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This talk is based on joint work with Jan Maas.

E. A. Carlen and J. Maas, An analog of the 2-Wasserstein
metric in non-commutative probability under which the
fermionic Fokker-Planck equation is gradient flow for the
entropy, Comm. Math. Phys. 331, (2014), 887–926.

E. A. Carlen and J. Maas, Gradient flow and entropy
inequalities for quantum Markov semigroups with detailed
balance, Jour. Func. Analysis, 273, no. 5, (2017) 1810-1869

Related work Chen, Georgiou, Tannenbaum and also
Mielke, Mittnenzweig, in Jour Stat. Phys. (All papers are on
arXiv).
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The classical starting point

Let σ(x) be a smooth strictly positive probability density on
R
n. If ρ(x) as any other such density, the relative entropy of

ρ with respect to σ is

D(ρ||σ) =
∫

Rn

ρ[log ρ(x)− log σ(x)]dx .

The evolution equation

∂

∂t
ρ(x, t) = ∇ · ρ(x, t)[∇(log ρ(x, t)− log σ(x))]

is the Kolmogorov forward equation for a diffusion process.
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By the chain rule,

ρ(x, t)∇ log ρ(x, t) = ∇ρ(x, t)

and therefore

∇ · ρ(x, t)[∇(log ρ(x, t)− log σ(x))] =

∆ρ(x, t)−∇ · (ρ(x, t)∇ log σ(x)) .

However,

∇(log ρ− log σ) = ∇ δ

δρ
D(ρ||σ)

relates the equation to gradient flow for the 2-Wasserstein
metric, as Felix Otto observed and exploited.
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Since his original work in 2000, this perspective has been
found to be very useful, especially for establishing
functional inequalities related to the rate of relative entropy
dissipation.

Our goal is to extend this approach to the quantum Markov
semigroup setting. We will do so, and shall prove a sharp
entropy production inequality that had been conjectured by
Huber, König and Vershynina, as well as other new
inequalities.
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The quantum counterpart

Let A be a finite-dimensional C∗-algebra with unit 1. If you
like, take A = Mn(C), the n× n matrices over C. Let S+(A)
denote the set of faithful states of A: In the matricial case
this is the set of all positive n× n matrices ρ with unit trace,
and the state corresponding to ρ is the linear functional
A 7→ Tr[ρA].

A Quantum Markov Semigroup (QMS) is a continuous
one-parameter semigroup of linear transformations

(Pt)t≥0

on A such that for each t ≥ 0, Pt is completely positive and
Pt1 = 1.
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Complete positivity means the following: Any linear
transformation K : A → A induces the linear
transformation K ⊗ 1Mm(C) from A⊗Mm(C) to A⊗Mm(C):

K ⊗ 1Mm(C)





n
∑

i,j=1

Ai,j ⊗ Ei,j



 =

m
∑

i,j=1

K (Ai,j)⊗ Ei,j ,

where Ei,j is the element of Mm(C) whose i, j entry is one,
with all other entries being zero. The map K is completely
positive in case for each m ∈ N , K ⊗ 1Mm(C) is positivity

preserving.
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Let A = Mn(C), and K A = AT , which is positive.

K ⊗ 1M2(C) :

[

E1,1 E1,2

E2,1 E2,2

]

=

[

ET
1,1 ET

1,2

ET
2,1 ET

2,2

]

.

[

E1,1 E1,2

E2,1 E2,2

]

=











1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1











7→











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











.

Choi 1974: For A = Mn(C), K is completely positive iff

K ⊗ 1Mn(C)





n
∑

i,j=1

Ei,j ⊗ Ei,j



 ≥ 0 .
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This notion was introduced by Stinespring and is the
meaningful generalization of positivity preservation to the
non-commutative case for both physical and mathematical
reasons.

Being a stronger condition than positivity preservation,
there is much more that one can say about the structure of
completely positive operators than one can say about
operators that merely preserve positivity. And since the
notion arises naturally in quantum mechanics in the
consideration of coupled systems, what one can say is
physically meaningful.
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Let (Pt)t≥0 be a QMS acting on A. The algebra A is the
algebra of observables. Let HA be the Hilbert space obtained
by equipping A with the Hilbert-Schmidt inner product. A
dagger † always denotes the adjoint with respect to the
inner product in HA.
For all A,B,

Tr[A∗
PtB] = Tr[(P†

tA)
∗B] .

The semigroup Pt gives the Heisenberg picture of the

evolution. The dual semigroup (P†
t )t≥0 acting on S+(A)

gives the Schödinger picture of the evolution.
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The QMS Pt is ergodic in case 1 spans the eigenspace of
Pt for the eigenvalue 1. In that case, there is a unique
invariant state σ. While σ need not be faithful, a natural
projection operation allows us to assume, effectively without
loss of generality, that σ ∈ S+(A).

We consider a class of ergodic QMS that satisfy a quantum
detailed balance condition with respect to their unique
invariant state σ.

We show that all such semigroups (in the Schrödinger
picture) are gradient flow for the relative entropy with
respect to a natural analog of the 2-Wasserstein metric, and
we use this to prove new functional inequalities, one of
which proves a recent conjecture of Huber, König and
Vershynina.
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How QMS arise in practice

One might wonder how QMS arise in practice. After all the
basic evolution equation in quantum mechanics is the
Schrödinger equation which describes unitary, reversible,
non-dissipative time evolution. So one might wonder QMS
arise naturally even in quantum mechanics, but also in
other fields.

The answer is “yes” on both counts. We discuss two ways
they come up in quantum mechanics, focusing in work of
Nelson, Gross and Davies, and also one way that they
come up in the study of classical heat kernel estimates on
graphs, focusing on a paper of Davies.
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Let µ be the unit Gaussian measure on R
n. Consider the

Dirichlet form

E(ϕ, ϕ) =
∫

Rn

|∇ϕ|2dµ

Then with 〈·, ·〉 denoting the corresponding L2 inner product,

E(ϕ, ϕ) = 〈ϕ,N ϕ〉

where N is the number operator

N = −(∇− x) · ∇ .

The Schödiner operator H := N + V where V is
multiplication by the real function V arises in quantum field
theory, and one would like a lower bound on the bottom of
the spectrum.
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Theorem 0.1 (Nelson’s Theorem). Let V be a measurable function on

R
n such that the negative part of V , V−, is exponentially integrable. Let

H = N + V , the sum of the number operator and multiplication by V .

Then for all ϕ ∈ L2(γ),

〈ϕ,H ϕ〉 ≥ −1

2
log

(
∫

Rn

e2V− dµ

)

‖ϕ‖2 .

The theorem is dimension-free, and extends directly to the
infinite dimensional case.
Nelson’s proof relied on the hypercontractivity of the Mehler

semigroup (P)t≥0 where Pt = e−tN .

‖Ptϕ‖21+e2t ≤ ‖ϕ‖22 .
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Federbrush gave a partially alternate proof: He
differentiated the hypercontractivity inequality at t = 0 to
obtain

∫

Rn

|ϕ|2 log |ϕ|2dµ− ‖ϕ‖22 log ‖ϕ‖22 ≤ 2

∫

Rn

|∇ϕ|2dµ .

Let ρ be a probability density with respect to µ. Then taking
ϕ =

√
ρ, and defining

H(ρ) =

∫

Rn

ρ log ρdµ and I(ρ) =
1

2

∫

Rn

|∇ρ|2
ρ

dµ,

this becomes

H(ρ) ≤ 1

2
I(ρ) .
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Both sides of the inequality are convex functions of ρ, the
right hand side as a consequence of the joint convexity on
R
n × (0,∞) of

(a, t) 7→ |a|2
t

.

Hence, for any bounded, continuous real function W ,

sup
ρ

{
∫

Rn

Wρdµ−H(ρ)

}

≥ sup
ρ

{
∫

Rn

Wρdµ− 1
2I(ρ)

}

.
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An easy computation shows that

sup
ρ

{∫

Rn

Wρdµ−H(ρ)

}

= log

(∫

Rn

eWdµ

)

and

sup
ρ

{∫

Rn

Wρdµ− 1
2I(ρ)

}

= −λmin(2N − W ) .

Hence

λmin(N − 1
2W ) ≥ −1

2
log

(∫

Rn

eWdµ

)

.

Take V = −2W .
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In these last few slides we have been discussing a classical
Markov semigroup (Pt)t≥0 – the Mehler semigroup. The
operator N in this case is the boson number operator. It
can be written as

N =

n
∑

j=1

a∗jaj

where

aj = ∇j and a∗j = −∇j + xj .

These satisfy the canonical commutation relations:

aja
∗
k − a∗kaj = δj,k1 .
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For systems of fermions, the physically natural operators
are expressed in terms of operators satisfying canonical
anti-commutation relations:

aja
∗
k + a∗kaj = δj,k1 .

The operators aj may be realized as skew-derivations ∇j.

on a Clifford algebra A with N generators, Q1, . . . , QN , and
the normalized trace τ is an analog of the Gaussian
measure, as Segal had emphasized. The Clifford algebra A
comes with a privileged involutive ∗-automorphism Γ, and to
say that ∇j is a skew derivation means that for all A,B ∈ A,

∇j(AB) = (∇jA)B + Γ(A)∇jB .
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Let 〈·, ·〉 denote the inner product 〈A,B〉 = τ [A∗B]. Define
Gross’s Clifford Dirichlet form E(A,A) by

E(A,A) =
n
∑

j=1

τ [(∇jA)
∗(∇jA)] .

Define

〈A,N A〉 = E(A,A) and Pt = e−tN .

Define Lp norms by ‖A‖p = τ [(A∗A)p/2]2/p. Gross

conjectured that the exact analog of Nelson’s inequality:

‖Ptϕ‖21+e2t ≤ ‖ϕ‖22 .
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This was proved by Elliott Lieb and myself in 1993. Gross
had proved a slightly weaker result, showing that such in

inequality is is true if one replaces p(t) := 1 + e2t by a
function of t that grows somewhat more slowly.

Gross used the fact that each Pt is positivity preserving to
prove a uniqueness theorem for ground states, making use
of hypercontractivity and a variant of the Perron-Frobenius
Theorem.

In all of these investigations, the semigroup (Pt)t≥0 enters
the discussion because one is trying to study the properties
of a Schrödinger operator H = N + V . It does not have an
direct dynamical significance; the parameter t is not the
physical time that appears in the corresponding
Schrödinger equation.
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QMS do also arise in quantum dynamics: Brian Davies
showed in the 1970’s that if one coupled a finite quantum
system to an infinite fermion “heat bath” and then considers
the evolution over long times but with weak coupling, a
QMS arises. Specifically, let H0 be the Hamiltonian of the
finite quantum system. Let H1 be the Hamiltonian for the
heat bath. Let λK be an interaction energy. Define

U
(λ)
t = ei(t/λ)(H0+H1+λK) .

Then

lim
λ→0

U
(0)
t/λ

(U
(λ)
−t/λ

AU
(λ)
t/λ

)U
(0)
−t/λ

= Pt(A)

and (Pt) is a QMS – with additional properties.
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Quantum Markov Semigroups also arise natural in the
context of classical Markov chains; in particular when one
tries to get heat kernel bounds in a discrete setting.

We recall that a family of logarithmic Sobolev inequalities

∫

M

|ϕ|2 log |ϕ|2dµ− ‖ϕ‖22 log ‖ϕ‖22 ≤

ǫ

∫

M

|∇ϕ|2dµ+ (C0 −
n

2
log ǫ)‖ϕ‖22

imply uniform heat kernel bounds

Kt(x, y) ≤ C1e
C2tt−n/2 .

To get Gaussian bounds, let ϕ be a Lipschitz function and
introduce the modified semigroup with Kernel
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Detailed balance

Let Pi,j be the Markov transition matrix for a Markov chain

on a finite state space S = {x1, . . . , xn}. Suppose that σ is a
probability density on S with

σj =

n
∑

i=1

σiPi,j .

The transition matrix satisfies the detailed balance condition
with respect to σ in case

σiPi,j = σjPj,i for all i, j .
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The matrix P is self-adjoint on C
n equipped with the inner

product

〈f, g〉σ =

n
∑

k=1

σkfkgk ,

if and only if the detailed balance condition is satisfied.

There are a number of different ways one might generalize
this inner product to the quantum setting, and these give
different notions of self-adjointness.
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Definition 0.2 (Compatible inner product). An inner product 〈·, ·〉 is

compatible with σ ∈ S+(A) in case for all A ∈ A, Tr[σA] = 〈1, A〉.
If a quantum Markov semigroup Pt is self-adjoint with
respect to an inner product 〈·, ·〉 that is compatible with
σ ∈ S+, then for all A ∈ A,

Tr[σA] = 〈1, A〉 = 〈Pt1, A〉 = 〈1,PtA〉 = Tr[σPtA] ,

and thus σ is invariant under P
†
t .

Definition 0.3. Let σ ∈ S+ be a non-degenerate density matrix. For

each s ∈ R, and each A,B ∈ A, define

〈A,B〉s = Tr[(σ(1−s)/2Aσs/2)∗(σ(1−s)/2Bσs/2)] = Tr[σsA∗σ1−sB] .
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