Probability and Stochastic Analysis - University of Bonn

Introduction to Stochastic Analysis, WS 2015/16

Tuesday 8.30-10.00 and Friday 10.15-12.00, Zeichensaal, Wegelerstr. 10

Lecture Course: Matthias Erbar

Problem sheets: Lorenzo Dello Schiavo



Mo 8-10, 0.008, Felix Wolf

Mo 10-12, 0.007, Maximilian Fels

Th 12-14, 0.007, Victor Erpenbeck

Please hand in your solutions tuesdays during the lecture.



oral examination; the examination will be in groups of two.

Dates: first round February 20, 21, 22; second round March 20.


  • martingales in discrete and continuous time
  • Brownian motion
  • continuous semimartingales
  • stochastic integration
  • Ito formula and applications
  • stochastic differential equations


Reference material

  • D. Williams : Probability with martingales, Cambridge UP
  • I. Karatzas, S. Shreve : Brownian motion and stochastic calculus, Springer
  • M. Steele : Stochastic calculus and financial applications, Springer
  • Lecture notes of Andreas Eberle: Introduction to stochastic Analysis
  • D. Revuz, M. Yor: Continuous martingales and Brownian motion, Springer
  • Rogers, Williams : Diffusions, Markov processes and martingales, Cambridge UP
  • Durrett : Stochastic calculus, CRC Press
  • Klenke: Wahrscheinlichkeitstheorie, Springer

Supplementary notes to the lecture of January 27


Problem sheets