Probability and Stochastic Analysis - University of Bonn

Abstract of "A combinatorial identity for the speed of growth in an anisotropic KPZ model"

with Sunil Chhita.

The speed of growth for a particular stochastic growth model introduced by Borodin and Ferrari in [Comm. Math. Phys. 325 (2014), 603-684], which belongs to the KPZ anisotropic universality class, was computed using multi-time correlations. The model was recently generalized by Toninelli in [arXiv:1503.05339] and for this generalization the stationary measure is known but the time correlations are unknown. In this note, we obtain algebraic and combinatorial proofs for the expression of the speed of growth from the prescribed dynamics.

Postscript file: [PS]

PDF file: [PDF]

arXiv: 1508.01665