is called strongly continuous (Co semigroup) if and only if

Q%szf

forall f € B.

Remark. 1. Pf — fast | 0forall f € Dom(L), and hence, by contractivity, for all

f € Dom(L):
lpef = fIl < llpef —pegll + llpeg — gl +llg — fIl, g € Dom(L)
<S4i4t
33 3

i.e. P,is a Cysemigroup on B if Dom(L) is dense in B. In general, P, is a Cy semigroup

on Dom(L).

2. Conversely, if P, is strongly continuous on B then Dom(L) is dense in B (for the proof see
script Stochastic analysis II).

3. The transition semigroup (p;)i>o of a right-continuous Markov process induces a Cy semi-
group (P;)>o on

(i) B = LP(S, ) provided i is stationary.
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(ii) B = C«(S) := all continuous functions vanishing at infinity provided S is locally
compact and p;(Coo(S)) C Coo(S) (proof omitted, see script Stochastic analysis II).

Theorem 3.2 (Maximum principle). The generator L of a Markov semigroup (p;)i>0 on Fp(S)
satisfies

1. Maximum principle: If f € Dom(L), x¢ € S with f(x¢) = sup,cg f(2), then

i f (20) — f(20)

(L) o) = lim P22 < 0
2. 1€ Dom(L) and L1 = 0.
Proof. 1. f < f(x), hence
pef < flwo) - pel < f(xo)
for all t > 0 and hence
(L)) = i L= 130

t

2. PB1=1forallt > 0.

Theorem 3.3 (Kolmogorov equations). If (P;):>o is a Cy semigroup with generator L then t —
P, f is continuous for all f € B. Moreover, if f € Dom(L) then P,f € Dom(L) for allt > 0,

and

d
Eptf =P Lf=LPf

Proof. 1. For h > 0,
|Pivnf — Pofl = 1PU(Puf = O < |1Puf — fIl =0
and
|Pi-nf = Pifll = 1P=n(f = Buf) < If = Pufl — 0

as h | 0.
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2. For f € Dom(L) and h > 0 we have

1

P.f—f
h Fi h

(RtJrh—Ptf): — B Lf

as h | 0, because the operators P, are contractions. On the other hand,

ENGETEY TR A

7 —>Pth

as h | 0 by 1.) and the contractivity.

3. We use 2.) so conclude that

%(PhPtf—Ptf):%(PtJrhf—Ptf)_’Pth

as h | 0. Hence by 1.), P,f € Dom(L) and LP,f = P,Lf.

Application to the martingale problem:

Corollary 3.4. Suppose (X, P) is a right-continuous (F;)-Markov process with transition semi-
group (py)ezo-

1. Suppose (p;) induces a Cy semigroup with generator L on a closed subspace of Fp(S)
(e.g. on Cy(S) or Cso(S)). Then (X, P) is a solution of the martingale problem for
(L,Dom(L)) (independently of the initial distribution).

2. Suppose (X,, P) is stationary with initial distribution 11, and L") is the generator of the
corresponding Cy semigroup on LP(S, 1) for some p € [1,00). Then for f € Dom(L®),

t

M = f(X)) —/(L(p)f) (X,)ds, t>0,
0

is P-almost sure independent of the chosen version L") f and (X, P) solves the martingale
problem for (LP), Dom(L®))).

Proof. 1. Since f € Dom(L), f and Lf are bounded and

t

MI = F(X,) - / (Lf)(X.)ds € L(P),

0
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and

BV - M| F) =B | F(X) - (X)) ~ [ LX) du| %

s
t

ZMﬂ&HfA—ﬂXJ—/EMﬂKJHw

s
t

= pt—sf(Xs) - f(Xs) - /pu_st(Xs) du =0

S

P-almost sure by Kolomogorov’s forward equation.

2. Exercise.

3.2 Lévy processes

Additional reference for this chapter: Applebaum [3] and Bertoin [5].

Definition 3.5. An Re-valued stochastic process ((X;)i>0, P) with cadlag paths is called a
Lévy process if and only if it has stationary independent increments, i.e.,

(i) Xept — X [[Fs = o(X, |r < s) forall s,t > 0.
(ii) Xeyt — X5~ Xy — Xgforall s,t > p.

Example. 1. Diffusion processes with constant coefficients:
Xt = O'Bt + bt
with B; a Brownian motion on R", o0 € R¥™" b ¢ R<
2. Compound Poisson process:
Nt
X, =Y 7
i=1
with Z; independent identically distributed random variables, N; Poisson process, inde-

pendent of Z,.

More interesting examples will be considered below.
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Remark . If (X;, P) is a Lévy process then the increments X, — X, are
infinitely divisible random variables, i.e. for any n € N, there exist independent identically
distributed random variables Yl(n), e Yn(n) such that

Xoty— Xo ~ Z Y (e.g. Y = X - th)

The Lévy-Khinchin formula gives a classification of the distributions of all infinitely divisible
random variables on R in terms of their characteristic functions.

Theorem 3.6. A Lévy process is a time-homogeneous Markov process with translation invariant
transition functions

pi(2,B) = w(B—2) =p(a+z,a+B) VacR? (3.1

where ji; = P o (X; — Xo)™!

Proof.
PXop € Bl Fl(w) = PIXs + (Xop — Xo) € B F](w)
= P[Xst — X, € B — X,(w)]
= P[X; — X € B— X,(w)]
= (B = Xy(w)),
so (X, P) is Markov with transition function p;(x, B) = us(B — z) which is clearly translation
invariant. u
Remark. [. In particular, the transition semigroup of a Lévy process is Feller: If f €

Cy(RY), then
(0 f) () = / F(x 4 ) uldy)

is continuous by dominated convergence. If f € Coo(R?), then p;f € Coo(R?).

2. p; defined by (3.1) is a semigroup if and only if i, is a convolution semigroup, i.e.,

[t * ps = prps Vi8>0

E.g

e+ pa(B) = / p(dy)ps(B — y) = / P10, dy)pa(y, B) = prss(0, B) = igss(B)

if p; is a semigroup. The inverse implication follows similarly.
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From now on we assume w.l.o.g. X, = 0, and set

pi=p=Po X,

Definition 3.7. A continuous function 1. R?* — C is called characteristic exponent of the mea-
sure |1 or the Lévy process (Xy, P) if and only if 1(0) = 0 and

E [¢"] = p,(p) = e

One easily verifies that for any Lévy process there exists a unique characteristic exponent.

Theorem 3.8. [ E [¢?X] = ¢~™®) forallt > 0,p € R™

2. MP := e XeAW®) js g martingale for any p € R™.

Proof. 1. a) Fort € N, define
t

Xy =Y (X;— Xi)

=1

Since (X; — X;_;) are independent identically distributed random variables with the
same distribution as X7,

ex.(p) = px,(p) = e W)

b) Lett =" € Q and

X, = (Xm - X@,Dm)
=1
Hence
PXm = PXx,
and since oy, = e ™,
px, =€ Y =e"

c) Lett, € Q, t, | t. Since X; is right-continuous, we conclude with Lebesque

E [eip'Xt} = lim E [eip'Xt”} = lim e Y0P = ¢~1W®)

tn—t tn—t

2. Exercise.
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Since X +— X, ~ X;, independent of F;, the marginal distributions of a Lévy process ((X;):>o, P)
are completely determined by the distributions of X, and hence by ¢! In particular:

Corollary 3.9 (Semigroup and generator of a Lévy process). 1. Forall f € . (R%) and t >

0,
pif = <€_t¢f>v

where

[NJIsH

flp) = (2m)” L/lﬁpmf(m)dx, and

§(x) = (2m) 4 / P g(p) dp

denote the Fourier transform and the inverse Fourier transform of functions f, g € £ (R?).

2. Z(RY) is contained in the domain of the generator L of the semigroup induced by (p;)i>0
on Cyo (RY), and

Lf = (- f )y (Pseudo-differential operator). (3.2)
In particular, p; is strongly continuous on Cyo(R?).

Here ./ (RY) denotes the Schwartz space of rapidly decreasing smooth functions on R%. Recall
that the Fourier transform maps . (R?) one-to-one onto ./ (R?).

Proof. 1. Since (p.f)(z) = E[f(X: + z)], we conclude with Fubini

~

(pef)(p) = (2m)”

[Sl[oH

/ e (puf)(x) d

= (2#)_% -E {/ e PTF(X, + x) d
B[]

= e W0 f(p)

for all p € RY. The claim follows by the Fourier inversion theorem, noting that ‘e‘tﬂ < 1.

2. For f € #(R%), fisin.”(R?% as well. The Lévy-Khinchin formula that we will state
below gives an explicit representation of all possible Lévy exponents which shows in par-
ticular that ¢)(p) is growing at most polynomial as |p| — oc. Hence

e W —1
t

copp
f‘i‘iﬁf

+w’-|f\
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and
. 1 1 t 1 t s
c " ~-- t_ +¢:—¥/@/}(6_5¢—1) ds:¥//¢2e_”j’drds
0 0 0
hence
P . .
Sy <ol 1) e 2R,
and therefore:
pf = f B

¢ (—f)y = (QW)_S/QW' - dp— 0

as t | 0 uniformly in z. This shows f € Dom(L) and Lf = (= f). In particular, p, is
strongly continuous on . (R?). Since .#(R?) is dense in C,(R?) and p; is contractive this
implies strong continuity on C, (R?).

[

Remark . p; is not necessarily strongly continuous on Cy,(R?). Consider e.g. the deterministic
process
Xt - XO + t

on RY. Then
(pef)(z) = f(z +1),

and one easily verifies that there exists f € Cy(R) such that p,f -+ [ uniformly.

Corollary 3.10. (X;, P) solves the martingale problem for the operator (L, . (R?)) defined by
(3.2).

Example. [. Translation invariant diffusions:

X, = 0B, + b, o € R™" b e RY, B, Brownian motion on R"
We have
E [eip-Xt] E [ei(an)Bt} oipbt
— oY)t
where
1, 7 5 1 . T
Y(p) =50 p)" —ib-p=cp-ap—ib-p, a:=o00
and

Lf = ~(0fy= §divlaVf) ~b-Vf, [ e SR
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2. Compound Poisson process:

Ny
X =Y 7,
=1

Z; independent identically distributed random variables on R® with distribution 7, N, Pois-
son process of intensity \, independent of Z;.

E [eip'Xt] _ Z]E [eipAXt | Nt — ni| . P[Nt = n]
n=0

- . Oy,
zzzgsﬁw(p) 3 ,)6

n.

€_>\'(1_¢’7r (p))-t

and hence
0 = A (1= ealp) = [ (L= e7") aady)

and
(LO@) = (o)) = [(Fa+9) — f@)Atdy), € 7 (B,

The jump intensity measure v := A7 is called the Lévy measure of the compound Poisson
process.

3. Compensated Poisson process: X, as above, assume Z; € £*.
Ny

M, =X, —E[X,] =) Z - \E[Z] -t
=1

is a Lévy process with generator
(L f)(a) = L) = A+ [ yndy) - V£
= [ ) = 1@) ~ v V(a)) Ml

Remark/Exercise (Martingales of compound Poisson process). The following processes
are martingales:

(a) My=x¢—0b-t, whereb:=\-E[Z] = [yv(dy) provided Z, € L.
(b) |M|* — a-t, where a := \-E[|Z1]*] = [ |y|* v(dy) provided Z, € £*.
(c) exp(ip- X; +(p) - 1), p € R™
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Proof. e.g.

E[Mz—i—t - M82 | }—S] = E[(MS-H - M8)2 | :FS] = E[(MSH - MS)Q]

Ny
= E[|M,|*] = Var(X,) = Var (Z Zi>
=1
Nt Ni
Var (Z Z, Nt> > 7
i=1 =1

and since Var (Zf\il Zi | ) = N;-Var(Z,) and E [Zf\il Zi | ] = N;-E[Z)],

=K Ny

+ Var (E

)

E[M?Z,, — M? | F) = E[Ny] - Var(Z,) + Var(N,) - |E[Z1]]* = ME[|Z1[?).

4. Symmetric stable processes: Stable processes appear as continuous-time scaling limits
of random walks. By Donsker’s invariance principle, if

Sn:izi

is a random walk with independent identically distributed increments Z; € £* then the
rescaled processes

XM = k38

converge in distribution to a Brownian motion. This functional central limit theorem fails
(as does the classical central limit theorem) if the increments are not square integrable,
i.e., if their distribution has heavy tails. In this case, one looks more generally for scaling
limits of rescaled processes of type

Xt(k) = kiéSthJ

for some o > 0. If (Xt(k))tzo converges in distribution then the limit should be a
scale-invariant Lévy process, i.e.

ke X~ X, forallk >0 (3.3)

This motivates looking for Lévy processes that satisfy the scaling relation (3.3). Clearly,
(3.3) is equivalent to

e W) — R [eip-cXt} . o) [eip'Xco‘t} — e WD) yes

ie.

Y(ep) = c*Y(p)  Ve>0
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The simplest choice of a Lévy exponent satisfying (3.3) is

Y(p) = % - |p|®

for some o > 0. In this case, the generator of a corresponding Lévy process would be the
fractional power

A

Lf=—(fy =A%

of the Laplacien.

For o = 2 and o0 = 1 the corresponding Lévy process is a Brownian motion, the scaling
limit in the classical central limit theorem. For o > 2, L does not satisfy the maximum
principle, hence the corresponding semigroup is not a transition semigroup of a Markov
process.

Now suppose « € (0, 2).

Lemma 3.11. For a € (0, 2),

»(p) = const. - Eﬂ)l ve(p)

where

Proof. By substitution z = |p|y and v := £

ws(p) = lim (1 _ eip-y) ’y‘faﬂ dy
el0 R4\ B(0,¢)

[p|”

/ (1—e®Y) |y~ dy = / (1— ") |z|~* " da - [p|* — const.|p|*
RNB(0,¢) RANB(0,e:|p])
ase | 0since (1 — e"®) = jvx + O(|z|*) by Taylor expansion. O

Note that ). is the symbol of a compound Poisson process with Lévy measure proportional to

ly|~

@=L I{y1>e) dy. Hence we could expect that ¢ is a symbol of a similar process with Lévy

measure proportional to |y|~*~! dy. Since this measure is infinite, a corresponding process should
have infinitely many jumps in any non-empty time interval. To make this heuristics rigorous we
now give a construction of Lévy processes from Poisson point process:
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3.3 Construction of Lévy processes from Poisson point pro-
cesses:

Idea: Jumps of given size for Lévy processes < Points of a Poisson point process on R<.

t
Position of a Lévy process after time ¢:
X, = Z yN:({y}) if supp(1V;) is countable
Yy
X, = /yNt(dy) in general

a) Finite intensity

Theorem 3.12. Suppose v is a finite measure on R If (Ny)i>o is a Poisson point process of
intensity v then

Xoi= [ yNildy

is a compound Poisson process with Lévy measure v (i.e. total intensity X\ = v(R?) and jump

|14

distribution m = D ).

Proof. By the theorem in Section 1.9 above and the uniqueness of a Poisson point process of
intensity ~ we may assume
Ky
Ni=D 0z
i=1

where Z; are independent random variables of distribution A\~'v, and (K;)>¢ is an independent
Poisson process of intensity \.
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Hence
K
X, = /yNt(dy) => 7
k=1
is a compound Poisson process. []

b) Infinite symmetric intensity

Now assume that

(A1) v is a symmetric measure on R\ {0}, i.e.

v(B)=v(—B) VB ecBR"{0})

and

(A2) [ (1A y*) v(dy) < oo.
(e v(lyl = ¢) <ooand [, __|yPv(dy) <oo Ve>0)

For example, we could choose v(dy) = |y|~*~!, a € (0,2) which is our candidate for the Lévy
measure on an «-stable process. Let (N;):>( be a Poisson point process with intensity v. Our aim
is to prove the existence of a corresponding Lévy process by an approximation argument. For
e >0,

Ni(dy) = Ijjyey - Ne(dy)

is a Poisson point process with finite intensity v°(dy) = Ijj,><} - v(dy), and hence

Xi = / yNt(dy)Z/ny(dy)

ly|>e

is a compound Poisson process with Lévy measure »°.

Lemma 3.13. If (Al) holds, then for all 0 < § < e andt > 0,

B swp | - 2| <t [ vty
s<
= I<yl<e

Proof.
X) - X; = / y Ni(dy) Z/ny’E(dy)
0<]y|<e

where
NP (dy) = Isepyi<ey - Ni(dy)
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is a Poisson point process of intensity v°(dy) = I(s<y<c}-v(dy). Hence X7 — X§ is a compound
Poisson process with finite Lévy measure v>¢. In particular,

Mt::Xf—Xf—t-/yVE’g(dy)ZXE—Xf—t' / yv(dy)

I<yl<e

and
M —t- / V2 (dy) = Mt / y[? o (dy)
s<ly|<e

are right-continuous martingales. Since v is symmetric, M; = X? — X¢. Hence by Doob’s
maximal inequality,

2 2
E |sup | X? — X:°| =E [sup|M,2| < (=) -E[IM,*) =4t - / lyI? v(dy).
Sgt sgt 2_1
d<|y|<e

Theorem 3.14. Lett > 0. If (Al) and (A2) hold then the process X¢,e > 0, form a Cauchy
sequence with respect to the norm

IX° — X¢| :=E {sup X7 — X§|2] .
s<t

The limit process
X, = lim X{ = lim y Ng(dy), 0<s<t,

€l0 el0
ly|>e

is a Lévy process with symbol

(p) = lim (1 — eip'y) v(dy).

el0
ly|>e

Remark . 1. Representation of Lévy process with symbol v as jump process with infinite jump
intensity.

2. Forv(dy) = |y|7* !, a € (0,2), we obtain an a-stable process.

Proof. Lemma and (A2) yields that (X¢).~ is a Cauchy sequence with respect to || - ||. Since the
processes X : are right-continuous and the convergence is uniform, the limit process X is right-
continuous as well. Similarly, it has independent increments, since the approximating processes
have independent increments, and by dominated convergence

E [eip~(Xs+t—Xs)] — limE [eip'(X§+t—X§)] — 1im e~ 1Y@
€l0 €l0
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where
0 = [(@=em) vty = [ (1= ") viay)
ly|>e
is the symbol of the approximating compound Poisson process. O]

General Lévy processes

Theorem 3.15 (LEVY-KHINCHIN). For 1: R — C the following statements are equivalent:
(i) W is the characteristic exponent of a Lévy process.
(ii) e is the characteristic function of an infinitely divisible random variable.
(iii)

1 , ip- -
b(p) = gp-ap—ib+ /Rd (1= €™ +ip - yly<y) v(dy)

where a € RY is a non-negative definite matrix, b € R%, and v is a positive measure on

R%\ {0} satisfying (A2).

Sketch of proof: (1)=(i): If X; is a Lévy process with characteristic exponent ) then X; is an
infinitely divisible random variable with the same characteristic exponent.

(i1)=-(i11): This is the classical Lévy-Khinchin theorem which is proven in several textbooks on
probability theory, cf. e.g. Feller [10] and Varadhan [22].

(iii)=-(1): The idea for the construction of a Lévy process with symbol v is to define
X, =X+ xP 4+ x
where X X® and X are independent Lévy processes,

XY =\/aB,+b (diffusion part),
Xt(Q) compound Poisson process with Lévy measure I{j,>1}-v(dy) (big jumps)

xX® = lim X8 (small jumps),

Xt(?”s) compensated Poisson process with Lévy measure I.|y<1}-v(dy)

Since Xt(3’€) is a martingale for all ¢ > 0, the existence of the limit as ¢ | 0 can be
established as above via the maximal inequality. One then verifies as above that X (1), X (%)
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and X are Lévy processes with symbols

1
v W(p) = =p-ap — ib,

2

20(2)(17) = / (1 — eip'y) v(dy), and
ly[>1

W) = [ (1= ip-y) )
ly|<1

Thus by independence, X = X® + X@ + X©) is a Lévy process with symbol ¢ =
M 4+ p2) B cf. Bertoin [5] or Applebaum [3] for details.
[

Remark. [. Lévy-It6 representation:

Xy = Xo+ VaB, + bt + / y Ni(dy) + / y (Ni(dy) — tv(dy))

diffusion part  |y|>1 0<|yl<1

J/ J/

-

TV
big jumps small jumps compensated by drift

2. The compensation for small jumps ensures that the infinite intensity limit exists by martin-
gale arguments. If [ |y|v(dy) = oo then the uncompensated compound Poisson process
do not converge!

3. Inthe construction of the a-stable process above, a compensation was not required because
for a symmetric Lévy measure the approximating processes are already martingales.

Extension to non-translation invariant case:

Theorem 3.16 (Classification of Feller semigroups in R%). [DYNKIN, COURREGE, KUNITA,
ROTH]  Suppose (P;)i>o is a Cy contraction semigroup on Cy,(R?), such that C5°(R?) is con-
tained in the domain of the generator L. Then:

1.
LA(@) = Y aa) 5ot (@) + Do ba) V(o) +clo) - )

ij=1 i=1

3.4)
b [0 = 10 = Ly (v - 2) V@) vlandy)

R\ {z}
forall f € C3°(R?), where a;;,b,c € C(R?), a(x) non-negative definit and c(x) < 0 for

all x, and v(x,-) is a kernel of positive (Radon) measures.

2. If P, is the transition semigroup of a non-explosive Markov process then ¢ = (.
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3. If P, is the transition semigroup of a diffusion (i.e. a Markov process with continuous paths)
then L is a local operator, and a representation of type (3.4) holds with v = 0.

Remark . Corresponding Markov processes can be constructed as solutions of stochastic differ-
ential equations with combined Gaussian and Poisson noise.

We will not prove assertion 1. The proof of 2. is left as an exercise. We now sketch an in-
dependent proof of 3., for a detailed proof we refer to volume one of Rogers / Williams [18]:

If f = 1 on a neighborhood of x and 0 < f < 1, then by the maximum principle,

0= (L) =ole)+ [ ()~ 1) vidy
R\ {z}
this is only possible for all f as above if v(z,-) = 0.

Proofof3.:  a) Locality: If x € R?and f,g € Dom(L) with f = g in a neighborhood of ,
then Lf(z) = Lg(z). Since f € Dom(L) and z € R¢,

t
fx) = [ e ds
0
is a martingale and hence

T

E.[f(Xr)] = f(z) + E, / (LF)(X,) ds

0

for all bounded stopping times 7" (Dynkin’s formula). Hence

E, [[;* L(X,) ds]

(Lf)(x) = lim

el0 E.[T.]
E. | f(X1)| — . .
= 15%1 KA EZS[%]}] /() (Dynkin’s characteristic operator)

where
T.:=inf{t >0 : X; ¢ B(z,e)} A1

since in the equation above, L f(X;) = Lf(x) + O(1) by right continuity.
If the paths are continuous then X7. € B(x,¢). Hence for f,g € Dom(L) with f = gina
neighborhood of z,

f(X7) = 9(X1.)
for small € > 0, and thus

Lf(z) = Lg(x).
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b) Local maximum principle: Locality and the maximum principle imply:

f € Dom(L) with local maximum atz = Lf(z) <0

c) Taylor expansion: Fix # € R? and f € C°(R?). Let ¢,p; € C(RY) such that
©(y) = 1 and p;(y) = y; — x; for all y in a neighborhood of x. Then in a neighborhood U
of z,

F) = @) 2l0) + 3 G @at) + 5 3 dg i @anen o) + R

i=1 ij=1

where R is a function in C§°(R?) with R(y) = o(|y — =|*). Hence

1 0% f
(L1)(@) = e 1(@) + 095(@) + 5 D ey (@) + (LR)@)
where ¢ := Ly(x), b; :== Ly;(x) and a;; := L(p;p;)(x). In order to show (LR)(z) =0
we apply the local maximum principle. For ¢ € R choose R. € C§°(R?) such that

R.(y) = R(y) —¢ly — ]

on U. Then for ¢ > 0, R, has a local maximum at z, and hence LR, < 0. Fore | 0
we obtain LR(x) < 0. Similarly, for ¢ < 0, — R, has a local maximum at x and hence
LR. > 0. Fore T 0 we obtain LR(x) > 0, and thus LR(z) = 0.

]
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Chapter 4

Convergence to equilibrium

Our goal in the following sections is to relate the long time asymptotics (¢ T oo) of a time-
homogeneous Markov process (respectively its transition semigroup) to its infinitesimal charac-
teristics which describe the short-time behavior (¢ | 0):

Asymptotic properties — Infinitesimal behavior, generator
t T oo t10

Although this is usually limited to the time-homogeneous case, some of the results can be applied
to time-inhomogeneous Markov processes by considering the space-time process (¢, X;), which
is always time-homogeneous. On the other hand, we would like to take into account processes
that jump instantaneously (as e.g. interacting particle systems on Z<) or have continuous trajecto-
ries (diffusion-processes). In this case it is not straightforward to describe the process completely
in terms of infinitesimal characteristics, as we did for jump processes. A convenient general setup
that can be applied to all these types of Markov processes is the martingale problem of Stroock
and Varadhan.

4.1 Setup and examples

In this section, we introduce the setup for the rest of the chapter IV. Let S be a Polish space
endowed with its Borel o-algebra S. By F,(S) we denote the linear space of all bounded mea-
surable functions f: S — R. Suppose that <7 is a linear subspace of F;(.S) such that

(A0) If 1 is a signed measure on .S with finite variation and

/fdu:() Ve,

then =0

Let

87
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be a linear operator.

Definition 4.1. An adapted right-continuous stochastic process ((X;)i>0, (Ft)i>0, P) is called a
solution for the (local) martingale problem for the operator (£, <) if and only if

M = F(X,) — / (L1)(X.) ds
0
is an (F;)-martingale for all f € <.

Example. 1. Jump processes: A minimal Markov jump process solves the martingale prob-
lem for its generator

(L)) = / a(z.dy) (f(y) — F(2))
with domain
g ={fecFS): LfeF()},

cf. above.

2. Interacting particle systems: An interacting particle system with configuration space T2
as constructed in the last section solves the martingale problem for the operator

(L) =Y ala,pm) - (f (1) = f(w) 4.1)

x€Zd i€T

with domain given by the bounded cylinder functions
ﬂ:{f S—R: f(/’l’> = @(N(xl)aalﬁ@jk))ak S Naxlu"'7xk < Zd7gp € fb(Tk)}

Note that for a cylinder function only finitely many summands in (4.1) do not vanish. Hence

Zf is well-defined.

3. Diffusions: Suppose S = R™. By Ité’s formula, any (weak) solution ((X;)¢>0, P) of the
stochastic differential equation

with an R*-valued Brownian motion B, and locally bounded measurable functions o : R" —
R b: R™ — R", solves the martingale problem for the differential operator

(LN = 5 3 ale) () +a) - Al o)
ofs) = o(x)o @),

with domain C*(R™), and the martingale problem for the same operator with domain &/ =
C2(R™), provided there is no explosion in finite time. The case of explosion can be included
by extending the state space to R" U{A} and setting f(A) = 0 for f € CZ(R").
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4. Lévy processes A Lévy process solves the martingale problem for its generator
Lf=-@fy
with domain of = ./ (R").

From now on we assume that we are given a right continuous time-homogeneous Markov process
((Xt)e>0, (Ft)i>0, (Pr)zes) With transition semigroup (p;)>o such that for any = € S, (X;)>0 is
under P, a solution of the martingale problem for (., <) with P, [X, = z] = 1.

Remark (Markov property of solutions of martingale problems). Suppose P,,x € S, are prob-
ability measures on

P(R*,S) := all cadlag functions w: RT — S

such that with respect to P,, the canonical process X,(w) = w(t) is a solution of the martingale
problem for (£, <) satisfying P.[X, = z| = 1.
If

(i) A is separable with respect to || ||z = || fllsup + ||-Z f || sup>
(ii) x — P,(B) is measurable for all B € S,

(iii) For any x € S, P, is the unique probability measure on 2(R*,S) solving the martingale
problem,

then (Xy, P,) is a strong Markov process, cf. e.g. Rogers, Williams [18] Volume 1.

Let ./ denote the closure of .7 with respect to the supremum norm. For most results derived
below, we will impose two additional assumptions:

Assumptions:
(A1) If f € o7, then L f € o

(A2) There exists a linear subspace .« C 7 such thatif f € o, then p,f € o/ forallt > 0,
and .27 is dense in .2/ with respect to the supremum norm.

Example. 1. For Lévy processes (Al) and (A2) hold with oy = o = & (R%), and B =
o = Cy(RY).

2. For a diffusion process in R? with continuous non-degenerated coefficients satisfying an
appropriate growth constraint at infinity, (Al) and (A2) hold with </, = C(RY), of =
(RN C?*(RY) and B = o = Co(RY).
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3. In general, it can be difficult to determine explicitly a space <7 such that (A2) holds. In

this case, a common procedure is to approximate the Markov process and its transition
semigroup by more regular processes (e.g. non-degenerate diffusions in R%), and to derive
asymptotic properties from corresponding properties of the approximands.

. For an interacting particle system on T with bounded transition rates ci(x,m), the con-

ditions (Al) and (A2) hold with
= ={f: T SR : |f] < oo}

where

IF1 =" As(a), Ays(z) = sup | f(™") — f(n)

€T
x€Z4 1€

Y

cf. Liggett [15].

Theorem 4.2 (From the martingale problem to the Kolmogorov equations). Suppose (Al) and
(A2) hold. Then (p;)>o induces a Cy contraction semigroup (P;);>o on the Banach space B =
o/ = o, and the generator is an extension of (£, o). In particular, the forward and backward

equations

Cnf=ptf Vied
and

Snf=Zuf Vfedh
hold.

Proof. Since Mtf is a bounded martingale with respect to F,,, we obtain the integrated backward
forward equation by Fubini:

t

(mef)la) = fla) = Bl (X0) = ()] =E. | [ (£7)(X.)ds
° 4.2)

t

- [z as

0

forall f € o and x € S. In particular,

t
100f = Fllowp < / 162 Fllsup @5 < £ - 2 F [l — 0
0
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ast | 0forany f € 7. This implies strong continuity on B = &/ since each p, is a contraction
with respect to the sup-norm. Hence by (A1) and (4.2),

t

- 2i =1 [w2r-2p) ds 0

0

pef — f
t

uniformly for all f € 7, i.e. &/ is contained in the domain of the generator L of the semigroup
(P;)t>o induced on B, and Lf = Zf for all f € o/. Now the forward and the backward
equations follow from the corresponding equations for (P;);>o and Assumption (A2). 0

4.2 Stationary distributions and reversibility
Theorem 4.3 (Infinitesimal characterization of stationary distributions). Suppose (Al) and (A2)
hold. Then for . € M, (S) the following assertions are equivalent:

(i) The process (X, P,) is stationary, i.e.

(Xst)ez0 ~ (Xi)izo
with respect to P, for all s > 0.
(ii) v is a stationary distribution for (p:)i>o
(iii)
/ Lfdu=0 Vfedod

(i.e. u is infinitesimally invariant, £ = 0).

Proof. (1)=-(i1) If (1) holds then in particular
pps = P, o X :PMoXO_1 =
for all s > 0, i.e. yu is a stationary initial distribution.
(ii)=-(i) By the Markov property, for any measurable subset B C Z(R*, S),
P(Xstt)iz0 € B | Fs] = Px,[(Xt)i0 € B
P,-a.s., and thus

Pu(Xstt)iz0 € B] = Eu[Px,(Xt)i0 € B)] = P, [(Xt)iz0 € B] = P,[X € B]
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(ii)=-(iii) By the theorem above, for f € &7,

pef — f
t

— Z f uniformly as ¢ | 0,

SO

M:hmffd(ﬂpt)—ffdu _
t

t |0

L/iﬁduzag 0

provided f is stationary with respect to (p;)s>o-
(iii))=(1i) By the backward equation and (iii),

d

9 e = /.zptfduzo

since p; f € « for [ € <, and hence

/fﬂwﬂz/ﬁﬂwz/fw (4.3)

for all f € o and t > 0. Since 4 is dense in ./ with respect to the supremum norm,
(4.3) extends to all f € o/. Hence up; = p for all £ > 0 by (AO0).
O

Remark . Assumption (A2) is required only for the implication (iii)=>(ii).

Applicaton to It6 diffusions:

Suppose that we are given non-explosive weak solutions (X;, P,),» € RY, of the stochastic
differential equation

dXt = U(Xt) dBt + b(Xt) dt, XO =X Px-a.S.,

where (B;);>o is a Brownian motion in R¢, and the functions o: R* — R"*¢ and b: R* — R
are locally Lipschitz continuous. Then by It6’s formula (X, P,) solves the martingale problem
for the operator

1 o 0? T
;f:ai;aij(x)m—l—b(x)-v, a=o0",

with domain &/ = C§°(R™). Moreover, the local Lipschitz condition implies uniqueness of
strong solutions, and hence, by the Theorem of Yamade-Watanabe, uniqueness in distribution of
weak solutions and uniqueness of the martingale problem for (., o7), cf. e.g. Rogers/Williams
[18]. Therefore by the remark above, (X;, P,) is a Markov process.
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Theorem 4.4. Suppose 1 is a stationary distribution of (X, P,.) that has a smooth density o with
respect to the Lebesgue measure. Then
1~ 02

0= 5 — 2 (a;;0) — div(bo) =
L0 Qij_laxiaxj(GZJe) iv(bo) =0

Proof. Since i is a stationary distribution,

O:/Zfdu:/gfgdx:/f,ﬁf*gdw vV fe (R (4.4)
R’Il RTL
Here the last equation follows by integration by parts, because f has compact support. [

Remark . In general, 1 is a distributional solution of £* . = 0.

Example (One-dimensional diffusions). In the one-dimensional case,
Lf =3 +0bf
and

1 ! !
Lo = 5(@@) — (bo)

where a(x) = o(x)?. Assume a(x) > 0 forall v € R.

a) Harmonic functions and recurrence:

[ 2b
LI=51" 40 =0 & f=Cew- [Dan cier
0

& f=04+C-s, C,0,eR

where

_ be(z)d
8::/6 0 at@) “ dy

0

is a strictly increasing harmonic function that is called the scale function or natural scale of the diffusion.
In particular, s(.X;) is a martingale with respect to P,. The stopping theorem implies

s(b) — s(x)

PT, <Ty) = S(6) = s(a)

YVa<xz<b

Asa consequence,
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(i) If s(00) < oo or §(—o0) > —oo then P,[|X;| — oo] = 1 forall x € R, ie., (X, P,) is
transient.

(ii) If s(R) = R then P,[T, < oo|] = 1 for all z,a € R, i.e., (Xt P,) is irreducible and
recurrent.
b) Stationary distributions:

(i) s(R) # R: In this case, by the transience of (X, P,), a stationary distribution does not
exist. In fact, if y is a finite stationary measure, then for all ¢, > 0,

pz = fel <rp) = (up)({z 2 Jo] < 7)) = Pul[X] < 7.

Since X; is transient, the right hand side converges to 0 as ¢t T oo. Hence pu({z : |z| <
r})=0forallr > 0,i.e., u=0.

(ii)) s(R) =R: We can solve the ordinary differential equation .£*p = 0 explicitly:

20 (a0l ~10) =0
& %(ag)' — gag = with C; € R
& % (e’fo’ 2dema((_)>/ =Cy-elo T
& sap=Cy +2C, - s with C1,Cy € R
& o(y) = : _ & elo % do with Cy > 0

Here the last equivalence holds since s'ap > 0 and s(R) = R imply C5 = 0. Hence a
stationary distribution p can only exist if the measure

1 Yy 2b
m(dy) = — el T gy
a(y)
is finite, and in this case y = %. The measure m is called the speed measure of the

diffusion.

Concrete examples:

1. Brownian motion: « = 1,b = 0,s(y) = y. Since s(R) = R, Brownian motion is
transient and there is no stationary distribution. Lebesgue measure is an infinite stationary
measure.
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2. Ornstein-Uhlenbeck process:

dXt = dBt — f}/Xt dt, Y > 07
1 d? d ]
= ——— —yr— a=
2drz dr ’
Y Yy
b(xr) = —vyz, s(y) = /efoy e dr gy — /er dy recurrent,
0 0
2 m 2 . . . .. .
m(dy) = e " dy, p=——=N (0, —) is the unique stationary distribution
m(R) g
3.
1
dX, = dB, + b(X,) dt, be C2 b(x) = — for |z| > 1
x

transient, two independent non-negative solutions of .£*p = 0 with [ pdz = co.
(Exercise: stationary distributions for d.X; = dB; — ﬁ dt)

Example (Deterministic diffusions).

dX, = b(X,)dt, b e C*(R™)
ZLf=b-Vf
ZL*0 = —div(gb) = —pdivb —b- Vo, oeC!
Proposition 4.5.
ZL*0=0 & div(eb) =0
& (&L, CS°(R™)) anti-symmetric on L*(j1)

Proof. First equivalence: cf. above

Second equivalence:
/fi”gd,u: /fb-Vde:I; = —/div(fbg)gdx
—— [ Zsgdn- [antansgds Vi

Hence . is anti-symmetric if and only if div(eb) = 0
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Theorem 4.6. Suppose (Al) and (A2) hold. Then for pn € M;(S) the following assertions are
equivalent:

(i) The process (X, P,) is invariant with respect to time reversal, i.c.,
(Xs)o<s<t ~ (Xi—s)o<s<t  with respectto P, Nt >0
(ii)
p(dz)pe(x, dy) = p(dy)p(y, dz) vVt =0

(iii) p¢ is p-symmetric, i.e.,

/fptgdu = /ptfgdu V f,9 € Fu(5)
(iv) (£, ) is p-symmetric, i.e.,

[12adn= [ 2foau ¥ige

Remark. 1. A reversible process (X, P,) is stationary, since for all s,u > 0,
(Xs+t>0§t§u ~ (Xu—t)()gtgu ~ (Xt)OStSu with respect to ‘PAL

2. Similarly (ii) implies that | is a stationary distribution:

/ p(dz)py(x, dy) = / pi(y, dz)pu(dy) = p(dy)

Proof of the Theorem. (1)=(i1):
plda)pe(x, dy) = By o (Xo, X;) ™' = P o (Xy, Xo) ™ = pu(dy)pi(y, dz)
(i1)=>(i): By induction, (ii) implies
p(dxo)pey —to(To, A1) Dty 1y (T1, dxo) -+ - Dy, 4, (T, dy,)
=p(d )Pty —to (Tn, dTn—1) - Pro -t (21, dTo)
forneNand 0=t <t; <---<t, =t, and thus
E.lf (Xo, Xty Xtoy oo, Xey 1, Xi)] = EL[f (Xt ..o, Xey, Xo)]

for all measurable functions f > 0. Hence the time-reversed distribution coincides with
the original one on cylinder sets, and thus everywhere.

(i1)«<(ii1): By Fubini,
[ tmaau= [ [ r@g@nldom i)
is symmetric for all f, g € F(.S) if and only if 1 ® p; is a symmetric measure on S X S.

(ii1)<(iv): Exercise.
O
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Application to It6 diffusions in R™:

n

1 0? o (o

ij=1
( probability measure on R™ (more generally locally finite positive measure)

Question: For which process is j stationary?

Theorem 4.7. Suppose 1 = o dx with g;a;; € C',b € C, 0> 0. Then

1. We have
Lg=Lg+ Loy

forall g € C3°(R™) where
1 10 dg
L=~ =9 e, 20
IT0 i;ngaxi (Qa]axz‘)

1 0
Zug=0-Vy, ﬁjzbj—ZQ—Q%

(0ai;)

2. The operator (Zs, C§° is symmetric with respect to [i.
3. The following assertions are equivalent:
(i) L*u=0 (ie. [ZLfdp=0forall feC).
(ii) LXpn=0
(iii) div(pB8) =0
(iv) (L., C°) is anti-symmetric with respect to [

Proof. Let
E(frg) = — / [ZLgdn  (f.g€C)

denote the bilinear form of the operator (.Z, C5°(R™)) on the Hilbert space L*(R™, 1). We de-
compose £ into a symmetric part and a remainder. An explicit computation based on the integra-
tion by parts formula in R” shows that for ¢ € C3°(R") and f € C*(R"):

2

1 0
5(f79):—/f(52aijaTgm+b'Vg> odt
iOTj
1 0 dg
—/5;8—%(0%00)8—%(1%—/fb'Vde$

1 af o
[ agt ode— [ 16 Voeds  vigecy
4,J

" 81‘2 8xj
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and set
1 o1 2
_/5;. g etr == [ 12gds
Eufrg) = / 15 -Vgode = / g di

This proves 1) and, since & is a symmetric bilinear form, also 2). Moreover, the assertions (i)
and (ii) of 3) are equivalent, since

—/fgdu=5(17g)=5(1 9) +&(L,9) = /.ifagdu

for all g € C§°(R") since &(1,g) = 0. Finally, the equivalence of (ii),(iii) and (iv) has been
shown in the example above. ]

Example. £ =1A+0-V,beCR",R"),

1
(Z,C5°) p-symmetric < [=10b— 2—QVQ =0

Vo 1
o b= -—S"=2VI1
20 2 08¢

wherelog o = —H if p = e dx.
ZLsymmetrizable < bis a gradient

1
L'un=0 < b:§V10gg+ﬁ

when div(pf) = 0.

Remark . Probabilistic proof of reversibility for b := —%VH ., HeC:
/ 1
Xi=x+ B+ /b(XS) ds, non-explosive, b= _§Vh
0
Hence P, o Xof} < Wiener measure with density
T
1 1 1

0

1
exp —§H(Bo) -

which shows that (X, P,) is reversible.
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4.3 Dirichlet forms and convergence to equilibrium

Suppose now that y is a stationary distribution for (p;);>o. Then p; is a contraction on L?(.S, 1)
for all p € [1, o] since

[msrans [piran= [1opan w5 ezs)

by Jensen’s inequality and the stationarity of u. As before, we assume that we are given a
Markov process with transition semigroup (p;):>o solving the martingale problem for the op-
erator (%, o). The assumptions on %, and </ can be relaxed in the following way:

(A0) as above
(AY) f, Lf € ZLP(S,u) foralll <p < oo

(A2%) 4 is dense in 7 with respect to the LP(.S, u) norms, 1 < p < oo, and p,f € o for all
[ €%

In addition, we assume for simplicity

(A3) 1 e .o/

Remark . Condition (A0) implies that </, and hence <%, is dense in LP (S, p) for all p € [1, o).
In fact, if g € L9(S, ), % - % =1, with | fgdp = 0forall f € <, then gdp = 0 by (A0) and
hence g = 0 p-a.e. Similarly as above, the conditions (A0), (Al’) and (A2’) imply that (p;)i>0

induces a Cy semigroup on LP(S, ) for all p € [1,00), and the generator (L), Dom(L®)))
extends (£, o), i.e.,

o CDom(LP) and LW f=2f p-ae. forall f e of
In particular, the Kolmogorov forward equation
d
%ptf =pZLf Vfed

and the backward equation
d
Eptf =Zpf VIE

hold with the derivative taken in the Banach space L?(S, 11).

We first restrict ourselves to the case p = 2. For f, g € Z2(S, 1) let

(f,9)u = /fgdu

denote the L? inner product.
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Definition 4.8. The bilinear form

5(5,9) 1=~ (1. Z9)y =~ (F.pi9)

=0’
f,g € , is called the Dirichlet form associated to (£, <) on L*(u).

1

is the symmetrized Dirichlet form.

Remark . More generally, &(f, g) is defined for all f € L*(S, i) and g € Dom(L®?) by

£(7,9) = ~(, LPg) = —(f,pig),

t=0

Theorem 4.9. Forall f € o/ andt > 0

d

== /(ptf)Qd,u = =28(pef pef) = —264(pef, pef)

d
7 Var,, (p:.f)

Remark . 1. In particular,

1d

ST =5 [ dn =5 5 Vo)

infinitesimal change of variance

2. The assertion extends to all f € Dom (L) if the Dirichlet form is defined with respect to
the L? generator. In the symmetric case the assertion even holds for all f € L*(S, j1).

Proof. By the backward equation,

¢ (pef)? dp = 2/pt$ptf dp = =28 (pef,pef) = —28(pef, pief)

dt
/PtfdMZ/fd(upt)z/fdu

d d
E\/ar#(pt) = E/(ptf)zdﬂ

Moreover, since

1S constant,
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Remark . 1. In particular,
1d 1d
E(f.0) = =53 [ du|_ === Var(pi)
d
E(1.0) = T (6T +9.7 +0) + &F — 0.7 —0)) = —5 o Covylpef. m)

2dt

Dirichlet form = infinitesimal change of (co)variance.

2. Since p; is a contraction on £*(u), the operator (£, <) is negative-definite, and the
bilinear form (&, <) is positive definite:

(1.2, =60 =y tim ( [wPdu- [ Fan) 2o

2 t10

Corollary 4.10 (Decay of variance). For A > 0 the following assertions are equivalent:

(i) Poincaré inequality:

Var,(f) < 56w (f, f) Vfed

> =

(ii) Exponential decay of variance:

Var,(pif) < e M Var,(f) Vfe LS, u) 4.5)

span{l}i->

Remark . Optimizing over A, the corollary says that (4.5) holds with

(iii) Spectral gap:
Rea > A Va € spec <—L(2)

s . s =ZNu
AT T
FLLin L2(1)

Proof. (i) = (i1)
E(f, )z A-Varu(f) Vfed

By the theorem above,

%Varu(]?tf) = _2(§(ptf, ptf) < —2A Var“(ptf)

forallt > 0, f € . Hence
Var,(p.f) < e M Var,(pof) = e N Var,(f)

for all f € . Since the right hand side is continuous with respect to the L?(y) norm, and
4 is dense in L? () by (A0) and (A2), the inequality extends to all f € L*(u).
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(41) = (i3i) For f € Dom(L®,

Do, )| = —26(7.10)
Hence if (4.5) holds then
Var,(p.f) < e 2 Var,(f) Vt>0
which is equivalent to
Var,(f) — 2t&(f, f) + o(t) < Var,(f) — 2t Var,(f) +o(t) Yt>0
Hence

E(f, f) =z AVar,(f)

and thus
—(LOf, ), > >\/f2 dp  for f11

which is equivalent to (iii).

(i7i) = (i) Follows by the equivalence above.

Remark . Since (£, o) is negative definite, A\ > 0. In order to obtain exponentially decay,
however, we need A\ > 0, which is not always the case.

Example. [. Finite state space: Suppose ji(x) > 0 forall x € S.

Generator:
=> L) fly) =Y Ly (fy) - f(@)
Adjoint: y y
Ly, x) = %X(% )
Proof

(Lf,9)u Zu fy)g()

=> uy)f “—x;f(x,y)g(x)
= (f,.£™"g)u
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Symmetric part:
1 ” _1 1y)
Llan) = 5 (L) + 27 wn) = 5 (Lo + 40200,
p(e) L, 9) = 5 ()2 2, ) + () 2 (0. 2)
Dirichlet form:
E(f.9) = —(Zf.9) Zu (f(y) — f(x)) g(x)
I—Zu (f(=) = F(W) g(y)
==Y u (y) = f(2) (9(y) — g())
Hence .
Ef 1) =6F.1) =5 Q) (fy) - f(x))’
where

Qr,y) = p(x)ZL(x,y) =

2. Diffusions in R": Let

2= 50T by
= Q;; —————— .
24 Y 9,01 ’

and of = C§°, p = odz, 0,a;; € C', be Cp>0,
/Z of 39
Y D, 8%

E(f.9) = Ef.g) — (f.8- V), ﬁzb—%&ﬂmm

Definition 4.11 ("Distances” of probability measures). p, v probability measures on S, | — v
signed measure.

(i) Total variation distance:

[V = pllrv = sup [v(A) = p(A)|
Aes
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(ii) x2-contrast:

2
S0 = (%) du1 v

+00 else

X2 (plv) =
(iii) Relative entropy:

W og W ) = log &= gy dV ifv <
HM@—{“ =] v

(where 0log 0 := 0).

Remark . By Jensen'’s inequality,
dv dv
H > | —dul —dy =
<V|M)_/du uog/du p=0

Lemma 4.12 (Variational characterizations).

(i)
o=l = 5 sup (/fdv—/fdu>

|f\<1

(i)

2
N () = wp(/fw—/fm)

feF(S)

[ 2 du<i

and by replacing f by f — [ fdp,

N(v|p) = S (/de)

J f2du<t
J fdu=0

(iii)

H(v|p) = sup /fdl/— sup /fdu—log/efdu
FEF(S L Fu(S)

Jef d,u<1
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Remark . [ e/ dp <1, hence [ fdu <0 by Jensen and we also have

i, (o= [sw) <o

Proof. (1) 7 <7

and setting f := 4 — I4c leads to

v — pllry = sup (v(A) — u(A) —|§1|1<pl </fdv—/fdu>

7> If |f| < 1then

[ raw—w =S[fd<u—u>+5[fd<u—m

< (v —=w)(Sy) — (v—p)(S-)
=2(v — p)(Sy) (since (v — p)(S4) + (v — ) (S-) = (v — p)(5)
< 2|l — pflry

where S = SJFUS,, v—pu >0onS,y, v—pu < 0on S_ is the Hahn-Jordan
decomposition of the measure v — .

(i) If v <« p with density o then

= lle = |72y = sup /f(@—l)duz sup (/fdv—/fdu)
fe2? () fEF(S)

”fHLQ(u)S]' ”fHLQ(H)Sl

N

X (v|p)

by the Cauchy-Schwarz inequality and a density argument.

If v & p then there exists A € . with u(A) = 0 and v(A) # 0. Choosing f = \-I4 with

A T oo we see that
sup (/fdv—/fdu) = 00 = x*(V|n).
feFy 5)

£l L2 <1
This proves the first equation. The second equation follows by replacing f by f — [ f dpu.

(i11) First equation:
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7 >7 By Young’s inequality,
uv < wulogu —u+ e”

for all w > 0 and v € R, and hence for v < p with density p,

[ rav= [ todn

/Qlog@du Qdu+/€fdﬂ
(vjp) =1+ [ el du V fe Fu(S)
H(v|p) if /efdu <1

7 <7 v < p with density p:
a) e<p< % for some £ > 0: Choosing f = log p we have

H(u|u):/loggduz/fdu
/efd,u:/gd,uzl

b) General case by an approximation argument.

and

Second equation: cf. Deuschel, Stroock [8].

Remark . [f v < p with density o then
1
HV—MHTv——SUp fle=1dp=glle =1l

However, ||[v — p|7v is finite even when v & .

Corollary 4.13. The assertions (i) — (iii) in the corollary above are also equivalent to
(iv) Exponential decay of x? distance to equilibrium:

X (vpelp) < e (v|w) Vv e My(S)

Proof. We show (ii) < (iv).
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7 =7 Let f € £?(u) with [ fdu = 0. Then

[ rawm ~ [ ran= [ rawp) = [ s

1

< |Ipefllreq - X>(vlp)?
_ 1
< e M fllzag - XP(v|p)?

where we have used that [ p;f du = [ f du = 0. By taking the supremum over all f with

J f*du <1 we obtain

—At 2(

1 1
C(vp )z < v|p)?

7 <7 For f € £*(p) with [ fdu =0, (iv) implies

vi= 1
/ pofgdp =" / Fdwpe) < 11120 (vpel)’
_ 1
< e f L)
e L2 92200
forall g € L?(u),g > 0. Hence

1pef 2 < €N fllz2c

Example: d = 1!

Example (Gradient type of diffusions in R™).
dX; = dB; + b(X}) dt, b e C(R",R")
Generator:

2f = %Af+be, f e C(RY)

symmetric with respectto = odx, o€ C' < b= %V log o.
Corresponding Dirichlet form on L*(odx):

§(t9) = [ Ztoeds =5 [ViVgeds

Poincaré inequality:
Var, ¢, (f) < 2)\ /|Vf| odx

The one-dimensional case: n =1,b= %(log 0)' and hence

o(x) = const. elo 22wy

—0(1}2

e.g. b(z) = —ax, o(z) = const. e, u = Gauss measure.
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Theorem 4.14. 7?7

Proof. By the Cauchy-Schwarz inequality, for x > 0,

€T 2 X T
1
(f(z) — £(0))* = fdy | < [ |f)Pg0dy | —dy

where g: R™ — R is an arbitrary continuous strict positive function. Hence by Fubini

7 (f(x) = £(0)) o(w) do
/If )Pg(y) // dzg (z) dz
/If )Po(y) dy - Syligg // dzg (z) d

Optimal choice for g:

=

In this case:

X 1 X
/—dz = 2/g’dz = 2g(z),
go
0 0
SO . .
/(f — f(0)? odz < [ |f|2ody - sup
y>0
0 0
]
Bounds on the variation norm:
Lemma 4.15. (i)
1

v — pl|3y < ZXZ(V\M)

(ii) Pinsker’s inequality:

1
lv = pliv < SHWIp) Vu,ve Mi(S)
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Proof. If v & pu, then H(v|p) = x*(v|pn) = oo.
Now let v < p:
)
1

1 1 1
1 = pllrv = 5lle = Uiz < 5lle = i = §X2(V\u)2

-2

(i1)) We have the inequality

3(x—1)2*< (4+2r)(zlogr —x+1) Va>0

and hence
V3l —1| < (4+2x)%(xlogx —x+ 1)%

and with the Cauchy Schwarz inequality

\/§/|9—1\du§ (/(4+29)du)é (/(Qlogy—wl)du)%

=6 H(vlp)?

Remark . If S is finite and p(x) > 0 for all x € S then conversely

(Zoes

v(x) 2
@) 1‘ M(@)

Xl =) (M - 1)2 u(z) <

= \u(z) mingeg f1()

Al - plih
min g

Corollary 4.16. (i) If the Poincaré inequality

Var(f) < 38U/ ) Vi€

holds then )
_ 1
lvpe = pllzv < Se P (Vi)

(ii) In particular, if S is finite then

1 -
lvpe = pllrv < — e Ml = pllzv

mincs 1(2)

[N

109

(4.6)

where ||v — u||ry < 1. This leads to a bound for the Dobrushin coefficient (contraction

coefficient with respect to || - ||7v)-
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Proof.

1 12 B
lvpe — pllv < =X (vpe )z < e P (vjp)z < 3 e My — v

l\l)l»—l

DR

if S is finite. ]

Consequence: Total variation mixing time: € € (0, 1),
Thix(€) = inf {t>0 : |lvpy — pllrv < eforall v € M, (S)}
1 1 N 1 log 1
O E— —
)\ & T o % min ()
where the first summand is the L? relaxation time and the second is called burn-in period, i.c.

the time needed to make up for a bad initial distribution.

Remark . On high or infinite-dimensional state spaces the bound (4.6) is often problematic since
X2(v|p) can be very large (whereas ||v — pl|rv < 1). For example for product measures,

o) = [ (90 1= ([ () i) -
X Ho) = i H = dp H

2
where [ (g—:) dp > 1 grows exponentially in n.

Are there improved estimates?

[otav= [ ran=[nsae - < oflon- I~ ey
Analysis: From the Sobolev inequality follows

e fllsup < ¢~ (1 f 1o

However, Sobolev constants are dimension dependent! This leads to a replacement by the log
Sobolev inequality.

4.4 Hypercontractivity
Additional reference for this chapter:
e Gross [11]

e Deuschel, Stroock [8]
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e Ané [2]
e Royer [19]

We consider the setup from section 4.3. In addition, we now assume that (.Z, .<7) is symmetric
on L*(S, p).

Theorem 4.17. With assumptions (A0)-(A3) and o > 0, the following statements are equivalent:

(i) Logarithmic Sobolev inequality (LSI)

/f log dp<al(f.f) Vied
||f||L2(u>

(ii) Hypercontractivity For1 <p < q < oo,
qg—1
p—1

(e}
Ipef oy < [ flleqy YV f € LP(p), t > Zlog

(iii) Assertion (ii) holds for p = 2.

Remark . Hypercontractivity and Spectral gap implies

||ptf||Lq(u) = ||ptopt—tof||Lq < |lpe- tof”L?(,u <e Mi=to) ||f||L2(u

forallt > ty(q) := §log(q —1).

Proof. (1)=-(ii) Idea: WLOG f € o, f > 0 > 0 (which implies that p,f > 6 V¢ > 0).

Compute
d +
%HptfHLq(t)(u), ¢: R™ — (1, 00) smooth:

1. Kolmogorov:

d

P f=Zpf derivation with respect to sup-norm

implies that

d

o (pef)™D dp = q(2) / ()" L f dp+ ¢ (t) / (pef)* D log i f dps

where

/ (P ) O Lpef dp = —& ()1 pef)
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2. Stroock estimate:

& (fq_l,f) > 4(Qq; 1)5 (f%,f%>

Proof.
B = (20, =l (7 f ),
—lim i /y(ﬁl ~ @) () — F(2)) pels dy) ulde)

th 2t

qq; 2 lim o // f%(y) - f%(@)zpt(:v,dy)u(dx)

_ 4(qq; D o (f%7 f%)

where we have used that

(af —00) < T (@ ) (a—B) Yab>0.4>1
2/ T 4lg-1) T

]

Remark . — The estimate justifies the use of functional inequalities with respect to
& to bound LP norms.

— For generators of diffusions, equality holds, e.g.:
4(g—1 q|2
/qu_IVfd/L — %/‘sz‘ du

by the chain rule.

3. Combining the estimates:

1 d d
o®) I I Sl = 55 [ 01 di = ) [ ) 108 1y i

where

/@JVM@F=MJM8

This leads to the estimate

t
a(t) - Ipe Uy WJM@

_ Ag(t) —1) a0 a) . 01, P
<-4 5(<ptf> )+ S8 [y os G

4. Applying the logarithmic Sobolev inequality: Fix p € (1, 00). Choose ¢(t) such that

ag'(t) = 4(q(t) — 1), ¢q(0) =p
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1.e. y

q(t) =1+ (p—1e~
Then by the logarithmic Sobolev inequality, the right hand side in the estimate above
is negative, and hence ||p; f||«) is decreasing. Thus

1Pef gty < N[ fllgoy = [Ifll, VT =0.

Other implication: Exercise. (Hint: consider 4||p, f| La(t) (1)) O

Theorem 4.18 (ROTHAUS). A logarithmic Sobolev inequality with constant o implies a Poincaré
inequality with constant o =

Qv

Proof. f € L*(u), [gdu=0,f :=14¢eg, f2 =1+ 29+ £¢?
[Pan=1e2 [Pan 60 =600 +260.9) + 6 (0.0)

and the Logarithmic Sobolev Inequality implies

/(1 +e)?log(l +eg)?du < a&(f, f) /f2 alulog/f2 dp

[ o fan < as(r ) + /f2du10g/f2du ve> 0
where f2log f* = 2eg +e%g> + 5(2¢9)> + O(e*) and [ f>dplog [ f2dp =€ [ ¢g* du+ O(e?).
rlogr =2 —1+ %(:}c— 1>+ 0 (Jz — 1)
which implies that
2e? /92 dp+O0(e%) < ag’8(g,9) Ve>0

2/92du§a5(9,9)

Application to convergence to equilibrium:

Theorem 4.19 (Exponential decay of relative entropy). 1. H(vp|p) < H(v|p) forall t > 0
andv € M;(S5).

2. If a logarithmic Sobolev inequality with constant o > 0 holds then

2
a

H(vpe|p) < e”="H(v|p)
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Proof for gradient diffusions. £ = %A + 0V, b = %Vlogg € C(R"),u = pdx probability
measure, .27, = span{C{°(R"), 1}
. The Logarithmic Sobolev Inequality implies that

2] d Vidu = a&
Iz ongHW n< S [IViPdu=as(sp

(i) Suppose v = g-pu, 0 < ¢ < g < ! for some ¢ > 0. Hence vp, < p with density

peg, € < prg < L (since [ fd(vp) f pfdv = [pfgdp = [ fpugdp by symmetry).
This implies that

d

d
S (vpil) = dt/ptglogptg dp = /fptg(lﬂogptg) dyu
by Kolmogorov. Using the fact that (zlogz) = 1 + log = we get

d

—H(vp|p) = =& (prg,logprg) =

1
o ——/thg-Vlogptgdu

2
where V log p;g = ptg . Hence

d
%H(th‘ﬂ) = _2/ ’V\/Ptg|2 dp 4.7)

1. =2 [|VyBig|* du <0

2. The Logarithmic Sobolev Inequality yields that

4
_Z/IV\/Pt | N<——/Pt910gf 9 dp

rg dp

where [ p.gdu = [ gdp =1 and hence

4
—2/ IV/pegl? dp < —EH(VMM)

(ii) Now for a general v. If v <« p, H(v|p) = oo and we have the assertion. Letv = g-pu, g €
L'(u) and
Gap:=(gVa)Ab, 0<a<hb,
Vab = Gab " I
Then by (1),
2t
H(vappe|p) < € o H(vaplp)

The claim now follows for a | 0 and b T oo by dominated and monotone convergence.
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Remark . 1. The proof in the general case is analogous, just replace (4.7) by inequality

ENFNT) < E(f,log f)

2. An advantage of the entropy over the x* distance is the good behavior in high dimensions.
E.g. for product measures,

H(|u") = d- H(v|p)

grows only linearly in dimension.

Corollary 4.20 (Total variation bound). For allt > 0 and v € M,(5),

|
lvpe = pllrv < —ze"« H(v|p)

[N

(<

S-S

log — e if S is finite)
x)

Proof.

1 1 1 1
|vpe — MHTV<EH(VPI€|N)2 7° o« H(v|p)2

where we use Pinsker’s Theorem for the first inequality and Theorem ??? for the second inequal-
ity. Since S is finite,

H(6;|p) = log < log — Voeels
p(x) min /1
which leads to
H(v|p) < Z H(,:|n) < log Vv
since v = »_ v(x)d, is a convex combination. O

Consequence for mixing time: (S finite)

Thix(e) =inf {t >0 : ||vp; — pllrv < eforallv € M;(S)}

1
< «a-log—— + loglog

V2e

Hence we have log log instead of log !

minges /()
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4.5 Logarithmic Sobolev inequalities: Examples and techniques

Example . Two-point space. S = {0, 1}. Consider a Markov chain with generator

—q q
L = , ,q€(0,1), p+qg=1
<p _p) p.q€(0,1), p+q

which is symmetric with respect to the Bernoulli measure,

p(0) =p, p(l)=gq

g=1-p

RN

0 O O 1

~_ “

p

Dirichlet form:

B 1) = 5 S ()~ F0) wle) 2 )

x7y

= pq - |f(1) = f(0)]* = Var,(f)
Spectral gap:

e
)‘(p) - fnoltrizf)nst. Varp<f) =1

Optimal Log Sobolev constant:

independent of p!

) [ fPlog fPdu )2 ifp=13
alp) = sup > T —
P fLII) E(f. f) logg-logp  4/ge

q—p
[ f2dp=1

goes to infinityasp | Oorp 1 oo!
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Spectral gap and Logarithmic Sobolev Inequality for product measures:

Ent,(f) ::/flogfdu, f>0

Theorem 4.21 (Factorization property). (S;,.-%;, it;) probability spaces, p = Q7 j1;. Then

1.
Var,(f) < ZE“ [Var/(ji)(f)]
i=1
where on the right hand side the variance is taken with respect to the i-th variable.
2.

Ent,,(f) < iE“ [Ent()(f)]

Proof. 1. Exercise.

2.

Ent,(f)= sup E,[fg], cf. above
g : Euled]=1

Fix g: S™ — R such that E, [e9] = 1. Decompose:

g(ml;.-.’l‘n) — 1ogeg($1 ..... an)
— log 69($1 ..... CCn) f eg Y1,L2,5--y T lj/l (dyl)
f e9(y1,22,...,7n) H1 dyl ff ed(y1,y2,73,. Nl (dyl)MQ(d’yQ)
= Zgi(l’l, T
=1
and hence

]Ezi[egi]zl V,1<i<n

= Eulfg] = ZE [fgi] = ZE @ [fg:]] < Ent{)(f)

— Entu[f]z sup E fg <ZE [Ent()(f)}

By [e9]=1 i=1
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Corollary 4.22.  [. If the Poincaré inequalities

hold for each yi; then

Var(f) < 36U ) ¥ f €@
where a
5015 = S B [6001.5)
and B

A= min )\
1<i<n

2. The corresponding assertion holds for Logarithmic Sobolev Inequalities with o = max «;

Proof.
3 (i 1
Vary(f) < 3OE, V()] < s 6 )
since )
Varf)(f) < - 6(f. f)

Example . S = {0,1}", u" product of Bernoulli(p),

Ent,» (f)

S a<p)pQZ/ |f($17 ey Ti—1, 1axi+17 s 7xn) - f(xla s 7$i71707xi+1a s 73:11)’2 ,un(dxla s
i=1

independent of n.

Example . Standard normal distribution v = N (0, 1),
e {0,1}" =R, u(z) =

The Central Limit Theorem yields that i = Bernoulli(%) and hence

pro gt Sy

,dxy,)
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Hence for all f € C§°(R),
Var,(f) = lim Var,(f og,)
S R 2 5 on
< hmmfiizl/ A f o @n|” du

§-~-§2-/!f’|2d7

Central Limit Theorem with constant o = 2.
Similarly: Poincaré inequality with A\ = 1 (Exercise).

Central Limit Theorem with respect to log concave probability measures:

Stochastic gradient flow in R™:
dX, = dB; — (VH)(X,)dt, H € C*(R")
Generator:
Z = %A —-VH -V
p(dz) = e @ dy satisfies £ = 0
Assumption: There exists a k > 0 such that

PH(x)>Kk-I VreR®
ie. O H>rk-|f]> VEER”

Remark . The assumption implies the inequalities

r-VH(z) > k- |2]* — ¢, (4.8)

H(x) > Sfof 2 (4.9)

with constants c,c¢ € R. By (4.8) and a Lyapunov argument it can be shown that X; does not ex-
plode in finite time and that py( <)) C o/ where <7y = span (C¥(R"), 1), &/ = span (. (R"), 1).

By (4.9), the measure i is finite, hence by our results above, the normalized measure is a station-
ary distribution for p;.

Lemma 4.23. If Hess H > k1 then

IVpif] < e ™ p [Vf]  feCHRY)
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Remark . [. Actually, both statements are equivalent.

2. If we replace R™ by an arbitrary Riemannian manifold the same assertion holds under the
assumption
Ric+HessH > k-1

(Bochner-Lichnerowicz-Weitzenbock).

Informal analytic proof:
1
VZsz(iA—VH-V)f
1
— <§A—VH-V—82H> \i

=:¥ operator on one-forms (vector fields)

This yields to the Evolution equation for Vp, f:

0 0 -
avptf = Vgptf =VZpf =% Vpf

and hence

(%thf) -V f

N

0 0
a |thf| = a (thf : thf)

|V f|
- (,z thf) CPE AR i
Vel IVndl Vi

<< ZVpf| = K|V f]
We get that v(t) := e"ps_; [Vp, f| with 0 < ¢ < s satisfies
V(1) < k() = Pt L VDS + Pt L VDS | = kst [Vpef| = 0

and hence
™ Vs f| = v(s) < v(0) = ps [V [

e The proof can be made rigorous by approximating | - | by a smooth function, and using
regularity results for p;, cf. e.g. Deuschel, Stroock[8].

e The assertion extends to general diffusion operators.
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Probabilistic proof: p.f(x) = E[f(X})] where X is the solution flow of the stochastic differ-
ential equation

dX, = dB, — (VH)(X,)dt, ie.

t
XP =2+ B, — /<VH)(X§) ds
0

By the assumption on H one can show that z — X[ is smooth and the derivative flow Y, =
V. X; satisfies the differentiated stochastic differential equation

dY; = —(°H)(X])Y/ dt,
Yo =1

which is an ordinary differential equation. Hence if 9*H > kI then for v € R",

g <K Y0l

d
2 Vi o) = =2 (Y, - v, (0*H)(X,)Y; - )
where Y; - v is the derivative of the flow in direction v. Hence

Vi - of” < e ™[o]

= Vi < ey
This implies that for f € C}(R"), p,f is differentiable and

v-Vpf(z) = E[(VA(XT); Vi 0)]
SE[VFXD)]-e™ | YVveR"

i.e.
IVpef(2)] < el V f|()

Theorem 4.24 (BAHRY-EMERY). Suppose that
PH>k-1 withk >0
Then

2 1
/f? log ——du< / ViR Ve CR®R)
Hf“p(u) K

Remark . The inequality extends to f € H'?(1) where H' (1) is the closure of C§° with respect

to the norm )
Iz = ( [ 172+ 19 P )



122 CHAPTER 4. CONVERGENCE TO EQUILIBRIUM

Proof. g € span(C§°, 1), g > 6 > 0.

Aim: 1
/gloggdu§ E/W\/El2 du+/9dulog/gdu

Then g = f? and we get the assertion.
Idea: Consider

u(t) = / peglog prg dp
Claim:
(i) u(0) = [ gloggdp
(i) limgyoo u(t) = [ gdplog [ gdp
i) —u'(t) < 2¢72 [ |V /g]” dp
By (1), (i1) and (iii) we then obtain:

/gloggdu—/gdulog/gduztlggo (u(0) — u(?))

t

= tlim —u'(t) ds

0
< [19vat du

where 2 [ e 2 ds = L.
Proof of claim: (i) Obvious.
(i1) Ergodicity yields to
peg(z) — /gdu Va
fort T oo.

In fact:
IVpigl < e "pi Vgl < e™™|Vg]
and hence
prg(z) — prg(y)| < e ™ sup Vgl - |z —y|

which leads to

pey(w) — / gdu‘ = ’ / (eg(@) — peg(y)) u(dy)‘

<e ™sup|Vyg|- / v —y| u(dy) — 0

Since p;g > 6 > 0, dominated convergence implies that

/ptglogpt5du—>/gdulog/gdu
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(ii1) Key Step! By the computation above (decay of entropy) and the lemma,

AV
—u'(t) = /thg V log prg dp = 2/' ;t;'
t

2 2
2° g g
1
2

2
e—ZHt/’vgg| du:2€—2f@t/|v\/§|2 du

Example . An Ising model with real spin: (Reference: Royer [19])
S =RA = {(x))ica | 7 € R}, A C Z finite.

pu(dr) = %exp(—H(z)) dx

ZV x;) —= Z V(i —j T — Z V(i — j)xiz;,

€A i geA i€EN,jEZI\A

potentzal interactions

where V: R — R is a non-constant polynomial, bounded from below, and 9: 7 — R is a
function such that 9(0) = 0, 9(i) = Y(—i) Vi, (symmetric interactions), V(i) = 0V|i| > R
(finite range), z € RZN\A fixed boundary condition.

Glauber-Langevin dynamics:

) H )
dX! = —g—(Xt) dt +dBi, i€ A (4.10)

of 89
Z/@azz ox;

Dirichletform:

Corollary 4.25. If
inf V() > ) [9(i))|

z€R
i€Z

then & satisfies a log Sobolev inequality with constant independent of A.

Proof.
O?’H
&"L'Z-ij

= O0*H> (mfv" — Zw(m) 1

in the sense of 777. O]

(x) = V(@) - 0i5 — (i — j)



124 CHAPTER 4. CONVERGENCE TO EQUILIBRIUM

Consequence: There is a unique Gibbs measure on Z¢ corresponding to H, cf. Royer [19].
What can be said if V' is not convex?

Theorem 4.26 (Bounded perturbations). i, v € M (R"™) ??? absolut continuous,

dV . ]_ 7U(z)
"=z
If
2
[ rrosd—duza- [1vitan viecs
1%z
then
/f log —=—— : OSC(U)-/|Vf|2dV Vfeoy
||f||L2<V
where
osc(U) :=supU — inf U
Proof.
21 |f|2 < 21 2 21 2 o r2 2 d 4.11
f %8 dv < [ (flog 7 = frlog | fllzzgy — f7 + 1 f ey ) dv (411
L2(1/
since

2
/f2 log ||f||{2| dv < /f2 log f2 — f?logt* — f24+t*dv Vt>0
L2(v)

Note that in (4.11) the integrand on the right hand side is non-negative. Hence

f2 1 —in
[ Fros g —dv < e (f?long—f?logufuim P 1 g ) di
1 —infU /
= —ein F2log —4—
z° I
1
< E _mea/|Vf|2du

S GSUPUinfUOé/|Vf’2 dv

Example . We consider the Gibbs measures 1 from the example above
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1. No interactions:

2
H(z)=Y (% + V(:ci)> ., V:R — R bounded

Hence

M:®MV

€A
where
v (dz) o V@ (dw)

and ~y(dx) is the standard normal distribution. Hence y satisfies the logarithmic Sobolev
inequality with constant

a(p) = a(py) < e Ma(y) =2 e W)
by the factorization property. Hence we have independence of dimension!
2. Weak interactions:

H(z)=>_ (“’; + V(xi)> —0 Y wmmi =0 Y wz,

1,5€EA SN
li—jl=1 JEA
li—j|=1

¥ € R. One can show:

Theorem 4.27. If V is bounded then there exists 3 > 0 such that for 9 € [—beta, 3] a
logarithmic Sobolev inequality with constant independent of \ holds.

The proof is based on the exponential decay of correlations Cov,,(z;, z;) for Gibbs mea-
sure, cf. 7?2, Course ??7?.

3. Discrete Ising model: One can show that for 3 < . (???) a logarithmic Sobolev in-
equality holds on{—N, ..., N} with constant of Order O(N?) independent of the bound-
ary conditions, whereas for 3 > 3. and periodic boundary conditions the spectral gap,
and hence the log Sobolev constant, grows exponentially in N, cf. [??7].

4.6 Concentration of measure

(92, o7, P) probability space, X;: Q2 — R? independent identically distributed, ~ .
Law of large numbers:

%meﬁfwmve%w
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Cramér:

N

> UX) - /Udu

i=1

P

1
- > < 2. —NI(r)
N _T] < e s

teR

I(r) = sup (tr — log / etV d,u) LD rate function.

Hence we have

e Exponential concentration around mean value provided I(r) > 0Vr # 0

2

2
> r] <e ' provided I(r) > T
c

Gaussian concentration.

When does this hold? Extension to non independent identically distributed case? This leads to:
Bounds for log [ eV dy !

Theorem 4.28 (HERBST). If i satisfies a logarithmic Sobolev inequality with constant o then
for any Lipschitz function U € C}(RY):

(i)
1 U Q
glog e du < Zt+ Udp Vt>0 (4.12)

where % log [ €'V du can be seen as the free energy at inverse temperature ¢, < as a bound
for entropy and [ U dy as the average energy.

(ii)
,u(UZ/Ud,u—i—r) <e"

Gaussian concentration inequality

o %

In particular,
(iii)
1
/GVW du<oo Vy<—
a

Remark . Statistical mechanics:
F,=t-S-(U)

where F} is the free energy, t the inverse temperature, S the entropy and (U) the potential.
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Proof. WLOG,0<e<U < % Logarithmic Sobolev inequality applied to f = s

2
t
/tUetUdu < a/ (5) ]VU\QetUdu—l—/etUdulog/etUdu

For A(t) := log [ €'V dy this implies

tUeV d
tA’(t) = u <

at? [|VU eV du - at?
f etlU du

4 [etVdp

since |[VU| < 1. Hence

dAl) N —AD) o
4\ _ <2 vt
dt t 12 — 4 vi=0
Since
A(t) = A0) +t-N(0)+0O@F) =t / Udp+ O(t?),
we obtain
A(t) o'
2\~ -
P / Udp+ 415,
re. ().
(ii) follows from (i) by the Markov inequality, and (iii) follows from (ii) with U(x) = |x|. O

Corollary 4.29 (Concentration of empirical measures). X; independent identically distributed,
~ . If v satisfies a logarithmic Sobolev inequality with constant o then

Nr2

P 27’]32«2@

- éwm ~E,[U)

for any Lipschitz function U € C}(R%), N € Nand r > 0.

Proof. By the factorization property, 1V satisfies a logarithmic Sobolev inequality with constant
a as well. Now apply the theorem to

noting that
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hence since U is Lipschitz,

Vi@)] - — <i |VU<x,->|2> <

i=1



Chapter 5

5.1 Ergodic averages

(X, P,) canonical Markov process on (€2, F), i.e.
Xi(w) = w(t)

p¢ transition semigroup,

Oi(w) =w(-+1t) shift operator
Xi(0:(w)) = Xpys(w)

p stationary distribution for p,. Hence (X;, P,) is a stationary process, i.e.
P,o0;'=P, Vt>0,
(Q,F, P,,(©:)i>0) is a dynamical system where O, are measure preserving maps, O, = ©; o

O.

Definition 5.1.
V:={AeF : 6;'(A)=AVt>0}

o-algebra of shift-invariant events. The dynamical system (Q, F, P,, (0,):>0) is called ergodic
if and only if
P,JA] €{0,1} VAev

or, equivalently,

Fe¥*P,), FoO,=FP,as. = F =const P,as.

Theorem 5.2 (Ergodic theorem).
1 t
+ [ PO ds ~ E,lF |9](w)
0

129
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a) P,-a.s. and L*(P,) forall F € L'(P,)
b) in L*(P,) for F € L*(P,)

In particular
t
1
i / Fo®©,ds —E,[F] P,-a.s. if ergodic.
0
Proof. cf. e.g. Stroock[21]. ]
Remark . [. The Ergodic theorem implies P,-a.s. convergence for ji-almost every x (since

2. In general P,-a.s. convergence for fixed x does not hold!

Example . Ising model with Glauber dynamics on 72, 3 > B..; (low temperature regime). It
follows that there exist two extremal stationary distributions u; and fig. Pug and Pug are both

ergodic. Hence

l/Fo@sds—> ENE[F] Pﬂg—a.s.
t EE[F] P —-a.s.

1y~

No assertion for the initial distribution v | ,u;, -

When are stationary Markov processes ergodic?
Let (L,Dom(L)) denote the generator of (p;);>p on L*(j1).

Theorem 5.3. The following assertions are equivalent:
(i) P, is ergodic
(ii) ker L = span{1}, i.e.

h € £*(u)harmonic = h = const. y-a.s.

(iii) py is p-irreducible, i.e.

B € ¥ suchthatplp = I p-as.Vt>0 = p(B)e€{0,1}

If reversibility holds then (i)-(iii) are also equivalent to:
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Proof. (1)=-(ii) If h is harmonic then h(X}) is a martingale. Hence when we apply the L? mar-
tingale convergence theorem,

(iv) py is L*(p)-ergodic, i.e.

—0 VfelXp)

L2(n)

wi = [ £

h(X;) = My in L*(P,), My 00, = M,

and since ergodicity holds
My, = const. P,-as.

hence
h(Xo) =E,[My | Fo] = const. P,-as.

and we get that h =const. p-a.s.
(i)=@il) h=1Ip

(iii)=-(i) If A € ¥ then I, is shift-invariant. Hence h(z) = E,[l4] is harmonic since, applying
the Markov property,

pih(z) = E, [Ex,[14]] = E; [1a 0 Oy = E,[14] = h(x).
Applying the Markov property once again gives
hMXy) =Ex,[[a] =E,[I400, | F] = 14 P,-as.
if £ T oo. Hence, applying the stationarity,

poh™ =P,o (h(Xp) ™" — PyoIy
= he{0,1} p-as.
= dBe€.Y : h=1Ig p-as., plg=1Ig p-as.

and irreducibility gives

h = Ig = const. p-a.s.

(ii1)<(v) If reversibility holds, the assertion follows from the spectral theorem:

p; symmetric Cy semigroup on L?(11), generator L self-adjoint and negative definite. Hence

0
pf =elf = / e dP(—oo)(f) — Pyoyf = Projection of f onto ker L
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Example. 1. Rotation on S*:

Uniform distribution is stationary and ergodic but
pf(z) = f (eitx)
does not converge.

2. S = R", p; irreducible (i.e. there is at > 0 such that for all v € R", U C R" open:
pi(z,U) > 0) and strong Feller (i.e. if f is bounded and measurable then p, f is continuous)
then py is p-irreducible and P, is ergodic.

E.g. for It6 diffusions: a;j(x),b(z) locally Hélder continuous and (a;j) non-degenerate,
then ergodicity holds.

5.2 Central Limit theorem for Markov processes

Let (M;):>0 be a continuous square-integrable (F;) martingale and F; a filtration satisfying the
usual conditions. Then M? is a submartingale and there exists a unique natural (e.g. continuous)
increasing process (M), such that

M? = martingale + (M),

(Doob-Meyer decomposition, cf. e.g. Karatzas, Shreve [12]).

Example . If N, is a Poisson process then
Mt - Nt — )\t

is a martingale and

(M), = X\t

almost sure.
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Note: For discontinuous martingales, (M), is not the quadratic variation of the paths!

Identification of bracket process for martingales corresponding to Markov
processes:

(X;, P,) stationary Markov process, L\, L() generator on L2(y1), L*(y), f € Dom(L®) D

Dom(L®). Hence
t

f(X,) =M/ + / (LY f)(X,)ds P,-as.
0

and M/ is a martingale.

Theorem 5.4. Suppose f € Dom(L®) with f> € Dom(L™M). Then

t

(MY, = / D(f, f)(X)ds Pras.

0

where

D(f,g) =LY(f-g)— fLPg—gL®f € L' ()

is called Carré du champ (square field) operator.

Proof. We write A ~ B if and only if A — B is a martingale. Hence
. 2

(]\/[tf>2 — | rex) —/Lf(XS)ds

0
t t 2

— F(X0)? 2 (X)) / LF(X,)ds + / Lf(X.)ds

where

and, applying Ito,

2f(Xt)/th(Xs)d8=2/f(Xs)Lf(Xr) dr+2/t/TLf(Xs) ds df (X;)
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where

Hence

Example . Diffusion in R",

1 02

]

[\

Hence

=S alelg @) =l @V

forall f,g € C°(R™). Results for gradzent diffusions on R" (e.g. criteria for log Sobolev) extend
to general state spaces if |V f|* is replaced by T'(f, g)!

Connection to Dirichlet form:

—/fL<2>fdu+(§/ fdu) 5 [ TG

-~

=0

Reference: Bouleau, Hirsch [6].

Application 1: Maximal inequalities.
E [suprM! |P] <G E[(M)]| < ¢, 187 / I(f, /) dp
s<t

This is an important estimate for studying convergence of Markov processes!

Application 2: Central limit theorem for ergodic averages.

Theorem 5.5 (Central limit theorem for martingales). (M;) square-integrable martingale on
(Q, F, P) with stationary increments (i.e. My,s — My ~ M, — M,), o > 0. If

1
;(M)t — o in L'(P)

then M
L2 N(0,0?)
Vit
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For the proof cf. e.g. Landim [14], Varadhan [22].

Corollary 5.6 (Central limit theorem for Markov processes (elementary version)). Let (X, P,)
be a stationary ergodic Markov process. Then for f € Range(L), f = Lg:

%/f(xs)ds 2 N(0,0%)
0

where
=2 / 9(~L)gdp = 26(g,9)

Remark. [. If uis stationary then

/fdu /Lgdu—O

i.e. the random variables f(X;) are centered.
2. ker(L) = span{1} by ergodicity
(ker L)+ {fEL2 /fdu—O}— L3 ()

If L: L3(p) — L?(u) is bijective with G = (—L)~! then the Central limit theorem holds
forall f € L*(u) with

= 2(Gf, (=L)Gf) 2 = 2(f, G2

(H~! norm if symmetric).

Example . (X;, P,) reversible, spectral gap ), i.e.,
spec(—L) C {0} U [\, 00)

hence there isa G = (—L ” ))_1, spec(G) C [0, 1] and hence
Li(p

\)

< S22

>

is a bound for asymptotic variance.
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Proof of corollary.

and hence by the ergodic theorem

1 tToo
TAM) = /F(g,g) dp = o}
The central limit theorem for martingales gives

M¢ 2 N(0,02)

Moreover .

7i (9(Xy) — 9(Xo)) — 0

in L*(P,), hence in distribution. This gives the claim since

X, Zu V20 = X +Y,2u

Extension: Range(L) # L2, replace —L by o — L (bijective), then « | 0. Cf. Landim [14].
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